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Question:

• What would the world be if social groups were configured

differently?

• Is single sex schooling efficient?

• Many interesting policies are reallocations:

– schooling policies: single sex schooling, ability tracking

– armed forces academies: grouping recruits together in

units, hoping to build cohesive units (Carell, Fullerton,

West, 2008)
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Motivation:

• The unsettled state of the literature reflects difficulty in

identifying social interactions (cf., Manski, 1993)

• Literature focuses on traditional estimands. For example,

the average partial effect of a unit increase in the fraction

of students in a classroom who are minority.

– Does not correspond to a feasible policy

– Only indirectly helpful for predicting the effect of a given

reallocation

• Little connection between empirical work and theory on

segregation.
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This Paper studies

• Causal effects of reallocating students across classrooms.

– students are binary-typed (girl/boy) with unobs heterog.

– Classrooms/teachers differ in unobserved ways.

• Nonparametric identification and estimation results for

– average spillover effect

– effects of small changes in segregation on average out-

comes and inequality (�)

– maximum attainable average outcome gain available via

reallocation (�)
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Application: Project STAR data

Data on 5781 kindergarten students in 325 classrooms (≈ 18

per class). Outcome is Stanford Achievement Test score, nor-

malized to have mean zero and unit variance.

Average outcome higher for girls than for boys:

Y girls = 0.08, Y boys = −0.08

Proportion of girls in classrooms: average Pgirl = 0.49, stan-

dard deviation SPgirl
= 0.06 (0.28 < Pgirl < 0.80)
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What would average outcomes and inequality between boys

and girls have been like, had we configured allocated the 5781

kindergartners differently to the 325 classrooms?

• Create 163 all boys classrooms, 162 all girl classrooms, all

classrooms 17-18 students.

• All classrooms 8-9 girls, 8-9 boys, with 17-18 students to-

tal.

• 1/3 classrooms all girls, 2/3 of the classrooms with 25%

girls and 75% boys, all classrooms 17-18 students.

• Given current allocation, in all classes with more boys then

girls, move a boy to a class with more girls than boys, and

the other way around (raise segregation by small amount).
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Other Application: Forming Squadrons (Carell, Fullerton,

West, 2008)

Incoming freshman at US Air Force Academy are assigned to

squadrons, with 120 students per squadron.

They have limited contact with other students in their cohort

who are in different squadrons.

Squadrons can be formed on the basis of sex, incoming test

scores.

Question of interest: how does the formation of squadrons

affect outcomes: test scores, cohesion, dropout rates?
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Talk Outline

1. Population framework

• potential outcomes set-up

• average allocation response function

2. Spillover estimands

• average spillover effect

• local segregation outcome effect

3. Estimation and Large Sample Inference

4. Application to Project STAR data
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• Population of students: i ∈ I = {1, . . . , IP}

– Observed types: Ti ∈ {0,1} (girls, boys, population fre-
quency of high types: pH)

– Heterogenous in unobserved ‘ability’: Ai

– Outcome: Yi (math achievement, on stanford achieve-
ment test)

• Population of classrooms: c ∈ C = {1, . . . , CP}

– Unobserved classroom/teacher characteristics: Uc

– Each classroom has N students (N × CP = IP)

• Assignment indicator: Gi = c if i is assigned to classroom
c
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• (with some abuse of notation): Ui = UGi
, etc.

• Indexing by c will signal that the reference population is

that of locations, i that of individuals

• Peers are classmates: p(i) =
{
j ∈ J : Gj = Gi, i �= j

}

• Peers’ types are given by Tp(i) = (Tp(i),1, . . . , T p(i),N−1)
′

with Ap(i) similarly defined

• T i = (Ti, T
′
p(i)

)′ with Ai defined analogously

• An individual’s overall classroom quality is given by Qi =(
T ′

p(i)
, A′

p(i)
, U ′

i

)′
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There are mappings from allocations to individuals level and

average outcomes:

Yi(g), Y (g), Y girls(g) − Y boys(g)

g ∈ G, where G is set of feasible allocations (5781 kids, 325

classrooms, 49% girls)

Estimands are averages over subsets of allocations, G0 ⊂ G:

1

#G0

∑
g∈G0

Y (g)
1

#G0

∑
g∈G0

(
Y girls(g) − Y boys(g)

)

• G0 is all alloc with equal number of boys/girls in each class,

• G0 is set of all allocations with single sex classrooms.
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No Cross Neighborhood Spillovers

Let g and g̃ denote two feasible allocations with associated

neighborhood qualities for individual i of qi and q̃i. If qi = q̃i

then

Yi(g) = Yi(g̃)

