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Abstract

A uni�ed theory of estimation and inference is developed for an autoregressive process
with root in (�1;1) that includes the stable, unstable, explosive and all intermediate regions.
The discontinuity of the limit distribution of the t-statistic along autoregressive regions and
its dependence on the distribution of the innovations in the explosive region (1;1) are ad-
dressed simultaneously. A novel estimation procedure, based on a data-driven combination
of a near-stationary and a mildly explosive endogenously constructed instrument, delivers an
asymptotic mixed-Gaussian theory of estimation and gives rise to an asymptotically standard
normal t-statistic across all autoregressive regions independently of the distribution of the
innovations. The resulting hypothesis tests and con�dence intervals are shown to have correct
asymptotic size (uniformly over the parameter space) both in autoregressive and in predictive
regression models, thereby establishing a general and uni�ed framework for inference with
autoregressive processes. Extensive Monte Carlo experimentation shows that the proposed
methodology exhibits very good �nite sample properties over the entire autoregressive para-
meter space (�1;1) and compares favourably to existing methods within their parametric
(�1; 1] validity range. We demonstrate that a �rst-order di¤erence equation for the number of
infections with an explosive/stable root results naturally after linearisation of an SIR model
at the outbreak and apply our procedure to Covid-19 infections to construct con�dence inter-
vals on the model�s parameters, including the epidemic�s basic reproduction number, across a
panel of countries without a priori knowledge of the model�s stability/explosivity properties.
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1 Introduction
Inference in the �rst-order autoregressive process, arguably the prototypical time series model,

has a long history dating back to at least Mann and Wald (1943) for stationary autoregression,
White (1958) for explosive autoregression and Phillips (1987a) for unit-root autoregression. The
variety of stochastic behaviour arising from di¤erent autoregressive regimes has resulted in a
number of important applications in macroeconomics and �nance: nonstationary autoregressive
processes played a fundamental role in the development of the theory of cointegration and causal
inference in systems of macroeconomic and �nancial variables. Autoregressive processes with
coe¢ cients in the explosive region (1;1) have been employed for the modelling of phenomena
whose temporal evolution exhibits stochastic exponential growth, from the rate of infection in
early stages of epidemics to the formation of �nancial and commodity bubbles during periods of
market exuberance.
While convenient from a modelling point of view, the di¤erent stochastic properties arising

from di¤erent regions of the autoregressive parameter space present a major challenge for in-
ference, with standard econometric methodology (such as least squares or maximum likelihood)
applying only under a priori knowledge of the parameter region, with misspeci�cation resulting
to asymptotically invalid con�dence intervals and hypothesis tests. Early work on obtaining con-
�dence intervals for an autoregressive coe¢ cient in (�1; 1], thereby accommodating stationary
autoregressions and unit root processes, includes Stock (1991), Andrews (1993), Hansen (1999)
and Romano and Wolf (2001). Mikusheva (2007) develops the �rst general methodology for estab-
lishing uniform properties of con�dence intervals in autoregressive processes with root in (�1; 1]
and proposes a correction of Stock (1991)�s method that achieves uniform asymptotic validity.
Subsequent work by Andrews and Guggenberger (2009, 2014) establishes methodology for con�-
dence interval construction with correct asymptotic size uniformly over the above region under
the potential presence of conditional heteroskedasticity of unknown form. Uncertainty over the
persistence degree of a stochastic regressor poses similar di¢ culties for hypothesis testing in a
regression model and a literature on inference in a predictive regression with a near-nonstationary
regressor was developed in parallel with the aforementioned advances in autoregressive inference.
Notable contributions include Campbell and Yogo (1996), Jansson and Moreira (2006) as well as
bootstrap methods based on the theoretical results of Cavaliere and Georgiev (2020). Hypothesis
testing procedures that achieve robust inference with time series regressors with persistence rang-
ing from stationarity to (near) unit root nonstationarity are those of Elliott, Müller and Watson
(2015) and Kostakis, Magdalinos and Stamatogiannis (2015). The latter paper builds on the IVX
procedure of Phillips and Magdalinos (2009), which has been extended in a number of directions
by Breitung and Demeterscu (2015), Yang, Long, Peng and Cai (2020), Magdalinos and Phillips
(2020), Demeterscu, Georgiev, Rodrigues and Taylor (2022).
Both strands of the literature on inference in autoregressions and predictive regressions dis-

cussed above restrict the autoregressive parameter space to (�1; 1]; the aim of this paper is to
develop hypothesis tests and con�dence intervals with uniform asymptotic validity over the en-
tire autoregressive parameter space (�1;1) and over the space of a wide class of innovation
distribution functions. We propose a novel data-generated instrumental variable (IV) procedure
that tackles two important inference problems in autoregressions and predictive regressions si-
multaneously: �rstly, it delivers a uni�ed asymptotic theory of inference and con�dence interval
construction that covers the entire autoregressive spectrum of stationary, nonstationary, explo-
sive processes and all intermediate regions; secondly, it provides a solution to the long-standing
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problem of distribution-free asymptotic inference in explosive autoregressions1.
The key idea of our approach is to �lter the regressor�s autoregressive data generating process

(DGP) through a time series that acts as an endogenously generated instrument constructed to
behave asymptotically as: (i) a near-stationary process2 when the DGP lies close to the stationary
region; (ii) a mildly explosive process when the DGP lies close to the explosive region; (iii) a ran-
dom linear combination of (i) and (ii) when the DGP is in the near-nonstationary region de�ned by
at most local departures from unity. The resulting IV estimator inherits the desirable asymptotic
properties of near-stationary and mildly explosive processes and is asymptotically mixed-Gaussian
along the entire autoregressive parameter space (�1;1) independently of the distribution of the
innovations of the autoregressive process. The asymptotic mixed-Gaussianity property implies
that, upon self-normalisation, the IV-based t-statistic is asymptotically standard normal and can
be employed for con�dence intervals construction based on standard normal quantiles. Moreover,
we show that the proposed con�dence intervals have uniformly correct asymptotic coverage. To
our knowledge, our procedure provides the �rst uni�ed, distribution-free treatment of �rst-order
autoregression exhibiting arbitrary stochastic characteristics ranging from stationarity to explo-
sivity.
Extensive Monte Carlo experimentation reveals good �nite sample properties for the proposed

IV-based hypothesis tests and con�dence intervals that compare favourably to the leading proce-
dures for inference in autoregression (Andrews and Guggenberger (2014)) and predictive regression
(Elliott et al. (2015)) in their parametric validity range (�1; 1] while providing correct inference
on the right side of unity (1;1), where no existing alternative approach has general asymptotic
validity.
Autoregressive processes with roots potentially exceeding unity for a non-trivial fraction of the

sample are popular for modelling and date stamping of �nancial and commodity price bubbles
(Phillips and Yu (2011), Phillips, Wu and Yu (2011) among others). Further empirically relevant
applications include series that exhibit stochastic exponential growth, for example, epidemiological
models of disease transmission. In this paper, we consider a susceptible-infected-removed (SIR)
model of temporal evolution of disease transmission and show that, upon linearisation around
the disease-free equilibrium, the model-implied number of active infections evolves as a �rst order
autoregressive process with an explosive (stable) root whenever the basic reproduction number r0
is above (below) unity. In Section 6, we employ our procedure to model the early dynamics of
the Covid-19 epidemic across a panel of countries and construct con�dence intervals for r0 and
the other epidemiological parameters of the model without a priori knowledge of whether the
epidemic is in a controllable or uncontrollable stage, i.e. without restricting the parameter space.
The paper is organised as follows: Section 2 presents a general modelling framework for autore-

gression (Section 2.1), predictive regression (Section 2.2) and sets out the dynamic behaviour of a
basic SIR epidemiological model (Section 2.3). Section 3.1 introduces our novel IV procedure of
combined near-stationary/mildly explosive instrumentation. Section 3.2 presents the main theoret-
ical results on uniform asymptotic inference in autoregression and predictive regression (Theorems
1 and 2) and applies them to the SIR model of Section 2.3 (Corollary 1). Section 3.3 establishes

1Anderson (1959) shows that, in the explosive case, the limit distributions of the OLS estimator and the
associated t-statistic are not invariant to deviations from the assumptions of i.i.d. Gaussian errors and zero initial
condition and that, in general, the limit theory of least squares estimation and inference is driven by the distribution
of the innovations in the autoregression.

2Near-stationary and mildly explosive processes, introduced by Phillips and Magdalinos (2007), are AR(1)
processes with sample-size dependent root �n satisfying �n ! 1 and: n (�n � 1)! �1 in the near-stationary case
or n (�n � 1)!1 in the mildly explosive case.
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the asymptotic mixed-Gaussianity property of the IV estimators that drives the asymptotic re-
sults of Section 3.2. Section 4 discusses implementation of the procedure and conducts Monte
Carlo experiments to assess the �nite sample properties of our con�dence intervals and hypothesis
tests in comparison to the leading existing inference procedures in autoregression and predictive
regression. Section 5 applies the con�dence intervals of Corollary 1 to Covid-19 infections across
a panel of countries and Section 6 concludes. All mathematical proofs are collected in Appendix
A. Some auxiliary mathematical results, the proof of Corollary 1 and additional simulation results
can be found in the supplementary online Appendix B.

2 A model of general autoregressive dependence
2.1 Probabilistic framework for autoregression
We consider a �rst order autoregressive process with an intercept

xt = �+Xt; Xt = �nXt�1 + ut; t 2 f1; :::; ng (1)
with (possibly sample-size-dependent) autoregressive root �n, with an innovation sequence (ut)t2N
and an initialisation X0. It is easy to see that (1) yields an autoregressive process

xt = � (1� �n) + �nxt�1 + ut (2)

= �+ (X0 (n)� �) �tn + x0t; x0t =
Pn

j=1 �
t�j
n uj (3)

where x0t denotes the autoregression (1) when � = 0 andX0 = 0. This autoregressive speci�cation,
designed to introduce an intercept while maintaining the stochastic structure of a nonstationary
autoregression3 by reducing the contribution of the intercept as the autoregressive parameter
approaches unity, is standard in the literature: see Andrews (1993), Mikusheva (2007), Andrews
and Guggenberger (2009, 2014).
Assumptions maintained on �n, (ut)t2N and X0 are presented in Assumptions 1, 2 and 3 below.

Assumption 1a (AR parameter space). The parameter space of the autoregressive parameter
in (1) has the following form: (�n)n2N is a sequence of real numbers satisfying �n ! � 2 (�1;1) :
In order to establish an asymptotic theory of estimation (Theorem 3 below), it is convenient

to strengthen Assumption 1a in a way that categorises autoregressive processes according to their
stochastic properties.

