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Abstract

Because of sorting, more skilled workers are more productive in higher type firms. They

also learn at different rates about their productivity and therefore expect different wage paths

across firms. We show that under strict supermodularity there is always positive assortative

matching: differential learning is always dominated by the impact of productivity. Surprisingly,

this holds even if learning is faster in the low type firm. The key assumption driving this result

is that this is a pure Bayesian learning model. We also derive a new equilibrium condition

in this class of continuous time models in addition to the common smooth-pasting and value-

matching conditions. This no-deviation condition captures sequential rationality and results in

a restriction on the second derivative of the value function.
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1 Introduction

High ability workers sort into more productive jobs. Due to complementarities in production,

their higher marginal product allows them to command higher wages. The Beckerian model of

assortative matching is very well suited to explain those patterns of sorting. Unfortunately, it is

mute on the issue of turnover of workers between different jobs. Instead, the Jovanovic (1979)

learning model has long been the canonical framework for analyzing turnover in the labor market1

over the life cycle. Workers and firms learn about match-specific human capital and will tend to

stay in a match if learning reveals the match is good. Experimentation occurs early on which

leads to decreasing turnover over the life cycle. Because in Jovanovic (1979) learning is about

the match and not about the worker, there is neither worker heterogeneity nor sorting. In this

paper, we offer a unified approach of learning and sorting. We establish a solution method for

a market equilibrium in a continuous time economy with multiple learning opportunities (multi-

armed bandit) and derive a no-deviation condition, a condition hitherto unknown. We show that

under supermodularity, positive assortative matching obtains in equilibrium, even if learning rates

differ across firms.

In the labor market, the learning experiences of workers are most likely to differ across different

firms. Starting in a top law firm or a multinational will induce different paths of information reve-

lation than working in a local family business. The worker now faces a trade-off between different

experimentation experiences: take a lower wage at a high productivity firm where information may

be revealed at a different rate or accept higher wage and learn more slowly. It is intuitive that

sorting and learning are intimately connected.

Modeling the labor market as a multi-armed bandit problem and solving it is challenging. Most

existing learning models and continuous time games are tractable because they are essentially one-

armed bandit problems with a fixed outside option that acts as an absorbing state. One-armed

bandit problems typically have attractive properties, including reservation strategies. Instead,

multi-armed bandits in general do not have reservation strategies when arms are correlated, even

if the learning rate is the same across firms.2 But our labor market is not exactly identical to

the canonical bandit problem. First, there are a continuum of experimenters, and as a result of

two-sided heterogeneity, deviations and off-equilibrium path beliefs non-trivially affect equilibrium.

Second, because of competitive wage determination à la Jovanovic (1979), the payoffs are endoge-

nous. Finally, because workers learn about general human capital instead of match-specific human

capital, the arms are positively correlated.

We find that it is the combination of competitive wage determination (endogenous payoffs)
1Of course, also the search model inherently exhibits turnover, but with observable types turnover is constant over

the life cycle. Moscarini (2005) brings together search and learning in the Jovanovic framework.
2See for example Chernoff (1968). Only with multiple independent arms are reservation strategies guaranteed,

and the Gittins index policy (in discrete time) is optimal.
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and the incentives needed to avoid a deviation that give rise to a new condition which we call the

no-deviation condition. This condition must be satisfied in addition to the common equilibrium

conditions of value-matching and smooth-pasting. The no-deviation condition can be interpreted

as the continuous time version of the one-shot deviation principle.3 We prove that the no-deviation

condition implies that the second derivative of worker’s value function at the cut-off belief is the

same in the high type as well as in the low type firms. Recall that value matching requires that

at the cut-off the worker’s value functions take the same value in both firms, the smooth-pasting

condition requires that the first derivative is the same, and now the no-deviation requires equal

second derivatives as well.

We show that supermodularity of the production technology is a necessary and sufficient condi-

tion for positive assortative matching, and that the equilibrium allocation is unique. Those workers

with the highest beliefs about their ability will in equilibrium sort into those firms that are most

productive. Moreover, we can analytically solve for the equilibrium allocation in terms of the cut-off

belief, and we derive in closed form the stationary distribution of beliefs.

While in most of the analysis we consider common variance across firms, it turns out that the

sorting result holds for different learning rates (noise) across firms, even if the rate of learning is

slower in the high type firm. It is conceivable that with supermodularity and a learning rate no

smaller in high types firms there will be positive sorting. The high type firm is both superior in

the learning rate and in productive efficiency. But if high type firms learn at a sufficiently slower

rate (the noise is sufficiently high), then the signal-to-noise ratio in the high type firm may well be

lower. The reason why this nonetheless does not affect the learning is that the value of learning also

depends on the degree of convexity of the value function (from Ito’s Lemma), in addition to the

signal-to-noise ratio. But by the no-deviation condition, at the cut-off belief, the degree of convexity

is the same in both firms and therefore the equilibrium value of learning is the same, no matter

the difference in signal-to-noise ratios. Key here is that wages are endogenous and determined

competitively. That is why this property does not necessarily hold in the canonical multi-armed

bandit problem.

We analyze the planner’s problem and show that a planner’s stationary allocation coincides

with the decentralized equilibrium allocation, even if learning rates differ across different firms.

This is surprising since there is a market incompleteness: wages are spot market prices only and

cannot be made contingent on future realizations. It turns out that the efficiency result and proof

crucially hinges on the martingale property inherent in Bayesian learning. The martingale property

implies that no matter how fast workers learn, the expected beliefs about their ability will stay the
3The idea of sequential rationality is of course not new and has also been employed in continuous time games by

Sannikov (2007) who uses the concept of self generation. And Cohen and Solan (2009) use dependence of strategies
on a small interval dt to restrict the set of Markovian strategies, in the spirit of our dt-shot deviation. It is precisely
the one-shot deviation in conjunction with endogenous payoffs that leads to the equalization of the second derivative
of the value functions.
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same. Since under strict supermodularity, the differential in expected output between working in

high and low productivity firms is monotonically increasing in the likelihood that the worker has

high ability, reallocating a group of low belief workers to a better match will decrease expected

outputs no matter how fast they learn.

We extend our analysis of Bayesian learning to allow for observable human capital accumulation.

This adds realism in the sense that workers learn on the job and increase their productivity with

tenure, yet we do not resort to non-Bayesian updating. Now cut-off types that characterize the

equilibrium allocation depend on the degree of observable experience, and beliefs continue to follow

a martingale process. The properties of our equilibrium extend to this more general human capital

accumulation case.

The motivation of our analysis and the results are obviously closest related to the labor market

learning literature (Jovanovic (1979, 1984), Harris and Holmström (1982), Moscarini (2005) and

Papageorgiou (2009)).4 Yet, there is a close relation to both the experimentation literature (Bolton

and Harris (1999), Keller, Rady, and Cripps (2005), Strulovici (2010)) and the literature on contin-

uous time games (Sannikov (2007, 2008), Faingold and Sannikov (2009)). Most models of learning

have a finite set of players and have an absorbing state. Ours has a continuum of agents and there

is learning in all states. Moreover, it is essentially a competitive model with equilibrium prices and

therefore payoffs from learning are endogenous.

The idea of analyzing a matching model where the current allocation determines the future

type is first explored in Anderson and Smith (2010). They find the opposite result of ours: positive

assortative matching fails even under supermodularity. They analyze a two-sided matching model of

reputations with imperfect information about both matched types.5 Our setup differs substantially,

but the main difference is in the information extraction. Their agents infer the type of each of the

matched partners from the realization of a joint signal.6

Another key characteristic of our model is that it is a pure Bayesian learning model where beliefs

follow a martingale. In Section 8 we show that our result holds for Bayesian updating processes

other than the Brownian motion (we extend our result to a generalized Lévy process), and we

also establish that positive assortative matching can fail if the updating process is not Bayesian

(this can be interpreted for example as a technology of unobserved human capital accumulation in
4Papageorgiou (2009) analyzes a learning model with heterogeneity. He estimates the version of Moscarini’s search

model with two-sided heterogeneity. With search frictions, wage setting is non-competitive and as a result, the no-
deviation condition is not imposed in addition to value matching and smooth pasting. Nonetheless, his findings
provide us with realistic estimates of the labor market characteristics of our model. See also Groes, Kircher and
Manovskii (2009) for estimates of a different learning model.

5Our model is more closely related to the standard firm-worker model to which they compare their two-sided model
in the discussion. There is only a one-sided inference problem in that model and they find that positive assortative
matching arises for extreme beliefs p = 0 and 1, but conjecture it does not in the interior.

6The difficulty is to account for agents switching partners. Anderson and Smith (2010) resolve this by assuming
symmetric learning in discrete time. Both sides of the market update in an identical fashion and under PAM their
new matched partner coincides exactly with the updated type of their old partner. As a result, in a candidate PAM
equilibrium there is never any switching.
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addition to the information extraction).

2 The Model Economy

Population of Firms and Workers. The economy is populated by a unit measure of workers

and a unit measure of firms. Both firms and workers are ex ante heterogeneous. The firm’s type

y ∈ {H,L} represents its productivity. The type y is observable to all agents in the economy. The

fraction of H type firms is π and all firms are infinitely lived. The worker ability x ∈ {H,L} is not

observable, both to firms and workers, i.e., information is symmetric.7 Nonetheless, both hold a

common belief about the worker type, denoted by p ∈ [0, 1]. Upon entry, a newly born worker is

of type H with probability p0 and of type L with probability 1− p0. Workers die with exogenous

probability δ. New workers are born at the same rate.8

Preferences and Production. Workers and firms are risk-neutral and discount future payoffs at rate

r > 0. Utility is perfectly transferable. Output is produced in pairs of one worker and one firm

(x, y). Time is continuous. Positive output produced consists of a divisible consumption good and is

denoted by µxy. We assume that more able workers are more productive in any firm, µHy ≥ µLy,∀y
and refer to it as worker monotonicity. While it is often useful, we do not in general assume firm

monotonicity, which would be µxH ≥ µxL,∀x. Strict supermodularity is defined in the usual way:

µHH − µLH > µHL − µLL, (1)

and with the opposite sign for strict submodularity. In the entire paper, we will refer to strict

supermodularity when we just mention supermodularity, likewise for submodularity.

Information. Because worker ability is not observable to both the worker and the firm, parties face

an information extraction problem. They observe a noisy measure of productivity, denoted by Xt.

Cumulative output is assumed to be a Brownian motion with drift µxy and common variance σ2

Xt = µxyt+ σZt (2)

where Zt is a standard Wiener process and as a result, Xt is normally distributed with mean µxyt

and variance σ2t. By Girsanov’s Theorem the probability measures over the paths of two diffusion

processes with the same volatility but different bounded drifts are equivalent, that is, they have the

same zero-probability events. Since the volatility of a continuous-time diffusion process is effectively
7This substantially simplifies the problem at hand. With private signals Cripps, Ely, Mailath and Samuelson

(2008) show that with a finite signal space there will be common learning, but not necessarily with an infinite signal
space as is the case in our model here.

8Without death, we know the posterior belief will converge with probability one to p = 1 or p = 0. Death here
actually acts as a shuffling device to guarantee a non-trivial stationary distribution of posterior beliefs.
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observable, the worker’s type could be learned directly from the observed volatility if σ depends on

workers’ types.9

Equilibrium. We consider a stationary competitive equilibrium in this economy. With two types of

firms and a continuum of p’s in this market, take a competitive wage schedule wy(p) as given which

specifies wage for every possible type p worker working in firm y.10 Denote by Vy the stationary

discounted present value of the competitive profits for firm y. The flow profit can be written as

rVy.11 Now we are ready to define the notion of competitive equilibrium:

Definition 1 A stationary competitive equilibrium consists of a competitive wage schedule wy(p) =

µy(p) − rVy, where µy(p) = pµHy + (1 − p)µLy denotes worker p’s expected productivity in firm

y = H,L and worker p chooses the firm y with the highest discounted present value. The market

clears such that the measure of workers in L firms is 1− π and the measure of workers in H firms

is π.

We would like to point out several things about this definition. First, the definition of compet-

itive equilibrium implies identical types will obtain the same payoff. A firm y earns the same flow

profit for every p. Our notion of competitive equilibrium puts restrictions on the off-equilibrium

prices, as does the Beckerian definition of a matching equilibrium. Although type p worker is not

employed by firm y on the equilibrium path, the hypothetical wage is still wy(p) = µy(p)− rVy to

guarantee the firm cannot make or lose money if the employment suddenly happens. Second, our

wage definition concerns a spot market wage and captures the idea that firms cannot commit to

future actions or realizations (see also Hörner and Samuelson (2009) for a model of experimentation

in the presence of spot market contracts). Together with sequential rationality, this therefore re-

quires that the wage contract is self-enforcing. We believe this is realistic since it is consistent with

the at-will employment doctrine in which parties are free to terminate employment relations with

no liability. Our spot market wage assumption is in contrast with Anderson and Smith (2010), who

parse the wage into a static wage plus a dynamic human capital effect. Their wage setting process

therefore corresponds to the Pareto efficient allocation. Third, like all price taking economies, the

wage schedule essentially transforms our problem into a decision problem for the workers.
9However, we can allow σ to be firm-specific. In section 8 we analyze the general case of firm-dependent σy.

10Bergemann and Välimäki (1996) and Felli and Harris (1996) consider a two-firm, one-worker/buyer model with
strategic price setting in a world with independent arms. With ex ante heterogeneous firms and workers and correlated
arms, we instead focus on competitive price setting which is closest in spirit to the Beckerian benchmark.

11Notice since there is no free entry, Vy need not to be zero. We could model free entry as long as in equilibrium
there is a non-degenerate distribution of firm types in the economy. We consider this does not add to the insights of
our model.
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3 Preliminaries

3.1 Benchmark: No Learning

Workers differ in the common beliefs p of being a high type. We shut down learning so that beliefs

are invariant. This can be viewed as a special case of the learning model with the variance σ2

going to infinity. We assume that there is no birth or death so we essentially have a static problem.

