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1. Introduction

The standard model of individual behavior is based on the maximization principle, whereby

the individual chooses the alternative that maximizes a preference over the menu of available

alternatives. This has two key advantages. The first is that it provides a simple, versatile,

and powerful account of individual behavior. The second is that it suggests the maximized

preference as a tool for individual welfare analysis.

Research in recent years, however, has produced increasing amounts of evidence docu-

menting deviations from the standard model of individual behavior.1 The violation in some

instances of the maximization principle raises at least two important questions:

Q.1: How serious are the deviations from the classical theory?

Q.2: What is the best way to analyse individual choice behavior in order to extract

information for the purpose of welfare analysis?

The successful answering of Q.1 would enable us to evaluate how accurately the classical

theory of choice describes individual behavior. This would shift the focus from whether or

not individuals violate the maximization principle to how closely their behavior approaches

this benchmark. Addressing Q.2, meanwhile, should help us to distinguish alternatives that

are good for the individual from those that are bad, even when the individual’s behavior is

not fully consistent with the maximization principle. This, of course, is useful for performing

welfare analysis.

Although these two questions are intimately related, the literature has treated them sep-

arately. This paper provides the first joint approach to measuring rationality and welfare.

Relying on standard revealed preference data, we propose the swaps index, which measures

the welfare loss of the inconsistent choices with respect to the preference relation that comes

closest to the revealed choices, the swaps preference. The swaps index evaluates the incon-

sistency of an observation with respect to a preference relation in terms of the number of

alternatives in the menu which rank above the chosen one. That is, it counts the number

of alternatives that must be swapped with the chosen alternative in order for the preference

1Some phenomena that have attracted a great deal of empirical and theoretical attention, and which prove
di�cult, if not impossible, to accommodate within the classical theory of choice are framing e↵ects, menu
e↵ects, dependence on reference points, cyclic choice patterns, choice overload e↵ects, etc. For experimental
papers see May (1954), Thaler (1980), Tversky and Kahneman (1981) and Iyengar and Lepper (2000). Some
theoretical papers reacting to this evidence are Kalai, Rubinstein and Spiegler (2002), Bossert and Sprumont
(2003), Masatlioglu and Ok (2005, 2013), Manzini and Mariotti (2007, 2012), Xu and Zhou (2007), Salant and
Rubinstein (2008), Green and Hojman (2009), Ok, Ortoleva and Riella (2012), and Masatlioglu, Nakajima
and Ozbay (2012).
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relation to rationalize the individual’s choices. Then, the swaps index considers the prefer-

ence relation that minimizes the total number of swaps in all the observations, weighted by

their relative occurrence in the data.

To the best of our knowledge, the literature on rationality indices starts with the Afriat

(1973) proposal for a consumer setting, which is to measure the amount of adjustment

required in each budget constraint to avoid any violation of the maximization principle.

Varian (1990) extends Afriat to contemplate a vector of wealth adjustments, with di↵erent

adjustments in the di↵erent observations.2 An alternative proposal by Houtman and Maks

(1985) is to compute the maximal subset of the data that is consistent with the maximization

principle.3 Yet a third approach, put forward by Swo↵ord and Whitney (1987) and Famulari

(1995), entails counting the number of violations of a consistency property detected in the

data. Echenique, Lee and Shum (2011) make use of the monetary structure of budget sets

to suggest a version of this notion, the money pump index, which considers the total wealth

lost in all revealed cycles. The swaps index contributes to the measurement of rationality

in a singular fashion by evaluating inconsistent behavior directly in terms of welfare loss. It

is also the first axiomatically-based measure to appear in the literature. In section 3.1 we

illustrate the contrast between the swaps index treatment of rationality measurement and

these alternative proposals.

There is a growing number of papers analyzing individual welfare when the individual’s

behavior is inconsistent. Bernheim and Rangel (2009) add to the standard choice data the

notion of ancillary conditions, which are assumed to be observable and potentially to a↵ect

individual choice, but are irrelevant in terms of the welfare associated with the chosen alter-

native. Bernheim and Rangel suggest a welfare preference relation that ranks an alternative

as welfare-superior to another only if the latter is never chosen when the former is available.4

The proposal of Green and Hojman (2009) is to identify a list of conflicting selves, aggre-

gate them to induce the revealed choices, and then perform individual welfare analysis using

the aggregation rule. Nishimura (2014) builds a transitive welfare ranking on the basis of

a non-transitive preference relation.5 The swaps index uses the revealed choices, as in the

2Halevy, Persitz and Zrill (2012) extend the approach of Afriat and Varian by complementing Varian’s
inconsistency index with an index measuring the misspecification with a set of utility functions.
3Dean and Martin (2012) suggest an extension which weights the binary comparisons of the alternatives by
their monetary values. Choi, Kariv, Müller and Silverman (2013) apply the measures of Afriat and Houtman
and Maks to provide valuable information on the relationship between rationality and various demographics.
4Chambers and Hayashi (2012) characterize an extension of Bernheim and Rangel’s model to probabilistic
settings.
5Other approaches include Rubinstein and Salant (2012), Masatlioglu, Nakajima and Ozbay (2012), and
Baldiga and Green (2013). There are also papers describing methods for ranking objects such as teams or
journals, based on a given tournament matrix describing the paired results of the objects (see Rubinstein,
1980; Palacios-Huerta and Volij, 2004).
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classical approach, to suggest a novel welfare ranking, the swaps preference, interpreted as

the best approximation to the choices of the individual, and complemented with a measure

of its accuracy: the inconsistency value. In section 3.2 we illustrate by way of examples other

di↵erences between our proposal and these other approaches.

In section 4 we study the capacity of the swaps index to recover the true preference

relation from collections of observations that, for a variety of reasons, may contain mistakes,

and hence potentially reveal inconsistent choices. We show that this is in fact the case for a

wide array of stochastic choice models.

In section 5 we propose seven desirable properties of any inconsistency index relying only

on endogenous information arising from the choice data, and show that they characterize

the swaps index. Then, in section 6 we characterize several generalizations of the swaps

index, together with versions of the classical Varian and Houtman-Maks indices within our

framework.

Section 7 applies the swaps index to the experimental data of Harbaugh, Krause, and

Berry (2001).

In the online appendix we discuss the relaxation of three assumptions made in the set-up.

We first show that it is immediate to make the swaps index capable of considering classes

of preference relations with further structure, such as those admitting an expected utility

representation. We then show how to extend the swaps index to include the treatment of

indi↵erences. Thirdly, we argue that it is possible to construct a natural version of the swaps

index ready for application in settings with infinite sets of alternatives.

2. Framework and Definition of the Swaps Index

Let X be a finite set of k alternatives. Denote by O the set of all possible pairs (A, a),

where A ✓ X and a 2 A. We refer to such pairs as observations. Individual behavior

is summarized by the relative number of times each observation (A, a) occurs in the data.

Then, a collection of observations f assigns to each observation (A, a) a positive real value

denoted by f(A, a), with
P

(A,a) f(A, a) = 1, interpreted as the relative frequency with

which the individual confronts menu A and chooses alternative a. We denote by F the set

of all possible collections of observations. The collection f allows us to entertain di↵erent

observations with di↵erent frequencies. This is natural in empirical applications, where

exogenous variations require the decision-maker to confront the menus of alternatives in

uneven proportions.

Another key feature of our framework are preference relations. A preference relation P is

a strict linear order on X; that is, an asymmetric, transitive, and connected binary relation.

Denote by P the set of all possible linear orders on X. The collection f is rationalizable if
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every single observation present in the data can be explained by the maximization of the

same preference relation. Denote by m(P,A) the maximal element in A according to P .

Then, formally, we say that f is rationalizable if there exists a preference relation P such

that f(A, a) > 0 implies m(P,A) = a.6 Let R be the set of rationalizable collections of

observations that assign the same relative frequency to each possible menu of alternatives

A ✓ X. Notice that every collection r 2 R is rationalized by a unique preference relation,

that we denote by P

r.7 Clearly, not every collection is rationalizable. An inconsistency

index is a mapping I : F ! R+ that measures how inconsistent, or how far removed from

rationalizability, a collection of observations is.

We are now in a position to formally introduce our approach. Consider a given preference

relation P and an observation (A, a) that is inconsistent with the maximization of P . This

implies that there is a number of alternatives in A that, despite being preferred to the

chosen alternative a according to P , are nevertheless ignored by the individual. We can

therefore entertain that the inconsistency of observation (A, a) with respect to P entails

consideration of the number of alternatives in A that rank higher than the chosen one,

namely |{x 2 A : xPa}|. These are the alternatives that must be swapped with the chosen

one in order to make the choice of a consistent with the maximization of P . If every single

observation is weighted by its relative occurrence in the data, the inconsistency of f with

respect to P can be measured by
P

(A,a) f(A, a)|{x 2 A : xPa}|. The swaps index IS adopts

this criterion and finds the preference relations PS that minimize the weighted sum of swaps.

We refer to PS as the swaps preference relations. Formally:

IS(f) = min
P

X

(A,a)

f(A, a)|{x 2 A : xPa}|,

PS(f) 2 argmin
P

X

(A,a)

f(A, a)|{x 2 A : xPa}|.

Summarizing, the swaps index enables the joint treatment of inconsistency and welfare

analysis. It discriminates between di↵erent degrees of inconsistency in the various choices,

relying exclusively on the information contained in the choice data, and additively considers

every single inconsistent observation weighted by its relative occurrence in the data. It iden-

tifies the preference relations closest to the revealed data, the swaps preferences, measuring

their inconsistency in terms of the associated welfare loss. In Appendix B we show that

almost all collections of observations have a unique swaps preference, i.e., the measure of

6Notice that, since P is a linear order, if there exist a, b 2 A with a 6= b such that f(A, a) > 0 and f(A, b) > 0,
then f is not rationalizable.
7The purpose here is to create a bijection between P and a subset of the rationalizable collections. The set
R is one way of creating this bijection, that comes without loss of generality.
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all collections with a non-unique swaps preference is zero. We then typically talk about the

swaps preference without further considerations, unless the distinction is relevant.8 We now

illustrate the swaps index and the swaps preference by way of two examples.

