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Abstract

A unified theory of estimation and inference is developed for an autoregressive process
with root in (—1, 00) that includes the stable, unstable, explosive and all intermediate regions.
The discontinuity of the limit distribution of the t-statistic along autoregressive regions and
its dependence on the distribution of the innovations in the explosive region (1, 00) are ad-
dressed simultaneously. A novel estimation procedure, based on a data-driven combination
of a near-stationary and a mildly explosive endogenously constructed instrument, delivers an
asymptotic mixed-Gaussian theory of estimation and gives rise to an asymptotically standard
normal t-statistic across all autoregressive regions independently of the distribution of the
innovations. The resulting hypothesis tests and confidence intervals are shown to have correct
asymptotic size (uniformly over the parameter space) both in autoregressive and in predictive
regression models, thereby establishing a general and unified framework for inference with
autoregressive processes. Extensive Monte Carlo experimentation shows that the proposed
methodology exhibits very good finite sample properties over the entire autoregressive para-
meter space (—1,00) and compares favourably to existing methods within their parametric
(—1, 1] validity range. We demonstrate that a first-order difference equation for the number of
infections with an explosive/stable root results naturally after linearisation of an SIR model
at the outbreak and apply our procedure to Covid-19 infections to construct confidence inter-
vals on the model’s parameters, including the epidemic’s basic reproduction number, across a
panel of countries without a priori knowledge of the model’s stability /explosivity properties.
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1 Introduction

Inference in the first-order autoregressive process, arguably the prototypical time series model,
has a long history dating back to at least Mann and Wald (1943) for stationary autoregression,
White (1958) for explosive autoregression and Phillips (1987a) for unit-root autoregression. The
variety of stochastic behaviour arising from different autoregressive regimes has resulted in a
number of important applications in macroeconomics and finance: nonstationary autoregressive
processes played a fundamental role in the development of the theory of cointegration and causal
inference in systems of macroeconomic and financial variables. Autoregressive processes with
coefficients in the explosive region (1,00) have been employed for the modelling of phenomena
whose temporal evolution exhibits stochastic exponential growth, from the rate of infection in
early stages of epidemics to the formation of financial and commodity bubbles during periods of
market exuberance.

While convenient from a modelling point of view, the different stochastic properties arising
from different regions of the autoregressive parameter space present a major challenge for in-
ference, with standard econometric methodology (such as least squares or maximum likelihood)
applying only under a priori knowledge of the parameter region, with misspecification resulting
to asymptotically invalid confidence intervals and hypothesis tests. Early work on obtaining con-
fidence intervals for an autoregressive coefficient in (—1, 1], thereby accommodating stationary
autoregressions and unit root processes, includes Stock (1991), Andrews (1993), Hansen (1999)
and Romano and Wolf (2001). Mikusheva (2007) develops the first general methodology for estab-
lishing uniform properties of confidence intervals in autoregressive processes with root in (—1,1]
and proposes a correction of Stock (1991)’s method that achieves uniform asymptotic validity.
Subsequent work by Andrews and Guggenberger (2009, 2014) establishes methodology for confi-
dence interval construction with correct asymptotic size uniformly over the above region under
the potential presence of conditional heteroskedasticity of unknown form. Uncertainty over the
persistence degree of a stochastic regressor poses similar difficulties for hypothesis testing in a
regression model and a literature on inference in a predictive regression with a near-nonstationary
regressor was developed in parallel with the aforementioned advances in autoregressive inference.
Notable contributions include Campbell and Yogo (1996), Jansson and Moreira (2006) as well as
bootstrap methods based on the theoretical results of Cavaliere and Georgiev (2020). Hypothesis
testing procedures that achieve robust inference with time series regressors with persistence rang-
ing from stationarity to (near) unit root nonstationarity are those of Elliott, Miiller and Watson
(2015) and Kostakis, Magdalinos and Stamatogiannis (2015). The latter paper builds on the IVX
procedure of Phillips and Magdalinos (2009), which has been extended in a number of directions
by Breitung and Demeterscu (2015), Yang, Long, Peng and Cai (2020), Magdalinos and Phillips
(2020), Demeterscu, Georgiev, Rodrigues and Taylor (2022).

Both strands of the literature on inference in autoregressions and predictive regressions dis-
cussed above restrict the autoregressive parameter space to (—1, 1]; the aim of this paper is to
develop hypothesis tests and confidence intervals with uniform asymptotic validity over the en-
tire autoregressive parameter space (—1,00) and over the space of a wide class of innovation
distribution functions. We propose a novel data-generated instrumental variable (IV) procedure
that tackles two important inference problems in autoregressions and predictive regressions si-
multaneously: firstly, it delivers a unified asymptotic theory of inference and confidence interval
construction that covers the entire autoregressive spectrum of stationary, nonstationary, explo-
sive processes and all intermediate regions; secondly, it provides a solution to the long-standing



problem of distribution-free asymptotic inference in explosive autoregressions'.

The key idea of our approach is to filter the regressor’s autoregressive data generating process
(DGP) through a time series that acts as an endogenously generated instrument constructed to
behave asymptotically as: (i) a near-stationary process®> when the DGP lies close to the stationary
region; (ii) a mildly explosive process when the DGP lies close to the explosive region; (iii) a ran-
dom linear combination of (i) and (ii) when the DGP is in the near-nonstationary region defined by
at most local departures from unity. The resulting IV estimator inherits the desirable asymptotic
properties of near-stationary and mildly explosive processes and is asymptotically mixed-Gaussian
along the entire autoregressive parameter space (—1,c0) independently of the distribution of the
innovations of the autoregressive process. The asymptotic mixed-Gaussianity property implies
that, upon self-normalisation, the IV-based t-statistic is asymptotically standard normal and can
be employed for confidence intervals construction based on standard normal quantiles. Moreover,
we show that the proposed confidence intervals have uniformly correct asymptotic coverage. To
our knowledge, our procedure provides the first unified, distribution-free treatment of first-order
autoregression exhibiting arbitrary stochastic characteristics ranging from stationarity to explo-
sivity.

Extensive Monte Carlo experimentation reveals good finite sample properties for the proposed
IV-based hypothesis tests and confidence intervals that compare favourably to the leading proce-
dures for inference in autoregression (Andrews and Guggenberger (2014)) and predictive regression
(Elliott et al. (2015)) in their parametric validity range (—1, 1] while providing correct inference
on the right side of unity (1,00), where no existing alternative approach has general asymptotic
validity.

Autoregressive processes with roots potentially exceeding unity for a non-trivial fraction of the
sample are popular for modelling and date stamping of financial and commodity price bubbles
(Phillips and Yu (2011), Phillips, Wu and Yu (2011) among others). Further empirically relevant
applications include series that exhibit stochastic exponential growth, for example, epidemiological
models of disease transmission. In this paper, we consider a susceptible-infected-removed (SIR)
model of temporal evolution of disease transmission and show that, upon linearisation around
the disease-free equilibrium, the model-implied number of active infections evolves as a first order
autoregressive process with an explosive (stable) root whenever the basic reproduction number
is above (below) unity. In Section 6, we employ our procedure to model the early dynamics of
the Covid-19 epidemic across a panel of countries and construct confidence intervals for rq and
the other epidemiological parameters of the model without a priori knowledge of whether the
epidemic is in a controllable or uncontrollable stage, i.e. without restricting the parameter space.

The paper is organised as follows: Section 2 presents a general modelling framework for autore-
gression (Section 2.1), predictive regression (Section 2.2) and sets out the dynamic behaviour of a
basic SIR epidemiological model (Section 2.3). Section 3.1 introduces our novel IV procedure of
combined near-stationary/mildly explosive instrumentation. Section 3.2 presents the main theoret-
ical results on uniform asymptotic inference in autoregression and predictive regression (Theorems
1 and 2) and applies them to the SIR model of Section 2.3 (Corollary 1). Section 3.3 establishes

! Anderson (1959) shows that, in the explosive case, the limit distributions of the OLS estimator and the
associated t-statistic are not invariant to deviations from the assumptions of i.i.d. Gaussian errors and zero initial
condition and that, in general, the limit theory of least squares estimation and inference is driven by the distribution
of the innovations in the autoregression.

?Near-stationary and mildly explosive processes, introduced by Phillips and Magdalinos (2007), are AR(1)
processes with sample-size dependent root 6,, satisfying 6,, — 1 and: n (6,, — 1) — —oo in the near-stationary case
or n (0, — 1) — oo in the mildly explosive case.



the asymptotic mixed-Gaussianity property of the IV estimators that drives the asymptotic re-
sults of Section 3.2. Section 4 discusses implementation of the procedure and conducts Monte
Carlo experiments to assess the finite sample properties of our confidence intervals and hypothesis
tests in comparison to the leading existing inference procedures in autoregression and predictive
regression. Section 5 applies the confidence intervals of Corollary 1 to Covid-19 infections across
a panel of countries and Section 6 concludes. All mathematical proofs are collected in Appendix
A. Some auxiliary mathematical results, the proof of Corollary 1 and additional simulation results
can be found in the supplementary online Appendix B.

2 A model of general autoregressive dependence

2.1 Probabilistic framework for autoregression
We consider a first order autoregressive process with an intercept
r=p+Xy Xo=p, X1 +u, te{l .., n} (1)
with (possibly sample-size-dependent) autoregressive root p,,, with an innovation sequence (u),y
and an initialisation Xy. It is easy to see that (1) yields an autoregressive process
ze = p(l=p,)+ putia + (2)
= p+ (Xo(n) = p) pr + wos, Tor = D25y Py U (3)
where xo; denotes the autoregression (1) when . = 0 and X, = 0. This autoregressive specification,
designed to introduce an intercept while maintaining the stochastic structure of a nonstationary
autoregression® by reducing the contribution of the intercept as the autoregressive parameter
approaches unity, is standard in the literature: see Andrews (1993), Mikusheva (2007), Andrews
and Guggenberger (2009, 2014).
Assumptions maintained on p,,, (u:),.y and X, are presented in Assumptions 1, 2 and 3 below.

Assumption 1a (AR parameter space). The parameter space of the autoregressive parameter
in (1) has the following form: (p,),cy s @ sequence of real numbers satisfying p,, — p € (—1,00).

In order to establish an asymptotic theory of estimation (Theorem 3 below), it is convenient
to strengthen Assumption la in a way that categorises autoregressive processes according to their
stochastic properties.

Assumption 1b (AR categories). In addition to (p,),cy satisfying Assumption la, the limit
¢ :=lim, o n(p, — 1) exists in R U {—o0, co}.
Under Assumption 1b, the process z; in (1) belongs to one of the following classes:

C(i) near-stationary processes if (p,,), oy in (1) satisfies Assumption 1b with ¢ = —o0

C(ii) near-nonstationary processes if (p,), oy in (1) satisfies Assumption 1b with ¢ € R

C(iii) near-explosive processes if (p, ),y in (1) satisfies Assumption 1b with ¢ = oo.
Stationary autoregressions with fixed root in (—1, 1) as well as near-stationary autoregressions are
included in class C(i), pure unit root processes with ¢ = 0 as well as local departures from unity
are included in C(ii) and explosive (fixed root in (1, 00)) and mildly explosive autoregressions are
included in class C(iii). We further denote the subclass of C(i) consisting of purely stationary
processes and the subclass of C(iii) consisting of purely explosive processes by:

Co(i) (pn),en in (1) satisfies p, — p € (—1,1)

Co(iii) (p,,),ey in (1) satisfies p,, — p > 1.

31t is wel-known that a process of the form x; = u+ pzs_1 + u; behaves asymptotically as a linear deterministic
trend when p = 1. Our procedure for conficence interval construction can accommodate such degeneracies of
autoregressive stochastic behaviour (in the sense that Theorem 1 continues to hold) but we omit the details as such
deterministic trends have limited relevance for economic modelling.



When p = 1 in Assumption la, Assumption 1b is more restrictive than Assumption la*: for
example, the oscillating sequence

(Pr)pen =1+ (=1)" /kn ki — 00 (4)
satisfies Assumption la but not Assumption 1b. However, sequences of autoregressive parameters
satisfying Assumption la satisfy Assumption 1b subsequentially, in the following sense.

Lemma 1. Let (p,),y satisfy Assumption 1a. For any subsequence (pmn)neN of (Pp)nen there
exists a further subsequence (psn)nEN of (pmn)neN such that (psn)neN satisfies Assumption 10.
We will see in Sections 3.2 and 3.3 below that, while Assumption 1b is needed to establish
the asymptotic mixed-normality of the proposed IV estimator of Theorem 3, studentisation and
Lemma 1 may be employed to weaken the requirement on (p,),.y to Assumption la for the
(uniform) asymptotic validity of the test statistics and confidence intervals of Theorems 1 and 2.

Assumption 2 (innovation sequence). Given a filtration (F;),.,, the innovation sequence u,
in (1) is an Fi-martingale difference sequence such that B, | (u?) = o2 for all but finitely many t
a.s. and (u}),., is a uniformly integrable sequence. In the explosive case Cy(iii) we assume in
addition that

1it12(i)£1fE;t_1 lug] >0 a.s.. (5)

Assumption 3 (initial condition). The initial condition Xo (n) of the stochastic difference
equation (1) is a Fo-measurable random process Xy (n) satisfying

Xo (n) = max {0, (1), 0, (/{}/2)} . where Ky, :=|p, — 1| An. (6)
Under Cy(iii) assume that X, (n) —, Xo where X, is a Fo-measurable random variable.

We provide a brief discussion of the model in (1) and Assumptions 1-3. The process generated
by (1) consists of all types of first-order autoregressive processes employed in statistics and econo-
metrics. The parametrisation of Assumption 1b follows Andrews and Guggenberger (2012) as it is
of sufficient generality to give rise to uniform asymptotic size for hypothesis tests and confidence
intervals over the parameter space defined by Assumptions la, 2 and 3. For each n € N, letting
A, = {(Fo, Xo (n)) : {u1,....,un} have c.d.f. F,, F, and Xy (n) satisfy Assumptions 2 and 3} we
define the following parameter space for the problem of conducting inference in (1):

©={(p,F,Xo):pe[-140,M](V6,M >0) and (F,X,) € A} (7)
where A := liminf, ., A, = U,>1 N>, A;. The inference procedure developed in the paper
gives rise to confidence intervals for the autoregressive parameter in (1) with correct asymptotic
coverage probability uniformly over the parameter space © in (7).

The class C(i) of near-stationary processes consists of the subclass of autoregressions in (1)
that behave asymptotically as ergodic processes, in the sense that n=! (1 —p,) > | 27 satisfies
a law of large numbers and n~/2 (1 — pn)l/ 2 > i m—quy satisfies a central limit theorem. It was
introduced by Phillips and Magdalinos (2007) and the autoregressive parametrisation was gen-
eralised by Giraitis and Phillips (2006) and Andrews and Guggenberger (2012). Limit theory of
non-linear functionals of near-stationary processes has been derived by Duffy and Kasparis (2021).
For the class C(ii) of near-nonstationary processes, introduced by Phillips (1987b) and Chan and
Wei (1987), the above ergodicity property is lost and limit theory of estimation and inference
is non-Gaussian. The class C(iii) constitutes the class of first-order autoregressive processes ex-
hibiting stochastic exponential growth: Phillips and Magdalinos (2007) show that processes in
C(iii) satisty z,, < (p,, — 1)_1/ 2 pr when p, — 1, the same rate that applies under the prototypical
explosive autoregression Cy(iii) of White (1958) and Anderson (1959). The validity of confidence

*When p # 1, Assumptions la and 1b are equivalent.



interval methods for an autoregressive parameter in (—1, 1] (covering the autoregressive regions
C(i) and the part of C(ii) to the left of unity) has been established by Mikusheva (2007) and by
Andrews and Guggenberger (2014) for the case of conditionally homoskedastic and conditionally
heteroskedastic innovations wu; respectively. The current paper proposes a confidence interval for
the autoregressive parameter with uniform coverage probability over the entire autoregressive pa-
rameter space (—1,00). Extensions of the procedure of the paper are possible over the parameter
space (—oo,00); we abstract from considering the region (—oo, —1] for brevity, since it requires a
more involved construction of the instrument and several additional cases to be added in Assump-
tion 1b and Theorem 3. Moreover, nonstationary and explosive oscillations with autoregressive
roots in (—oo, —1] seem to be of limited empirical relevance in economics.

Assumption 2 requires u; to be a conditionally homoskedastic® martingale difference sequence
that satisfies a uniform integrability assumption for (u?). The above conditions guarantee the
validity of: a law of large numbers n=' Y"1, u? —;, o? and a functional central limit theorem
2y, — B(r) on D[0,1] where B(r) is a Brownian motion with variance o®. The
additional condition of Assumption 2 in the explosive case Cy(iii) ensures that the random variable

Xoo = (o2 =1)" (Z;'il plu;+ Xo — M) (8)
is non-zero a.s.: condition (5) and Ey,_, (u?) = o2 imply the local Marcinkiewicz-Zygmund con-
dition, see equation (1.1) of Lai and Wei (1983). Corollary 2 of Lai and Wei (1983) shows that
the random variable in (8) satisfies X, # 0 a.s. when (u;, F;) is a martingale difference sequence.

An additional complication to the different rates of convergence and limit distributions among
the autoregressive classes C(i)-C(iii) arises from the fact that, within class C(iii), the subclass
Co(iii) of purely explosive processes exhibits different asymptotic behaviour than mildly explosive
processes (processes in C(iii) satisfying p,, — 1). The asymptotic distribution of the OLS estimator
in the explosive case, when it exists, is entirely driven by the distribution of the innovation process
(u¢): no central limit theory applies and sample moments converge as Ly-bounded martingales to
random variables such as X, in (8) whose distribution changes with the distribution of (u;). As
Anderson (1959) shows, the well known Cauchy limit distribution for the normalised and centred
OLS estimator and the corresponding standard normal limit distribution for the t-statistic only
apply when the innovation process u; in (1) is i.i.d. Gaussian and the explosive time series is
initialised at Xy = 0. For a non-identically distributed sequence of innovations, the distributional
limit of the t-statistic based on the OLS may not even exist. On the other hand, the class of mildly
explosive autoregressions behaves more regularly, with sample moments converging in distribution
via a martingale central limit theorem established by Phillips and Magdalinos (2007) and extended
in various directions by Aue and Horvath (2007), Magdalinos (2012) and Arvanitis and Magdalinos
(2019). The subsequent Cauchy and standard normal limit distributions for the OLS estimator and
the t-statistic respectively are invariant to the distribution of the innovations u;, the (stationary)
dependence structure of u; and the initialisation X,. These desirable properties of mildly explosive
autoregressions are employed by our instrument in the estimation procedure of Section 3 below to
“regularise” the asymptotic behaviour of sample moments generated by explosive time series into
a distribution-free asymptotic mixed-Gaussian framework.

Assumption 3 on the initial condition Xy of (1) is standard for processes in C(i) and C(ii) and
in the mildly explosive case but significantly generalises the Xy, = 0 condition employed in the
explosive case Cy(iii): see Wang and Yu (2015) for the effect of X, in the limit distributions of

>The main results of the paper continue to hold under stationary conditional heteroskedasticity, e.g. when w; is
a stationary GARCH process, at the cost of higher moment assumptions: see Andrews and Guggenberger (2012),
Magdalinos (2020) and Hu, Kasparis and Wang (2021).



OLS estimators and test statistics in the explosive case.

2.2 Predictive regression framework
In many economic and financial applications, the econometric model takes the form of a pre-
dictive regression

Yy =7+ Bri1 e (9)

driven by an autoregressive process x; in (1). While the parameter of interest in such models is /3
and the autoregressive root of (1) is a nuisance parameter, it is well-documented that the validity
of inference procedures on (3 is subject to a degree of knowledge of the stochastic properties of
xy; see e.g. Campbell and Yogo (1996). Recent inference procedures that provide valid inference
on [ when the autoregressive process x; lies in the regions C(i) and C(ii) include: Jansson and
Moreira (2006), Phillips and Magdalinos (2009), Elliott et al. (2015), Magdalinos and Phillips
(2020) and Hu, Kasparis and Wang (2021). The near-explosive region C(iii) is not considered by
the above papers and OLS-based inference on 3 in the purely explosive region Cy(iii) suffers from
the same problem as OLS-based inference on p,,, with standard inference applying only under i.i.d.
Gaussian innovations ;. The inference procedure on /3 in the predictive regression model (1) and
(9) proposed in this paper can accommodate regressors along the entire spectrum of autoregressive
processes, as defined by Assumption la, and we establish its asymptotic validity uniformly over
the autoregressive regime and the distribution of the innovations ¢; and ;.

Conducting inference on 3 instead of the autoregressive parameter is possible under a more
general assumption on the autoregressive innovations u; than Assumption 2 above.

Assumption 4. The innovation sequence (u;),.y i (1) is a stationary linear process of the form
u = Y7 gcierj, where (¢;);5q is a sequence of constants satisfying 377 |e;| < 0o, 37 jc} <
00, cg =1 and C' (1) := 372 ¢; # 0. Given a filtration (F;),c;, the sequence v := (g4, e:) is an
Fi-martingale difference sequence such that Ex, | (vv)) = £, > 0 a.s. for all t and (||vt||2)tGZ is

a uniformly integrable sequence. When p, — p > 1 under Cy(iii), we assume in addition that (5)
holds with u; replaced by e; and that C, (1) := > p~7¢c; # 0.

