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Abstract. In this paper we propose a novel way to measure behavioral hetero-

geneity in a population of stochastic individuals. Our measure is choice-based; it

evaluates the probability that, over a sampled menu, the sampled choices of two sam-

pled individuals differ. We provide axiomatic foundations for this measure, and a

decomposition result that separates heterogeneity into its intra- and inter-personal

components.
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1. Introduction

A sound measure for quantifying the behavioral heterogeneity of a population is

important in economics. For a start, it is an essential tool for empirically explaining

underlying driving forces, such as demographics and education. It can also play a

role in prediction exercises, where intuition suggests that lower heterogeneity should

increase predictive accuracy. In addition, a heterogeneity assessment is an important

step in constructing a representative stochastic-agent model capable of capturing the

variability within the population. Finally, accounting for heterogeneity may be crucial

in guiding welfare analysis.

The behavioral heterogeneity of a population may be the result of two different

phenomena. First, the individuals in the population are heterogeneous; that is, they

vary in their tastes and, therefore, in their economic choices. Second, the behavior of
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any given individual is also subject to variation. Making a distinction between these

two sources of behavioral heterogeneity, which we refer to as inter-personal and intra-

personal, can play an instrumental role in applications. For instance, while classical

welfare tools seem appropriate for dealing with heterogeneity driven mainly by inter-

personal variability, in the presence of widespread intra-personal heterogeneity, the

welfare approach can borrow from the growing literature on behavioral welfare analysis.

In this paper we propose a choice-based measure of behavioral heterogeneity. To

allow for the possibility of both inter- and intra-personal variability, we formalize an

individual as a random utility model (RUM) and a population as a distribution over

RUMs. Since RUMs represent the most standard random choice model, it seems ap-

propriate to use them as the basis for building a measure of behavioral heterogeneity.1

Thus, we measure behavioral heterogeneity as the probability that, over a sampled

menu, the sampled choices of two sampled individuals differ. We call this measure

choice heterogeneity, CH. This is an intuitive measure of heterogeneity, which, as we

will see in Section 2, sits well with traditional diversity measurement in various fields.

In addition, as we will argue in Section 5, it is easily implementable in practice, and

thus convenient to use.

In Section 4 we provide axiomatic foundations for CH, which rest on the following

ideas. First, CH has the property that two populations with the same representative

RUM, i.e. the same convex combination of all individual RUMs in the respective popu-

lations, have the same heterogeneity. Second, CH can be decomposed as a weighted sum

of the heterogeneity of populations formed by two deterministic individuals. Finally,

CH satisfies a simple monotonicity principle by which an increase in choice divergence

augments heterogeneity. In order to gain a deeper understanding of the setting and the

measure, we first show, both formally and through examples, that CH satisfies these

three properties. Then, in Theorem 1, we show that these properties are not only

necessary but also sufficient.

Having proposed, and axiomatized, our choice-based measure of behavioral hetero-

geneity, in Section 5 we elaborate on the decomposition of CH into intra- and inter-

personal heterogeneity. For this, we start by arguing that CH can be obtained as the

Euclidean proximity between the following two stochastic choice functions: that ob-

tained from the aggregate choices of the population, and that with the highest possible

1In Section 7 we argue that our measure of behavioral heterogeneity readily extends to a large

class of formalizations of individual random behavior.
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variability, which corresponds to uniformly random choices. Then, in Proposition 4, we

use this alternative representation of CH to show that our measure can be decomposed

into the following two terms: (i) the weighted average of the Euclidean proximity be-

tween the stochastic choices of each individual in the population and uniformly random

choices and (ii) the weighted average of the Euclidean distance between the stochastic

choice functions of each pair of individuals in the population. Thus, term (i) repre-

sents intra-personal heterogeneity, and term (ii) inter-personal heterogeneity within

the population. Section 6 provides further discussion of these two components of het-

erogeneity. Comparative statics results are established with respect to intra-personal

heterogeneity, while inter-personal heterogeneity is shown to be useful when analyzing

a combination of sub-populations.

2. Related Literature

This paper belongs to a long tradition of research in a variety of disciplines such as

statistics, linguistics, sociology, quantum mechanics, information theory and econom-

ics, where diversity has been measured on the basis of the probability that two random

extractions produce different outcomes (see, for example, the measure of diversity of

Simpson (1949), the measure of linguistic diversity of Greenberg (1956), the measure

of population diversity of Lieberson (1969), the purity parameter in Leonhardt (1997),

the residual variance in Ely, Frankel and Kamenica (2015) or its logarithmic version

known as the Rényi or collision entropy, and the Herfindahl-Hirschman index of mar-

ket concentration). Our approach differs in that: (i) we are concerned with choice

behavior, which involves a number of overlapping situations (i.e., choices from not just

one, but different menus), (ii) we allow for two sources of variability, within and across

individuals and, (iii) our treatment is axiomatically founded.

Economics uses a number of approaches for measuring inter-personal variability as

it relates to phenomena such as polarization and segregation. Esteban and Ray (1994)

measures polarization based on income and wealth distributions, Frankel and Volij

(2011) studies school segregation based on between-school distributions, Baldiga and

Green (2013) provide a choice-based analysis of consensus, and Gentzkow, Shapiro and

Taddy (2019) studies partisanship based on the predictability of party speeches. We

differ from the above works in our fundamental interest, which is to capture both intra-

and inter-personal behavioral heterogeneity.
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There is a large body of applied literature using specific collections of random utility

models to describe the behavior of a population. A prominent example is mixed-logit,

also known as random-coefficients or random-parameters logit, in which a distribution

of individual Luce behaviors is entertained (see Train, 2009).2 We depart from this

literature by offering a measure of heterogeneity.

3. Preliminaries

Consider a finite set of alternatives X. Denote by A the collection of all subsets

of X with at least two alternatives, which we call menus, and by P the collection of

all linear orders over X, which we call preferences. A Random Utility Model (RUM)

ψ is a probability distribution on P interpreted such that, when choosing from menu

A ∈ A, each preference P ∈ P is realized with probability ψ(P ) and maximized. As a

result, RUM choices are stochastic. Denoting by m(A,P ) the maximal alternative in

menu A according to preference P , and by I[·] the indicator function which takes the

value 1 when the statement in brackets is true and 0 otherwise, the probability that

RUM ψ selects alternative a in menu A is equal to:3

ρψ(a,A) =
∑
P

ψ(P ) · I[a=m(A,P )].

We denote by Ψ the set of all RUMs and by ΨD the set of all RUMs that are deter-

ministic, i.e., that assign mass 1 to a single preference. For the latter class, we denote

by ψP the deterministic RUM associated to preference P . In addition, we denote by

ψU the (uniform) RUM in which all preferences have the same mass.

A population is a probability distribution over the space of RUMs that assigns strictly

positive mass to only a finite number of them, i.e., an object with the form

θ = [θ1, θ2, . . . , θm;ψ1, ψ2, . . . , ψm].

To fix ideas, we can interpret ψi as the behavior of a type of individual, with θi

describing its mass in the population, i.e.
∑

i θi = 1. We denote by Θ the set of all

populations and by ΘD the set of all deterministic populations, i.e., those with the

form [θ1, θ2, . . . , θm;ψP1 , ψP2 , . . . , ψPm ], which assign mass only to deterministic RUMs.

