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Abstract

We study decentralized insurance when multiple risks are payoff-
relevant, but each agent may only trade a (possibly different) subset of
risks. Unless (at least) one agent can trade every risk, insurance markets
remain incomplete, and the economy is not resilient to worst-case events.
We also identify spill overs in any feasible allocation: others’ inability
to trade some risks restricts an agent’s resilience to joint realizations.
Unless an agent can trade a superset of i’s risks, agent i is not resilient to
them. In an application, we model constraints as risk-sharing networks
and measure resilience in a Malawian village.
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1 Introduction

Financial markets enable the transfer of risks across the global economy. How-
ever, some risks may not be traded by each and every market participant. An
agent may be unable to sell insurance against a specific risk due to legal restric-
tions, cognitive constraints, or limited information. She may be constrained,
for instance, by a mandate to manage a company’s risk. She may lack access
to timely information about a foreign sector or corporation, or she may simply
be unaware that the option to trade this risk exists. In an economy where
different trading constraints interact, does partial integration mean that some
events cannot be insured at all? If so, are there sharp predictions on which
events cannot be targeted? In particular, given the concern for systemic risk,
is such an economy able to protect against events in which multiple shocks
occur simultaneously?

In this paper we provide sharp bounds on insurance possibilities when risks
must be shared this way. Our main model maintains the classical assump-
tions from efficient insurance in endowment economies (Arrow, 1964, 1971)
except for two adjustments. First, rather than working on an abstract state
space, we associate each state to a joint realization of payoff-relevant random
variables. Each of these variables represents an underlying risk, such as the
economic output of a firm, sector, or country, a specific weather event, infla-
tion, exchange-rate volatility, or any other source of randomness. Second, we
assume that agents may only transfer resources across states which differ by a
subset of these risks, and we endow each agent with a (potentially) different
subset.

The classical complete markets model is a special case of our environment
in which every agent can condition on the entire set of payoff-relevant vari-
ables, and thus may access contingent claims on every state of the world. A
constrained agent, on the other hand, can only obtain payoffs which result
from combining coarser claims, which do not condition on variables she can-
not trade. We refer to these constraints as measurability constraints and we
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call the corresponding claims local assets. In order to isolate the role of dif-
ferential access from other trading frictions like short-selling constraints, we
assume that each individual can freely combine all of her local assets.

We identify an economy by the collection of all individual constraints. Such
an economy is two steps removed from the classical benchmark. On the one
hand, insurance must be provided by means of a potentially restrictive set
of instruments. On the other, agents have differential access to those instru-
ments. In order to isolate the effect of the former, we first ask whether the
entire set of available coarse instruments are collectively rich enough to repli-
cate state-contingent claims. If true, the economy as a whole corresponds to
an Arrow-Debreu economy, but where individuals differ in access. If false, then
even if someone had the privilege to access the economy’s full set of available
instruments, she could not trade every joint risks. Our first main result shows
that an economy is globally complete if and only if there exists an individual
who can trade all risks. No matter how many instruments of arbitrarily re-
stricted agents are combined, they can never compensate for the absence of an
individual with direct access to all Arrow securities.

Next, consider which risks specific individuals may trade in this economy.
Whenever an agents seeks to adjust her consumption across states, the remain-
ing agents need to collectively take the opposite side of the trade. If xi(ω) is the
net-trade of agent i for a given state ω, the absolute value of her net-trade must
be equal to the sum of net-trades of all other agents: xi(ω) = −

∑
j ̸=i xj(ω).

Therefore, even if i’s own measurabilty constraint allows her to trade across
two events, such a trade is only feasible if the remaining agents can collectively
generate the same trade. As a result – and in contrast to the predictions of
the classical model – differential constraints may spill over from one agent to
another, determining the set of joint shocks that can be feasibly insured.

In special cases, the spill-over effect is straightforward. For instance, suppose
that agent 1 can trade all risks that agent 2 can trade, who in turn can trade all
risks agent 3 can trade, and so on. Since resource constraints require x1(ω) =

−
∑

j≥2 xj(ω), it follows immediately that agent 1’s insurance possibilities are
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effectively reduced by others’ restrictions. Indeed, agent 1 may only trade
what is allowed by 2’s constraint. All other agents are only limited by their
own constraints. We say that an individual is resilient against a joint risk if,
collectively, this risk can also be traded by rest of the economy. For instance,
agent 1 above is not resilient against any set of risks which includes risks that 2
cannot trade. We say that an agent enjoys local completeness if she is resilient
to the full set of risks that her constraint allows. Intuitively, local completeness
fails when others’ constraints spill over and further limit an agent’s ability to
transfer risks. Agent 1, for instance, is not locally complete, while all other
agents in this example are.

In real world applications, where individuals face a variety of institutional,
social, or cognitive constraints, the joint trading possibilities of

∑
j ̸=i xj is not

obvious. Unlike in the example, where there was a single most flexible agent
2, each agent’s trading possibilities may complement others’. Which, then,
are the relevant constraints that shape economic resilience? Which joint risks
may be targeted by a specific group of individuals? Or by the entire economy?
We provide answers to all these questions by characterizing the feasible payoff
space of any individual in any economy. In doing so we develop necessary and
sufficient conditions for completeness.

We show that an agent enjoys local completeness if and only if there exists
another agent who can trade all risks that she has access to. This striking
result implies that however rich the trading possibilities of a group, they can-
not compensate for the absence of an agent who can complete i’s market on
her own. This result has several implications. Methodologically, it allows
us to characterize spill overs, determine the joint insurance possibilities, and
ultimately, understand how the interaction of constraints shape the space of
feasible payoffs. More importantly, the result implies that when certain insur-
ance instruments are missing, the system cannot transfer resources to worst
case scenarios – those where multiple bad shocks coincide. To formalize this
last result, we show that any economy can only be as resilient as its most re-
silient member. For instance, the economy described above is only as resilient
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as agent 2, since agent 1 is not more resilient than 2, even though she is less
constrained.

To our knowledge, this is the first paper to characterize all feasible alloca-
tions for a broad class of economic environments with differential constrains.
We identify those risks which can no longer be transferred, no matter the
assumptions on beliefs, preferences, or trading protocols. Most importantly,
we reveal a systematic tendency to under-provide insurance against extreme
events in which multiple negative realizations coincide. That is, we argue that
if certain events can no longer be targeted, these joint risk are the first to
loose coverage. We show that, except for the special case where agents have
preferences represented by constant absolute risk aversion, this loss in coverage
unambiguously decreases welfare.

This paper is not the first to acknowledge that financial access may not
be universal. Starting with Merton (1987), several strands of literature have
shown that if agents must share risk by interacting across different submar-
kets, asset prices get distorted and risk can no longer be shared efficiently.
Market fragmentation may even hinder diversification and give rise to market
power if submarkets are small (Merton, 1987; Malamud and Rostek, 2017).
Providing equilibrium predictions in such complicated environments typically
requires reducing the individual decision problems into a lower-dimensional
space under suitable choices of risk preferences and correlation structure of
assets. For instance, because Gaussian environment with constant absolute
risk aversion allow for a decision criterion which only depends on means and
covariances, there is no meaningful concern for extreme events and tail risks.
In this paper, we take a complementary view. Rather than fully describing
the equilibrium, we focus on characterizing the set of feasible allocations. In
taking this narrower approach we do not need to confine our analysis to special
cases, and we can therefore analyze an economy’s resilience against joint risks.

In line with the literature on incomplete markets, this paper explores how
individuals cope with risks that cannot be easily shared with others. One
strand in Macroeconomics and Finance is concerned with analyzing specific
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sources of excess risks, often to explain phenomena at odds with the clas-
sical predictions (Diamond, 1967; Aiyagari, 1994).1 A second strand of the
literature is concerned with exploring more fundamental properties of prices
and risk allocations while making minimal assumptions on the source of in-
completeness (Radner, 1972; Geanakoplos and Polemarchakis, 1986; Balasko,
Cass, and Shell, 1995). We seek to minimally adapt the classical theory such
that it accommodates a concrete model of decentralization through differential
and overlapping risk sharing groups.

Measurability constraints are flexible enough to represent a broad class of
frictions. This paper is not the first to adopt this modelling approach. In
previous work, Guerdjikova and Quiggin (2019) propose such a model to ex-
plore when incorrect beliefs continue to drive competitive equilibria in the
long run. In addition, they provide sufficient conditions for general trading
restriction to be represented by measurabilty constraints. Although Guerd-
jikova and Quiggin (2019) also model financial constraints by a collection of
individual partitions, these are not disciplined by a common source of frictions.
As a result, their setting does not allow for a general method of aggregating
individual constraints to determine collective payoff spaces. Indeed, most of
the results on survival probabilities provided in their paper require partitions
to relate by refinements, just as in our example above. Imposing nestedness
would be too rigid for most of our applications. In contrast, we only assume a
common structure in the inability to condition on a fixed set of payoff-relevant
variables.

Our environment is flexible enough to accommodate several common fric-
tions which have been repeatedly proposed as potential causes for constrained
access. For example, our setting can represent limited awareness, where in-
vestors differ in their ability to assess the availability of particular class of
assets. Guiso and Jappelli (2005), for instance, find that financial literacy
rates vary widely across Italian households, while Van Rooij, Lusardi, and

1Prime applications include explaining cross-sectional behavior or assets price phenomena
at odds with the classical predictions.
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Alessie (2011) find that financial literacy affects financial decision-making in
the Netherlands. Auster and Pavoni (2020) model the incentives of financial
intermediaries in this context and find that the menus offered to less knowl-
edgeable investors in equilibrium contain fewer products.

Even among equally sophisticated investors, the set of available financial
instruments may vary substantially due to varying legal requirements. For
instance, a hedge fund manager in Shanghai may be subject to a different set
of regulations than the risk management department of a company in New
York. Indeed, multinational companies manage third-party risk under strict
corporate guidelines regularly approved by the sitting board of directors (Aebi,
Sabato, and Schmid, 2012). In another example, tax-deductible retirement
plans typically rule out investing in certain classes of risky assets (Atkins,
2011). We show in Section 2.2 that our environment also accommodates these
type of institutional constraints.

Finally, we can accommodate cases where the different payoff-relevant vari-
ables correspond to the various individual incomes. In this mutual insurance
application, our measurability constraints now imply that each individual’s
income risk can only be shared among a specific subset of the population,
perhaps due to a lack of information, because of verifiability issues, or due to
cultural constraints. Any set of constraints now induces a risk-sharing network
between individuals: a link from i to j implies that agent i is able to trade
j’s income risk. Ambrus, Gao, and Milán (2021) consider a similar setting,
but their results only hold for the special case of constant absolute risk aver-
sion (CARA), for which they characterize constrained efficient sharing rules
but not the set of feasible allocations.2 We show in Section 4 how all our
results on global and local completeness can be expressed as necessary and
sufficient conditions on the link structure of the underlying network. We also

2A growing theoretical literature on risk sharing networks considers the role of connec-
tions in enforcing informal insurance (e.g. Bramoullé and Kranton, 2007; Bloch, Genicot,
and Ray, 2008; Ambrus, Mobius, and Szeidl, 2014; Ambrus and Elliott, 2021). All these
models assume that consumption allocations can respond to the economy’s full set of income
realizations. Risk Sharing networks have been documented and estimated extensively in the
development literature (e.g. Fafchamps and Lund, 2003; Ligon, 1998)
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describe systematic patterns of spill overs, for instance in core-periphery net-
works, where the hub’s resilience to joint shocks from the periphery is limited.

We develop a network measure that captures the extent to which individuals’
constraints spill over across neighbors in the network. Our Resilience Measure
computes the proportion of a neighborhood’s joint risks that can be traded by
more than one agent. This measure is reminiscent of the notion of “supported
links" introduced by Jackson, Rodriguez-Barraquer, and Tan (2012) in the
context of favor-exchange networks, but with several important differences. We
compute this centrality measure numerically on a real-world village network
of households in rural Malawi. We find that only around 5.5% of households
are resilient to all their joint shocks (i.e. complete), while 90% of households
have a support centrality below 0.5, meaning they are not resilient to at least
half of the joint shocks arising in their own neighborhoods.