Example 1. Consider the set of alternatives X = {1, . . . , k}. Suppose that the collection f

contains observations involving all the subsets of X, and is completely consistent with the

preference relation P , ranking the alternatives as 1P2P . . . Pk. Now consider the collection

of observations g involving the consistent evidence f with a high frequency (1� ↵), and the

extra observation (X, x), x > 1, with a low frequency ↵. That is, g = (1�↵)f+↵1(X,x), where

1(X,x) denotes the collection with all the mass centred on the observation (X, x). Clearly,

the collection g is not rationalizable. In order to determine the swaps index and the swaps

preference for g, notice that for any P

0 6= P there is at least one pair of alternatives, z and y,

with y < z and zP

0
y. Hence, the weighted sum of swaps for P 0 is at least (1�↵)f({y, z}, y).

Meanwhile, preference P requires x � 1 swaps in the observation (X, x) and hence, the

weighted sum of swaps for P is exactly ↵(x � 1). For small values of ↵, it is clearly the

case that ↵(x � 1) < (1 � ↵)f({y, z}, y) and therefore IS(g) = ↵(x � 1) and PS(g) = P .

Hence, in such cases the swaps preference coincides with the rational preference P , and the

inconsistency attributed to g by the swaps index is the mass of the inconsistent observation

↵ weighted by the number of swaps required to rationalize the inconsistent observation.

Example 2. Let f({x, y}, x) = f({y, z}, y) = 1�2↵
2 and f({x, y, z}, y) = f({x, z}, z) = ↵,

where ↵ is small. That is, there is large evidence that x is better than y and that y is

better than z, and some small evidence that y is better than x and z, and that z is better

than x. Notice that any preference in which y is ranked above x, or z is ranked above

y, has a weighted sum of swaps of at least 1�2↵
2 . There is only one more preference to

be analyzed, namely, xPyPz. This preference requires exactly one swap in menu {x, y, z},
where y is chosen, and also one swap in menu {x, z} where z is chosen. The weighted

sum of swaps of P is therefore 2↵ which, for small values of ↵, is smaller than 1�2↵
2 , and

hence IS(f) = 2↵ and PS(f) = P . That is, the swaps preference rationalizes the large

evidence of data f({x, y}, x) = f({y, z}, y) = 1�2↵
2 , and incurs some relatively small errors

in f({x, y, z}, y) = f({x, z}, z) = ↵.

3. Comparison to Alternative Measures

3.1 The Measurement of Rationality. In a consumer setting, Afriat (1973) suggests

measuring the degree of relative wealth adjustment which, when applied to all budget con-

straints, avoids all violations of the maximization principle. The idea is that, when a portion

8In addition, in Appendix C, we deal with the computational complexity of obtaining P

S

.
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of wealth is considered, all budget sets shrink, thus eliminating some revealed information,

and thereby possibly removing some inconsistencies from the data. Thus, Afriat’s proposal

associates the degree of inconsistency in a collection of observations with the minimal wealth

adjustment needed to make all the data consistent with the maximization principle.

We now formally define Afriat’s index for our setting. Let w

A
x 2 (0, 1] be the minimum

proportion of income in budget set A that must be removed in order to make x una↵ordable.

Then, given a menu A, if a proportion w of income is removed, all alternatives x 2 A with

w

A
x  w become una↵ordable. We say that a collection f is w-rationalizable if there exists a

preference relation P such that f(A, a) > 0 implies that aPx for every x 2 A\{a} with w

A
x >

w. Notice that when w = 0, this is but the standard definition of rationalizability. Afriat’s

inconsistency measure is defined as the minimum value w

⇤ such that f is w⇤-rationalizable.

Note that we can alternatively represent this index in terms of preference relations, making

its representation closer in spirit to that of the swaps index. To see this, suppose that P

⇤

is a preference that w

⇤-rationalizes f . Then, for all observations (A, a) with f(A, a) > 0,

all alternatives xP ⇤
a must be una↵ordable at w⇤. Hence w

⇤ = max (A,a):
f(A,a)>0

maxx2A,xP ⇤a w
A
x .

Since no other preference can w-rationalize f for w < w

⇤, it is clearly the case that:9

IA(f) = min
P

max
(A,a):

f(A,a)>0

max
x2A,xPa

w

A
x .

Varian (1990) considers vectors of wealth adjustments w, with potentially di↵erent ad-

justments in the various observations. Then, Varian’s index identifies the closest vector w

to 0 that, under a certain norm, w-rationalizes the data. Here, given the structure of the

swaps index, we consider the 1-norm and define Varian’s index as follows:

IV (f) = min
P

X

(A,a)

f(A, a) max
x2A,xPa

w

A
x .

Houtman and Maks (1985) propose considering the minimal subset of observations that

needs to be removed from the data in order to make the remainder rationalizable. The size

of the minimal subset to be discarded suggests itself as a measure of inconsistency. It follows

immediately that, in our setting, Houtman-Maks’ index, which we denote by IHM , is but a

special case of Varian’s index when w

A
x = 1 for every A and every x 2 A.

Finally, rationality has also been measured by counting the number of times in the data

a consistency property is violated (see, e.g., Swo↵ord and Whitney, 1987; Famulari, 1995).

Consider for instance the case of WARP. In our context, WARP is violated whenever there

are two menus A and B and two distinct elements a and b in A \ B such that f(A, a) > 0

9For notational convenience, let max
x2; w

A

x

= 0.
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and f(B, b) > 0. Hence, we can measure the mass of violations of WARP by means of

IW =
X

(A,a),(B,b):
{a,b}✓A\B,a 6=b

f(A, a)f(B, b).

Recently, Echenique, Lee and Shum (2011) make use of the monetary structure of budget

sets to suggest a new measure, the money pump index, which evaluates not only the number

of times GARP is violated, but also the severity of each violation. Their proposal is to

weight every cycle in the data by the amount of money that could be extracted from the

consumer. They then consider the total wealth lost in all the revealed cycles. To illustrate

the structure of this index in our framework, let us contemplate only violations of WARP

(i.e., cycles of length two). Consider a violation of WARP involving observations (A, a) and

(B, b). The money-pump reasoning evaluates the wealth lost in this cycle by adding up the

minimal wealth w̃

A
b that must be removed to make b una↵ordable in A and the minimal

wealth w̃

B
a that must be removed to make a una↵ordable in B.10 Then, w̃A

b + w̃

B
a represents

the money that could be pumped by an arbitrager from the WARP violation. Now, given

the vector of weights w̃, the WARP money-pump index can be defined as:11

IW�MP =
X

(A,a),(B,b):
{a,b}✓A\B,a 6=b

f(A, a)f(B, b)(w̃A
b + w̃

B
a ).

In order to illustrate the di↵erences between all these indices and the swaps index, let us

reconsider Example 1. Consider then two di↵erent scenarios in which x = k and x = 2, i.e.,

gk = (1�↵)f +↵1(X,k) and g2 = (1�↵)f +↵1(X,2). Intuitively, collection gk involves a more

severe inconsistency, since the observation in question is one in which the individual chooses

the worst possible alternative, alternative k, while ignoring all the rest. Collection g2 also

shows some inconsistency with the maximization principle, but this inconsistency is orders of

magnitude lower, since it involves choosing the second best available option, that is, option

2. It follows immediately from the discussion in Example 1 that the swaps index ranks these

two collections in accordance with the above intuition, i.e., IS(gk) = ↵(k � 1) > ↵ = IS(g2).

Afriat’s and Varian’s judgment of these collections depends crucially on the monetary values

of the alternatives, which need not necessarily coincide with the welfare ranking, and hence

may lead to counterintuitive conclusions. For example, if 1 is the least expensive alternative

in menu X, i.e., wX
1 � w

X
t for all t  k, Varian’s approach involves removing income until

alternative 1 becomes una↵ordable, regardless of the scenario. Hence, both collections would

10Notice that w̃A

x

, assumed to be strictly positive, is measured in dollars while Afriat’s and Varian’s weights
w

A

x

are proportions of wealth.
11It is immediate to extend this index to consider cycles of any length, something that we avoid here for
notational convenience.
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be equally inconsistent. Note that, for Afriat, the mass of violations is irrelevant, and hence

if removing option 1 from X is costly and removing alternative k from all menus is cheaper, it

may be the case that gk is w-rationalizable for some value w < w

X
1 , while g2 is not. Therefore,

Afriat’s index may judge gk as being less inconsistent than g2. With respect to Houtman-

Maks’ index, since the inconsistencies in both scenarios are of identical size, ↵, IHM does not

discriminate between them. Finally, the assessment provided by WARP-violation index IW

depends on the specific nature of f . To illustrate, consider, for example, that k = 3 and that

f(X, 1) = f({1, 3}, 1) = f({2, 3}, 2) = � and f({1, 2}, 1) = 1 � 3�. It follows immediately

that IW (gk) = 3↵�(1 � ↵) < (1 � ↵)↵(1 � 2�) = IW (g2) whenever � < 1/5, and hence

scenario 2 is regarded as the more inconsistent of the two. Although index IW�MP weights

both sides of the above inequality by w̃, the inequality still holds for certain non-negligible

values of �.

3.2 The Measurement of Welfare. Let us illustrate our approach to welfare analysis

by contrasting it first with two proposals: Bernheim and Rangel (2009) and Green and

Hojman (2009). Although these two papers tackle the problem from di↵erent angles, they

independently suggest the same notion of welfare. Let us denote by P the Bernheim-Rangel-

Green-Hojman welfare relation, defined as xPy if and only if there is no observation (A, y)

with x 2 A such that f(A, y) > 0. In other words, x is ranked above y in the welfare ranking

P if y is never chosen when x is available. Bernheim and Rangel show that, whenever every

menu A in X is present in the data, P is acyclic, and hence consistent with the maximization

principle.

We now examine the relationship between P and the swaps preference PS. It turns out to

be the case that the two welfare relations are fundamentally di↵erent. It follows immediately

that PS is not contained in P because PS is a linear order, while P is incomplete in general.

In the other direction, and more importantly, note that while P evaluates the ranking of two

alternatives x and y by taking into account only those menus of alternatives where both x

and y are available, PS takes all the data into consideration. Hence, PS and P may rank two

alternatives in opposite ways.

Nishimura (2014) has recently proposed a di↵erent approach, the transitive core. Given

a complete non-necessarily transitive relation ⌫, the transitive core declares an alternative

x preferred to alternative y whenever, for every z: (i) y ⌫ z implies x ⌫ z and (ii) z ⌫ x

implies z ⌫ y. Like P , the transitive core may be incomplete, and since relative frequencies

are not considered, the transitive core may go in the opposite direction to PS.