In words, a deterministic population represents the case of a population in which

individuals are deterministic but possibly heterogeneous. Alternatively, denote by Θhom

2Given the relevance of the Luce and mixed-logit models in applications, we use them to illustrate

some of our results.
3For ease of exposition, we avoid the specification of any unconstrained domains in the summands.
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the set of all populations that are homogeneous, i.e., taking the form [1;ψ]. That is,

a homogeneous population represents the case of a population in which all individuals

are identical to each other, although their behavior possibly admits randomness.

Example 1. Consider the binary setX = {x, y}. P contains only two preferences, xPy

and yQx and, consequently, any RUM ψ can be identified by the value ψ(P ) ∈ [0, 1]

(since ψ(Q) = 1− ψ(P ) is uniquely determined). Let us consider three populations of

differing nature, represented graphically in Figure 1.

Figure 1. Populations in Example 1.
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Population θ1 = [1
3
, 2

3
; 3

8
, 3

4
] involves two RUMs, determined by the values ψ1(P ) = 3

8

and ψ2(P ) = 3
4
, with masses 1

3
and 2

3
respectively. That is, population θ1 is neither

deterministic nor homogeneous. Population θ2 = [1; 5
8
] is a homogeneous population

where all individuals use the non-deterministic RUM that places probability 5
8

on P .

Finally, population θ3 = [5
8
, 3

8
;ψP , ψQ] is a deterministic population involving the two

deterministic RUMs, ψP and ψQ, with masses 5
8

and 3
8

respectively. �

4. Behavioral Heterogeneity

We measure heterogeneity as the probability that, over a sampled menu, the sam-

pled choices of two sampled individuals differ. To formalize this notion, consider a

distribution λ over A, with λ(A) ≥ 0 describing the probability with which menu A is

sampled. Distribution λ may reflect the relative frequency of menus in the dataset, or

some judgement by the analyst as to the relative importance of the menus.4 Formally,

the choice heterogeneity of population θ is:

CHλ(θ) =
∑
A

λ(A)
∑
i

θi
∑
j

θj
∑
a

ρψi(a,A)(1− ρψj(a,A)).

4We allow for the possibility that λ assigns zero value to some menus to cover those cases in which

the analyst makes no observation on such menus or is not interested in them.
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Example 1 (continued). Since there are only two alternatives, it must be that

λ({x, y}) = 1. Considering population θ1, we have CHλ(θ
1) = 1

3
[1
3
(3

8
5
8

+ 5
8

3
8
) + 2

3
(3

8
1
4

+
5
8

3
4
)] + 2

3
[1
3
(3

4
5
8

+ 1
4

3
8
) + 2

3
(3

4
1
4

+ 1
4

3
4
)] = 15

32
. �

We now discuss three plausible properties for a measure of behavioral heterogeneity.

To help with the presentation of our characterization result in Section 4.4, we introduce

each property in relation to a generic heterogeneity function H : Θ→ R+, which assigns

a level of heterogeneity to any possible population, such that H(θ) = 0 if and only if

θ ∈ ΘD ∩Θhom. Notice that any population in ΘD ∩Θhom takes the form [1;ψP ], with

all individuals being described by the same, deterministic, behavior. It is apparent

that these populations are the only ones in which there is no behavioral variation

whatsoever, and hence our basic assumption.

4.1. Reduction. The space of RUMs is convex. As a consequence, any population θ

admits the construction of an associated RUM, denoted by ψθ and called the represen-

tative RUM of θ, by using the convex combination of RUMs in the population, with

weights equal to their corresponding masses. Formally, the representative RUM of θ is

ψθ =
∑
i

θiψi.

Importantly, the aggregated choices of the homogeneous population [1;ψθ], in which

everybody acts according to the representative RUM ψθ, are indistinguishable from

those of population θ. Therefore, the following is a natural property for a choice-based

measure of heterogeneity.5

Reduction. H(θ) = H([1;ψθ]).

Proposition 1. CHλ satisfies Reduction.6

Example 1 (continued). The representative RUM of population θ1 is ψθ1(P ) = 1
3

3
8

+
2
3

3
4

= 5
8
. Hence, the homogeneous population associated to θ1 is [1;ψθ1 ] = θ2. Notice

that a direct computation of heterogeneity gives CHλ(θ
2) = 5

8
3
8
+ 3

8
5
8

= 15
32

= CHλ(θ
1), as

claimed by Reduction. It is apparent that the representative RUM of the deterministic

5The reader may wish to consider the following analogy with a setting involving lotteries. An

individual can be thought of as a simple lottery over preferences, while a population is a compound

lottery. Reduction accords equivalent treatment to the compound lottery and to the simple lottery

which it induces.
6All the proofs are contained in the Appendix.
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population θ3 is the same. Thus, CHλ(θ
3) = 5

8
[5
8
(1 · 0 + 0 · 1) + 3

8
(1 · 1 + 0 · 0)] + 3

8
[5
8
(0 ·

0 + 1 · 1) + 3
8
(0 · 1 + 1 · 0)] = 15

32
= CHλ(θ

1) = CHλ(θ
2) holds. �

The above example illustrates that the same level of heterogeneity can result from

intra-personal heterogeneity only, with all individuals being equal to the representative

RUM (as in the homogeneous population θ2), or from inter-personal heterogeneity

only, where all individuals are deterministic, with weights given by the distribution

of preferences in the representative RUM (as in the deterministic population θ3), or

from a combination of the two (as in population θ1). The three populations belong to

the same iso-heterogeneity level, an equivalence that is implied by Reduction because

these three populations have the same representative RUM. In other words, by linking

all populations that share a common representative RUM, Reduction delineates the

trade-off between the two sources of heterogeneity.

4.2. Decomposition. We now consider a deterministic population θ ∈ ΘD, and

discuss the possibility of decomposing its heterogeneity as an aggregation of sub-

populations. In particular, consider hypothetical sub-populations each formed exclu-

sively by two different deterministic RUMs, with weights in proportion to their masses

in the original population, i.e., sub-populations with the form [ θi
θi+θj

,
θj

θi+θj
;ψPi , ψPj ].

7

Now, in order to understand the heterogeneity of θ based on that of the binary sub-

populations, we should correct back their heterogeneity by the inverse of the normal-

izing factors, (θi + θj)
2. Formally,

Decomposition. For every θ ∈ ΘD, H(θ) =
∑
i<j

(θi + θj)
2 H([ θi

θi+θj
,

θj
θi+θj

;ψPi , ψPj ]).

Proposition 2. CHλ satisfies Decomposition.

Example 2.8 Let X = {x, y, z} and the distribution over menus λ. Consider the

population θ = [1
3
, 1

3
, 1

3
;ψxyz, ψxzy, ψzyx], and the subpopulations θ′ = [1

2
, 1

2
;ψxyz, ψxzy],

θ′′ = [1
2
, 1

2
;ψxyz, ψzyx], and θ′′′ = [1

2
, 1

2
;ψxzy, ψzyx], represented graphically in Figure

2. The heterogeneity of θ is then equal to CHλ(θ) = λ({x, y})1
9
· 4 + λ({x, z})1

9
· 4 +

λ({y, z})1
9
·4+λ({x, y, z})1

9
·4 = 4

9
. Decomposition states that we can also see this as (1

3
+

7The RUMs are taken to be different since they are deterministic, and hence there is no role for

intra-personal heterogeneity.
8We write preferences in the order induced over the alternatives, reading from left to right.
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Figure 2. Populations in Example 2.
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1
2
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3
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3
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1
2
, 1

2
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3
+1

3
)2CHλ([

1
2
, 1

2
;ψxzy, ψzyx]) =

4
9
λ({y, z})1

2
+ 4

9
1
2

+ 4
9
[λ({x, y}) + λ({x, z}) + λ({x, y, z})]1

2
= 4

9
. �

4.3. Monotonicity. Finally, let us discuss a monotonicity property involving only

populations with two equally-likely deterministic RUMs, i.e. with the form [1
2
, 1

2
;ψP , ψQ].