Assumption 1b (AR categories). In addition to (�n)n2N satisfying Assumption 1a, the limit
c := limn!1 n (�n � 1) exists in R [ f�1;1g.
Under Assumption 1b, the process xt in (1) belongs to one of the following classes:
C(i) near-stationary processes if (�n)n2N in (1) satis�es Assumption 1b with c = �1
C(ii) near-nonstationary processes if (�n)n2N in (1) satis�es Assumption 1b with c 2 R
C(iii) near-explosive processes if (�n)n2N in (1) satis�es Assumption 1b with c =1.

Stationary autoregressions with �xed root in (�1; 1) as well as near-stationary autoregressions are
included in class C(i), pure unit root processes with c = 0 as well as local departures from unity
are included in C(ii) and explosive (�xed root in (1;1)) and mildly explosive autoregressions are
included in class C(iii). We further denote the subclass of C(i) consisting of purely stationary
processes and the subclass of C(iii) consisting of purely explosive processes by:
C0(i) (�n)n2N in (1) satis�es �n ! � 2 (�1; 1)
C0(iii) (�n)n2N in (1) satis�es �n ! � > 1:

3It is wel-known that a process of the form xt = �+ �xt�1+ut behaves asymptotically as a linear deterministic
trend when � = 1. Our procedure for con�cence interval construction can accommodate such degeneracies of
autoregressive stochastic behaviour (in the sense that Theorem 1 continues to hold) but we omit the details as such
deterministic trends have limited relevance for economic modelling.
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When � = 1 in Assumption 1a, Assumption 1b is more restrictive than Assumption 1a4: for
example, the oscillating sequence

(�n)n2N = 1 + (�1)
n =kn kn !1 (4)

satis�es Assumption 1a but not Assumption 1b. However, sequences of autoregressive parameters
satisfying Assumption 1a satisfy Assumption 1b subsequentially, in the following sense.

Lemma 1. Let (�n)n2N satisfy Assumption 1a. For any subsequence
�
�mn

�
n2N of (�n)n2N there

exists a further subsequence
�
�sn
�
n2N of

�
�mn

�
n2N such that

�
�sn
�
n2N satis�es Assumption 1b.

We will see in Sections 3.2 and 3.3 below that, while Assumption 1b is needed to establish
the asymptotic mixed-normality of the proposed IV estimator of Theorem 3, studentisation and
Lemma 1 may be employed to weaken the requirement on (�n)n2N to Assumption 1a for the
(uniform) asymptotic validity of the test statistics and con�dence intervals of Theorems 1 and 2.

Assumption 2 (innovation sequence). Given a �ltration (Ft)t2Z, the innovation sequence ut
in (1) is an Ft-martingale di¤erence sequence such that EFt�1 (u2t ) = �2 for all but �nitely many t
a:s: and (u2t )t2Z is a uniformly integrable sequence. In the explosive case C 0(iii) we assume in
addition that

lim inf
t!1

EFt�1 jutj > 0 a:s:: (5)

Assumption 3 (initial condition). The initial condition X0 (n) of the stochastic di¤erence
equation (1) is a F0-measurable random process X0 (n) satisfying

X0 (n) = max
�
Op (1) ; op

�
�1=2n

�	
, where �n := j�n � 1j

�1 ^ n: (6)
Under C0(iii) assume that X0 (n)!p X0 where X0 is a F0-measurable random variable.
We provide a brief discussion of the model in (1) and Assumptions 1-3. The process generated

by (1) consists of all types of �rst-order autoregressive processes employed in statistics and econo-
metrics. The parametrisation of Assumption 1b follows Andrews and Guggenberger (2012) as it is
of su¢ cient generality to give rise to uniform asymptotic size for hypothesis tests and con�dence
intervals over the parameter space de�ned by Assumptions 1a, 2 and 3. For each n 2 N, letting
An = f(Fn; X0 (n)) : fu1; :::; ung have c.d.f. Fn; Fn and X0 (n) satisfy Assumptions 2 and 3g we
de�ne the following parameter space for the problem of conducting inference in (1):

� = f(�; F;X0) : � 2 [�1 + �;M ] (8�;M > 0) and (F;X0) 2 Ag (7)
where A := lim infn!1An = [n�1 \j�n Aj. The inference procedure developed in the paper
gives rise to con�dence intervals for the autoregressive parameter in (1) with correct asymptotic
coverage probability uniformly over the parameter space � in (7).
The class C(i) of near-stationary processes consists of the subclass of autoregressions in (1)

that behave asymptotically as ergodic processes, in the sense that n�1 (1� �n)
Pn

t=1 x
2
t satis�es

a law of large numbers and n�1=2 (1� �n)
1=2Pn

t=1 xt�1ut satis�es a central limit theorem. It was
introduced by Phillips and Magdalinos (2007) and the autoregressive parametrisation was gen-
eralised by Giraitis and Phillips (2006) and Andrews and Guggenberger (2012). Limit theory of
non-linear functionals of near-stationary processes has been derived by Du¤y and Kasparis (2021).
For the class C(ii) of near-nonstationary processes, introduced by Phillips (1987b) and Chan and
Wei (1987), the above ergodicity property is lost and limit theory of estimation and inference
is non-Gaussian. The class C(iii) constitutes the class of �rst-order autoregressive processes ex-
hibiting stochastic exponential growth: Phillips and Magdalinos (2007) show that processes in
C(iii) satisfy xn � (�n � 1)

�1=2 �nn when �n ! 1, the same rate that applies under the prototypical
explosive autoregression C0(iii) of White (1958) and Anderson (1959). The validity of con�dence

4When � 6= 1, Assumptions 1a and 1b are equivalent.
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interval methods for an autoregressive parameter in (�1; 1] (covering the autoregressive regions
C(i) and the part of C(ii) to the left of unity) has been established by Mikusheva (2007) and by
Andrews and Guggenberger (2014) for the case of conditionally homoskedastic and conditionally
heteroskedastic innovations ut respectively. The current paper proposes a con�dence interval for
the autoregressive parameter with uniform coverage probability over the entire autoregressive pa-
rameter space (�1;1). Extensions of the procedure of the paper are possible over the parameter
space (�1;1); we abstract from considering the region (�1;�1] for brevity, since it requires a
more involved construction of the instrument and several additional cases to be added in Assump-
tion 1b and Theorem 3. Moreover, nonstationary and explosive oscillations with autoregressive
roots in (�1;�1] seem to be of limited empirical relevance in economics.
Assumption 2 requires ut to be a conditionally homoskedastic5 martingale di¤erence sequence

that satis�es a uniform integrability assumption for (u2t ). The above conditions guarantee the
validity of: a law of large numbers n�1

Pn
t=1 u

2
t !L1 �

2 and a functional central limit theorem
n�1=2

Pbnrc
t=1 ut ) B (r) on D [0; 1] where B (r) is a Brownian motion with variance �2. The

additional condition of Assumption 2 in the explosive case C0(iii) ensures that the random variable

X1 =
�
�2 � 1

�1=2 �P1
j=1 �

�juj +X0 � �
�

(8)

is non-zero a:s:: condition (5) and EFj�1
�
u2j
�
= �2 imply the local Marcinkiewicz-Zygmund con-

dition, see equation (1.1) of Lai and Wei (1983). Corollary 2 of Lai and Wei (1983) shows that
the random variable in (8) satis�es X1 6= 0 a:s: when (uj;Fj) is a martingale di¤erence sequence.
An additional complication to the di¤erent rates of convergence and limit distributions among

the autoregressive classes C(i)-C(iii) arises from the fact that, within class C(iii), the subclass
C0(iii) of purely explosive processes exhibits di¤erent asymptotic behaviour than mildly explosive
processes (processes in C(iii) satisfying �n ! 1). The asymptotic distribution of the OLS estimator
in the explosive case, when it exists, is entirely driven by the distribution of the innovation process
(ut): no central limit theory applies and sample moments converge as L2-bounded martingales to
random variables such as X1 in (8) whose distribution changes with the distribution of (ut). As
Anderson (1959) shows, the well known Cauchy limit distribution for the normalised and centred
OLS estimator and the corresponding standard normal limit distribution for the t-statistic only
apply when the innovation process ut in (1) is i.i.d. Gaussian and the explosive time series is
initialised at X0 = 0. For a non-identically distributed sequence of innovations, the distributional
limit of the t-statistic based on the OLS may not even exist. On the other hand, the class of mildly
explosive autoregressions behaves more regularly, with sample moments converging in distribution
via a martingale central limit theorem established by Phillips and Magdalinos (2007) and extended
in various directions by Aue and Horvath (2007), Magdalinos (2012) and Arvanitis and Magdalinos
(2019). The subsequent Cauchy and standard normal limit distributions for the OLS estimator and
the t-statistic respectively are invariant to the distribution of the innovations ut, the (stationary)
dependence structure of ut and the initialisation X0. These desirable properties of mildly explosive
autoregressions are employed by our instrument in the estimation procedure of Section 3 below to
�regularise�the asymptotic behaviour of sample moments generated by explosive time series into
a distribution-free asymptotic mixed-Gaussian framework.
Assumption 3 on the initial condition X0 of (1) is standard for processes in C(i) and C(ii) and

in the mildly explosive case but signi�cantly generalises the X0 = 0 condition employed in the
explosive case C0(iii): see Wang and Yu (2015) for the e¤ect of X0 in the limit distributions of

5The main results of the paper continue to hold under stationary conditional heteroskedasticity, e.g. when ut is
a stationary GARCH process, at the cost of higher moment assumptions: see Andrews and Guggenberger (2012),
Magdalinos (2020) and Hu, Kasparis and Wang (2021).
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OLS estimators and test statistics in the explosive case.

2.2 Predictive regression framework
In many economic and �nancial applications, the econometric model takes the form of a pre-

dictive regression
yt =  + �xt�1 + "t (9)

driven by an autoregressive process xt in (1). While the parameter of interest in such models is �
and the autoregressive root of (1) is a nuisance parameter, it is well-documented that the validity
of inference procedures on � is subject to a degree of knowledge of the stochastic properties of
xt; see e.g. Campbell and Yogo (1996). Recent inference procedures that provide valid inference
on � when the autoregressive process xt lies in the regions C(i) and C(ii) include: Jansson and
Moreira (2006), Phillips and Magdalinos (2009), Elliott et al. (2015), Magdalinos and Phillips
(2020) and Hu, Kasparis and Wang (2021). The near-explosive region C(iii) is not considered by
the above papers and OLS-based inference on � in the purely explosive region C0(iii) su¤ers from
the same problem as OLS-based inference on �n, with standard inference applying only under i.i.d.
Gaussian innovations "t. The inference procedure on � in the predictive regression model (1) and
(9) proposed in this paper can accommodate regressors along the entire spectrum of autoregressive
processes, as de�ned by Assumption 1a, and we establish its asymptotic validity uniformly over
the autoregressive regime and the distribution of the innovations "t and ut.
Conducting inference on � instead of the autoregressive parameter is possible under a more

general assumption on the autoregressive innovations ut than Assumption 2 above.