We illustrate the di↵erences between the swaps preference and the proposals here pre-

sented, using Example 2 above. We argued there that xPSyPSz. Note now that zPx since x
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is never chosen in the presence of z, and hence P and PS follow di↵erent directions. More-

over, if ⌫ is understood to be the revealed preference, y is ranked above x by the transitive

core and hence this is di↵erent to PS, too.

Finally, notice that the swaps preference PS comes, by construction, with the associated

inconsistency IS, which provides a measure of the credibility of PS. A low value of IS

naturally gives credit to PS, while high values of IS may call for more cautious conclusions

regarding the true welfare of the individual, either by focusing on subsets of alternatives over

which violations are less dramatic (in the spirit of the afore-mentioned approaches), or by

adopting a particular boundedly rational model of choice.

4. Recoverability of Preferences and the Swaps Index

Consider a decision-maker who evaluates alternatives according to the preference relation

P , but when it comes to selecting the preferred option sometimes chooses a suboptimal

alternative. Mistakes can occur for various reasons, such as lack of attention, errors of

calculation, misunderstanding of the choice situation, trembling hand when about to select

the desired alternative, inability to implement the desired choice, etc. Whatever the specific

model, mistakes generate a potentially inconsistent collection of observations f . This raises

the issue of whether the swaps index has the capacity to recover the preference relation P

from the observed choices f .

We show below that the swaps index identifies the true underlying preference for models

that generate collections of observations in which, for any pair of alternatives, the bet-

ter one is revealed preferred to the worse one more often than the reverse. Formally,

we say that the collection f generated by a model satisfies P -monotonicity if xPy im-

plies that
P

A◆{x,y} f(A, x) � P
A◆{x,y} f(A, y), where the inequality is strict whenever

P
a2{x,y} f({x, y}, a) > 0. In order to assess the generality of this result, we first show

that a diverse number of highly influential classes of stochastic choice models satisfy this

property.

Random Utility Models. Suppose that the individual evaluates the alternatives by way of

a utility function u : X ! R++.
12 At the moment of choice, this valuation is subject to

an additive random error component. That is, when choosing from A, the true valuation

of alternative x, u(x), is subject to a random i.i.d. term, ✏A(x), which follows a continuous

distribution, resulting in the final valuation U(x) = u(x) + ✏A(x). Then, the probability by

which alternative a is chosen from A is the probability of a being maximal in A according to

12In consonance with our analysis, assume that u(x) 6= u(y) for every x, y 2 X, x 6= y. Also, notice that the
preference relation P of the individual is simply the one for which u(x) > u(y) , xPy. This also applies for
the utility function used in the choice control models below.
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U , i.e. Pr[a = argmaxx2A U(x)].13 Let ⇢ denote the probability distribution over the menus

of options available to the individual, where ⇢(A) denotes the probability of confronting

A ✓ X. We can now define the collection of observations generated by a random utility

model as fRUM(A, a) = ⇢(A)Pr[a = argmaxx2A U(x)], for every (A, a) 2 O. While the

most widely used random utility models (logit, probit) have menu-independent errors, our

formulation allows for menu-dependent utility errors, as in the contextual utility model of

Wilcox (2011).

Tremble Models. The mistake structure in random utility models depends on the cardinal

utility values of the options. Another way to model mistakes is as constant probability

shocks that perturb the selection of the optimal alternative. That is, an individual facing

menu A chooses her optimal option with high probability 1�µA > 1/2, and, with probability

µA, trembles and overlooks the optimal option. In the spirit of the trembling hand perfect

equilibrium concept in game theory, in the event of a tremble, any other option is selected

with equal probability. Formally, fTM�per(A, a) = ⇢(A)(1 � µA) when a = m(P,A), and

fTM�per(A, a) = ⇢(A) µ
A

|A|�1 otherwise, where ⇢ is defined as above. Alternatively, in line with

the notion of proper equilibrium in game theory, one may entertain that the perturbation

process recurs among the surviving alternatives. That is, conditional on a shock involving

the best option, with probability 1� µA the individual chooses the second best option from

A and with probability µA overlooks the second-best option, etc. In this case, the resulting

collection of observations is fTM�pro(A, a) = ⇢(A)(1 � µA)µ
|{x2A:xPa}|
A for any alternative a

other than the worst one in menu A, and fTM�pro(A, a) = ⇢(A)µ|A|�1
A otherwise. We write

fTM to refer to both models, fTM�per and fTM�pro.
14 Like in the previous case, the class

of tremble models that we are contemplating allows the error to depend on the particular

menus.

Choice Control Models. Consider the case in which being able to control the implementation

of choice involves a cost. In such a situation, the agent evaluates the trade o↵ between the

cost of control and the cost of deviating from her preferences, and maximizes accordingly.15

Following Fudenberg, Iijima and Strzalecki (2014), consider a utility function u : X ! R++

and a continuous control function cA : [0, 1] �! R, that describes the cost of choosing any

alternative from menu A with a given probability. The utility associated with the individual

13Notice that, since ✏

A

(x) is continuously distributed, the probability of ties is zero and hence Pr[a =
argmax

x2A

U(x)] is well-defined. Classic references for this class of models are Luce (1959) and McFadden
(1974). See also Gul, Natenzon and Pesendorfer (2014).
14See Selten (1975) and Myerson (1978). See Harless and Camerer (1994) for a first treatment of the tremble
notion in the stochastic choice literature.
15Alternative motivations for the models in this category include a desire for randomization, the cost of
deviating from a social exogenous choice distribution, etc. See Mattsson and Weibull (2002) and Fudenberg,
Iijima and Strzalecki (2014) for a discussion.
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choosing a probability distribution pA over A is therefore
P

x2A(pA(x)u(x) � cA(pA(x))).

The individual then selects a probability distribution p

⇤
A that maximizes this utility, i.e.,

p

⇤
A 2 argmaxp

A

P
x2A(pA(x)u(x)� cA(pA(x))). Thus, by using ⇢ as above, we can define the

collection generated by the choice control model as fCCM(A, a) = ⇢(A)p⇤A(a).

Proposition 1 establishes that all the above models satisfy P -monotonicity.

Proposition 1. fRUM , fTM and fCCM satisfy P -monotonicity.

Proof of Proposition 1: We first analyze random utility models. Consider a menu A

and alternatives x, y 2 A with xPy. Take a realization of the error terms such that U is

maximized at y over the menu A. That is, u(y) + ✏A(y) > u(x) + ✏A(x) and u(y) + ✏A(y) >

u(z) + ✏A(z) for any other option z 2 A \ {x, y}. Then, consider the alternative realization

of the errors, where y receives the shock ✏A(x), x receives the shock ✏A(y) and z receives

the same shock ✏A(z). Since u(x) > u(y), u(x) + ✏A(y) > u(y) + ✏A(y) > u(z) + ✏A(z)

for all z 2 A \ {x, y}, and also u(x) + ✏A(y) > u(y) + ✏A(x). Then, the continuous i.i.d.

nature of the errors within menu A guarantees that Pr[x = argmaxw2A U(w)] > Pr[y =

argmaxw2A U(w)]. This implies that fRUM(A, x) � fRUM(A, y) with strict inequality if the

menu A is such that ⇢(A) > 0. Consequently,
P

A◆{x,y} fRUM(A, x) � P
A◆{x,y} fRUM(A, y),

with strict inequality whenever ⇢(A) > 0 for at least one set A containing x and y and

clearly, P -monotonicity holds.

We now study tremble models. Consider a menu A, and alternatives x, y 2 A with xPy. In

the case of fTM�per, notice that x = m(P,A) implies that fTM�per(A, x) = ⇢(A)(1 � µA) �
⇢(A)µA � ⇢(A) µ

A

|A|�1 = fTM�per(A, y), while x 6= m(P,A) implies that fTM�per(A, x) =

⇢(A) µ
A

|A|�1 = fTM�per(A, y). In the case of fTM�pro, if y is not the worst alternative in A,

fTM�pro(A, x) = ⇢(A)(1 � µA)µ
|{z2A:zPx}|
A � ⇢(A)(1 � µA)µ

|{z2A:zPy}|
A = fTM�pro(A, y). If

y is the worst alternative in A, fTM�pro(A, x) = ⇢(A)(1 � µA)µ
|{z2A:zPx}|
A � ⇢(A)µ|A|�1

A =

fTM�pro(A, y). Then
P

A◆{x,y} fTM(A, x) � P
A◆{x,y} fTM(A, y), with strict inequality when-

ever ⇢(A) > 0 for at least one set A such that: (i) in the case of fTM�per, x is the best

alternative in A ◆ {x, y}, and (ii) in the case of fTM�pro, A ◆ {x, y}. This is clearly the

case for {x, y}, and hence P -monotonicity holds.

Finally, we analyze choice control models. Consider a menu A, and alternatives x, y 2 A

with xPy. We first prove that fCCM(A, x) � fCCM(A, y). Suppose, by contradiction, that

fCCM(A, x) < fCCM(A, y), or equivalently, p⇤A(x) < p

⇤
A(y). Consider p

0
A with p

0
A(x) = p

⇤
A(y),

p

0
A(y) = p

⇤
A(x) and p

0
A(z) = p

⇤
A(z) for all z 2 A \ {x, y}. Since, by assumption, u(x) > u(y),

it is the case that
P

w2A(p
0
A(w)u(w) � cA(p0A(w))) >

P
w2A(p

⇤
A(w)u(w) � cA(p⇤A(w))), thus

contradicting the optimality of p⇤. Since this is true for every menu,
P

A◆{x,y} fCCM(A, x) �
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P
A◆{x,y} fCCM(A, y) holds. For the strict part, notice that continuity of c{x,y} prevents the

optimal solution p

⇤ from being constant in {x, y}, and hence P -monotonicity follows.⌅
We now show that the swaps index always identifies the true underlying preference in

models that satisfy P -monotonicity and, particularly, that the presence of all the menus in

the data guarantees that the swaps index uniquely identifies the preference.

Theorem 1. If f satisfies P -monotonicity, then P is a swaps preference of f . If, moreover,
P

a2A f(A, a) > 0 holds for every menu A, then P is the unique swaps preference of f .