2.3 An epidemiological model of infection growth

Variants of the susceptible-infected-removed (SIR) model, originally introduced by Kermack
and McKendrick (1927), constitute the main paradigm for modelling the evolution of epidemics.
In this section, we consider a standard discrete-time SIR model and demonstrate that upon lin-
earisation around the disease-free equilibrium (DFE), whenever the model’s basic reproduction
number is above unity, the model-implied dynamics for the number of infected will necessarily dis-
play a first-order difference equation with an explosive root, implying an exponential growth for
infections at the outbreak of the epidemic. Moreover, we show that at the DFE, the dynamics of
the first differences of the number of recovered and deceased are both characterised by a predictive
regression with the lag of the (potentially explosive) process of infections as regressor.

We briefly describe the model below. The number of infected, susceptible, recovered and de-
ceased individuals at time ¢, denoted by I;, S;, R; and D, respectively, evolves according to the
following non-linear system of difference equations:

Iiyn = L;(140S/N—~—9) (10)
Siv1 = St (1—=00/N), Riy1 = Ry +vI, Dy = Dy + 614
with non-negative initial conditions Sy, Iy, Ro, Dy satisfying S; + I; + R; + D; = N for all ¢, where
N denotes the constant population size (births or deaths by other causes are ruled out or cancel
perfectly in each period). Since at each ¢, S; is a linear combination of the remaining states
S; = N — I, — Ry — D;, we substitute this identity in the equation for I;,; and work with the

7



reduced system of [;, R; and D,. The choice for removing S; facilitates estimation since data on
susceptibles are unavailable.

The model’s dynamics is governed by the parameters 6,~,6 € (0,1]% 6 is the contact rate,
i.e. the average number of individuals an infected person passes the infection in a period; v is the
recovery rate and 0 is the death rate. There is no heterogeneity, each individual is equally likely
to contract the disease and there is no possibility of re-infection. The model’s dynamics is driven
by the basic reproduction number which in the model (10) is given by

ro=0/(y+9), (11)
measuring the number of infections per infected individual. When 7y > 1 the underlying disease
will escalate into an epidemic and will continue to spread and when ry < 1 the growth of infections
can be contained. Epidemiologists consider ry the key parameter for determining whether an
epidemic is controllable and for understanding its transmission mechanism.

In order to study the dynamics implied by this basic dynamic nonlinear model and to conduct
statistical inference on the model’s parameters, we use next generation matrix (NGM) approach
and linearise the system in (10) around the DFE (I = R =D = 0,5 = N)". Such an approxima-
tion is accurate at early stages of an epidemic outbreak, when the number of susceptibles is large
relatively to the total number of infected, recovered and deceased. The resulting linear system
takes a triangular form Y; = JY; 1, with Y; = [I;, R;, D;]’ and J the Jacobian matrix evaluated at
the DFE:

140—-~v—-9 0 0

J = ¥ 10|,
o 01
where the equation for I; is a first-order difference equation with root p = 1+ 6 — v — 4, which
(in view of (11)) satisfies the following: p > 1 whenever ro > 1, p = 1 whenever 7y = 1, and p < 1
whenever ry < 1. In other words, at an outbreak of an epidemic, the number of infections will
always display exponential growth®.

The standard way to add a stochastic component to the model is by adding zero-mean mea-
surement error to the system, which corresponds to assuming that the linearised model holds on
average. The resulting stochastic system that we take to the data is

It 1+6—’Y—5 0 0 It,1 U1t
AR, | = y 00 Ry | + | uy |, (12)
AD; d 00 Dy 4 Usy

with stochastic dynamic behaviour, formalised by the following assumption, which combines As-
sumptions 1 and 3 for the autoregressive process I; and a vector-valued version of Assumption 2
for the innovation sequence in (12).

Assumption 5. The autoregressive parameter p, := 1+0—~—0 of I; in (12) satisfies Assump-
tion 1a; Iy satisfies Assumption 3. The innovation sequence u;, = [uyy, ugr, usy] in (12) satisfies:
(ut, Ft)en @8 @ martingale difference sequence such that Bz, | (uwuy) = 3 > 0 for all t a.s. and

6The requirements that 0, ~,5 < 1 imposes that the discrete period At is less than: (i) the average time required
for a successful contact, (ii) less than the average infection period, and (iii) less than the average period the disease
results into death; this requirement guarantees that the discretised SIR model approximates well the underlying
continuous-time system.

"The model can be linearised at any other point (I =iN, R =rN,D = dN,S = (1 —i —r — d)N) for fractions
i, r and d of the population N of I}, R; and D; respectively, but the DFE is usually the chosen for early analysis.

8This result is not specific to our choice of SIR model and holds for more elaborate models; in larger systems it
can be shown that the spectral radius of the resulting autoregressive parameter matrix for the vector of I; exceeds
1 whenever r > 1; see, for example, Theorem 2.1 from Allen and Van den Driessche (2008).



(HUtHQ)th is a uniformly integrable sequence. In addition, under Cy(iii), (5) is satisfied with |u|
replaced by |uy|.

The advantage of the inference procedure developed by this paper over existing procedures is
that it is valid for any p,, — p € (0,00), which includes all three parameter regions of empirical
interest and relevance during the Covid-19 epidemic outbreak. While this is a simple stylised
model, it serves as a demonstration of the scope of the inference procedure of this paper and the
advantages that its robustness and distribution-free properties provide. We are not aware of any
alternative statistical procedure which can achieve this throughout the range p € (0, 00) without
restricting attention to a particular region of the parameter space through, for example, pre-testing
and without imposing parametric assumptions on the distribution of w; in the explosive region
(1,00).

3 General asymptotic inference with autoregressions

3.1 Combined near-stationary/explosive instrumentation

This section introduces new estimators of the autoregressive root p,, of (1) and the slope para-
meter (3 in (9) that deliver a unified asymptotic theory of hypothesis testing and confidence interval
construction for p, and 3 over the entire parameter space defined in Assumption la. The idea
behind the estimation procedure is to filter the autoregression x; in (1) through a time series that
acts as an instrument and is constructed to behave asymptotically as: a near-stationary process
when z; belongs to the near-stationary class C(i); a mildly explosive process when z; belongs to
the near-explosive class C(iii); a (random) linear combination of the above when z; belongs to
the near-nonstationary class C(ii). The resulting instrumental variable estimator inherits the de-
sirable asymptotic properties of near-stationary/mildly-explosive processes and is asymptotically
mixed-Gaussian along all autoregressive classes C(i)-C(iii), independently of the distribution of
the innovations u; in (1). Large sample distributional invariance is crucial for the purely explo-
sive region Cy(iii), where least squares asymptotic inference is valid only under i.i.d. Gaussian
innovations.

Successful instrumentation based on a combined near-stationary/near-explosive process re-
quires statistical information separating the near-stationary autoregressive class C(i) from the
near-explosive class C(iii) in large samples. Such information is available in the least squares
estimator for p: for each n € N, define the event

Fy = {n(p, —1) <0} (13)
where p,, is the OLS estimator and let F}, denote the complement of F},. Asymptotic separation of
the C(i) and C(iii) autoregressive classes can be achieved by employing the information contained
in (13): under C(i) n(p,, — 1) —, —oo which implies that 1z = 0 for all but finitely many n with
probability tending to 1, whereas under C(iii) n(p, — 1) —, oo which implies that 15, = 0 for
all but finitely many n with probability tending to 1. This insight is formalised by the following
result, the proof of which can be found in the Appendix.

Lemma 2. Let (my,), oy be an arbitrary sequence of positive numbers such that m,, — oo. Under
Assumption 4: (i) if (p,)nen belongs to C(i) then m,1p, —, 0 (ii) if (p,) belongs to C(iii)
then my1lp, —, 0.

With the desired asymptotic separation guaranteed at an arbitrary rate by Lemma 2, we
proceed to describing our instrumentation procedure. Given a sequence (v;), we denote v,_; :=
n~' Y vy and v, ; i= v_j — U, for each j € {0,...,t — 1}. In this notation, subtracting z,
from (2) yields

neN

Ty = Ppy_q + Uy (14)



the OLS estimator and residuals from (1)-(2) are given by

~ n —1 n ~ ~
Pn = (Zt:l l?—1) Do Ly y and Ay =z — Pz . (15)
Recalling the definition of the event in (13), we define
Uy = Axtan + at]‘Fn and Pz = Splann + @inF_'n (16)

where (01,,),en and (©g,),,cn are chosen sequences in C(i) and C(iii) respectively: ¢;, — 1 with
n(¢y, — 1) = —oo and ¢,, — 1 with n (p,, — 1) — co. We construct an instrument process by
accumulating the stochastic sequence 4, in (16) according to a first order autoregressive process
Z = pnzét—l +u = Z;’:l piL_Z]a] (17)
with chosen root p,,. in (16), initialised at Zy = 0. It is easy to see that the instrument process in
(17) admits the orthogonal decomposition
Zr = Zulp, + Zalp, (18)
where Z;; employs a root ¢;, chosen in the near-stationary region C(i) and Zy; employs a root s,
chosen in the near-explosive region C(iii):
élt = Qplnglt—l + Al‘t and 22,5 = (702n22t—1 + ﬂt. (19)
The proposed estimator for p, after instrumenting z; by z; takes the form of a standard instru-
mental variable (IV) estimator:

. Dt TiFi . s
Pn=<n .= = LmPin T 15, Pon (20)
. . . N thl Ly—1%t-1 . ~ . ~
where py, = > ZZu—1/ 3 LB and Py, = 30 321/ Y &y Zu—1 employ the

near-stationary and near-explosive instruments in (19) and (19) respectively. Filtering in (17) and
(20) is similar in spirit to the IVX procedure of Phillips and Magdalinos (2009) and the instrument
process Zy; in (18) is precisely the IVX instrument on the aforementioned paper. However, the IVX
instrument Zy, is designed to achieve robust inference in the C(i)-C(ii) classes of near-stationary and
near-nonstationary processes. The new instrument process Z; in (18) is designed for conducting
inference in the near-explosive class C(iii) and local-to-unity class C(ii) and differs from the IVX
estimator based on Z;; in two important ways: firstly, the instrument construction is based on
the OLS residuals @; which (unlike Az;) approximate well the true innovation process u; in (1)
in explosive autoregression; secondly, a mildly explosive (instead of a near-stationary) root is
employed in the instrument generation.

The main contribution of the current approach, is to combine the novel near-explosive instru-
ment Zy for regions C(ii) and C(iii) with the near-stationary instrument Zy; in a data-driven way
to provide inference for autoregressive roots in (—1, 00). Combining Z;; with Zy; to unify inference
on both sides of unity is intuitively appealing but the asymptotic validity of such an approach
is not obvious: the asymptotic mixed-Gaussianity (AMG) property of the estimator in (20) is
established in Section 3.3. However, an essential step in the right direction is provided by the
asymptotic separation property established by Lemma 2: since the sequence (m,,),, oy is allowed to
diverge to oo arbitrarily fast, Lemma 2 implies that the asymptotic behaviour of p,, in (20) will be
driven exclusively by the component p,, involving the near-stationary instrument Zz;; when x; is
in C(i) and exclusively by the component p,,, involving the mildly explosive instrument Zy; when
xy is in C(iii). The fact that the contribution of both components in the near-nonstationary case
C(ii) preserves the AMG property of the IV estimator in (20), as intended, is a central result of
Section 3.3.

For the predictive regression model in (1) and (9), the same instrument (17) is employed, giving
rise to the estimator "

Zt:l gté t—1

0= ST A =15, b1, + 15,5, (21)
t=1 <t—1~t—

b
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where 3, = Y0 4,501/ Sy 2o Fuea and By, = D0y, B/ Yy &1 Fa1 employ the
near-stationary and near-explosive instruments in (19) and (18) respectively.
3.2 Asymptotic inference for autoregression and predictive regression

Estimation of the autoregressive root in (1) by the IV estimator in (20) has the advantage
that the limit distribution of the normalised and centred estimator p, belongs to the mixed-
Gaussian family of distributions in all C(i)-C(iii) cases, independently of the distribution of the
innovations wu; in (1). This is in contrast to the OLS estimator which does not have a mixed-
Gaussian limit distribution in the near-nonstationary case C(ii) and whose asymptotic behaviour
is entirely driven by the distribution of the innovations (u;) in the explosive case Cy(iii). We
defer the technical exposition of the AMG property of the IV estimator p,, to Section 3.3. In this
section, we focus on the implication of the above mixed-Gaussian property to inference, namely
that self-normalised statistics based on p, in (20) have a standard normal limit distribution along
the entire autoregressive parameter space of Assumption la, independently of the distribution of
the innovations in (1) or the initial condition.

Denoting the lagged data vectors X = (Xo,@1,....%n_1), Z = (0,%1,...,3,_1) and X =
(Xo — Tty .oy Tn_1 — Tn_1) , we define a t-statistic based on p,, as follows:

1o v\ 1/2
T, () = S, (22)

On
~ /~ -\l .
where P; = 7 (Z’ Z) 7" and 42 is the OLS estimator of the variance of u, in (1). The t-statistic

in (22) can be used to test hypotheses or to construct a (1 — ) % confidence interval for the
autoregressive root p,,,
~ ~ ~ ( — 2)
Ly (P, @) = [Py, — n (@), P+ Cu ()], () (X P, X)l (23)
where ® denotes the A (0, 1) distribution function. As a consequence of the AMG property of p,,,
established by Theorem 3 in Section 3.3., the t-statistic in (22) and the confidence interval in (23)
enjoy asymptotic properties that are very convenient for inference, presented in Theorem 1 below.

Theorem 1. Consider the process (1) satisfying Assumptions 1a, 2 and 3, the process Z, defined
in (16)-(17) and the IV estimator p,, in (20). The t-statistic in (22) satisfies T,, (p,,) —a N (0,1)
as n — oo and the confidence interval in (23) satisfies lim,,_o infoce P[p € I, (p,, )] = 1 — «,
where © denotes the parameter space in (7).

Remarks.

1. Theorem 1 shows that the methodology of the paper delivers distribution-free inference
for autoregressions satisfying Assumption la. To our knowledge, this is the first procedure that
provides a unified framework of inference and confidence interval construction when data originate
from autoregressive time series encompassing the stationary, nonstationary, explosive and all in-
termediate regions described in C(i)-C(iii), without a priori knowledge or the need for pre-testing
on the type of autoregressive process that generates the data. The generality of our methodology
makes it suitable for empirical application such as the stochastic evolution of Covid-19 infections,
where the basic reproduction number ry of infections has widely been reported in the explosive
region in highly infectious periods and in the stationary region in periods of remission, see Section
5 for details.

2. In view of the general validity of the standard normal limit distribution for the t-statistic in
(22), inference for the autoregressive parameter based on the confidence interval (23) has uniform
asymptotic validity over the parameter space © in (7): in the terminology of Andrews, Cheng and
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Guggenberger (2020), the CI in (23) has correct asymptotic size and is uniformly asymptotically
similar.

3. The unified asymptotic inference framework provided by Theorem 1 is achieved due to
the crucial AMG property of the IV estimator p,, in (20), established by Theorem 3 below. The
instrumentation of the autoregressive process by a combination of a near-stationary and mildly
explosive process in (17) serves this purpose by design: it employs information from a non-AMG
procedure (the OLS estimator is not AMG in regions C(ii) and Cy(iii) of the parameter space) to
construct the estimator (20) that enjoys the AMG property across the spectrum of autoregressive
classes C(i)-C(iii).

4. A particular advantage of the inferential framework of (20), (22) and (23) is that it consti-
tutes the first procedure that achieves inference with general asymptotic validity in the explosive
region Cy(iii). This provides a solution to a long-standing problem in explosive autoregression,
pointed out by Anderson (1959), namely that the asymptotic distribution of estimators and tests
based on least squares (when they exist) are entirely driven by the distribution of the innovations
(u) in (1). Wang and Yu (2015) derive explicit expressions of the dependence of the standard OLS
t-statistic limit distribution on the distribution of the innovations of (1) and the initial condition
Xo. On the other hand, the IV estimator p,, in (20) has the AMG property irrespective of the
distribution of (u;), as Theorem 3 shows, giving rise to the distribution-free and correctly-sized
asymptotic confidence interval in (23). To our knowledge, the t-statistic in (22) and the associated
confidence interval in (23) provide the first solution to the problem of distribution-free asymptotic
inference in the explosive autoregression.

5. The asymptotic normality result of Theorem 1 includes oscillating sequences under As-
sumption la for which the t-statistic based on the OLS estimator may not converge in distribu-
tion. As an example consider the sequence (p,,), oy in (4) with k, = n. The standard t-statistic
T, (p,) based on the OLS estimator p,, satisfies Tb, (pa,) —a R1 and Ton—1 (Pgy_1) —a R—1 where

—1/2
R, = (0—2 foljc (r)? dr) foljc (r)dB (r). Since the random variables R; and R_; do not have

the same distribution, the sequence {7}, (p,,) : n € N} does not converge in distribution. For the
above sequence (p,,),,cy, the IV estimator p,, — p,, in (20) also has, after appropriate normalisation,
two accumulation points in distribution (along the odd and even integers). However, as Theorem
3 shows, both accumulation points will have the AMG property; as a result the t-statistic 7, (p,,)
in (22) satisfies Toy (Pg,) —a N (0,1) and Toy—1 (Pan_y) —a N (0,1), implying that the entire
sequence {7}, (p,) : n € N} converges in distribution to N (0, 1). The proof of Theorem 1 employs
Lemma 1 to show that the above asymptotic behaviour of the t-statistic in (22) is typical and
T, (p,) —a N (0,1) only requires the weaker Assumption 1a.

For the predictive regression model in (1) and (9), we employ a similar studentisation to (22)
based on the IV estimator 3, in (21):
. X'P,x)"? /.
7, (5.) = 2L (5, - 5,) (24)

3
where 62 is the OLS estimator of the variance of ¢, in (9). While the t-statistic in (24) is shown

to be asymptotically standard normal in Theorem 2 below, the estimation of the intercept in (9)
induces a finite sample size distortion when z; has a unit root and a near-stationary instrument
is employed, as documented by Kostakis et al. (2015), Hosseinkouchack and Demetrescu (2020)
and Harvey, Leybourne and Taylor (2021). The problem occurs because the sample moment that
drives mixed normality is given by >\ | Zi;_16r — Z1,—18, and, while the first term on the right-
hand side dominates and is asymptotically normally distributed, z,_1Z, is not asymptotically

12



mixed-Gaussian and has more pronounced finite sample effects when x; is a unit root process
(see Remark 2 below). Given that the finite sample distortion only occurs very close to unity,
one solution is to employ the fully-modified (FM) transformation of Phillips and Hansen (1990)
that orthogonalises the innovations ¢; of (9) with respect to the innovations u; of (1) and, hence,
transform the non-AMG lower order term Z, 1, into an AMG component for regressors very
close to a unit root process. The FM-corrected IV estimator 3,, in (21) (the component of 3,

generated by a near-stationary instrument) takes the form

o -1
* n ~ A e . = n ~
Bin = (Zt:l Y211t pau_dj xn21n1> (Zt:l gt—lzltfl)
u

where 62, &2 and p,, are consistent estimators of 02 = E(¢2), w? = >0 E(uu;y) and
Peu = cOTT (1, ur). With the above correction, the IV estimator of 3 becomes
ﬁ; = 1Fn5>{n + 1F_7,L62n (25)

with j3,, defined as in (21). A simple computation of the standard error of the estimator B above
gives rise to the following t-statistic:

1 T2

Tn(ﬁz)_ Zt—l—t 1#t—1

(Zt 1 Zt 1 nzinfl (1 psu) 1Fn
Theorem 2. Consider the predictive regression model (1) and (9) satisfying Assumptions 1a, 3
and /4, the filtered process zZ; defined by (16)-(17) and the IV estimators 3, and B, in (21) and

(25). The statistics in (24) and (26) satisfy T, (Bn> —4 N (0,1) and T, (8) —a N (0,1).
Remarks.

1. The standard normal limit distribution of the t-statistics in (24) and (26) is invariant to the
nuissance parameter ¢ of Assumption 1b that defines the autoregressive categories C(i)-C(iii). Con-

sequently, hypothesis tests on § with critical regions based on Theorem 2 will have uniform asymp-
totic size and the corresponding confidence interval for g, I, (B, ) = B — cn (@), B + ¢, ()]

. _ a\ ~ n . o 2 .
with ¢, (o) =@ (1 - %) 6. (>, gt_lzt_l) (i, —nz,  (1- p2) 1r,) "2 has uniform
asymptotically correct coverage probability (in the sense of Theorem 1) over the parameter space
© in (7) with Assumption 2 replaced by Assumption 4 for the innovations (u;).