A recent paper by Chandrasekhar, Townsend, and Xandri (2020) also consid-
ers risk sharing among small groups. But in their case, the friction comes from
each agent having random access, where, at any given state, a subset of indi-
viduals form a centralized market and trade their random incomes. In contrast
to our paper, conditional on access, all participants are assumed to be equally
unconstrained while those without access remain in autarky. Therefore, upon
participation, each group shares risk according to the classical properties. In
the present paper, each individual’s constraints are tied to a personal subset
of risks. As a result, even if agents are able to trade with one another, their
risk sharing patterns are at odds with the classical predictions.

The rest of the paper is organized as follows. Section 2 presents our main
model. Section 3 characterizes which risks can be transferred in a feasible
allocation, both globally and on an individual level. Section 4 applies the
results to the case of risk-sharing networks. Section 5 concludes. All proofs
are relegated to the Appendix. A supplementary Appendix shows how some
of the main assumptions can be relaxed.
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2 The Model

2.1 Set-up

Consider ex-ante trade in an economy where each agent i ∈ N = {1, 2, ..., n}
has a state-contingent endowment of the single consumption good, yi : Ω → R
and where Ω is a finite state space. All agents have identical expected utility
preferences over final payoffs, ci : Ω → R with u : R → R strictly increasing
and strictly concave and a common belief p : Ω → [0, 1].3

Let there be Q different payoff-relevant random variables, such as rain in
a given location, a firm’s profits, or an individual’s income. Slightly abusing
notation, we index each of these random variables by q ∈ Q = {1, ..., Q}, and
we refer to each q as a risk. We assume that the set Q is exhaustive in the
sense that any two distinct states differ in terms of the realization of at least
one variable. Each state can therefore be identified by its characteristic vector
of realized risks, ω = (z1, . . . , zQ), where zq ∈ Zq and Zq ⊂ R is a finite set of
possible values the q-th risk can take.

We assume that individuals may be unable to condition on all payoff-relevant
variables in Q due to lack of information, funds, legal capacities, physical
proximity, et cetera. To capture this, we endow each individual i with a set
Mi ⊆ Q, which represents a personal subset of risks that i may condition
on. Since i cannot condition on a risk q ∈ Q \Mi, her consumption must be
constant across any two states which differ only along these dimensions. In
this case, we say that agent i cannot distinguish these pairs of states ω, ω′ ∈ Ω,
in the sense that ci(ω) = ci(ω

′) must hold for all feasible allocations.

Individual i’s exogenous constraint, Mi, defines a personal partition of Ω,
denoted by LMi

. Two states ω, ω′ belong to the same element of LMi
if and

only if they are indistinguishable by individual i. Notice that ci must therefore
be measurable with respect to LMi

. More generally, starting from an arbitrary
3Our results do not require homogeneous preferences, and readily extend to non-expected

utility.
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set M ⊆ Q, define by LM the partition of Ω = Z1 × . . . × ZQ into cells that
group states which are indistinguishable according to the risks in M . For each
LM , denote by LM(ω) ⊆ Ω the cell which contains ω:

LM (ω) ≡ {ω′ ∈ Ω : zq(ω
′) = zq(ω) for all q ∈ M}. (1)

We also call LM(ω) an M-local state, i.e., the event that the the realized state
is indistinguishable from ω in terms of M . By definition, LM (ω) = LM (ω′)

for any ω′ ∈ LM(ω).

Several constraints to insurance can be expressed in this way. For instance,
setting M = ∅ the set L∅ = {{Ω}} corresponds to the trivial partition. In-
deed, the standard dynamic self-insurance model in which every agent can only
trade a riskless bond corresponds to Mi = ∅ for all i. At the other extreme,
LQ = {{ω}ω∈Ω} partitions Ω into singleton cells, representing an agent who
is able to trade across all states. Therefore, setting Mi = Q for all i corre-
sponds to the standard complete markets model. Our environment is flexible
enough to capture these benchmarks as well as many other intermediate cases
of heterogeneous frictions.

We assume that the endowment yi (and therefore i’s net trade xi ≡ ci − yi)
must be measurable with respect to LMi

. In other words, i’s constraint does
not prevent her from trading her own income risk.4 Moreover, we abstract from
other potential frictions – like short-selling constraints or portfolio restrictions
– which further limit how an agent can be exposed to the risks contained in
Mi. In other words, we assume an otherwise frictionless economy where each
individual i has access to a rich enough set of instruments to generate any
payoff, as long as it is measurable with respect to LMi

.

An asset can be described by a function a : Ω → R which assigns a payoff of
4Intuitively, for every M ⊆ Mi, the partition LM corresponds to a coarsening of the local

partition LMi
(i.e., LMi

≤ LM ). The coarsening ignores information about the variables
Mi \ M (those which do not belong to M). Therefore, LM can by obtained from LMi

by merging all cells LMi(ω) which assign the same realizations in terms of the variables
M ⊆ Mi.
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a(ω) units of the consumption good in state ω. Equivalently, we can describe
an asset by a column vector a ∈ R|Ω| with coordinates aω = a(ω). For any
event E ⊆ Ω, we denote by aE the unit claim on E which is an asset that pays
1 in event E and 0 otherwise:

aE(ω) =

1 if ω ∈ E,

0 otherwise.
(2)

The asset aLM (ω) is of particular interest. It is a unit claim contingent on the
event LM(ω). From here on, we call aLM (ω) an M−local asset. When setting
M = Q, the local assets correspond to the standard Arrow security for state
ω. The payoff matrix which collects all M -local assets is defined by

AM = [aL]L∈LM
. (3)

We refer to the Mi-local assets simply as i’s local assets.5

Proceeding analogously with payoff function ci, we can equivalently describe
it by the column vector ci ∈ R|Ω| of state-contingent consumption levels. De-
note by Ci the subspace of payoff vectors which are compatible with i’s mea-
surability constraints:

Ci ≡ {ci ∈ R|Ω| | for every ω′ ∈ LMi
(ω) : ci(ω) = ci(ω

′), ∀ω}. (4)

The following lemma establishes that, regardless of the assignment mecha-
nism, any ci satisfies i’s measurability condition defined in equation (4) if and
only if net-transfers lie in the span of i’s local assets.

5Note that the column span of AMi
includes the payoff of any coarser asset whose payoff

is measurable with respect to LMi
. We interpret the relevant list of available insurance AMi

as a basis that characterizes her payoff space. Hence we do not impose a zero-net-supply
condition. Alternatively, we could represent an appropriately expanded asset structure
which includes for each i all the redundant columns for M -local asset that condition on
a subset M ⊂ Mi. In this case, individuals with differential restrictions could engage in
mutually measurable trade in appropriately coarse assets in zero net supply.
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Lemma 1. Given initial endowment yi, the vector ci satisfies i’s measurability
constraints (4) if and only if the net-trade xi = (ci − yi) lies in the column
span of AMi

, defined in (3).

A vector of final payoffs c = (c1, ..., cn) satisfies the resource constraints
with equality if ∑

i

(ci(ω)− yi(ω)) =
∑
i

xi(ω) = 0. (5)

If the vector c also satisfies that each individual payoff is measurable (i.e.,
ci ∈ Ci), we then say that the consumption allocation is feasible. Recall that
since endowments yi ∈ R|Ω| are assumed to be measurable (i.e., yi ∈ Ci) an
individual’s set of feasible net-trades Xi, defined by

xi ≡ ci − yi, (6)

coincides with the set of feasible payoffs, Xi = Ci.

A wide range of economic models share the fundamental feature that dif-
ferent risks can only be shared among a specific subgroup of individuals. Our
results are independent of any specific trading protocols, pricing mechanisms
or equilibrium concepts. Concretely, section B.3 shows how we can adapt our
model to apply the measurability constraints on assets rather than individuals.
Our results extend naturally to economies where each agents trades different
sets of these assets on distinct submarkets with heterogeneous access, akin to
Malamud and Rostek (2017).

Before characterizing the trading possibilities and the set of feasible con-
sumption allocations, we summarize a few well-studied applications that our
framework is able to capture. We describe these applications concretely in the
context of a simple example.
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2.2 Applications

Measurability constraints capture a range of institutional and informal set-
tings. From a normative perspective, the set of feasible allocations corresponds
to the choice set for constrained efficient risk sharing rules when some individ-
uals cannot be relied on to bear certain risks. Similarly, in informal arrange-
ments where outcomes are reached through local bargaining, social norms, or
other non-market insurance mechanisms, multilateral transfers may be limited
to condition on set of locally relevant variables.

To fix ideas, it will be useful to provide a particular running example. Con-
sider therefore a heterogeneous access model, similar to Guerdjikova and Quig-
gin (2019), which departs minimally from the classical competitive equilibrium.
Our approach captures many alternative settings where financial incomplete-
ness stem from heterogeneous contracting frictions, such as institutional con-
straints, transaction costs, information asymmetries, or even trust and social
capital requirements. The constraints in this subsection describes three dif-
ferent instances of well-documented frictions, all of which presented in terms
of a unified example with three agents N = {1, 2, 3} and three payoff-relevant
variables Q = {1, 2, 3}.

Application 1. (Limited Awareness) Our setting can easily capture differ-
ences in investor sophistication coming from limited awareness. For instance,
let q = 1 represent an aggregate index like the S&P 500, q = 2 a specific com-
pany’s performance relative to the S&P 500, and let q = 3 represent a local
weather index (such as the amount of rainfall in some area). Let agent i = 1

be an institutional investor. She is able to trade instruments which condition
on all attributes M1 = {1, 2, 3} = Q. Agent 2 is a retail investor who does
not know about instruments which pay on specific weather events (the third
variable), such that M2 = {1, 2}. The assets that he trades only allow him to
target all joint realizations of z1 and z2. Finally, let agent i = 3 be a farmer
who, apart from buying weather insurance, is only aware of the instruments
which condition on the aggregate index. She is not aware of instruments which
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y1(ω)
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y2(ω)
2

y3(ω)
3

Figure 1: A Local Insurance Network

trade on the company’s performance (the second attribute), hence M3 = {1, 3}.

As mentioned above, even equally sophisticated investors may face differen-
tial legal constraints. The next example shows how they may be captured in
terms of coarse partitions.

Application 2. (Institutional Constraints) Let q = 1 represent a com-
modities index, q = 2 be a broad market index, and q = 3 be the local exchange
rate vis-à-vis a foreign currency. Individual i = 1 can trade all variables. In-
dividual i = 2 is the custodian of an IRA who commits not to trade on the
exchange rate. Finally, let i = 3 be a risk manager for a company which may
hedge supply risk on commodities and currency risk, but she cannot trade on
the market index. Again, the relevant constraints correspond to M1 = {1, 2, 3},
M2 = {1, 2} and M3 = {1, 3}, respectively.

Finally, consider a situation of mutual insurance relationships where house-
holds must be sufficiently “close" to trade their respective income risks. The
variables Q coincide with the set of households N in terms of each of their
random incomes. Any coarse partition comes from an inability to condition
on the income shocks of others.

Application 3. (Risk-Sharing Networks) Consider a group of three house-
holds, i = 1, 2, 3. Agent i can trade j’s income risk if and only if i and j are
neighbors on some underlying network. This network may capture informa-
tion frictions that preclude informal insurance arrangements when monitoring
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is too costly and incentives to reveal income cannot be provided (see for in-
stance Ambrus, Gao, and Milán (2021)).

The network in Figure 1 corresponds to a situation where agents 2 and 3

cannot reliably observe each others’ income and this information is not avail-
able to them when sharing their respective risks with agent 1. In the context of
our current setting, this example implies that agent 1 can condition on all in-
comes (i.e., M1 = N) while agents 2 and 3 cannot. In particular, M2 = {1, 2}
and M3 = {1, 3}. We consider the implications of this specification in more
detail in Section 4

While the above applications capture very different economic environments,
they correspond to the same primitives of our general framework. To further
fix ideas, assume that each attribute q ∈ Q can only take a good or bad
outcome: zq ∈ {g, b}.6 Without loss of generality, order the resulting states
by {(b, b, b), (b, b, g), (b, g, b), ..., (g, g, g)}.