Proof of Theorem 1: Let f be P -monotone. Consider any preference P

0 di↵erent from

P . Then, there exist at least two alternatives a1 and a2 that are consecutive in P

0, with

a2P
0
a1 but a1Pa2. Define a new preference P

00 by xP

00
y , xP

0
y whenever {x, y} 6= {a1, a2}

and a1P
00
a2. That is, P

00 is simply defined by changing the position of the consecutive

alternatives a1 and a2 in P

0, reconciling their comparison with that of preference P and

leaving all else the same. We now show that P

00 rationalizes data with fewer swaps than

P

0. To see this, simply notice that the swaps computation will be a↵ected only by menus

A such that A ◆ {a1, a2}. Also, for any of such sets, since both alternatives are consecu-

tive in both P

0 and P

00, the swaps computation will be a↵ected only by observations of the

form (A, a1) and (A, a2) and clearly,
P

(A,a) f(A, a)|{x 2 A : xP 00
a}| = P

(A,a) f(A, a)|{x 2
A : xP 0

a}| + P
A◆{a1,a2} f(A, a2) �

P
A◆{a1,a2} f(A, a1). Since f is P -monotone, the latter

is smaller than or equal to
P

(A,a) f(A, a)|{x 2 A : xP 0
a}|, as desired. Given the finite-

ness of X, repeated application of this algorithm leads to preference P and proves that
P

(A,a) f(A, a)|{x 2 A : xPa}|  P
(A,a) f(A, a)|{x 2 A : xP 0

a}|. Hence, P is an argument

that minimizes the swaps index. Whenever
P

a2A f(A, a) > 0 holds for every menu A, it is

in particular satisfied for the menus {a1, a2} involved in each step of the previous algorithm.

By P - monotonicity, the corresponding inequalities are strict, and therefore P is the unique

swaps preference.⌅

Theorem 1 provides a simple test to guarantee that the swaps index identifies the true

preference of a particular choice model. Two questions naturally arise at this point. The first

is whether other indices may also systematically recover it when P - monotonicity holds. It is

easy to see that the Afriat and Varian indices do not possess this recovery property in general,

since they depend on the monetary structure of the alternatives, which is not necessarily

aligned with preferences. To see this, consider the simplest case in which X = {x, y}
and suppose xPy. Notice that if f(X, y) 6= 0, IA recovers P if and only if w

X
x  w

X
y .

Similarly, IV recovers P if and only if wX

x

wX

y

 f(X,x)
f(X,y) . Without these extra conditions, IA

and IV are unable to recover P . Moreover, indices based on the number of violations of a
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rationality property, such as IW or the money-pump index, are also unable to recover the

preference, since these indices are not built to identify any particular preference, nor can they

be written in this form.16 Finally, since IHM does not take into consideration the severity of

the inconsistencies, it is also unable to recover P from P -monotone models. To see this, let

X = {x, y, z} with xPyPz, and consider a model generating a P -monotone collection f such

that f({y, z}, y) < f({y, z}, z). It is immediate that the mass of inconsistent observations in

f with respect to xP

0
zP

0
y is strictly lower than that of P , and hence the optimal preference

for IHM cannot be P .17

The next question concerns choice models not satisfying P -monotonicity for which IS

does not recover the true preference. A leading case is consideration set models.18 In this

setting, the individual considers each alternative with a given probability, and then chooses

the maximal alternative from those that have been considered, and hence good alternatives

may be chosen with low probability. We can address this case by using a slight generalization

of IS, the non-neutral swaps index INNS proposed in section 6.2.

5. Axiomatic Foundations for the Swaps Index

Here, we propose seven properties that shape the way in which an inconsistency index I

treats di↵erent types of collections of observations. We then show that the swaps index is

characterized by this set of properties.

Continuity (CONT). I is a continuous function. That is, for every sequence {fn} ✓ F , if

fn ! f , then I(fn) ! I(f).

This is the standard definition of continuity, which is justified in the standard fashion.

That is, it is desirable that a small variation in the data does not cause an abrupt change in

the inconsistency value.

Rationality (RAT). For every f 2 F , I(f) = 0 if and only if f is rationalizable.

Rationality imposes that a collection of observations is perfectly consistent if and only if the

collection is rationalizable. In line with the maximization principle, Rationality establishes

that the minimal inconsistency level of 0 is only reached when every single choice in the

collection can be explained by maximizing the same preference relation.

Concavity (CONC). I is a concave function. That is, for every f, g 2 F and every

↵ 2 [0, 1], I(↵f + (1� ↵)g) � ↵I(f) + (1� ↵)I(g).

16In section 5 we discuss the axiom, Piecewise Linearity, which allows for the recoverability of preferences.
17Again, in section 5 we discuss the axiom, Disjoint Composition, that allows to account for the severity of
the inconsistencies.
18See Masatlioglu, Nakajima and Ozbay (2012) for a deterministic modelling, and Manzini and Mariotti
(2014) for a recent stochastic model.
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To illustrate the desirability of this property in our context, take any two collections f

and g, and suppose them to be rationalizable when taken separately. Clearly, a convex

combination of f and g does not need to be rationalizable and hence the collection ↵f +

(1 � ↵)g can take only the same or a higher inconsistency value than the combination of

the inconsistency values of the two collections. The same idea applies when either f or g,

or both, are not rationalizable. The combination of f and g can only generate the same or

a greater number of frictions with the maximization principle, and hence should yield the

same or a higher inconsistency value.

Piecewise Linearity (PWL). I is a piecewise linear function over |P| pieces. That is,

there are |P| subsets of F , the union of which is F such that for every pair f, g belonging

to the same subset and every ↵ 2 [0, 1], I(↵f + (1� ↵)g) = ↵I(f) + (1� ↵)I(g).

Piecewise Linearity brings two features: the piecewise nature of the index and the linear

structure of the index over each piece. Let us now elaborate on the desirability of these two

features.

Notice that the piecewise assumption in Piecewise Linearity is attractive from the recover-

ability of preferences perspective, and hence is critical for predicting behavior and enabling

individual welfare analysis. An index satisfying the piecewise assumption divides the set of

collections of observations F into |P| classes. Thus, as any preference is linked to one and

only one of such classes, every single collection of observations, even the non-rationalizable

ones, can be linked to a specific preference relation.

Within each of the pieces, Piecewise Linearity makes the index react monotonically with

respect to inconsistencies, whether they are: (i) of the same type, thus making the index

react to the mass of an inconsistency, or (ii) of di↵erent types, thus making the index react

to the accumulation of several di↵erent inconsistencies. To enable formal study of these

implications, we introduce a useful class of collections of observations, which we describe as

perturbed. Consider a rationalizable collection of observations r 2 R and an observation

(A, a) 2 O. An ✏-perturbation of r in the direction of (A, a) involves replacing an ✏-mass of

optimal choices (A,m(P r
, A)), with the possibly suboptimal choices (A, a).19 We denote such

a perturbed collection by r

✏(A,a) = r+✏1(A,a)�✏1(A,m(P r,A)), and the collection where two dif-

ferent ✏-perturbations take place by r

✏(A,a)
✏(B,b) = r+✏1(A,a)�✏1(A,m(P r,A))+✏1(B,b)�✏1(B,m(P r,B)),.

The following lemma, proved in Appendix A, establishes the above implications.

Lemma 1. Let I be an inconsistency index satisfying PWL, CONT and RAT. Consider any

collection r 2 R, and any two di↵erent observations (A, a), (B, b) such that a 6= m(P r
, A)

and b 6= m(P r
, B). For any two su�ciently small real values ✏1 > ✏2 � 0,

19Obviously, the value of ✏ must be lower than r(A,m(P r

, A)).
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(1) Reactivity to the mass of an inconsistency: I(r✏1(A,a)) > I(r✏2(A,a)).

(2) Reactivity to several inconsistencies: I(r✏1(A,a)
✏1(B,b)) > max{I(r✏1(A,a)), I(r✏1(B,b))}.

The proof of Lemma 1 explicitly shows how PWL implies reactivity of the index to both

the mass and the types of inconsistencies in a linear fashion, namely, I(r✏1(A,a)) = ✏1
✏2
I(r✏2(A,a))

and I(r✏1(A,a)
✏1(B,b)) = I(r✏1(A,a)) + I(r✏1(B,b)).

Ordinal Consistency (OC). For every (A, a) 2 O and every r, r̃ 2 R such that r({x, y}, x)
= r̃({x, y}, x) whenever x, y 2 A, it is I(r✏(A,a)) = I(r̃✏(A,a)) for any su�ciently small ✏ > 0.

Ordinal Consistency is in the spirit of the classical properties of Independence of Irrelevant

Alternatives. A small perturbation of the type (A, a) generates the same inconsistency in

two rationalizable collections r and r̃ that coincide in the ranking of the alternatives within

A, but may diverge in the ranking of alternatives outside A. In other words, the order of

alternatives not involved in the inconsistency is inconsequential. In line with the standard

justification for such a property, one may simply contend that when evaluating a perturbed

collection, any alternative not involved in the perturbation at hand should not matter.

Disjoint Composition (DC). For every (A1, a), (A2, a) 2 O such that A1 \A2 = {a} and

every r 2 R, it is I(r✏(A1[A2,a)) = I(r✏(A1,a)
✏(A2,a)

) for any su�ciently small ✏ > 0.

In words, Disjoint Composition states that, given a rationalizable collection r, a small

perturbation of the type (A1 [ A2, a) can be broken down into two small perturbations

of the form (A1, a) and (A2, a), provided that A1 and A2 share no alternative other than

a. By iteration, an index having this property is able to reduce the inconsistency of the

observation into inconsistencies involving binary comparisons. This property is desirable

for several reasons. First, from a purely normative point of view, notice that the standard

welfare approach is constructed precisely on the basis of binary comparisons. Hence, an index

that aims to capture the severity of an inconsistency in terms of the welfare loss involved

must likewise be based on binary comparisons. Second, from a practical point of view, this

decomposition facilitates the tractability of the data by compacting it into a unique matrix

of binary choices. To illustrate, notice that both r

✏(A1[A2,a) and r

✏(A1,a)
✏(A2,a)

correspond to the

following summary of binary revealed choices. Whenever xP r
a and x 2 A1 [ A2, ✏-percent

of the data is inconsistent with x being preferred to a. No inconsistencies arise in any other

comparison of two alternatives. Disjoint Composition implies that this summary is the only

relevant information and hence declares the two collections equally inconsistent.