2. While 7, (8;) and T, (Bn) have the same limit distribution, the test based on T, (Bn>

n

may suffer from finite sample distortion due to the fact that the estimation of the intercept v in
(9) does not feature in the first-order asymptotic theory. This only becomes an issue under C(ii)
where estimation of  features more prominently: in particular, the contribution of the non-AMG
term nzy,_1&, is not reflected in the limit distribution of Theorem 2. While this contribution is
0, (1), N7 2118, = Op(n™Y2 (1 — ¢,,)"*/?) under C(ii) in the notation of Theorem 3, nzy,_12,
is asymptotically equivalent to (1 — ¢,,,)”" 2, S2i, &, and the correlation between z,, and 31, &

distorts mixed-Gaussianity in finite samples. As a result, the t-statistic based on T, (Bn> exhibits

finite sample distortions when the following occur jointly: (i) the autoregressive root of z; is very
close to unity; (ii) p., = corr (e, u;) is close to 1 in absolute value; (iii) ¢,,, is chosen close to 1.
The FM transformation of Phillips and Hansen (1990), co; = &; — w ™ 'E (g;u4) us, orthogonalises
n~1/? > i ot and n~1/2 > i, us asymptotically when z; is a unit root process and transforms the
non-AMG term nzj,_1&, into a AMG term nZzj,,_18p, with a remainder that becomes smaller the
closer z; is to a unit root process, thereby addressing the issues in (i) and (ii) above simultaneously.
The estimator (3 arising from employing the FM trasformation and the corresponding t-statistic
T, (5;) have significantly improved finite sample properties whenever p, is close to 1 with large
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|pow|; while both T, (Bn> and T, (B;) perform equally well in all other cases.

3. Practical implementation of the test procedures of Theorems 1 and 2 requires a choice for
1, and @, in (16) for the construction of the instrument Z;. Since our procedure is designed
to work across the autoregressive parameter space (—1,00), we require one instrument that will
perform well across C(i)-C(iii) both for the autoregression and predictive regression problems. We
base our choice for ¢,,, and ,, on the principle of minimising the worst finite sample distortion
scenario: from Remark 2 above, we know that our test procedure on [ suffers its worst small-
sample distortions in the case of a unit root regressor with large correlation |p_,|. We conduct
a grid search Monte Carlo to select the maximal values of ¢,, and ¢,, (by Theorem 3, these
achieve maximal power) subject to a satisfactory test size in the above least favourable case; a
detailed analysis of the choice of ¢;,, and ¢,, can be found in Section 4.1. We demonstrate that
the proposed choice of ¢;,, and ¢,, in Section 4.1 works very well (both in terms of size and power)
for all autoregressive specifications in (—1,00) both in the autoregression and in the predictive
regression setups.

4. The above methodology may be extended to multivariate predictive regression models where
both z; and y; in (1) and (9) are vector-valued and the statistical problem consists of testing a
set of ¢ restrictions on vec (f). A model along the lines of Magdalinos and Phillips (2020) (that
assumes away cointegrating relationships between elements of the VAR(1) process for x;) extended
to account for regressors with roots in (1, 00) may be considered with the asymptotically N (0,1)
t-statistics of Theorem 2 replaced by asymptotically x? (¢) Wald statistics based on the combined
(vector-valued) instrument (16)-(17) of Section 3.1. The fact that the methodology of this paper
extends directly to multivariate systems is a major advantage over existing methods, including
Campbell and Yogo (2006) and Elliott et al. (2015). A multivariate extension is not pursued
here as it would be a deviation from the main focus of the paper (the construction of confidence
intervals for p and § with uniform asymptotic validity). The general multivariate setup, where z; is
an unrestricted VAR with possible cointegrating relationships and feedback effects between near-
nonstationary and near-explosive components, is more challenging, as it requires the development
of new VAR representation theory, of the Granger-Johansen type.

We now turn to the problem of conducting inference for the parameters of the epidemiological
model in (12) and, in particular, of constructing robust confidence intervals for the basic repro-
duction number 7 in (11) regardless of whether r( is above, equal or below unity. Denoting the
autoregressive parameter of I; in the first equation of (12) by p, := 1460 —~v — 4, (12) can be ex-
pressed as a system of three equations, I; = p, I;_1+u1, ARy = vIi—1+ug and AD; = 011 +ug,,
with each equation being estimated using the instrumental variable procedure in (17)-(20):

p _ anzl It§t~—1 ’ ,7 _ Z;:L:l Ath%t—l and Sn _ Z;;:l ADt;gt—l (27)
S DI FEE- 7 R WP PP Yo D1z
where the instrument Z; is constructed from the first equation of (12) by
Zt = PpoZi-1 + Uy, Uy = AlLdlp, +Uylp, B
where @y, are the OLS residuals obtained from the first equation of (12), the events F,, and F,, are
defined in (13) and p,,, is chosen as in (16). The remaining parameters ry and 6 may be estimated
from the identity 7o = 14 (p,, — 1) / (v + d) (obtained by dividing p,, by v+ 0) and the expression

for p,, as:

Fo= 14 (b= 1)/ (7 +8a) and 0 =5, — 147, +3, (28)

where p,,, 7,, and 4, are the IV estimators in (27). Adjusting for the asymptotic variance of 7,

14



and 6, we may construct studentised version of these estimators as follows:

5 . 3 - Fo—To On—0 7 —~ 0,—0
T, (T 7Tn (971) ;Tn 7Tn <6n>] = (X'P;X 2 ~ PN ) nA )T A 29
T () () (XPpX)Y? [P, 2 e SR (29)
where X = [Io, I, ... Ii1]', Z = [0, 21,00, 2y, 62, = 008000, G5 = VSnt, 62 = e4S,e0, 65 =
¥ e, B, = n~ S0 G0, with @, denoting the OLS residuals of (12), ¢ = [1,1,1]', e; = [0,1,0]',

A

es = [0,0,1]" and 0, = {1/ (’yn + 5n> ,(1=p,)/ (’yn + 5n>2 ,(1=p,)/ (’?n + 5n>2}/ based on

the OLS estimators p,, 4, and 0, in (12). Letting ¢/ (o) = (X’PZX)A/2 ®'(1-%)o, for
g € {ro,0,7,6} and denoting [a £ b] = [a — b,a + b] for brevity, we may construct confidence

intervals based on the studentised estimators in (29): I,,(fn,a) = [Fn £ ¢° (a)], In(0n, ) =
0, £+ ()], I, (5,,a) = [3, £ (a)] and I, (Sn, a) = [0,, £ ¢ (a)]. The asymptotic distribution
of the t-statistics in (29) and the asymptotic coverage probabilities of the corresponding confidence
intervals can be easily deduced from the analysis leading to Theorem 1 above.

Corollary 1. Consider the model (I, Ry, D) in (12) satisfying Assumption 5 with parameters
T0, 0, v and 0 estimated in (27) and (28). The t-statistics in (29) all converge in distribution to
N (0,1) and the associated 1 — o confidence intervals I,(7y, @), I(0n, @), In(3,,a) and I,(0,, @)
all have asymptotic probability of containment equal to 1 — a.

3.3 Asymptotic mixed-normality of the IV estimator

In this section we establish the AMG property of the normalised and centred IV estimator in
(20) under Assumptions 1b, 2 and 3. The main result, Theorem 3 below, is preceded by a discussion
of the stochastic properties of the instrument process Z; in (17) and three results, Lemmata 3-5,
that provide an insight into the mechanics that yield the AMG property and facilitate the proof
of Theorem 3.

We first provide a brief informal discussion of the behaviour of the instrument under the
different regimes C(i)-C(iii). While the artificial instrument’s autoregressive roots ¢,,, and ¢,, in
(16) may be chosen freely within the near-stationary /near-explosive range, the processes Z;; and
Zo in (19) are not near-stationary/near-explosive because the residuals Az; and 4, used in the
instrument construction are not innovations. For z; belonging to the classes C(i)-C(ii), Magdalinos
and Phillips (2020) show that: (i) Z;; can be asymptotically approximated by a near-stationary
process '

2= izt = Y5 000 (30)
when the instrument in (19) is less persistent than the original process z; in (1) (i.e. when p,
is closer to 1 than ¢,,,) and (ii) Z;; reduces asymptotically to the original process x; (necessarily
near-stationary by the choice of (¢,,),y in C(i)) when ¢y, is closer to 1 than p,. The above
property is a consequence of employing Ax; is the construction of Z;;. On the other hand, as a
consequence of employing the OLS residuals 4, in its construction, the instrument Zy, in (19) is
always approximated by mildly explosive process A

Zot = PopPot—1 + Ut = 2321 P’ U (31)
in all sample moments. A precise statement on the approximation of Z5; by zy; can be found in
part (iv) of Lemma A1l in the Appendix.

By Lemma 2, sample moments involving the near-stationary instrument Zz;; will contribute
asymptotically when the original process x; belongs to the classes C(i)-C(ii) whereas sample mo-
ments involving the mildly-explosive instrument Z,; will make an asymptotic contribution for
autoregressions in the classes C(ii)-C(iii). The next two results, Lemma 3 and Lemma 4, discuss
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the asymptotic behaviour of sample moments involving Z;; and Zs; under the autoregressive classes
C(i)-C(ii) and C(ii)-C(iii) respectively.

Under Assumption 4, denote the autocovariance function and long-run variance of (u;) by v, (+)
and w? = 3°%° . (k) = C (1)* 02 respectively and let

Lo =300 o 7 (k) and T'= 3702, pfhy, (k). (32)

By Assumption la, p, — p and I' = lim,,_,,, [, exists by the dominated convergence theorem
since >, |7, (k)] < oo by Assumption 4. Note that, when p = 1, I' = Y 72 7, (k) is the
one-sided long-run covariance of (u;). Let W () denote a standard Brownian motion on [0, 1] and
B (t) = wW (t); when the limit ¢ in Assumption 1b is a real number, define the Ornstein-Uhlenbeck
processes

W, (t) = [e?dW (s) and J.(t) = [;e""dB (s) (33)
and the Dickey-Fuller-type ratio ) )
2
K.= [, Jc(r)dB(r) /[y Je(r)"dr. (34)

Lemma 3. The following hold under Assumptions 3 and 4 and C(i)-C(ii) of Assumption 1b:
(1) ™t (1 = prpln) Yoy T Free1 = W + 0, (1) —a ¥ () where

l —n
By = (o o7+ 200t o 1) (5 S0 -, )]

1 n Zon 1 n
—Pn (1 - Pi) o > i T_q — 2@@ ijl Toj-1 (35)

U (c) =02+ 2pl + (Jc (1)* —2J.(1) fol Je (1) dr) 1{c € R} and xq; is defined in (3).
(1) n ' (1 = ppet,) Dofmy 2 —p 02 + 290
(i) n 2 (1 — 22 ) S0 21y ver —a N (0, (02 + 20T) 02)

where T, and T are defined in (32), J.(-) in (33) and o* = Ee?.

Next, we turn to the discussion of the asymptotic behaviour of sample moments of Z5;. In order
to maintain a common asymptotic development for autoregressions in the near-nonstationary and
near-explosive classes C(ii)-C(iii), we define the convergence rates

v = (p2 — 1)71/2 P {c=o0} +n'?1{ccR} and v, = (93, — 1)
where ¢ denotes the limit in Assumption 1b, and
Sn = (Pnon — 1)_1 VnzVn- (37)
Following Phillips and Magdalinos (2007), the limit theory for the mildly explosive instrument’s
sample moments will be driven by the stochastic sequences

£ 1/2 n —(n—t)— n (n—t)— n .
Yo Y, Zal 1= (eh = 1) [ S on ™ s S on ™ e S endus - (39)
By Anderson (1959), Phillips (1987) and Phillips and Magdalinos (2007), the autoregressive sample
moments will be driven by
X, = i— = (pi — 1)1/2 (ijl pnluj 4+ Xo (n) — u) 1{c=o00}+ ﬁl {c e R}. (39)
The following resqllllt characterises the joint asymptotic behaviour of the sequences Y,,, Z,, and X,

and the sample moment asymptotic behaviour of the instrument Zs; for the autoregressive classes
C(i)-C(ii).
Lemma 4. Let X be the random variable defined in (8) and Y,, Y2, Z, and X,, be the sto-
chastic sequences in (38) and (39) and let Y,Y*, Z, X denote N (0,w?) random variables. Under
Assumptions 3 and 4 and C(ii)-C(iii) of Assumption 1b, the following hold as n — oo:

(1) [Yo, Zn] —a [V, Z] and [YE,Z,) —a [Y©, Z] where Z is independent of Y and Y¢. In

-1/2 5
Pon(36)
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addition,

ngn -1 n (903n B 1>2 n 2 —1 n 2
» thl Zot—1Ut, —Sogn thl 29t—15Sp thl Ti—122t—1| = [YnZnu Y/ XnZn:| + 0, (1) .
2n 2n

(ii) Under Assumption C(iii) with p, — 1, [Yn, Xp] —a [V, X] and [Y2, X,)] —q [V, X]|, where
X is independent of Y and Y©.

(iii) Under Assumption C(iit) with p, — p > 1, X;, =, Xoo, Xeo # 0 a.s.; for any contin-
uous function g : R\ {0} - R, ¢(X,) Y, —4 9(X)Y and g(X,) Y, —4 g(Xe)Y® where both
9(Xe)Y and g(Xo)Y*e are MN (0,w?g? (X)) variables.

Part (iii) of Lemma 4 deserves special attention because it establishes a central limit theorem
to a mixed-Gaussian distribution in the purely explosive case Cy(iii) and is precisely the result
that allows us to incorporate the purely explosive case in the distribution-free mildly explosive
framework of asymptotic inference. To provide some insight into the role of the result for inference,
we will see that the normalised and centred estimator p,, in (20) behaves asymptotically as Y,/ X,
in Theorem 3 below. The conclusion of Lemma 4(iii) implies that the ratio Y, /X, will have
a MN (0,0%/X2) limit distribution in the explosive case, establishing the asymptotic mixed
normality property of p,, independently of the distribution of the innovation sequence in (1).

Establishing the AMG property of p,, in the near-nonstationary class C(ii) is more challenging
as both components Z;; and Zy; of the instrument in (18) feature in the limit theory, their relative
contribution weighted by the limit in distribution of the sequence of events F,, in (13). Additional
complication is introduced by the randomness of the limits of the signals (2¥,, —4 0% + J, (1)°
from Zy; and X, Z,, —4 J. (1) Z from Zy;) which are required to be independent from the Gaussian
distributional limit of the normalised ;| z;—jus (U (1) and Y below) for AMG property of p,.
Since, by standard local-to-unity manipulations, see Phillips (1987b) and Chan and Wei (1987),
the sequences F),, ¥,, and X, in (13), (35) and (39) can be expressed as non-stochastic functionals
of the partial sum process B,, () of u; and B, (s) = B (s) on D [0,1], it is sufficient to prove the
independence of [U (1),Y] and the Brownian motion B; it is established in the following result.

Lemma 5. Define the following random elements in D [0,1]: B, (s) = n’1/2 Zttmlj ug, Uy (s) =
(n(1—2) )2 o e and Y, (s) = (93, — 1)Y2 0 oo 0"y, Under Assump-
tions 1b and 4, (U, (s),Bn (s),Yn (s)] = [U (s),B(s),Y] on D|0,1], where U (s) and B (s) are
independent Brownian motions with BU (s)* = so2w? and EB (s)* = sw?, and Y is a N (0,w?)
random variable independent of [U (s), B (s)].

We may now employ the limit theory of Lemmata 2-5 to establish the AMG property of the
1Y estimator ,Bn in (20) Within each of the autoregressive classes C(i)-C(iii). For ¢ € R, define
w.(t):= fo r)dr and the random varlables

\I/_()—1+WC( —2W, (1) [IW.(r)dr and U, (c) =2V, (1) (40)
where the event F,. and its complement F, are deﬁned by F, = {K.+ ¢ <0} with K. being the
ratio in (34).

Theorem 3. Consider the autoregression (1) and the predictive regression model (9) and (1)
under Assumptions 1b and 3, and the IV estimators p,, in (20), B, in (21) and ) in (25). The
following asymptotic approximations apply as n — oo to m, (p, — p,) under Assumption 2 and to

T Bn — 6) under Assumption /4 respectively:
1\ /2
(i) Under part C(i) of Assumption 1b, m, = (n (1—p24%) 1) ,
o (B — pn) —a N (0,1) and (Bn - 6n) g N (0,0%/ (o2 +2T)) |
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_ _ 1/2
(ii) Under part C(ii) of Assumption 1b, 7, = n'/? ((1 — 2 ) 1 4 (02, 1)) 1Fn)
2

T (B = ) —a MN (0, (¢)7%) and , (Bn - ﬁn) —a MN (O, %\p (c)_Q)

where the events F, and the random variable V (c) = V_ (c) 15, + V4 (¢) 15 are defined in (13)
and (40) respectively.

(iii) Under part C(iii) of Assumption 1b, 7, = (3, — 1)1/2 (P Pon — 1) (2 — 1)71/2 o

o (o — pr) =4 Y/ X =4 MN (0,06%/X) and , (Bn - ﬁn) = VX =4 MN (0,0%/X)

where Y =4 N (0,0%), Y =4 N (0,02), and X is independent of (Y, ff) with X =4 N (0,w?)
when p, — 1 and X = X, in (8) when p, — p > 1.

Moreover, under parts C(i)-C(iii) of Assumption 1b, 7, (Bn - 6,*1) —p 0.

Remarks.

1. The data-filtering procedure proposed in the paper guarantees that the resulting estimators
p, and 3, in (20), and (21) respectively exhibit a AMG property along the entire spectrum of
autoregressive regressor processes, including stationary, non-stationary, explosive processes and
all intermediate regimes. Importantly, the AMG property is derived via central limit theory and
does not depend on the distribution of the innovation sequences (u;) and (&) in (1) and (9): the
only requirements imposed on (u;) and (g;) are Assumption 2 and 4 respectively, which allow the
innovations to be non-Gaussian, dependent, non-identically distributed and as far as inference on
[ is concerned, u; can be a linear process under Assumption 4. The only component that depends
on the distribution of (u) is the mixing variate X, in the explosive case Co(iii) which does not
the affect the AMG property and, upon studentisation of p, and Bn is scaled out of the limit
distribution of self-normalised test statistics, such as the t-statistic of Theorems 1 and 2. This
desirable property of the proposed estimator p,, is in sharp contrast with the dependence of large
sample OLS inference on the distribution of (u;) in explosive autoregressions. Hence, in addition
to producing robust inference along all autoregressive classes, our proposed estimation procedure
is the first that achieves distribution-free asymptotic inference in explosive autoregression and is
asymptotically invariant to the initialisation X, of the time series in (1).

2. The key element of the procedure that delivers the AMG property and the distributional
invariance to the autoregressive innovations across the autoregressive classes C(i)-C(iii) is the
newly proposed combined instrument Z; in (16)-(17). This instrument employs information from
the OLS estimator of the autoregressive parameter (through the events F, and Lemma 2) to
determine whether ¢ = lim,, ., n (p, — 1) takes the value —oo or co. When ¢ = —o0, Z; takes
the form of a near-stationary instrument z;; and the resulting IV estimator p,, is asymptotically
equivalent to the IVX estimator of Phillips and Magdalinos (2009). When ¢ = oo, Z; takes the
form of a mildly-explosive instrument Zy; constructed from the least squares residuals 4, and the
resulting IV estimator p,, based on 2o is shown to achieve distribution-free inference on the non-
stationary side of unity, including the explosive region. When ¢ € R, the autoregression is of the
near-nonstationary type C(ii) in which case Z; takes the form of a random linear combination of
Z1; and Zy. This random combination, reflected in the random normalisation 7, of part (ii) of
Theorem 3, depends on the limit distribution of the OLS estimator p,, through the events F}, in
(13) which, like the limit distribution of ¥,, in (35), can be expressed as a non-stochastic functional
of the Brownian motion B; the asymptotic independence of the normalised 2:;1 Zi—1u; and the
Brownian motion B, established by Lemma 5, implies that the additional randomness introduced
by the combination of Zj; and Zy; does not affect the AMG property of p, and Bn The AMG
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property across the entire range of autoregressive classes C(i)-C(iii) of Theorem 3 is the crucial
feature of our estimation procedure that delivers the robust and distribution-free inference based
on the t-statistic of Theorems 1 and 2.

3. It is worth making a comparison of the current instrumentation procedure to the IVX
method of Phillips and Magdalinos (2009), particularly since the latter was applied by Phillips
and Lee (2016) to conduct inference in predictive regression in the presence of mildly explosive
time series. The original IVX approach was designed to address local-to-unit-root type of nonsta-
tionarity; for this reason, the filtered process in (17) is constructed by using Az, (instead for the
OLS residuals ;) and a near-stationary root. However, in an explosive setup, differencing the ex-
plosive regressor x; will not produce an I (0) process and the IVX instrumentation effect vanishes
asymptotically: as Phillips and Lee (2016) show, under C(iii) the original IVX estimator reduces
asymptotically to the OLS estimator. Hence, the original IVX estimator inherits the limitations
of least squares limit theory in the explosive case and cannot resolve its lack of central limit theory
and its dependence on the distribution of the innovations (u;) and the initial condition. On the
other hand, by employing the residuals @, and a mildly explosive root ,, for the construction of
the instrument Zo; in (17), the instrumentation of this paper ensures that the limit distribution
of p,, is driven by the mildly explosive component zs; in equation (A.1) of the Appendix under
C(iii) and inherits the desirable AMG property of mildly explosive martingale transforms even
when z; in (1) is a purely explosive process. The price paid for this asymptotic invariance and
subsequent distribution-free inference is a reduction in the convergence rate of p, — p,, by an or-
der of (¢3, — 1)1/ ? compared to the pn-OLS rate. However, given that the above order satisfies
(W2 -1 =0 (n'/?) and that the exponential part p? of the OLS rate is maintained in the
convergence rate of Theorem 3(iii), the efficiency loss associated with employing p,, is small com-
pared to the benefit of an estimation procedure that gives rise to test statistics and confidence
intervals of general asymptotic validity.