Suppose without loss of generality that p is uniformly distributed on [0, 1]. We continue to maintain

the assumption that the worker does not know her true type or that she has no private information

about it. Denote µy(p) = pµHy + (1− p)µLy for y = H,L and r as the discount rate.

Under the above notion of competitive equilibrium, it is easy to verify the following claim (All

of the results in this paper are in the sense of “almost surely” because we allow a zero measure of

agents to behave differently):

Claim 1 Under strict supermodularity, PAM is the unique (stationary) competitive equilibrium

allocation: H firms match with workers p ∈ [1 − π, 1], L firms match with workers p ∈ [0, 1 − π).

The opposite (NAM) holds under strict submodularity: H firms match with workers in [0, π).

Since there is no learning, essentially this result is identical to Becker’s (1973) result, but

with uncertainty. Noteworthy about this version of Becker is that even though for PAM there is

supermodularity of the ex-post payoffs (µHH +µLL > µHL+µLH), there need not be monotonicity

in expected payoffs, i.e., µH(1 − π) may be smaller than µL(1 − π). In fact, that will be reflected

in the firm’s equilibrium payoffs: VH ≥ VL if and only if µH(1− π) ≥ µL(1− π).

As in Becker, the equilibrium allocation is unique, but there may be multiple splits of the

surplus. In the case of PAM, we only require at the cutoff type p = 1 − π that wH(p) = wL(p).

There are multiple equilibrium payoffs if the surplus of a match between L and p = 0 is positive.

Instead, if µL(0) = 0,12 there is a unique equilibrium payoff.

3.2 Belief Updating

In the presence of learning we can now derive the beliefs and subsequently the value functions.

The posterior belief pt that the worker has a high productivity is a sufficient statistic for the

output history. Now, we can use the following well-known result: conditional on the output process

(Xt)t≥0, (pt)t≥0 is a martingale diffusion process. Moreover, this process can be represented as a

Brownian motion. Based on the framework of our model, denote sy = (µHy − µLy)/σ, y = H,L,

Σy(p) = 1
2p

2(1− p)2s2
y and then we get:

12And there is limited liability, i.e., workers and firms cannot receive negative payoffs.
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Lemma 1 (Belief Consistency) Consider any worker who works for firm y between t0 and t1. Given

a prior pt0 ∈ (0, 1), the posterior belief (pt)t0<t≤t1 is consistent with the output process (Xy,t)t0<t≤t1
if and only if it satisfies

dpt = pt(1− pt)sydZ̄y,t

where

dZ̄y,t =
1
σ

[dXy,t − (ptµHy + (1− pt)µLy)dt].

The proof of this Lemma is in Faingold and Sannikov (2007) or Daley and Green (2008). The

basic idea behind the proof is a combination of Bayes’ rule and Ito’s lemma. Given the period t

posterior belief pt and dXt, we know the posterior belief at period t+ dt is:

pt+dt =
pt exp{− [dXt−µHydt]2

2σ2dt
}

pt exp{− [dXt−µHydt]2
2σ2dt

}+ (1− pt) exp{− [dXt−µLydt]2
2σ2dt

}
.

Hence,

dpt = pt+dt − pt = pt(1− pt)
exp{− [dXt−µHydt]2

2σ2dt
} − exp{− [dXt−µLydt]2

2σ2dt
}

pt exp{− [dXt−µHydt]2
2σ2dt

}+ (1− pt) exp{− [dXt−µLydt]2
2σ2dt

}
.

Apply Ito’s Lemma and we obtain the above result.

Lemma 1 establishes that dp depends on three elements: p(1 − p), which peaks at 1/2; the

signal-to-noise ratio of output, sy = (µHy − µLy)/σ and dZ̄y, the normalized difference between

realized and unconditionally expected flow output, which is a standard Wiener process with respect

to the filtration {Xy,t}. Obviously, beliefs move faster the more uncertainty about worker’s quality

(p close to 1/2); the less variation in the output process (smaller σ) and the larger the productivity

difference (higher µHy − µLy).
Learning considerations will change the beachmark results. Moreover, supermodularity not

only affects the value of the static output created as in the standard Beckerian model, but it

also has dynamic effect by changing the speed of learning. For example, under supermodularity

(µHH − µHL > µLH − µLL), the learning speed is faster in the high type firm, which is especially

significant for p close to 1/2. Intuitively speaking, learning makes it more attractive to match with

a high type firm even though statically it is better for her to match with a low type firm without

learning.
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3.3 Value Functions

Consider any interval for the posterior belief p ∈ [p1, p2] where the worker accepts the offer from a

type y firm, then the value function is given by13:

rWy(p) = µy(p)− Vy + Σy(p)W
′′
y (p)− δWy(p), (3)

from Ito’s Lemma. The term µy(p) − Vy is equal to the flow wage payoff and corresponds to the

deterministic component of the diffusion Xy,t, and the term Σy(p)W
′′
y (p) is the second-order term

from the transformation W of the diffusion process Xy,t. First-order and all higher-order terms

vanish as the time interval shrinks to zero. The general solution to this differential equation is:

Wy(p) =
µy(p)− Vy
r + δ

+ ky1p
1−αy(1− p)αy + ky2p

αy(1− p)1−αy , (4)

where

αy =
1
2

+

√
1
4

+
2(r + δ)
s2
y

≥ 1.

First notice that the boundedness of the value function implies that if 0 is included in the

domain, then ky1 = 0 and if 1 is included in the domain, then ky2 = 0. If not, with αy > 1 the value

of W shoots off to infinity. Second, Σy(p)Wy
′′(p) is the value of learning and this is an option value

in the sense that the worker has the choice to change his job as he learns his type p. It is easy to

verify that this value is zero if the worker never changes his job.14 From the Martingale property

of the Brownian motion, at any p the expected value of p in the next time interval is equal to p.

There is as much good news as bad news to be expected in the next period. It is the option value of

switching to a more suitable match that generates the value of learning. Equation (4) implies that

this option value can be decomposed into two parts: ky1p
1−αy(1−p)αy (ky2p

αy(1−p)1−αy) denotes

the option value of switching to a more suitable match when p goes down (up). The option value

ky1p
1−αy(1− p)αy (ky2p

αy(1− p)1−αy) must be zero if 0 (1) is included since no switch happens as

p goes down (up).

4 Analysis and Results

4.1 Characterization of the Equilibrium Allocation

Now consider any candidate stationary equilibrium where a type p worker switches from firm y

to y′. Since the worker is essentially facing a two-armed bandit problem given the wage schedule,
13Note that we critically need the assumption that the worker does not have any private information about his

type. If this assumption is violated, the worker’s value functions could not be written like this.
14In that case, p can take both the values 0 and 1. So the boundedness of the value function requires that both

ky1 and ky2 are zero and hence Wy
′′(p) = 0 for every p.
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optimality in stopping time requires the value-matching condition (the worker gets the same value

at the cutoff) and the smooth-pasting condition (the marginal of both value functions is identical)

(see Dixit (1993)). For example, if for p ∈ [p1, p2), the worker works in the low type firm and for

p ∈ [p2, p3), the worker works in the high type firm, then we must have:15

WL(p2) = WH(p2) and WL
′(p2) = WH

′(p2). (5)

Notice that workers are price takers. As a result, there is no strategic interaction between

players where equilibrium solves for the fixed point of individual strategies. It is also important

to point out that both the value-matching condition and the smooth-pasting condition are on-

equilibrium path conditions. They have nothing to do with the off-equilibrium path (i.e., instead

of accepting offers from low type firms, workers with p ∈ [p1, p2) are tempted to accept offers from

high type firms). In the following lemmas we characterize the value functions establishing convexity

and monotonicty:

Lemma 2 The equilibrium value functions Wy are strictly convex for p ∈ (0, 1).

Proof. In Appendix.

The intuition for this Lemma is the following. Preferences and output are linear in p, and the

option value of learning is strictly positive, hence the value function with the option of learning

is convex. To see this, observe that since the measure of both types of firms are strictly positive,

market clearing requires that workers with some p’s will be employed by high type firms while

workers with other p’s will be employed by low type firms. This implies that some worker has to

change jobs at some point and the option value of learning Σy(p)Wy
′′(p) is strictly positive. Hence

we have W ′′y (p) > 0, for all p ∈ (0, 1) since Σy(p) > 0. On the other hand, when p = 0 or 1, the

posterior belief will always stay at 0 or 1 by Bayes’ rule such that learning never happens. It is

easy to verify that W ′′y (p) = 0 for p = 0 or 1.

Given the strict convexity of equilibrium value functions and the smooth pasting condition, we

can immediately derive the following Lemma:

Lemma 3 The equilibrium value functions Wy are strictly increasing.

Proof. In Appendix.

One important implication is that if we define W(p) as the envelope of all equilibrium value

functions Wy(p), then this envelope function W(p) is continuous, strictly increasing and strictly

15We slightly abuse notation hers since WL is not defined on p2. A more precise way of writing the equations is
WL(p2+) = WH(p2) and WL

′(p2+) = WH
′(p2). In what follows, we will continue to use the expression in the text in

order to economize on notation.
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convex for p ∈ (0, 1). Suppose workers with p ∈ [0, p) are employed by type y firm and workers with

p ∈ (p̄, 1] are employed by type −y firm. Then we should have: W ′y(0) = µHy−µLy
r+δ < W ′−y(1) =

µH,−y−µL,−y
r+δ . This gives us another result:

Lemma 4 Under supermodularity, in any equilibrium p = 0 workers match with L firms; p = 1

workers match with H firms. The opposite under strict submodularity. Moreover,

min(∆H ,∆L)
r + δ

< W ′(p) <
max(∆H ,∆L)

r + δ
,

where ∆H = µHH − µLH and ∆L = µHL − µLL.

Intuitively this result is best understood by using the standard sorting argument from Becker

(1973). At p = 0 and p = 1 there is no value of learning. As a result, there the value function can

be interpreted as being determined by the no-learning allocation.

The properties derived above are mainly concerned with on-equilibrium path behavior. We also

need to specify what happens in the event of deviations and consider behavior off-equilibrium path.

We contemplate the equivalence of a one-shot deviation in continuous time because we think of

the continuum as an idealization of discrete time. This amounts to a worker playing the deviant

action over an interval [t, t + dt) according to the belief p at time t, and considering the limit as

dt→ 0.16 This is very important because it allows us to derive the value function for deviation. On

the contrary, if the deviation only takes place at a single point in time t, then the value function

for deviation is essentially the same as the one without deviation because no information will be

extracted from just a single time point.

The next Lemma establishes that if we consider off-the-equilibrium path deviations, we actually

derive one additional condition, which we call the no-deviation condition.

Lemma 5 To deter possible deviations, a necessary condition is:

W ′′H(p) = W ′′L(p) (No-deviation condition) (6)

for any possible cutoff p.

Proof. Given wage schedule wy(p), a worker is facing a bang-bang control problem, which is:

W (p) = max
a(p)={H,L}

E
{∫ ∞

t
e−(r+δ)(s−t)wa(ps)(ps)ds

}
such that

pt = p0 and dps = sa(ps)ps(1− ps)dZ̄ys,s.
16This notion is also implicitly used in Sannikov (2007, Proposition 2), and also in Cohen and Solan (2009) who

consider deviations from Markovian strategies in bandit problems.
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Without loss of generality, we assume that on equilibrium path, a worker with p > p accepts

offers from H firms and a worker with p < p accepts offers from L firms. Consider one possible

one-shot deviation: at time t, a p > p worker matches with a low type firm for dt and then switch

back. The on-equilibrium-path value function is defined as before (from Hamilton-Jacobi-Bellman

equation):

(r + δ)W (p) = (r + δ)WH(p) = wH(p) + ΣH(p)W ′′H(p).

The deviator’s new value could be written as:

W̃L(p) = E
{∫ t+dt

t
e−(r+δ)(s−t)wL(ps)ds+ e−(r+δ)dtW (pt+dt)

}
. (7)

Potentially, pt+dt can take any value between 0 and 1. We have to show that as dt becomes

very small, almost surely, pt+dt will be close to p such that it is in the region where the worker will

still accept offers from high type firms and hence W (pt+dt) = WH(pt+dt).

By construction, the deviator’s belief updating follows a Brownian motion: dpt = sLp(1 −
p)dZ̄yt,t. Therefore, the probability that a worker p > p will have belief pt+dt ≤ p is given by

Φ
(

p−p
sLp(1−p)

√
dt

)
, where Φ(·) is the cumulative distribution function for a standard normal distribu-

tion. Apply L’Hopital’s rule and it is straightforward to see that17

lim
dt→0

Φ
(

p−p
sLp(1−p)

√
dt

)
dt

= 0.

It is also possible for pt+dt to increase above another cutoff p̄ (if it exists) such that the worker will

accepts offers from low type firms. Use the same logic and it is easy to find that the probability

also goes to zero as dt→ 0.

Notice that for any dt > 0,

WH(p) > W̃L(p) > E
{∫ t+dt

t
e−(r+δ)(s−t)wL(ps)ds

}
+ Ee−(r+δ)dt

[
WH(pt+dt)(1− Pr(pt+dt /∈ (p, p̄))) + Pr(pt+dt /∈ (p, p̄))W (0)

]
. (8)

The first inequality comes from the fact that there should be no profitable deviation. The second

inequality is true because we replace the value for pt+dt /∈ (p, p̄) with the lowest value W (0) (W (·)
is an increasing function by Lemma 3). From Ito’s Lemma, we can get for the deviator:

EWH(pt+dt) = WH(p) + ΣL(p)W ′′H(p)dt+ o(dt).
17Another way to prove the claim is by applying a property of Brownian motion: For a Brownian motion Xt and

any α < 1/2, if h is sufficiently small, almost surely |Xt+h −Xt| < Chα.
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For any dt > 0, the no deviation condition implicit in equation (8) implies:

E{
∫ t+dt
t e−(r+δ)(s−t)wL(ps)ds}

dt

+
E
{
e−(r+δ)dt[WH(pt+dt)(1− Pr(pt+dt /∈ (p, p̄))) + Pr(pt+dt /∈ (p, p̄))W (0)]

}
−WH(p)

dt
< 0.