Assumption 4. The innovation sequence (ut)t2N in (1) is a stationary linear process of the form
ut =

P1
j=0 cjet�j, where (cj)j�0 is a sequence of constants satisfying

P1
j=0 jcjj < 1,

P1
j=0 jc

2
j <

1, c0 = 1 and C (1) :=
P1

j=0 cj 6= 0. Given a �ltration (Ft)t2Z, the sequence vt := ("t; et)
0 is an

Ft-martingale di¤erence sequence such that EFt�1 (vtv0t) = �v > 0 a:s: for all t and
�
kvtk2

�
t2Z is

a uniformly integrable sequence. When �n ! � > 1 under C0(iii), we assume in addition that (5)
holds with ut replaced by et and that C� (1) :=

P1
j=0 �

�jcj 6= 0.
2.3 An epidemiological model of infection growth
Variants of the susceptible-infected-removed (SIR) model, originally introduced by Kermack

and McKendrick (1927), constitute the main paradigm for modelling the evolution of epidemics.
In this section, we consider a standard discrete-time SIR model and demonstrate that upon lin-
earisation around the disease-free equilibrium (DFE), whenever the model�s basic reproduction
number is above unity, the model-implied dynamics for the number of infected will necessarily dis-
play a �rst-order di¤erence equation with an explosive root, implying an exponential growth for
infections at the outbreak of the epidemic. Moreover, we show that at the DFE, the dynamics of
the �rst di¤erences of the number of recovered and deceased are both characterised by a predictive
regression with the lag of the (potentially explosive) process of infections as regressor.
We brie�y describe the model below. The number of infected, susceptible, recovered and de-

ceased individuals at time t, denoted by It, St, Rt and Dt respectively, evolves according to the
following non-linear system of di¤erence equations:

It+1 = It (1 + �St=N �  � �) (10)

St+1 = St (1� �It=N) ; Rt+1 = Rt + It; Dt+1 = Dt + �It
with non-negative initial conditions S0; I0; R0; D0 satisfying St + It +Rt +Dt = N for all t; where
N denotes the constant population size (births or deaths by other causes are ruled out or cancel
perfectly in each period). Since at each t; St is a linear combination of the remaining states
St = N � It � Rt � Dt; we substitute this identity in the equation for It+1 and work with the
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reduced system of It; Rt and Dt: The choice for removing St facilitates estimation since data on
susceptibles are unavailable.
The model�s dynamics is governed by the parameters �; ; � 2 (0; 1]6: � is the contact rate,

i.e. the average number of individuals an infected person passes the infection in a period;  is the
recovery rate and � is the death rate. There is no heterogeneity, each individual is equally likely
to contract the disease and there is no possibility of re-infection. The model�s dynamics is driven
by the basic reproduction number which in the model (10) is given by

r0 = �= ( + �) ; (11)
measuring the number of infections per infected individual. When r0 � 1 the underlying disease
will escalate into an epidemic and will continue to spread and when r0 < 1 the growth of infections
can be contained. Epidemiologists consider r0 the key parameter for determining whether an
epidemic is controllable and for understanding its transmission mechanism.
In order to study the dynamics implied by this basic dynamic nonlinear model and to conduct

statistical inference on the model�s parameters, we use next generation matrix (NGM) approach
and linearise the system in (10) around the DFE (I = R = D = 0; S = N)7. Such an approxima-
tion is accurate at early stages of an epidemic outbreak, when the number of susceptibles is large
relatively to the total number of infected, recovered and deceased. The resulting linear system
takes a triangular form Yt = JYt�1; with Yt = [It; Rt; Dt]

0 and J the Jacobian matrix evaluated at
the DFE:

J =

24 1 + � �  � � 0 0
 1 0
� 0 1

35 ;
where the equation for It is a �rst-order di¤erence equation with root � = 1 + � �  � �; which
(in view of (11)) satis�es the following: � > 1 whenever r0 > 1; � = 1 whenever r0 = 1; and � < 1
whenever r0 < 1: In other words, at an outbreak of an epidemic, the number of infections will
always display exponential growth8.
The standard way to add a stochastic component to the model is by adding zero-mean mea-

surement error to the system, which corresponds to assuming that the linearised model holds on
average. The resulting stochastic system that we take to the data is24 It

�Rt

�Dt

35 =
24 1 + � �  � � 0 0

 0 0
� 0 0

3524 It�1
Rt�1
Dt�1

35+
24 u1t
u2t
u3t

35 ; (12)

with stochastic dynamic behaviour, formalised by the following assumption, which combines As-
sumptions 1 and 3 for the autoregressive process It and a vector-valued version of Assumption 2
for the innovation sequence in (12).

Assumption 5. The autoregressive parameter �n := 1+���� of It in (12) satis�es Assump-
tion 1a; I0 satis�es Assumption 3. The innovation sequence ut = [u1t; u2t; u3t]

0 in (12) satis�es:
(ut;Ft)t2N is a martingale di¤erence sequence such that EFt�1 (utu0t) = � > 0 for all t a:s: and

6The requirements that �; ; � � 1 imposes that the discrete period �t is less than: (i) the average time required
for a successful contact, (ii) less than the average infection period, and (iii) less than the average period the disease
results into death; this requirement guarantees that the discretised SIR model approximates well the underlying
continuous-time system.

7The model can be linearised at any other point (I = iN;R = rN;D = dN; S = (1� i� r � d)N) for fractions
i; r and d of the population N of It; Rt and Dt respectively; but the DFE is usually the chosen for early analysis.

8This result is not speci�c to our choice of SIR model and holds for more elaborate models; in larger systems it
can be shown that the spectral radius of the resulting autoregressive parameter matrix for the vector of It exceeds
1 whenever r0 > 1; see, for example, Theorem 2.1 from Allen and Van den Driessche (2008).
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�
kutk2

�
t2Z is a uniformly integrable sequence. In addition, under C 0(iii), (5) is satis�ed with jutj

replaced by ju1tj.
The advantage of the inference procedure developed by this paper over existing procedures is

that it is valid for any �n ! � 2 (0;1) ; which includes all three parameter regions of empirical
interest and relevance during the Covid-19 epidemic outbreak. While this is a simple stylised
model, it serves as a demonstration of the scope of the inference procedure of this paper and the
advantages that its robustness and distribution-free properties provide. We are not aware of any
alternative statistical procedure which can achieve this throughout the range � 2 (0;1) without
restricting attention to a particular region of the parameter space through, for example, pre-testing
and without imposing parametric assumptions on the distribution of ut in the explosive region
(1;1).

3 General asymptotic inference with autoregressions
3.1 Combined near-stationary/explosive instrumentation
This section introduces new estimators of the autoregressive root �n of (1) and the slope para-

meter � in (9) that deliver a uni�ed asymptotic theory of hypothesis testing and con�dence interval
construction for �n and � over the entire parameter space de�ned in Assumption 1a. The idea
behind the estimation procedure is to �lter the autoregression xt in (1) through a time series that
acts as an instrument and is constructed to behave asymptotically as: a near-stationary process
when xt belongs to the near-stationary class C(i); a mildly explosive process when xt belongs to
the near-explosive class C(iii); a (random) linear combination of the above when xt belongs to
the near-nonstationary class C(ii). The resulting instrumental variable estimator inherits the de-
sirable asymptotic properties of near-stationary/mildly-explosive processes and is asymptotically
mixed-Gaussian along all autoregressive classes C(i)-C(iii), independently of the distribution of
the innovations ut in (1). Large sample distributional invariance is crucial for the purely explo-
sive region C0(iii), where least squares asymptotic inference is valid only under i.i.d. Gaussian
innovations.
Successful instrumentation based on a combined near-stationary/near-explosive process re-

quires statistical information separating the near-stationary autoregressive class C(i) from the
near-explosive class C(iii) in large samples. Such information is available in the least squares
estimator for �: for each n 2 N, de�ne the event

Fn = fn (�̂n � 1) � 0g (13)
where �̂n is the OLS estimator and let �Fn denote the complement of Fn. Asymptotic separation of
the C(i) and C(iii) autoregressive classes can be achieved by employing the information contained
in (13): under C(i) n (�̂n � 1)!p �1 which implies that 1 �Fn = 0 for all but �nitely many n with
probability tending to 1, whereas under C(iii) n (�̂n � 1) !p 1 which implies that 1Fn = 0 for
all but �nitely many n with probability tending to 1. This insight is formalised by the following
result, the proof of which can be found in the Appendix.

Lemma 2. Let (mn)n2N be an arbitrary sequence of positive numbers such that mn !1. Under
Assumption 4: (i) if (�n)n2N belongs to C(i) then mn1 �Fn !p 0 (ii) if (�n)n2N belongs to C(iii)
then mn1Fn !p 0.
With the desired asymptotic separation guaranteed at an arbitrary rate by Lemma 2, we

proceed to describing our instrumentation procedure. Given a sequence (vt), we denote �vn�j :=
n�1

Pn
t=1 vt�j and vt�j := vt�j � �vn�j for each j 2 f0; :::; t� 1g. In this notation, subtracting �xt

from (2) yields
xt = �nxt�1 + ut; (14)
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the OLS estimator and residuals from (1)-(2) are given by
�̂n =

�Pn
t=1 x

2
t�1
��1Pn

t=1 xtxt�1 and ût = xt � �̂nxt�1: (15)
Recalling the de�nition of the event in (13), we de�ne

~ut = �xt1Fn + ût1 �Fn and �nz = '1n1Fn + '2n1 �Fn (16)
where ('1n)n2N and ('2n)n2N are chosen sequences in C(i) and C(iii) respectively: '1n ! 1 with
n ('1n � 1) ! �1 and '2n ! 1 with n ('2n � 1) ! 1. We construct an instrument process by
accumulating the stochastic sequence ~ut in (16) according to a �rst order autoregressive process

~zt = �nz~zt�1 + ~ut =
Pt

j=1 �
t�j
nz ~uj (17)

with chosen root �nz in (16), initialised at ~z0 = 0. It is easy to see that the instrument process in
(17) admits the orthogonal decomposition