4. The limit distribution theory of Theorem 3 under C(i) and C(iii) shares some similarity
with the corresponding results for the OLS estimator: in particular, in the case when p, — 1
both asymptotic distributions are Gaussian under C(i) and Cauchy under C(iii) (Y/X is Cauchy
distributed when X =4 N (0,0?)). This is not surprising since in both cases the instrument Z; has
similar time series properties (near-stationary or mildly explosive) as the original autoregressive
process x;. Building the instrument Z;; based on Ax; rather than the autoregressive residuals
(as for Zy;) maintains the asymptotic optimality of the IVX procedure of Phillips and Magdalinos
(2009) under C(i) when ¢,,, is chosen closer to unity than p,.

4 Monte Carlo Simulations

In this section, we design a Monte Carlo exercise to study the finite sample properties of the
IV estimators introduced in this paper and how they compare to alternative approaches. We first
discuss the instrument selection and provide a simple guide on how to implement the proposed
inference procedure in Section 4.1. We demonstrate that with the above instrument choice, our
procedure exhibits good small sample properties for autoregressive regimes covering the entire
range from stationarity to explosivity. In Section 4.2 we provide an illustration of the failure of
general asymptotic inference based on the OLS estimator in the explosive region: in particular,
we show that misspecifying the variance of a single observation can have severe consequences for
the size and coverage rates of OLS-based inference that do not improve with the sample size, both
in the autoregressive and predictive regression models. On the other hand, we demonstrate that
the IV procedure of Theorems 1 and 2 continues to provide correct inference in these cases. Next,
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we compare the finite sample properties of our procedure to the leading existing approaches: in
Section 4.3.1, we provide a comparison of our confidence intervals in (23) for the autoregressive
parameter to the procedure of Andrews and Guggenburger (2014); in Section 4.3.2, we compare the
size and power of our testing procedure in (26) in the predictive regression setup to the procedure
proposed by Elliott et al. (2015). In both cases, we demonstrate that the IV procedure delivers:
(i) correct size across all autoregressive regimes considered, and (ii) superior power in all cases to
the left of unity (including local-to-unity, near- and purely stationary regions) except for the case
of exact unit root. Crucially, our procedure also provides correct inference on the right side of
unity, in the local-to-unit-root, mildly and purely explosive regions, where no existing alternative
approach has general asymptotic validity.

4.1 Instrument Selection
Practical implementation of our procedure requires a choice for ¢,, and ¢,, in (16) for the
instrument construction in (17). While theoretically, any values of ¢;,, — 1 belonging to C(i) and
©y, — 1 belonging to C(iii) deliver correct asymptotic inference, finite sample performance may
vary considerably with the choice for ¢,,, and ¢,,,. Choosing
Y1 =1—1/n", @y, =1+ 1/n" (41)
reduces the problem to selecting values for b; and b, in (0, 1) . Since we require an instrument selec-
tion with good performance along all autoregressive regions without a priori knowledge, we adopt
a conservative approach: from Remark 2 after Theorem 2, we know that our inference procedure
suffers the worst finite sample distortion in the predictive regression case when p, = 1 with large
correlation p,, between the innovations €; and u; in (1) and (9)°. Therefore, we base our selection
procedure for the values of b; and by on the principle of minimising the worst case scenario and
select values that deliver satisfactory test size in this most unfavourable case. We consider a grid
of values for b; and by in (41) with very strong positive and negative correlation |p.,| = 0.99.
Tables B1 and B2 of the online Appendix B contain the empirical size of the two-sided test of
our procedure for the predictive regression slope parameter 5 for n = 1,000 based on 10,000
replications for various combinations of b; and by for p,, = 0.99 and p,, = —0.99 respectively.
The power in this case (plots of which for the grid points can be found in Figure B1 of the online
Appendix B) is increasing both in b; and by. Our task is to select the largest values for b; and by,
subject to the size being close to the nominal 5%. We place more weight on large values for b,
rather than large values for by for three reasons: (i) power is always non-decreasing in b; for all
autoregressive specifications, while in the explosive region power is decreasing in the value of by
(though this is not a serious issue since our procedure preserves the exponential rate of conver-
gence in the explosive region p'n~"2/2? regardless of the value of by), (ii) for power maximisation
in the case p = 1, the value of b; is relatively more important (as can be seen from the power
plots in the online Appendix B), since the near-stationary instrument is chosen 2/3 of the time
(this is since the OLS distribution in the unit root case is left-skewed with values below unity
occurring with probability 2/3), and (iii) values for by close to unity would imply that our mildly
explosive instrument is near the boundary with local-to-unity region, which would cause the in-
strument inheriting local-to-unity properties and potentially some of the associated small sample
distortions when working with purely explosive regressor. From Tables B1 and B2 of the online
Appendix B, we suggest using b; = 0.85 and by = 0.7 in (41) since in both cases, the empirical size
in these unfavourable cases does not exceed 5.99%. We use these values throughout the rest of
the Monte Carlo section (and in the empirical application in Section 5) and demonstrate that our
choice works well for all autoregressive specifications in both a predictive and autoregressive setup.

9In the autoregressive setup, such finite sample distortions are less pronounced.

20



FIGURE 1
Size =0, two-sided, p_ =0, n =200 (100 for last 5 specifications)

IVX b =0.85b =07 — _ _ i
oos | | | | | | | | | | . N Nominal 5%
p=0.5 p=0.7 P=0.9 ’,":1,10/“0‘75 p,=1-50/n p =1-30/n  p =1-15/n p=1 P =1+15/n p =1480/n  p =1+50/n ﬂu:1+10/n0"‘-7 p=1.02 p=1.04 pP=1.06
Los1e =0.75 =0.85 =0.925 =1.075 =1.15 =1.25 1.188
Size =0, two-sided, p,,=0, n =500 (200 for last 5 specifications)

007
‘ T T T T T T T T T

‘ I I I ‘ ‘ ‘ I I I —1VXb,=0.85 b,=0.7 — _ _Nominal 5%
0.03
pP=0.5 p=0.7 p=0.9 ’,']:1,1(7/“0"-5 puzl-jn/n f)":1—30/n p,=1-1 5/n p=1 p‘)":1+1.i/n p‘:“:1+.‘]0/n n“:1+50/n ’)!’:1_‘_10/“(?‘75 p=1.02 P=1.04 pP=1.06
0.905 =0.9 . =0.9% . =097 =1.03 =1.06 = —1.005
R Size =0, two-sided, p_ =0, n =1000 (500 for last 5 specifications) o
007 £1
T T T T T T T T T
0.06 — —

IVX b =0.85 b,=0.7 — — _Nominal 5%
008 | 1 1 1 | | | 1 1 1
p=0.5 p=0.7 P=0.9 p =1-10/0°7 p,=1-50/n  p =1-30/n  p =1-15/n p=1 p,=1+13/n  p =1+80/n  p =1+30/n ; =110/ p=1.02 p=1.04 pP=1.06
944 =0.95 =0.97 =0.985 =1.015 =1.08 =1.05 058
FIGURE 2
Size §=0, two-sided, p_ =0.9, n =200 (100 for last 5 specifications)
015 T \ \ T T
0.1 — —
B e I e e
—IVXb =0.85 b,=0.7 _ _ _ Nominal 5%
o | | | | | | | | | |
=0.5 =0.7 = _ 075 p =1-5 =1- =1-15 = =1+15 =143 =145 _ 0.75 =1. =1. =1
p=0.5 £=0.7 pP=0.9 pu—l—m/n pL=1 50/n 2,1 30/n P =11 5/m p=1 p,=1+1 5/n P =1+ 30/n P =1F 50/n ,'J“—1+10/n p=1.02 P=1.04 P=1.06
L0812 =0.75 =0.85 =0.925 =1.075 =1.15 =1.25 —1.188
Size =0, two-sided, £, =09, n =500 (200 for last 5 specifications)
015 \ \ T \ \ T T \ \
0.1 — —
LT e i e e i i T o e
——IVXb =0.85 b,=0.7 — _ _ Nominal 5%
o | | | | | | | | | |
=0.5 =0.7 =0.5 _ 0.75 =1-5 =1-4 =1-15 = = 5 = 3 = 5 — 0.75 =1. =1. =1.06
p=0.5 pP=0. pP=0.9 ’)!’71710/n p=1 50/n P=1 30/n p=1-1 5/n p=1 p=1+1 5/n p=1 30/n P =1 50/n ﬂnfl"'m/n p=1.02 pP=1.04 pP=1.06
—0.905 =0.9 . =094 . =097 =1.03 =1.06 =11 —1.095
Size (3=0, two-sided, P,,=0.9,n =1000 (500 for last 5 specifications)
015 T T T T T T T T T
0.1 [— —
005 === === = e e e A T T T T T T ———— e T e —
IVX b =0.85 b,=0.7 — — _ Nominal 5%
o 1 1 | | 1 | | 1 1 |
p=0.5 p=0.7 pP=09  , —q19/n®7* p,=1-50/n  p =1-30/n  p =1-15/n p=1 pL=1H15/0 p =1480/n p =1450/m ;5 _y4q9/p®7F p=1.02 pP=1.04 p=1.06
N 0.044 =095 =0.97 =0.985 =1.015 =1.03 =1.05 "1.086

We first implement our choice of instrument in the predictive regression setup (9) along different
autoregressive regimes for z; in (1):

p, € 1{0.5,0.7,0.9, 1—-10/n"" 1-50/n, 1—30/n, 1 —15/n, 1, 1+ 15/n,

1+30/n, 1450/n, 1+10/n"™, 1.02, 1.04, 1.06}, with Xo =0, = p, =0, (42)

e ~ N(0,02), uu~N(0,0°), 0. =0 =1, p,, € {-0.9,-0.45,0,0.45,0.9} . (43)

For each specification, we compute the empirical size of the two-sided test statistic in (26) based on

5,000 simulated samples for sample sizes n € {200, 500,1000}. Throughout the entire Monte Carlo

section, we always use reduced sample sizes n € {100, 200,500} for the explosive specifications

P € {1450/n,1+ 10/n%7 1.02,1.04,1.06} . We do this for two reasons: (i) it facilitates com-

parison since the exponential rate of convergence for these specifications implies extremely precise
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estimates with standard errors of the range of 1073 for sample sizes of 500, and (ii) it prevents
Matlab rounding such standard errors to 0 (resulting to point confidence intervals) without the
need of committing excessive memory.

FIGURE 3
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Figures 1-3 display the rejection probability of our test procedure in (26) under the null
B = 0 for the different autoregressive regions with 95% confidence against the two-sided alter-
native § # 0 for different correlation between the innovations p., € {—0.9,0,0.9}. Figures 1-3
provide evidence that our procedure delivers satisfactory empirical size throughout the different
autoregressive specifications converging to the nominal 5% as the sample size increases. The online
Appendix B contains two additional sets of results for moderate negative and positive correlation
Peu € {—0.45,0.45} as well as the proportion of times the mildly explosive instrument is chosen
throughout the different autoregressive specifications. As expected, the mildly explosive instru-
ment is never chosen in the stationary region even for small samples, and is chosen in the pure
unit root case around 33% of the time.

4.2 Invalidity of OLS in the explosive regions

In this section, we briefly discuss the relative performance of OLS and our procedure in the
explosive region and provide an illustration of the invalidity of OLS-based inference even in large
samples. The lack of central limit theory for the numerator of the OLS estimators of p, and 3
implies that the asymptotic distribution of the t-statistic based on the OLS is carried entirely by
the last few observations for the innovations, and a change in the distribution of the last innovation
in the sample, for example, distorts OLS-based inference even asymptotically.

We simulate data from the predictive regression model in (9), with &, ~ N (0,1), u;_1 ~
N (0,1) fort = 1,...,n—1 and we draw the last observation of the innovations from &, ~ N (0, 02),
Up_1 ~ N (0,0%) with 0. = 0 = 3 instead. In the presence of CLT (as is the case with our IV
estimator), misspecification of any finite number of terms will vanish asymptotically by virtue of
uniform asymptotic negligibility (u.a.n.) implied by the CLT. In the absence of u.a.n. and hence
a CLT(as is the case with OLS), this type of misspecification may affect the limit and invalidate
inference.
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FIGURE 4
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In Figure 4, we report the 90%, 95% and 99% coverage rates of the IV and OLS estimators
of p,, respectively for different sample sizes (as in Section 4.1, we work with the autoregressive
specifications in (42) and reduced sample sizes for the explosive processes). We compute the
coverage rates as the proportion of time that the true p, finds itself in the 90%, 95% and 99%
confidence intervals implied by the IV and OLS respectively, based on 5,000 replications. From
Figure 4, it is clear that the OLS suffers large finite sample distortions in the local-to-unity region,
as well as in the mildly and purely explosive regions. For sample size n = 100, the IV procedure is
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also affected by this end-of-sample problem and this is expected since our near-explosive instrument
exhibits some explosive properties especially when n is small. However, as the sample size increases,
the coverage rates of the IV procedure converge to the nominal levels, as Theorem 1 suggests. The
coverage rates of OLS for the mildly explosive specification p, = 1 + 10/n%™ also improve as
expected (although very slowly). Crucially, for the purely explosive DGPs, the OLS distortions
do not improve even for larger samples. For example, when p, = 1.06, the 90% OLS confidence
interval contains the truth 70% of the time irrespective of increases in the sample size.

We find similar results in the predictive regression setup. In Figure 5, we report the rejection
probability of the OLS under the null 3 = 0 against a two-sided alternative!® for the same specifi-
cations and sample sizes. We present the rejection probability of the IV procedure for the choice
of instrument in Section 4.1 as well as two other choices of instrument, increasing /3, to 0.85 and
0.95 respectively. As it can be seen from Figure 5, the empirical size of the OLS for the purely
explosive regions is distorted and crucially the distortions deteriorate as the sample size increases;
the size of our procedure on the other hand converges to the nominal level as the sample size
increases, as suggested by the theoretical results of Theorem 2.

4.3 Comparisons with alternative methods in the literature

4.3.1 Inference in the autoregressive Model

In this section, we present a comparison of our procedure to current state-of-the-art methodol-
ogy in the literature of robust inference in autoregression and predictive regression for p € (—1,1].
We first evaluate our proposed autoregressive confidence intervals in (23) and we compare them to
the procedure by Andrews and Guggenberger (2014)!!, which constructs the intervals by inverting

the OLS t-statistic, which under the null is asymptotically nuisance-parameter-free.
FIGURE 6
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In Figure 6 and 7, we report the 90%, 95% and 99% coverage rates and lengths of the intervals

10The online Appendix B contains additional comparison for the corresponding one-sided rejection probabilities.
1 The Gauss code for the procedure was kindly provided by Don Andrews and Patrik Guggenberger and translated
into Matlab.
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respectively for the IV estimator and Andrews and Guggenberger (2014)’s procedure (AG) for p,,
for different autoregressive regions and for different sample sizes. For the AG procedure, we use
the symmetric two-sided intervals imposing homoskedasticity as we found these to perform best in
terms of coverage especially in the local-to-unity regions; the online Appendix B also contains the
equal-tailed two-sided intervals of Andrews and Guggenberger (2014). Figure 6 presents evidence
that the IV procedure works well and is comparable to the AG procedure on the left side of unity,
while also providing valid inference for p, on the right side of unity in the local-to-unity, mildly
and purely explosive regions. In terms of length of the intervals, from Figure 7, it can be seen
that our intervals are always shorter'? than those of AG (which translates into higher power) for
all specifications except for the exact unit root case. The differences in interval length in the unit

root case are not large and become negligible for large samples.

FIGURE 7
Length of Cls for p , n=200 (100 for last 5 specifications)

0.3

‘ :::::::::: 90% IV = — —95% IV 99% TV b =085 b,=0.7 wouen 90% AG ~ ~ ~ 5% AG 99% AG

108 10" 1078

=0.5 =0.7 = _ 0.75 5 =1-5 =1-4 =1-15 = = 5 =145 =1+5 _ 0.75 =1. =1. =1.
p=0.5 p=0.7 pP=0.9 [).]71_10/" p,=1 50/n p=1 30/n P =1-1 5/n p=1 P =141 5/n oy 1+30/n Py 1+10/nﬂ"71+10/" p=1.02 pP=1.04 pP=1.06
=0.812 =0.75 =0.85 =0.925 =1.075 =1.15 =1.25 =1.188
025 — Length of Cls for p , n=500 (200 for last 5 specifications)
---------- 90% IV = = =95% IV 99% IV b =0.85 b, =0.7 v 90% AG = = =05% AG 99% AG
LN 10°¢ 10" 107 1073 1073 105
o | | | | | | | | | | | o | |
=0.5 =0.7 = _ 0.75 5 =1-5 =1-4 =1-15 = = 5 =145 =1+5 _ 0.75 =1. =1. =1.
p=0.5 p=0.7 pP=0.9 [).]71_10/" p,=1 50/n p=1 30/n P =1-1 5/n p=1 P =141 5/n oy 1+30/n Py 1+10/nﬂ"71+10/" p=1.02 pP=1.04 pP=1.06
=0.905 =0.9 =0.94 =0.97 =1.03 =1.06 =11 =1.095

Length of Cls for p , n=1000 (500 for last 5 specifications)

.......... 00% IV = = =05% IV 99% IV b =085 b, =0.7 s 90% AG = = = 05% AG

29% AG |

0.05

107 10" 10712 107" 108 10 107
| | | | | | | | |
0.75 =1-5 =1- =1-15 = = 5 = = 5 0.75 = = =
p"=1710/n p,=1 50/n pL=1 30/n Pu=1 15/n p=1 I 1+15/n I 1+30/n Py 1+"0/"ﬂ"=1+10/n p=1.02 =104 p=1.06
=0.944 =0.95 =0.97 =0.985 =1.015 =1.08 =1.05 =1.056

o ! !
p=0.5 p=0.7 p=0.9

4.3.2 Size and power comparison in the predictive regression model

Next, we evaluate the inference based on the IV-based t-statistic in (26) in the predictive
regression setup (9) and we compare it to the one-sided test procedure by Elliott et al. (2015)'3
which, in the presence of a nuisance parameter, is nearly-optimal when the innovations of the
model are Gaussian; Zhou et al. (2019) and Zhou and Werker (2021) provide extensions of this
near-efficient testing procedure to non-Gaussian, fat-tailed or heteroskedastic innovations.

We generate data from the predictive model in (9) for the specifications of (42) and (43). We
found that in the one-sided test setup, our choice of instrument works well in all but one scenario:
the case with strong negative correlation, where our choice for b; and by leads to small-sample
oversizing in the pure unit root case. Since in all other cases, our choice of instrument from Section
4.1 delivers good size, we prefer not to repeat the selection exercise of Section 4.1, since selecting
a more conservative instrument would lead to power loss even in cases where there is no size issue.

12This result on the shorter length of the IV intervals continues to hold in the comparison for the 90% and 99%
equal-tailed two-sided intervals of AG, which can be found in the online Appendix.

13The Matlab code for the procedure was downloaded from Ulrich Miiller’s website and some additional proce-
dures were kindly provided by Bo Zhou.
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Instead, we propose using the following adaptive t-statistic:
T (B) = 1{pw < LY T (Br (510) + 1{pe > LY T (B (32)) (44)
where T, <Bln (51,t)) and T, <Bgn (Eg,t)) are the t-statistics based on two different choices for in-

struments Z;, and Z;, p,, is the sample correlation coefficient between the fitted OLS residuals
for u; and ¢;, and L is some threshold level below which we use a more conservative instrument.
In this way, we can resolve the size distortion in the unit root under strong negative correlation,
without affecting the power of the our procedure in all other cases.
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FIGURE 10
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We set L = —0.7, and for the conservative instrument Z;;, we use (41) with b; = 0.55 and

by = 0.65. For Zy;, we continue to use the choice of instrument from Section 4.1 with b; = 0.85
and by = 0.7. In the case of p_, = —0.9 in Figure 12, we display the rejection probability under
the null (with 95% confidence against the one-sided alternative 8 > 0) of both the original choice
of instrument and the new adapted procedure based on (44) to illustrate the effect of using the
adaptive procedure. For all other cases, Figures 8-11, we display the rejection probability un-
der the null based on the adaptive instrument which is nearly identical to the original choice of
instrument in Section 4.1 since the sample correlation coefficient p., almost always exceeds the
threshold -0.7. Figures 13-17 present the corresponding power curves. We apply the procedure by
Elliott et al. (2015) (EMW) in all regions for comparison, stressing that their procedure is not
designed to work (and hence it is invalid) on the right side of unity.
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FIGURE 12
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There are several important conclusions from the size and power comparisons in Figures 8-17.
First, our adaptive procedure in (44) performs well in terms of empirical size in all correlation
cases and in all persistence regions for the regressor and, as the sample size increases, any small
sample distortions vanish. Second, we find that the EMW procedure never rejects the null to
the right of unity (when the null is true and when it is not), except for a few cases with a small
sample; for example in the -0.9 correlation case, its size reaches 40% in the case of p,, = 1.02 when
n = 100, but the oversizing disappears as n increases.
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FIGURE 14

Power, one-sided alternatives, pm:O.45, n =200 (100 for last 5 specifications)
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In terms of power, we reach a very similar conclusion to the one in the comparison with An-
drews and Guggenberger (2014) in Section 4.3.1: namely, our procedure is always more powerful
than EMW (which is asymptotically nearly-optimal under our Gaussian DGP for the innovations)
in all autoregressive specifications (stationary, near-stationary and left-side of local-to-unity re-
gions) except in the case of an exact unit root. The differences in power in the unit root case are
small particularly when the correlation in the innovations is moderate. Moreover, in the purely
stationary specifications, the power gains of our IV procedure relative to EMW are very large even
for large samples. Crucially, our procedure extends in the right-side of unity and provides correct
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inference in the right side of local-to-unity, mildly explosive and pure explosive regions, for which
alternative approaches are invalid.