In all three cases, agent 1 can trade all risks and her personal partition
LM1 = {{ω}ω∈Ω} consists of Ω. Agent 2, on the other hand, cannot trade q = 3,
so his partition groups any two states which only differ by this variable: LM2 =

{{(b, b, b), (b, b, g)}, ..., {(g, g, b), (g, g, g)}}. Agent 3’s situation is analogous to
agent 2’s, except that she can’t trade q = 2. Her partition is therefore, LM3 =

{{(b, b, b), (b, g, b)}, ..., {(g, b, g), (g, g, g)}}.

We can also represent each agent’s contingent claims space through the pay-
off matrix AMi

. Without loss of generality, we can write AM1 = (e1, e2 . . . , e8)

where ei ∈ R8 denotes the standard vector with a 1 in the i-th coordinate
and 0’s elsewhere. In other words, because agent 1 can trade all variables,
her local assets correspond to the standard basis of R|Ω|. On the other hand,
AM2 = (e1 + e2, . . . , e7 + e8) and AM3 = (e1 + e3, e2 + e4, . . . , e6 + e8), rep-
resent how agents 2 and 3 each face four different local assets that pay along
different M-local states.

6A state ω can therefore be described by a characteristic vector ω = (z1, z2, z3) ∈ {g, b}3,
and | Ω |= 8.
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Finally, in order to fix ideas on a potential implementation, consider a suit-
ably adapted version of the competitive equilibrium. Denote by Π : Ω → R
a state-price vector such that the price Πx of any payoff x ∈ R satisfies
Πx =

∑
ω Π(ω)x(ω). By our assumptions on preferences, the law of one price

holds in any competitive equilibrium (LeRoy and Werner, 2014), so that such
a Π exists without loss of generality. We are now ready to define a locally-
provided insurance equilibrium. The first two conditions state feasibility (mea-
surability and market clearing), and the latter two conditions state optimality.

Example. (Competitive equilibrium) Given initial endowments yi and
measurability constraints Mi for i = 1, ..., n, a state-price Π∗ : Ω → R and
a vector of final payoffs c∗ form a local insurance equilibrium if:

1. c∗i ∈ Ci for all i ∈ N ;

2.
∑

i∈N [yi(ω)− c∗i (ω)] = 0 for all ω ∈ Ω;

3. Eu(ci) > Eu(c∗i ) =⇒
∑

ω∈Ω[Π
∗(ω)(yi(ω)−ci(ω))] < 0 for all c ∈ Ci and

i ∈ N ;

4.
∑

ω∈Ω[Π
∗(ω)(yi(ω)− c∗i (ω))] = 0 for all i ∈ N .

While the remainder of this paper uses the general setup described in Section
2.1, we refer back to this simple three-agent example throughout the text for
intuition. Section 4 reviews our main results through the lens of Application 3
to relate them to well-known graph properties in the long and active literature
on risk-sharing networks.

3 Local Insurance

3.1 Missing Markets

Before analyzing the differential access constraints across individuals, we need
to understand if and how providing insurance through local instruments is
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restrictive in itself. Consider therefore a hypothetical agent j who can simul-
taneously access all local assets AMi

of every agent i ∈ N . Would she be able
to trade all joint risks in the economy? And if not, which are the events she
can insure against?

While phrased as a hypothetical exercise, this question relates to concrete
insurance properties. First, whether the asset span is complete or not matters
for equilibrium properties such as the existence of a unique state prices to
value payoffs which do not satisfy measurability (LeRoy and Werner, 2014).
Second, in terms of policy implications, it is crucial to know whether efficiency
can be achieved by making existing local instruments more widely accessible,
or whether some markets are missing altogether. Finally, if some instruments
are indeed missing, we need to understand how their absence constrains the
possibilities for risk sharing, no matter the allocation mechanism.

Given the local constraints {Mi}i∈N , denote by JN a payoff matrix which
collects all the (

∑
i∈N |LMi

|) columns that appear in the various matrices AMi

across every i ∈ N :
JN = [AMi

]i∈N . (7)

Notice that JN defines a meaningful upper bound on the economy’s capacity
to trade. It combines all trades that any individual has access to. We denote
the corresponding payoff space by CN :

CN := span(JN) ⊆ R|Ω|. (8)

The individual measurability constraints can then be interpreted as differential
access constraints in the spirit of Guerdjikova and Quiggin (2019), where each
i can only trade a subset of assets (i.e., those corresponding to the columns of
JN which appear in AMi

).7 If JN is rich enough to span R|Ω|, we say that the
set of instruments is globally complete.

Definition 1. An economy described by JN satisfies global completeness if
7Notice that JN typically contains redundant assets. This is obvious if one agent can

trade strictly more than another agent.
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rank(JN) = |Ω|.

If an analyst had data on the constraints {Mi}i∈N , she could determine if
an economy is complete in a case-by-case basis simply by checking the rank
of JN computationally. However, the goal of this paper is to provide general
insights into how the fundamentals of the economy (i.e., the common structure
underlying individual constraints) shape the payoff space, and therefore the
ability to share risk. We therefore seek a general result that identifies the
payoff space CN–and therefore which economies are complete– as a function
of the primitives only (i.e., the sets Mi).

To this end, the next section proposes a novel basis of R|Ω| with a key
property: for any set Mi ⊆ Q, there exists a subset of these basis vectors which
spans the resulting constrained payoff space. In other words, each constraint
Mi provokes a loss of dimensionality which corresponds to an elimination of the
vectors from a common basis. As a result, we can not only interpret individual
payoff spaces through a common basis, but we know the extent to which the
trading possibilities of i complement those of the remaining agents.

3.2 An Alternative Basis of the State Space

Constructing suitable basis vectors requires two auxiliary objects. First, we
fix an arbitrary reference state. Without loss of generality, and for the sake
of exposition, let ω0 ∈ argminω∈Ω

∑
i yi(ω) be a state which minimizes ag-

gregate income. To ease exposition, once we select ω0, we simply refer to
ω0 = (z1, ..., zQ) as the worst state and the corresponding zq as the worst re-
alization of variable q. Second, for every possible subset M ⊆ N , we collect
those states that assigns the worst realization zq to all risks q except those
belonging to M . That is, the set OM collects all states in which the joint
realization of risks in group M does not contain any worst realization while
all remaining risks do obtain their worst realization:

OM ≡ {ω ∈ Ω | ∀q ∈ M : zq(ω) ̸= zq(ω0) and ∀r /∈ M : zr(ω) = zr(ω0)}. (9)
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Notice that we can associate any state with two unique pieces of information:
the set M of variables which do not obtain their worst realization, and their
M -local state L ∈ LM . The former pins down the realization of the variables
in Q \M , the latter specifies the realizations in M .8

To construct our basis B, we collect, for each possible subset M ⊆ Q,
only those M -local assets aLM (ω) for which no member, q of M has the worst
realization, zq :

B =
[[
aLM (ω)

]
ω∈OM

]
M⊆Q

. (10)

To prove that B is indeed a basis for R|Ω|, we need to show that it consist of
|Ω| linearly independent assets. Lemma 6 in Appendix B.4 shows that B has
exactly |Ω| columns. Intuitively, each ω points to exactly one column aLM (ω)

where M is defined by the variables whose value is different from zq. The
following lemma proves that the set of columns is indeed linearly independent.

Lemma 2. The column vectors in B form a basis of R|Ω|.

To see why none of the assets in B are redundant, recall that each of them
corresponds to a contingent claim on an event in which all the variables in a set
M take a better-than-worst realization. Moreover, notice that only observing
a set K ⊉ M of variables does not reveal the joint realization of M . Therefore,
no linear combination of any such K ⊉ M -local instruments can ever replicate
a finer M -local asset. At the same time, none of the finer K ⊃ M -local assets
which belong to B pay in states where any q ∈ K takes its worst value.
However, in order to replicate an M -local asset requires a payment in states
that do assign the worst value to the variables K \M . As a result, no linear
combination of these K ⊃ M -local assets can ever generate a payoff that is
measurable with respect to LM .

Example. Recall the three-agent examples from Section 2.2, when each q ∈ Q

8In Appendix B.4, we show that each state ω ∈ Ω belongs to an OM for exactly one group
M ⊆ N . Notice that equation (9) can be similarly expressed as OM = LQ\M (ω0) \LM (ω0).
Given the realizations in state ω ∈ OM , an individual knows that reference state ω0 has not
occurred if and only if she observes at least one variable in group M ⊆ Q.
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corresponds to a binary risk. In this case, the space of state-contingent payoffs
corresponds to R8. Following equation (10), this space has an alternative basis
B composed of eight linearly independent M-local assets, one for each subset
M ⊆ Q = {1, 2, 3}. For every subset M , this asset is a contingent claim which
only pays 1 in the event where none of the risks in M take the low realization.
For M = ∅, this event trivially includes all states. Since the asset pays 1 in
every state, this corresponds to a riskless bond. Similarly, when M = {q} for
q = 1, 2, 3, the M-local asset pays 1 in those four states where the risk q takes
the high realization. For any subset M = {q, q′} of size two, with q′ ̸= q, the
M-local asset pays 1 unit only in those two states where both variables q and
q′ ̸= q simultaneously take the high realization. Finally when M = {1, 2, 3} the
asset corresponds to an Arrow security for the unique state where all variables
take the high realization. Appendix B.5 provides an explicit description of the
matrix B.

3.3 Characterizing Payoff Spaces

We now show that, for any set of constraints {Mi}i∈N , there exists a basis Bn

for the payoff space CN which consists of a subset of columns in B. Lemma
4 below establishes that BN contains an M -local asset from B only if there
exists an agent i who can trade M , i.e., M ⊆ Mi for some i. For every possible
set of individuals I ⊆ N , collect the subsets of Q which are traded by at least
one i ∈ I

MI = {M ⊆ Q : ∃i ∈ I such that M ⊆ Mi}. (11)

Notice that while M{i} collects all subsets of Mi, the set M{i,j} is the union
of Mi and Mj.9 For I = N , the set MN collects all subsets contained in any
Mi across all i ∈ N .

For any arbitrary set I ⊆ N , construct a submatrix of B which only keeps
those M -local assets associated with groups M of risks appearing in MI from

9This is not equivalent to the collection of subsets of Mi ∪Mj (except if Mi and Mj are
disjoint)
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(11). The resulting matrix BI removes exactly those local assets from B which
are not available to any member of I. Formally, fixing a group I ⊆ N , let

BI =
[[
aLM (ω)

]
ω∈OM

]
M∈MI

. (12)

The definition of BI in (12) is identical to B in (10) except for the outer
restriction which selects only the subsets of Q that can be traded by at least
one member of I. To fix ideas, consider again the example from section 2.2.

Example. Equation (23) in Appendix B.5 provides an explicit expression of
the matrix BI for the group of agents I = {2, 3}. Compared to B, the ma-
trix BI removes exactly those M-local which are neither available for M2 =

{1, 2} nor for M3 = {1, 3}. That is, BI eliminates the local assets which
pay on a joint high realization of M = {2, 3} and M = {1, 2, 3}. The
remaining six M-local asset are therefore induced by the six subsets M =

∅, {1}, {2}, {3}, {1, 2}, {1, 3}.

Crucially, MI can only coincide with the power set 2Q if at least one indi-
vidual i ∈ I can trade every risk (i.e., Mi = Q). Therefore, if we can establish
that BI is a basis for span(J I), then checking whether BI and B coincide –
that is, whether some member of I can trade every risk – determines whether
group I has a rich enough set of instruments to span R|Ω|. In order to prove
the desired result, we begin by proving it for an individual’s payoff space, i.e.,
for I = {i}.

Lemma 3. The local assets in B{i} form a basis of i’s payoff space, Ci =

span(AMi
) = span(B{i}).