In order to introduce our last property, let us consider the following notation. Given a

permutation � over the set of alternatives X, for any collection f we denote by �(f) the

permuted collection such that �(f)(A, a) = f(�(A), �(a)).
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Neutrality (NEU). For every permutation � and every f 2 F , I(f) = I(�(f)).

Neutrality imposes that the inconsistency index should be independent of the names of

the alternatives. That is, any relabeling of the alternatives should have no e↵ect on the level

of inconsistency.

Theorem 2 states the characterization result.

Theorem 2. An inconsistency index I satisfies CONT, RAT, CONC, PWL, OC, DC and

NEU if and only if it is a positive scalar transformation of the swaps index.

Proof of Theorem 2: It is immediate to see that any positive scalar transformation of the

swaps index satisfies the axioms. By way of seven steps, we show that an index satisfying

the axioms is a transformation of the swaps index.

Step 1. Following the proof of Lemma 1, consider the convex hulls of the closure of the

|P| subsets of collections. Reasoning analogously, for every r 2 R, there exists ↵

r 2 (0, 1)

such that, for every observation (A, a) and every ↵ 2 [0,↵r], the collection ↵1(A,a) + (1 �
↵)r belongs to the convex hull of r. We then define, for every r and (A, a), the weight

w(P r
, A, a) =

I(↵r1(A,a)+(1�↵r)r)

↵r

. Now notice that, whenever aP

r
x for all x 2 A \ {a}, the

collection ↵

r1(A,a) + (1 � ↵

r)r is rationalizable by P

r and RAT implies w(P r
, A, a) = 0.

Otherwise, it follows that r(A, x) > 0 with x 6= a, which implies that observations (A, a) and

(A, x) have positive mass in the collection ↵

r1(A,a) + (1 � ↵

r)r, and RAT guarantees that

w(P r
, A, a) > 0.

Step 2. We now prove that, whenever f 2 F and r 2 R belong to the same convex hull,

it is the case that I(f) =
P

(A,a) f(A, a)w(P
r
, A, a). By RAT and PWL, I(f) = ↵rI(f)

↵r

=
↵rI(f)+(1�↵r)I(r)

↵r

= I(↵rf+(1�↵r)r)
↵r

. Notice that ↵

r
f + (1 � ↵

r)r = ↵

r(
P

(A,a) f(A, a)1(A,a)) +

(1�↵

r)r =
P

(A,a) f(A, a)[↵
r1(A,a)+(1�↵

r)r]. By definition of ↵r, all collections ↵r1(A,a)+

(1 � ↵

r)r belong to the convex hull of r and, all convex combinations of such collections

must also lie in it. We can thus apply linearity repeatedly to obtain I(f) = I(↵rf+(1�↵r)r)
↵r

=P
(A,a) f(A,a)I(↵r1(A,a)+(1�↵r)r)

↵r

=
P

(A,a) f(A, a)w(P
r
, A, a).

Step 3. Here, we prove that for every f 2 F , I(f) = minP

P
(A,a) f(A, a)w(P,A, a). We first

prove that for every r 2 R, I(f)  P
(A,a) f(A, a)w(P

r
, A, a). By RAT and CONC, I(f) =

↵rI(f)
↵r

= ↵rI(f)+(1�↵r)I(r)
↵r

 I(↵rf+(1�↵r)r)
↵r

. By definition of ↵r, all collections ↵r1(A,a)+(1�↵

r)r

belong to the convex hull of r, and hence ↵

r
f + (1 � ↵

r)r also belongs to the hull. By

steps 1 and 2, we know that I(↵r
f + (1 � ↵

r)r) = ↵

r
P

(A,a) f(A, a)w(P
r
, A, a) and hence,

I(f)  P
(A,a) f(A, a)w(P

r
, A, a). By the proof of Lemma 1 we know that each convex hull

contains one and only one collection in R, and then for every f 2 F , there exists r̂ 2 R such

that f and r̂ lie in the same convex hull. Hence, step 2 and the above reasoning guarantee

that I(f) =
P

(A,a) f(A, a)w(P
r̂
, A, a) = minP

P
(A,a) f(A, a)w(P,A, a).
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Step 4. We now prove that, for every (A, a), and every pair P r and P

r̃ such that xP r
y ,

xP

r̃
y whenever x, y 2 A, it is the case that w(P r

, A, a) = w(P r̃
, A, a). To see this, notice

that there exists a su�ciently small ↵ such that r

↵(A,a) and r̃

↵(A,a) belong to the convex

hulls of r and r̃, respectively. By steps 1 and 2 and OC, it is the case that ↵w(P r
, A, a) =

I(r↵(A,a)) = I(r̃↵(A,a)) = ↵w(P r̃
, A, a), or equivalently, w(P r

, A, a) = w(P r̃
, A, a).

Step 5. Here we prove that for every (A, a) and P

r, w(P r
, A, a) =

P
x2A w(P r

, {x, a}, a). To
do this, we prove that for any two menusA1, A2, such thatA1\A2 = {a} and A1[A2 = A, it is

the case that w(P r
, A, a) = w(P r

, A1, a)+w(P r
, A2, a). The recursive application of this idea,

given the finiteness of X, concludes the step. Again, there exists a su�ciently small ↵ such

that r↵(A,a)
, r

↵(A1,a) and r

↵(A2,a) all belong to the convex hull of r. By steps 1 and 2 and DC,

it is the case that ↵w(P r
, A, a) = I(r↵(A,a)) = I(r↵(A1,a)

↵(A2,a)
) = ↵w(P r

, A1, a) + ↵w(P r
, A2, a),

which implies w(P r
, A, a) = w(P r

, A1, a) + w(P r
, A2, a).

Step 6. Here we prove that w(P r
, {x, y}, y) = w(P r̃

, {z, t}, t) holds for every x, y, z, t 2 X

and every pair P r and P

r̃ such that the ranking of x (respectively, of y) in P

r is the same

as the ranking of z (respectively, of t) in P

r̃. Consider the bijection � : X ! X, which

assigns, to the alternative ranked at s in P

r, the alternative ranked at s in P

r̃. Then, it

is �(x) = z and �(y) = t and also, �(r) = r̃. There exists a su�ciently small ↵ such that

r

↵({x,y},y) belongs to the convex hull of r and r̃

↵({z,t},t) belongs to the convex hull of r̃. By

steps 1 and 2 and NEU, we have that ↵w(P r
, {x, y}, y) = I(r↵({x,y},y)) = I(�(r↵({x,y},y))) =

I(r̃↵({z,t},t)) = ↵w(P r̃
, {z, t}, t), i.e., w(P r

, {x, y}, y) = w(P r̃
, {z, t}, t).

Step 7. We finally prove that I is a positive scalar transformation of the swaps in-

dex. Let P and P

0 be any two preferences and consider x, y, z, t 2 X with xPy and

zP

0
t. Thanks to step 4, consider w.l.o.g. that x and y (respectively, z and t) are the

first two elements of P (respectively, P 0). Steps 1 and 6 guarantee that w(P, {x, y}, y) =

w(P 0
, {z, t}, t) > 0 and steps 3 and 5 lead to I(f) = minP

P
(A,a) f(A, a)w(P,A, a) =

minP

P
(A,a) f(A, a)

P
x2A:xPaw(P, {x, a}, a) = KminP

P
(A,a) f(A, a)|{x 2 A : xPa}|, with

K > 0, which shows that I is a positive scalar transformation of the swaps index.⌅

We close this section by illustrating the structural relationship of the swaps index with

the other rationality indices discussed in section 3.1. We do this by stating which axioms,

among those characterizing the swaps index, they satisfy.

Table 1: Summary of the relationship between axioms and inconsistency indices
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CONT RAT CONC PWL OC NEU DC

IS 3 3 3 3 3 3 3

IHM 3 3 3 3 3 3 7

IV 3 3 3 3 3 7 7

IW 3 3 3⇤ 7 7 3 7

IW�MP 3 3 3⇤ 7 7 7 7

IA 7 3 3 7 7 7 7

⇤
IW and IW�MP do not satisfy CONC, but a simple transformation would do. See section 7 for how to build the transformation

in an application.

6. A General Class of Indices

6.1 General Weighted Index. The swaps index relies exclusively on the endogenous

information contained in the revealed choices. On occasions, however, the analyst may have

more information and may wish to use it to assess the consistency of choice, and identify

the optimal welfare ranking. We now o↵er a generalization of the swaps index which is

able to incorporate other information. The general weighted index considers every possible

inconsistency between an observation and a preference relation through a weight that may

depend on the nature of the menu of alternatives, the nature of the chosen alternative, and

the nature of the preference relation. Then, for a given collection f , the inconsistency index

takes the form of the minimum total inconsistency across all preference relations:

IG(f) = min
P

X

(A,a)

f(A, a)w(P,A, a),

where w(P,A, a) = 0 if a = m(P,A) and w(P,A, a) 2 R++ otherwise.

It turns out that the general weighted index is characterized by the first four axioms used

in the characterization of the swaps index.20

Proposition 2. An inconsistency index I satisfies CONT, RAT, CONC and PWL if and

only if it is a general weighted index.

6.2 Non-Neutral Swaps Index and Positional Swaps Index. We now present two

indices from the class of general weighted indices that may be especially relevant. We start

by considering settings in which the analyst has information on the nature of the alternatives,

such as their monetary values, attributes, etc. Under these circumstances, the property of

NEU may lose its appeal, since one now may wish to treat di↵erent pairs of alternatives

di↵erently, using the exogenous information that is available on them. It turns out that the

remaining six properties in Theorem 2 characterize a class of indices that we call the non-

neutral swaps index. Let wx,a 2 R++ denote the weight of the ordered pair of alternatives x

20The proof of this result, and all the ones that follow, can be found in Appendix A.
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and a, i.e., wx,a represents the cost of swapping the preferred alternative x with the chosen

alternative a. Then:

INNS(f) = min
P

X

(A,a)

f(A, a)
X

x2A:xPa

wx,a.

Proposition 3. An inconsistency index I satisfies CONT, RAT, CONC, PWL, OC and

DC if and only if it is a non-neutral swaps index.