FIGURE 16
9, n =200 (100 for last 5 specifications)
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5 Inference in a linearised SIR model

In this section, we apply the procedure proposed in the paper on the linearised SIR model
(12) on Covid-19 data in order to construct confidence intervals for the parameters 6, v, 6 and
for the basic reproduction number ry across a panel of countries. As discussed in Section 2.3,

30



the triangular system in (12) implies that the dynamics of the number of infections follows an
AR(1) process with root p = 1 4+ 6 — v — §, which in the early stages of the Covid-19 outbreak,
before any government intervention, is expected to be greater than unity (since ro > 1 implies
0 > (v+6)), and the aim of containment policies has been to reduce ry (and hence p) below unity.
After the Covid-19 outbreak, there has been a lot of interest in epidemic modelling in econometrics,
including versions of the SIR model (for example, Liu, Moon and Schorfheide (2021) perform a fully
parameteric Bayesian estimation of a piece-wise linear approximation of a nonlinear SIR model,
Li and Linton (2021) fit a nonstationary quadratic time trend model on the number of infections).
Linearising the model at the DFE reveals the inherently nonstationary dynamics of the series at
the outbreak and we stress that: (i) inference based on standard procedures such as OLS/MLE in
(12) is only valid when p < 1 corresponding to the case 1y < 1 which is not empirically relevant at
the outbreak (since it implies absence of an epidemic) but may become relevant after government
intervention, (ii) when p > 1, the series for I; exhibit explosive behaviour with exponential growth
and standard semi-parametric procedures such as OLS do not provide valid inference (confidence
intervals), unless i.i.d. Gaussianity assumption is imposed on wuy;, and (iii) when p is in vicinity of
unity (i.e. when the contract rate ¢ is approximately equal to the removal rate v+ ), OLS/MLE
procedures involve nonstandard unit root or local-to-unity asymptotics and so standard inference
is invalid. Crucially, not only inference in the equation for I; but also in the equations for AR,
and AD; (which resemble predictive regressions with regressor I;), and hence inference on v and
9, is affected by the level of persistence of I;, and consequently, OLS/MLE inference on « and § is
only valid in the case 7o < 1. On the other hand, the IV procedure proposed in this paper remains
valid for all parameter regions for ry and without distributional assumptions or homogeneity of the
innovations. Epidemiologists consider ry the key parameter for determining whether an epidemic
is controllable and for understanding its transmission mechanism and, therefore, being able to
construct confidence intervals with correct coverage regardless of the value of ry € (0,00) is of
great importance for policymakers.

We use a dataset on daily number of confirmed cases, recovered and deceased obtained from
the John Hopkins University database!* for Italy, Germany, Austria, Denmark, Israel and South
Korea!®. We define the number of active infections as the number of confirmed cases minus the
number of recovered cases and deaths at each period. Our sample spans from 22/01/2020 until
04/08/2021'%. For each country, we start our sample from the date of the first reported death;
and we split the remainder of the sample into four subperiods!” (first reported death: 24/07/2020;
25/07/2020:26/11/2020, 27/11/2020:31/03/2021, 01,/04,/2020:04,/08/2021). We construct the con-
fidence intervals for 0, v,0 and ry for each country and subsample, using the IV confidence intervals
in Corollary 1. For the instrument construction, we use (41) with b; = 0.85 and by = 0.7, which
are the values we show work well for all autoregressive regions in the Monte Carlo exercise of
Section 4. Our choice to conduct inference over subsamples is motivated by the unlikelihood that
the model’s parameters, for example 7y, have remained constant over time; this is since aggressive

Yhttps://github.com/CSSEGISandData/COVID-19

150ur choice of countries is motivated by the availability and quality of series on the number of recovered
individuals; for example, for many countries, data for recovered are not reported; and in many cases when series
are available, they are often of poor quality or stop being updated at some point in the sample.

16Geries on recovered after August 2021 are not available. Arguably in late 2021, the SIR model becomes
inappropriate, since we start observing many re-infections due to mutations of the virus, so an SIS model (where
there is probability of re-infection) may be more appropriate for analysis.

1"To avoid any arbitrary sample split, we use the same dates for all countries, since they give us roughly the
same number of observations in each subsample. We find that our results are robust to alternative sample splits.
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government policies aimed at controlling the early dynamics of the epidemic were aimed at con-
taining the outbreak either by reducing the number of new infections through imposing lockdowns
and social distancing measures (reducing 6), through improved medical response to the outbreak:
hospital bed availability, improved treatment (increasing ), or later on, through vaccination by
reducing the proportion of susceptibles Sy/N.

FIGURE 18

Basic Reproduction Number, Italy Basic Reproduction Number, Germany Basic Reproduction Number, Israel Basic Reproduction Number, Austria Basic Reproduction Number, Denmark Basic Reproduction Number, South Korea
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Figure 18 presents the IV estimates and 95% confidence intervals for rq, #, ¢, and ~ for each
country and subsample. There are three main conclusions from our empirical analysis. First, the
death rate has considerably fallen over time in all countries, and the recovery rate has increased
over time for most countries; both due to availability of better medical treatment for the virus
(the overall effect of those two conflicting effects on the basic reproduction number ry depends
on the relative change of § + ). Second, the contract rate is constant over time for countries
like Germany and Denmark, but increasing over time (especially during the winter of 2021) for
Italy, Israel and Austria. Third, we find very different values for the basic reproduction number
across countries: rg is relatively constant over time for countries like Denmark, South Korea,
Austria and Germany and while its value is usually above unity, one is most of time included in
the 95% confidence interval. On the other hand, for Italy, we find that ry falls below unity in
the period April-August 2021 while for Israel (whose experience has been very different due to an
early vaccination programme), ro actually surges at the summer of 2021, when cases of re-infection
begin to be reported.

While we recognise that the linearised SIR model in (12) is a very simple and stylised model and
that the data on Covid-19 infections have been shown to suffer from serious measurement errors
and omissions, we make use of the basic SIR model to illustrate the usefulness and empirical
relevance of the inference procedure proposed in this paper. Its main advantage is that it gives
rise to confidence intervals for the parameters of SIR-type models with correct coverage rates
in both highly infectious and remissive periods, a property of crucial empirical relevance as this
section demonstrates: 7o may take values in (0,1), (1,00) as well as values very close to unity
depending on the various stages of the epidemic.
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6 Conclusion

The paper proposes a unified, distribution-free framework of inference in both an autoregressive
and predictive regression models, when the regressor’s autoregressive root is in (—1,00). This
includes: (i) stable and near-stable regressor processes, (ii) unit root and local-to-unity regressors,
and (iii) regressors that exhibit stochastic exponential growth (i.e. explosive and mildly explosive
processes).

The unified inference is based on a novel estimation method that employs an instrumental
variable approach with an artificially constructed instrument with a data-driven combination of
a near-stationary and near-explosive root. The resulting IV estimators for the autoregressive
parameter in the autoregression and the slope parameter in the predictive regression framework
are both shown to have a mixed-Gaussian limit distribution under all persistence regimes, and
independently of the distribution of the innovations and the initial condition. Consequently, the
t-statistic based on the new estimators is asymptotically standard normal with uniform size and
gives rise to asymptotically correctly-sized confidence intervals. To our knowledge, this is the first
method that delivers central limit theory and, consequently, general distribution-free asymptotic
inference when the regressor is purely explosive. Crucially, the method also allows for inference
with less persistent processes to the right of unity, i.e. mildly explosive and local-to-unity processes
with ¢ > 0 (which are assumed away by the local-to-unity literature), while remaining valid when
the process is with root in the standard range of (—1,1].

We demonstrate that our inference procedure exhibits very good finite sample properties in
an extensive Monte Carlo study and compares favourably to existing procedures for inference in
both autoregressions (Andrews and Guggenberger (2014)) and predictive regressions (Elliott et
al. (2015)) in their parametric validity range (—1, 1] while providing correct inference on the right
side of unity (1, 00), where no existing alternative approach has general asymptotic validity.

Finally, we show that the basic SIR model for modelling epidemics’ dynamics upon linearisation
around the disease-free equilibrium, reveals that the number of active infections evolves as a first
order autoregressive process with an explosive root whenever the basic reproduction number is
above unity. We employ our procedure to model the early dynamics of the Covid-19 epidemic
across a panel of countries and construct confidence intervals for the model’s parameters without
restricting the parameter space; i.e. without a priori knowledge of whether the epidemic is in a
controllable or uncontrollable stage.
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7 Appendix A

This Appendix contains an additional result (Lemma A1), and the mathematical proofs of
Lemmata 1-5 and Theorems 1-3 of the paper. Some further auxiliary results, as well as the proof
of Lemma A1 and Corollary 1, can be found in the Online Appendix B.

Lemma Al. Let Z; and Zy denote the instruments in (19), z1;, and zy the processes in (30)
and (31). Let xo; denote the zero-intercept autoregression in (3) and Zoy = Z;Zl 0% I Axg; be an
instrument generated by xo;. Under Assumptions 1b, 3 and 4, the following hold:

(i) [ (1= @)l @ = 0, 350, PPl ~ (1= 1,) 7" T(p+1) for any p > 0 and any se-

quence ((pln)neN in C(Z)J [n ((202n - 1)]27 (702_': - 07 Z?:l tp(JOQ_rf ~ (()02n - 1)*?*1 r (p + 1) fO’f’ any
p > 0 and any sequence (py,), ey i C(i1), where T'(-) denotes the gamma function.
(ii) Under C(i)-C(it), the sequences ri, = 7, > 1 | (Z1e—1 — Zot—1) Us, Ton = Tp2 > gy (22, — Z3,),

ran = w2 S (Gray — Zoiwor) with m, = n'/2 (1 — p2e2 ) are all o, (1).
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(iii) Under C(i)-C(ii) (1 — p,p1,) Doty 21t = O, (n'/?) + 0, <n/-£;1/2> where (ky,) s defined in
(6); under C(i), (1 — py,)n~ Y230 2 = n~ Y220, 1 + 0, (1).
(iv) Under C(ii)-C(iii), Zor = 2ot — Tnt, where

Pn — Pn
Tht = ———— (80271221571 - Pnfﬂtfl) 1 {n ’90271 - pn| - OO} + gpgngn (Al)

Pon — Pn
and g, = O, (n_1/2 (P9 — 1)71) independently of t. Moreover, all sequences defined by Ry, =

(¢ — 1) yr_z,lz (Z?:l Zot — Z?:l za1), Ron = (5, — 1) @3, (Z?:l Zop—1Up — Z21-1Uy),

Rap = 5, >0 1 (B — 204), Ran = (3, — 1)2 902—71271 (Doier 25 — 2oy #,) are o, (1).

(v) Define (Y,,Z,) by replacing u; by C (1)e; in the expressions for (Yo, Z,) in (38). The
following approximation holds: (Yn, Zn) — (Y., Z,) —, 0.

The proof of Lemma A1l can be found in the Online Appendix B.

Proof of Lemma 1. Convergence of (p,,),cy to p € (—1,00) ensures that Assumption 1b holds
for the entire sequence (p,,), oy When p # 1, so it is enough to show the result for p = 1. Denote
(cn)pen = {n(p, —1) :n € N}. Given an arbitrary subsequence (pmn)neN of (Pn)nens (Cmn)nen
has a monotone subsequence (cs, ),y (by the monotone subsequence theorem for real sequences).
By monotonicity, (c,),cy converges to ¢, € R U {—00,00}; hence: (,osn)neN belongs to C(i) if

Coo = —00, OF (pSn)neN belongs to C(ii) if ¢o, € R, or (pSn)neN belongs to C(iii) if co = 0.

Proof of Lemma 2. First, we show that, when (p,),.y belongs to C(i) or C(iii), the OLS
estimator p,, satisfies

—" =<1 (A.2)

where ¢ is a non-random constant. When (p,,),, . belongs to C(i) n (1 — p,,) — oo, and p,, — p,, =

O, (nfl/ 2(1—p)Y 2) under Assumption 2 by Theorem 1 of Giraitis and Phillips (2006), giving

en =0, ([n (1-— pn)}_l/Q) =0, (1) and € = 0; under Assumption 4, Lemma AO(i) implies that

. o2\ —1 /. L (1 -+ p) F
and we need to show that € (p) < 1 for all p € (—=1,1). Since I' <0 = € (p) < 0, it is sufficient to
consider I' > 0. Differentiating € (p) we obtain

¢ (p) = (0% =2I"T

—(02 o) and sign {¢' (p)} = sign (0> — 2T

since I' > 0. Hence if 6 > 2T, €(-) is increasing so €(p) < lim, ,;€(p) = 2I'/ (62 +2I") < 1;
if 02 < 2T, €(-) is decreasing so € (p) < lim,,_j€(p) = 0; if 0% = 2T, €(p) = 1/2. In all cases,
€(p) < 1 completing the proof of (A.2) under C(i). When (p,,), o belongs to C(iii), Theorem 4.3
of Phillips and Magdalinos (2007) gives p, — p,, = O, (p," (p2 — 1)), so €, = O, (p,,") proving
(A.2) with € = 0. Recalling the expression for F,, in (13), write

where €, is defined in (A.2). By (A.2), we may choose some 7 € (0,1 — ¢); for arbitrary § > 0 and
m,, — 00 we obtain

P(m,1z >9) < P(my,lz > 9,6, <1—1n)+P(e, >1—n)
= P(m,1{n(p,—1)(1—¢€,) >0} >0,6, <1—1n)+P(e, >1—1)
< P(mp,1{n(p,—1)n >0} >0)+P(e, >1—1)
< P(m,1{n(p,—1) >0} >6)+P(e, >1—1).
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When (p,,),,cy belongs to C(i), n (p, — 1) — —oc so there exists ny € N such that n (p, —1) <0
for all n > ng; hence P (m, 15, > §) < P(e, > 1 —n) for all n > ny and all § > 0 so part (i) follows
since P (¢, > 1 —7) — 0 by (A.2) and the choice n € (0,1 —¢€). When (p,,),,y belongs to C(iii),
using the same argument and choice of 7 € (0,1 — €), we may write
P(mplp, >06) < P(m,1{n(p,—1)(1—€,) <0} >6,6,<1—n)+P(e, >1—1)
< P(mp1{n(p,—1) <0} > +P(e, >1—1).

Since n (p,, — 1) — oo under C(iii), there exists n; € N such that n(p, — 1) > 0 for all n > n4
and all 6 > 0; hence, limsup,, ., P (m,1r, > ) <limsup,_ . P(e, >1—n) =0 by (A.2).

Proof of Lemma 3. Using the approximation for r3, in Lemma A1(ii), we may write

1., } 1 ., -
(1= p,o1n) i thl vz = (1—=p,01,) n Zt:l Tot—1Z0t—1 1 Op (1)
1, - 1 n
= o2+ n Zt:l Zot—1Ut + n (2p, — 1) thl Tor—1Ut

o = 1) Sy s + 0, (1) (A3)
where the last asymptotic equivalence follows by equations (66)-(68) of Magdalinos and Phillips
(2020) (henceforth MP(2020)). Under Assumption 4 on (u;), n=t> " | Zor—1uy = 'y + 0, (1) by
Lemma 3.1(ii) of MP(2020). Also, under C(i), Lemma Al(iii) and Zg,—1 = O, (n"/?k,) give
n (1= ppp1,) nZin1Zn—1 = Op (Kp/n) + O, (n7H (1 — goln)_l) = 0, (1), since K,/n — 0 under
C(i). Under C(ii), Lemma A1(iii) yields

- — — Zon 1 n
n~t (1= pppin) NZin-1Tn-1 = 12 372 2aj=1 T0j-1 + 0p (1) (A4)
Combining (A.3)-(A.4) and using (1 — p2¢?.)) /(1 — p,¥1,) ~ 1 + p,, we obtain that
1 ., . ~
(1 - /)i@%n) g Zt:1 T 121 =V, t o0 (1) (A-5)

with ¥, defined in (35) under C(i)-C(ii), with the term in (A.4) being o, (1) under C(i). Under
C@), n™' >0 wor—1uy —, I' by Lemma 2.2(i) of MP(2020), so the identity (obtained from the
recursion for xq;)

1 . 1, 1., 1

n (1 - pi) Zt:l x%t—l = n Zt:l uf + 2Pnﬁ Et:l Tot—1Ut — ﬁmgn —p o® + 2pl (A.6)
implies that ¥, —, ¢ + 2pI' under C(i). Under C(ii), T,, — A and standard local to unit
asymptotics, e.g. Phillips (1987b), yield

. 1 Ton D1 T0j-1
\Ijn = 2 (wQ + E Zt:l Tot—1Ut — A+ C Zt 1 th 1= n1/2 ]n3/2 —+ Op (1)

—d 2 (w + fo r)dB (r) + Cfo ) dr — J. (1) foljc (r) dr)

= W4 J. (1) —2J.( fo

where the last equality holds by applylng the 1ntegration by parts formula to the stochastic in-
tegral fo r)dB (r); see equation (79) of MP(2020). The expression for the weak limit ¥,
in the lemma follows since 0% + 2pI' = w? under C(ii), completing the proof of part (i). For
part (ii), by the approximation for ry, in Lemma Al1(ii), it is enough to show that 7g, :=
(1—=p2p2 ) )n 30, zOt —, 0 +2pF The proof of Lemma 3.1(iv) of MP(2020) shows that © on =
(1= @A) n Sy 22, + 0, (1) —p w? when (1— py,) sy — 00 and fon = (1— p2) -t S0, a3, +

0p (1) when (1 — ¢y,,) kK, — 0. In both cases, Ty, —, 02 + 2pI'; by (A.6) when (1 — ¢,,,) Ky — 0
and the fact that (1 — ;) K, — oo implies that p = 1 and 02 + 2pI’ = w?. It remains to show
that that (1 — p2p2, )n 'Y 1, 28, —p w? when (1—¢y,)/(1—p,) — ¢ € (0,00): in this case,
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(p,,) belongs to C(i) and equations (74) and (75) of MP(2020) imply that

1 1— ;072190%” 2 1 - Pn 2, .2 1 n ~
( Pn%n) > i Zoro1 = W w- = 2% (1 - Pn%n) n > i1 Tor—1Z0i-1 ) +0p (1)

Since n~t (1= p2et,) Do Tor—1Z0—1 —p w? (recall that we are under C(i)), the result follows

from 1 — phot 2(1-p,) 2p

=, (1_ 1—/)%@07%”) Yo, o)
since ¢,,, — 1 and p,, — 1. For part (iii), in view of the approximation for 71, in Lemma A1(ii),
it is sufficient to show the result for 32" | €,, with &, := n~Y2 (1 — p22)"/* Zo_1¢;. Since &, is

an JF;-martingale array under Assumption 4 that satisfies the Lindeberg condition by Lemma 3.2
of MP (2020) and

> B, . . (fit) = 0¢ (1 - Pn‘ﬂ%n) Zt 1201: 1 7p0e (U + QPF)
by part (ii) of the lemma, the result follows by a standard martingale central limit theorem (e.g.
Corollary 3.1 of Hall and Heyde (1980)).