We can now construct the payoff space for a group I ⊆ N of any size.
Consider how adding trades available to j adds to those available to i. Lemma
3 conveniently allows us to answer this question because it implies that each
asset in B{j} is either one of the assets in B{i} or it is linearly independent
from all the assets in B{i}. Only the latter kinds of assets expand the payoff
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space, since it adds the possibility to trade a set of joint risks M that i cannot
trade.

Proceeding this way, we can identify the joint insurance possibilities for any
group I ⊆ N . To see this, notice that any local asset in B{i} must appear in
BI whenever i ∈ I, and, conversely, for any column in BI , there must exist at
least one member i ∈ I for whom the same asset appears in B{i}. This leads
to the following result.

Lemma 4. For any group I ⊆ N , the assets in BI form a basis of the payoff
space, span(J I).

Our novel basis allows for a convenient interpretation in terms of the prim-
itives of the model. The grand matrix B contains at least one asset for each
subset M . As a result, any payoff x ∈ R|Ω| corresponds to a unique set of co-
ordinates which can be interpreted as portfolio weights on particular M -local
assets. Whenever an M -local asset gets assigned a non-zero weight, only an
individual who can trade M will be able to generate said payoff x. Conversely,
we can associate to each payoff space C the required groups M of risks in Q

that agents must have access to.10

By Lemma 4, BN is a basis for CN . Checking whether the economy is glob-
ally complete therefore amounts to finding necessary and sufficient conditions
on the measurability constraints {Mi}i∈N such that that BN coincides with
B. Following our discussion above, completeness requires that all possible
subsets of Q can be traded by at least one agent, hence the following result.

Proposition 1. The economy {Mi}i∈I cannot collectively insure against a
joint risk M ⊆ Q, unless there exists a member i ∈ N who can trade it
(M ⊆ Mi). Moreover, it is globally complete if and only if there exists at least
one agent who can trade all risks: CN = R|Ω| if and only if ∃i ∈ N such that
Mi = Q.

10Note that the standard basis for R|Ω| can also be interpreted as the collection of all
M -local assets, each of these assets corresponds to the same group M (i.e.,to the grand set
M = Q). In contrast to B, however, the standard coordinates of a payoff x do not reveal a
portfolio of necessary M -local assets.
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Proposition 1 provides a simple and intuitive condition that is both necessary
and sufficient for an economy to be complete. Sufficiency is immediate since
Mi = Q means that i alone has access to instruments that already span R|Ω|.
The more striking result, however, is necessity. No matter how many coarse
assets we combine – and regardless of how the sets Mi relate to each other
– these instruments will never be rich enough to insure against all possible
events unless there exists an agent who can trade all risks. In this respect, the
economy is only as resilient as its most sophisticated member.

If we did not impose structure on the individual partitions, a result like
Proposition 1 would not be available. In general, a set of individually coarse
partitions of Ω may complement each other such that combining the resulting
assets collectively completes the market. Instead, our partitions are coarsening
along a common principle: ignoring a subset of Q.

So far, we have considered economy-wide implications of differential access
to insurance. In the next section we consider how each individual can manage
her exposure to risk, taking into account that each of the remaining agents
may be constrained by a different set Mi. In particular, we study whether
others’ constraints spill over and limit an agent’s access to insurance beyond
the limits imposed by her own constraints.

3.4 Resilience and Spill Overs

In any feasible allocation, whenever i trades away from her initial endowment,
the remaining individuals must collectively take the opposite position in terms
of their net trades. As a result, a feasible net-trade for i not only requires
a suitable measurability constraint for herself, but also enough flexibility by
others.

More formally, the resource constraint implies that net-trades sum to 0.11

Any feasible allocation must therefore satisfy −xi =
∑

j ̸=i xj, where all indi-

11Recall that the previous section on the richness of the asset structure JN did not require
incorporating resource constraints.
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viduals involved must satisfy their measurability constraints.12 Therefore, in
order for a net trade xi ∈ span(AMi

) to be feasible requires that the remaining
agents can jointly meet these insurance demands such that xi ∈ span(JN\i),
where we used the fact that −x ∈ span(JN\i) ⇔ x ∈ span(JN\i).

Accordingly, we can define the measurable and feasible payoff profiles avail-
able to i as follows:

X∗
i = span(AMi

) ∩ span(JN\i). (13)

Formally, X∗
i ⊆ Xi forms another linear subspace of R|Ω|. Notice that X∗

i

allows i to trade a joint risk M if it contains the corresponding contingent
claim space span(AM) ⊆ X∗

i . In this case, we say that i is resilient against
said joint risk. In particular, if X∗

i = span(AMi
) = Xi, then the remaining

agents are flexible enough to match any insurance request that satisfies i’s
measurability constraints. In this case, we say that i enjoys local completeness.

Definition 2. Agent i is resilient against a joint risk M ⊆ Mi if the remaining
group N \ i can also trade M , i.e., span(AM) ⊆ X∗

i . If i is resilient against
Mi, we say that she enjoys local completeness.

So far, our assumption that yi satisfies i’s measurability constraint has
guaranteed that the space of net-trades coincides with the payoff space: i.e.,
Xi = Ci. However, this may no longer be satisfied in terms of the payoff pro-
files C∗

i that are jointly compatible with all measurability constraints. That
is, we may have X∗

i ̸= C∗
i . To see this note that our assumption does not

guarantee that yi belongs to X∗
i , since X∗

i is potentially restricted further by
others’ constraints: X∗

i ⊆ Xi.

In general, the set of i’s payoff profiles C∗
i that are jointly compatible with

12We assume that resource constraints hold with equality. Given the monotonicity of
preferences, this is without loss of generality in any competitive equilibrium, but also holds
in various other assignment mechanisms such as Nash bargaining.
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all measurability constraints satisfies

C∗
i = yi +X∗

i . (14)

We must therefore investigate whether i is exposed to uninsurable endowment
risk when others’ measurability constraints do not allow her to pass it on.13

Notice that for some economies, it is immediate whether i faces additional
restrictions beyond her own measurability constraints. For instance, if there
exists an individual j who can trade every risk that i can (i.e., Mi ⊆ Mj),
then all trades available to i must be available to j, such that span(AMi

) ⊆
span(AMj

) ⊆ span(JN\i).

In order to characterize X∗
i for any arbitrary set of constraints, we need to

proceed like in our characterization of Ci above in order to find a basis for
X∗

i . The subsequent analysis shows that we can (again) construct such a basis
from the columns of B in (22). To perform the correct selection of assets,
define by M∗

{i} the subsets M ⊆ Mi of risks that both i and the collective of
all remaining individuals can condition on:

M∗
{i} ≡ M{i} ∩MN\{i}. (15)

That is, for each M ∈ M∗
{i}, there must exist another individual j ̸= i who

can trade it, M ∈ M{j}. Based on M∗
{i}, we now propose a matrix B∗

{i} which
contains all those local assets in B{i} which also appear in the basis of B{j}

for at least one more individual j.

B∗
{i} =

[[
aLM (ω)

]
ω∈OM

]
M∈M∗

i

(16)

The following result shows that B∗
{i} defines a basis for the relevant subspace

of i’s net trades.

Lemma 5. The matrix B∗
{i} forms a basis for the payoff space X∗

i . That is

13Formally, if yi does not belong to X∗
i , then C∗

i becomes an affine space which shifts the
subspace X∗

i to pass through yi.
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span(B∗
{i}) = X∗

i .

Lemma 5 shows that the common structure relating individual constraints,
Mi, as different subsets of Q yields an intuitive characterization of spill overs.
In contrast to Xi, the set of feasible trades, X∗

i , can no longer be expressed
in terms of contingent claims on a single partition of Ω. Indeed, if two sets
M and M ′ belong to M∗

i the agent may be able to generate payoffs which are
not measurable with respect to either of the corresponding partitions. On the
other hand, and in contrast to the properties of Xi, she will typically be unable
to generate payoffs which condition on the joint realization of M ∪M ′. More
formally, this means that combining the M -local and M ′-local assets generates
a space which is greater than the union of the respective measurable trades
but smaller than conditioning on the coarsest common refinement, span(AM)∪
span(AM ′) ⊆ span([AM ,AM ′ ]) ⊆ span(AM∪M ′).

Proposition 2. Agent i is resilient against the joint risks M ⊆ Mi if and
only if there exist an agent j ̸= i who can also condition on M , such that
M ⊆ Mj. Moreover, agent i enjoys local completeness if and only if there
exists an individual j who can trade all joint risks that i can trade, such that
Mi ⊆ Mj.

Indeed, i can condition on an event which fixes the joint realization of the
variables in M if and only if there exists an agent j such that i and j have
M as a common set of traded variables M ⊆ Mi ∩ Mj. Again, the fact that
such an agent j is sufficient to condition on M is immediate. But our results
surprisingly show that this is also necessary. No matter how rich the possibil-
ities of the collective, their trading possibilities can never compensate for the
absence of an individual who can simultaneously trade all the desired risks.

Example. Consider again the simple example underlying the applications of
Section 2.2. Notice that, since agent 1 can trade all risks (i.e., M1 = {1, 2, 3}),
the non-exclusive subsets M∗

{1} simply correspond to those that are jointly trad-
able by the group of agents I = {2, 3}. As a result, the matrix B{2,3} from (23)
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in Appendix B.5 forms the basis of the feasible payoff space of agent 1 such
that X∗

1 = span(B∗
{1}) = span(B{2,3}). Intuitively, 1 can combine {1, 2}-local

trades with {1, 3}-local trades to generate payoffs which are not measurable
with respect to either. However, she cannot generate trades which target a
particular joint realization of {2, 3}, let alone of {1, 2, 3}, even though her own
measurability constraint allows for it.

Notice that our conditions for global and local completeness are similar.
The latter (in Proposition 2) is the local analogue of the condition for global
completeness (in Proposition 1). That is, rather than requiring one individual
j with Mj = Q, it requires an individual j with Mj ⊇ Mi. However, the
global and local conditions are logically distinct in the sense that one does not
imply the other. Indeed, an individual i who completes the market globally
always completes the market locally for any individual j ̸= i since Mj ⊆
Mi = Q. However, this individual i need not enjoy local completeness herself.
For instance, in the three-person example in Figure 1, the individual who
completes the market globally (individual 1) does not enjoy local completeness
herself, since the remaining agents cannot trade M = {1, 2, 3}. Conversely,
an economy in which every individual enjoys local completeness need not be
globally complete. Appendix B.7 provides a six-person example using the
network application of Section 4.

Proposition 2 confirms that individuals are typically exposed to uninsur-
able income risk, even though yi does not vary with variables outside of Mi.
By projecting yi onto X∗

i , we can use the orthogonal decomposition theorem
to uniquely decompose the income risk into its insurable component and an
uninsurable residual:

yi = y
∥
i + y⊥

i , (17)

where y
∥
i ∈ X∗

i can be traded but the component y⊥
i ⊥ x is orthogonal to all

feasible net-trades x ∈ X∗
i .

While this decomposition can be performed for any instance of our economies,
Appendix B.8 illustrates that y⊥

i can be obtained conveniently from an or-
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thogonal basis W of R|Ω| with properties similar to B. That is, W contains
a basis W ∗

i for each X∗
i and the columns of W which do not belong to W ∗

i

conveniently form a basis of the orthogonal complement (X∗
i )

⊥, which contains
y⊥
i . We can therefore appeal to our methodology of mapping constraint sets

{Mi}i∈N into a selection criterion for basis vectors. While we delegate further
discussion to the Appendix, our results can be illustrated in an example.

Example. In the example from Section 2.2 with binary risk, consider agent
1 with income y1. In this case, the orthogonal basis vectors pays 1 if there
is an even number of bad realizations in group M , and −1 otherwise. Using
the orthogonal decomposition theorem, any uninsurable component must be of
the form y⊥

1 = (α,−α,−α, α, β,−β,−β, β)T for α, β ∈ R, where α = 0 (resp.
β = 0) if, conditional on q1 = b (q1 = g), ∆2∆3y1(z1, z2, z3) = 0, where ∆q

takes the difference with respect to the high and low realizations of zq. That
is, agent 1’s uninsurable risk arises from her exposure to q2 depending on the
realization of q3.