We will often refer to these populations as couples. In order to state the monotonicity

property let us now consider collections of couples C = {[1
2
, 1

2
;ψPn , ψQn ]}Nn=1. Let us

entertain the case in which there are two equally-sized collections of couples C and C ′

with N = N ′, and that, whatever the menu at hand, we unequivocally observe a larger

number of choice-disagreements in the first of the two. In such a case, it is natural

to conclude that the average heterogeneity of this first collection of couples must be

larger. Formally, for any C, denote by ∆A(C) the number of couples in C for which

the two preferences involved disagree over menu A, and by H(C) =
∑
n H([ 1

2
, 1
2

;ψPn ,ψQn ])

N

the average heterogeneity of all couples in collection C.

Monotonicity. Let C and C ′ be two equally-sized collections of couples. If ∆A(C) ≥
∆A(C ′) for every A ∈ A, then H(C) ≥ H(C ′).

Proposition 3. CHλ satisfies Monotonicity.

Example 2 (continued). Let C = {[1
2
, 1

2
;ψxyz, ψxzy], [

1
2
, 1

2
;ψxyz, ψzyx], [

1
2
, 1

2
;ψxzy, ψzyx]}

be the collection of couples related to population θ. If we consider the vector of disagree-

ments ∆(·) = (∆{x,y}(·),∆{x,z}(·),∆{y,z}(·),∆{x,y,z}(·)), it is immediate that ∆(C) =

(2, 2, 2, 2). Now, let us consider two other, equally-sized, collections of couples. Col-

lection C ′ is equal to {[1
2
, 1

2
;ψxyz, ψzxy], [

1
2
, 1

2
;ψxyz, ψzyx], [

1
2
, 1

2
;ψzxy, ψzyx]}, while collec-

tion C ′′ is equal to {[1
2
, 1

2
;ψxyz, ψyxz], [

1
2
, 1

2
;ψxyz, ψzyx], [

1
2
, 1

2
;ψyxz, ψzyx]}. Since ∆(C ′) =

(2, 2, 2, 2) and ∆(C ′′) = (2, 2, 2, 3), Monotonicity implies that the average heterogene-

ity of couples in C and C ′ must be equal, and lower than the average heterogeneity
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of couples in C ′′. Indeed, our computation above showed that the average heterogene-

ity of couples in C was 1
3
. Direct computation shows that this is equal to that of C ′

and below that of C ′′ which is
1+

λ({x,y,z})
2

3
. Notice that, using Decomposition, this ef-

fectively implies that CHλ([
1
3
, 1

3
, 1

3
;ψxyz, ψxzy, ψzyx]) = CHλ([

1
3
, 1

3
, 1

3
;ψxyz, ψzxy, ψzyx]) ≤

CHλ([
1
3
, 1

3
, 1

3
;ψxyz, ψyxz, ψzyx]). �

4.4. A Characterization of CH. We now show that the three properties discussed

above are not only necessary but also sufficient for our measure of heterogeneity.

Theorem 1. H satisfies Reduction, Decomposition and Monotonicity if and only if

there exists a probability distribution λ on A and k > 0 such that H = k · CHλ.

Reduction renders the heterogeneity of a population θ equal to that of the homoge-

nous population formed by its representative RUM [1, ψθ]. Thus, we consider the

deterministic population θd that assigns the same probability to every preference as

the representative RUM of θ, that is, ψθ. Hence, since θ and θd have the same repre-

sentative RUM, Reduction implies that they must have the same heterogeneity. Next,

by Decomposition, the heterogeneity of θd can be directly broken down into the aggre-

gation of the heterogeneities across sub-populations with the form [1 − γ, γ;ψP , ψQ],

as long as the ratio between (1 − γ) and γ is equal to the ratio between the masses

of preferences P and Q in θd. Moreover, we show in the proof that the heterogeneity

of population [1− γ, γ;ψP , ψQ] can indeed be re-expressed as a product of two terms:

(i) a function depending on γ, and (ii) the heterogeneity of the couple involving the

same preferences [1
2
, 1

2
;ψP , ψQ]. This function is actually the logistic map which yields

H([1−γ, γ;ψP , ψQ]) = 4γ(1−γ)H([1
2
, 1

2
;ψP , ψQ]). Thus, we can express the heterogene-

ity of any population as a weighted additive sum of the heterogeneity of all possible

couples, with weights derived from the masses of each preference in the population.

The remaining step in the proof is to obtain the contribution to heterogeneity of each

menu A and find the means to link it to the above representation. The difficulty stems

from the fact that, generally speaking, it is impossible to find a couple that differs over

a single menu A only. Hence, the proof requires the identification of two collections of

couples for which the ∆-vectors differ only in menu A, and the application of Mono-

tonicity to these collections. Thus, the difference in heterogeneity between these two

collections must correspond to menu A. The proof shows that these added values can

be normalized into a probability distribution λ over A and hence, the heterogeneity of

any given population can be expressed as (a scalar transformation of) CHλ.
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5. Alternative Representations of CH

In this section we elaborate on three alternative representations of CH. The first

emphasizes the computational convenience of the measure. The second links CH with

Euclidean distances in the space of choice functions. The third decomposes CH into its

inter- and intra-personal components.

5.1. A matrix representation of CH. The proof of Theorem 1 shows that we can

evaluate choice heterogeneity by using the frequency of each preference in the repre-

sentative RUM and the heterogeneity level of every possible couple. Denote by Cλ
the |P| × |P|-matrix compiling twice the heterogeneity value of each couple. This is a

symmetric matrix with zeros in the diagonal and entries for preferences P and Q being

equal to the sum of λ-weights of menus where there are choice differences between the

two preferences. It is important to stress that this matrix is independent of the specific

distribution over RUMs, and hence independent of the population, since it is charac-

terized by the disagreements between preferences, weighted by measure λ. Therefore,

the matrix does not need to be recalculated for the analysis of different populations,

or for behavioral variations within a population, which is computationally convenient

in practice.

Example 2 (continued). Consider the distribution λ̄ placing equal weight on the

four possible menus. Listing the preferences by xyz, xzy, yxz, yzx, zxy, zyx, the matrix

reporting the heterogeneity of couples is

Cλ̄ =


0 1/4 1/2 3/4 3/4 1

1/4 0 3/4 1 1/2 3/4

1/2 3/4 0 1/4 1 3/4

3/4 1 1/4 0 3/4 1/2

3/4 1/2 1 3/4 0 1/4

1 3/4 3/4 1/2 1/4 0


�

Formally, the following is a direct Corollary of Theorem 1.

Corollary 1. CHλ(θ) = ψθCλψ>θ .