Let dt→ 0 and first, it follows immediately that:

lim
dt→0

E
{∫ t+dt

t e−(r+δ)(s−t)wL(ps)ds
}

dt
= wL(p).

Second, as proved earlier,

lim
dt→0

Pr(pt+dt /∈ (p, p̄))
dt

= 0.

Finally,

lim
dt→0

E
{
e−(r+δ)dtWH(pt+dt)(1− Pr(pt+dt /∈ (p, p̄)))

}
−WH(p)

dt

= lim
dt→0

(e−(r+δ)dt − 1)WH(p) + ΣL(p)W ′′H(p)dt+ o(dt)
dt

= ΣL(p)W ′′H(p)− (r + δ)WH(p).

Therefore, the necessary condition such that a p > p worker has no incentive to deviate can be

written as:

wL(p) + ΣL(p)W ′′H(p)− (r + δ)WH(p) = wL(p) + ΣL(p)W ′′H(p)− wH(p)− ΣH(p)W ′′H(p) < 0. (9)

The above inequality must hold for any p > p. Let p→ p and we have:18

wL(p)− wH(p) + [ΣL(p)− ΣH(p)]W ′′H(p) ≤ 0

⇒ wL(p) + ΣL(p)W ′′L(p)− (wH(p) + ΣH(p)W ′′H(p)) + (W ′′H(p)−W ′′L(p))ΣL(p) ≤ 0

⇒W ′′H(p) ≤W ′′L(p). (10)

Similarly, we can consider another possible one-shot deviation: a p < p worker matches with

a high type firm for dt and then switches back. The same logic establishes that to deter such

deviation, it must be the case that:

wH(p)− wL(p) + [ΣH(p)− ΣL(p)]W ′′L(p) < 0 (11)
18As p goes to p+, notice that wL(p−) = wL(p+),ΣL(p−) = ΣL(p+). Hence, we will have: wL(p−) +

ΣL(p−)W ′′L (p−)− (wH(p+) + ΣH(p+)W ′′H(p+)) + (W ′′H(p+)−W ′′L (p−))ΣL(p−) ≤ 0.
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for any p < p. As p goes to p, we should have:

wH(p)− wL(p) + [ΣH(p)− ΣL(p)]W ′′L(p) ≤ 0⇒W ′′H(p) ≥W ′′L(p). (12)

(10) and (12) imply that W ′′H(p) = W ′′L(p).

This no-deviation condition is quite unique for the two-armed bandit problem. This condition

is absent in an one-armed bandit problem. Most of the models in the literature on continuous time

learning models (Jovanovic (1979) and Moscarini (2005)) and continuous time games (see amongst

others, Sannikov (2009)) are essentially investigating a one-armed bandit problem. There, we can

directly look at equilibria in cutoff strategies. In the one-armed bandit problems, the safe arm

essentially is an absorbing state so we only need to worry about the potential deviation from the

risky arm to the safe arm.19 Then the no-deviation condition becomes W ′′H(p) ≥ W ′′L(p) = 0 but

this is already implied by the convexity property.20

We provide some intuition for the no-deviation condition. By assuming Sequential Rationality,

i.e., the equilibrium is robust to a one-shot deviation, we basically impose that the equilibrium

wage is self-enforcing. There is no commitment to future realizations of Xt and therefore of future

beliefs p. Now we can interpret W ′′ as the marginal value of learning: W ′ is the marginal change

of W with respect to the posterior p, and learning changes p and is therefore quantified by the

change in W ′ which is W ′′. The condition states that there is no deviation if the marginal value of

learning at p is the same in both firms.

Now in our two-armed bandit problem, we first need to answer the question whether there exist

non-cutoff stationary equilibria, i.e., a worker with p ∈ [p1, p2) accepts the offer from a high type

firm, with p ∈ [p2, p3) accepts the offer from a low type firm and with p ∈ [p3, p4) accepts the offer

from a high type firm again. Surprisingly, Lemmas 2–5 imply that all possible stationary competi-

tive equilibria must be in cutoff strategies. The next theorem therefore establishes uniqueness and

sorting under supermodularity. It does not shown existence yet, which we do in Theorem 3 below.

Theorem 1 If an equilibrium exists, PAM is the unique stationary competitive equilibrium alloca-

tion under strict supermodularity. Likewise for NAM under strict submodularity.

To prove this theorem, we only need to prove the following Claim:

19For example, in our model assume µHL = µLL and the return in the low type firm is deterministic.
20In a model of option pricing by Dumas (1991), there does exist a condition on the second derivative called the

“super contact” condition, which is of a very different nature. It arises as the optimal solution to the option pricing
problem with proportional cost.
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Claim 2 Under strict supermodularity, it is impossible to have p1 < p2 and equilibrium value

functions WH (for p ∈ [p1, p2]), WL1 (for p < p1), WL2 (for p > p2) such that:

WH(p1) = WL1(p1) and W ′′H(p1) = W ′′L1(p1)

WH(p2) = WL2(p2) and W ′′H(p2) = W ′′L2(p2)

are satisfied simultaneously.

Under strict submodularity, it is impossible to have p1 < p2 and equilibrium value functions WL

(for p ∈ [p1, p2]), WH1 (for p < p1), WH2 (for p > p2) such that:

WL(p1) = WH1(p1) and W ′′L(p1) = W ′′H1(p1)

WL(p1) = WH2(p2) and W ′′L(p2) = W ′′H2(p2)

are satisfied simultaneously.

Proof. In Appendix.

This result states that it is not benefial for a worker of type p to learn in the high type firm H

in the middle as long as there there are still types p on both sides who work in the low type firms.

Given the above claim, it is easy to prove the theorem:

Proof. Under supermodularity, by Lemma 5, workers with sufficiently low p’s will accept a low

type firm’s wage offer and workers with sufficiently high p’s will accept a high type firm’s offer. But

Claim 2 implies it is impossible to have worker first accept low type firm’s offer, then accept high

type firm’s offer and finally accept low type firm’s offer again. Hence, we must have some cutoff p

such that p < p will accept low type firm’s offer and p > p will accept high type firm’s offer. This

is exactly a PAM allocation. Use the same logic, NAM is the only possible stationary competitive

equilibrium allocation under strict submodularity.

Before we turn to the equilibrium distribution, we show that the no-deviation condition in

Lemma 5 is not just necessary but also sufficient under strict supermodularity:

Lemma 6 Under strict supermodularity, W ′′H(p) = W ′′L(p) implies that no deviation will happen

for the PAM equilibrium allocation.

Proof. In Appendix.
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4.2 The Equilibrium Distribution

The previous section shows that under strict supermodularity (submodularity), PAM (NAM) is the

unique candidate stationary competitive equilibrium allocation. Note that this doesn’t necessarily

mean the equilibrium exists. We still need to construct such an equilibrium. To do that, we assume

strict supermodularity and worker and firm monotonicity: (µHH > µHL and µLH > µLL).21 Now

consider a strictly positive assortative matching equilibrium such that workers with beliefs less than

p will choose L firms and workers with beliefs higher than p will choose H firms. From equation (4)

we hence have kL1 = 0 and kL2 > 0 for y = L and kH2 = 0 and kH1 > 0 for y = H. Let kL = kL2,

kH = kH1 and worker’s value functions become:

WL(p) =
wL(p)
r + δ

+ kLp
αL(1− p)1−αL (13)

and

WH(p) =
wH(p)
r + δ

+ kHp
1−αH (1− p)αH , (14)

where

αy =
1
2

+

√
1
4

+
2(r + δ)
s2
y

≥ 1.

To discuss market clearing conditions, we need to consider the ergodic distribution of p’s. From

the Fokker-Planck (Kolmogorov forward) equation, the stationary and ergodic density fy should

satisfy the following differential equation:

0 =
dfy(p)
dt

=
d2

dp2
[Σy(p)fy(p)]− δfy(p). (15)

The general solution to this differential equation is (see also Moscarini (2005)):22

fy(p) = [fy0p
γy1(1− p)γy2 + fy1(1− p)γy1pγy2 ] (16)

where

γy1 = −3
2

+

√
1
4

+
2δ
s2
y

> −1

and

γy2 = −3
2
−
√

1
4

+
2δ
s2
y

< −2.

First, the integrability of fy requires that fy1 = 0 if 0 is included in the domain and fy0 = 0 if 1

21Monotonicity is just to help us find one particular way to divide the surplus. The whole construction of equilibrium
also goes through if we do not make this assumption.

22Here the assumption that there is no heterogeneity in the prior p0 substantially simplifies the solution to this
differential equation. While there is no solution for a general distribution of priors, we have been able to solve the
stationary distribution if the priors are drawn from a beta distribution. See also Papageorgiou (2009).
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is included in the domain. Second, the Fokker-Planck (Kolmogorov forward) equation is only valid

for p 6= p0. Since there is a flow in of new workers, for p = p0 we should have a kink in the density

function. This also raises the issue of the relative position between p0 and p. We first consider the

case where p < p0. We then derive in abbreviated format the result when p > p0.

Given any p0 ∈ (0, 1), if p < p0, then the density functions are:

fH(p) = [fH0p
γH1(1− p)γH2 + fH1(1− p)γH1pγH2 ]I(p < p ≤ p0) + fH2(1− p)γH1pγH2I(p > p0) (17)

and

fL(p) = fL0p
γL1(1− p)γL2 . (18)

The density functions are subject to the following boundary conditions. The derivations of

these boundary conditions are shown in the appendix. First, once the posterior belief reaches the

equilibrium separation point p, we should have the cutoff condition:

ΣH(p+)fH(p+) = ΣL(p−)fL(p−). (19)

This condition guarantees that the flow speed of agents who cross p from below is equal to the

flow speed of agents who cross from above. The implication is that since the speed from above

ΣH is larger than ΣL, the densities are not continuous: fH(p+) < fL(p−). It is worth comparing

this condition to the standard condition when there is an absorbing state (Cox-Miller (1965), Dixit

(1993), and Moscarini (2005)). In the case with only one brownian motion and an absorbing state,

what is required is Σ(p+)f(p+) = 0 because the probability of absorption in a time interval dt

must equal the flow-in speed of the Brownian motion which is proportional to
√
dt (see Cox and

Miller (1965, p.220)).

Second, total flows in and out of the high type firms must balance:

ΣH(p0)[f ′H(p0−)− f ′H(p0+)] = δπ +
d

dp
[ΣH(p)fH(p)]|p+.

The left-hand side of the above equation is the total inflow into high type firms, which are new

workers who enter into this economy. The right-hand side of the above equation is the total outflows

from the high type firms, which include workers who reach p and transfer to low type firms and

workers who are hit by the death shock. We manage to show that this equation will further imply:

d

dp
[ΣL(p)fL(p)]|p− =

d

dp
[ΣH(p)fH(p)]|p+

Third, the density function has to be continuous at p0:

fH(p0−) = fH(p0+).
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It is customary to impose this condition as it approximates entry from a non-degenerate distribution

instead of entry of identical types p0.

Finally, usual market clearing conditions apply:

∫ 1

p
fH(p)dp = π and

∫ p

0
fL(p)dp = 1− π.

In summary, when p < p0, the equilibrium is characterized by a system of eight equations with

nine unknowns (VL, VH , kL, kH , p, fH0, fH1, fH2, fL0):23

WH(p) = WL(p) (Value-matching condition) (20)

W ′H(p) = W ′L(p) (Smooth-pasting condition) (21)

W
′′
H(p) = W

′′
L(p) (No-deviation condition) (22)

ΣH(p+)fH(p+) = ΣL(p−)fL(p−) (Boundary condition) (23)∫ 1

p
fH(p)dp = π (Market clearing H) (24)∫ p

0
fL(p)dp = 1− π (Market clearing L) (25)

d

dp
[ΣL(p)fL(p)]|p− =

d

dp
[ΣH(p)fH(p)]|p+ (Flow equation at p) (26)

fH(p0−) = fH(p0+) (Continuous density at p0) (27)

Fortunately, Equations (23)–(27) can be solved separately from Equations (20)–(22). In other

words, the procedure of solving this system of equation could be: first we solve p jointly with

fH0, fH1, fH2, fL0 from Equations (23)–(27) and then we plug p into Equations (20)–(22) to pin

down other unknowns.

Proposition 1 Equations (23)-(27) imply p < p0 if and only if:

(
p0

1− p0

)γH1−γL2 δ/s2
H

δ/s2
L

∫ 1
p0
pγH2(1− p)γH1dp∫ p0

0 pγL1(1− p)γL2dp
<

π

1− π
. (28)

Moreover, if such p exists, it must be unique.

Proof. In Appendix.
23Observe that with more unknowns than variables, the solution to our system is indeterminate. In fact, there are

potentially a continuum of wages that can be supported in equilibrium, though the allocation will be unique. This
indeterminacy is as in Becker: the allocation is unique, but there may be multiple ways to split the surplus. In all
that follows, when we use the term uniqueness of equilibrium, we refer to the allocation, not to the wages.
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The proof of Proposition 1 is quite straightforward. The idea of the proof is the following: since

we have 5 equations with five unknowns, we can first express fH0, fH1, fH2, fL0 as functions of p

and then use the last equation to pin down p.