~zt = ~z1t1Fn + ~z2t1 �Fn (18)
where ~z1t employs a root '1n chosen in the near-stationary region C(i) and ~z2t employs a root '2n
chosen in the near-explosive region C(iii):

~z1t = '1n~z1t�1 +�xt and ~z2t = '2n~z2t�1 + ût: (19)
The proposed estimator for �n after instrumenting xt by ~zt takes the form of a standard instru-
mental variable (IV) estimator:

~�n =

Pn
t=1 xt~zt�1Pn
t=1 xt�1~zt�1

= 1Fn~�1n + 1 �Fn~�2n (20)

where ~�1n =
Pn

t=1 xt~z1t�1=
Pn

t=1 xt�1~z1t�1 and ~�2n =
Pn

t=1 xt~z2t�1=
Pn

t=1 xt�1~z2t�1 employ the
near-stationary and near-explosive instruments in (19) and (19) respectively. Filtering in (17) and
(20) is similar in spirit to the IVX procedure of Phillips and Magdalinos (2009) and the instrument
process ~z1t in (18) is precisely the IVX instrument on the aforementioned paper. However, the IVX
instrument ~z1t is designed to achieve robust inference in the C(i)-C(ii) classes of near-stationary and
near-nonstationary processes. The new instrument process ~z2t in (18) is designed for conducting
inference in the near-explosive class C(iii) and local-to-unity class C(ii) and di¤ers from the IVX
estimator based on ~z1t in two important ways: �rstly, the instrument construction is based on
the OLS residuals ût which (unlike �xt) approximate well the true innovation process ut in (1)
in explosive autoregression; secondly, a mildly explosive (instead of a near-stationary) root is
employed in the instrument generation.
The main contribution of the current approach, is to combine the novel near-explosive instru-

ment ~z2t for regions C(ii) and C(iii) with the near-stationary instrument ~z1t in a data-driven way
to provide inference for autoregressive roots in (�1;1). Combining ~z1t with ~z2t to unify inference
on both sides of unity is intuitively appealing but the asymptotic validity of such an approach
is not obvious: the asymptotic mixed-Gaussianity (AMG) property of the estimator in (20) is
established in Section 3.3. However, an essential step in the right direction is provided by the
asymptotic separation property established by Lemma 2: since the sequence (mn)n2N is allowed to
diverge to1 arbitrarily fast, Lemma 2 implies that the asymptotic behaviour of ~�n in (20) will be
driven exclusively by the component ~�1n involving the near-stationary instrument ~z1t when xt is
in C(i) and exclusively by the component ~�2n involving the mildly explosive instrument ~z2t when
xt is in C(iii). The fact that the contribution of both components in the near-nonstationary case
C(ii) preserves the AMG property of the IV estimator in (20), as intended, is a central result of
Section 3.3.
For the predictive regression model in (1) and (9), the same instrument (17) is employed, giving

rise to the estimator
~�n =

Pn
t=1 yt~zt�1Pn

t=1 xt�1~zt�1
= 1Fn~�1n + 1 �Fn

~�2n (21)
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where ~�1n =
Pn

t=1 yt~z1t�1=
Pn

t=1 xt�1~z1t�1 and ~�2n =
Pn

t=1 yt~z2t�1=
Pn

t=1 xt�1~z2t�1 employ the
near-stationary and near-explosive instruments in (19) and (18) respectively.

3.2 Asymptotic inference for autoregression and predictive regression
Estimation of the autoregressive root in (1) by the IV estimator in (20) has the advantage

that the limit distribution of the normalised and centred estimator ~�n belongs to the mixed-
Gaussian family of distributions in all C(i)-C(iii) cases, independently of the distribution of the
innovations ut in (1). This is in contrast to the OLS estimator which does not have a mixed-
Gaussian limit distribution in the near-nonstationary case C(ii) and whose asymptotic behaviour
is entirely driven by the distribution of the innovations (ut) in the explosive case C0(iii). We
defer the technical exposition of the AMG property of the IV estimator ~�n to Section 3.3. In this
section, we focus on the implication of the above mixed-Gaussian property to inference, namely
that self-normalised statistics based on ~�n in (20) have a standard normal limit distribution along
the entire autoregressive parameter space of Assumption 1a, independently of the distribution of
the innovations in (1) or the initial condition.
Denoting the lagged data vectors X = (X0; x1; :::; xn�1)

0, ~Z = (0; ~z1; :::; ~zn�1)
0 and X =

(X0 � �xn�1; :::; xn�1 � �xn�1)0, we de�ne a t-statistic based on ~�n as follows:

Tn (~�n) =
(X 0P ~ZX)

1=2

�̂n
(~�n � �n) (22)

where P ~Z = ~Z
�
~Z 0 ~Z
��1

~Z 0 and �̂2n is the OLS estimator of the variance of ut in (1). The t-statistic

in (22) can be used to test hypotheses or to construct a (1� �)% con�dence interval for the
autoregressive root �n,

In (~�n; �) = [~�n � cn (�) ; ~�n + cn (�)] ; cn (�) =
��1

�
1� �

2

�
�̂n

(X 0P ~ZX)
1=2

(23)

where � denotes the N (0; 1) distribution function. As a consequence of the AMG property of ~�n,
established by Theorem 3 in Section 3.3., the t-statistic in (22) and the con�dence interval in (23)
enjoy asymptotic properties that are very convenient for inference, presented in Theorem 1 below.

Theorem 1. Consider the process (1) satisfying Assumptions 1a, 2 and 3, the process ~zt de�ned
in (16)-(17) and the IV estimator ~�n in (20). The t-statistic in (22) satis�es Tn (~�n)!d N (0; 1)
as n ! 1 and the con�dence interval in (23) satis�es limn!1 inf�2� P [� 2 In (~�n; �)] = 1 � �,
where � denotes the parameter space in (7).

Remarks.
1. Theorem 1 shows that the methodology of the paper delivers distribution-free inference

for autoregressions satisfying Assumption 1a. To our knowledge, this is the �rst procedure that
provides a uni�ed framework of inference and con�dence interval construction when data originate
from autoregressive time series encompassing the stationary, nonstationary, explosive and all in-
termediate regions described in C(i)-C(iii), without a priori knowledge or the need for pre-testing
on the type of autoregressive process that generates the data. The generality of our methodology
makes it suitable for empirical application such as the stochastic evolution of Covid-19 infections,
where the basic reproduction number r0 of infections has widely been reported in the explosive
region in highly infectious periods and in the stationary region in periods of remission, see Section
5 for details.

2. In view of the general validity of the standard normal limit distribution for the t-statistic in
(22), inference for the autoregressive parameter based on the con�dence interval (23) has uniform
asymptotic validity over the parameter space � in (7): in the terminology of Andrews, Cheng and
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Guggenberger (2020), the CI in (23) has correct asymptotic size and is uniformly asymptotically
similar.
3. The uni�ed asymptotic inference framework provided by Theorem 1 is achieved due to

the crucial AMG property of the IV estimator ~�n in (20), established by Theorem 3 below. The
instrumentation of the autoregressive process by a combination of a near-stationary and mildly
explosive process in (17) serves this purpose by design: it employs information from a non-AMG
procedure (the OLS estimator is not AMG in regions C(ii) and C0(iii) of the parameter space) to
construct the estimator (20) that enjoys the AMG property across the spectrum of autoregressive
classes C(i)-C(iii).
4. A particular advantage of the inferential framework of (20), (22) and (23) is that it consti-

tutes the �rst procedure that achieves inference with general asymptotic validity in the explosive
region C0(iii). This provides a solution to a long-standing problem in explosive autoregression,
pointed out by Anderson (1959), namely that the asymptotic distribution of estimators and tests
based on least squares (when they exist) are entirely driven by the distribution of the innovations
(ut) in (1). Wang and Yu (2015) derive explicit expressions of the dependence of the standard OLS
t-statistic limit distribution on the distribution of the innovations of (1) and the initial condition
X0. On the other hand, the IV estimator ~�n in (20) has the AMG property irrespective of the
distribution of (ut), as Theorem 3 shows, giving rise to the distribution-free and correctly-sized
asymptotic con�dence interval in (23). To our knowledge, the t-statistic in (22) and the associated
con�dence interval in (23) provide the �rst solution to the problem of distribution-free asymptotic
inference in the explosive autoregression.
5. The asymptotic normality result of Theorem 1 includes oscillating sequences under As-

sumption 1a for which the t-statistic based on the OLS estimator may not converge in distribu-
tion. As an example consider the sequence (�n)n2N in (4) with kn = n. The standard t-statistic
Tn (�̂n) based on the OLS estimator �̂n satis�es T2n (�̂2n)!d R1 and T2n�1

�
�̂2n�1

�
!d R�1 where

Rc =
�
�2
R 1
0
Jc (r)

2 dr
��1=2 R 1

0
Jc (r) dB (r) : Since the random variables R1 and R�1 do not have

the same distribution, the sequence fTn (�̂n) : n 2 Ng does not converge in distribution. For the
above sequence (�n)n2N, the IV estimator ~�n��n in (20) also has, after appropriate normalisation,
two accumulation points in distribution (along the odd and even integers). However, as Theorem
3 shows, both accumulation points will have the AMG property; as a result the t-statistic Tn (~�n)
in (22) satis�es T2n (~�2n) !d N (0; 1) and T2n�1

�
~�2n�1

�
!d N (0; 1), implying that the entire

sequence fTn (~�n) : n 2 Ng converges in distribution to N (0; 1). The proof of Theorem 1 employs
Lemma 1 to show that the above asymptotic behaviour of the t-statistic in (22) is typical and
Tn (~�n)!d N (0; 1) only requires the weaker Assumption 1a.