Corollary 1 shows that Cλ is a symmetric positive semi-definite matrix and that the

choice heterogeneity of any population can be seen, via the representative RUM, as an

inner product.9

9This is due to the fact that Cλ admits a Cholesky factorization.
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Example 3. Here, we consider the mixed-logit model, where a population is formed

by a collection of Luce RUMs and their corresponding masses. Given population

[θ1, θ2, . . . , θm;ψ1, ψ2, . . . , ψm] and preference P described by x1Px2P . . . xN−1PxN , we

can obtain the probability of P in the representative RUM by using the expression

ψθ(P ) =
∑

i θi
∏N

j=1
ui(xj)∑N
k=j ui(xk)

, where ui is the corresponding Luce vector of i.10 The

computation of choice heterogeneity follows easily from the matrix argument in Corol-

lary 1. Consider, e.g., the case of X = {x, y, z} and let θ = [ 4
11
, 7

11
;ψ1, ψ2], where u1 =

(u1(x), u1(y), u1(z)) = (1/2, 1/3, 1/6), and u2 = (u2(x), u2(y), u2(z)) = (4/9, 3/9, 2/9).

The representative RUM is ψθ = 1
495

(144, 86, 115, 50, 58, 42), and using λ̄, as in Example

2, CHλ̄(θ) = ψθCλ̄ψ>θ = .5. �

5.2. An Euclidean representation of CH. We now show that the choice hetero-

geneity of any population can be seen as a (λ-weighted) Euclidean proximity between

the stochastic choice function of the representative RUM and uniformly random be-

havior.11 Formally, given any two RUMs ψ and ψ′, define the λ-Euclidean distance

between their associated stochastic choice functions by

dλ(ρψ, ρψ′) =
∑
A

λ(A)
∑
a

[ρψ(a,A)− ρψ′(a,A)]2.

Consider the constant βλ =
∑

A λ(A)nA−1
nA

, where nA is the number of alternatives in

menu A.

Proposition 4. CHλ(θ) = βλ − dλ(ρψθ , ρψU ) = maxψ∈Ψ dλ(ρψ, ρψU )− dλ(ρψθ , ρψU ).

Proposition 4 first shows that the choice heterogeneity of a population is inversely

related to the distance between the stochastic choice function of the representative

RUM and uniform choices. Moreover, the second part of Proposition 4 shows that the

constant βλ is in fact the maximum distance between any individual in the population

and uniform choices. Hence, the heterogeneity of a population can be understood as

10A Luce RUM is usually described by means of a strictly positive real value function u, such that

the choice probability of x in menu A is u(x)∑
y∈A u(y)

. Without loss of generality, we can normalize u to

satisfy
∑
x∈X u(x) = 1. Hence u(x) can be understood as the probability of choosing x in X. Then,

for every menu A, the choice probabilities are simply conditional probabilities. Moreover, notice that

a Luce model may admit different RUM representations but, since all of them generate the same

stochastic choice function, this is inconsequential for our analysis.
11All our analysis uses the square of Euclidean distances. To simplify the presentation, we just

write Euclidean all along.
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the Euclidean proximity between the aggregate behavior of the population and uniform

behavior.

Example 1 (continued). Proposition 4 establishes that CHλ(θ) = βλ − dλ(ρψθ , ρψU ).

Since there is only one binary menu, it must be that βλ = 1
2
. Now, using our convention

to represent RUMs in this simple setting by describing the probability associated with

preference P , ψU = 1
2
. Recall that ψθ1 = 5

8
and hence, it must be that CHλ(θ

1) = 15
32

=
1
2
− [(5

8
− 1

2
)2 + (3

8
− 1

2
)2]. �

5.3. A decomposition of CH into intra- and inter-personal heterogeneity. We

now show that the Euclidean representation of CH in the section above enables us to

decompose choice heterogeneity into its intra- and inter-personal components.

Proposition 5. CHλ(θ) =
∑

i θi[βλ − dλ(ρψi , ρψU )] +
∑

i θi
∑

i<j θj dλ(ρψi , ρψj).

Proposition 5 shows that choice heterogeneity can be decomposed as the aggregation

of two different terms. The first of these terms,
∑

i θi[βλ− dλ(ρψi , ρψU )], evaluates how

close each of the individuals in the population is in relation to uniform choices, weighted

by their prevalence in the population. The second term,
∑

i θi
∑

i<j θj dλ(ρψi , ρψj), eval-

uates the distance between every pair of individuals in the population, again weighted

by their prevalence in the population.

Example 1 (continued). Proposition 5 establishes that choice heterogeneity can

be obtained as
∑

i θi[
1
2
− dλ(ρψi , ρψU )] +

∑
i θi
∑

i<j θj dλ(ρψi , ρψj). Direct computation

gives dλ(ρ 3
8
, ρ 1

2
) = (3

8
− 1

2
)2 + (5

8
− 1

2
)2 = 1

32
, dλ(ρ 3

4
, ρ 1

2
) = (3

4
− 1

2
)2 + (1

4
− 1

2
)2 = 1

8
, and

dλ(ρ 3
8
, ρ 3

4
) = (3

8
− 3

4
)2 + (5

8
− 1

4
)2 = 9

32
, leading to 1

3
(1

2
− 1

32
) + 2

3
(1

2
− 1

8
) + 1

3
2
3

9
32

= 15
32

. �

6. Intra-personal and Inter-personal heterogeneity

Here, we build on the decomposition result of Proposition 5 to establish some com-

parative statics results with respect to intra-personal heterogeneity, and show that the

consideration of inter-personal heterogeneity proves useful when analyzing the combi-

nation of different sub-populations.

6.1. Intra-personal heterogeneity. Given an individual ψ, it would be natural to

assess its intra-personal heterogeneity. One approach to this would be to use our mea-

sure of heterogeneity over the homogeneous population [1;ψ] ∈ Θhom. The logic is

straightforward; since there is no behavioral variation across individuals in a homo-

geneous population, heterogeneity must be purely intra-personal. In other words, the
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intra-personal heterogeneity of a RUM is simply the probability that, over a sampled

menu, two sampled choices of individual ψ differ. Moreover, Proposition 5 provides us

with another interpretation of this notion of intra-personal heterogeneity; namely, that

it corresponds to the λ-Euclidean proximity between individual behavior and uniform

choices. That is, we define

Intraλ(ψ) = CHλ([1;ψ]) =
∑
A

λ(A)
∑
a

ρψ(a,A)(1− ρψ(a,A)) = βλ − dλ(ρψ, ρψU ).

A characterization of this notion of intra-personal heterogeneity follows directly from

the characterization in Section 4, by simply considering non-null maps S : Ψ → R+,

measuring the intra-personal variability of RUMs, and reformulating Decomposition

and Monotonicity in terms of RUMs rather than populations.12

Corollary 2. S satisfies Decomposition and Monotonicity if and only if there exists a

probability distribution λ on A and k > 0 such that S = k · Intraλ.

We now investigate further the structure of intra-personal heterogeneity. For this,

we use a particular class of RUMs, namely, those satisfying the property that better

alternatives are consistently chosen with larger probability, whatever the menu. For-

mally, for a given P ∈ P , we say that ψ is P -consistent if xPy and {x, y} ⊆ A implies

ρψ(x,A) ≥ ρψ(y, A). The notion of P -consistency is related to the well-known notion

of weak stochastic transitivity. Any P -consistent RUM satisfies weak stochastic tran-

sitivity when binary menus are at stake, but it also requires this choice consistency in

the remaining menus. A prominent example of such RUMs is the Luce model, as well

as many of its generalizations.