3.5 Economic Implications

In contrast to the classical model, the possibilities of sharing risk in our setting
vary for each individual i ∈ N . However, our results show that those joint
risks which are not individually tradable by anyone (i.e., those outside of M∗)
cannot be protected against. In particular, no individual or collective can
shift resources from the remaining events to the one in which those risks take
a joint-worst realization. The economy is therefore vulnerable to events in
which negative shocks accumulate.

On an individual level, only appealing to feasibility, our model disciplines
the shape of every consumption function ci. It can be decomposed additively
into a set of component functions, each representing a set of variables M for
which there exists no other agent who can also trade them. Concretely, denote
by K∗

i the subset of i’s non-exclusive groups of risks M∗
i which are maximal in

terms of set inclusion, such that they are not strict subsets of another element
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in M∗
i . By our results, there exist |K∗

i | functions kM with M ∈ K∗
i which map

from the local states of set M to the real numbers, such that,

ci(z1, .., zQ) =
∑

M∈K∗
i

kM(zq:q∈M). (18)

In specific examples, like our network in Figure 1, this means c1(z1, z2, z3) =

k{1,2}(z1, z2) + k{1,3}(z1, z3) using the the maximal elements {1, 2} and {1, 3}
in the set M∗

1.

On an economy-wide level, this means that the numerous assets represented
by the columns JN can be reduced without loss of generality. Without the
need to restrict attention to specific classes of preferences, feasibility and mea-
surability alone allow for a k-fund separation property (Rubinstein, 1974),
where k corresponds to the number of local states in the maximal sets K ⊆ Q

observed by at least two individuals. That is, considering only the sets in
M ∈ {K∗

i }i∈N which are maximal by inclusion, it is without loss of generality
to assume that only those M -local assets can be traded. For instance, in the
networks application, if no two neighbors have another neighbor in common
(like in star or ring networks), it is without loss of generality to impose that
only assets which pay on the local states of connected pairs are traded.

We can distinguish two potential sources of social costs in this environment.
First, for each risk q, there is the direct friction coming from measurability
alone, if some members of society cannot trade them. Second, as seen in
(18) above, even if an individual is able to trade a set of risks q ∈ M , she is
typically constrained in how she can react to their joint realization. The latter
effect is relevant under expected utility, except for the special case of constant
absolute risk aversion (CARA), as shown in Appendix B.6. In a companion
paper (Gierlinger and Milán, 2021) we show that under CARA all risks are
optimally shared equally among the individuals who can trade them. In this
knife-edge case, equation (18) is not restrictive, and the social cost of local
incompleteness vanishes.14

14The optimal contracts presented in Ambrus et al. (2021) in an i.i.d. normal environment
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4 An Application to Risk-Sharing Networks

We now consider what our results imply in the context of Application 3 in
Section 2.2, where individual income risks are mutually shared among fixed
subsets of individuals. The distinguishing feature of this application is that the
sets of risks Q and the set of individuals N coincide. Agent i’s neighborhood
Ni ⊆ N describes the set of individual’s who are sufficiently close (in a sense
that is relevant for insurance) for her to condition on their income. Therefore,
we have N = Q and Mi = Ni ⊆ N . Taken together, these neighborhoods
generate a directed risk-sharing network : a link from i to j implies that i can
condition her payoffs to realized values of yj.15

Every such risk-sharing network can be described by a matrix G, where
Gij = 1 if i can condition on the income of j ̸= i. Following the convention,
we set Gii = 0. The neighborhood of i (including i) is defined by Ni =

{j ∈ N : Gij = 1} ∪ {i} and di := |Ni| is the degree of i (also including i). A
path of length ℓ between i and j is a sequence of terms Gi,k1Gk1,k2 ...Gkℓ−1,j = 1.
Without loss of generality we assume that every pair i and j are indirectly
connected through a path in G. In some circumstances, i is linked with j

if and only if j is linked with i. In these cases we say that the network is
undirected, and G is a symmetric matrix.16 Translating our earlier results to
this application, we obtain the following necessary and sufficient conditions on

are consistent with this result.
15Risk-sharing networks have been studied widely in numerous contexts, but particularly

in the field of economic development. Most existing theories analyze how enforcement is sus-
tained by collateralizing existing relationships (for instance Bramoullé and Kranton (2007);
Bloch et al. (2008); Ambrus et al. (2014); Ambrus and Elliott (2021)). These models typi-
cally assume that consumption allocations can respond to the economy’s full set of income
realizations. Instead, the network here summarizes the collection of individual trading re-
strictions. We do not take a stance on which friction may be keeping two households from
trading each other’s income risk. Instead, we describe how the resulting network structure
shapes the space of feasible payoffs.

16Notice that allocations would be further constrained if any bilateral transfer had to be
measurable with respect to the pair’s joint information partition, as in Ambrus et al. (2021).
Apart from tractability, assuming measurability of consumption accommodates centralized
institutions such as market exchanges. All our propositions could be suitably adapted under
measurability of transfers. The results coincide for square-free networks G.
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network structure that guarantee complete markets in this context,

Proposition 1’. A risk-sharing network G cannot collectively insure against
a joint risk of group M ⊆ N , unless there exists a member i ∈ N who is
connected to all of them (M ⊆ Ni). Moreover, the network is globally complete
if and only if there exists at least one agent who is connected to everyone:
CN = R|Ω| if and only if ∃i ∈ N such that Ni = N .

What characteristics of the risk-sharing network determine the set of joint
income shocks that households can trade against? Proposition 2 above can
now be reinterpreted as a statement on individuals’ resilience to local events.

Proposition 2’. In any feasible allocation, an agent’s consumption may only
respond to the joint incomes of those sets of her neighbors who have another
neighbor in common. Therefore, agent i enjoys local completeness if and only
if there exists another individual j who knows everyone that i knows: Nj ⊇ Ni.

An advantage of this approach is that we can now quantify the extent of
households’ resilience to joint income shocks directly from observed network
structures. In Appendix B.1, we develop a resilience measure ri(G) ∈ [0, 1]

that captures the share of neighbors’ joint shocks households i can insure
against.17 We describe properties of this measure in the context of well-studied
families of networks, and we compute ri(G) for each household in a risk-sharing
network in rural Malawi.

5 Conclusion

We studied the limits to insurance when some economic risks may only be
shared among a subset of the population. We showed that the economy’s abil-
ity to protect against joint worst scenarios is limited by the least constrained
individual. Similarly, due to spill overs effects, an individual income risk may

17This measure is reminiscent of the support measure in Jackson et al. (2012) with im-
portant differences that we detail in Section B.1
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remain uninsurable unless there exists a person who can trade every risk that
she can.

In a networks application, we showed that the collection of local instruments
(no matter how numerous) cannot replicate complete markets unless at least
one individual knows everyone else in the network. Using data from Malawi,
we find that individuals are rarely resilient against the joint income shocks of
their neighbors. The prevalence of exclusive neighbors suggests an environment
in which many risks have to be shared independently, as opposed to pooling
them for diversification purposes.

General patterns in constraints, in line with cited applications, translate
into specific cross-partial derivatives in consumption functions to zero. This
can be tested empirically by checking the co-movements of consumption with
the fundamentals of the economy. For instance, in the networks application,
given a rich enough panel of income and consumption observations and with a
reliable measurement of the underlying network structure, the model’s impli-
cations, as summarized in equation (18), can be tested directly by regressing
consumption on all income levels and their interactions, and checking the sta-
tistical significance of the interaction terms that according to the model should
be zero.18 We leave this exercise for future work.
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A Appendix - Proofs

Lemma 1. Given initial endowment yi, the vector ci satisfies i’s measurability
constraints (4) if and only if the net-trade xi = (ci − yi) lies in the column
span of AMi

, defined in (3).

Proof. By definition of AMi
, its column span consists of all points x ∈ R|Ω|

which can be expressed as a linear combination of i ’s local assets, defined
in (2). To show necessity, we need that any vector α ∈ R|LMi

|, results in a
consumption vector ci = yi+AMi

α that satisfies measurability (4). Fixing any
state ω, by definition of AMi

, we have ci(ω) = yi(ω)+αLMi
(ω), where αLMi

(ω) is
the coordinate assigned to asset aLMi

(ω). Moreover, for any other ω′ ∈ LMi
(ω)

(i.e. that assigns the same local state as ω), we have that both endowment
yi(ω

′) = yi(ω) and the payoff αLMi
(ω′) = αLMi

(ω) remain unchanged, proving
that ci = yi+AMi

α satisfies (4). Finally, to show sufficiency, we need to show
that, for any measurable ci, a portfolio vector α exists whose payoff replicates
the net-trade xi = (ci − yi) = AMi

α. Setting weight αLMi
(ω) = ci(ω)− yi(ω)

equal to the net-trade in local state LMi
(ω) completes the proof. ■

Lemma 2. The column vectors in B form a basis of R|Ω|.

Proof. Thanks to Lemma 6 in Appendix B.4, what remains to be shown is that
all |Ω| columns of B are linearly independent. That is, for any |Ω| × 1 vector
α, and for x = Bα, we have x = 0 ⇒ α = 0. Consider any arbitrary state ω

and the ω-th row of the basis B. By the second part of Lemma 6, ω belongs
to a unique set OM for M ⊆ Q. For convenience, from now on, we keep track
of the relevant set M by referring to our state by ωM . Since B consists of local
assets, for a column to pay in ωM , it must be a K-local assets aLK(ωM ) which
agrees with ωM for the coordinates in K. However, since ωM ∈ OM , it assigns
the worst realization for all Q \M coordinates. Hence, whenever K ⊈ M , the
candidate column aLK(ωM ) cannot belong to B because it assigns the worst
realization for all coordinates in K \ M . In contrast, for any remaining set
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K ⊆ M , the set OK contains a state ωK ∈ OK∩LK(ωM) which agrees with ωM

for all K (while all coordinates outside K take the worst value, by definition of
OK). Therefore, the ωM -th row of B has 0 in all columns except for assigning
a 1 to every K-local asset that agrees with ωM on K and where K must be
a weak subset of M . As a result, the ωM -th coordinate of the multiplication
x = Bα equals

xωM
= αLM (ωM ) +

∑
K⊂M

αLK(ωK)1ωK∈{LK(ωM )∩OK},

where αLM (ω) is the weight that α assigns to the column aLM (ω) in B. We
now show that x = 0 ⇒ α = 0 using the above definition and proceeding
by induction, starting from xω∅ – i.e., starting from the set M = ∅ with no
strict subset. In fact, given our definition for OM defined in (9), we have
that ω∅ = ω0 corresponds to the reference state. Notice that for all ωM ,
the reference state, ω0, satisfies {ω0} = L∅(ωM) ∩ O∅. Moreover, since only
the column aL∅(ω0) pays on the ω0-coordinate, we get xω0 = αL∅(ω0) = 0.
Similarly, for the next bigger subset K = {q}q∈M , only the column aL{q}(ω{q}

and aL∅(ω0) can pay in the state ω{q} ∈ O{q}. And since αL∅(ω0) = 0, it
follows that also αL{q}(ω{i} = 0. Finally, since M is the maximal element in
this partially ordered set of variables K ⊆ M , proceeding analogously yields
that xωM

= αLM (ωM ) +
∑

K⊂M

(
1{ωK∈{LK(ωM )∩OK}}

)
αLK(ωK) = αLM (ωM ) = 0,

where the second equality follows from successive application of the previous
argument which fixes the coefficients on the local assets for all mentioned
sets to 0. Therefore, for all local assets αLM (ωM ) in B, whenever x = 0, the
coefficient αLM (ωM ) must be 0. ■

Lemma 3. The local assets in B{i} form a basis of i’s payoff space, Ci =

span(AMi
) = span(B{i}).

Proof. We know that the columns of B, and therefore B{i}, are linearly inde-
pendent by Lemma 2. We now need to show that all local assets in AMi

can
be expressed as a linear combination of local assets in B{i} and vice versa. By
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definition of AMi
in (3), each column represents a unit claim conditional on a

joint realization of Mi. The following Lemma will be useful for the remainder
of the proof.