The existence and uniqueness of the solution to the system require that fH0, fH1, fH2, fL0 change

monotonically with p. Fortunately, this is the case as shown in the appendix. The monotonicity

guarantees that if a solution exists, it must be unique. Furthermore, it enables us to only check the

boundaries when determining whether a solution exists. Equation (28) given in the Proposition is

thus derived.

In the second case, p ≥ p0. Given any p0 ∈ (0, 1), if p ≥ p0, then the density functions are:

fL(p) = fL0p
γL1(1− p)γL2I(p < p0) + [fL1p

γL1(1− p)γL2 + fL2(1− p)γL1pγL2 ]I(p0 ≤ p ≤ p) (29)

and

fH(p) = fH0(1− p)γH1pγH2 . (30)

Then the system of equations to determine the equilibrium is:

WH(p) = WL(p) (Value-matching) (31)

W ′H(p) = W ′L(p) (Smooth-pasting) (32)

W
′′
H(p) = W

′′
L(p) (No-deviation) (33)

ΣH(p+)fH(p+) = ΣL(p−)fL(p−) (Boundary condition) (34)∫ 1

p
fH(p)dp = π (Market clearing H) (35)∫ p

0
fL(p)dp = 1− π (Market clearing L) (36)

d

dp
[ΣL(p)fL(p)]|p− =

d

dp
[ΣH(p)fH(p)]|p+ (Flow equation at p) (37)

fL(p0−) = fL(p0+) (Continuous density at p0) (38)

Based on the above equations, we can prove the following Proposition, the counterpart to

Proposition 1, in a similar fashion:

Proposition 2 Equations (34)-(38) imply p ≥ p0 if and only if:

(
p0

1− p0
)γH1−γL2

δ/s2
H

δ/s2
L

∫ 1
p0
pγH2(1− p)γH1dp∫ p0

0 pγL1(1− p)γL2dp
≥ π

1− π
. (39)

Moreover, if such p exists, it must be unique.

The idea for the proof of Proposition 2 is exactly the same as that for the proof of Proposition
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1 and the proof is also shown in the appendix. Propositions 1 and 2 together provide the following

existence and uniqueness result:

Theorem 2 Under strict supermodularity, for any pair (p0, π) ∈ (0, 1)2, there exists a unique PAM

cutoff p. Moreover, p < p0 if and only if:

(
p0

1− p0
)γH1−γL2

δ/s2
H

δ/s2
L

∫ 1
p0
pγH2(1− p)γH1dp∫ p0

0 pγL1(1− p)γL2dp
<

π

1− π
. (40)

One of the nice properties about Equation (40) is that the whole equation only depends on p0,

π, δ/s2
H and δ/s2

L. This provides a feasible way to compute p. Given p0, π, δ/s2
H and δ/s2

L, we first

need to decide the sign of

(
p0

1− p0
)γH1−γL2

δ/s2
H

δ/s2
L

∫ 1
p0
pγH2(1− p)γH1dp∫ p0

0 pγL1(1− p)γL2dp
− π

1− π
.

If this sign is negative, then we know that p is smaller than p0 and we can use the system of

equations in the first case to figure out p. On the contrary, if this sign is not negative, then we

know that p is larger than p0 and we can use the system of equations in the second case to compute

p. This turns out to be a convenient way to determine the equilibrium cutoff numerically.

Before presenting the numerical results, we have a simple theoretical comparative static result:

Corollary 1 p is strictly increasing in p0 and decreasing in π.

This corollary is proved in the appendix. But the intuition is quite straightforward: decreasing

in π means there are more low type firms in the economy and hence p has to become larger such

that more workers are matched with low type firms; increasing in p0 means the overall quality of

the workers is becoming better in the economy and p has to go up to make sure that low type firms

are also matched with better workers.

Mathematically, it is not easy to derive comparative statics between p and δ/s2
H or δ/s2

L. But

intuitively speaking, as sL increases, the degree of supermodularity will be reduced while the speed

of learning in low type firms will increase. Both of these factors make the low type firms more

attractive and hence p should increase in sL. On the other hand, as sH becomes higher, both the

degree of supermodularity and the speed of learning in high type firms will go up, which will lead

to a reduction in p.

Figure 1 plots the stationary distribution of beliefs p, for the case of PAM and with parameter

values: sH = 0.15, sL = 0.05, p0 = 0.5, π = 0.5, δ = 0.01.
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Figure 1: Equilibrium Distribution of Posterior beliefs.

4.3 Equilibrium Analysis: Value Functions

Theorem 2 implies that under strict supermodularity, the PAM cutoff p can be uniquely determined.

But given this p, we still have the following conditions to satisfy:

WH(p) = WL(p) (Value-matching condition) (41)

W
′
H(p) = W

′
L(p) (Smooth-pasting condition) (42)

W ′′H(p) = W ′′L(p) (No-deviation condition) (43)

Equations (41)-(43) are three equations for four unknowns. The equilibrium is indeterminate

in the sense that although the allocation p is unique, there could be multiple ways to divide the

surplus. To make the system determinate, we assume firm monotonicity and set µLL = 0. Then

limited liability requires that wL(0) has to be zero and hence VL = 0. Equations (41)-(43) thus

could be written as:

µL(p)
r + δ

+ kLp
αL(1− p)1−αL =

µH(p)− rVH
r + δ

+ kHp
1−αH (1− p)αH

µHL − µLL
r + δ

+ kLp
αL(1− p)1−αL(

αL − p
p(1− p)

) =
µHH − µLH

r + δ
+ kHp

1−αH (1− p)αH (
1− αH − p
p(1− p)

)

kLp
αL−2(1− p)−1−αLαL(αL − 1) = kHp

−1−αH (1− p)αH−2αH(αH − 1)
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This system of equations will give us a unique formula for VH :

rVH = (µLH − µLL) +
αH(αL − 1)(∆H −∆L)p

αH(αL − 1)− (1− p)(αL − αH)
. (44)

As usual, ∆H = µHH − µLH and ∆L = µHL − µLL. Furthermore, it is easy to check that both kH

and kL are strictly larger than zero such that the option value of learning is strictly positive.

Therefore, we finally reach our main result:

Theorem 3 Under strict supermodularity, the stationary competitive equilibrium is unique in the

sense that all equilibria are PAM and the allocation is uniquely determined by Theorem 2. Moreover,

assume firm monotonicity and normalize VL = 0, we can get a unique formula for VH given by

equation (44).

4.4 Wage Gap at p

The analysis of the value functions allows us to determine equilibrium wages. We start with an

interesting observation:

wH(p) = µH(p)− rVH = ∆Hp+ µLL −
αH(αL − 1)(∆H −∆L)p

αH(αL − 1)− (1− p)(αL − αH)
< ∆Lp+ µLL = wL(p).

This implies that the worker with posterior belief slightly higher than p will accept the high firm’s

offer even though the wage provided is lower than the wage at the low firm. This obviously comes

from the fact that the learning speed in the high firm is higher and this would compensate the loss

in the flow wages.

On the other hand, we can see that the difference in expected productivity at p is

µH(p)− µL(p) = (µHL − µLL) + (∆H −∆L)p < rVH .

This implies the high firm can enjoy a strictly positive rent from a higher learning speed. This

above result actually does not depend on the assumption VL = 0 and it can be generalized for any

possible division of surplus.24 This is illustrated by Figure 2:

Lemma 7 Under strict supermodularity, we have: wH(p) < wL(p) and rVH−rVL > µH(p)−µL(p).

24Generally, value matching and no-deviation conditions imply that

(r + δ)WH(p) = wH(p) + ΣH(p)W ′′H(p) = (r + δ)WL(p) = wL(p) + ΣL(p)W ′′L (p)

and
W ′′H(p) = W ′′L (p).

These immediately mean that wH(p) < wL(p) and rVH − rVL > µH(p)− µL(p).
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Figure 2: Equilibrium wage function and value function in terms of beliefs p; Stationary wage
distribution.

5 Firm-dependent Volatility: σy

A valid criticism of our approach is that we give the H firms too much of an edge under supermodu-

larity (likewise for the L firms under submodularity). Not only are they superior in the production

of output, by assuming that the volatility σ is common to both types of firms, effectively the

signal-to-noise ratio is higher in H firms:

sH =
µHH − µLH

σ
>
µHL − µLL

σ
= sL,

from supermodularity. With firm-dependent volatility, that need not be the case. In particular, for

σH sufficiently high, it may well be the case that sH < sL.

Mere observation of the value function in Equation (3), rWy(p) = µy(p)− Vy + Σy(p)W
′′
y (p)−

δWy(p), reveals that firm-dependent volatility will play a crucial role here. Since Σy = 1
2p

2(1−p)2s2
y,

for sufficiently high σH and therefore low sH , it appears intuitive that the value WH can be smaller

than the value of WL for high p. It turns out that this intuition is wrong. First, in this competitive

equilibrium, wages are endogenous and therefore as the value of learning changes, so does µy(p)−Vy.
Second, the no-deviation condition requires that at the marginal type p, W ′′H = W ′′L. It turns out

that as a result these two features, in equilibrium the learning effect is the same in both firms, no
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matter what the volatility σy is.

To make this argument formal, when σH 6= σL, we generally define sy = (µHy − µLy)/σy, y =

H,L. It is trivial to show that belief updating also satisfies the formula:

dpt = pt(1− pt)sydZ̄y,t.

Furthermore, Lemmas 2–5 still hold because none of these results depend explicitly on σy. As

shown in the appendix, the statement in Claim 2 is generalized to any combination of (σH , σL).25

With the proof of Claim 2 in hand, the result of Theorem 1 immediately extends: PAM (NAM)

is the unique candidate stationary competitive equilibrium allocation under strict supermodularity

(submodularity) thus holds for any combination of (σH , σL). Surprisingly, this implies that under

strict supermodularity, even if we have an extremely high σH such that the learning rate in high

type firms is smaller than that in low type firms, we still have PAM. It is equivalent to assert

that the direct productivity consideration dominates the learning in our model. The reason comes

from the fact that the equilibrium wage schedules adjust to offset the impact of change in learning

rate. The key insight here is the no-deviation condition. At p, the no-deviation condition requires

that the second-order effect on the value function is the same in both firms. This second-order

effect W ′′y exactly captures the effect of learning through Σy(p)W ′′y (p) where Σy = 1
2p

2(1 − p)2s2
y.

Because equilibrium wages adjust to satisfy the no-deviation condition at the cutoff, the impact of

differential learning rates is completely offset by the change of wage schedule, and the equilibrium

allocation is solely determined by the productivity consideration.

6 The Planner’s Problem

A priori, we might expect the competitive equilibrium not to decentralize the planner’s problem.

Wage contracts cannot condition on future realizations or actions and are assumed to be self-

enforcing. As a result of this lack of commitment, there is a missing market. With incomplete

markets, the competitive equilibrium in general does not necessarily decentralize the planner’s

problem. It turns out however as we show below that this market incompleteness does not preclude

the efficiency of the decentralized equilibrium. As will become apparent, this efficiency result is

driven by the martingale property present in all models of learning.

We consider a planner’s problem under stationarity, i.e., in the presence of an ergodic distri-

bution. The planner chooses an allocation rule and as a consequence of the Kolmogorov forward

equation, the ergodic distribution associated with this allocation rule. The objective is to maximize

the aggregate flow of output. Given stationarity of the problem, the focus on output maximization

yields the same outcome as maximization of aggregate values.
25The sufficiency of the no-deviation condition is also extended to include all of the combinations of (σH , σL) by

proving a generalized version of Claim 2 and Lemma 6 in the appendix.
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Before we state and prove the efficiency result, we need to derive the stationary distribution

under multiple cutoffs. Consider any allocation with multiple cutoffs:

0 < p
N
< · · · < p

1
< 1, N odd.

Without loss of generality, we assume workers with p ∈ (p1, 1] are allocated to the high type firms

while workers with p ∈ [0, pN ) are allocated to the low type firms since for workers with p = 0

or 1, there is no need for learning and it is optimal to allocate them according to instantaneous

production efficiency (PAM).26 This also implies that generically N is odd. Denote by Ωy the set

of p’s that match with firms of type y.

Formally, the planner will choose Ωy to solve the problem:

max
Ωy

S =
∫

ΩH

µH(p)fH(p)dp+
∫

ΩL

µL(p)fL(p)dp

s.t.
d2

dp2
[Σy(p)fy(p)]− δfy(p) =

dfy(p)
dt

=0 Kolmogorov forward equation∫
ΩH

pfH(p)dp+
∫

ΩL

pfL(p)dp =p0 Martingale property∫
ΩL

fL(p)dp = 1− π,
∫

ΩH

fH(p)dp =π. Market clearing

It turns out that the martingale property enables an easier way to compare different allocations,

hence the following Lemma:

Lemma 8 Consider two possible allocations with ergodic density functions fH(p), fL(p) (allocation

1) and f̃H(p), f̃L(p) (allocation 2) respectively. Then allocation 1 generates higher aggregate output

than the allocation 2 if and only if
∫

ΩH
pfH(p)dp >

∫
Ω̃H

pf̃H(p)dp or alternatively,
∫

ΩL
pfL(p)dp <∫

Ω̃L
pf̃L(p)dp.

Proof. In Appendix.