Given two P -consistent RUMs, ψ1 and ψ2, we say that the latter is a decentralization

of the former if there exist ε > 0 and preferences Q1, Q2 such that: (i) ψ2 = ψ1 −
εψQ1 + εψQ2 and (ii) Q2 is further away from P than Q1 is, i.e., xPy and xQ2y imply

xQ1y. That is, the second RUM is obtained from the first by shifting mass from

preference Q1 to preference Q2, which happens to be further from the central preference

P . Proposition 6 shows that, in accordance with intuition, this type of shift increases

intra-personal heterogeneity. Indeed, the result is also true when sequential changes

12In order to write Decomposition in terms of RUMs, one simply needs to consider binary RUMs

in which preferences Pi and Pj are entertained with probabilities ψ(Pi)
ψ(Pi)+ψ(Pj)

and
ψ(Pj)

ψ(Pi)+ψ(Pj)
. To

write Monotonicity in terms of RUMs, the equivalent of a couple population is needed, i.e., one needs

to consider RUMs in which only two preferences Pi and Pj are entertained each with 1
2 probability.
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are considered. Formally, we say that ψ2 is a sequential decentralization of ψ1 whenever

there is a sequence of decentralizations connecting ψ1 and ψ2.13

Proposition 6. If ψ2 is a sequential decentralization of ψ1, then Intraλ(ψ2) ≥ Intraλ(ψ1).

Proposition 6 establishes some intuitive comparative statics on intra-personal het-

erogeneity for transitive RUMs. We now look further into the special case of the

Luce model, in which we can conveniently study intra-personal heterogeneity using the

monotone likelihood ratio principle.14

Proposition 7. Suppose that u1(x1) ≥ · · · ≥ u1(xn) and u2(x1) ≥ · · · ≥ u2(xn). If
u2(xj)

u2(xi)
≥ u1(xj)

u1(xi)
for every i < j, Intraλ(ψu2) ≥ Intraλ(ψu1).

Proposition 7 considers two Luce-RUMs with the same central preference. By the

monotone likelihood ratio, Luce-RUM u2 places more mass on worse alternatives, and

hence Proposition 7 establishes that it must have a larger amount of intra-personal

heterogeneity.

Example 3 (continued). Since the monotone likelihood ratio holds for u1 and u2,

Proposition 7 implies that Intraλ(ψu2) ≥ Intraλ(ψu1). Since ψu1 = 1
60

(20, 10, 15, 5, 6, 4)

and ψu2 = 1
315

(84, 56, 70, 35, 40, 30), the matrix computation discussed in Section 5

yields Intraλ(ψu1) = .48 and Intraλ(ψu2) = .51. Consider now the representative

RUM ψθ. Since this is not a Luce RUM, Proposition 7 cannot be applied. However,

ψθ happens to be a transitive RUM, and it can be seen that ψu2 is a decentraliza-

tion of ψθ, which in turn is a decentralization of ψu1 . Hence, Proposition 6 implies

that Intraλ(ψθ) ∈ [Intraλ(ψu1), Intraλ(ψu2)]. Notice that we have already computed

Intraλ(ψθ) = CHλ(θ) = .50, as claimed in the result. �

6.2. Inter-personal heterogeneity. Proposition 5 provides a decomposition of total

heterogeneity into intra-personal and inter-personal components. The inter-personal

part,
∑

i θi
∑

i<j θj dλ(ρψi , ρψj), is a weighted aggregate of the λ-Euclidean distances

among individual behaviors in the population. We now show that this value proves

useful when studying changes in heterogeneity by mixing two populations. This is the

13The result could be formulated alternatively in terms of first-order stochastic dominance over the

space of preferences, partially ordered by their distance to the central preference P .
14The required notation is given in Example 3.
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case because the reasoning in Proposition 5 can be extended to combinations of any

two populations θ and θ′.15

Corollary 3. For every α ∈ [0, 1],

CHλ(αθ + (1− α)θ′) = αCHλ(θ) + (1− α)CHλ(θ
′) + α(1− α)dλ(ρψθ , ρψθ′ ).

Corollary 3 shows that the behavioral heterogeneity of a mixture of sub-populations

is the result of: (i) the weighted average of the original choice-based heterogeneities and

(ii) the inter-personal heterogeneity arising from the, possibly different, representative

RUMs of each sup-population. The result describes the practical nature of the choice

heterogeneity measure when considering existing information on sub-populations. The

aggregate heterogeneity can be computed merely from the heterogeneity of the sub-

populations and the added inter-population heterogeneity, via the representative agents

of these populations. It is thus apparent how heterogeneity responds to some specific

aggregations. For example, consider the case in which the two sub-populations have

the same heterogeneity. If the sub-populations are not identical, one would expect the

level of heterogeneity to increase when the two are combined. Corollary 3 confirms this

by showing that the additional heterogeneity can be obtained simply by inspecting the

distance between the representative RUMs. Another particular case of interest is that

of the tremble model, where a population θ is mixed with a uniform distribution over

preferences. Here, since the heterogeneity of uniform choices is higher than that of

any other population, the mixing with the uniform distribution produces an increase

(through both channels (i) and (ii)) of heterogeneity; the mixture is unequivocally more

heterogeneous than the original population θ. In particular,

Corollary 4. For every α ∈ [0, 1], CHλ(αθ + (1− α)[1;ψU ]) = βλ − α2dλ(ψθ, ψU).

Example 1 (continued). Let θ′ be the population obtained by mixing α of the

original population θ1 and 1− α of uniform behavior, i.e., θ′ = αθ1 + (1− α)[1;ψU ] =

[α
3
, 2α

3
, 1 − α; 3

8
, 3

4
, 1

2
]. Corollary 3 allows the computation of the heterogeneity of the

tremble mixture as α 15
32

+ (1 − α)1
2

+ α(1 − α) 1
32

which, as claimed by Corollary 4, is
1
2
− α2 1

32
, a value that increases with the trembling weight 1− α. �

15We write αθ+(1−α)θ′ to represent the population induced by the combination of sub-populations

θ and θ′ with weights α and 1− α.
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7. Discussion

Based on the prevalence of RUMs in the modeling of heterogeneity, we have offered

a choice-based measure of heterogeneity for populations composed of individuals be-

having á la RUM. Notice that our measure of heterogeneity is directly applicable in

settings where behavioral structures other than RUMs are in place. In particular, if

the individuals in a population can be described by any sort of stochastic choice func-

tion, the measure CHλ is well-defined, and the decomposition into intra-personal and

inter-personal heterogeneity described in Proposition 5 holds. Moreover, our character-

ization result goes through as long as the setting satisfies the following two properties:

(i) the domain of individual behaviors must be convex, allowing for the existence of

a representative behavior in any population, and (ii) it should be possible to link any

menu to a pair of deterministic behaviors, or, possibly, to a collection of pairs of deter-

ministic behaviors, as explained in the discussion after Theorem 1. A simple, general

example that meets these two properties is the space of all stochastic choice functions,

where no rationality requirement whatsoever is imposed on individuals. This domain

is clearly convex and, for any given menu, one can easily construct a pair of determin-

istic choice functions that differ only over the given menu. Hence, our characterization

result can be adapted to this setting.

We close by commenting on the empirical implementation of our measure of choice

heterogeneity. The natural dataset would involve multiple choices by different individ-

uals, or different types of individuals, such as those given by age groups, gender, etc.