Lemma. For any M ⊆ Mi, an asset aLM (ω) belongs to B{i} if and only if
LM(ω) has a nonempty intersection with OM .

Proof. If LM(ω) ∩ OM ̸= ∅, by its definition, B{i} contains column aLM (ω)

whenever M ⊆ Mi. Conversely, if aLM (ω) belongs to B{i}, by definition, a
state ω̃ ∈ LM(ω) must exist such that zq(ω̃) ̸= zq(ω0) for all q ∈ M and
zk(ω̃) = zk(ω0) for all k ∈ Q \M . Therefore, ω̃ ∈ LM(ω) ∩OM ̸= ∅. ■

Fix an arbitrary state ω̃ ∈ Ω. We now show that the corresponding local
asset aLMi

(ω̃) in AMi
can be expressed as a linear combination of columns in

B{i}. Generically, ω̃ has k ≥ 0 risks in Mi which the worst outcome. Consider
first the case with k = 0 by taking a state ω̃0 that does not assign the worst
outcome to any of the risks in Mi. The corresponding local state LMi

(ω̃0) must
contain an element ω′ ∈ LMi

(ω̃0) which fixes the outcome of all risks outside
of Mi to their worst level: zr(ω̃) = zr(ω0) for all r /∈ Mi. By definition of OMi

in (9), ω̃ ∈ OMi
. Therefore, by Lemma 3, the local asset for LMi

(ω̃0) must be
represented as a column in both AMi

and B{i}.

Next, consider the case k = 1 where a state ω̃1 assigns the worst outcome
to exactly one risk r ∈ Mi. Since OMi

requires that no risk in Mi generate its
worst outcome, none of the states in LMi

(ω̃1) belongs to OMi
, so the column

aLMi
(ω̃1) does not appear directly in B{i}. Still, this column can be constructed

from a linear combination of columns of B{i}. To see this, note that the coarser
event LMi\{r}(ω̃

1) corresponds to the union of all LMi
(ω) across all ω that fix

the outcome of Mi \ {r} to agree with ω̃1. We now show that by subtracting
appropriate events LMi

(ω) from this coarser event we can construct LMi
(ω̃1),

and that all events used to construct LMi
(ω̃1) are represented in Bi. To

see this, consider any state that agrees with ω̃1 for Mi \ {r} while assigning
zr ̸= zr(ω0) to r. Since all outcomes in Mi are different from ω0 the set
OMi

must contain one such state. Therefore the states in OMi
∩ LMi\{j}(ω̃

1)
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select the appropriate LMi
(ω) used to construct LMi

(ω̃1) so that we obtain the
following expression:

LMi
(ω̃1) = LMi\{r}(ω̃

1) \ ∪ω∈OMi
∩LMi\{r}(ω̃

1)LMi
(ω). (19)

Finally, we show that the columns corresponding to the local states on the
right-hand side of the above equation must be represented in B{i}. First,
LMi\{r}(ω̃

1) has a nonempty intersection with OMi\{r} by definition of (9).
Moreover, the local states LMi

(ω) for ω ∈ OMi
∩ LMi\r(ω̃

1) have a nonempty
intersection with OMi

. Therefore, by the arguments proved in Lemma 3, each
of these local states must be represented in B{i}. Specifically, the column
aLMi

(ω̃1) of AMi
is a linear combination of columns in B{i} as follows:

aLMi
(ω̃1) = aLMi\r(ω̃)

−
∑

ω∈OMi
∩LMi\r(ω̃)

aLMi
(ω).

To show the result for any k ≥ 2, notice that any ω̃ ∈ Ω can be expressed as
an element of a sequence of states ω̃0, ω̃1, ω̃2, ..., ω̃|Mi|, indexed by the number
of risks in Mi which generate their worst outcome, where ω̃k+1 relates to its
predecessor ω̃k by one additional risk taking its worst outcome. We now pro-
ceed by induction on this sequence to show that the local asset for any element
must be a linear combination of columns in B{i}.

Let K ⊆ Mi be a set of k risks with worst outcomes. The appropriate
LMi

(ω) events to subtract from LMi\K(ω̃
k) now must not only account for

local states in which no risks in K assign the worst outcome, but also those
where only a strict subset M ⊂ K assign the worst outcome. Proceeding as
before for the case k = 1, we obtain the following generalization of (19):

LMi
(ω̃k) = LMi\K(ω̃

k) \ ∪M⊂K

(
∪ω∈OMi\M∩LMi\K(ω̃k)LMi

(ω)
)
.

The first term LMi\M has a nonempty intersection with OMi\M and therefore
corresponds to a local state with a column in B{i}. The remaining LMi

(ω)
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terms in the parentheses correspond to local states where M ⊂ K assign the
worst outcome. Assume by induction that, whenever M ⊂ K assign the worst
outcome, aLMi

(ω) can be expressed from columns in B{i}. Then, by the above
equation and the arguments proved in Lemma 3, LMi

(ω̃k) can also be expressed
from local states that have a corresponding column in B{i}. In other words, we
have shown that, provided that the result holds when any strict subset M of
risks in K assign the worst outcome, then the result must also hold whenever
all risks in K ⊂ Mi assign the worst outcome. This proves the inductive step,
and together with the result above for k = 0 and k = 1, we obtain the result for
any k ≥ 0. Converting the local states to their local assets, we can therefore
express aLMi

(ω) of AMi
as follows:

aLMi
(ω̃) = aLMi\K(ω̃) −

∑
M⊂K

 ∑
ω∈OMi\M∩LMi\K(ω̃)

aLMi
(ω)

 .

Applying our induction argument for local states analogously to the local assets
aLMi

(ω) for any ω ∈ OMi\M ∩LMi\K , proves that each of them must be a linear
combination of the columns in B{i} induced by local states Mi\P with P ⊂ M .

Finally, we need to show that each column of B{i} can be expressed as a
linear combination of the columns in AMi

. Notice that, by definition of M{i},
for each column aLM

(ω̃) in B{i}, since i can generate any arbitrary payoff as
long as it only conditions on the outcomes of risks in Mi, the column aLM

(ω̃)

must belong to span(AMi
). ■

Lemma 4. For any group I ⊆ N , the assets in BI form a basis of the payoff
space, span(J I).

Proof. The matrix BI contains every column of B{i} for any i ∈ M . Moreover,
each column in J I must belong to AMi

for some i ∈ I. By Lemma 3, each
column in any AMi

must belong to span(B{i}). Therefore, any column in J I

must belong to span(BI). Finally, each column in BI must belong to B{i}
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for some i ∈ I. Each column in B{i} must belong to span(AMi
) by Lemma 3.

Therefore, any column in B{i} must belong to span(J I). Consequently, every
column in BI must belong to span(J I). ■

Proposition 1. For each joint risk M ⊆ Q, unless there exists a member
i ∈ N who can trade it (M ⊆ Mi) the group N cannot trade it collectively
either. An economy is globally complete if and only if there exists at least one
agent who can trade all risks. In other words, CN = R|Ω| if and only if ∃i ∈ N

such that Mi = Q.

Proof. By Lemma 4, it suffices to show that span(BN) = span(B) = R|Ω|

if and only if there exists an i ∈ N such that Mi = Q. Recall that, by
the definitions of the bases, BN coincides with B if and only if the set MN

coincides with the power set 2Q. If there exists an i ∈ N such that Mi = Q,
then, Q ⊆ Mi, and MN = 2Q. Conversely, if MN ⊂ 2Q, then there must
exists a subset M ⊂ Q which is not contained in any Mi. This implies that
no i ∈ N can trade all members of M ⊂ Q. ■

Lemma 5. The matrix B∗
{i} forms a basis for the payoff space X∗

i . That is
span(B∗

{i}) = X∗
i .

Proof. We need to show that span(Ai)∩ span(JN\i) = span(B∗
{i}). The proof

of Lemma 4 shows span(BI) = span(J I) for any set of I ⊆ N . There-
fore, by setting I = {i}, we obtain span(B{i}) = span(AMi

) and setting
I = N \ {i}, we obtain span(BN\{i}) = span(JN\{i}). Therefore, we have
span(AMi

) ∩ span(JN\{i}) = span(B{i}) ∩ span(BN\{i}). Since M∗
i = M{i} ∩

MN\{i}, the matrix B∗
{i} contains exactly those columns which simultane-

ously belong to BN\{i} and B{i}. This implies span(B∗
{i}) ⊆ span(B{i}) ∩

span(BN\{i}). What remains to be shown is that any x ∈ span(B{i}) ∩
span(BN\{i}) must also belong to span(B∗

{i}). Since B is a basis of R|Ω|
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and x ∈
(
span(B{i}) ∩ span(BN\{i})

)
⊆ R|Ω|, there is a unique linear com-

bination of B’s columns that generate x. Moreover, since x ∈ span(BN\{i}),
this linear combination can only put positive weight on columns in BN\{i}.
Similarly, since x ∈ span(B{i}), the linear combination can only put posi-
tive weight on columns in B{i}. Since BN\{i} and B{i} only contain columns
from B, the unique linear combination of columns in B that generate x ∈
span(B{i}) ∩ span(BN\{i}) can only put positive weight on columns in B∗

{i}

such that x ∈ span(B∗
{i}). ■

Proposition 2. Agent i is resilient against the joint risks M ⊆ Mi if and
only if there exist an agent j ̸= i who can also condition on M , such that
M ⊆ Mj. In particular, she enjoys local completeness if and only if there
exists an individual j who can trade all joint risks that i can trade, such that
Mi ⊆ Mj.

Proof. We need to show X∗
i = span(B∗

{i}) ⊇ span(A{M}) if and only if there
exists a j with M ⊆ Mi ∩ Mj. To show necessity, note that the presence
of j with Mi ∩ Mj ⊇ M implies that the set M belongs to M∗

i , since M ⊆
M{i}∩M{j} ⊆ M∗

i , where the last inclusion uses the definition (15). Moreover,
Lemma 4 showed that span(A{M}) = span(B{k} for an agent k with Mk = M .
By definition of B∗

{i}, all columns of the matrix B{k} belong to B∗
{i}. Therefore,

X∗
i = span(B∗

{i}) ⊇ span(B{k}) = span(A{M}). To show necessity, note that
for M ∈ M∗

{i}, there must exist a j ∈ N such that M ∈ M{j}, which completes
the proof. ■
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B Supplementary Appendix

For Online Publication Only

B.1 A Network Measure of Resilience

For each network G, we can measure how resilient each individual i is to the
joint shocks of her neighbors. Note that her set of non-exclusive groups of
neighbors M∗

i lies in the interval [2di, 2di ], where the lower bound is obtained
when no two neighbors of i have another neighbor in common, and where the
upper bound corresponds to local completeness. If di ≤ 2, then i’s interval
shrinks to a point and her local completeness is trivially guaranteed.

Accounting for these bounds, we propose a normalized measure of i’s net-
work centrality which we call her measure of resilience,

ri(G) =

(|M∗
i | − 2di)/(2

di − 2di) if di > 2

1 otherwise.
(20)

This measure takes values between 0 and 1 and it represents the fraction of
non-exclusive subsets of neighbors out of the theoretically possible range.19

An economy with universal local completeness satisfies r(i) = 1 for all i.

This measure is related to notion of “supported links" in Jackson et al.
(2012) with two important differences. First, rather than checking at the
level of a link if both members share a neighbor, we consider neighborhood
subsets of all sizes (whose members need not be connected) and check if all
of them have another neighbor in common. Second, this additional common
neighbor need not belong to the group. Finally, our measure assigns to an
individual a centrality based on the proportion of neighborhood subsets that
are "supported".