• Rules out general equilibrium effects

• Allows us to write

Yi(g) = Yi

(
T p(i), Ap(i), Ui

)
= Yi (Qi)

• Related to ‘no interference’ type assumptions in causal in-

ference literature
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Within-Type Peer Exchangeability

Let Ãp(i) = (Ãgirl
p(i)

, Ã
boy
p(i))

′ where Ãgirl
p(i)

and Ãboy
p(i)

are permuta-

tions of Agirl
p(i)

and Aboy
p(i)

, and let T̃ p(i) be a conformable reorder-

ing of Tp(i), for all such within-type permutations

Yi(T̃ p(i), Ãp(i), Ui) = Yi(Tp(i), Ap(i), Ui)

• Among those of the same sex, peers are equally influential
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Inclusive Definition of Type

Ti is independent of Ai

• Achieved via normalization: Ai = FA∗|T(A∗
i

∣∣∣Ti), with A∗
i

unnormalized ability

• An individual’s ‘ability’ is their rank amongst those of their

own sex
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• The allocation response function (function of share of types,

ability of high types, ability of low types, and characteristics

of classroom):

Yi

(
S−i, A

girl
p(i)

), Aboy
p(i)

, Ui

)
defines an individual-specific mapping from peers’ types,

abilities and amenities into outcomes

• A ‘treatment’ is an assignment to a specific configuration

of these variables

• Unobservability of peer ability and amenities implies that

observationally identical assignments may be associated

with distinct treatments (and hence potential outcomes)
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• We deal with treatment heterogeneity by defining an inter-

mediate object:

– an average over all the potential outcomes associated

with a given level of S−i

– the average is over a distribution of peer abilities and

locational amenities (conditional on group structure)

FA,U |T (ac, uc| tc)

– we define this average to be unaffected by ‘sorting’

and/or ‘matching’
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Matching

• Matching occurs if students are assigned to a classroom
on the basis of Uc and the utility derived from their choice

varies with (Ti, Ai)

– girls seek out high quality teachers

– girls and boys have different preferences over (outcome
affecting) amenities

• There is no matching if (T i, Ai) ⊥ Ui

• This gives the density factorization

fA,U |T (ac, uc| tc) = fA|T (ac| tc) fU (uc)
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Sorting

• Sorting occurs if individuals have preferences over their

peers’ ability/type and the strength of that preference varies

with own ability

• There is no sorting if

Ap(i) ⊥ Ai

∣∣∣T i

• This (and inclusive types) gives the density factorization

fA,|T (ac| tc) =
N∏

j=1

fA|T

(
acj

∣∣∣ tcj) =
N∏

j=1

fA

(
acj

)
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Average Allocation Response Function

In the absence of matching and sorting we have

fA,U |T (ac, uc| tc) =

⎧⎨⎩
N∏

j=1

fA

(
acj

)⎫⎬⎭ fU (uc)

Averaging over observationally identical treatments gives

Y e
i (s−i) =

∫
Yi(s−i, τKgirl

(agirl
p(i)

), τKboy
(aboy

p(i)
), ui)

×

⎧⎪⎨⎪⎩
∏

j∈p(i)

fA

(
ap(i),j

)
dap(i),j

⎫⎪⎬⎪⎭ fU (ui) dui

Y e
i (s−i) gives i′s expected outcome when assigned to a group

of peers with composition S−i = s−i
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Average Allocation Response Function

• Averaging Y e
i (s−i) conditional on type yields

E[Y e
i (s−i)|Ti = 1] = m∗

girl(s−i)

E[Y e
i (s−i)|Ti = 0] = m∗

boy(s−i)

• We work with the one-to-one transformations

mgirl(s) = m∗
girl

(
sN

N − 1

)
mboy(s) = m∗

boy

(
sN − 1

N − 1

)

• mgirl(s) and mboy(s) are

− averages over a prod of marginals, not a joint distribution

− required because heterog is not just from the individual
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• Group average outcomes are given by

m(s) = smgirl(s) + (1 − s)mboy(s)

• Statistical analog of the deterministic production technol-

ogy featured in, for example Benabou (1993, 1996)

• The marginal effect of a change in group composition is

∂m

∂s
(s) = p(s) + e(s)

where

p(s) = mgirl(s)− mboy(s) compositional effect

e(s) = s
∂mgirl

∂s
(s) + (1 − s)

∂mboy

∂s
(s) spillover effect
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Identification

Identification of each of our estimands follows if mboy(s), mgirl(s)

and their derivatives are identified.