Now suppose that the analyst has information on the cardinal utility values of the di↵erent

alternatives, based on their position in the ranking, and wants to use it. Then, OC, which

completely disregards this type of information, immediately obliterates its appeal. We show

that the elimination of OC from the system of properties characterizes the following index,

which we call the positional swaps index.

IPS(f) = min
P

X

(A,a)

f(A, a)
X

x2A:xPa

wbx(P ),ba(P ),

where wi,j 2 R++ denotes the weight associated with positions i and j and bx(P ) is the

ranking of alternative x in P . Again, wi,j is interpreted as the cost of swapping the preferred

alternative, the one that occupies position i in the ranking, with the chosen alternative, that

occupies position j in the ranking.

Proposition 4. An inconsistency index I satisfies CONT, RAT, CONC, PWL, DC and

NEU if and only if it is a positional swaps index.

6.3 Varian and Houtman-Maks. As introduced in section 3.1, two popular measures of

the consistency of behavior are due to Varian (1990) and Houtman and Maks (1985). We

have already shown that these indices satisfy the properties that, by Theorem 3, characterize

the general weighted indices. We now provide their complete characterizations.

Let us start with the case of Varian. Its characterization requires of structure related to

the search for the maximum weight in a given upper contour set. Let us then consider the

following notation. For any r 2 R and any (A, a) 2 O, denote by Rr
(A,a) all rationalizable

collections r̃ such that: (i) the top two alternatives in P

r̃ belong to A, and (ii) the top

alternative in P

r̃ belongs to the strict upper contour set of a with respect to P

r.

Varian’s Consistency (VC). For every (A, a) 2 O and every r 2 R, it is I(r✏(A,a)) =

maxr̃2Rr

(A,a)
I(r̃✏(A,z

r̃

)) for any su�ciently small ✏ > 0, where zr̃ is the second-best alternative

according to P

r̃.21

Varian’s Consistency imposes that the inconsistency generated by a small perturbation of

r in the direction of (A, a) can be related to that of perturbed collections of observations

21Again, for notational convenience, let max
r2; I(·) = 0.
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in which the inconsistency involves only the top alternative, that is ranked higher than

a according to P

r. Varian’s Consistency is stronger than Ordinal Consistency because,

whenever r and r

0 treat all the alternatives in A equally, the classes Rr
(A,a) and Rr0

(A,a) are

the same. The following result establishes the characterization of Varian’s index IV .

Proposition 5. An inconsistency index I satisfies CONT, RAT, CONC, PWL and VC if

and only if it is a Varian index.

We now turn to the analysis of Houtman-Maks’ index, recalling that, in our setting, it is but

a special case of Varian’s index when w

A
x = 1 for every A and every x 2 A. Consequently, the

characterization of IHM builds on that of IV , and imposes some additional structure. First,

notice that IHM does not discriminate between the alternatives, and hence any relabeling

of the alternatives should have no e↵ect on the level of inconsistency, thus reinstating the

appeal of Neutrality. IHM , however, requires further structure:

Houtman-Maks’ Composition (HMC). For every (A1, a), (A2, a) 2 O with A1 \ A2 =

{a} and every r 2 R, I(r✏(A1[A2,a)) = max{I(r✏(A1,a)), I(r✏(A2,a))} for any su�ciently small

↵ > 0.

Houtman-Maks’ Composition establishes that, under the same conditions of Disjoint Com-

position, a small perturbation of type (A1[A2, a) is equal to the maximum of the two small

perturbations that appear when breaking down the former observation into (A1, a) and

(A2, a). We can now establish the characterization result of IHM .

Proposition 6. An inconsistency index I satisfies CONT, RAT, CONC, PWL, VC, HMC

and NEU if and only if it is a scalar transformation of the Houtman-Maks index.

7. An Application

In this section we use the experimental study of Harbaugh, Krause, and Berry (2001)

to see the applicability of the swaps index.22 The paper develops a test of consistency

with rationality for three di↵erent age groups: 31 7-year old participants, 42 11-year old

participants, and 55 21-year old participants. The experimental choice task presents the

participants with 28 di↵erent bundles of two goods confronted in 11 di↵erent menus.23 By

counting the number of GARP violations, the main result is that, although violations of

22We are very grateful to the authors for sharing all their material with us.
23
A1 = {(6, 0), (3, 1), (0, 2)}, A2 = {(9, 0), (6, 1), (3, 2), (0, 3)}, A3 = {(6, 0), (4, 1), (2, 2), (0, 3)}, A4 =

{(8, 0), (6, 1), (4, 2), (2, 3), (0, 4)}, A5 = {(4, 0), (3, 1), (2, 2), (1, 3), (0, 4)}, A6 =
{(5, 0), (4, 1), (3, 2), (2, 3), (1, 4), (0, 5)}, A7 = {(6, 0), (5, 1), (4, 2), (3, 3), (2, 4), (1, 5), (0, 6)}, A8 =
{(3, 0), (2, 2), (1, 4), (0, 6)}, A9 = {(2, 0), (1, 3), (0, 6)}, A10 = {(4, 0), (3, 2), (2, 4), (1, 6), (0, 8)} and
A11 = {(3, 0), (2, 3), (1, 6), (0, 9)}.
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rationality are significantly more frequent in the youngest age group, they are present in all

three age groups: 74%, 38%, and 35%, in the 7-, 11- and 21-year old groups, respectively.

We now report on IS, together with IHM and IW . Given that the alternatives are defined

by the quantities of two di↵erent goods, we compute IS and IHM by considering the set of all

linear orders that satisfy quantity monotonicity. Note that f(A, a) is either 1
11 or zero, given

that the individuals make choices from 11 di↵erent menus. With respect to IW , we say that

there is a violation of WARP between observations (A, a) and (B, b) if there are alternatives

x, y with a  x 2 B and b  y 2 A. We normalize the number of WARP violations dividing

them by the total number of observations.24 The results for all 128 subjects are reported in

Table 2 in the online appendix. The main conclusions reached in Harbaugh, Krause, and

Berry (2001) are reproduced here.

We now contrast IS with the other indices. First, among the 128 subjects, 70 are rational,

and clearly, IS coincides with IHM , IW and IA over them, since all these indices satisfy

RAT.25 Over the remaining subjects, the Spearman’s rank correlation coe�cient between IS

and IHM is .97, between IS and IW is .83 and between IS and IA is .51. We now illustrate the

di↵erences in the rationality judgement of the indices, by using some particular participants.

Swaps versus Houtman-Maks. Consider individual 119.26 It turns out that all the inconsis-

tencies generated by this individual can be eliminated by dropping only two observations,

(A6, (4, 1)) and (A9, (2, 0)), which leads us to IHM(f119) =
2
11 . However, by focusing on the

number of inconsistencies, IHM disregards their severity, which can be seen to be relevant

since IS(f119) =
5
11 , that is one of the highest inconsistency levels (see Table 2). In fact, it

is easy to find other individuals with a higher IHM index but still arguably less inconsistent

than individual 119. One example is subject 60, who presents 3 mild inconsistencies, and

IHM(f60) =
3
11 = IS(f60).

27

Swaps versus WARP. Individual 28, with IW (f28) = 6
11 , represents one of the cases with

the largest number of cycles.28 However, by merely counting the number of cycles, IW is

unable to determine the number and severity of the mistakes that need to be cancelled in

order to break the cycles. Closer inspection shows that this can be done by eliminating only

two mild inconsistencies. This is what the swaps index does, IS(f28) =
2
11 , with inconsistent

24Notice that our definition in the text would divide it by 11 ⇥ 11, instead of 11. This normalization is
vacuous when comparing the inconsistency of individuals.
25Notice that the computation of I

A

(or I

V

) would require the explicit assumption of certain weights.
Harbaugh, Krause, and Berry (2001) provide a computation of I

A

under certain assumptions regarding the
budget sets. We use their computations here.
26The choices of the individual from menus A1 to A11 are given in the following ordered vector:
((3, 1), (3, 2), (0, 3), (2, 3), (1, 3), (4, 1), (3, 3), (1, 4), (2, 0), (2, 4), (2, 3)).
27The choices of individual 60 are ((3, 1), (3, 2), (2, 2), (4, 2), (3, 1), (4, 1), (4, 2), (2, 2), (2, 0), (3, 2), (3, 0)).
28The choices of individual 28 are ((3, 1), (9, 0), (2, 2), (2, 3), (2, 2), (3, 2), (3, 3), (2, 2), (2, 0), (3, 2), (3, 0)).
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observations (A4, (2, 3)) and (A11, (3, 0)) where, according to PS, only (4, 2) is preferred to

(2, 3) in the first and (2, 3) ranks above (3, 0) in the second. In this respect, there are a

number of individuals that are classed by IW as less inconsistent than individual 28, but

whose choices are nevertheless harder to reconcile with preference maximization, and whose

inconsistency values in terms of IS are therefore higher.

Swaps versus Afriat. Consider subject 12, who according to Afriat has a relatively low

inconsistency index, IA(f12) = .125.29 By considering only the largest violation and, within

it, focusing on non-welfare information, Afriat ignores (i) that individual 12 commits a

relatively large number of mistakes (three, to be precise, since IHM(f12) = 3
11), and (ii)

that the subject is committing relatively serious mistakes by choosing alternatives that are

dominated by many others in the menu (leading to IS(f12) =
6
11). Once again, it is easy to

find cases that are incorrectly ordered by Afriat. Consider individuals 28 or 119, for example,

who require larger income adjustments, but, according to IS, fewer preference adjustments.