For the predictive regression model in (1) and (9), we employ a similar studentisation to (22)
based on the IV estimator ~�n in (21):

Tn

�
~�n

�
=
(X 0P ~ZX)

1=2

�̂"

�
~�n � �n

�
(24)

where �̂2" is the OLS estimator of the variance of "t in (9). While the t-statistic in (24) is shown
to be asymptotically standard normal in Theorem 2 below, the estimation of the intercept in (9)
induces a �nite sample size distortion when xt has a unit root and a near-stationary instrument
is employed, as documented by Kostakis et al. (2015), Hosseinkouchack and Demetrescu (2020)
and Harvey, Leybourne and Taylor (2021). The problem occurs because the sample moment that
drives mixed normality is given by

Pn
t=1 ~z1t�1"t � �z1n�1�"n and, while the �rst term on the right-

hand side dominates and is asymptotically normally distributed, �zn�1�"n is not asymptotically
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mixed-Gaussian and has more pronounced �nite sample e¤ects when xt is a unit root process
(see Remark 2 below). Given that the �nite sample distortion only occurs very close to unity,
one solution is to employ the fully-modi�ed (FM) transformation of Phillips and Hansen (1990)
that orthogonalises the innovations "t of (9) with respect to the innovations ut of (1) and, hence,
transform the non-AMG lower order term �zn�1�"n into an AMG component for regressors very
close to a unit root process. The FM-corrected IV estimator ~�1n in (21) (the component of ~�n
generated by a near-stationary instrument) takes the form

��1n =

�Pn
t=1 yt~z

0
1t�1 + �̂"u

�̂"
!̂u
xn�z

0
1n�1

��Pn
t=1 xt�1~z

0
1t�1
��1

where �̂2", !̂
2
u and �̂"u are consistent estimators of �

2
" = E ("2t ), !2u =

P1
k=�1 E (utut�k) and

�"u = corr ("t; ut). With the above correction, the IV estimator of � becomes
��n = 1Fn�

�
1n + 1 �Fn

~�2n (25)
with ~�2n de�ned as in (21). A simple computation of the standard error of the estimator �

�
n above

gives rise to the following t-statistic:

Tn (�
�
n) =

1

�̂"

Pn
t=1 xt�1~zt�1�Pn

t=1 ~z
2
t�1 � n�z21;n�1

�
1� �̂2"u

�
1Fn
�1=2 (��n � �n) : (26)

Theorem 2. Consider the predictive regression model (1) and (9) satisfying Assumptions 1a, 3
and 4, the �ltered process ~zt de�ned by (16)-(17) and the IV estimators ~�n and ��n in (21) and

(25). The statistics in (24) and (26) satisfy Tn
�
~�n

�
!d N (0; 1) and Tn (�

�
n)!d N (0; 1).

Remarks.
1. The standard normal limit distribution of the t-statistics in (24) and (26) is invariant to the

nuissance parameter c of Assumption 1b that de�nes the autoregressive categories C(i)-C(iii). Con-
sequently, hypothesis tests on � with critical regions based on Theorem 2 will have uniform asymp-
totic size and the corresponding con�dence interval for �, In (�

�
n; �) = [��n � cn (�) ; �

�
n + cn (�)]

with cn (�) = ��1
�
1� �

2

�
�̂"
�Pn

t=1 xt�1~zt�1
��1 �Pn

t=1 ~z
2
t�1 � n�z21;n�1

�
1� �̂2"u

�
1Fn
�1=2

has uniform
asymptotically correct coverage probability (in the sense of Theorem 1) over the parameter space
� in (7) with Assumption 2 replaced by Assumption 4 for the innovations (ut).

2. While Tn (��n) and Tn
�
~�n

�
have the same limit distribution, the test based on Tn

�
~�n

�
may su¤er from �nite sample distortion due to the fact that the estimation of the intercept  in
(9) does not feature in the �rst-order asymptotic theory. This only becomes an issue under C(ii)
where estimation of  features more prominently: in particular, the contribution of the non-AMG
term n�z1n�1�"n is not re�ected in the limit distribution of Theorem 2. While this contribution is
op (1), n��1n �z1n�1�"n = Op(n

�1=2 (1� '1n)
�1=2) under C(ii) in the notation of Theorem 3, n�z1n�1�"n

is asymptotically equivalent to (1� '1n)
�1 xn

Pn
t=1 "t and the correlation between xn and

Pn
t=1 "t

distorts mixed-Gaussianity in �nite samples. As a result, the t-statistic based on Tn
�
~�n

�
exhibits

�nite sample distortions when the following occur jointly: (i) the autoregressive root of xt is very
close to unity; (ii) �"u = corr ("t; ut) is close to 1 in absolute value; (iii) '1n is chosen close to 1.
The FM transformation of Phillips and Hansen (1990), "0t = "t � !�1E ("tut)ut, orthogonalises
n�1=2

Pn
t=1 "0t and n

�1=2Pn
t=1 ut asymptotically when xt is a unit root process and transforms the

non-AMG term n�z1n�1�"n into a AMG term n�z1n�1�"0n with a remainder that becomes smaller the
closer xt is to a unit root process, thereby addressing the issues in (i) and (ii) above simultaneously.
The estimator ��n arising from employing the FM trasformation and the corresponding t-statistic
Tn (�

�
n) have signi�cantly improved �nite sample properties whenever �n is close to 1 with large
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j�"uj, while both Tn
�
~�n

�
and Tn (�

�
n) perform equally well in all other cases.

3. Practical implementation of the test procedures of Theorems 1 and 2 requires a choice for
'1n and '2n in (16) for the construction of the instrument ~zt. Since our procedure is designed
to work across the autoregressive parameter space (�1;1) ; we require one instrument that will
perform well across C(i)-C(iii) both for the autoregression and predictive regression problems. We
base our choice for '1n and '2n on the principle of minimising the worst �nite sample distortion
scenario: from Remark 2 above, we know that our test procedure on � su¤ers its worst small-
sample distortions in the case of a unit root regressor with large correlation j�"uj. We conduct
a grid search Monte Carlo to select the maximal values of '1n and '2n (by Theorem 3, these
achieve maximal power) subject to a satisfactory test size in the above least favourable case; a
detailed analysis of the choice of '1n and '2n can be found in Section 4.1. We demonstrate that
the proposed choice of '1n and '2n in Section 4.1 works very well (both in terms of size and power)
for all autoregressive speci�cations in (�1;1) both in the autoregression and in the predictive
regression setups.

4. The above methodology may be extended to multivariate predictive regression models where
both xt and yt in (1) and (9) are vector-valued and the statistical problem consists of testing a
set of q restrictions on vec (�). A model along the lines of Magdalinos and Phillips (2020) (that
assumes away cointegrating relationships between elements of the VAR(1) process for xt) extended
to account for regressors with roots in (1;1) may be considered with the asymptotically N (0; 1)
t-statistics of Theorem 2 replaced by asymptotically �2 (q)Wald statistics based on the combined
(vector-valued) instrument (16)-(17) of Section 3.1. The fact that the methodology of this paper
extends directly to multivariate systems is a major advantage over existing methods, including
Campbell and Yogo (2006) and Elliott et al. (2015). A multivariate extension is not pursued
here as it would be a deviation from the main focus of the paper (the construction of con�dence
intervals for � and � with uniform asymptotic validity). The general multivariate setup, where xt is
an unrestricted VAR with possible cointegrating relationships and feedback e¤ects between near-
nonstationary and near-explosive components, is more challenging, as it requires the development
of new VAR representation theory, of the Granger-Johansen type.

We now turn to the problem of conducting inference for the parameters of the epidemiological
model in (12) and, in particular, of constructing robust con�dence intervals for the basic repro-
duction number r0 in (11) regardless of whether r0 is above, equal or below unity. Denoting the
autoregressive parameter of It in the �rst equation of (12) by �n := 1 + ��  � �, (12) can be ex-
pressed as a system of three equations, It = �nIt�1+u1t, �Rt = It�1+u2t and �Dt = �It�1+u3t,
with each equation being estimated using the instrumental variable procedure in (17)-(20):

~�n =

Pn
t=1 It~zt�1Pn
t=1 It�1~zt�1

; ~n =

Pn
t=1�Rt~zt�1Pn
t=1 It�1~zt�1

and ~�n =

Pn
t=1�Dt~zt�1Pn
t=1 It�1~zt�1

(27)

where the instrument ~zt is constructed from the �rst equation of (12) by
~zt = �nz~zt�1 + ~u1t; ~u1t = �It1Fn + û1t1 �Fn

where û1t are the OLS residuals obtained from the �rst equation of (12), the events Fn and �Fn are
de�ned in (13) and �nz is chosen as in (16). The remaining parameters r0 and � may be estimated
from the identity r0 = 1+(�n � 1) = ( + �) (obtained by dividing �n by + �) and the expression
for �n as:

~rn = 1 + (~�n � 1) =
�
~n + ~�n

�
and ~�n = ~�n � 1 + ~n + ~�n (28)

where ~�n, ~n and ~�n are the IV estimators in (27). Adjusting for the asymptotic variance of ~rn
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and ~�n, we may construct studentised version of these estimators as follows:h
Tn (~rn) ; Tn

�
~�n

�
; Tn (~n) ; Tn

�
~�n

�i
= (X 0P ~ZX)

1=2

"
~rn � r0
�̂r0

;
~�n � �

�̂�
;
~n � 

�̂
;
~�n � �

�̂�

#
(29)

where X = [I0; I1; :::; In�1]
0, ~Z = [0; ~z1; :::; ~zn�1]

0, �̂2r0 = �̂0n�̂n�̂n, �̂
2
� = �0�̂n�; �̂

2
 = e02�̂ne2, �̂

2
� =

e03�̂ne3, �̂n = n�1
Pn

t=1 ûtû
0
t with ût denoting the OLS residuals of (12), � = [1; 1; 1]

0, e2 = [0; 1; 0]
0 ;

e3 = [0; 0; 1]0 and �̂n =

�
1=
�
̂n + �̂n

�
; (1� �̂n) =

�
̂n + �̂n

�2
; (1� �̂n) =

�
̂n + �̂n

�2�0
based on

the OLS estimators �̂n, ̂n and �̂n in (12). Letting cgn (�) = (X 0P ~ZX)
�1=2��1

�
1� �

2

�
�̂g for

g 2 fr0; �; ; �g and denoting [a� b] = [a� b; a+ b] for brevity, we may construct con�dence
intervals based on the studentised estimators in (29): In(~rn; �) = [~rn � cr0n (�)], In(~�n; �) =

[~�n� c�n (�)], In (~n; �) = [~n� cn (�)] and In
�
~�n; �

�
= [~�n� c�n (�)]. The asymptotic distribution

of the t-statistics in (29) and the asymptotic coverage probabilities of the corresponding con�dence
intervals can be easily deduced from the analysis leading to Theorem 1 above.