Sufficient (but not necessary) is

• the status quo assignment satifies the no matching/sorting

conditions

• Sc (share of girls in classrooms) varies continuously
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Under these conditions we have

E [Yi|Ti = girl, Si = s] = mgirl(s)

E [Yi|Ti = boy, Si = s] = mboy(s)

The no matching/sorting requirement can be weakened by us-

ing individual and location-level characteristics.

22



1st Estimand: Average Spillover Effect

The average spillover benefit of a unit increase in Si is

βase = E[e(Si)]

• βase is average effect of an infeasible policy

• nonparametric version of Ciccone and Peri’s (2006) ‘con-

stant composition’ externality measure

• for statistical inference trimming is useful to ensure finite-

ness of variance bound and to eliminate boundary bias prob-

lems in estimating e(s).
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2nd Estimand: Local Segregation Outcome Effect

• Reallocations are reassignments of individuals across groups

• We assume that the planner does not observe individual

ability Ai or location amenities Uc.

• A reallocation is thus a feasible group composition distri-

bution, F r
S(s)

• Feasibility requires that F r
S(s) satisfy the constraint

∫ 1

0
sf r

S(s)ds = pgirl
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We begin by considering the effect of a small increase in seg-

regation on the average outcome

Our reallocation density is

f r
S(s;λ) =

s

1 + λ
fsq
S

(
s + λpgirl

1 + λ

)

This is equivalent to implementing the rule

Sr
c = Sc + λ(Sc − pgirl)

In classroom c, segregation is increased by λ × 100%
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• After reallocation the average outcome is

E

[
m(Sr

i )
]
= E

[
m(Si + λ(Si − pgirl))

]

• Differentiating w.r.t λ and evaluating at λ = 0 gives the

effect of a small increase in segregation

βlsoe = E

[
∂m

∂s
(Si)(Si − pgirl)

]
= C

(
∂m

∂s
(Si), Si

)

Covariance of derivative ∂m
∂s (Si) and Si

Estimates of effects of local (to status quo) reallocation may

be more credible (less reliant on extrapolation) than estimates

of substantial reallocations.
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Connections to Theory

• It is helpful to decompose βlsoe = αlppe + αlepe into a local

private peer effect and a local external peer effect:

– αlppe = C(p(Si), Si) is positive if movers benefit on net

from reallocation

– αlepe = C(e(Si), Si) is positive if stayers benefit on net

from reallocation

• If αlppe > 0 suggests presence of incentives for additional

sorting

• If αlepe �= 0 suggest additional sorting has unpriced conse-

quences
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Example: Suppose all classes ten students, one class with 60%

girls, one class with 60% boys: local reallocation moves one

boy from the 50% girl class to the 60% boy class, and one girl

the other way.

Effects (all peer effects)

Movers:

1. boy moves from 60% girl class to 60% boy class.

2. girl moves from 60% boy class to 60% girl class.

Stayers

3. 6 girls see their class change from 60% girls to 70% girls.

4. 3 boys see their class change from 60% girls to 70% girls.

5. 6 boys see their class change from 40% girls to 30% girls.

6. 3 girls see their class change from 40% girls to 30% girls.

28



Connections to Theory

βlsoe equals the weighted average

2E

[
ω(Si)

{
∂mgirl

∂s
(Si) −

∂mboy

∂s
(Si)

}]

+E

[
ω(Si)

{
S

∂2mgirl

∂s2
(Si) + (1 − Si)

∂2mboy

∂s2
(Si)

}]

where the weights E [ω(Si)] = 1.

• This is a local average of, respectively, own and peer type

complementarity and curvature

• Important to allow for heterogeneity in second derivatives of

regression function.
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3rd Estimand: Local Segregation Inequality Effect

The local segregation inequality effect of the reallocation is the

effect effect on the gap by sex in average outcomes, again of

a small move towards more segregation:

βlsie = E

[
1

pgirl

{
mgirl (Si) + Si

∂mgirl

∂s
(Si)

}(
Si − pgirl

)]

−E

[
1

1 − pgirl

{
−mboy (Si) + (1 − Si)

∂

∂s
mboy (Si)

} (
Sc − pgirl

)]
.
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Why Nonparametric Estimation?