To prove that the competitive equilibrium decentralizes the planner’s stationary solution under

supermodularity, it suffices to show that the PAM allocation is better than any allocation with

multiple cutoffs because from Theorem 2, we know that PAM allocation is unique and will be the

same as the competitive equilibrium allocation for any combination of (sH , sL). The key technical

issue is that the ergodic distribution is endogenously determined by the allocation rule. It is

infeasible to compute the ergodic density functions for each possible allocation. Our strategy of

proof is therefore to use a variational argument to circumvent this difficulty.
26This property is also established in the one-sided model of Anderson and Smith (2010). Our results shows that

not only at the extremes but also at the interior the planner’s (and the equilibrium) allocation exhibit PAM.
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The proof heavily uses the martingale property and works as follows. First we consider a

candidate allocation with 3 cutoffs. Under this candidate allocation, there will be an interior

interval of p’s that are matched to L type firms associated with some ergodic distribution. We

move the bounds of that interval slightly to the left, thus generating a new density in this interval

while keeping all other cutoffs and distributions unchanged. The new interval is chosen by imposing

market clearing conditions. Lemma 8 then shows that under supermodularity this experiment

strictly increases aggregate output. This holds until cutoffs coincide such that the interior rang of

p’s matched with L firms disappears, thus reducing the number of cutoffs to N = 1. We use a

similar argument to establish that output increases when moving from N to N − 2 cutoffs. The

result then follows by induction. We derive the result under supermodularity. The same logic

applies under submodularity.

Theorem 4 The competitive equilibrium decentralizes the planner’s stationary solution that max-

imizes the aggregate flow of output.

Proof. In Appendix.

7 On-the-job Human Capital Accumulation

On the job, workers and firms not only learn about their unknown innate skills, they also accumulate

human capital. In reality, human capital accumulation is an ongoing, continuous process. The

longer the tenure of a worker, the higher her productivity. This monotonically increasing relation

between tenure and human capital experience is likely also to be concave. For modeling purposes,

here we consider a very simple form that captures this relation. With probability λ, a worker

transitions from being unexperienced to being experienced.27 Once a worker is experienced, her

productivity increases to µxy + ξx and the status of experience is complete information.28 Now

there are the same value functions for experienced workers as before W e
y .

rW e
y (p) = µy(p) + ξ(p)− rVy + Σe

y(p)W
e′′
y (p)− δW e

y (p)

where ξ(p) = pξH + (1− p)ξL is the expected experience.29 For the unexperienced worker there is

now one additional value function. As before, there are unexperienced workers who are matched

with L firms, and who continue to match with an L firms; and there are those who match with H

27Having a continuous relation between tenure and human capital renders the system of differential equations into
a system of partial differential equations. Typically there is no solution. In the current setup, there is an additional
state (experienced versus unexperienced) and the model remains tractable.

28Observe that experience is worker dependent, but not firm dependent. While it is likely a realistic feature to have
experience dependent on the job type, the reason is that we would have a different level of experience for different
histories which makes the problem non-tractible.

29In this section we maintain the earlier assumption that σH = σL = σ.
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firms both when unexperienced as well as when experienced. We denote those values by W u
LL,W

u
HH .

There are now also some types p who match with an L firm when unexperienced and who switch

to an H firm when they become experienced, the value of which is denoted by W u
LH . This requires

that the reservation type of an experienced worker (pe) is lower than that of the unexperienced

worker (pu). We start from this premise and later verify that this is indeed the case. The value

functions then are:

rW u
yy(p) = µy(p)− rVy + Σu

y(p)W
u′′
yy (p) + λW e

y (p)− (δ + λ)W u
yy(p)

rW u
LH(p) = µL(p)− rVL + Σu

L(p)W
u′′
LH(p) + λW e

H(p)− (δ + λ)W u
LH(p)

Observe that even though experience is completely observable, it does affect the inference from

learning in the sense that the signal-to-noise ratio changes to [(µHy + ξH − µLy − ξL)]/σ2. As a

result, Σy depends on experience u, e.

W u
yy(p) =

µy(p)− rVy
r + δ + λ

+ kuy1p
1−αuy (1− p)αuy + kuy2p

αuy (1− p)1−αuy

+
λ

(r + δ)(r + δ + λ)
[µy(p) + ξ(p)− rVy]

+
λ

(λ+ δ + r)− (suy )2

(sey)2
(r + δ)

[key1p
1−αey(1− p)αey + key2p

αey(1− p)1−αey ]

W u
LH(p) =

µL(p)− rVL
r + δ + λ

+ kuL1p
1−αuL(1− p)αuL + kuL2p

αuL(1− p)1−αuL

+
λ

(r + δ)(r + δ + λ)
[µH(p) + ξ(p)− rVH ]

+
λ

(λ+ δ + r)− (suL)2

(seH)2
(r + δ)

[keH1p
1−αeH (1− p)αeH + keH2p

αeH (1− p)1−αeH ]

W e
y (p) =

µy(p) + ξ(p)− rVy
r + δ

+ key1p
1−αey(1− p)αey + key2p

αey(1− p)1−αey

where

αuy =
1
2

+

√
1
4

+
2(r + δ + λ)

(suy)2
≥ 1

αey =
1
2

+

√
1
4

+
2(r + δ)

(sey)2
≥ 1

There are now two cut-offs pu, pe. Since we just want to compare pu and pe, we can consider the

following thought experiment. First, we assume that pu = pe = p. Then we can get two systems of

equations: one system is the set of value-matching, smooth-pasting and no-deviation conditions for

the unexperienced workers and the other one is for the experienced workers. Second, we can solve
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∆V = VH − VL the way we did previously but now we can get two possible values for ∆V . Denote

them to be ∆V e and ∆V u. Notice that ∆V e and ∆V u are both increasing in the cutoff p. Finally,

we compare ∆V e and ∆V u under the assumption that pu = pe = p. If ∆V e > ∆V u, this means

that we should decrease pe or increase pu and hence pu > pe; on the contrary, if ∆V e < ∆V u, this

means that we should decrease pu or increase pe and hence pu < pe. We derive this in the Appendix

and can show this to hold when human capital accumulation is not too different for H and L types.

Proposition 3 Assume supermodularity and ξH ' ξL. Then pe < pu.

Proof. In Appendix.

With human capital accumulation, we can now characterize the entire equilibrium, including

wage schedules and the ergodic distribution of types. Even though there are types who gradually

learn they are of low productivity, wages need not decrease over the life cycle as they accumulate

human capital.

Turnover and Tenure. We express the expected future duration of a match by tenure τy(p).

Tenure relates inversely to turnover. For p < pe and p > pu, τy(p) satisfies the following differential

equation (see also Moscarini 2005):

Σy(p)τ ′′y (p)− δτy(p) = −1,

with solutions:

τuH(p) =
1
δ

{
1−

(
p

pu

)1/2−
√

1/4+2δ/(suH)2 ( 1− p
1− pu

)1/2−
√

1/4−2δ/(suH)2
}

;

τuL(p) =
1
δ

{
1−

(
p

pu

)1/2−
√

1/4−2δ/(suL)2 ( 1− p
1− pu

)1/2−
√

1/4+2δ/(suL)2
}

;

τ eH(p) =
1
δ

{
1−

(
p

pe

)1/2−
√

1/4+2δ/(seH)2 ( 1− p
1− pe

)1/2−
√

1/4−2δ/(seH)2
}

;

τ eL(p) =
1
δ

{
1−

(
p

pe

)1/2−
√

1/4−2δ/(seL)2 ( 1− p
1− pe

)1/2−
√

1/4+2δ/(seL)2
}
.

If p ∈ (pe, pu), the only difference is that

Σy(p)τu′′L (p)− (δ + λ)τuL(p) = −1,

since unexperienced workers will switch jobs once they become experienced. An immediate impli-

cation of the Proposition above is the following:
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Proposition 4 (Tenure) Assume supermodularity and ξH ' ξL. Then, τuL(p) > τ eL(p) for p < pe

and τuH(p) < τ eH(p) for p > pu. For p ∈ (pe, pu), there is a cutoff such that τuL(p) < τ eH(p) for p

higher than this cutoff and τuL(p) > τ eH(p) for p smaller than this cutoff.

For the lowest types p, tenure for the unexperienced worker is longer as the experienced workers

are more likely to be hired by an H firm given positive information revelation. The opposite is true

for the highest p: the unexperienced types face a higher cut-off type and will therefore upon bad

information be more likely to switch to an L firm. In the intermediate range, tenure depends on

how close p is to either of the cut-offs.

8 Robustness

8.1 Generalized Lévy Processes

One may suspect that our results are exclusively driven by the specific assumptions of the Brownian

motion. In the section, we illustrate that this is not the case by considering a generalized Lévy

process, i.e., a compound Poisson process. Let λxy denote the expected arrival rate of jumps for a

type x worker in a type y firm. Following Cohen and Solan (2009), the worker’s value function can

be written as:

Wy(p) = wy(p)dt+(1−rdt−δdt){[pλHy+(1−p)λLy]dtWy′(ph)+(1−[pλHy+(1−p)λLy]dt)Wy(p+dp)

where ph = pλHy
pλHy+(1−p)λLy and y′ is the firm type which matches with worker ph. If no jump occurs,

the updating of the posterior belief in firm y follows:

dp = −p(1− p)(λHy − λLy)dt+ p(1− p)sydZ̄.

As usual, the value function could be rewritten as a differential equation:

(r+δ+[pλHy+(1−p)λLy])Wy(p) = wy(p)+[pλHy+(1−p)λLy]Wy′(ph)−p(1−p)(λHy−λLy)W ′y(p)+Σy(p)W ′′y (p).

The no-deviation condition derived earlier still holds in this situation. The proof is similar and

is omitted here.

Lemma 9 To deter possible deviations, a necessary condition is:

W ′′H(p) = W ′′L(p) (No-deviation condition-Lévy) (45)

for any possible cutoff p.
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Consider the simplifying assumption that λLy = 0 and denote λHy by λy. Then ph is always 1

and the value function becomes:

(r + δ + pλy)Wy(p) = wy(p) + pλyWy′(1)− p(1− p)λyW ′y(p) + Σy(p)W ′′y (p).

The differential equation could be solved explicitly by guess and verify:

Wy(p) = Ay +Byp+ ky1p
αy1(1− p)1−αy1 + ky2p

αy2(1− p)1−αy2

where Ay = µLy−rVy
r+δ , By =

∆y+λy(Wy′ (1)−Ay)

r+δ+λy
and

αy1 =
1
2

+
λy
s2
y

+

√
(
1
2

+
λy
s2
y

)2 +
2(r + δ)
s2
y

> 1 + 2
λy
s2
y

αy2 =
1
2

+
λy
s2
y

−

√
(
1
2

+
λy
s2
y

)2 +
2(r + δ)
s2
y

< 0.

Obviously, the envelope of Wy is a strictly increasing and strictly convex function for p ∈ (0, 1).

First, we would like to argue that for p = 1, y′ = H. Since the function is strictly convex, it must be

the case that 0 and 1 workers are matched with different types of firms. Now suppose y′ = L. Then

since 0 workers are matched with H firms, AH > AL and hence WL(1) = ∆L
r+δ +AL <

∆H
r+δ +AH =

WH(1). A contradiction.

Therefore, the value function could be rewritten as:

(r + δ + pλy)Wy(p) = wy(p) + pλyW1(1)− p(1− p)λyW ′y(p) + Σy(p)W ′′y (p). (46)

with general solution:

Wy(p) = Ay +Byp+ ky1p
αy1(1− p)1−αy1 + ky2p

αy2(1− p)1−αy2 . (47)

Notice that the equilibrium payoffs are such that AL > AH , BL < BH and AL + BL < AH + BH .

At any cutoff p, the following three equations should hold simultaneously:

WH(p) = WL(p) (Value-matching condition) (48)

W
′
H(p) = W

′
L(p) (Smooth-pasting condition) (49)

W ′′H(p) = W ′′L(p) (No-deviation condition) (50)

Then from Equation (46), it is immediate to get at p,
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(λH−λL)pWH(p) = wH(p)−wL(p)+(λH−λL)pWH(1)−(λH−λL)p(1−p)W ′H(p)+(ΣH(p)−ΣL(p))W ′′H(p).

Apply Equation (47) and the above equation could be simplified as:

0 = wH(p)− wL(p) + (r + δ + λL)[AL −AH + (BL −BH)p].

The RHS of the above equation is linear in p. Therefore, if we can prove the slope is not zero then

there cannot exist two p’s satisfying the equation simultaneously. Fortunately, this is the case. The

slope is

∆H −∆L + (r + δ + λL)(BL −BH).

Notice that BH = ∆H
r+δ and (r + δ + λL)BL = ∆L + λL(WH(1)−AL). Hence,

∆H −∆L + (r + δ + λL)(BL −BH) = λL(AL −AH) > 0.

The following result summarizes the findings above and corresponds to Theorem 1 in the Brownian

motion case:

Proposition 5 Given the Lévy process and provided an equilibrium exists, PAM is the unique

stationary competitive equilibrium allocation under strict supermodularity.

Under PAM, kL1 > 0, kL2 = 0 and kH1 = 0, kH2 > 0. We can use the procedure introduced in

the previous sections to pin down the equilibrium cutoff p and derive value functions based on p.

Notice also that under the Lévy process, beliefs are formed through Bayesian updating. We

conjecture that PAM will always be the competitive equilibrium allocation under strict supermod-

ularity for any stochastic process as long as there is Bayesian updating. This is because under

Bayesian learning, the belief updating process is always a martingale. Of course, establishing this

result for general information processes is impossible because it requires the explicit solution of the

differential equations for the value function, which generally does not exist.

8.2 Non-Bayesian Updating

Suppose instead that the belief updating is not a martingale. Then it must be generated by some

non-Bayesian learning process. We will now show for an example that the competitive equilibrium

can be non-PAM even if there is supermodularity.

Suppose the belief updating process in firm y is given by: dp = λypdt for p < 1, with λy a

constant, and once p reaches 1, dp = 0. We may think p as a special human capital with 1 as an
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upper bound on the accumulation. The value function of a worker is given by:30

(r + δ)Wy(p) = wy(p) + λypW
′
y(p)

with solution:

Wy(p) = Cyp
r+δ
λy +

∆y

r + δ − λy
p+

µLy − rVy
r + δ

.