Appendix A. Remaining Proofs

Proof of Lemma 1: PWL guarantees that there are |P| pieces of F , over every one of

which the index is linear. The repeated application of linearity and CONT guarantee that

the index is also linear over the convex hull of the closure of each piece. We now prove

that each of these convex hulls contains one and only one collection in R. Suppose, by

contradiction, that this is not the case. Since |P| = |R|, there must exist two distinct

r, r

0 belonging to the same convex hull. Then, PWL and RAT guarantee that, for every

↵ 2 (0, 1), it is the case that I(↵r + (1 � ↵)r0) = ↵I(r) + (1 � ↵)I(r0) = 0. However, since

r 6= r

0 there must exist at least one menu A and two distinct alternatives, a and b, such that

r(A, a) > 0 and r

0(A, b) > 0. Consequently, for ↵ 2 (0, 1), [↵r + (1 � ↵)r0](A, a) > 0 and

[↵r + (1� ↵)r0](A, b) > 0 and hence, ↵r + (1� ↵)r0 is not rationalizable. RAT implies that

I(↵r+(1�↵)r0) 6= 0, which is a contradiction. Now, given r and (A, a), the collections r✏(A,a)

converge to r as ✏ goes to 0, and since there is a finite number of hulls, CONT guarantees that

these collections belong to the same convex hull than r for su�ciently small values of ✏. In

the same vein, given r, and two di↵erent observations (A, a) and (B, b), the collections r and

r

✏(A,a)
✏(B,b) belong to the same convex hull for su�ciently small values of ✏. Then, for su�ciently

small perturbations ✏1 > ✏2 � 0, PWL guarantees that I(r✏2(A,a)) = I( ✏2
✏1
r

✏1(A,a)+(1� ✏2
✏1
)r) =

✏2
✏1
I(r✏1(A,a)) + (1 � ✏2

✏1
)I(r). Under the assumption of RAT, whenever a 6= m(P r

, A), this

29The choices of individual 12 are ((3, 1), (3, 2), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3), (0, 6), (1, 3), (3, 2), (3, 0)).
Afriat’s inconsistency is driven by the critical observation (A4, (2, 3)), where (3, 2) is feasible and costs
.875 times as much as the chosen element (2, 3), and in its counterpart (A10, (3, 2)), where (2, 3) is feasible
and costs .875 times as much as the chosen element.
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is but I(r✏2(A,a)) = ✏2
✏1
I(r✏1(A,a)) < I(r✏1(A,a)), as desired. Now consider r, two di↵erent

observations, (A, a) and (B, b), and a su�ciently small perturbation ✏1 > 0. From PWL and

the previous reasoning, I(r✏1(A,a)
✏1(B,b)) = I(12r

2✏1(A,a) + 1
2r

2✏1(B,b)) = 1
2I(r

2✏1(A,a)) + 1
2I(r

2✏1(B,b)) =

I(r✏1(A,a)) + I(r✏1(B,b)). Whenever a 6= m(P r
, A) and b 6= m(P r

, B), the latter is strictly

larger than max{I(r✏1(A,a)), I(r✏1(B,b))}, as desired.⌅
Proof of Proposition 2: Immediate from the proof of Theorem 2.⌅
Proof of Proposition 3: It is easy to see that non-neutral swaps indices satisfy the axioms.

To prove the converse statement, we use steps 1-5 in the proof of Theorem 2. By steps 1

and 5,
P

(A,a) f(A, a)w(P,A, a) =
P

(A,a) f(A, a)
P

x2A:xPaw(P, {x, a}, a). By steps 1 and

4, w(P, {x, a}, a) > 0 is independent of P , provided that xPa, and then we can write
P

(A,a) f(A, a)
P

x2A:xPawx,a. Step 3 proves that the index is a non-neutral swaps index.⌅
Proof of Proposition 4: It is easy to see that positional swaps indices satisfy the axioms.

To prove the converse, we use the proof of Theorem 2 except steps 4 and 7. By steps 1

and 5,
P

(A,a) f(A, a)w(P,A, a) =
P

(A,a) f(A, a)
P

x2A:xPaw(P, {x, a}, a). By steps 1 and 6,

w(P, {x, a}, a) > 0 only depends on the rank of alternatives x and a in P . This, together

with step 3, shows that the index is a positional swaps index. ⌅
Proof of Proposition 5: It is easy to see that Varian’s index satisfies the axioms. For

the converse, we use the first three steps in the proof of Theorem 2. Consider a set A,

alternatives x, y and z in A, and a pair, P r and P

r̄, such that: (i) x and y are, respectively,

the first and second best alternatives in P

r, and (ii) x and z are, respectively, the first and

second best alternatives in P

r̄. We claim that w(P r
, A, y) = w(P r̄

, A, z). There exists a

su�ciently small ↵ such that r↵(A,y) and r̄

↵(A,z) belong, respectively, to the convex hulls of

r and r̄. Since the upper contour sets of y in P

r and z in P

r̄ are both equal to {x}, it
is the case that Rr

(A,y) = Rr̄
(A,z) and hence, steps 1 and 2 in the proof of Theorem 2 and

VC imply ↵w(P r
, A, y) = I(r↵(A,y)) = maxr̃2Rr

(A,y)
= maxr̃2Rr̄

(A,z)
= I(r̄↵(A,z)) = ↵w(P r̄(A,z)).

We then denote this value by w

A
x . Now, given (A, a) and r, there exists ↵ su�ciently

small such that r

↵(A,a) belongs to the convex hull of r and for every r̃ 2 Rr
(A,a), r̃

↵(A,a
r̃

)

belongs to the convex hull of r̃, where ar̃ is the second best alternative in P

r̃. We can apply

steps 1 and 2 in the proof of Theorem 2 and VC, to see that ↵w(P r
, A, a) = I(r↵(A,a)) =

maxr̃2Rr

(A,a)
I(r̃↵(A,a

r̃

)) = maxr̃2Rr

(A,a)
↵w(P r̃

, A, ar̃) = ↵maxx2A,xP ra w
A
x . This proves that the

index is Varian’s index.⌅
Proof of Proposition 6: Clearly, Houtman-Maks’ index satisfies the axioms. To see the

converse, from the proof of Proposition 5, we now show that for every menu A and any pair

of alternatives x and y belonging to A, it is the case that wA
x = w

{x,y}
x . To see this, consider

any r such that x is the top alternative in P

r and y 2 A is the second top alternative in
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P

r. For a su�ciently small ↵, it is the case that r↵(A,y), r↵({x,y},y) and r

↵(A\{y},y) all belong

to the convex hull of r. By steps 1 and 2 in the proof of Theorem 2, HMC and RAT, it is

the case that ↵wA
x = I(r↵(A,y)) = max{I(r↵({x,y},y), I(r↵(A\{y},y))} = I(r↵({x,y},y)) = ↵w

{x,y}
x .

NEU guarantees that w{x,y}
x = w

{z,t}
z for every x, y, z, t 2 X and, given the strict positivity

of these weights, the index is a scalar transformation of the Houtman-Maks index.⌅

Appendix B. Uniqueness

Here we establish that almost all collections of observations have a unique swaps preference.

Proposition 7. The Lebesgue measure of the set of all collections of observations for which

PS is not unique is zero.

Proof of Proposition 7: The set of all collections F is the simplex over all possible

observations (A, a). Consider two di↵erent preference relations, Pi and Pj, over X. We

describe the set of collections Fij, for which the number of swaps associated with preference

Pi is equal to the number of swaps associated with preference Pj, i.e.,
P

(A,a) f(A, a)|{x 2
A : xPia}| =

P
(A,a) f(A, a)|{x 2 A : xPja}|, or equivalently,

P
(A,a) f(A, a)(|{x 2 A :

xPia}| � |{x 2 A : xPja}|) = 0. Consider the interior of the simplex F and notice that,

since Pi and Pj are di↵erent, there exists at least one observation such that (|{x 2 A :

xPia}|� |{x 2 A : xPja}|) 6= 0. Hence, the interior of Fij is defined as the intersection of a

hyperplane with the interior of the simplex F , and consequently, Fij has volume zero. Since

there is a finite number of preferences, the set [i [j Fij also measures zero. Finally, notice

that the set of all collections for which PS is not unique is contained in [i [j Fij and, hence,

also measures zero.⌅
Proposition 7 considers all possible collections of observations and one may wonder whether

the result rests on the domain assumptions. To illustrate, consider the simple case in which

we have a finite number of data points, one for each menu of alternatives. Then, obviously,

the measure of all collections of observations for which PS is not unique is no longer zero.

However, as the number of alternatives grows, this measure can also be proved to go to zero.

Appendix C. Computational Considerations

Computational considerations are common in the application of the various inconsistency

indices provided by the literature. Importantly, Dean and Martin (2012) establish that

the problem studied by Houtman and Maks (1985) is equivalent to a well-known problem

in the computer science literature: namely, the minimum set covering problem (MSCP).

Smeulders, Cherchye, De Rock and Spieksma (2012) relate Varian’s and Houtman-Maks’

indices to the independent set problem (ISP). Thus, one can draw from a wide range of
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algorithms developed by the operations research literature to solve these potential problems

in the computation of the desired index.

Exactly the same strategy can be adopted for the swaps index. Consider another well-

known problem in the computer science literature: the linear ordering problem (LOP). The

LOP has been related to a variety of problems, including some of an economic nature, a

particular example being the triangularization of input-output matrices for examining the

hierarchical structures of the productive sectors in an economy.30 Formally, the LOP problem

over the set of vertices Y , and directed weighted edges connecting all vertices x and y in

Y with cost cxy, involves finding the linear order over the set of vertices Y that minimizes

the total aggregated cost. That is, if we denote by ⇧ the set of all mappings from Y to

{1, 2, . . . , |Y |}, the LOP involves solving argmin⇡2⇧
P

⇡(x)<⇡(y) cxy. As the following result

shows, the LOP and the problem of computing the swaps preference are equivalent.

Proposition 8.

(1) For every f 2 F one can define a LOP with vertices in X, the solution of which

provides the swaps preference.

(2) For every LOP with vertices in X one can define an f 2 F , in which the swaps

preference provides the solution to the LOP.

Proof of Proposition 8: For the first part, consider the collection f and define, for

every pair of alternatives x and y in X, the weight cxy =
P

(A,y):x2A f(A, y). It follows that
P

⇡(x)<⇡(y) cxy =
P

⇡(x)<⇡(y)

P
(A,y):x2A f(A, y) =

P
(A,y) f(A, y)|{x 2 A : ⇡(x) < ⇡(y)}|, and

hence, by solving the LOP, we obtain the swaps preference. To see the second part, consider

the LOP given by weights cxy, with x, y 2 X. Let c be the sum of all weights cxy. Define

the collection f such that f({x, y}, y) = c
xy

c
and 0 otherwise. Since f is defined only over

binary problems,
P

(A,a) f(A, a)|{x 2 A : ⇡(x) < ⇡(a)}| = P
({x,y},y):⇡(x)<⇡(y) f({x, y}, y) =P

⇡(x)<⇡(y) cxy, as desired.⌅

Proposition 8 enables the techniques o↵ered by the literature for the solution of the LOP

to be used directly in the computation of the swaps preference. These techniques involve

an ample array of algorithms for finding the globally-optimal solution.31 Alternatively, the

literature also o↵ers methods, which, while not computing the globally-optimal solution, are

much lighter in computational intensity, and provide good approximations.32

30See Korte and Oberhofer (1970) and Fukui (1986).
31See, e.g., Grötschel, Jünger, and Reinelt (1984); see also Chaovalitwongse et al (2011) for a good introduc-
tion to the LOP, a review of the relevant algorithmic literature, and the analysis of one such algorithm.
32See Brusco, Kohn and Stahl (2008) for a good general introduction and relevant references.
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Appendix D. Discussion

D.1. Preference Restrictions. The swaps index aims to evaluate the distance between

individual choices and the preference maximization model. Let us note at this point that

exactly the same logic can be applied to measure the distance between choices and stronger

notions of rationalizability. In this section, we show how this is done by measuring how far

an agent is from being an expected utility agent, but the same logic could be followed to

incorporate other types of properties, such as time stationarity, quantity monotonicity, etc.