Corollary 1. Consider the model (It; Rt; Dt) in (12) satisfying Assumption 5 with parameters
r0, �,  and � estimated in (27) and (28). The t-statistics in (29) all converge in distribution to
N (0; 1) and the associated 1� � con�dence intervals In(~rn; �), In(~�n; �), In(~n; �) and In(~�n; �)
all have asymptotic probability of containment equal to 1� �:

3.3 Asymptotic mixed-normality of the IV estimator
In this section we establish the AMG property of the normalised and centred IV estimator in

(20) under Assumptions 1b, 2 and 3. The main result, Theorem 3 below, is preceded by a discussion
of the stochastic properties of the instrument process ~zt in (17) and three results, Lemmata 3-5,
that provide an insight into the mechanics that yield the AMG property and facilitate the proof
of Theorem 3.
We �rst provide a brief informal discussion of the behaviour of the instrument under the

di¤erent regimes C(i)-C(iii). While the arti�cial instrument�s autoregressive roots '1n and '2n in
(16) may be chosen freely within the near-stationary/near-explosive range, the processes ~z1t and
~z2t in (19) are not near-stationary/near-explosive because the residuals �xt and ût used in the
instrument construction are not innovations. For xt belonging to the classes C(i)-C(ii), Magdalinos
and Phillips (2020) show that: (i) ~z1t can be asymptotically approximated by a near-stationary
process

z1t = '1nz1t�1 + ut =
Pt

j=1 '
t�j
1n uj (30)

when the instrument in (19) is less persistent than the original process xt in (1) (i.e. when �n
is closer to 1 than '1n) and (ii) ~z1t reduces asymptotically to the original process xt (necessarily
near-stationary by the choice of ('1n)n2N in C(i)) when '1n is closer to 1 than �n. The above
property is a consequence of employing �xt is the construction of ~z1t. On the other hand, as a
consequence of employing the OLS residuals ût in its construction, the instrument ~z2t in (19) is
always approximated by mildly explosive process

z2t = '2nz2t�1 + ut =
Pt

j=1 '
t�j
2n uj (31)

in all sample moments. A precise statement on the approximation of ~z2t by z2t can be found in
part (iv) of Lemma A1 in the Appendix.
By Lemma 2, sample moments involving the near-stationary instrument ~z1t will contribute

asymptotically when the original process xt belongs to the classes C(i)-C(ii) whereas sample mo-
ments involving the mildly-explosive instrument ~z2t will make an asymptotic contribution for
autoregressions in the classes C(ii)-C(iii). The next two results, Lemma 3 and Lemma 4, discuss
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the asymptotic behaviour of sample moments involving ~z1t and ~z2t under the autoregressive classes
C(i)-C(ii) and C(ii)-C(iii) respectively.
Under Assumption 4, denote the autocovariance function and long-run variance of (ut) by u (�)

and !2 =
P1

k=�1 u (k) = C (1)2 �2 respectively and let
�n =

P1
k=1 �

k�1
n u (k) and � =

P1
k=1 �

k�1u (k) : (32)
By Assumption 1a, �n ! � and � = limn!1 �n exists by the dominated convergence theorem
since

P1
k=1 ju (k)j < 1 by Assumption 4. Note that, when � = 1, � =

P1
k=1 u (k) is the

one-sided long-run covariance of (ut). Let W (t) denote a standard Brownian motion on [0; 1] and
B (t) = !W (t); when the limit c in Assumption 1b is a real number, de�ne the Ornstein-Uhlenbeck
processes

Wc (t) =
R t
0
ec(t�s)dW (s) and Jc (t) =

R t
0
ec(t�s)dB (s) (33)

and the Dickey-Fuller-type ratio
Kc =

R 1
0
Jc (r) dB (r) =

R 1
0
Jc (r)

2 dr: (34)

Lemma 3. The following hold under Assumptions 3 and 4 and C(i)-C(ii) of Assumption 1b:
(i) n�1 (1� �2n'

2
1n)
Pn

t=1 xt�1~z1t�1 =
~	n + op (1)!d

~	 (c) where

~	n = (1 + �n)

�
�2 + 2�n�n + (2�n � 1)

�
1

n

Pn
t=1 x0t�1ut � �n

��
��n

�
1� �2n

� 1
n

Pn
t=1 x

2
0t�1 � 2

x0n
n1=2

1

n3=2
Pn

j=1 x0j�1 (35)

~	 (c) = �2 + 2�� +
�
Jc (1)

2 � 2Jc (1)
R 1
0
Jc (r) dr

�
1 fc 2 Rg and x0t is de�ned in (3).

(ii) n�1 (1� �2n'
2
1n)
Pn

t=1 ~z
2
1t !p �

2 + 2��

(iii) n�1=2 (1� �2n'
2
1n)

1=2Pn
t=1 ~z1t�1et !d N (0; (�2 + 2��)�2e)

where �n and � are de�ned in (32), Jc (�) in (33) and �2e = Ee2t .
Next, we turn to the discussion of the asymptotic behaviour of sample moments of ~z2t: In order

to maintain a common asymptotic development for autoregressions in the near-nonstationary and
near-explosive classes C(ii)-C(iii), we de�ne the convergence rates

�n =
�
�2n � 1

��1=2
�nn1 fc =1g+ n1=21 fc 2 Rg and �n;z =

�
'22n � 1

��1=2
'n2n (36)

where c denotes the limit in Assumption 1b, and
sn = (�n'2n � 1)

�1 �n;z�n: (37)
Following Phillips and Magdalinos (2007), the limit theory for the mildly explosive instrument�s
sample moments will be driven by the stochastic sequences

[Yn; Y
"
n ; Zn] :=

�
'22n � 1

�1=2 hPn
t=1 '

�(n�t)�1
2n ut;

Pn
t=1 '

�(n�t)�1
2n "t;

Pn
j=1 '

�j
2nuj

i
: (38)

By Anderson (1959), Phillips (1987) and Phillips and Magdalinos (2007), the autoregressive sample
moments will be driven by

Xn :=
xn
�n
=
�
�2n � 1

�1=2 �Pn
j=1 �

�j
n uj +X0 (n)� �

�
1 fc =1g+ xnp

n
1 fc 2 Rg : (39)

The following result characterises the joint asymptotic behaviour of the sequences Yn, Zn and Xn

and the sample moment asymptotic behaviour of the instrument ~z2t for the autoregressive classes
C(ii)-C(iii).

Lemma 4. Let X1 be the random variable de�ned in (8) and Yn, Y "
n , Zn and Xn be the sto-

chastic sequences in (38) and (39) and let Y; Y "; Z;X denote N (0; !2) random variables. Under
Assumptions 3 and 4 and C(ii)-C(iii) of Assumption 1b, the following hold as n!1:
(i) [Yn; Zn] !d [Y; Z] and [Y "

n ; Zn] !d [Y
"; Z] where Z is independent of Y and Y ". In
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addition,"
'22n � 1
'n2n

Pn
t=1 z2t�1ut;

('22n � 1)
2

'2n2n

Pn
t=1 z

2
2t�1; s

�1
n

Pn
t=1 xt�1z2t�1

#
=
�
YnZn; Z

2
n; XnZn

�
+ op (1) :

(ii) Under Assumption C(iii) with �n ! 1, [Yn; Xn]!d [Y;X] and [Y "
n ; Xn]!d [Y

"; X], where
X is independent of Y and Y ".
(iii) Under Assumption C(iii) with �n ! � > 1, Xn !p X1, X1 6= 0 a:s:; for any contin-

uous function g : Rn f0g ! R, g (Xn)Yn !d g (X1)Y and g (Xn)Y
"
n !d g (X1)Y

" where both
g (X1)Y and g (X1)Y

" are MN (0; !2g2 (X1)) variables.

Part (iii) of Lemma 4 deserves special attention because it establishes a central limit theorem
to a mixed-Gaussian distribution in the purely explosive case C0(iii) and is precisely the result
that allows us to incorporate the purely explosive case in the distribution-free mildly explosive
framework of asymptotic inference. To provide some insight into the role of the result for inference,
we will see that the normalised and centred estimator ~�n in (20) behaves asymptotically as Yn=Xn

in Theorem 3 below. The conclusion of Lemma 4(iii) implies that the ratio Yn=Xn will have
a MN (0; �2=X2

1) limit distribution in the explosive case, establishing the asymptotic mixed
normality property of ~�n independently of the distribution of the innovation sequence in (1).
Establishing the AMG property of ~�n in the near-nonstationary class C(ii) is more challenging

as both components ~z1t and ~z2t of the instrument in (18) feature in the limit theory, their relative
contribution weighted by the limit in distribution of the sequence of events Fn in (13). Additional
complication is introduced by the randomness of the limits of the signals (2	n !d �

2 + Jc (1)
2

from ~z1t and XnZn !d Jc (1)Z from ~z2t) which are required to be independent from the Gaussian
distributional limit of the normalised

Pn
t=1 zt�1ut (U (1) and Y below) for AMG property of ~�n.

Since, by standard local-to-unity manipulations, see Phillips (1987b) and Chan and Wei (1987),
the sequences Fn; 	n and Xn in (13), (35) and (39) can be expressed as non-stochastic functionals
of the partial sum process Bn (�) of ut and Bn (s) ) B (s) on D [0; 1], it is su¢ cient to prove the
independence of [U (1) ; Y ] and the Brownian motion B; it is established in the following result.

Lemma 5. De�ne the following random elements in D [0; 1]: Bn (s) = n�1=2
Pbnsc

t=1 ut, Un (s) =
(n (1� '21n)

�1
)�1=2

Pbnsc
t=1 z1t�1et and Yn (s) = ('22n � 1)

1=2Pbnsc
t=1 '

�(bnsc�t)�1
2n ut: Under Assump-

tions 1b and 4, [Un (s) ; Bn (s) ; Yn (s)] ) [U (s) ; B (s) ; Y ] on D [0; 1], where U (s) and B (s) are
independent Brownian motions with EU (s)2 = s�2e!

2 and EB (s)2 = s!2, and Y is a N (0; !2)
random variable independent of [U (s) ; B (s)].
We may now employ the limit theory of Lemmata 2-5 to establish the AMG property of the

IV estimator ~�n in (20) within each of the autoregressive classes C(i)-C(iii). For c 2 R, de�ne
W c (t) :=Wc (t)�

R 1
0
Wc (r) dr and the random variables

	� (c) = 1 +Wc (1)
2 � 2Wc (1)

R 1
0
Wc (r) dr and 	+ (c) = 2W c (1) (40)

where the event Fc and its complement �Fc are de�ned by Fc = fKc + c � 0g with Kc being the
ratio in (34).