To fix ideas, consider what we know about the support centrality of individ-
19Notice that r(i) does not discriminate on the size of subsets.
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A
r1 = 0

r2 = 1 r3 = 1

B
r1 = 0.5

r2 = 0.5 r3 = 0.5

r4 = 0.5

C
r1 = 1

r2 = 1 r3 = 1

r4 = 1

Figure 2: The Support Centrality Measure ri for Three Simple Networks. Red
nodes represent locally complete individuals (i.e., with ri = 1) and blue nodes
are not locally complete (i.e. ri < 1).

uals for some simple networks. Figure 2 provides the centrality measure for
each individual in three different networks. Notice that agent 1 gets closer to
completeness – as captured by her support centrality measure – as we move
from network A to network B. This happens because an additional subset of
1’s neighborhood is observed by another agent (agent 4). Agent 1 achieves
local completeness only in network C (i.e., r(1) = 1).

Moreover, beyond particular examples, some well-known classes of networks
have a link structure which is sufficiently regular to determine the distribution
of ri, independent of their size. For instance, consider the set of core-periphery
networks.20 The star network in Figure 2 (Panel A) is a special case of such
a structure in which the core contains a single node. Notice that a periphery
member’s neighborhood is always nested by the neighborhood of some core
member. Therefore, all periphery members have an r(i) equal to 1 (they enjoy
local completeness). Conversely, as soon as n > 2, all core members have an
r(j) < 1. The precise value in the core depends on its size and the number
of peripheral nodes attached to each j. For |g2| = 1 we already know that
r(j) = 0: no two neighbors of j have a neighbor in common. More generally,
we provide the following observation.

20A core-periphery network partitions the population N into two groups g1 and g2, with
n > |g2| and g1 ∪ g2 = N . Individuals in g1 constitute the periphery of the network. They
each have a single link with one node in g2. Individuals in the set g2 constitute the core of
the network. They are fully linked with each other and with a subset of nodes in g1.
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Figure 3: Resilience Centrality and Local Completeness on the Malawi Village
Network

Observation 1. For any network G with a core-periphery structure defined
by groups g1 (the periphery) and g2 (the core), r(i) = 1 for all i ∈ g1, and for
any j ∈ g2 with degree dj we have r(j) = (2|g2| − 2|g2|)/(2dj − 2dj).21

In core-periphery networks with a relatively large periphery, the majority of
the population can be locally complete. At the other extreme, some network
structures have r(i) = 0 for all individuals. This is the case for ring networks of
5 or more members.22 In such cases, an individual’s neighbors cannot possibly
share a connection. This leads to the following observation.

Observation 2. For n > 4, any network G with a ring structure has r(i) = 0

for all i ∈ N .

21This follows from the observation that for any j in the core with degree dj , M∗
j =

2|g2| + 2(dj − |g2|)
22In contrast, the 4-ring network in Panel B of Figure 2, the maximum distance between

any two nodes is 2, so all pairs have friends in common.
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For arbitrary network structures, general results on the distribution of r(i)
are difficult to obtain. To answer this question, we develop a fast algorithm
which computes, for any network, all bilateral neighborhood intersections and
tallies all unique subsets of those intersections for every household i. We can
assign an r(i) measure to each household: the results are visualized on the
graph in Figure 3. We find that 15 out of the 270 households that make up
this village (i.e. 5.5%) are locally complete. This is a striking finding: it
suggests that local insurance restrictions spill over considerably in real world
networks, such that the vast majority of households are affected indirectly
by the insurance restrictions of their neighbors. Moreover, our r(i) measure
allows us to determine the extent of these spill-over effects.

While those households with largest degree are never locally complete, the
relationship between degree and our support measure r(i) is not strong, with
a correlation of only −0.6. Figure 5 presents several scatterplots that relate
r(i) to well-known centrality measures in the literature. For both the be-
tweenness and eigenvector centrality, the correlation is also negative, but even
weaker than for degree (of about −0.45 for both measures).23 As expected,
our support centrality r(i) correlates positively with the clustering centrality
(correlation coefficient of about 0.75). Clustering computes, for each i, the pro-
portion of pairs of neighbors that are jointly connected. All else equal, a larger
clustering coefficient therefore implies that more subsets (pairs at least) of Ni

are jointly observed, thereby increasing r(i). However, r(i) can still be large for
households with low clustering. For instance, notice that r(1) increases from
network A to network B in Figure 2, while 1’s clustering coefficient remains
constant and equal to 0.24

The distribution and density function of r(i) are plotted in Figure 4. The
mean support in the village is r̄ = 0.192 and the median is r50 = 0.089. The
distribution is bimodal and skewed to the left, with most of its mass centered
at an r(i) of about 0.1. Around 90% of the population lack the necessary

23For more details on what each of these centralities captures see Jackson (2010).
24Similar examples can be found which do not require the presence of individuals outside

of N1.
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Figure 4: Estimated Density and Empricial CDF of rG(i) in Malawi

network support to condition on even half of the joint shocks arising in their
own neighborhoods, i.e., r(i) ≤ 0.5.25 The distribution of r(i) in the Malawi
network therefore suggests that the local constraints identified in this paper
may be pervasive and severe for the majority of households.

Our results suggest that, all else equal, more connections between individuals
translate to a richer payoff space. However, the number of links is not a
sufficient statistic to rank alternative networks. In order to rank payoff spaces,
we could say that an alternative network G′ dominates G if, for any i, the
new payoff space C∗′

i in G′ contains the payoff space C∗
i ⊆ C∗′

i in G. By
our results, this criterion is equivalent to the condition that all non-exclusive
groups of neighbors M∗

i available in G are maintained in G′. Thus, for G′ to
dominate, N ′

i ⊇ Ni, must hold for all i, and if subgroup M ⊆ Ni is known by
at least two agents in G, the same must hold in G′. Therefore if G′ is obtained
from G by adding links, the consumption possibilities expand strictly for any
individual i who enjoys a new connection. Conversely, if any link {i, j} in G is
missing in G′, this cannot be compensated by any additional links in G′, since

25More than 60% of households cannot condition on 20% of joint shocks they are subject
to.

45



0.00

0.25

0.50

0.75

1.00

0 10 20 30
degree

S
up

po
rt

 In
de

x

A

0.00

0.25

0.50

0.75

1.00

0 1000 2000 3000
betweenness centrality

S
up

po
rt

 In
de

x

B

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
eigenvector centrality

S
up

po
rt

 In
de

x

C

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
Clustering centrality

S
up

po
rt

 In
de

x

D

Figure 5: Resilience Measure rG(i) against several Network Centralities. The
red curve represents a LOESS fit to the data.

i can no longer condition on j’s income. As a result the criterion of expanding
payoff spaces is characterized by the condition that G′ is obtained from G

through the addition of links.

B.2 Generalized State Space

. We will say that two states are indistinguishable according to an attribute
q ∈ Q if they belong to the same cell in L{q}. Such an attribute could be
observable, like a realized weather event or news about an economic sector.
Or it could be abstract, where distinguishing two states may simply require
information, expertise, skills, or the legal means to trade across them, which
may not be available to all agents.

Our assumption of a rich state space Ω = Z1 × · · ·Zq amounts to the joint
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assumption of two properties. The first requires the set of payoff-relevant
variables to be exhaustive, so that the finest partition LQ is the trivial partition
with singleton cells. In other words, observing the joint realizations of the risks
in Q is sufficient to identify the true state. The second property requires that
all joint realizations occur with positive probability. This implies that any
refinement must be strict, with M ⊃ M ′ ⇒ LM < LM ′ . In other words,
observing the joint realizations of the risks in Q is necessary to identify the
true state.

While the first condition merely requires an accurate specification of Q and
Ω, the second is indeed restrictive. Without it, even observing a strict subset of
variables M ⊂ Q could reveal some states of the world. Such a situation arises
when there is a perfect conditional correlation between some of the variables
in Q.

However, our qualitative results on (local) completeness continue to hold if
this revelation only occurs for some local states. Specifically, assume alterna-
tively that the state space corresponds to a subset of the Cartesian product
Ω ⊂ Z1 × · · ·Zq. As long as there exist two realizations Ẑq = zq, zq for each
variable q ∈ Q such that all joint realizations occur with positive probability,
Ω ⊇ Ẑ1 × · · ·Ẑq, our results on completeness follow.

Proposition 3. If there exist two realizations Ẑq = zq, zq for each q ∈ Q such
that Ω ⊇ Ẑ1 × · · ·Ẑq, then:

1. The economy is globally complete if and only if there exists an agent who
can trade all risks, such that Mi = Q.

2. Agent i enjoys local completeness if and only if there exists an agent j ̸= i

who can trade all risks that she can, Mj ⊆ Mi.

Proof. Consider a subset Ω̂ ⊆ Ω with Ω̂ = Ẑ1 × · · · Ẑq̄. Applying Proposition
1 to Ω̂ says that there exists an instrument which separates ω ∈ Ω̂ from a
distinct ω′ ∈ Ω̂ if and only if there exists an i with Qi = Q. Expanding the
state space to Ω would expand the number of columns in Ai for each i, but
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any new columns would assign 0 to the states in Ω̂. As a result, any two
states ω ∈ Ω̂ ⊆ Ω and ω′ ∈ Ω̂ ⊆ Ω can still only be separated if and only if
there exists an i with Qi = Q, which proves the first statement. Proceeding
analogously for isolating a local state LQi

(ω) with ω ∈ Ω̂ proves the second
statement. ■

B.3 Generalized Submarkets

We presented our main results in terms of direct constraints on the payoff
space rather than on the set of traded instruments. That is, we assumed that
the individual constraints map directly into a set of risks which can be traded
without frictions Mi ⊆ Q and a remaining set of risks which cannot be traded.
Guerdjikova and Quiggin (2019) provide sufficient conditions on the richness
of assets with arbitrary payoffs to generate a contingent claims space on the
elements of partitions.

However, models of heterogeneous access to submarkets, such as the seminal
paper by Merton (1987) or the current literature on decentralization (Malamud
and Rostek, 2017), model constraints in terms of access to arbitrary assets.
In this case, depending on the kinds of assets traded in her submarkets, an
agent’s may condition on a different set of risks for each asset she has access
to.

To see how our setup can be adapted to capture similar constraints, consider
a model where K is a set of asset classes. Let the payoffs of asset class k ∈
K condition on a set Qk ⊆ Q of risks. Again, since we are not concerned
with markets missing by assumption, let the assets in each class k ∈ K be
rich enough to generate any payoff that is measurable with respect to the
resulting partition LQk

. Each asset class k therefore generates a contingent
claims space span(AQk

), where AQk
is the Qk-local asset matrix from (3). Not

every individual may be able to trade each asset class. For every i, we denote
by Ki ⊆ K the asset classes that she has access to. Notice that this agent’s
constraints no longer need to induce a partition of the state space. Moreover,
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note that for the purpose of determining feasible payoffs, the composition of
the submarkets is not crucial, as it matters whether – not where – specific
assets can be traded.

To illustrate, consider Application 2. An asset class k = 2 may pay on the
joint risks of commodities and the broad market Q2 = {1, 2}. Another asset
class k = 3 may pay on the joint risks of commodities and the exchange rate,
Q3 = {1, 3}. If agent 1 has access to asset classes K1 = {2, 3}, then her payoffs
are no longer measurable with respect to any partition. Her simultaneous
access to classes 2 and 3 means that she can generate payoffs which differ
across all 8 states of Ω.26 Instead, the linear dependence among the assets she
has access to results in a subspace which corresponds to the span of the payoff
matrix JK1 which collects all columns that belongs to AQ1 or AQ2 , included
repetitions. The matrix JK1 corresponds to the matrix (23) in Appendix B.5.

More generally, define by JKi
the asset matrix for individual i,

JKi
= [AQk

]k∈Ki
. (21)

The specification of the main section can be nested by letting Ki = {ki} be
singleton sets with Qki = Mi, so that JKi

= AMi
.

Proceeding analogously to section 3, the global payoff space of a (potentially
counterfactual) agent with access to all assets would be JK and the economy
satisfies global completeness if and only if the grand payoff space span(JK)

coincides with R|Ω|. Any individual i enjoys local completeness if and only
if her payoff space span(JKi

) is a subset of the collective payoff space from
combining the assets available to the remaining agents span([JKi

]j∈N\{i}).