Suppose PAM is the equilibrium allocation, then

lim
p→1

WH(p) = WH(1) =
∆H

r + δ
p+

µLH − rVH
r + δ

,

which implies that:

CH = − λH∆H

(r + δ)(r + δ − λH)
.

At the cutoff p we have:

WH(p) = WL(p) (Value-matching condition) (51)

W
′
H(p) = W

′
L(p), (Smooth-pasting & No-deviation condition) (52)

where it turns out that for this belief-updating process, the no-deviation condition coincides with

the smooth-pasting condition. We derive the no-deviation condition in the Appendix.

This is a system of equations in CL and p. Substitute CL and p could be expressed as:

∆L

r + δ
p+

µLL − rVL
r + δ

=
λL − λH
r + δ

∆H

r + δ − λH
(p)

r+δ
λH + (1− λL

r + δ
)

∆H

r + δ − λH
p+

µLH − rVH
r + δ

or
∆L −∆H

r + δ
p+

µLL − rVL
r + δ

=
λH − λL
r + δ

∆H

r + δ − λH
[p− (p)

r+δ
λH ] +

µLH − rVH
r + δ

. (53)

Notice that PAM requires that the p = 0 worker has incentive to be matched with L firms. Hence,

µLL − rVL
r + δ

>
µLH − rVH

r + δ

Also notice that
λH − λL
r + δ

∆H

r + δ − λH
[p− (p)

r+δ
λH ] < 0

if λL > λH and r + δ > λH .
30We can write the value of a worker of type p in firm y as Wy(p) = wy(p)dt+ (1− (r + δ)dt)Wy(p+ dp). Using a

Taylor expansion Wy(p+ dp) = Wy(p) +W ′y(p)dp+ o(dt) and the fact that dp = λypdt, we obtain the expression for
Wy(p).
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If we can show that

∆H −∆L

r + δ
p <

λL − λH
r + δ

∆H

r + δ − λH
[p− (p)

r+δ
λH ],

then Equation (53) cannot hold as equality, which is the result we are looking for. First notice

that the LHS of the inequality goes to zero as ∆H −∆L decreases to zero. Meanwhile, the belief

updating process implies the ergodic distribution only depends on λ’s and will not depend on ∆’s.

From previous sections, if PAM is indeed the equilibrium allocation, then p should not depend on

∆’s. Therefore, fix any λL > λH and r + δ > λH and we can derive some corresponding p ∈ (0, 1).

Then, let ∆H −∆L decreases to zero and it is immediate to see that eventually we will have:

∆H −∆L

r + δ
p <

λL − λH
r + δ

∆H

r + δ − λH
[p− (p)

r+δ
λH ].

This implies that PAM cannot be an equilibrium if λL > λH and the degree of supermodularity is

sufficiently small.

9 Concluding Remarks

In this paper, we have proposed a competitive equilibrium model of the labor market that unifies

frictionless sorting and a learning-based theory of turnover. In equilibrium under supermodularity,

workers with better posteriors about their ability tend to sort into more productive jobs. The main

technical contribution of this paper is that we find a new constraint on the worker’s value function

as a result of sequential rationality in the presence of competitively determined payoffs. At the

cutoff type, the second derivative of the workers’ value function must equate. In addition to the

standard conditions of value-matching (zero-th derivative) and smooth-pasting (first derivative),

we now also have the no-deviation condition (second derivative).

What is possibly most surprising is that the result of positive sorting under supermodularity

is not determined by the speed of learning. In the trade-off between the learning speed and in-

stantaneous productive efficiency, productive efficiency always takes the upper hand. As such, the

equilibrium allocation does not depend on the signal-to-noise ratio (the ratio of the average payoff

gain, which measures the efficiency, over the noise term). This seems to indicate in this competi-

tive environment the sorting aspect dominates the learning. Quite surprisingly, this sorting result

does not hinge on the particular information structure and is robust to general Bayesian learning

processes.

Our analysis has certain limitations and several issues remain unanswered. First, like most

experimentation models, payoffs are linear and agents are risk neutral. Non-linearity is desirable

for the economic interpretation. However, it renders the solution to the differential equation of the

value function much harder to solve.
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Second, ideally we would like to extend the analysis to general distributions of worker and firm

types. Like in much of the experimentation literature the realized type is either high or low on a

risky arm. Here, in addition we have two risky arms that are correlated, since there is learning in

both types of firms. The focus on the two firm-type case (two arms) keeps down the dimensionality

of the continuous time problem. With more than two firm types, analyzing the Brownian motion

process is mathematically substantially more demanding.

Finally, our result that PAM obtains under supermodularity and that the planner’s problem

can be decentralized, is established for a stationary equilibrium. While a solution of a general

non-stationary equilibrium is too complex, one can easily construct a two-period counterexample

in which PAM will not necessarily obtain in a non-stationary environment.
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Appendix

Proof of Lemma 2

Proof. The worker p ∈ (0, 1) always has the choice that stays in one firm y forever. Then the value
is µy(p)−rVy

r+δ . But obviously, this is not an optimal choice (Suppose not, then all of the workers will
stay in one type of firms and the market is not cleared). So we have that the equilibrium value
function Wy(p) must satisfy: Wy(p) >

µy(p)−rVy
r+δ . This immediately implies:

Σy(p)Wy
′′(p) = (r + δ)Wy(p)− (µi(p)− rV i) > 0.

So the equilibrium value functions Wy convex for p ∈ (0, 1).

Proof of Lemma 3

Proof. Suppose workers with p ∈ [0, p) are employed by type y firm. This implies that Wy(p) =
µy(p)−rVy

r+δ + ky2p
αy(1 − p)1−αy since 0 is included in the domain. It is easy to see that Wy

′(0) =
µHy−µLy

r+δ > 0 and since Wy is strictly convex, W ′y(p) > 0 for all p ∈ [0, p). At p, worker will transfer
to type −y firm but smooth pasting condition implies W ′−y(p) = W ′y(p) > 0. Strict convexity
implies W ′y′(p) > 0 so on and so forth. Therefore, we must have the equilibrium value functions
Wy are strictly increasing.

Proof of Claim 2

Proof. We will actually prove a more general claim, i.e., that the result holds for any combination
(sH , sL), including sH < sL. This makes the proof also applicable to the case of σH 6= σL. Under
strict supermodularity, for any combination of (sH , sL), it is impossible to have p1 < p2 and
equilibrium value functions WH (for p ∈ [p1, p2]), WL1 (for p < p1), WL2 (for p > p2) such that:

WH(p1) = WL1(p1) and W ′′H(p1) = W ′′L1(p1)

WH(p2) = WL2(p2) and W ′′H(p2) = W ′′L2(p2)

are satisfied simultaneously.
Suppose on the contrary the equations described above hold simultaneously. Then from Equa-

tion (3), we should get:

wH(p1) + ΣH(p1)W ′′H(p1) = wL(p1) + ΣL(p1)W ′′L1(p1)

and
wH(p2) + ΣH(p2)W ′′H(p2) = wL(p2) + ΣL(p2)W ′′L2(p2)

since
WH(p2) = WL2(p2) and WH(p1) = WL1(p1).

Notice that
W ′′H(p2) = W ′′L2(p2) and W ′′H(p1) = W ′′L1(p1),

by Lemma 5 and hence:

ΣH(p1)− ΣL(p1)
ΣH(p1)

(r + δ)WH(p1) = wL(p1)− ΣL(p1)
ΣH(p1)

wH(p1) (54)
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and
ΣH(p2)− ΣL(p2)

ΣH(p2)
(r + δ)WH(p2) = wL(p2)− ΣL(p2)

ΣH(p2)
wH(p2). (55)

By definition,
ΣH(p1)− ΣL(p1)

ΣH(p1)
=

ΣH(p2)− ΣL(p2)
ΣH(p2)

=
s2
H − s2

L

s2
H

.

First, if s2
H = s2

L, Equations (54) and (55) imply that: wH(p1)−wL(p1) = wH(p2)−wL(p2) = 0
which cannot hold simultaneously for p1 6= p2 since wH(·) and wL(·) are linear functions with
different slopes ∆H and ∆L.

Second, if s2
H > s2

L, then Equations (54) and (55) could be simplified as:

s2
H − s2

L

s2
H

(r + δ)(WH(p2)−WH(p1)) = wL(p2)− wL(p1)− ΣL(p2)
ΣH(p2)

(wH(p2)− wH(p1)).

Under strict supermodularity, the LHS of the above equation is strictly larger than s2H−s
2
L

s2H
(r +

δ)W ′H(p1)(p2 − p1) by the convexity of the value function. And s2H−s
2
L

s2H
(r + δ)W ′H(p1)(p2 − p1) is

larger than s2H−s
2
L

s2H
∆L(p2 − p1) by Lemma 4. Meanwhile, the RHS of the above equation is strictly

smaller than

∆L(p2 − p1)− ΣL(p2)
ΣH(p2)

∆H(p2 − p1)) =
s2
H − s2

L

s2
H

∆L(p2 − p1)

which contradicts the fact that LHS is the same as RHS. The impossibility in s2
H < s2

L case could
be proved similarly and is thus omitted. By contradiction, we immediately know the claim at the
beginning of the proof is correct.

For the strict submodularity case, it suffices to relabel ‘H’ by ‘L’ and ‘L’ by ‘H’. The claim is
obviously correct given we have already proved the strict supermodularity result.

Proof of Lemma 6

Proof. We will actually prove a more general Lemma, i.e., that the result holds for any combination
(sH , sL), including sH < sL. This makes the proof also applicable to the case of σH 6= σL. First of
all, we want to show all of the one-shot deviations are ruled out by our no-deviation condition as
dt→ 0.

Under strict supermodularity, PAM is the only candidate equilibrium allocation by Theorem 1.
The value functions thus are given by:

WL(p) =
wL(p)
r + δ

+ kLp
αL(1− p)1−αL

and
WH(p) =

wH(p)
r + δ

+ kHp
1−αH (1− p)αH .

Let
GL(p) = kLp

αL(1− p)1−αL(
αL − p
p(1− p)

) > 0
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and
GH(p) = kHp

1−αH (1− p)αH (
1− αH − p
p(1− p)

) < 0

be the first derivatives for the non-linear parts of the value functions. Smooth pasting at p implies:

∆L

r + δ
+ GL(p) =

∆H

r + δ
+ GH(p).

From the proof of Lemma 5, it suffices to show that inequality (11) holds for p < p and inequality
(9) holds for p > p.

For p < p, define:

ZL(p) = wH(p)− wL(p) +
s2
H − s2

L

s2
L

((r + δ)WL(p)− wL(p)). (56)

Obviously, we have limp↗p ZL(p) = 0 from Lemma 5. If we can show that ZL(p) is increasing
in p as p increases from 0 to p, then we are done since ZL(p) < ZL(p) = 0. Notice that

Z ′L(p) = ∆H −
s2
H

s2
L

∆L +
s2
H − s2

L

s2
L

(r + δ)W ′L(p)

and W ′L(p) lies between ∆L
r+δ and ∆L

r+δ + GL(p) for p ∈ [0, p].31

If s2
H ≥ s2

L, then

Z ′L(p) ≥ ∆H −
s2
H

s2
L

∆L +
s2
H − s2

L

s2
L

(r + δ)
∆L

r + δ
= ∆H −∆L > 0;

if s2
H < s2

L, then

Z ′L(p) ≥ ∆H −
s2
H

s2
L

∆L +
s2
H − s2

L

s2
L

(r + δ)[
∆L

r + δ
+ GL(p)]

= ∆H −
s2
H

s2
L

∆L +
s2
H − s2

L

s2
L

(r + δ)[
∆H

r + δ
+ GH(p)]

=
s2
H

s2
L

(∆H −∆L) +
s2
H − s2

L

s2
L

(r + δ)GH(p) > 0.

Therefore, we conclude that Z ′L(p) > 0 for both sH ≥ sL and sH < sL cases, which implies
that ZL(p) < 0 for all p < p and hence there is no profitable one-shot deviation as dt is sufficiently
small.

For p > p, similarly define:

ZH(p) = wL(p)− wH(p) + [ΣL(p)− ΣH(p)]W ′′H(p). (57)

Under PAM equilibrium, we have ZH(p+) = 0 from Lemma 5. Notice that

ZH(p) = wL(p)−wH(p)+[ΣL(p)−ΣH(p)]W ′′H(p) = wL(p)−wH(p)+
s2
L − s2

H

s2
H

((r+δ)WH(p)−wH(p)),

31This comes from the fact that WL(·) is a strictly convex function.
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with W ′H(p) lies between ∆H
r+δ +GH(p) and ∆H

r+δ for p ∈ [p, 1]. Similar to the proof for p < p case,
if s2

L > s2
H

Z ′H(p) ≤ ∆L −∆H < 0;

and if s2
L ≤ s2

H

Z ′H(p) ≤ ∆L −
s2
L

s2
H

∆H +
s2
L − s2

H

s2
H

(r + δ)(
∆L

r + δ
+ GL(p)) < 0.

Therefore, Z ′H(p) < 0 for both sH ≥ sL and sH < sL cases and hence ZH(p) < 0 for all p > p.
Second, since there is no one-shot deviation for any p, obviously there will be no any other

deviation for any p. Consider any deviation starting at p. Then the above result says it is better
not to deviate for at least dt time. Suppose after dt, we achieve a new p′. Similarly, there should
be no profitable deviation for at least dt′ time. Keep using the same logic and we can conclude
that any deviation is not profitable.

Derivation of the Boundary Conditions

Here, we just investigate the boundary conditions for the first case: p < p0. The derivation is
similar for the second case.