Practitioners would then proceed by estimating the individual RUMs, or, based on the

above discussion, by using a preferred stochastic behavioral model. There is a series of

papers proposing statistical tests and estimation techniques for a variety of stochastic

models that could be used to determine the appropriate class of individual stochastic

models and their specification (see, e.g., Halevy, Persitz, and Zrill (2018), Kitamura

and Stoye (2018), Cattaneo, Ma, Masatlioglu, and Suleymanov (2020), Barseghyan,

Molinari, and Thirkettle (2021), Apesteguia and Ballester (2021), Dardanoni, Manzini,

Mariotti, Petri, and Tyson (2022), and de Clippel and Rozen (2022)). Once the in-

dividual stochastic models are specified, the application of our measure is direct, as

discussed in the main text (see, in particular, Section 5).
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Appendix A. Proofs

Proof of Proposition 1: The choice-based heterogeneity of population θ can be

rewritten as:

CHλ(θ) =
∑
A

λ(A)
∑
i

θi
∑
j

θj
∑
a

ρψi(a,A)(1− ρψj(a,A))

=
∑
A

λ(A)
∑
i

θi
∑
j

θj
∑
P

ψi(P )
∑
Q

ψj(Q) · I[m(A,P )6=m(A,Q)]

=
∑
A

λ(A)
∑
i

∑
P

θiψi(P )
∑
j

∑
Q

θjψj(Q) · I[m(A,P )6=m(A,Q)]

=
∑
A

λ(A)
∑
P

ψθ(P )
∑
Q

ψθ(Q) · I[m(A,P ) 6=m(A,Q)]

=
∑
A

λ(A)
∑
a

ρψθ(a,A)(1− ρψθ(a,A)) = CHλ([1;ψθ]).

�

Proof of Proposition 2: Let θ = [θ1, θ2, . . . , θm;ψP1 , ψP2 , . . . , ψPm ] be a deterministic

population. The probability that a deterministic RUM makes two different choices is

zero, and hence the heterogeneity of θ can be written as

CHλ(θ) =
∑
A

λ(A)
∑
i

θi
∑
j

θj
∑
a

ρψPi (a,A)(1− ρψPj (a,A)) =

∑
A

λ(A)
∑
i<j

2 θiθj
∑
a

ρψPi (a,A)(1− ρψPj (a,A)) =
∑
A

λ(A)
∑
i<j

2θiθjI[m(A,Pi)6=m(A,Pj)] =

∑
i<j

(θi + θj)
2
∑
A

λ(A)
2θiθj

(θi + θj)2
I[m(A,Pi)6=m(A,Pj)]

=
∑
i<j

(θi + θj)
2 CHλ([

θi
θi + θj

,
θj

θi + θj
;ψPi , ψPj ]).

�

Proof of Proposition 3: The average heterogeneity of the collection of couples

C = {[1
2
, 1

2
;ψPn , ψQn ]}Nn=1 is:

CHλ(C) =
1

N

∑
n

∑
A

λ(A)
1

2
· I[m(A,Pn) 6=m(A,Qn)] =

1

2N

∑
A

λ(A)
∑
n

I[m(A,Pn)6=m(A,Qn)]

=
1

2N

∑
A

λ(A)∆A(C).
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Given that λ is a positive-valued function, the statement follows. �

Proof of Theorem 1: Propositions 1 to 3 show the necessity of the axioms. It is

also immediate that CHλ(θ) = 0 if and only if θ ∈ ΘD ∩Θhom, as required by our basic

assumption over the heterogeneity map. We now prove the sufficiency of all these

properties. Let us consider any menu A ∈ A and proceed by fixing one pair of different

alternatives {a, b} ⊆ A. Then, for every menu B with the property {a, b} ⊆ B ⊆ A, let

us fix a preference PA
B satisfying (X \B)PB aPB b PB (B \ {a, b}). By considering the

couple formed by preference PA
B and the preference QA

B that is obtained by swapping

the position of alternatives a and b in the preference, we are able to define the value∑
B:{a,b}⊆B⊆A

(−1)|A|−|B| H(
[

1
2
, 1

2
;ψPAB , ψQAB

]
). (1)

Claim 1. Expression (1) is independent of the selected pair of alternatives and

collection of preferences. Accordingly, we denote the value defined by expression (1)

as τ(A).

To prove Claim 1, let us fix a menu A and consider any two pairs of different

alternatives {a, b} and {a′, b′} in this menu and any two associated collections of

preferences {PA
B , Q

A
B}B:{a,b}⊆B⊆A and {P ′AB′ , Q′AB′}B′:{a′,b′}⊆B′⊆A. Let us then distinguish

the following collections of couples (i) CA
1 is formed by all couples [1

2
, 1

2
;ψPAB , ψQAB ]

where {a, b} ⊆ B ⊆ A is such that (−1)|A|−|B| = 1, (ii) CA
2 is formed by all cou-

ples [1
2
, 1

2
;ψPAB , ψQAB ] where {a, b} ⊆ B ⊆ A is such that (−1)|A|−|B| = −1, (iii) C ′A1

is the collection of all couples [1
2
, 1

2
;ψP ′A

B′
, ψQ′A

B′
] where {a′, b′} ⊆ B′ ⊆ A satisfies

(−1)|A|−|B
′| = 1 and, finally (iv) C ′A2 is formed by all couples [1

2
, 1

2
;ψP ′A

B′
, ψQ′A

B′
] where

{a′, b′} ⊆ B′ ⊆ A is such that (−1)|A|−|B
′| = −1. It is immediate to see that, for every

S 6= A, ∆S(CA
1 ) = ∆S(CA

2 ) and ∆S(C ′A1 ) = ∆S(C ′A2 ), while ∆A(CA
1 ) = ∆A(C ′A1 ) = 1 >

0 = ∆A(CA
2 ) = ∆A(C ′A2 ). Hence, the ∆-values of the collections of couples CA

1 ∪C ′A2 and

CA
2 ∪C ′A1 must coincide and, since they are equally-sized, Monotonicity guarantees that∑
θ∈CA1

H(θ) +
∑

θ∈C′A
2

H(θ) is equal to
∑

θ∈CA2
H(θ) +

∑
θ∈C′A

1
H(θ). By rearranging,

we obtain ∑
B:{a,b}⊆B⊆A

(−1)|A|−|B| H(
[

1
2
, 1

2
;ψPAB , ψQAB

]
) =

∑
θ∈CA1

H(θ)−
∑
θ∈CA2

H(θ) =∑
θ∈C′A

1

H(θ)−
∑
θ∈C′A

2

H(θ) =
∑

B′:{a′,b′}⊆B′⊆A

(−1)|A|−|B
′| H(

[
1
2
, 1

2
, ψP ′A

B′
, ψQ′A

B′

]
) = τ(A).
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Claim 2. For every pair of preferences P,Q ∈ P , it must be that

H([1
2
, 1

2
, ψP , ψQ]) =

∑
A

τ(A) · I[m(A,P )6=m(A,Q)].

If P is equal to Q, we know by assumption that H([1
2
, 1

2
;ψP , ψQ]) = 0, as desired.

Then, let us assume that {A : m(A,P ) 6= m(A,Q)} is non-empty, and denote by n ≥ 0

the number of menus with two alternatives over which P and Q differ. For every menu

A such that m(A,P ) 6= m(A,Q), denote by CA
1 and CA

2 the corresponding collections

of couples defined in the proof of Claim 1.