Parametric models restrict answers to the questions:

•‘Linear-in-means’ (e.g., Manski, 1993)

mgirl(s) = αgirl + γs

mboy(s) = αboy + γs

=⇒ βase = γ βlsoe = 0

• Type-specific linear-in-means (e.g., Angrist and Lang, 2004)

mgirl(s) = αgirl + γgirl · s

mboy(s) = αboy + γboy · s

⇒ βase = pgirlγgirl + (1 − pgirl)γboy βlsoe = 2(γgirl − γboy)V(Si)
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Estimation

• Each of our estimators is a two-step semiparametric M-

estimator (e.g., Newey and McFadden, 1994)

• We estimate mgirl(s), mboy(s) and their derivs by kernel

methods

• We then estimate targets by plugging in our 1st step est’s.

• Derive influence function by performing a pathwise deriva-

tive calculation (e.g., Newey, 1994)

• We use fixed trimming to deal with boundary issues (which

redefines the estimands)
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First Step Estimation

• Let K(u) denote a kernel function, Kb(s − Si) = 1
bK(s−Si

b ),

then

m̂girl (s) =
ĝ1,girl (s)

ĝ2,girl (s)
, m̂boy(s) =

ĝ1,boy (s)

ĝ2,boy (s)

ĝ1,girl (s) =
1

I1

I1∑
i=1

Kb(s − Si)Yi ĝ2,girl (s) =
1

I1

I1∑
i=1

Kb(s − Si)

• and ĝ1,boy(s) and ĝ2,boy(s) defined similarly

• ∂
∂smgirl(s) and ∂

∂smboy(s) are estimated by differentiating

m̂girl (s) and m̂boy (s)
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Second Step Estimation of βase

• With trimming function d(s), we use the analog estimator

β̂ase =
1

I

I∑
i=1

d(Si)

{
Si

∂

∂s
m̂girl(Si)

+(1 − Si)
∂

∂s
m̂boy(Si)

}

• With influence function φ̃c =
∑

i∈{i:Gi=c} φ (Zi)

φ(Zi) =
d(Si)

N

{
e(Si) − βase −

∂
∂sfS (Si)

fS (Si)
(Yi − m(Si))

−

([
TiYi

Si
−

(1 − Ti)Yi

1 − Si

]
−
[
mgirl(Si) − mboy(Si)

])}
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Second Step Estimation of βlsoe

β̂lsoe =
1

I

I∑
i=1

d(Si)
{
m̂girl(Si) − m̂boy(Si)

Si
∂m̂girl

∂s
(Si) + (1 − Si)

∂m̂boy

∂s
(Si)

}
(Si − p̂H,κ)

With influence function φ̃c =
∑

i∈{i:Gi=c} φ (Zi) with

φ(Zi) =
d(Si)

N

{
∂m

∂s
(Si)(Si − pH,κ) − βlsoe

−
∂
∂sfS (Si)

fS (Si)
(Yi − m(Si))(Si − pH,κ) − (Yi − m(Si))

-E

[
∂m

∂s
(Si)

∣∣∣∣ dκ(Si) = 1

]
(Ti − pH,κ)

}
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Empirical Application

• Stanford Achievement Test (math) for 5,871 kindergarten

students (325 classrooms, 79 schools), normalized to have

mean zero and standard deviation one.

• Collected in conjunction with Tennessee class size reduc-

tion experiment Project STAR

• Girls are high types, boys low types:

1

NH

∑
i:Ti=H

Yi = 0.08,
1

NL

∑
i:Ti=L

Yi = −0.08
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Nonpar Linear Type-specific-lin

βase (ave spillover effect)
0.347

(0.134)
0.443

(0.200)
0.473

(0.201)

βlsoe (local segreg outc eff)
−0.000
(0.021)

0
0.001

(0.007)

βlsie (local segreg ineq eff)
0.055

(0.027)
0.063

(0.026)
0.066

(0.027)

Both boys and girls benefit from higher proportion of girls.

Additional segregation by sex benefits girls, and hurts boys, by

approximately the same amount.

Additional segregation by sex would increase the achievement

gap between girls and boys.
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Social Planner’s Problem

• Knowledge of the maximum and minimum average out-

come available via reallocation is useful for

– bounding positive/negative effects of reallocating poli-

cies

– measuring the efficiency of the status quo
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Social Planner’s Problem

• The planner’s problem is to choose FS (·) ∈ ΓS to maximize

∫
m (s) fS (s) ds

subject to the feasibility constraint∫
sfS (s) ds = pgirl.

• Non-convex functional (i.e., infinite dimensional) optimiza-

tion problem

• ...but it can be transformed into a finite-dimensional con-

cave programming problem
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Summary

• This paper develops several reallocation-specific estimands

• The estimands connect to theoretical literature on loca-

tional sorting

• Proposes nonparametric estimators and characterizes their

large sample properties

• Characterizes the solution to the social planner’s problem
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