In a stationary equilibrium, both the total measure
∫ 1

0 fy(p, t)dp and the expectations
∫ 1

0 pfy(p, t)dp
are constant over time. Hence, it must be the case that

∫ 1
0
∂fy(p,t)
∂t dp = 0 and

∫ 1
0 p

∂fy(p,t)
∂t dp = 0

From
∂fy(p, t)

∂t
=

d2

dp2
[Σy(p)fy(p, t)]− δfy(p, t),

we should have: ∫ p

0
{ d

2

dp2
[ΣL(p)fL(p)]− δfL(p)}dp = 0

and ∫ p0

p
{ d

2

dp2
[ΣH(p)fH(p)]− δfH(p)}dp+

∫ 1

p0

{ d
2

dp2
[ΣH(p)fH(p)]− δfH(p)}dp = 0.

The above two equations give us:

d

dp
[ΣL(p)fL(p)]|p− = δ(1− π)

and
ΣH(p0)[f ′H(p0−)− f ′H(p0+)] =

d

dp
[ΣH(p)fH(p)]|p+ + δπ

since the market clearing conditions imply:∫ p

0
fL(p)dp = 1− π

∫ 1

p
fH(p)dp = π
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and there is continuity at p0:
fH(p0−) = fH(p0+).

Meanwhile, notice that inflow at p0 must be the same as δ, which implies that ΣH(p0)[f ′H(p0−)−
f ′H(p0+)] = δ. This immediately gives us the flow equation at p:

d

dp
[ΣL(p)fL(p)]|p− =

d

dp
[ΣH(p)fH(p)]|p+.

Now apply similar logic and we can get:∫ p

0

{
p
d2

dp2
[ΣL(p)fL(p)]− pδfL(p)

}
dp+

∫ 1

p

{
p
d2

dp2
[ΣH(p)fH(p)]− pδfH(p)

}
dp = 0.

Notice that ∫ p

0
pδfL(p)dp+

∫ 1

p
pδfH(p)dp = δp0

by the martingale property. Meanwhile, we still have: ΣH(p0)[f ′H(p0−)−f ′H(p0+)] = δ. Hence,after
some tedious algebra, we can get:{

p
d

dp
[ΣL(p)fL(p)] + ΣL(p)fL(p)

}
|p− =

{
p
d

dp
[ΣH(p)fH(p)] + ΣH(p)fH(p)

}
|p+

which gives us the boundary condition at p:

ΣH(p+)fH(p+) = ΣL(p−)fL(p−).

Proof of Proposition 1

Proof. First, we can express fH0, fH1, fH2, fL0 as functions of p. Equations (25) and (27) imply:

fL0 =
1− π∫ p

0 p
γL1(1− p)γL2dp

.

and
fH2 = fH0(

p0

1− p0
)γH1−γH2 + fH1

From Equations (23) and (26), fH0 and fH1 as could be written as:

fH0 =
ηH + ηL

2ηH

s2
L

s2
H

(
p

1− p
)ηL−ηHfL0

and

fH1 = −ηL − ηH
2ηH

s2
L

s2
H

(
p

1− p
)ηL+ηHfL0.

Here,

ηL =

√
1
4

+
2δ
s2
L

> ηH =

√
1
4

+
2δ
s2
H

> 1/2.

Next, we want to show that both fH0 and fH1 are decreasing in p.
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Rewrite fH0 as:

fH0 =
ηH + ηL

2ηH

s2
L

s2
H

(
p

1− p
)ηL−ηH

1− π∫ p
0 p

γL1(1− p)γL2dp
.

and it suffices to show that (
p

1−p)ηL−ηH 1−πR p
0 p

γL1 (1−p)γL2dp
is decreasing in p. Notice that

(
p

1− p
)ηL−ηH =

∫ p

0
[(

p

1− p
)ηL−ηH ]′dp =

∫ p

0
(ηL − ηH)(

p

1− p
)ηL−ηH−1(

1
1− p

)2dp.

Let G1(p) = pγL1(1− p)γL2 and G2(p) = ( p
1−p)ηL−ηH−1( 1

1−p)2 such that:

G1(p)
G2(p)

= p−
1
2

+ηH (1− p)−
1
2
−ηH

is increasing in p. Therefore, we could derive:

(
p

1− p
)ηL−ηH

1− π∫ p
0 p

γL1(1− p)γL2dp

is decreasing in p32 and hence fH0 is decreasing in p as well.
Similarly, we can rewrite fH1 as:

fH1 = −ηL − ηH
2ηH

s2
L

s2
H

(
p

1− p
)ηL+ηH

1− π∫ p
0 p

γL1(1− p)γL2dp
.

Similarly,

(
p

1− p
)ηL+ηH =

∫ p

0
(ηL + ηH)(

p

1− p
)ηL+ηH−1(

1
1− p

)2dp.

Let G3(p) = ( p
1−p)ηL+ηH−1( 1

1−p)2 and we have:

G1(p)
G3(p)

= p−
1
2
−ηH (1− p)−

1
2

+ηH

is decreasing in p. Therefore, it must be the case that

−(
p

1− p
)ηL+ηH

1− π∫ p
0 p

γL1(1− p)γL2dp

is decreasing in p and hence fH1 is also decreasing in p.
Finally, it is immediate that

fH2 = fH0(
p0

1− p0
)γH1−γH2 + fH1

is also decreasing in p. Therefore, we can expressing fH0, fH1 and fH2 as ξ0(p), ξ1(p) and ξ2(p)
respectively such that ξ0

′ < 0, ξ1
′ < 0 and ξ2

′ < 0.

32Actually, we are using the result that if G2(p)
G1(p)

is decreasing in p, then
R p

0 G2(p)dpR p

0 G1(p)dp
will also be decreasing in p. This

is true because by the definition of Riemann integral,
R p
0
G1(p)dp and

R p
0
G2(p)dp could be written as the limit of

Riemann sum. The ratio of two Riemann sums is always decreasing in p since G2(p)
G1(p)

is decreasing in p.
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Hence, the market clearing condition (24) implies:

H(p) =
∫ p0

p
[ξ0(p)pγH1(1− p)γH2 + ξ1(p)pγH2(1− p)γH1 ]dp+

∫ 1

p0

ξ2(p)pγH2(1− p)γH1dp = π.

It is easy to check that H ′ < 0 since ξ0
′ < 0, ξ1

′ < 0 and ξ2
′ < 0. There exists p ∈ (0, p0) such

that H(p) = π if and only if limp→0H(p) > π and limp→p0 H(p) < π.
As p→ 0, fH0 = ξ0(p)→∞ and fH1 = ξ1(p)→ 0, which imply:

lim
p→0

H(p)→∞ > π.

Meanwhile, when p→ p0, it is obvious that H(p)→
∫ 1
p0
fH2p

γH2(1− p)γH1dp. Notice that

fH2 = fH0(
p0

1− p0
)γH1−γH2 + fH1 →

s2
L

s2
H

(
p0

1− p0
)ηL+ηH

1− π∫ p0
0 pγL1(1− p)γL2dp

as p→ p0.
As a result, limp→p0 H(p) < π if and only if:

s2
L

s2
H

(
p0

1− p0
)ηL+ηH

1− π∫ p0
0 pγL1(1− p)γL2dp

∫ 1

p0

pγH2(1− p)γH1dp < π,

which establishes Equation 28 in the proposition. Moreover, since H(·) is strictly decreasing, the
solution to H(p) = π must be at most one. This completes our proof of Proposition 1.

Proof of Corollary 1

Proof. To make the proof, we have to redefine the H(·) function in the proof of Proposition 1 as
H(p;π, p0) with equilibrium cutoff p satisfying H(p;π, p0) = π. It is obviously to verify that H is
linear in (1 − π). So as π increases, π/(1 − π) increases and we have to decrease p to balance the
equation. On the other hand,

∂H

∂p0
= ξ0(p)pγ

H
1

0 (1− p0)γ
H
2 + ξ1(p)pγ

H
2

0 (1− p0)γ
H
1 − ξ2(p)pγ

H
2

0 (1− p0)γ
H
1

+
∫ 1

p0

∂ξ2(p)
∂p0

pγ
H
2 (1− p)γH1 dp.

It is easy to verify that the first line on the RHS is zero while the second line is strictly positive.
Hence H(p;π, p0) is increasing in p0 and we have to increase p to keep the equation as p0 increases.

The proof for the comparative statics for p > p0 case is similar and hence is omitted.

Proof of Proposition 2

Proof. First, from equation (35), we have:

fH0 =
π∫ 1

p p
γH2(1− p)γH1dp

.
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Second, Equations (34) and (37) imply:

fL1 =
ηL − ηH

2ηL

s2
H

s2
L

(
p

1− p
)−ηL−ηHfH0

and

fL2 =
ηL + ηH

2ηL

s2
H

s2
L

(
p

1− p
)ηL−ηHfH0.

Here,

ηL =

√
1
4

+
2δ
s2
L

> ηH =

√
1
4

+
2δ
s2
H

> 1/2.

It is easy to verify that fH0, fL1, fL2 are increasing in p and hence fL0 = fL1 + fL2( p0
1−p0 )−2ηL is

also increasing in p by Equation (38).
Hence, we can express fL0, fL1, fL2 as ξ0(p), ξ1(p) and ξ2(p) respectively such that ξ0

′ > 0,
ξ1
′ > 0 and ξ2

′ > 0.
Finally, the market clearing condition (36) implies:

H(p) =
∫ p0

0
ξ0(p)pγL1(1− p)γL2dp+

∫ p

p0

[ξ1(p)pγL1(1− p)γL2 + ξ2(p)pγL2(1− p)γL1 ]dp = 1− π.

Obviously, H(·) is strictly increasing, which guarantees the solution is unique if it exists and
limp→p0 H(p) ≤ 1− π will give us Equation (39) in Proposition 2.

Proof of Lemma 8

Proof. By substituting µH(p) and µL(p), the total expected surplus for allocation 1 could be
written as:

S1 =
∫

ΩH

(∆Hp+ µLH)fH(p)dp+
∫

ΩL

(∆Lp+ µLL)fL(p)dp.

From market clearing and martingale property conditions, we can furthermore rewrite S1 as:

S1 = (∆H −∆L)
∫

ΩH

pfH(p)dp+ ∆Lp0 + πµLH + (1− π)µLL.

And similarly,

S2 = (∆H −∆L)
∫

Ω̃H

pfH(p)dp+ ∆Lp0 + πµLH + (1− π)µLL.

Therefore, S1 > S2 if and only if
∫

ΩH
pfH(p)dp >

∫
Ω̃H

pf̃H(p)dp or alternatively,
∫

ΩL
pfH(p)dp <∫

Ω̃L
pf̃L(p)dp.

Proof of Theorem 4

Proof.
We establish the proof of Theorem 4 under supermodularity. The same logic goes through for

submodularity. The proof is constructed in the following three steps: 1. for N = 3 we show that
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the planner can increase output when changing the cutoffs; 2. for N = 3 no allocation dominates
PAM; 3. For any N , the allocation with N − 2 cutoffs dominates that with N cutoffs.

1. For N = 3, output increases from changing the cutoffs
Consider any allocation with three cutoffs 0 < p

3
< p

2
< p

1
< 1 such that workers with

p ∈ (p
1
, 1] and p ∈ (p

3
, p

2
) are allocated to the high type firms while workers with p ∈ [0, p

3
) and

p ∈ (p
2
, p

1
) are allocated to the low type firms. Furthermore, denote the ergodic density function

for this allocation to be fy and for p close to 0, let the density function be fL(p) = f̃L0p
γL(1−p)1−γL

while the ergodic density function for p close to 1 is denoted by fH(p) = f̃H0p
1−γH (1− p)γH where

f̃L0 and f̃H0 are constants. Correspondingly, denote the ergodic density under the PAM allocation
to be f∗y with the unique cutoff p.

1. Suppose the planner changes the allocation by moving the interval to the left: (p
2
, p

1
) →

(p′
2
, p′

1
) where (p′

2
, p′

1
) = (p

2
− ε2, p1

− ε1). Choose ε1, ε2 such that market clearing is satisfied:∫ p
1

p′
1

fH(p)dp =
∫ p

2

p′
2

fH(p)dp.

2. Given the new cutoffs, the Kolmogorov forward equation will pin down a new density f̂L in
the interval (p′

2
, p′

1
). Globally, we need to satisfy market clearing and the martingale property

conditions. The market clearing condition for the H types is satisfied by the construction.
For the L type firms it requires that:∫ p′

1

p′
2

f̂L(p)dp =
∫ p

1

p
2

fL(p)dp.

The martingale property condition requires that EΩ′H
p+ EΩ′L

p = p0 or:∫ p3

0
pfL(p)dp+

∫ p′2

p3

pfH(p)dp+
∫ p′1

p′2

pf̂L(p)dp+
∫ 1

p′1

pfH(p)dp = p0.

Above are a system of two linear equations about the distributional parameters for f̂L and
f̂L could be solved as a result.33

3. Then comparing the original allocation to the new one, we get

EΩ′H
p− EΩHp =

∫ p
1

p′
1

pfH(p)dp−
∫ p

2

p′
2

pfH(p)dp > 0

since by construction ∫ p
1

p′
1

fH(p)dp =
∫ p

2

p′
2

fH(p)dp

and the interval [p′
2
, p′

1
] is strictly to the left of [p

2
, p

1
]. From Lemma 8, EΩ′H

p > EΩHp implies
the planner prefers allocation Ω′ over Ω.

33Things are slightly different if we have p0 ∈ (p′2, p
′
1). Then we have four new distribution coefficients but we also

have two more equations: f̂L(p0−) = f̂L(p0+) and ΣL(p0)(f̂ ′L(p0−)− f̂ ′L(p0+)) = δ. We can use this system of four
linear equations to pin down the four parameters.
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4. Similarly, we can consider another transform which is to move the interval to the right:
(p

3
, p

2
)→ (p′

3
, p′

2
) where (p′

3
, p′

2
) = (p

3
+ ε2, p2

+ ε1). This can also lead to output increases.
Keep on doing such transformations and eventually, we can have both the distance and the
measure between p′

3
and p′

1
arbitrarily small while the new (p′

1
, p′

2
, p′

3
) allocation strictly

dominates the original (p
1
, p

2
, p

3
) allocation.