Proof of Lemma 4. The statement for [>7 | zo, 1, > py 23] and [Yr, Z,] —a [V, Z] follow
by Lemma 5 and Lemma 2 of Magdalinos (2012). Hence [Y,,, Z,,] —4 [Y, Z] of part (i) follows from
the martingale approximation of Lemma A1(v). The only statement of part (i) that requires proof
is for s, ' > | x;_122;—1. The recursions for z; and z in (2) and (31) give
(PnPon = 1) D4y T122i1 = TpZon — Pap D opeg 221Ut = P 2 pq Teo1Up — Dy uy
00t (P — 1) 2oy 221+ (= 1) D00 e
= Tp2on + 0p (Vnln,2) (A.7)

where the order of magnitude follows from: v, ' (p,, — 1) D" | u; is of order O (0" (n(p,, — 1)) =
op (1) by Lemma Al(i) under C(iii) and O, (n~") under C(ii); v, 'v, 1> " 2211y is of or-
der O,[v,* (pg, — 1) = op(py," In (py, — 1)]Y%) = 0p (1) under C(iii) (by Lemma A1(i)) and
Op(n (125, = 1)) ] under C(ii); by (B.3) v, v, L 5 a1-aueis of order O (i, [n (9, = D]"*) =

0p (1) by Lemma A1(i); finally, the recursion (31) gives
v vk (on = 1) 20 2o = v W (0 = 1) (020 — 1) (220 — 20 w) = 0, (07172) + 0, (93))
since 22, = O (V,.) and Y ;- uy = O, (n'/?). The proof of (A.7) follows by Lemma Al(i) and
the fact that n (,, — 1) — oco. By (A.7), we conclude that s, ' Y7\ 2 1201 = 32222 + 0, (1)
and the result follows from the definitions of Z,, and X, in (38) and (39). ’

For part (ii), the martingale approximation of Lemma A1(v) implies that

n . /2 —(n—j)—1 12 1’
Vo, Xl = C (1) Sy nges + 0p (1) with e = | (63, = 1) 02" 7 (02 = 1) 7] (A9)
(for X,, we may use the part of Lemma Al(v) corresponding to Z, replacing ¢,, with the

mildly explosive root p,). We apply a standard martingale central limit theorem, e.g. Corol-
lary 3.1 of Hall and Heyde (1980), to the martingale array in (A.8): the conditional variance

matrix V, = Y7 ¢n;¢,Br,_, (u7) has typical elements: Vi = w? (g2 —1) >y 902_7? — w
n n 1/2 1/2  _p— n J

V) = w (02 =)0 0% — W VY = (02— 1) (3, - 1) Pt (*‘l) . When

n|p, — Pan] — 00, evaluating the geometric progression yields V12 =0 (p3) + O (p," ); when

P = a0l = O (071), 1 (9, < b for some b > 0 and |Vi§?| < b (3, — 1) ™ = 0 (1)

by Lemma A1(i). In both cases Vl(Qn ) 00V, = w?l, as required for the covariance matrix of
a random vector [Y, X|" consisting of independent N (0, w?) variates. For the Lindeberg condition
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associated with (A.8), the bound max;<, [|c,;||> < 2\, with A, = (3, — 1) V (p2 — 1) yields
n 2 2 g — n 2
S e B (681 {17 €2 > 0}) € max® (21 {e? > 0,15/2)) S0y s = 0

by uniform integrability of (e?) since A\, ' — oo when p, — 1 and 327, [leu |l = O (1).

jEN? '
For part (iv), p, — p > 1; X in (8) is well-defined a.s. because 7, := > 7, p~/u; con-

verges a.s. under Assumption 4: P (supk21 H77n+k — 77nHL1 > 6) < 0B (sukaI ||77n+k — 77n||L1>

for any § > 0 and E <supk21 e — nnHLl> < supgsq [Jullp, D o5— i ||/ — 0. By the above
convergence of X and since X, (n) —, Xo when p, — p > 1 by Assumption 3, X, —, X
will follow from showing that » " (pn? — p~?)u; —r, 0, which, in turn, will follow from show-
ing that Z?Zl lpn? — p~7| — 0. To prove the last statement, we apply the mean value theo-
rem to the function z — z77: p.7 — p7 = —(p, —p)jo,’" " for some ¢, — p; hence, we
may choose 0 € (0,p—1) and ng(6) € N such that for all n > ng(d): ¢, > p — 0 which
implies that Y7, |0, — p77| = |p, — pl S0y’ < lpy—pl 20 (p—8)7" — 0 since
p— 0 > 1 from the choice § € (0,p —1). Next we show that X, # 0 a.s. under Assumption
4. Writing X, = lim,,_, Z?:l mie; + Yy a.s., where m; = (p? — 1)71/2 (Z;io P_jcj> p~t and

Yy = (p? — 1)71/2 (E;ﬁo (Zj; p‘jch) e_i +Xo— ,u) satisfy > °,|m| < oo and m; # 0 for
all i by Assumption 4 and is an Fy-measurable random variable by Assumptions 3 and 4 (un-
der Assumption 2, m; = (p? — 1)_1/2 p~tand Yy = (p* — 1)_1/2 (Xo — ). By Eg,_, (¢?) = o2
and liminf, .. Ex,_, |e;| > 0 a.s., the martingale difference sequence (e;, ;). satisfies the local
Marcinkiewicz-Zygmund conditions (equation (1.1) of Lai and Wei (1983)), so applying Corollary
2 of Lai and Wei (1983) to X yields P (Xo = 0) = P (lim,, 00 Y, mie; = —Yp) = 0.

We turn to the limit distribution of ¢ (X,,)Y,. Let (k,),.y C N be an increasing sequence
satisfying k,/n — 0 and k,/ (92, — 1) — oo and let Y/ = (02, — 1) C (1) PO, oD,
It is easy to see that ||Yn -Y!
op (1). Also,

n

)
O (p32") = 0(1) so Lemma A1(v) implies that ||Y; — Y/|| =

Iz,
2 1/2 n —3
X0 — Xi, 1| < (07 — 1) <Zj:kn P’ + Xo (n) — Xo (kn — 1)) —p 0

by Assumption 3. Using the fact that X, # 0 a.s. and the continuity of g away from zero,
lg(Xn) — 9 (Xk,—1)| —=p |9 (Xs) — 9 (Xoo)| = 0, so we conclude that

9(Xp) Yy =9 (Xg,-1) Yr; +o0,(1) = Z?:_Okn gn,t + 0, (1) (A.9)
where Sn,t = C(1) Cuelrrn, and (,, = (@%n - 1)1/2 Spgygniknit)ilg (Xk,—1) - Since (,; is an Fy, 1-
measurable sequence for all n,t, {(§n7t,.7:n7t) 0<t<n— kn} with F,; = Fiik, is a martingale
difference array with F,,; C F,11, since the sequence (k")neN was chosen to be increasing. We
apply a martingale central limit theorem (Corollary 3.1 of Hall and Heyde (1980)) to a mixed
Gaussian distribution. The conditional variance of the martingale array in (A.9) is given by

S B (6h0) = WP G =070 (Xen) (63, — 1) i e Y
—, W (X)), (A.10)
For the Lindeberg condition, L, (J) := ?:_Ok" Er,, . (£,1{&,>6}) —, 0 forall § > 0, let

A (8) = C (1) (03, — 1)_1/2 6'/% and note that X, (§) — oo for any § > 0. The estimation
1{&, >0} <1{d* Xp,—1) €l rp, > M (0)°} € 1{g* (Xpoum1) > N (8)} +1{efys, > A (0)}
and F},, _1-measurability of X}, imply that L, (§) < Ly, (6) + ¢ (X, 1) Lo, (8), where
Lon () = C (1) (¢5, = 1) Zil, 02 B (1 {ef > M (0)}) =1, 0
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since || Lay, (0)]|, < O (1) maxi<, B (71 {e] > A, (5)}) — 0 by UT of (¢?) and
Ly, (0) = Wzl {9% (Xh,—1) > X (0)} 2002 okn Cnt —p 0

since both ¢* (Xj, 1) and > i " (2 converge in probability to g (Xoo) < 00 a.s. and A, (0) —
o0o. We conclude that, for any § >0, L,(0) < 0,(1) + ¢*> (Xk,-1) 0, (1) = 0,(1) proving
the Lindeberg condition. In view of (A.lO), the martingale central limit theorem applied to
Z;:Ok” €0 in (A.9) then implies that g (X,,) Y, —4 ¥ where ¢ has characteristic function ¢,, (z) =
exp {—11202g (X.0)*} i.e. ¥ =4 MN (0,029 (X)?). The statement for g (X,) Y, follows by an
identical argument by replacing C (1) e; by &; in Y.

1\ /2
Proof of Lemma 5. Denote Snt = [Sl,nta 52,nt7$3,m€}/ with gl,nt = <’I’L (1 - (p?n) 1) 21t—1€¢,

Eom = C(1)n2e; and &, = C (1) (¢35, — 1)'? o ") e, The martingale approximation
of Lemma Al(v) for Y, (s) and a standard approximation for B, (s) give

[Un (5), Ba(s),Ya ()] = Lns T &t 0p (1) (A.11)
Since 21;-1 is F;_i-measurable, £,, is a ]—"t—martingale difference array and we may apply a
Lindeberg-type functional CLT for vector-valued martingale difference arrays to (A.11): see The-
orem 3.33 (pp. 478) of Jacod and Shiryaev (2003). The conditional Lindeberg condition on ||¢,,,||*
(3.31 in Jacod and Shiryaev (2003)) is implied by the stronger unconditional Lindeberg condition
(LC) on ||€,,]|* which, in turn, is implied by establishing the LC on each of & e &0 and &5y
The LC for ﬁ’m is established by Proposition Al and Lemma 3.3 of MP(2020). The LC for f;nt

follows from the bound Z}Z‘ij E(&,1{&,,>0})<C (1)? maxy<, B (e?21{e? > néC (1)_2}) and

uniform integrability of (¢7),y. For the LC for &5, oy sl =H ) < 1 for all ¢ < |ns] and s € [0, 1]
implies that

S B (Gl {€ > 0}) < C (1) maxB (ef1 {¢} > M (0)°}) (¥3, — 1) T wan (A12)

where X, () = C(1)7" (3, — 1)_1/2 6% — oo for any § > 0. Since (p3, — 1) 31, w52 =

O (1), (€}),oy is a UI sequence and A, (6)> — oo, the right side of (A.12) is o(1). This es-

tablishes the LC for the martingale difference array ¢,, in (A.11). The conditional variance

matrix of the array in (A.11) is given by V(™ : ZL"SJ Ez,_, (§,45,); denoting the typical el-
3

ements of V(™ by [‘/;gn)] K v = o2 11 — 2 )2 6202, by Lemma 3.1(iv)

Z7j:

of MP(2020); Vi) = w?[ns|/n — w?s; Vi) = w?(gd, — 1)1 op2 — w2 for all s >
0; Vi) = w2 (¢, — )P ent = O (In (1= ,)] %) = 0(1); since Y 211 =
1

0, (n2(1=¢3) 1), Vi = L= ) s = 0, (1= k) = 0, (1);

Vl(:sn) = w? (3, — 1)1/2 (1-— go%n)lm n~1/?2 tLZSlJ gpQ_(L”SJ "1 .1 satisfies
n 1/2
HV1<3)

_<ometmax |(1-¢d) ] (G- ) 0TS gl = 0 (0 (0a = 1))
1 =n 2

We conclude that V(™ —, diag (02w?s,w?s,w?) for s € [0,1], and applying Theorem 3.33 of
Jacod and Shiryaev (2003) to (A.11), L”s P& = 5 (s ) where £ (s) is a continuous Gaussian
martingale with quadratic variation (&), = dzag (0%w?s, w?s,w?). By Levy’s characterisation (e.g.
Theorem 4.4 II of Jacod and Shiryaev (2003), £ (s) is characterised by its quadratic variation
process, & (s) =4 [U (s), B (s),Y] with the right side defined in the statement of the lemma and
independence between the components of £ (s) implied by the diagonality of the quadratic variation
matrix (£)

s*
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Proof of Theorem 3. Under C(i)-C(ii) of Assumption 1b,

-1/2 1 — 2 92 4\1/2 n o~ s _
nl/2 (1 _ Pi@%n) 1/2 Py — pr) = n (1= pretn) ™ (oin Zre—1u — nZ1p—1ly)
(1 Pn€01n) Zt 1 & 17211

with Lemma 3(i) and @,, = O, (nfl/ 2) implying that
2 (1= g2 ) i = 0y (072 (1= p263) ) 10, (7 (1= 63) ) =0, (1)

and, similarly for 3,,, n="/2 (1 — p2¢2 )""*nz1, 12, = 0, (1). By Lemma 3(ii), the common de-

nominator of 7, (py,, — p,,) and m, <Bln - 5) is asymptotically equivalent to ¥, in (35) we obtain,
under C(i)-C(ii),

~1/2 [. ~ 1 1~ ~
n2 (1= et P ons B = B] = (140, (0] 2= [0 (1).07 (1) (A.13)
where U, (-) is defined as U, () in Lemma 5 with z;; replaced by Z; 1 (and e; = u; under

Assumption 2) and U¢ (-) as U, (-) with e, replaced by &,.
We now prove part (i) of the theorem for p,,: under C(i) and Assumption 2, u; = ¢; and I' = 0
so ¥ (¢) = 0% and U, (1) —4 N (0,0%) by Lemma 3, so substituting into (A.13) yields
~1/2 -
2 (1= p2h) " (pr = pa) —a N (0.1). (A14)
We complete the proof by combining (A.14) with Lemma 2: under C(i), Lemma 2(i) implies that
mnlg, —p 0 for my, =y |, = P1l| g, » 80 (20) yields m [|p, = P, = 7 (P20 = Prally, 16, =
0 and the proof of 7, (p,, — p,,) —4 N (0,1) under C(i) and Assumption 2 follows from (A.14). For
f3,, under C(i) and Assumption 4, ¥ (c) = 0*+2pl" by Lemma 3(i) and UZ (1) —4 N (0, (0% + 2pT") 02)
by Lemma 3(iii) with the martingale difference e; replaced by ¢4, giving
2 (1= p2d,) 7 (B = B) —a N (0.0%/ (02 + 20T)) (A.15)
BQn_Bln Bn_Bln
side of (A.15) is asymptotically equivalent to m, (B, — B3), completing the proof of part (i).
Under C(ii)-C(iii) of Assumption 1b, (¢3, — 1) oo [nZ2n—11n — Un Yy 22t-1] = 0, (1) from
Ry, = 0, (1) in Lemma A1(iv). Since (02, — 1) porn /237" 200 1 = Op(n~Y2 (2, — 1)71/2), we
conclude that (3, — 1) 5" (nZan-1i) = 0p (1). For By, (9, — 1) 5t (Z215,) = 0, (1) by a
similar argument. The above and Lemma 4(i) imply that the numerators of 7, (p,, — p,,) and

Wn(B% — [3) are asymptotically equivalent to

(30 = 1) Pan D00y 2vmatie, 300y Zurer] = [VaZn, Y Zu] + 0, (1) (A.16)
The approximation for Rj, in Lemma Al(iv) and (B.12) give

Choosing m,, = m,

in Lemma 2(i) shows that 7, = 0, (1), so the left
L1 Ll

-1
Rp  _ vV,

n (anOZn - 1) V;IVT_L,lz‘,fn—l‘EQn—l = []' + OP (1)] n n,lz (pn¢2n )Zt 1 Ro—1""— Ko, Z] 1 xj_l (A17)
which is o, (1) under C(iii): O, (kn/n) if (p, — 1)/ (¢g, —1) — 0 and O,((¢y, —1)"" /n) if
(020, — 1)/ (p, — 1) = O(1). Under C(ii), (A.17) becomes Z,n 323" x; 1 + 0, (1) by (B.11),
showing that (A.17) contributes asymptotically under C(ii). Combining the above with the ap-
proximation of s;'>""' 4 1291 in Lemma 4(i), we obtain that the common denominator of

T (Pan, — py,) and 7, (B% - 6) satisfies

Sy Do Ty zu = Zp X, o, (1), X, =X, — n=? Zy—l Lj—-1 (A.18)
under C(ii)-C(iii) and Assumption 4, where Z,, and X,, are defined in (38) and (39). Recalling the
definition of s, in (37) and noting that p, s, — 1 ~ ©,, — 1 under C(ii), the normalisation under
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C(ii)-C(iii) becomes

Sn _ VUn (03, — 1)1/2 2nl/? (02, — 1)_1/2 under C(ii)
(02 —1) n PrP2n — 1 o (02, — D2 (p2 = 1)V (p00, — 1) under Cfiii)
(A.19)
which is m,, under C(iii) and 27, under C(ii). Combining (A.18) and (A.16), we obtain
/2
(SO n 1)1 ~ p e
= [P = B = 6] = - Y+ 0, (1) (A.20)

under C(ii)-C(iii) and Assumption 4.
We now prove part (iii) of Theorem 3: under C(iii), X,, = X,, + 0, (1) and applying parts (ii)
and (iii) of Lemma 4 and the continuous mapping theorem to (A.20) we obtain
T (Pon = ) =4 Y/X and 7, (B, = B) = Y7/X (A21)
where X =; N (0,w?) when p, — 1 and X = X, when p, — p > 1, so that X # 0 a.s. under
C(iii), X is independent of (Y,Y*¢) and Y =4 N (0,0?), Y¢ =4, N (0,02) by Lemma 4. Under As-
sumption 2, w? = 02,50 Y/X =4 MN (0,0%/X?); under Assumption 4, Y¢/X =4 MN (0,02/X?).
Thus, (A.21) gives the correct limit distributions for part (iii) of the theorem and it is enough to
show that , (p,, — Pa,) = 0, (1) and m, <Bn - BM) = 0, (1) under Assumption C(iii). By (20)

and (21) Tn ||pn - pZnHLl = Tn ”ﬁln - p2n||L1 1Fn and Tn Bn - BZn L - BQn L 1Fn
1 1
the right side being o, (1) by applying Lemma 2(ii) with the choices m,, = 7, ||py, — P2y, and
My = T || By — Bap|| - Combined with (A.21), this shows part (iii) of the theorem.
Ly

We proceed to prove part (i) of the theorem under Assumption C(ii). In the notation of
(A.13) and Lemma 5, |U, (1) — U, (1)‘ = 0, (1) by the approximation for 74, of Lemma A1(ii) and

Lemma 3.2(i) of MP(2020). Combining, (20), (A.13) and (A.20) and recalling the normalisation
in (A.19) and the above approximation for U, (1), we obtain

. ~1/2 ~1/2 -
Tn (IOn - pn) = nl/Q (1 - (pln) / (pln pn) 1Fn + n1/2 (Spgn - 1) / (p2n - pn) 1Fn
Un (D)) 1¥a(1)
U, (-) and Y, (+) are defined in Lemma 5 (Wlth u; = e; under Assumption 2). ¥, in (35), n=*/2z,,,
15, and 15, are functionals of B,, (s) = n=+/2 31" 4, on D [0, 1], so the functional CLT of Lemma

5on [U,(s), B, (s),Y,(s)] and the continuous mapping theorem imply that

U, (1) 1Y, (1) U(l) Y
—1p, + = 1z P+ 1z A.23
g, "X, T e e g (429
since, by Lemma 3(i), ¥,, —4 ¥ (c) with 0% + 2pf‘ = w? under C(ii), ¥ (c¢) = w?*¥_(c) on

the event F. and 2 <Jc( ) — fo Je(r )dr) = wW¥, (c) on the event F,. The continuous mapping

theorem is applicable to (A.23) because z = 0 is the only discontinuity point of the function
T = Lo (z) and P(K.+c=0) = 0 since K, in (34) is a continuously distributed random
variable for all ¢ € R. Denoting ¢ := [072U (1) ,ale}/, Lemma 5 implies that ¢ is independent
of Fg =0 (B(s):s€0,1]) and ( =4 N (0, I3). Since the random variables J. (1), ¥ (¢), 1, and
17 are Fp-measurable (as non-stochastic functionals of B (r) on D [0,1]) the independence of ¢

~ /
and Fp implies the independence of the random vectors ¢ and [JC (1),¥(c),1p,1 p} . Under

Assumption 2, w? = 0% and we conclude that the limit in (A.23) is given by [ oL (C) ——=1 FJ ¢
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—p,,). For

n

has a MN (0 < )
T (Bn - 6), the same argument applies with U, (s) and Y,, replaced by U? (s) and Y in (A.22);

defining U, (s) and Y? (s) as U, (s) and V), (s) with e, replaced by &;, Lemma 5 implies that
~ U (1) Ye Oe [ 1 1 } -
7 (B = 8) =i g 1r + 15 =" Lo 15 | €
) ) W (o) Wl (o) " () v (™"
where ( =4 N (0, I3), which yields the limit distribution of part (ii).
It remains to prove that =, (b’n — ﬁn> —, 0; since [ =B = 6% on the event F, by

1p, + \1,21(0) 1 pc> distribution as required by the theorem for 7, (p
+

n
construction, it is enough to show the result under C(i Tn <Bln - ﬂ‘l‘n> —, 0 with 7, =
n/2 (1 —p2p? )~ 2 From the definitions in (21) and (2 )
T Brn — 51n> =, Tz (7,7 Z?:lgtflglt—l)il Peu0e/Wu,

so it is enough to show that 7,'z,21,-1 —, 0. By Lemma A1(iii) and x, = Op(/#/Q), TpZin_1 =
Op((1 = p2e2) s i (1= p23,) ™" = 072 (1 = p2%,) ™% — 0 completes the proof.
Proof of Theorem 1 and Theorem 2. By using (18) and the fact that 6,, —, 0 and 6. —,, 0.
we obtain that T, (5,) = [1 + o, (1)] T, and T}, (%) = [1+ 0, (1)] T}, where

Z,z:lztwf/ga Uin =31 21 Zu (A24)
( t=1 Zit—l)

for i € {1,2}, where v; := u;/o for T), (p,,) and v; := &;/0. for T}, (Bn) Proving the more general

‘I/m
Tn = Tln]-Fn + TZn]-F_‘,La T‘zn = ’\If |C@na Czn -

result 7, —4 N (0, 1) for any innovation sequence (v;) satisfying Assumption 2 with Ez,_, (v?) =1
a.s. and z; generated by (1) with innovations (u;) satisfying Assumption 4 will establish the A/ (0, 1)

asymptotic distribution of both T;, (p,,) under Assumption 2 and T, (Bn) under Assumption 4.