Theorem 3. Consider the autoregression (1) and the predictive regression model (9) and (1)
under Assumptions 1b and 3, and the IV estimators ~�n in (20), ~�n in (21) and �

�
n in (25). The

following asymptotic approximations apply as n!1 to �n (~�n � �n) under Assumption 2 and to

�n

�
~�n � �

�
under Assumption 4 respectively:

(i) Under part C(i) of Assumption 1b, �n =
�
n (1� �2n'

2
1n)

�1
�1=2

,

�n (~�n � �n)!d N (0; 1) and �n

�
~�n � �n

�
!d N

�
0; �2"=

�
�2 + 2�

��
:
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(ii) Under part C(ii) of Assumption 1b, �n = n1=2
�
(1� '21n)

�1
1Fn + ('

2
2n � 1)

�1
1 �Fn

�1=2
�n (~�n � �n)!d MN

�
0;	(c)�2

�
and �n

�
~�n � �n

�
!d MN

�
0;
�2"
!2
	(c)�2

�
where the events Fn and the random variable 	(c) = 	� (c)1Fc + 	+ (c)1 �Fc are de�ned in (13)
and (40) respectively.
(iii) Under part C(iii) of Assumption 1b, �n = ('22n � 1)

1=2
(�n'2n � 1)

�1 (�2n � 1)
�1=2

�nn
�n (~�n � �n)!d Y=X =d MN

�
0; �2=X

�
and �n

�
~�n � �n

�
!d

~Y =X =d MN
�
0; �2"=X

�
where Y =d N (0; �2), ~Y =d N (0; �2"), and X is independent of

�
Y; ~Y

�
with X =d N (0; !2)

when �n ! 1 and X = X1 in (8) when �n ! � > 1.

Moreover, under parts C(i)-C(iii) of Assumption 1b, �n
�
~�n � ��n

�
!p 0.

Remarks.
1. The data-�ltering procedure proposed in the paper guarantees that the resulting estimators

~�n and ~�n in (20), and (21) respectively exhibit a AMG property along the entire spectrum of
autoregressive regressor processes, including stationary, non-stationary, explosive processes and
all intermediate regimes. Importantly, the AMG property is derived via central limit theory and
does not depend on the distribution of the innovation sequences (ut) and ("t) in (1) and (9): the
only requirements imposed on (ut) and ("t) are Assumption 2 and 4 respectively, which allow the
innovations to be non-Gaussian, dependent, non-identically distributed and as far as inference on
� is concerned, ut can be a linear process under Assumption 4. The only component that depends
on the distribution of (ut) is the mixing variate ~X1 in the explosive case C0(iii) which does not
the a¤ect the AMG property and, upon studentisation of ~�n and ~�n is scaled out of the limit
distribution of self-normalised test statistics, such as the t-statistic of Theorems 1 and 2. This
desirable property of the proposed estimator ~�n is in sharp contrast with the dependence of large
sample OLS inference on the distribution of (ut) in explosive autoregressions. Hence, in addition
to producing robust inference along all autoregressive classes, our proposed estimation procedure
is the �rst that achieves distribution-free asymptotic inference in explosive autoregression and is
asymptotically invariant to the initialisation X0 of the time series in (1).

2. The key element of the procedure that delivers the AMG property and the distributional
invariance to the autoregressive innovations across the autoregressive classes C(i)-C(iii) is the
newly proposed combined instrument ~zt in (16)-(17). This instrument employs information from
the OLS estimator of the autoregressive parameter (through the events Fn and Lemma 2) to
determine whether c = limn!1 n (�n � 1) takes the value �1 or 1. When c = �1, ~zt takes
the form of a near-stationary instrument ~z1t and the resulting IV estimator ~�n is asymptotically
equivalent to the IVX estimator of Phillips and Magdalinos (2009). When c = 1, ~zt takes the
form of a mildly-explosive instrument ~z2t constructed from the least squares residuals ût and the
resulting IV estimator ~�n based on ~z2t is shown to achieve distribution-free inference on the non-
stationary side of unity, including the explosive region. When c 2 R, the autoregression is of the
near-nonstationary type C(ii) in which case ~zt takes the form of a random linear combination of
~z1t and ~z2t. This random combination, re�ected in the random normalisation �n of part (ii) of
Theorem 3, depends on the limit distribution of the OLS estimator �̂n through the events Fn in
(13) which, like the limit distribution of 	n in (35), can be expressed as a non-stochastic functional
of the Brownian motion B; the asymptotic independence of the normalised

Pn
t=1 ~zt�1ut and the

Brownian motion B, established by Lemma 5, implies that the additional randomness introduced
by the combination of ~z1t and ~z2t does not a¤ect the AMG property of ~�n and ~�n. The AMG
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property across the entire range of autoregressive classes C(i)-C(iii) of Theorem 3 is the crucial
feature of our estimation procedure that delivers the robust and distribution-free inference based
on the t-statistic of Theorems 1 and 2.

3. It is worth making a comparison of the current instrumentation procedure to the IVX
method of Phillips and Magdalinos (2009), particularly since the latter was applied by Phillips
and Lee (2016) to conduct inference in predictive regression in the presence of mildly explosive
time series. The original IVX approach was designed to address local-to-unit-root type of nonsta-
tionarity; for this reason, the �ltered process in (17) is constructed by using �xt (instead for the
OLS residuals ût) and a near-stationary root. However, in an explosive setup, di¤erencing the ex-
plosive regressor xt will not produce an I (0) process and the IVX instrumentation e¤ect vanishes
asymptotically: as Phillips and Lee (2016) show, under C(iii) the original IVX estimator reduces
asymptotically to the OLS estimator. Hence, the original IVX estimator inherits the limitations
of least squares limit theory in the explosive case and cannot resolve its lack of central limit theory
and its dependence on the distribution of the innovations (ut) and the initial condition. On the
other hand, by employing the residuals ût and a mildly explosive root '2n for the construction of
the instrument ~z2t in (17), the instrumentation of this paper ensures that the limit distribution
of ~�n is driven by the mildly explosive component z2t in equation (A.1) of the Appendix under
C(iii) and inherits the desirable AMG property of mildly explosive martingale transforms even
when xt in (1) is a purely explosive process. The price paid for this asymptotic invariance and
subsequent distribution-free inference is a reduction in the convergence rate of ~�n � �n by an or-
der of ('22n � 1)

1=2 compared to the �nn-OLS rate. However, given that the above order satis�es
('22n � 1)

�1=2
= o

�
n1=2

�
and that the exponential part �nn of the OLS rate is maintained in the

convergence rate of Theorem 3(iii), the e¢ ciency loss associated with employing ~�n is small com-
pared to the bene�t of an estimation procedure that gives rise to test statistics and con�dence
intervals of general asymptotic validity.

4. The limit distribution theory of Theorem 3 under C(i) and C(iii) shares some similarity
with the corresponding results for the OLS estimator: in particular, in the case when �n ! 1
both asymptotic distributions are Gaussian under C(i) and Cauchy under C(iii) (Y=X is Cauchy
distributed when X =d N (0; �2)). This is not surprising since in both cases the instrument ~zt has
similar time series properties (near-stationary or mildly explosive) as the original autoregressive
process xt. Building the instrument ~z1t based on �xt rather than the autoregressive residuals
(as for ~z2t) maintains the asymptotic optimality of the IVX procedure of Phillips and Magdalinos
(2009) under C(i) when '1n is chosen closer to unity than �n.

4 Monte Carlo Simulations
In this section, we design a Monte Carlo exercise to study the �nite sample properties of the

IV estimators introduced in this paper and how they compare to alternative approaches. We �rst
discuss the instrument selection and provide a simple guide on how to implement the proposed
inference procedure in Section 4.1. We demonstrate that with the above instrument choice, our
procedure exhibits good small sample properties for autoregressive regimes covering the entire
range from stationarity to explosivity. In Section 4.2 we provide an illustration of the failure of
general asymptotic inference based on the OLS estimator in the explosive region: in particular,
we show that misspecifying the variance of a single observation can have severe consequences for
the size and coverage rates of OLS-based inference that do not improve with the sample size, both
in the autoregressive and predictive regression models. On the other hand, we demonstrate that
the IV procedure of Theorems 1 and 2 continues to provide correct inference in these cases. Next,
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we compare the �nite sample properties of our procedure to the leading existing approaches: in
Section 4.3.1, we provide a comparison of our con�dence intervals in (23) for the autoregressive
parameter to the procedure of Andrews and Guggenburger (2014); in Section 4.3.2, we compare the
size and power of our testing procedure in (26) in the predictive regression setup to the procedure
proposed by Elliott et al. (2015). In both cases, we demonstrate that the IV procedure delivers:
(i) correct size across all autoregressive regimes considered, and (ii) superior power in all cases to
the left of unity (including local-to-unity, near- and purely stationary regions) except for the case
of exact unit root. Crucially, our procedure also provides correct inference on the right side of
unity, in the local-to-unit-root, mildly and purely explosive regions, where no existing alternative
approach has general asymptotic validity.

4.1 Instrument Selection
Practical implementation of our procedure requires a choice for '1n and '2n in (16) for the

instrument construction in (17). While theoretically, any values of '1n ! 1 belonging to C(i) and
'2n ! 1 belonging to C(iii) deliver correct asymptotic inference, �nite sample performance may
vary considerably with the choice for '1n and '2n: Choosing

'1n = 1� 1=nb1 ; '2n = 1 + 1=nb2 (41)
reduces the problem to selecting values for b1 and b2 in (0; 1) : Since we require an instrument selec-
tion with good performance along all autoregressive regions without a priori knowledge, we adopt
a conservative approach: from Remark 2 after Theorem 2, we know that our inference procedure
su¤ers the worst �nite sample distortion in the predictive regression case when �n = 1 with large
correlation �"u between the innovations "t and ut in (1) and (9)

9. Therefore, we base our selection
procedure for the values of b1 and b2 on the principle of minimising the worst case scenario and
select values that deliver satisfactory test size in this most unfavourable case. We consider a grid
of values for b1 and b2 in (41) with very strong positive and negative correlation j�"uj = 0:99.
Tables B1 and B2 of the online Appendix B contain the empirical size of the two-sided test of
our procedure for the predictive regression slope parameter � for n = 1; 000 based on 10; 000
replications for various combinations of b1 and b2 for �"u = 0:99 and �"u = �0:99 respectively.
The power in this case (plots of which for the grid points can be found in Figure B1 of the online
Appendix B) is increasing both in b1 and b2: Our task is to select the largest values for b1 and b2;
subject to the size being close to the nominal 5%. We place more weight on large values for b1
rather than large values for b2 for three reasons: (i) power is always non-decreasing in b1 for all
autoregressive speci�cations, while in the explosive region power is decreasing in the value of b2
(though this is not a serious issue since our procedure preserves the exponential rate of conver-
gence in the explosive region �nnn

�b2=2 regardless of the value of b2), (ii) for power maximisation
in the case � = 1, the value of b1 is relatively more important (as can be seen from the power
plots in the online Appendix B), since the near-stationary instrument is chosen 2/3 of the time
(this is since the OLS distribution in the unit root case is left-skewed with values below unity
occurring with probability 2/3), and (iii) values for b2 close to unity would imply that our mildly
explosive instrument is near the boundary with local-to-unity region, which would cause the in-
strument inheriting local-to-unity properties and potentially some of the associated small sample
distortions when working with purely explosive regressor. From Tables B1 and B2 of the online
Appendix B, we suggest using b1 = 0:85 and b2 = 0:7 in (41) since in both cases, the empirical size
in these unfavourable cases does not exceed 5.99%. We use these values throughout the rest of
the Monte Carlo section (and in the empirical application in Section 5) and demonstrate that our
choice works well for all autoregressive speci�cations in both a predictive and autoregressive setup.