Let X be a finite set of lotteries and denote by PEU ⇢ P the set of all linear orders over X

having an expected utility representation.1 We define the EU-swaps index by

IEU�S(f) = min
P2PEU

X

(A,a)

f(A, a)|{x 2 A : xPa}|.

The EU-swaps index minimizes the number of swaps needed to accommodate all the obser-

vations considering only the set of expected utility preferences.2

Example 1. Consider X = {x, y, z, w} and let independence impose that x is above y if and

only if z is above w. Let f({x, y}, x) = 2
5 and f({x, y, w}, y) = f({z, w}, w) = 3

10 . The swaps

index computed in the space of all linear orders identifies the preference xPyPwPz with an

associated inconsistency of 3
10 . Since P 62 PEU , the EU-swaps index establishes a greater

inconsistency, 2
5 , with associated preference yPEU

xP

EU
wP

EU
z. Notice that the comparison

between alternatives x and y is now influenced not only by the observations ({x, y}, x) and
({x, y, w}, y), but also, through independence, by ({z, w}, w).

Date: October, 2014.
1Notice that standard expected utility representations usually involve infinite domains and indi↵erences.
Here, by setting a finite domain of lotteries, we can assume that these preferences have no indi↵erences. We
study the infinite case and the presence of indi↵erences in the next sections.
2The axiomatic characterization of IEU�S follows the same structure as that of IS with minor modifications.

1
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D.2. Indi↵erences. So far we have considered linear orders and, hence, have ruled out

the possibility of indi↵erences. Clearly, allowing for unrestricted indi↵erences makes the

entire exercise vacuous, since data can always be rationalized by total indi↵erence.3 We

can, however, introduce restricted indi↵erence in a meaningful way. Let X be a finite set of

alternatives, described by vectors of quantities of goods or attributes and hence, is partially

ordered by a strictly monotone binary relation �.4 Under these conditions, the swaps index

allowing for indi↵erences again adopts the functional form of IS, but minimizing over the

set of weak orders that extend �, which we denote generically by ⌫⇤, with strict part �⇤.

Namely,

II�S(f) = min
⌫⇤

X

(A,a)

f(A, a)|{x 2 A : x �⇤
a}|.

Example 2. Consider X = {(0, 3), (0, 6), (1, 3), (2, 0), (3, 2), (6, 1), (9, 0)} where x = (x1, x2)

describes the quantities of goods 1 and 2. Monotonicity forces (0, 6) and (1, 3) to be

preferred to (0, 3). It also makes (3, 2), (6, 1) and (9, 0) to be preferred to (2, 0). Other-

wise, indi↵erences are allowed. Consider the collection f({(0, 6), (1, 3), (2, 0)}, (2, 0)) = 1
2 =

f({(0, 3), (3, 2), (6, 1), (9, 0)}, (0, 3)). The individual is directly revealing that (0, 3) is weakly

preferred to (3, 2), (6, 1) and (9, 0). Monotonicity implies that any of the latter is strictly

better than (2, 0). But the individual is also directly revealing that (2, 0) is weakly preferred

to (0, 6) and (1, 3), which dominate the chosen option (0, 3) in terms of monotonicity. Hence,

the data cannot be rationalized by any monotonic weak order.

The revised version of the swaps index would work as follows. If (2, 0) is placed strictly

above (0, 3), then the mass of required swaps is equal to 3
2 , since monotonicity requires that

(3, 2), (6, 1) and (9, 0) must be placed strictly above (2, 0) and hence, strictly above (0, 3).

If on the contrary, (0, 3) is placed weakly above (2, 0), then the mass of required swaps is

1, since monotonicity implies that (0, 6) and (1, 3) must be placed strictly above (0, 3) and,

hence, strictly above (2, 0). Then, the optimal weak order ranks (0, 3) weakly above (2, 0).

D.3. Infinite Sets of Alternatives. Economic models sometimes involve infinite sets of

alternatives which are, typically, subsets of the Euclidean real space. We now show how the

swaps index can be extended to these settings. Consider the standard consumer setting,

where the set of all possible bundles is X = Rn
+, and preferences are continuous, strictly

monotonic and convex weak orders, that we denote by ⌫ (where the strict part is denoted

by �). Menus are defined by A = {x : px  1}, where p 2 Rn
++ describes the price vector,

3Formally, we would say that f is rationalizable by the weak order ⌫ if for every (A, a) with f(A, a) > 0,
a ⌫ x for every x 2 A. Again, small modifications of our axioms can be presented to characterize the index
that follows.
4That is, x � x

0 with x 6= x

0 implies that x � x

0.
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Figure 1.
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and the data comprise a finite number of observations with positive mass. We define the

consumer setting swaps index by

ICS�S(f) = inf
⌫

X

(A,a)

f(A, a)µ({x 2 A : x � a}),

where µ is the Lebesgue measure. That is, µ measures the volume of the upper contour set

of the chosen element a in menu A according to the preference ⌫. Given the infinite number

of weak orders over which ICS�S, the infimum is used.

Example 3. Consider the set X = R2
+ and the following two observations, (A1, a1) =

({(x, y) : x + 2y  1}, (14 ,
3
8)) and (A2, a2) = ({(x, y) : 2x + y  1}, ( 7

16 ,
1
8)). Let f be

the collection that assigns mass 1/2 to each of these two observations. Clearly, f cannot be

rationalized by any continuous, strictly monotonic and convex weak order. To see this, simply

note that in observation 1 the individual has revealed that a1 ⌫ a2. By strict monotonicity,

z1 = (14 ,
1
2) must be strictly preferred to a1 and hence to a2. However, the individual reveals

in menu 2 that a2 is weakly preferred to z1.

In order to describe ICS�S(f), let us divide the set of weak orders into those that place

a1 strictly above a2, those that place a2 strictly above a1 and those that make them indif-

ferent. Considering the first case, let S = {(x, y) : (x, y) � a1} and T = {(1/4, y) : y �
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3/8} [ {(x, y) : 4x + 3y = 17/8, 1/4  x  7/16} [ {(x, 1/8) : x � 7/16}. In order to

respect continuity, strict monotonicity and convexity, the smallest volume to be swapped in

observation 2 can be achieved by considering the indi↵erence curve of a1 to be S and the

limit of the indi↵erence curve of a2 to be T (see Figure 1a). Since these assumptions lead

to no swap in menu 1, they provide the infimum swap for the case in which a1 is strictly

above a2. The volume of the upper contour set would be exactly the area of the triangle

formed by bundles a1, a2 and z1, which is 3/256. A similar analysis for the case of a2 strictly

above a1 would require us to measure the area of the triangle formed by bundles a1, a2 and

z2 = (3/4, 1/8), which is 10/256 (see Figure 1b). Ranking a1 and a2 as indi↵erent would

require the sum of these two volumes. Hence, it is optimal to place a1 strictly above a2 and

ICS�S(f) =
1
2

3
256 .
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Appendix E. Application: Data

Table 2: Inconsistency values

Individual IS IHM IW Individual IS IHM IW

1 0.18 0.18 0.18 48 0.09 0.09 0.18

4 0.09 0.09 0.18 51 0.36 0.18 0.45

6 0.27 0.18 0.36 53 0.18 0.18 0.18

9 0.09 0.09 0.27 58 0.09 0.09 0.09

10 0.18 0.18 0.18 60 0.27 0.27 0.45

11 0.09 0.09 0.18 62 0.18 0.18 0.36

12 0.55 0.27 0.64 67 0.18 0.18 0.27

13 0.09 0.09 0.18 70 0.09 0.09 0.09

15 0.18 0.18 0.27 71 0.55 0.27 0.82

16 0.09 0.09 0.18 73 0.09 0.09 0.09

17 0.55 0.36 1 76 0.09 0.09 0.18

18 0.09 0.09 0.18 79 0.09 0.09 0.09

20 0.09 0.09 0.09 82 0.09 0.09 0.09

22 0.45 0.27 0.64 83 0.09 0.09 0.09

23 0.09 0.09 0.18 86 0.18 0.18 0.36

24 0.09 0.09 0.18 88 1.36 0.55 2.27

25 0.09 0.09 0.09 89 0.73 0.36 1.36

26 0.09 0.09 0.09 91 0.27 0.18 0.36

27 0.18 0.18 0.27 94 0.09 0.09 0.18

28 0.18 0.18 0.55 98 0.09 0.09 0.09

29 0.09 0.09 0.18 104 0.09 0.09 0.09

30 0.18 0.18 0.18 108 0.09 0.09 0.27

31 0.09 0.09 0.09 112 0.09 0.09 0.27

33 0.27 0.18 0.45 115 0.09 0.09 0.18

34 0.09 0.09 0.09 116 0.09 0.09 0.09

36 0.09 0.09 0.09 119 0.45 0.18 0.45

38 0.09 0.09 0.09 121 0.09 0.09 0.27

44 0.18 0.09 0.27 126 0.09 0.09 0.09

46 0.09 0.09 0.09 128 0.45 0.27 0.45

Summary For All Individuals

Group IS IHM IW

Avg. All 0.09 0.07 0.14

Avg. 7-years 0.13 0.11 0.21

Avg. 11-years 0.07 0.05 0.1

Avg. 21-years 0.08 0.05 0.13

NOTE. – Every subject that is not in the table is rationalizable. Participants

1 to 31 are 7�year old. Participants 32 to 73 are 11�year old. Participants 74

to 128 are 21�year old.