We first prove that T,, —4 N (0,1) under the stronger Assumption 1b and then we employ
Lemma 1 to extend the validity of the theorem under Assumption la. Since T3, = O, (1) and
Ty, = O, (1) by Lemmata 3 and 4, |T,, — Th,| = |Ton — Tin| 15, = 0, (1) under C(i) by Lemma
2(i) and |7}, — Ton| = |1 — Tin| 15, = 0, (1) under C(iii) by Lemma 2(ii). Under C(i), ¥y, —,
0? + 2pI' (Lemma 3(i)) and ¢;,, —4 N (0,1) (by Lemma 3(iii) with ¢ = Eg,_, (v?) = 1), so
T, = (140, (1)) ¢y, —a N (0,1) as required. Under Assumption C(iii), Lemma 4 implies that
Ty, = (1+0, (1)) (|1X,| /X5) Vs (v) with

Yo () = (93, — 1) S 00" o —a G =a N (0,1)
from the convergence Y, —4 Y with w? = 1. Since [X,,,Y, (v)] —4 [X, (5] where X # 0 a.s. and
X is independent of Cy, Ty —4 sign (X)(y =4 N (0,1). Under C(ii), defining U, (-) and Y,, (-) in
the same way as U, () and Y, () in Lemma 5 with u; replaced by v;, Lemmata 3, 4 and 5 give

T, = w! (‘xpn‘ /@n) U, (1) 15, + (X, /X,) Ve (1) 1Fn 4o, (1) =g T, (A.25)
where T, := sz’gn( D) Cidp + sign (Uy) Clp, Uy = w? + J.(1)° — 2J.( fo r)dr, Uy =
fo r)dr and (;,Cs =¢ N (0,1) with ¢; independent of (¥y, F,) and (, mdependent of

(\Ifl, F ) Smce \Ill and W, are continuously distributed ¥;¥y # 0 a.s.. By independence of (;
and (¥, F.) and the fact that —¢; =4 N (0, 1) we obtain
P({ysign (V1) <z, F.) = P((; <z, F,¥ >0)+P(-¢, <z F., ¥ <0)
= P <a)P(F,¥; >0)+P(—¢, <z)P(F.,¥; <0)
O (z)[P(F.,, 01 >0)+P(F., ¥, <0)] = (x)P(F,).
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The above argument also gives P ((,sign (V5) < z, F,) = ® (z) P (F.), so the distribution function
of the limit 7, in (A.25) is given by

P(T, <) =P (¢ysign (V1) < @, F) + P (Cosign (W2) < @, F) = @ (2) [P (F) + P (F.)] = @ ().
The above argument proves that T, in (A.24) satisfies T,, —4 N (0,1) for any (v;) satisfying
Assumption 2 with Ex,_, (v7) =1 a.s. under Assumption 1b, when (p,,), oy in (1) belongs to one
of the autoregressive classes C(i)-C(iii) of Assumption 1b.

Now suppose that (p,,),, oy in (1) satisfies Assumption la and consider an arbitrary subsequence
(pkn)n e Of (Pn)pen and (Ty,,) ey of (Th),cy- By Lemma 1, there exists a further subsequence
(pmn)neN of (pkn)neN satisfying Assumption 1b; as a result, (pmn)neN belongs to one of the classes
C(i)-C(iil) and the preceding argument shows that 7}, —4 N (0,1). We conclude that for any
subsequence (T}, ), ey Of (T7,),,cy there exists a further subsequence (75, ),,cn Of (Tk,, ),cn Such that
Ty, —a N (0,1); but this implies that the entire sequence (T},),, oy satisfies T, —4 N (0, 1).

Using the argument following (A.24), we conclude that T;, (p,,) —4 N (0, 1) under Assumptions
la, 2 and 3 and T, <Bn> —4¢ N (0,1) under Assumptions la, 3 and 4.

For the confidence interval I, (p,,, @), we verify Assumptions Al and S of Andrews, Cheng and
Guggenberger (2020), abreviated to ACG (2020). Given the parameter space O in (7), and 0 =
(p, F, Xo) € O, the coverage probability of I, (p,, ) is CP, (0) = Py (|T,, (p,)] < @1 (1 — a/2))
in the notation of ACG (2020). Consider a sequence (6,),cy = (Pns Fny Xo (1)), € © and
an arbitrary subsequence (wy,), .y € N. Since (pwn)neN C [-1+ 9, M] is bounded, there exists a
subsequence (ky,), oy € (Wn),cy such that p, — p € [-1+ 6, M], so (pkn)neN satisfies Assumption
la. Since (F,,Xo(wn)),ey € A (Fu,, Xo (wn)),eny € Ay for all but finitely many n; since
kn > wy, (Fi,, Xo(kn)) € Ay, for all n. We conclude that there exists a subsequence (ky,),,cx
of (wy),cy such that (0r,),cn = (ks Frns Xo (/{;n))neN satisfies Assumptions la, 2 and 3 which
implies that lim,, .. Py, (15, (p,) <) = ®(z) and

lim CPy, (0x,) = lim Py, (| Ty, (Bp)] <@7'(1—a/2)) =1—a. (A.26)
Convergence in (A.26) proves simultaneously the validity of Assumptions Al and S of ACG(2020)
and the claim lim,, ., infyco P [p € I,, (p,,, @)] = 1 — « follows from Theorem 2.1(e) of ACG(2020).

It remains to prove that T,, (8)) —4 N (0,1). We first show that T,, (Bn) —T,(B;) —p 0 under

n n

Assumption 1b. Since T,, (5;) = T, (Bn) on the event F,, it is enough to show that T, (Bm) —
T, (8},) —p 0 under C(i)-C(ii) of Assumption 1b. Since nz?, = o, (n (1 — p,1,) ') = 0, (72)

by Lemma Al(iii), the denominator of T, (87,) in (26), v3, :== >/ Z2, —nzf,_; (1— p2) 1p,,
satisfies m,2 (3, Z_; — v%,) —p 0. Hence,

T (Bin) — T (832) Bin = B

(P ~ aNC e
< o e M 2B I (m2 32 F) oy (1] = 0, (1)
€ t=1

since 7, ) By, — Bin‘ —, 0 by Theorem 3 are the other sample moments are O, (1) by Lemma
3. This proves that T, (8)) —4 N (0,1) under Assumption 1b and the subsequential argument
employed on T,, shows that T,, (5;.) —4 N (0,1) under Assumption la.

n
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Supplementary Online Appendix B

This online Appendix contains: (i) a collection of auxiliary results (Lemma B1) and its proof
as well as the proofs of Lemma A1 and Corollary 1 of the main paper in Section 1.1 and (ii) some
additional simulation results in Section 2.2 below.

1.1 Additional mathematical results

Lemma B1 is concerned with the limit distribution of the normalised and centred OLS es-
timator p,, in (15) obtained from the autoregression (2)/(14) under weakly dependent errors.
The result is well-known for the near-nonstationary class C(ii), so we concentrate on the near-
stationary/explosive classes C(i) and C(iii).

Lemma B1. Consider the autoregressions x; in (2)/(14) and xo in (14) and the stochastic
sequences X, in (39) and
Under Assumptions 1b and 3, the following hold:
(1) Under C(i) and Assumption 4, Tn—1 = [1 + 0, (1)] (1t + Ton-1),
_ 1/2 n n
nt/? (1 - ,0721) ‘Zt:l Ty Uy — D g 5’70%1“1‘/} = 0, (1)
) n! (1 - Pi) }Z?:l i?—l - Z?:l ajgt—l} = Op (1)
and (1 —p)"" (Pn — pu) —p T/ (0 +2pT).
172
(ii) Under C(i) and Assumption 2, (n (1—p32) 1) (P — Ppn) —a N (0,1).
(iii) Under C(iii), (p% — 1)1/2 (p, — 1) p,"nZTy, = X, + 0, (1),
2 _ n n
(p721 - 1) Pn’ D i1 wp = X1+ op (1),
(P2 = 1) 9 (P = ) = Tu/ X + 0, (1) and |10/ Xo| = Oy (1). When p, — 1, T/ Xy =4 C
(standard Cauchy distribution); when p, — p > 11, /X, —q Yoo/ Xoo where Yoo =4 X and the
random variables X, and Y, are independent.

Proof. Denote zo = X (n) for brevity. By employing (3), we obtain

11— pn
Tpo1 = 1+ Ton—1 + (T0 — p) P Zn (B.1)

Under C(i), Zon = O, (n"Y2 (1 — p,) ") and, by Assumption 3, the order of the last term of (B.1)
is given by O, (n_l (1- pn)_g/z) . Since
n_l (1 _ pn)73/2
W (L= p,)
the last term of (B.1) is dominated by Zg,. In turn, Zg, = 0, (1) when n'/2 (1 —p,) — oo (the
half of the C(i) region closer to stationarity), in which case u is the dominant term in (B.1). This

proves the claim Z,, = [1 + 0, (1)] (1t + Zoy) of part (i). For the second claim of part (i), (3) and
Zon = Op (n"Y%k,) and 4, = O, (n~'/?) give
D Tealy = Doy Toratte = p Yy e+ (w0 — 1) 3oy oy ue — (14 0p (1) 0 (1 + Ton-1) T

= (zo—p) Z?:l Pfflut — NZon-11y + 0p (1) (Wil + Ton-11n)
= 0y (k) + Op (k) + 0y (n'7?)

showing that n=/2 (1 — p2)"/? > @ qu, — > Tor—1w| = 0, (1). For the third claim of part

(i), (3) gives

>t T, = > it Tyt + 24 >t Tor-1 + ny?

+2 (w0 — 1) Sopy wor—1ply + 20 (o — ) o, ply + (w0 — ) o, p2. (B.2)

= (1=p) 0t =0



We know that > " 23, , = O, <n (1— pi)_l> under C(i). By Assumption 3, the last three terms
in (B.2) are of order o, (+2) dominated by that of " | 23, _; (for the first of these terms the inequal-
ity 13212 zor1phll,, < maxien [[zodll, 227 pnl” is used). Since YT, xor 1 = O, (n'/?k,) =
0p (nky), the second term in (B.2) dominated by Y, 23, ;; hence
S (=m) S mia = (L) Ml @+ (1= o) i
Using the above and the first claim, we conclude that
Tt (l=pp) Xz = ’Wl—&)Qﬁﬂﬁl n%l)
( ) (2?21 wgy g +np? =1+ op ()] n(p+ -TOn—l)Z)

= (1 - Pn) [Z?:l Tor—1 + 0p (n) + Oy (”1/2’%) +0, (5121)]

- (1 - pn) Z?:l xgt—l + Op (1) )
completing the proof of the thlrd claim.

For the OLS estimator, n=* Y 1" | zo;—1u; —, ' under C(i) and Assumption 4 by Lemma 2.2(i)
of Magdalinos and Phillips (2020). Using the recursion for zq;, we obtain the identity
nt (1 - :0721) > i1 I%t—l = n! > i u? + 2pnn_1 Do Tor—1Us — n_lx(Q)t_1
= o +2p'+0,(1).
Hence, using the previous claims we may write
1 n
—1,. D Top—1Uy r
L=pp) (pn—pu) =" 0 +0p(1) =p 575+
(=) iy, oW agr
For part (ii), using the approximations of part (i) we may write
-1 1/2 . n_1/2 (1 — pi)1/2 Zn_ Tot—1Ut
<n (1 - 1031) ) (pn - pn) = 1 1 2 nt_l 2 + Op (1)
nt (1= p2) > T

and the last term converges in distribution to A/ (0, 1) under Assumption 2 by Giraitis and Phillips
(2006). For part (iii), (B.1) and y 1 Tor-1 = = (p, — 1) (w0 + 30, uy) give

) = :pn_1+(:vo—u) n_1+nu+0p((pn—1) /)
1/2 - 12 _n . :

o (=1 (py = Doy 0z = (% = 1 {py w00 + (20— p)} + Oy (n(p, — 1) p,"). Since
n(p, — 1) p," — 0 under C(iii) by Lemma Al(i) and p,"zo, = > ;_; p,”u;, the claim follows
from the above display and the definition of X,,. For the second claim, the second and fifth terms
on the right of (B.2) are at most O, ((pn — 1) pZ) =0, ((,0721 —1)7? pi”); for the fourth term

on the right of (B.2), since zo = 0:
n — n—1 n—1 n—1 —j
Dot P Tor1 = > i rr Z] L P JUJ Zjﬂ ( t=j P?f) Pr U

NTp—1 = Nt + NTon—1 + (To — p1

1 et .
= P 1Pi Zj:l Pr U — Z pﬁluj

1 n n— —J - n
= oA eyt Op ((pn ~1) ).

Using the approximation (p2 — 1)* p, 2" > @3 — a3,| = 0,(1), established in Phillips and
Magdalinos (2007), and substituting in (B.2), we conclude that

(pi — 1)2 P iy v, = (pi - 1) ((P;n%nf + (20 — N)2 + 2 (v0 — ) Z?:l P;juj> +0p (1)

, 2
= (2= 1) (She pilus + 30— 1)+ 0, (1)
since p,,"xo, = Z?Zl ol u; and the claim follows from the definition of X,,. For the final claim,



for the denominator of the OLS estimator, (3) gives
1

(o7 — 1)2/);2””97:2_1 = (02 = 1)’ p,*"n0, ( -1 pﬁ”) =0, (5 (Pn — 1)_1> =0, (1)

showing that (p2 —1)"p,2" Y1 27, — > a7 ,| = 0,(1). For the numerator of the OLS
estimator, (3) and the approxurnatlon

(Pr = 1) P 2ol worawe = (pp, — 1) (Z}Ll Pﬁjuj) S o ey + 0, (1),
established in Phillips and Magdalinos (2007), give
(on = 1) " Sy o = (pf = 1) (P Xoimy o1t + (20 — 1) Yopy ) + 0, (1)
— (2= 1) (i ) (S s+ 30 — 1) + 0, (1)
= T, X,+0,(1).

Also <p727, - 1) p," }Z?:l Ly U — Z?:l xt—lut‘ = (pi — 1) p, "1 | Ty 1Ty| = Op(n_l/2 (quz - 1)_1/2) =
0, (1). Using the above approximations, we may write

2 1 nn (hp =V pa" 2zt (pp = 1) p" 00 Tty
(p2 —1)° P D Ty T

T,X, T,
= X2 _'_Op (1) X +Op (1
as required. When p, — 1, Magdahnos (2012) shows that [X,,, T,] —4 N (0,02]3) implying that
Y, /X, —a4C; when p, — p > 1, Lemma 4(iii) shows that X,, —, Xo # 0 a.s., and EY? — 02, so
in both cases |T,/X,| = 0, (1) and (p2 — 1) p" (p,, — p,,) = Op (1) over the C(iii) range. This

completes the proof of Lemma B1.

As a consequence of Lemma Bl and Phillips (1987b), the following orders of magnitude apply
under C(ii)-C(iii):

Z?:l Tiquy = O, (5711/2’/11) ) 2?21 x?fl =0, (/ani) and |p, — p,| = O, ("3;1/2’/;1) . (B.3)
Proof of Lemma A1l. For part (i), write ¢, = erlell=(0=¢w))]l = e=n(l=¢1,)(+0(1) gince
log (1 —2) = —z 4 O (2% as © — 0; hence [n (1 —¢y,)]" ¢, = [n (1= ¢y,) O (eT7#m)) — 0
for any p > 0 since n(l gpln) — oo under C(i). Under C(iii), n(p,, —1) — oo and @5, =
e~mlogllH(e2n =Dl = O (e7(@2n=1)) shows that [n (¢,, — 1)) @5 — 0 for any p > 0. The orders of

S Pt and o P, for p = 0 are trivial (geometric progression). For p > 0, employing an
Euler summation argument and the change of variables s = (1 — ¢y,,)t

n+1
S P, = / ()7 pradt
1
L (n+1)(1-p1,) (1 — @ n>71 S P (1—py,) " s
= (1-¢u)" p/ (L : )IJ o s By
1

—Pin (1 - (P].’n,
Since 1 — ¢y,, — 0, n (1 — ¢,,,) — oo and

Aol om0 Z e (1= o) s log (1= (1= )}

= €exp {_ L(l - (pln)il SJ (1 - spln) + O ((1 - Spln))} —e’
the dominated convergence theorem implies that the integral on the right side of (B.4) converges to
J° sPe *ds =T (p+ 1), and the claim for ;" ; t*¢4, follows from (B.4). The result for Y_;" ; tP¢5!
can be derived in the same way by interchanging the roles of 1 — ¢,,, and ¢,, — 1.
For part (ii), applying (3) to the instrument Z;; = Z; L 07 Az; in (19), we obtain the following
decomposition:

Zie = Zot + (Xo () — 1) Guts 2ot = Z; 1 wln]A$OJ’ (B.5)



where g,,; = @ —La (pf, — ¢1,) When n [y, — p,| — 00 and gy =t (1 — ¢1,) 91, [1 + O (n71)] when

1010 — Pnl = O (n™1). We show that

€] = n 72 (1= p203) 2% (L= p26h) o ()| (Siy a2) P = 0. (B6)
When 7 [y, = po| — 00, €1 = (Ku (91, — p)) 2 (0710, (02 — 03 — 0 and e, =
o (1) (™ iy (02 = @))"* = 0. When [, — p,| = O (n™h), S, 1%6%, = O (1= 1,)~°) by
part (i) and k! = O (1 — ¢,,,) imply that both ¢;,, and €, are O (n_1/2 (1- goln)_1/2>.

Now (B.5) and Assumption 3 give ry, =n~/2 (1 — P%Spfn)lm Op < 1/2> > 1 Qe Since
n 2 n n
IS0ty el < 2300 o0 e ans| v (8= 8)| = 2 320 [ (O 202 (Gt 1dns|
S 2 Zt:o h/u (t)| (Zs fquls) (Zs:iS q?L,tJrs) S 2 23:1 qr2Ls Zt:O h/u (t>|

and Y 2|7, (t)] < oo by Assumption 4, r1, —, 0 follows from the fact that ¢, — 0 in (B.6).

For 13, (B.5) gives 71, (3, — 22) = (Xo(n) —p)* >r, @2 + 2/ (Xo (n) — 1) >4, Zorqne with

n ~ n n 1/2 .
(Xo (n) — 1) I Zougel < (00, 32)? ((Xo(n) —w)®> 1, ¢2)"" by the Cauchy-Schwarz in-
equality. We conclude that

[72n| < €1, +2 (n” ( Pn%n) > i1 Zor) v (G%n)l/z = 0p (1)
by (B.6) since n™ (1 — p2¢3,) > 1, Zo, = O, (1) by Lemma 3.1 in Magdalinos and Phillips (2020).
For rs,, = 14, + r3,, with
[P, ) = 071 (1 — Pi¢%n) Doty (Zie— Zot) e, Yoy (20 — or) 2ot s
the Cauchy-Schwarz inequality and (B.5) imply that r, < O, (1) €2, (n k2 S0 22)? = 0, (1)
by (B.6) and n~ 'kt Y7 2?2 = O, (1). For r4,, (3) and the Y1 | Zo; = O, <n1/2 (1- pigp%n)_l)
imply that
7

rin = 0p ()15 + Oy (n7'72) , ri =" (L= g m* L, Zonpl, (B )
When |p,,, — p,| = O (n™1), the Cauchy—Schwarz inequality and n=! (1 — p2¢3,) Y1, 25, = O, (1)

" -1 1/2 —n 2t 1/2 _1 1/2 1/2
imply that 7%, < O, (1) (07 (1= p2ed,) il X0y 72 ) = 0, (1) (n7H (1= 02,) ) = 0, (1).

When n |p,,, — p,,| — oo, the definition of Zy;, the summation by parts formula and the Cauchy-
Schwarz inequality give

Z?:l 2015pr Zt 1 Z] 1 QoanA‘/EOJpn Z?:l va,A‘rUj Z?:_Oj (901npn)t
= (1= eup) " (S5 phATo; = Prusiion)

= (1= )" [(1=p) X phos + i (300 = P10500)|

- NV 1/2 .
< =g 0= (S1) ™ (Sat) ™+ 0, ()|
. n A\ 12 - " - n 1/2 n
Since (11— p,) (Sym o) =0 (), 1l <O (n2 Sjeyady) + 0, () = 0,(1) s0
T3, = 0p (1) follows from (B.7).
For part (iit), (B.5) gives (1 — p,@1n) Sy @nt ~ (1 — 01,,)> 321 toh, = O (1) by part (i) when
|S01n - pn| =0 (nil) and (1 - pnspln) Z?:l Qnt = 0 (/{7:1) Z?:l (pfz - @in) = O(]'\/O{n (1 - Spln))il)

when n |p,, — p,| — 00. Substituting into (B.5) gives (1 — p,¢1,,) > 1y (21t — Z0t) = op(/f%/Q) +
0p(kn Y2(1 = ¢,,)7"), and the order of magnitude of part (iii) follows from (1 — p,¢;,) Yoy Zor =

O, (n'/?) by Magdalinos and Phillips (2020). Under C(ii), &, = nson 2 (1 — ¢,) Sor_, (F1¢ — Zot) =
0, (1). The recursion Zo; = @1, Z0r—1+Azq implies that (1 — ¢;,,) n Y237 | Zoe1 = n Y2 (2o, — Zon)
and part (iii) follows from the fact that n=/2%,, —, 0.