2. For N = 3, no allocation dominates PAM

1. We now show by contradiction that no allocation dominates PAM for N = 3. Suppose on the
contrary that there exists an allocation with cutoffs p̃1, p̃2 and p̃3 which dominates the PAM
allocation. Then by Lemma 8, we should have:∫ 1

p̃1

pfH(p)dp+
∫ p̃2

p̃3

pfH(p)dp >
∫ 1

p
pf∗H(p)dp (58)

and ∫ p̃1

p̃2

pfL(p)dp+
∫ p̃3

0
pfL(p)dp <

∫ p

0
pf∗L(p)dp. (59)

From Step 1, we can first fix p̃3 and make p̃′2 move towards p̃3, which is efficiency improving.
p̃1 could be extended to the left until it reaches p̂1:

∫ 1
p̂1
fH(p)dp = π. Since

∫ 1
p̃′1
fH(p)dp < π,

it must be the case that p̂1 < p̃′1. If p̃′2 is sufficiently close to p̃3, we will have p̃′2 < p̂1. By
hypothesis: ∫ 1

p̂1

pfH(p)dp >
∫ 1

p̃′1

pfH(p)dp+
∫ p̃′2

p̃3

pfH(p)dp >
∫ 1

p
pf∗H(p)dp.

On the other hand, it is also efficiency improving by fixing p̃1 and making p̃′2 move towards
p̃1. Similarly define p̂3 as:

∫ p̂3
0 fL(p)dp = (1− π) such that p̂3 > p̃′3. By hypothesis,∫ p̂3

0
pfL(p)dp <

∫ p

0
pf∗L(p)dp.

since we can make p̃′2 sufficiently close to p̃1.

2. The next step of the proof requires Lemma 10 below. The Lemma implies that we should
have p̃′3 < p̂3 < p < p̂1 < p̃′1 to guarantee that∫ 1

p̂1

pfH(p)dp >
∫ 1

p
pf∗H(p)dp and

∫ p̂3

0
pfL(p)dp <

∫ p

0
pf∗L(p)dp.

Therefore, inequalities (58) and (59) only hold when p̃′1 − p̃′3 > p̂1 − p̂3 > 0 which contradicts
that fact that we can make the distance between p̃′1 and p̃′3 arbitrarily small while still keeping
the inequalities (58) and (59). Hence, no allocation with N = 3 cutoffs could be better than
the PAM allocation in terms of aggregate surplus.

3. For N cutoffs, the allocation is dominated by any allocation with N − 2 cutoffs.
Consider three adjacent cutoffs p

n−1
, > p

n
> p

n+1
such that workers with p ∈ (p

n−1
, p
n−2

) and
p ∈ (p

n+1
, p
n
) are allocated to high type firms; workers with p ∈ (p

n
, p
n−1

) and p ∈ (p
n+2

, p
n+1

)
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are allocated to low type firms. Suppose the density functions are such that the market clears and
the expectation of p’s is p0. Then we just need to choose κ such that∫ p

n−1

p
n−1
−κ
fH(p)dp =

∫ p
n

p
n+1

fH(p)dp.

Now p
n−1

, p
n

and p
n+1

converge to p
n−1
−κ but pn+2 is kept to be the same. The market clearing

condition requires that∫ p
n−1
−κ

p
n+2

f̃L(p)dp =
∫ p

n−1

p
n

fL(p)dp+
∫ p

n+1

p
n+2

fL(p)dp.

Meanwhile, the martingale property condition requires that:∫ 1

p
1

pfH(p)dp+ · · ·+
∫ p

n−2

p
n−1
−κ
pfH(p)dp+

∫ p
n−1
−κ

p
n+2

pf̃L(p)dp+ · · ·+
∫ p

N

0
pfL(p)dp = p0.

Similar to Step 1, we have a system of two linear equations about two distributional coefficients
and density f̃L could be solved. As before,

EΩHp =
∫

ΩH

pfH(p)dp

must become higher and this allocation with N − 2 cutoffs will generate a higher aggregate payoff.

Finally, by the standard induction argument, we can conclude that the PAM allocation with
one cutoff dominates any allocation with N ≥ 3 cutoffs in aggregate surplus.

Lemma 10

Lemma 10 Let p̂1 be such that
∫ 1
p̂1
fH(p)dp = π, where fH(p) satisfies the Kolmogorov forward

equation, then
∫ 1
p̂1
pfH(p)dp is increasing in p̂1. Let p̂3 be such that

∫ p̂3
0 fL(p)dp = (1 − π), where

fL(p) satisfies the Kolmogorov forward equation, then
∫ p̂3

0 pfL(p)dp is also increasing in p̂3.

Proof. We just prove the case that p̂1 > p0. The other cases are similar. Let fH(p) = CH(1 −
p)γH1pγH2 where

γH1 = −3
2

+ ηH and γH2 = −3
2
− ηH .

From Kolmogorov forward equation,∫ 1

p̂1

fH(p)dp =
1
δ

∫ 1

p̂1

d2

dp2
[ΣH(p)fH(p)] = π

or
ηH + p̂1 − 1

2

p̂1(1− p̂1)
ΣH(p̂1)fH(p̂1) = δπ.

Notice that ∫ 1

p̂1

pfH(p)dp =
1
δ

∫ 1

p̂1

p
d2

dp2
[ΣH(p)fH(p)]dp

and could be simplified as:
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πp̂1 +
πp̂1(1− p̂1)
ηH + p̂1 − 1

2

=
πp̂1(ηH + 1

2)
ηH + p̂1 − 1

2

which is increasing in p̂1 since

ηH =

√
1
4

+
2δ
s2
y

>
1
2
.

On the Job Human Capital Accumulation

Under the assumption of pu = pe = p, the value functions could be written as:

W u
y (p) =

µy(p)− rVy
r + δ + λ

+ kuy1p
1−αuy (1− p)αuy + kuy2p

αuy (1− p)1−αuy

−
λ

(suy )2

(sey)2

(r + δ + λ)[(λ+ δ + r)− (suy )2

(sey)2
(r + δ)]

[µy(p) + ξ(p)− rVy]

+
λ

(λ+ δ + r)− (suy )2

(sey)2
(r + δ)

W e
y (p)

and
W e
y (p) =

µy(p) + ξ(p)− rVy
r + δ

+ key1p
1−αey(1− p)αey + key2p

αey(1− p)1−αey

where

αuy =
1
2

+

√
1
4

+
2(r + δ + λ)

(suy)2
≥ 1

αey =
1
2

+

√
1
4

+
2(r + δ)

(sey)2
≥ 1.

Boundary conditions

W e
L(p) = W e

H(p), W e′
L (p) = W e′

H (p), W e′′
L (p) = W e′′

H (p)

would imply (by normalizing VL = 0 as usual):

rṼ e
H = (µLH − µLL) +

αeH(αeL − 1)(∆H −∆L)p
αeH(αeL − 1)− (1− p)(αeL − αeH)

.

And from
W u
L(p) = W u

H(p), W u′
L (p) = W u′

H (p), W u′′
L (p) = W u′′

H (p),

another equilibrium payoff Ṽ u
H could be derived as:
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rṼ u
H = (µLH −

AL
BL

BH
AH

µLL)− BH
AH

λξL
r + δ + λ

(
1−AH
BH

− 1−AL
BL

)

+
BH
AH

αuH(αuL − 1)(DH −DL)p
αuH(αuL − 1)− (1− p)(αuL − αuH)

,

where
DH =

AH
BH

∆H −
1−AH
BH

λ∆ξ

r + δ + λ

DL =
AL
BL

∆L −
1−AL
BL

λ∆ξ

r + δ + λ

AH = 1−
(suH)2

(seH)2
BH = (λ+ δ + r)−

(suH)2

(seH)2
(r + δ)

AL = 1−
(suL)2

(seL)2
BL = (λ+ δ + r)−

(suL)2

(seL)2
(r + δ).

Proof of Proposition 3

Proof. Supermodularity is equivalent to ∆H > ∆L, and ξH ' ξL is equivalent to ∆ξ = ξH−ξL → 0.
The proof can be divided into three parts. As a sufficient condition,

1.
(µLH −

AL
BL

BH
AH

µLL)− BH
AH

λξL
r + δ + λ

(
1−AH
BH

− 1−AL
BL

) < (µLH − µLL)

2.
BH
AH

(DH −DL) < ∆H −∆L

and

3.
αuH(αuL − 1)p

αuH(αuL − 1)− (1− p)(αuL − αuH)
<

αeH(αeL − 1)p
αeH(αeL − 1)− (1− p)(αeL − αeH)

should be satisfied simultaneously.
First of all, notice that (suH)2

(seH)2
>

(suL)2

(seL)2
since ∆H > ∆L. As a result, AHBH < AL

BL
and 1−AH

BH
> 1−AL

BL
.

The first inequality holds since µLH − AL
BL

BH
AH

µLL < µLH −µLL and AL
BL

BH
AH

µLL)− BH
AH

λξL
r+δ+λ(1−AH

BH
−

1−AL
BL

) > 0. The second inequality could be proved similarly.
For the last inequality, we just need to compare:

αuH(αuL − 1)[αeH(αeL − 1)− (1− p)(αeL − αeH)]

and
αeH(αeL − 1)[αuH(αuL − 1)− (1− p)(αuL − αuH)].

To prove 3, it suffices to show

αuH(αuL − 1)(αeL − αeH) > alphaeH(αeL − 1)(αuL − αuH).
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The direct proof is not easy. But notice from the expressions of α’s:

(αeL − αeH)(αeL + αeH − 1) = 2(r + δ)[
σ2

(∆L + ∆ξ)2
− σ2

(∆H + ∆ξ)2
]

and

(αuL − αuH)(αuL + αuH − 1) = 2(r + δ + λ)[
σ2

∆2
L

− σ2

∆2
H

].

Hence, when ∆ξ = 0,
αeL − αeH
αuL − αuH

=
r + δ

r + δλ

αuL + αuH − 1
αeL + αeH − 1

.

The original inequality is transformed to compare:

(r + δ)αuH(αuL − 1)(αuL + αuH − 1)

and
(r + δ + λ)αeH(αeL − 1)(αeL + αeH − 1).

Meanwhile, we have:

(r + δ)αuH(αuL − 1)αuL = (r + δ)αuH
2(r + δ + λ)

∆2
L

> (r + δ + λ)αeH(αeL − 1)αeL = (r + δ + λ)αeH
2(r + δ)

∆2
L

and

(r + δ)αuH(αuL − 1)(αuH − 1) = (r + δ)(αuL − 1)
2(r + δ + λ)

∆2
H

> (r + δ + λ)αeH(αeL − 1)(αeH − 1) = (r + δ + λ)(αeL − 1)
2(r + δ)

∆2
H

since αuy > αey. This implies:

αuH(αuL − 1)(αeL − αeH) > αeH(αeL − 1)(αuL − αuH)

and therefore,

αuH(αuL − 1)p
αuH(αuL − 1)− (1− p)(αuL − αuH)

<
αeH(αeL − 1)p

αeH(αeL − 1)− (1− p)(αeL − αeH)
.

Notice from the above proof, 3 holds only when ∆ξ is small and will not hold as ∆ξ becomes
sufficiently large.

Finally, we can conclude that Ṽ u
H < Ṽ e

H when ξH ' ξL, and as a result pe < pu.

No-deviation condition for the non-Bayesian learning example

Under the non-Bayesian learning case, suppose it is optimal for a p worker to choose firm y, the
value function for this worker should be such that (from Hamilton-Jacobi-Bellman equation):
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(r + δ)Wy(p) = wy(p) + λypW
′
y(p).

Suppose there is a cutoff p such that workers with p > p are matched with H firms and vice versa.
Then the absence of deviation implies that a p > p worker has no incentive to deviate, rematch

with a L firm and switch back after dt time:

WH(p) > W̃L(p) = E
{∫ t+dt

t
e−(r+δ)(s−t)wL(ps)ds+ e−(r+δ)dtW (pt+dt)

}
.

For dt sufficiently small, pt+dt is still close to p such that it is optimal for a pt+dt worker to
choose firm H as well. It is immediate to see that:

lim
dt→0

WH(p)− W̃L(p)
dt

= wH(p)− wL(p) + (λH − λL)pW ′H(p),

and hence no deviation implies that:

wH(p)− wL(p) + (λH − λL)pW ′H(p) > 0

for all p > p. Let p→ p+ and we have by applying the value matching condition:

wH(p+)− wL(p−) + (λH − λL)pW ′H(p+) = λLp(W ′L(p−)−W ′H(p+)) ≥ 0

or equivalently W ′L(p−) ≥ W ′H(p+). On the other hand, a p < p worker also has no incentive to
deviate, rematch with a H firm and switch back after dt time. Similarly, no deviation implies that:

wL(p)− wH(p) + (λL − λH)pW ′L(p) > 0

for all p < p. Let p→ p− and it could be shown:

wL(p−)− wH(p+) + (λL − λH)pW ′L(p−) = λHp(W ′H(p+)−W ′L(p−)) ≥ 0

or equivalently W ′H(p+) ≥W ′L(p−). Therefore, at p, it must be the case that W ′H(p) = W ′L(p) and
no-deviation condition coincides with the smooth-pasting condition.

49



References

[1] Anderson, A., and L. Smith, “Dynamic Matching and Evolving Reputations,” Review of
Economic Studies, 77(1), 2010, 3-29.

[2] Becker, Gary, “A Theory of Marriage: Part I,” Journal of Political Economy, 81, 1973,
813-846.
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