Consider the two collections of symmetric binary populations: (i)
⋃
A:m(A,P )6=m(A,Q) C

A
1

and (ii)
⋃
A:m(A,P )6=m(A,Q) C

A
2 ∪{[1

2
, 1

2
;ψP , ψQ]}. Notice that, for every binary menu such

that m(A,P ) 6= m(A,Q), (i) contains one couple while (ii) contains none. In addition,

(ii) has the extra population defined by [1
2
, 1

2
;ψP , ψQ]. Hence, if n = 0, select any

preference R and add the population [1;ψR] = [1
2
, 1

2
;ψR, ψR] to (i). If n > 1, add n− 1

copies of the population [1;ψR] = [1
2
, 1

2
;ψR, ψR] to (ii). In any case, we have defined

two equally-sized collections of couples which we call, respectively, C and C ′.

From the analysis in Claim 1, we know that ∆S(CA
1 ) = ∆S(CA

2 ) for every S 6= A

and ∆A(CA
1 ) = 1 > 0 = ∆A(CA

2 ). Since populations [1
2
, 1

2
;ψR, ψR] are irrelevant in this

respect, and population [1
2
, 1

2
;ψP , ψQ] is such that ∆A({[1

2
, 1

2
;ψP , ψQ]}) = 1 if and only

if m(A,P ) 6= m(A,Q), it is indeed the case that C and C ′ have the same vector ∆ over

all menus. From this it is immediate that H([1
2
, 1

2
;ψR, ψR]) = 0 and we can then apply

Monotonicity to obtain∑
A:m(A,P1) 6=m(A,P2)

∑
θ∈CA1

H(θ) =
∑

A:m(A,P1) 6=m(A,P2)

∑
θ∈CA2

H(θ) + H([1
2
, 1

2
;ψP , ψQ]).

It then follows that

H([1
2
, 1

2
;ψP , ψQ]) =

∑
A:m(A,P )6=m(A,Q)

(
∑
θ∈CA1

H(θ)−
∑
θ∈CA2

H(θ)) =
∑

A:m(A,P )6=m(A,Q)

τ(A).

Claim 3. The map λ given by λ(A) = τ(A)∑
A τ(A)

is a probability distribution over A.

Given our choice of normalization method, we simply need to show that τ is pos-

itive and non-null. To prove positivity, consider any menu A and the corresponding

collections CA
1 and CA

2 , as defined in the proof of Claim 1. We know that τ(A) =∑
θ∈CA1

H(θ)−
∑
θ∈CA2

H(θ). Hence, if |A| = 2, collection CA
1 is formed by a unique popu-

lation, while collection CA
2 is empty and the positivity of H guarantees the positivity

of τ(A). If |A| > 2, collections CA
1 and CA

2 are equally-sized, ∆S(CA
1 ) = ∆S(CA

2 ) holds
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for every S 6= A, and ∆A(CA
1 ) = 1 > 0 = ∆A(CA

2 ), and again positivity holds. To

prove that τ is non-null, assume, by contradiction, that this is not the case. Then,

Claim 2 implies that every couple has zero heterogeneity. Since there are couples not

belonging to Θhom, this is a contradiction. Hence, τ must be non-null and λ must be

a probability distribution over menus.

Claim 4. For every pair of preferences P,Q ∈ P and constant γ ∈ [0, 1], it is the

case that H([1− γ, γ;ψP , ψQ]) = 4γ(1− γ)H([1
2
, 1

2
;ψP , ψQ]).

To see this, fix two preferences P,Q ∈ P . Then consider any two values α, β ∈ [0, 1]

and the mixing of populations [1−α, α;ψP , ψQ] and [1−β, β;ψP , ψQ] with weights β
α+β

and α
α+β

. That is, let θ′ = [ β
α+β

(1− α), α
α+β

(1− β), β
α+β

α, α
α+β

β;ψP , ψP , ψQ, ψQ]. Since

this population is deterministic, the application of Decomposition, together with the

fact that homogeneous and deterministic populations have zero heterogeneity, leads to

H(θ′) = 2[(
β

α + β
)2 H([1− α, α;ψP , ψQ]) + (

α

α + β
)2 H([1− β, β;ψP , ψQ])].

Since we have β
α+β

(1 − α) + α
α+β

(1 − β) = α+β−2αβ
α+β

, Reduction guarantees that the

heterogeneity of population [α+β−2αβ
α+β

, 2αβ
α+β

;ψP , ψQ] must be equivalent to that of θ′,

leading to

H([
α + β − 2αβ

α + β
,

2αβ

α + β
;ψP , ψQ]) =

2[(
β

α + β
)2H([1− α, α;ψP , ψQ]) + (

α

α + β
)2H([1− β, β;ψP , ψQ])].

Direct manipulation shows that H([1− γ, γ;ψP , ψQ]) = 4γ(1− γ)H([1
2
, 1

2
;ψP , ψQ] must

hold.

Claim 5. For every θ ∈ ΘD, H(θ) =
∑
i<j

4 θiθjH([1
2
, 1

2
;ψPi , ψPj ]).

Consider θ ∈ ΘD. The result follows from combining Decomposition and Claim 4.

H(θ) =
∑
i<j

(θi + θj)
2 H([

θi
θi + θj

,
θj

θi + θj
;ψPi , ψPj ])

=
∑
i<j

(θi + θj)
2 4

θi
θi + θj

θj
θi + θj

H([
1

2
,
1

2
;ψPi , ψPj ]) =

∑
i<j

4 θiθjH([
1

2
,
1

2
;ψPi , ψPj ]).

Claim 6. H = k · CHλ for some k > 0.
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Consider any population θ. Construct the unique deterministic population θd ∈ ΘD

with the property that, for every P ∈ P , θd(ψP ) = ψθ(P ) (where, recall that ψθ is the

representative RUM of θ). From Claim 5, H(θd) =
∑
i<j

4 θdi θ
d
jH([1

2
, 1

2
;ψPi , ψPj ]). Using

Claim 2, we have H(θd) =
∑
i<j

4 θdi θ
d
j

∑
A:m(A,Pi)6=m(A,Pj)

τ(A). We can rewrite this expres-

sion as H(θd) = k
∑

A λ(A)
∑

i θ
d
i

∑
j θ

d
j I[m(A,Pi) 6=m(A,Pj)], which, given the fact that θd

is deterministic, coincides with CHλ(θ
d). Now, simply notice that the representative

RUM of θd coincides with that of θ, and Reduction (and the fact that CHλ satisfies

this property) guarantees that H(θ) = H(θd) = CHλ(θ
d) = CHλ(θ). This concludes the

proof. �

Proof of Proposition 4: We start by proving a series of useful claims. The first is

that, conditional on having sampled the ordered pair of RUMs (ψ, ψ′), the probability

that a random choice from ψ disagrees with a random choice from ψ′, over a random

menu, can be written as:

1

2
[CHλ([1;ψ]) + CHλ([1;ψ′]) + dλ(ρψ, ρψ′)].

We call this probability the conditional heterogeneity of (ψ, ψ′).

To prove the claim, suppose that we have sampled the ordered pair of RUMs (ψ, ψ′).

Conditional heterogeneity is
∑

A λ(A)
∑

a ρψ(a,A)(1− ρψ′(a,A)), or equivalently∑
A

λ(A)
∑
a

[ρψ(a,A)(1− ρψ(a,A)) + ρψ(a,A)(ρψ(a,A)− ρψ′(a,A))].