Once we adapt the set MI = {M ⊆ Qk : k ∈ Ki, i ∈ I}, we obtain the usual
objects BN as the basis of the joint payoff space in terms of M -local assets,
where M ⊆ MN . Similarly, we obtain B∗

i as the subset of i’s payoff space for
26Using asset class 2, she can buy a portfolio which pays a different quantity for all joint

realizations of commodities and the broad market index. Using asset class 3 she can add
another portfolio which whenever the exchange rate is high, pays a sufficiently large amount
to generate a different payoff in all states.
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which there exists a counterparty.

Proposition 4. Consider an economy in which each agent has access to a
subset Ki of asset classes K.

1. The economy satisfies global completeness if and only if there exists an
asset class k ∈ K which conditions on all joint risks Qk = Q.

2. Individual i enjoys local completeness if and only if, for each asset ki ∈
Ki that she can trade, there exists an agent j who can trade a finer asset
kj ∈ Kj with Qki ⊆ Qkj .

3. The payoff space C∗
i for any individual i is characterized by the basis

B∗
{i} from (16) when M∗

i is suitably adapted.

Proof. Given that the payoff space for each individual i is spanned by JKi
=

[ AQk
]k∈Ki

, Lemma 4 implies that the individual and global bases from the
main section can be derived by redefining MI = {M ⊆ Qk : k ∈ Ki, i ∈ I} for
each i. Proceeding analogously to proving the main propositions, proves the
result. ■

Notice that if each submarket is attended by two or more agents, local
completeness holds for every agent, since all relevant asset classes can be traded
by at least one more agent. Moreover, and in contrast to Section 3, each i’s
local completeness can be granted collectively by a group of agents: a different
one for each submarket.

B.4 Representation of States in Terms of Their Local

Effects

We now show that for every group M , the number of M -local states, |LM | –
each of which defines a particular realization of risks in group M – corresponds
to the number of elements in the sets OK (as defined in (9)) across all groups

50



K that belong to group M . In particular, since any state ω satisfies the in- and
outgroup conditions for at most one set OK , the collection ∪K⊆MOK consists
of disjoint sets. Hence the following result.

Lemma 6. For any set of risks M ⊆ Q, the number of M-local states satisfies
|LM | =

∑
K⊆M |OK |. In particular, each state ω ∈ Ω belongs to OM for exactly

one set M ⊆ Q, such that |Ω| =
∑

M⊆N |OM |.

Proof. Consider a set of risks M ⊆ Q. We need to show that every state in
∪K⊆MOK belongs to exactly one cell LM ∈ LM , and that each cell LM ∈ LM

contains exactly one element of ∪K⊆MOK . The former is immediate since
LM is a partition of the state space Ω ⊇ ∪K⊆MOK . To show the latter,
notice that every cell LM ∈ LM contains any state which assign the LM -
characteristic outcome for all q ∈ M . Among them, there exists exactly one
state ω ∈ LM which assigns the worst outcome to the members of the out-
group, zr(ω) = zr(ω0) for all r ∈ Q \M . This state ω must belong to exactly
one set OK with K ⊆ M , where K is the subset of risks in M whose outcome
is different from the worst state. And, by definition of (9), all other element
of LM can only belong to OK if K ̸⊆ M . ■

B.5 An Explicit Basis Representation for the Three-Agent

Example of Section 2.2

We provide an explicit representation of B, as described in Section 3.2. With-
out loss of generality, order the 8 states as follows: (b, b, b), (b, b, g), (b, g, b),
(b, g, g), (g, b, b), (g, b, g), (g, g, b), and (g, g, g). That is, the vector (0, 0, 0, 0, 0, 0, 0, 1)T

corresponds to a unit claim on the state in which all three risks generate g.
Following the definition in equation (10) the matrix B corresponds to:
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B =





1

1

1

1

1

1

1

1


M=∅

,



0

0

0

0

1

1

1

1


M={1}

,



0

0

1

1

0

0

1

1


M={2}

,



0

1

0

1

0

1

0

1


M={3}

,



0

0

0

0

0

0

1

1


M={1,2}

,



0

0

0

0

0

1

0

1


M={1,3}

,



0

0

0

1

0

0

0

1


M={2,3}

,



0

0

0

0

0

0

0

1


M={1,2,3}



. (22)

When interpreted as assets, the first column represent a bond (with constant
payoff), the second to fourth columns each represents a contingent claim on
the event that q = 1, 2, 3 have realization g, respectively. The fourth to sixth
columns each represents a contingent claim on the events where both q and
q′ ̸= q simultaneously generate g, for q, q′ ∈ 1, 2, 3. Finally, the last column
corresponds to the Arrow security that pays in the unique state, ω, where all
three variables generate g. The group M defining the local asset is labelled at
the bottom of each vector for clarity.

As we argue in Section 3.3, the space of feasible payoffs obtained from the
trades available to agents 2 and 3 are described by a basis that takes the
columns of B corresponding to the groups M that are in M2 or M3. In the
current example, the joint insurance possibilities of agents 2 and 3 correspond
to the following 6 sets M = {∅, {1}, {2}, {3}, {1, 2}, {1, 3}}. Therefore, the
matrix B{2,3} generates the same basis vectors as B, but without the last two
columns:
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B{2,3} =





1

1

1

1

1

1

1

1


M=∅

,



0

0

0

0

1

1

1

1


M={1}

,



0

0

1

1

0

0

1

1


M={2}

,



0

1

0

1

0

1

0

1


M={3}

,



0

0

0

0

0

0

1

1


M={1,2}

,



0

0

0

0

0

1

0

1


M={1,3}



(23)

Finally, as we show in section 3.4, an agent’s resilience to joint shocks de-
pends on the constraints of others. In the context of the simple three-agent
example, we show that agent 1’s feasible payoff space is restricted, despite her
access to the full set of Arrow securities. This is because agents 2 and 3 cannot
jointly satisfy every trade available to agent 1. It turns out that 1’s feasible
payoff space is therefore reduced from R8 to a 6-dimensional subspace, given
by B{2,3}. Formally, we have as a specific instance of Proposition 2 that

B∗
{1} = B{2,3}

B.6 Welfare in the Three-Agent Example of Section 2.2

Denote by ∆3 agent 1’s consumption response to a positive shock in z3, con-
ditional on z1 = z2 = g,

∆3 = c1(g, g, g)− c1(g, g, b).

In any allocation which respects the measurability constraint of 2 and 3, c1
must respond to z3 without conditioning on z2, such that ∆3 = c1(g, b, g) −
c1(g, b, b) = c1(g, g, g) − c1(g, g, b). Similarly, since 2 cannot condition on z3,
this means c2(g, g, g) = c2(g, g, b) and c2(g, b, g) = c2(g, b, b).
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In order to show that conditioning on the joint realization of q = 2 and q = 3

would improve welfare, it suffices to show that marginal rates of substitution
across agents 1 and 2 cannot be simultaneously equated across the four states
mentioned above. Note that by definition of ∆3, marginal rates of substitution
for agent 1 satisfy

u′(c1(g, g, b))

u′(c1(g, b, b))
=

u′(c1(g, g, g)−∆3)

u′(c1(g, b, g)−∆3)
.

At the same time, by measurability of c2, we have

u′(c2(g, g, g))

u′(c2(g, b, g))
=

u′(c2(g, g, b))

u′(c2(g, b, b))
.

We can now determine whether, at such an allocation, they could gain from
sharing 2’s risk differently across levels of z3. Consider any interior point, and
pairs of states which differ by z2 alone. No mutual improvements exist if the
ratios of marginal utility across them are equalized. Combining the above,
this would, however, require

u′(c1(g, g, g))

u′(c1(g, b, g))
=

u′(c2(g, g, g))

u′(c2(g, b, g))
=

u′(c2(g, g, b))

u′(c2(g, b, b))
=

u′(c1(g, g, g)−∆3)

u′(c1(g, b, g)−∆3)
.

The first ratio of marginal utilities represents the same change in 1’s con-
sumption as the fourth ratio of marginal utilities, except at a different level
of consumption since ∆3 > 0 whenever 1 provides (partial) insurance to 3.27

As a result, unless u exhibits constant absolute risk aversion (where ∆3 has
no effect on ratios of marginal utility) welfare always decreases if c1 cannot
condition on the joint risks between q = 2 and q = 3.28

27By strict concavity of u, it is easy to show ∆3 > 0.
28It is easy to show that marginal utility ratios are only invariant to wealth changes if

u is exponential: see also Pratt (2000). Note that Ambrus et al. (2021) find that optimal
consumption must be a weighted sum of neighbor’s i.i.d shocks. Our result shows that this
feature relies on CARA preferences.
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B.7 Universal Local Completeness and Global Complete-

ness

Using the network application from Section 4, consider the following example
with six individuals. Note that each i is connected to another agent j such
that Nj ⊆ Ni. As a result, each i enjoys local completeness. In particular,
N1 ⊂ N2, N2 = N3, N4 = N5, and N6 ⊂ M4. Yet, the economy is not globally
complete, since no Ni contains the group {1, 6}.

1

2

3

4

5

6

B.8 Orthogonal Decomposition

Consider the binary case, where each q takes a value in {b, g}. Define for each
q ∈ Q and every ω ∈ Ω, the following function:

hω
q (ω

′) =

−1 if zq(ω′) = zq

+1 otherwise,

where we write zq(ω) for the realization of variable q in state ω.

Given hω
q (ω

′), we can now construct an asset

aoLM (ω)(ω
′) =


∏

q∈M hω
q (ω

′) if M ̸= ∅

1 if M = ∅.

which assigns to every state ω′, the product of the hω
q (ω

′) values across the
risks q ∈ M . If M = ∅, the asset aoLM (ω) corresponds to the bond which pays 1
in every state. Otherwise, the asset simply pays −1 in states where the number
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of variables q ∈ M generating value b is odd, and 1 if it is even. Just like the
contingent claims which form our local assets aLM (ω), these assets ao

LM (ω) are
measurable with respect to LM .

We can now proceed to construct an orthogonal basis which, like B, consist
of the bond and an M -measurable asset for every possible M -local state in
which none of the variables q ∈ M agree with ω0,

W =
[[
ao
LM (ω)

]
ω∈OM

]
M⊆Q

. (24)

In the case of the three agents examples from Section 2.2, the orthogonal
matrix is as follows:

W =



1

1

1

1

1

1

1

1

−1

−1

−1

−1

1

1

1

1

−1

−1

1

1

−1

−1

1

1

−1

1

−1

1

−1

1

−1

1

1

1

−1

−1

−1

−1

1

1

1

−1

1

−1

−1

1

−1

1

1

−1

−1

1

1

−1

−1

1

−1

1

1

−1

1

−1

−1

1


.

It can easily be checked that the columns are orthogonal. For each M ̸= ∅,
the column assigns to half of its M -local states −1, and +1 otherwise, which
makes their payoff orthogonal to the bond. Similarly, for any two distinct sets,
without loss of generality, refer by M ′ to a set which is not contained by the
other, M ⊉ M ′. Conditional on any M−local state, where the first asset pays
a constant, the exclusive variables q ∈ M ′ \ M generate an equal number of
entries with −1 and 1 in the second asset. As a result, ao

LM
and ao

L′
M

also have
a zero inner product.

In the general setting when each q takes an arbitrary number of realizations
|Zq|, an orthogonal basis can be constructed on the same principles. Adapt
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for each q ∈ Q and every ω ∈ Ω, the function:

hω
q (ω

′) =


1− |Zq| if zq(ω′) = zq

1 +
√

|Zq|(|Zq| − 2) if zq(ω′) = zq(ω)

1−
√

|Zq| otherwise.

If |Zq| > 2, the function hω
q takes three values: a positive value for states where

q assigns the same realization as in ω, a negative value for states in which q

agrees with ω0, and a less negative value for all other states. In the binary
case, the function simplifies to what we had above. The entries are chosen
such that they sum to 0 when weighted by the cardinality of the respective
event. The orthogonal matrix W can then be obtained from (24).
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