For part (iv), applying the identity u; = w, — (p,, — pp) T;_1 tO Z2p = 22:1 @520, in (17), we
obtain the decomposition
o =220 = (Pp = Pn) V1 + Oonnts Vi1 = Doy Pon Tj1 (B.8)
Gnt = (P = pu) Tno1 — U] (1= @5rt) / (p2, — 1) satisfies maxy<j<p |gntl = Op (072 (02, — 1))
since (p, — pp) Tn—1 = O, (/ﬁi/ 2/ n) by Lemma B1(iii) under C(iii) and standard local to unity
asymptotics under C(ii). When n |p,, — p,| — 00, (A.1) will follow from the following identity
for ,,_, in (B.8):
1

Vg = W——P (902nz2t—1 = PpTt—1 + @éng;,t) (B.9)
2n n

n 10

(90211 - pn)il (ﬁn - pn) maxi<i<n |g;,t| = OP (Kjglp;n (90211 - 1)71) = Op (n_l <902n - 1)71) under
C(ii)-C(iii). To prove (B.9), substituting z; in (3) into the expression for ¢,, ; in (B.8) we obtain

R D ¢ Yo — 1 tot-1l el Pn\’
Voto1 = Pon Xo () +p 1 + Yon Zi:1 Pn Ui Zj:i—H
Pon — Pon

where g, , = Xo (n) — u <1 — @“‘”) :2’;—__1 with the order in (A.1) following from

bt (Ko (1) — 1) S, (ﬁ)j . (B.10)

Evaluating the geometric progression

i+1 1
s <P_) _ P (P_> T (P_n)”
=l Pon Pon — Pn Pon Pan
when n |p,,, — p,| — 00, we obtain

t—1
t—1 Yo, — 1 1 t=1 t—i t=1 (Xo(n) —p)pn ¢ 41 41
= X ; =S ; _
¢nt—1 Pon 20 (n)—i_/ub o — 1 +902n p {Zzzl Pon U szl Pn U }+ Do — Py, (902n Pn )
and using the expression for z; in (3) and zy, = >.'_, ¢b-"u; proves (B.9). This completes the

proof of (A.1) when n |p,, — p,| — .

J
When ‘902n - pn’ = O (n_l)a pn/SDQn = 1+<pn - ()02n> /SDQn = 1+O (n_l) S0 Z;:iJrl (;ﬁ) S le
for all i <t < n and some b > 0. Substituting into (B.10) we conclude that

g0 = (pu = pu) max |30, 1| < 4bn (p, = po) max |07 o] = O, (e (2 = 1)?)
= Op (n_1/2 ((10211 - 1)71 7’L3/2902_7? ((10271 - 1)3/2> - Op (n_l/2 (90211 - 1)71)
by Assumption 3 and Lemma A1(i) since |p,, — p,| = O (n™!) and the choice of ,, imply that
(Pp)nen belongs to C(iii). This completes the proof of (A.1) when |p,, — p,| = O (n71).
For the remainder of part (iv), we employ (A.1) to each of Ry, ..., Ry,. Using (19),

(on = 1) Vs D00y 2201 = VpaZon — VU Doy U = Zn + 0y (1) (B.11)
since n'/2v, L = n'/? (@,, — 1)'/2 5™ — 0 by Lemma A1(i); also (3) gives
Yoz =np~+ (Xo (n) — 1) O (prkn) + > iy Tot = Op (Knty) (B.12)

since Y ., ot = O, (knvy,) by Lemma B1(iii). Using (A.1) and the above orders for )} | 251
and > 7 | x; we obtain

(o = D) 1 vy !
Ry, = gnyrj,lzo ((pgn> +1 {n ‘90271 - pn| - OO} OP

Kn ULV

= > >t (Zar1 +201)

= 0y (072 (a0 = 1))+ 1{n i, = pul = 00} 0y (02 (20, = 1 37) = 0, (1)
by Lemma A1(i).

Pon — Pn



For Ry, = Y7 | Tue_1us, the second term arising from (A.1): (02, — 1) 0ol gn S 1) Pon th =
O, (n_1/2 (02 —1)"'/? gogr’f) = 0, (1) by Lemma A1(i); when n|p,, — p,| — oo, (A.1) and the

triangle inequality, give

- _1 n n
Ro) < o= Pul@on =) fygn S s} 0 (1)

(Pon — 1) O (o=mk=12, 1 Lo (112, 0, 1) 2 1
|§0 _)0’ p<(p2n’€n Vn) P( )+ (30277, ) Vn,z +0p(>
2n n

by (B.3). The first term above is O, (5,') and the second term is O, (L) which is O, (p,")

K |P2n—Pnl
under C(iii) and O, (W); since both terms are o, (1) we conclude that |Ra,| = 0, (1) under
C(i)-C(ii).
For Rs, = s,' Y 1, Tntt, we estimate the two terms arising from (A.1): by (3)
S Gn Dy Pont = S Gn (Z?:l ConTor T 1 D1y Pan + (Xo — 1) 30, <902npn ) . (B.13)
Using the rate of g, in (A.1), the third term on the right is o, < “12 (2 — -/ 2) The second

term is o, (n~'/?) under C(ii); under C(iii); the third term is o, (p;”nn ) if (p, — 1)/ (pg, — 1) =

O(1) and Oy (172 (90, = 1) (1. (p, = 1) ;") = 0 (n712) i (p, = 1) / (2, — 1) = 00. We
conclude that the second and the third terms of (B. 13) are o, (1). For the first term of (B.13),
Sglgn Z?:l <;Ognﬂfmt = 5, ' n Zt 1 902n Z] 1 pn ]uj = Sglgn 2?21 P U Z?:j (‘:02npn)t

S, On .
_ n n+1 n— ]+1 n J
- ( Z] 1Pn uj — Zj:l @Qnuj)

PonPn — 1
-1 5 Vn 2 1/2
i (55 0, (%)
g PonPn — 1 g ( ? )

= 0y (W (e — 1)
which shows that the left side of (B.13) is 0, (1). When n |p,, — p,| — 00, (A.1)

|R3n| S Sgl_llgn ’| (|Zt 1Z2t 1It|+|2t 137,5 1$t|)
2n Pn
< bSnl—“gn " (!Zt P2 1T |+ Y T 1) (B.14)
2n

for all but finitely many n for some b > 0, because (14) gives |> " | zor—12¢| < |p| Doy Z2t—1T¢—1]+
(o = D50 22| + D00 z2t_1ut|, the first term on the right side dominates the other
two terms as n — oo and a similar inequality holds for > | z;_j2¢| with >} 27 ;, dominat-
ing. By Lemma 4(i), |> ), zoi—124-1] = O, (s,) so using the orders in (B.3), the first term

on the right of (B.14) is O, <M> =0 ) under C(ii)-C(iii) (under C(iii) it is

1
‘ 2n_pn‘ p (n‘@Qn_pn‘

0p (W) by Lemma A1(i)). The second term on the right of (B.14) is O, (/{nﬂy*l) =

Op ((n (g, — 1)*? gpz_,?) = 0(1) by the orders in (B.3) and Lemma A1(i). This proves that
Rgn = 0p (1)
For Ry, recalling that r,; = 2o — Za;, the identity 22, — 22, = 12, + 2297, gives
Ry < (‘Pgn - 1) Por (Z?:l Ty 2 > i Z2t7”nt|)

2 2n 2 2n 1/2
< (902n ) Do, Zt 1Tnt+0 (1 ){(90% ) Pon Zt 1 nt}



because the Cauchy-Schwarz inequality gives
2 —2n n 2 —2n n 1/2 2 —2n n

(8, = 1) 022 11 2ol < (W3- ) 0 Do ) {6 — 1) ea S v}

and (@2, —1)° ;2" 2" | 22 = 0, (1). We conclude that
2 —2n n
R}, = (‘Pgn - 1) Vo et g = 0p (1)

is sufficient to show that Ry, = o0, (1). Using the identity (A.1) and the inequality (a + b)°
2 (a® + b*) we obtain

A 2

Pn — Pn —2n n n

Riln S 4 (SO —p ) (@%n - 1) 902712 (Spgn Zt:l Z%tfl + pi Zt:l :Ut271) 1 {Tl ‘90211 - pn| - OO}
2n n

The last term is O(n™! (3, — 1)~ 1) =0 (1); using (B.3), the second term is Op(<m> o) =

P2on"Pn
Op((n (92, = £n) " (1 (020 = 1))"02,") = 0,((n(3, = p)) ") = 0, (1) by LemmaAl(i). By
Lemma 4(i) and (B.3), the first term is O, (k202" (@9, — p,,) ~) which is Op((n (29, — p,)) ")
under C(ii) and O,((n/ky)” p; 202 (@g, — p,)2) = 0p(n2 (g, — p,)~>) under C(iii) by Lemma
A1(i). The above shows that R}, = o0, (1) and Ry, = 0, (1). This completes the proof of part (iv).
For part (v), we begin by showing that

2
0o n —(n—t+1
in 1= (P = 1) 5% (S wacrss)” s €an = (020 = DX (Sl v Mes) (B15)

satisfy €1, — 0 and €3, — 0. Choosing m,, — oo with mn (9, —1) — 0

e < (Pan = 1) | S, (S e levns) + S0 (S @i levss)’]
< (Pon = 1) [0 0t S, v S0 6t sl + i (2 el
2
(Syom [6) (o = DSy 03+ (o — D (5 ) —

and, since Y 1, ¢ 275" B = = >0 ¢ar, the above bound applies to €z,. To show part (i) for Z,,

writing u; = 22:1 Cr_jej+ Y j—o Ct+j€—; and changing the order of summation of the first sum we
obtain

1/2 0o n —
Zn = (g — 1)1/2 Z] 1 P <Zt 0 902n0t> ej + (¢, — 1) / Zj:O (Zt:l 9027fct+j) €—j

(Zt =0 QOZnCt) (902n 1)1/2 ZJ 1 90271 € — Zln + Z2n (B16)

where Z1, = (g, — 1) 1/2 j 1 9025 ( t=n—j+1 sznct) ej and Za, = (9, — 1)1/2 Z?io (Z?:l Sogrfct-i-j)

satisfy E (Z3,) < E(e?) €1, — 0 by (B.15) and

B (Zf,) <E(e}) (S5 )’ n (a0 = Dgar ™™ = 0
by Lemma Al(i). Since ¢,, — 1 and > ;o |a] < oo, doryparci — C (1) by the dominated
convergence theorem and Z,, — Z,, —,, 0 follows from (B.16). A similar computation to that used
for Z,, yields

1/2 (n—t)—1
Y, = (Spgn - 1) <ZJ 1 <P2n€n —j+1 Zt 0 PanCt + Z] 20 €= D1 Pon g Ct+j> = Yin + Yo
in order of appearance, with E (Yz)) < E (?) €2n — 0 by (B 15). Since

}/ln - Yn = (@gn - 1)1/2 Z] 1 80271671 J+1 <Z (90271 - 1) Cy — sz ct) )
we will show that HYM — Yn|| L, 0 by showing that

po = (A= 1) S e (T (= 1) ) 0. (B.17)

Applying the mean value theorem to the increasing function x +— ¢3, around (0,¢) we obtain the

1/2
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inequality

and note that log ¢,, — 0 since ¢,, — 1. Choosing a sequence m,, — oo and m,, log p,, — 0,

e < (@3, — 1) (logwn,)* Sy v (X ts@énct>2
= (3, — 1) (108 02,)* YD) Bt Doy 505,05 21y g AT
< (10g o, X0 tont L)) (63, — 1) > O
< (log%n ?nlznt%tlal) O (1) + O ((mylog ¢y,)°)
< (X Itl) O (1) + O ((malog ¢,)°)

since @, tlog @,, = (log g02n) /b, <1 from the inequality logz < z for 2z > 1. This proves (B.17)
and completes the proof of part (iv).

Proof of Corollary 1. For the last two t-statistics in (29) T, (7,,), T), (5n) —4 N (0,1) follow
directly from Theorem 1 by putting v; = ug /0o, and v, = us/os in (A.24). For T, (7,), write

. _ Pu—Pn Pn— 1 -5
A (%+<~5n>(7+5)<% T 6>

= ~ +S y N2 N2 Yn_'y
o Zt 1Zt 1Ut

1’L
> li-1Zi

where )

N 1 ﬁn —1 pn —1
Un N 5 y . R PR . R P )
ot On (% + 5n) (’Vn + 5n)
and u; = (ult,th,ugt)' in the notation of Assumption 5. Under Assumption 5, f]n —p 2 > 0,

!/
Uy —p U = [W—_L;,—(Vp;;)z,—(v’:;)g} and 67 —, v'Sv; hence T, (7,) = [1+ 0, (1)] T, with T,

given by (A.24) with v, = v'u;/ (v'S0)"?. By Assumption 5, (v;) satisfies Assumption 2 with
Eg, , (v?) =1a.s.,soT, —4 N (0,1) by Theorem 1.

For T, (§n>, denoting ¢ = (1,1,1), and employing the identity 6, = p, + 7, + 0, and a

similar argument to T, (7,) we obtain T, (én) = [1+0,(1)] T, with T, given by (A.24) with

vy = uy/ (/=0)"?. By Assumption 5, (v;) satisfies Assumption 2 with Er,_, (v?) = 1 a.s., so
T, —4 N (0,1) by Theorem 1.
1.2 Additional Simulation Results

In this section, we present some additional simulation results. Tables B1 and B2 below contain
the empirical size and Figure B1 displays the power of the two-sided test of our procedure for the
predictive regression slope parameter 5 for n = 1,000 based on 10,000 replications for a grid of
points for b; and by for p,, = 0.99 and p., = —0.99 respectively for the case p = 1, which we
use for the instument selection of Section 4.1 of the main paper. Figures B2 and B3 contain the
empirical size of our two-sided IV-based test for correlation p_, of —0.45 and 0.45 respectively.



Figure B4 displays the proportion of times the mildly explosive instrument is chosen. Figure B5 is
a comparison of the length of confidence intervals of IV and OLS under misspecification of the last
observation (note, in this case, OLS has no valid coverage for the purely explosive specifications).
Figures B6 and B7 present the coverage and length of confidence intervals of the IV and the
equal-tailed two-sided intervals (ETCI) of Andrews and Guggenberger (2014) respectively. Figure
B8 displays the empirical size of the OLS- and IV-based one-sided test under misspecification of
the last observation.

Table B1: Empirical size, Pew=0.99,n=1,000

by /by | 0.650 0.675 0.700 0.725 0.750 0.775 0.800 0.825 0.850 0.875 0.900 0.925 0.950
0.650 | 5.01% 5.25% 5.76% 5.62% 5.63% 6.35% 6.52% 6.63% 6.16% 5.44% 5.80% 580% 5.98%
0.675 | 5.17% 5.46% 5.71% 5.52% 6.03% 5.87% 6.73% 6.63% 6.02% 5.74% 5.84% 5.94% 6.02%
0.700 | 5.53% 5.39% 5.61% 5.73% 6.18% 6.70% 6.69% 6.66% 6.13% 5.73% 5.79% 5.93% 6.35%
0.725 | 5.42% 5.51% 5.95% 559% 6.00% 6.72% 6.75% 6.45% 6.30% 6.20% 5.80% 5.78%  6.25%
0.750 | 5.33% 5.48% 5.71% 6.08% 6.03% 6.46% 6.97% 6.91% 5.70% 5.95% 5.79% 6.28%  6.34%
0.775 | 5.66% 5.67% 5.44% 5.66% 6.13% 6.48% 6.98% 6.62% 6.01% 5.92% 5.85% 6.04% 6.41%
0.800 | 5.25% 5.85% 5.56% 6.16% 5.90% 6.90% 6.64% 6.89% 6.61% 5.99% 6.21% 6.29% 5.92%
0.825 | 5.68% 5.44% 5.80% 6.09% 6.39% 6.83% 7.01% 6.61% 6.37% 5.89% 6.11% 6.48% 6.24%
0.850 | 5.57% 6.21% 5.45% 6.07% 6.39% 6.78% 7.23% 7.15% 6.35% 5.94% 5.95% 6.19% 6.59%
0.875 | 5.87% 6.17% 6.00% 6.04% 6.13% 6.41% 6.82% 6.71% 6.60% 6.31% 6.02% 6.56%  6.10%
0.900 | 5.87% 6.04% 5.77% 6.37% 6.22% 6.84% 6.72% 7.17% 6.69% 5.98% 6.01% 6.06% 7.03%
0.925 | 6.01% 583% 5.78% 6.056% 6.33% 6.83% 7.08% 6.48% 6.60% 6.21% 6.08% 598% 6.87%
0.950 | 6.46% 6.19% 5.92% 6.19% 6.40% 6.24% 7.02% 7.04% 6.70% 6.17% 6.30% 6.86% 7.16%

Table B2: Empirical size, Pew=—0.99,n=1,000

b1 /b, 0.650 0.675 0.700 0.725 0.750 0.775 0.800 0.825 0.850 0.875 0.900 0.925 0.950
0.650 | 5.88% 5.20% 5.43% 5.72% 5.64% 5.92% 6.38% 6.83% 5.93% 5.48% 6.02% 5.38% 6.38%
0.675 | 5.26% 5.35% 5.50% 5.57% 6.09% 6.15% 6.53% 6.63% 6.49% 5.47% 551% 6.20% 6.05%
0.700 | 5.81% 5.59% 5.17% 6.00% 5.60% 6.41% 6.65% 6.82% 6.15% 5.95% 5.88% 6.02% 6.09%
0.725 | 5.31% 5.72% 5.41% 580% 6.44% 6.28% 6.67% 6.64% 6.60% 6.17% 5.63% 5.95% 6.68%
0.750 | 5.75% 5.53% 5.25% 5.84% 6.14% 6.37% 7.18% 6.66% 6.21% 5.74% 6.15% 6.03% 6.28%
0.775 | 5.51% 5.59% 5.90% 5.93% 6.17% 6.32% 7.00% 6.91% 6.07% 6.09% 5.79% 6.18% 6.22%
0.800 | 4.97% 5.70% 5.45% 567% 598% 6.711% 7.06% 6.85% 597% 5.93% 6.09% 6.28% 5.97%
0.825 | 5.89% 5.82% 5.81% 5.59% 6.06% 6.04% 6.56% 6.96% 6.22% 6.00% 597% 5.94% 6.67%
0.850 | 5.79% 5.49% 5.50% 5.69% 6.11% 6.62% 7.07% 6.88% 6.63% 6.26% 6.74% 5.79%  6.63%
0.875 | 6.10% 5.89% 5.85% 5.98% 6.23% 6.38% 7.03% 6.84% 6.51% 6.16% 6.81% 583% 6.57%
0.900 | 5.45% 6.48% 6.36% 6.25% 6.13% 6.88% 6.85% 6.98% 6.36% 6.66% 6.13% 6.27% 6.29%
0925 | 6.11% 580% 6.29% 6.19% 6.35% 6.68% 6.65% 7.03% 6.23% 6.54% 6.07% 6.17% 6.65%
0.950 | 6.21% 6.27% 6.13% 6.42% 6.40% 6.71% 6.94% 6.64% 6.69% 6.23% 6.95% 6.46% 7.19%




Power under alternative 3=0.02, p‘“=-o.99, two-sided at unit root Power under alternative =0.02, pm=0.99, two-sided at unit root

Figure B1: Power at p = 1 over a grid for b; and b,
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Figure B2: Empirical size of the two-sided test on 3, p., = —0.45
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Size =0, two-sided, P, =045, n =200 (100 for last 5 specifications)
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Figure B3: Empirical size of the two-sided test on f3, p., = 0.45
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Figure B4: Proportion of times Z; is chosen
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Figure B5: Length of intervals of IV and OLS under misspecification of the last observation

Coverage of Cls for p _, n=200 (100 for last 5 specifications)
. I I I I

08 TR
085 —
90% IV = = =95% IV 99% IV b =085 b =0.7 +90% AG ETCI = = =95% AG ETCL 99% AG ETCI ==00% = = =95% 99% |
0.8
pP=0.5 P=0.7 7=0.9 ﬁ":1_10/n""'-5 ,'1"11—.‘10/n p":l—:m/n p,=1-1 5/n p=1 g =1 15/n ﬂ":1+.~m/n ,':":1+.‘10/n p“:1+m/n0'” p=1.02 p=1.04 p=1.06
osie =0.75 =0.85 =0.025 =1.075 =1.15 =1.25 1188
Coverage of CIs for p,» n=500 (200 for last 5 specifications)
I - 1 I
—e : -
-~ -

| s 90% IV = = = 95% IV 99% IV b, =0.85 b, =0.7 cvivsnsers 90% AG ETCI = = = 95% AG ETCL 99% AG ETCI ==r==== 20% = = =95% 29% |

0.8
pP=0.5 P=0.7 7=0.9 ﬁ":1_10/n""'-5 ,'1"11—.‘10/n p":l—:m/n puil—l.’)/n p=1 ﬂ“:1+1.’)1’n ﬂ":1+.~m/n ,':":1+.‘10/n p“:1+m/n0'” p=1.02 p=1.04 p=1.06

—0.005 =0.9 =0.94 =0.97 =1.03 =1.06 =11 —1.005
Coverage of Cls for p , n=1000 (500 for last 5 specifications)
I L L

| | | | | | |
/) =0.5 pP=0.7 p=0.8  , —j_10/n™"* ,'1":1—.‘)0/n ,')":1—:)0/:1 ,')“:1—1.’)/n p=1 p“:1+1.’)/n p":1+.~)0/n p":1+.‘)0/n p“:1+m/n0'” p=1.02 pP=1.04 p=1.06
L 0.044 =0.95 =0.97 =0.985 =1.015 =103 =1.05 1056

Figure B6: Coverage of confidence intervals of IV and ETCI of Andrews and Guggenberger (2014).
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Figure B7: Length of confidence intervals of IV and ETCI of Andrews and Guggenberger (2014).
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Figure B8: Size of OLS- and IV-based one-sided test under misspecification of the last observation
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