By similar reasoning, conditional heterogeneity is also equal to∑
A

λ(A)
∑
a

[ρψ′(a,A)(1− ρψ′(a,A)) + ρψ′(a,A)(ρψ′(a,A)− ρψ(a,A))].

Thus, conditional heterogeneity must be equal to the average of the last two expres-

sions, which is simply

1

2

∑
A

λ(A)
∑
a

[ρψ(a,A)(1− ρψ(a,A)) + ρψ′(a,A)(1− ρψ′(a,A))

+(ρψ(a,A)− ρψ′(a,A)2)] =
1

2
[CHλ([1;ψ]) + CHλ([1;ψ′]) + dλ(ρψ, ρψ′)],

as claimed.

Second, we claim that for every population θ ∈ Θ, CHλ(θ) =
∑

i θiCHλ([1;ψi]) +∑
i θi
∑

i<j θj dλ(ρψi , ρψj). To see this, notice that CHλ(θ) is simply the aggregation
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of conditional heterogeneities across all possible ordered pairs of RUMs weighted by

their corresponding sampling probabilities. Hence, we proceed by aggregating the

expression given above. Since every RUM ψi appears as the first RUM in the sampling

with probability θi and again, as the second RUM in the sampling with probability

θi, the aggregation of conditional heterogeneities creates the value
∑

i θiCHλ([1;ψi]).

Given ψi and ψj, with i < j, these two RUMs appear in the sampling with probability

2 θiθj and given the symmetry of dλ, the aggregation of all expressions creates the value∑
i θi
∑

i<j θj dλ(ρψi , ρψj), thus proving the claim.

Third, we claim that for any RUM ψ, CHλ([1;ψ]) = βλ − dλ(ρψ, ρψU ) holds. To

see this, consider the couple θ = [1
2
, 1

2
;ψ, ψU ]. From the previous claim, CHλ(θ) =

1
2
CHλ([1;ψ]) + 1

2
CHλ([1;ψU ]) + 1

4
dλ(ρψ, ρψU ). Now, notice that, since one of the RUMs

involved is uniform, direct computation of the heterogeneity of θ yields CHλ(θ) =
1
4
CHλ([1;ψ]) + 3

4
βλ. By putting these two expressions together, we obtain:

CHλ([1;ψ]) = 3βλ − 2CHλ([1;ψU ])− dλ(ρψ, ρψU )

= 3βλ − 2βλ − dλ(ρψ, ρψU ) = βλ − dλ(ρψ, ρψU ),

which proves the claim.

Now, to prove the statement, note that Proposition 1 guarantees that CHλ(θ) =

CHλ([1;ψθ]), and by the third claim CHλ(θ) = βλ − dλ(ρψθ , ρψU ) holds. Finally, notice

that maxψ∈Ψ dλ(ρψ, ρψU ) will be achieved by any RUM belonging to ΘD, leading to∑
A λ(A)[(1− 1

nA
)2 + (nA− 1)( 1

nA
− 0)2] =

∑
A λ(A)[ (nA−1)2

n2
A

+ nA−1
n2
A

] =
∑

A λ(A)nA−1
nA

=

βλ, which concludes the proof. �

Proof of Proposition 5: The proof follows directly from the second and third claims

in the proof of Proposition 4. �

Proof of Proposition 6: Suppose that ψ2 is a sequential decentralization of ψ1. By

definition, there exists a sequence {ψj}Jj=1 of RUMs such that ψ1 = ψ1 and ψJ = ψ2,

and ψj is a decentralization of ψj−1 for j = 2, . . . , J , with the central preference denoted

as P . At each stage j, mass εj > 0 shifts from preference Qj
1 to another preference Qj

2,

i.e., ψj+1 = ψj − εjψQj1 + εjψQj2
. Since every decentralization can indeed be obtained

as a sequence of decentralizations in which the two preferences differ in their ranking

of two alternatives, we assume w.l.o.g. that Qj
1 and Qj

2 differ in their ranking of only

two alternatives, with xjPyj, xjQj
1y
j and yjQj

2x
j.
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First, consider any menuA that fails to contain either xj or yj or such thatm(A,Qj
1) 6=

xj. Preferences Qj
1 and Qj

2 have the same maximizer over such a menu and hence, it

is evident that ρψj+1(·, A) = ρψj(·, A), i.e., the transfer of mass is irrelevant for the

intra-personal heterogeneity over such menus. Second, consider any menu satisfying

{xj, yj} ⊆ A and xj = m(A,Qj
1). Within such menus, the transfer of mass increases the

choice probability of alternative yj while reducing that of alternative xj, with no other

changes for the remaining alternatives. Thus, we know that ρψj(x
j, A) ≥ ρψj+1(xj, A) ≥

ρψj+1(yj, A) ≥ ρψj(y
j, A) holds. Given that the intra-personal heterogeneity within

menu A is equal to 1 −
∑

z∈A ρ
2
ψj(z, A), the transfer must increase the heterogeneity

of menu A. Additivity across menus guarantees that Intraλ(ψ
j+1) ≥ Intraλ(ψ

j). The

recursive application of this argument over the sequence of RUMs concludes the proof.�

Proof of Proposition 7: Consider any menu A ∈ A and denote its alternatives as

{yk}Kk=1 with the property that u1(y1) ≥ · · · ≥ u1(yK) and u2(y1) ≥ · · · ≥ u2(yK).

First, notice that the assumption guarantees that u2(ys)
u2(yt)

≥ u1(ys)
u1(yt)

for every s > t and,

hence,
ρψu2

(ys,A)

ρψu2
(yt,A)

=

u2(ys)∑K
k=1

u2(yk)

u2(yt)∑K
k=1

u2(yk)

≥
u1(ys)∑K
k=1

u1(yk)

u1(yt)∑K
k=1

u1(yk)

=
ρψu1

(ys,A)

ρψu1
(yt,A)

. That is, the choice proba-

bilities in menu A are also related by the monotone likelihood ratio property. As

a result, we know that there exists T ≤ K such that ρψu1 (yt, A) ≥ ρψu2 (yt, A) if

and only if t ≤ T . Since
∑K

k=1 ρψu1 (yk, A) =
∑K

k=1 ρψu2 (yk, A) = 1, the uniform

distribution over {ρψu2 (yk, A)}Kk=1 second-order stochastically dominates the uniform

distribution over {ρψu1 (yk, A)}Kk=1. The strict convexity of the quadratic function guar-

antees that
∑K
k=1(ρψu1

(yk,A))2

K
≥

∑K
k=1(ρψu2

(yk,A))2

K
, or equivalently

∑K
k=1(ρψu1 (yk, A))2 ≥∑K

k=1(ρψu2 (yk, A))2. Conditional on menu A ∈ A, we can write intra-personal hetero-

geneity as 1 minus the previous sums of squares and, hence, the heterogeneity within

menu A is larger for the Luce RUM defined by v. Additivity of intra-personal hetero-

geneity across menus concludes the proof. �

Proof of Corollary 4: From Corollary 3, CHλ(αθ + (1 − α)[1;ψU ]) = αCHλ(θ) +

(1 − α)CHλ([1;ψU ]) + α(1 − α)dλ(ψθ, ψU). From Proposition 4, this is equivalent to

CHλ(αθ + (1 − α)[1;ψU ]) = α(βλ − dλ(ψθ, ψU)) + (1 − α)βλ + α(1 − α)dλ(ψθ, ψU) =

βλ − α2dλ(ψθ, ψU). �
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