9In the autoregressive setup, such �nite sample distortions are less pronounced.
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We �rst implement our choice of instrument in the predictive regression setup (9) along di¤erent
autoregressive regimes for xt in (1):

�n 2 f0:5; 0:7; 0:9; 1� 10=n0:75; 1� 50=n; 1� 30=n; 1� 15=n; 1; 1 + 15=n;
1 + 30=n; 1 + 50=n; 1 + 10=n0:75; 1:02; 1:04; 1:06g; with X0 = 0, � = �y = 0; (42)

"t � N
�
0; �2"

�
; ut � N

�
0; �2

�
; �" = � = 1; �"u 2 f�0:9;�0:45; 0; 0:45; 0:9g : (43)

For each speci�cation, we compute the empirical size of the two-sided test statistic in (26) based on
5,000 simulated samples for sample sizes n 2 f200; 500; 1000g. Throughout the entire Monte Carlo
section, we always use reduced sample sizes n 2 f100; 200; 500g for the explosive speci�cations
�n 2 f1 + 50=n; 1 + 10=n0:75; 1:02; 1:04; 1:06g : We do this for two reasons: (i) it facilitates com-
parison since the exponential rate of convergence for these speci�cations implies extremely precise

21



estimates with standard errors of the range of 10�30 for sample sizes of 500, and (ii) it prevents
Matlab rounding such standard errors to 0 (resulting to point con�dence intervals) without the
need of committing excessive memory.

Figures 1-3 display the rejection probability of our test procedure in (26) under the null
� = 0 for the di¤erent autoregressive regions with 95% con�dence against the two-sided alter-
native � 6= 0 for di¤erent correlation between the innovations �"u 2 f�0:9; 0; 0:9g : Figures 1-3
provide evidence that our procedure delivers satisfactory empirical size throughout the di¤erent
autoregressive speci�cations converging to the nominal 5% as the sample size increases. The online
Appendix B contains two additional sets of results for moderate negative and positive correlation
�"u 2 f�0:45; 0:45g as well as the proportion of times the mildly explosive instrument is chosen
throughout the di¤erent autoregressive speci�cations. As expected, the mildly explosive instru-
ment is never chosen in the stationary region even for small samples, and is chosen in the pure
unit root case around 33% of the time.

4.2 Invalidity of OLS in the explosive regions
In this section, we brie�y discuss the relative performance of OLS and our procedure in the

explosive region and provide an illustration of the invalidity of OLS-based inference even in large
samples. The lack of central limit theory for the numerator of the OLS estimators of �n and �
implies that the asymptotic distribution of the t-statistic based on the OLS is carried entirely by
the last few observations for the innovations, and a change in the distribution of the last innovation
in the sample, for example, distorts OLS-based inference even asymptotically.
We simulate data from the predictive regression model in (9), with "t � N (0; 1) ; ut�1 �

N (0; 1) for t = 1; :::; n�1 and we draw the last observation of the innovations from "n � N (0; �2") ;
un�1 � N (0; �2) with �" = � = 3 instead. In the presence of CLT (as is the case with our IV
estimator), misspeci�cation of any �nite number of terms will vanish asymptotically by virtue of
uniform asymptotic negligibility (u.a.n.) implied by the CLT. In the absence of u.a.n. and hence
a CLT(as is the case with OLS), this type of misspeci�cation may a¤ect the limit and invalidate
inference.
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In Figure 4, we report the 90%, 95% and 99% coverage rates of the IV and OLS estimators
of �n respectively for di¤erent sample sizes (as in Section 4.1, we work with the autoregressive
speci�cations in (42) and reduced sample sizes for the explosive processes). We compute the
coverage rates as the proportion of time that the true �n �nds itself in the 90%, 95% and 99%
con�dence intervals implied by the IV and OLS respectively, based on 5,000 replications. From
Figure 4, it is clear that the OLS su¤ers large �nite sample distortions in the local-to-unity region,
as well as in the mildly and purely explosive regions. For sample size n = 100; the IV procedure is
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also a¤ected by this end-of-sample problem and this is expected since our near-explosive instrument
exhibits some explosive properties especially when n is small. However, as the sample size increases,
the coverage rates of the IV procedure converge to the nominal levels, as Theorem 1 suggests. The
coverage rates of OLS for the mildly explosive speci�cation �n = 1 + 10=n0:75 also improve as
expected (although very slowly). Crucially, for the purely explosive DGPs, the OLS distortions
do not improve even for larger samples. For example, when �n = 1:06; the 90% OLS con�dence
interval contains the truth 70% of the time irrespective of increases in the sample size.
We �nd similar results in the predictive regression setup. In Figure 5, we report the rejection

probability of the OLS under the null � = 0 against a two-sided alternative10 for the same speci�-
cations and sample sizes. We present the rejection probability of the IV procedure for the choice
of instrument in Section 4.1 as well as two other choices of instrument, increasing �2 to 0:85 and
0:95 respectively. As it can be seen from Figure 5, the empirical size of the OLS for the purely
explosive regions is distorted and crucially the distortions deteriorate as the sample size increases;
the size of our procedure on the other hand converges to the nominal level as the sample size
increases, as suggested by the theoretical results of Theorem 2.

4.3 Comparisons with alternative methods in the literature
4.3.1 Inference in the autoregressive Model
In this section, we present a comparison of our procedure to current state-of-the-art methodol-

ogy in the literature of robust inference in autoregression and predictive regression for � 2 (�1; 1].
We �rst evaluate our proposed autoregressive con�dence intervals in (23) and we compare them to
the procedure by Andrews and Guggenberger (2014)11, which constructs the intervals by inverting
the OLS t-statistic, which under the null is asymptotically nuisance-parameter-free.

In Figure 6 and 7, we report the 90%, 95% and 99% coverage rates and lengths of the intervals

10The online Appendix B contains additional comparison for the corresponding one-sided rejection probabilities.
11The Gauss code for the procedure was kindly provided by Don Andrews and Patrik Guggenberger and translated

into Matlab.
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respectively for the IV estimator and Andrews and Guggenberger (2014)�s procedure (AG) for �n
for di¤erent autoregressive regions and for di¤erent sample sizes. For the AG procedure, we use
the symmetric two-sided intervals imposing homoskedasticity as we found these to perform best in
terms of coverage especially in the local-to-unity regions; the online Appendix B also contains the
equal-tailed two-sided intervals of Andrews and Guggenberger (2014). Figure 6 presents evidence
that the IV procedure works well and is comparable to the AG procedure on the left side of unity,
while also providing valid inference for �n on the right side of unity in the local-to-unity, mildly
and purely explosive regions. In terms of length of the intervals, from Figure 7, it can be seen
that our intervals are always shorter12 than those of AG (which translates into higher power) for
all speci�cations except for the exact unit root case. The di¤erences in interval length in the unit
root case are not large and become negligible for large samples.

4.3.2 Size and power comparison in the predictive regression model
Next, we evaluate the inference based on the IV-based t-statistic in (26) in the predictive

regression setup (9) and we compare it to the one-sided test procedure by Elliott et al. (2015)13,
which, in the presence of a nuisance parameter, is nearly-optimal when the innovations of the
model are Gaussian; Zhou et al. (2019) and Zhou and Werker (2021) provide extensions of this
near-e¢ cient testing procedure to non-Gaussian, fat-tailed or heteroskedastic innovations.
We generate data from the predictive model in (9) for the speci�cations of (42) and (43). We

found that in the one-sided test setup, our choice of instrument works well in all but one scenario:
the case with strong negative correlation, where our choice for b1 and b2 leads to small-sample
oversizing in the pure unit root case. Since in all other cases, our choice of instrument from Section
4.1 delivers good size, we prefer not to repeat the selection exercise of Section 4.1, since selecting
a more conservative instrument would lead to power loss even in cases where there is no size issue.

12This result on the shorter length of the IV intervals continues to hold in the comparison for the 90% and 99%
equal-tailed two-sided intervals of AG, which can be found in the online Appendix.
13The Matlab code for the procedure was downloaded from Ulrich Müller�s website and some additional proce-

dures were kindly provided by Bo Zhou.
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Instead, we propose using the following adaptive t-statistic:
TAn

�
~�n

�
= 1 f�̂"u � LgTn

�
~�1n (�z1;t)

�
+ 1 f�̂"u > LgTn

�
~�2n (�z2;t)

�
(44)

where Tn
�
~�1n (�z1;t)

�
and Tn

�
~�2n (�z2;t)

�
are the t-statistics based on two di¤erent choices for in-

struments �z1;t and �z2;t; �̂"u is the sample correlation coe¢ cient between the �tted OLS residuals
for ut and "t; and L is some threshold level below which we use a more conservative instrument.
In this way, we can resolve the size distortion in the unit root under strong negative correlation,
without a¤ecting the power of the our procedure in all other cases.
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We set L = �0:7; and for the conservative instrument �z1t; we use (41) with b1 = 0:55 and
b2 = 0:65: For �z2t; we continue to use the choice of instrument from Section 4.1 with b1 = 0:85
and b2 = 0:7: In the case of �"u = �0:9 in Figure 12, we display the rejection probability under
the null (with 95% con�dence against the one-sided alternative � > 0) of both the original choice
of instrument and the new adapted procedure based on (44) to illustrate the e¤ect of using the
adaptive procedure. For all other cases, Figures 8-11, we display the rejection probability un-
der the null based on the adaptive instrument which is nearly identical to the original choice of
instrument in Section 4.1 since the sample correlation coe¢ cient �̂"u almost always exceeds the
threshold -0.7. Figures 13-17 present the corresponding power curves. We apply the procedure by
Elliott et al. (2015) (EMW) in all regions for comparison, stressing that their procedure is not
designed to work (and hence it is invalid) on the right side of unity.
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There are several important conclusions from the size and power comparisons in Figures 8-17.
First, our adaptive procedure in (44) performs well in terms of empirical size in all correlation
cases and in all persistence regions for the regressor and, as the sample size increases, any small
sample distortions vanish. Second, we �nd that the EMW procedure never rejects the null to
the right of unity (when the null is true and when it is not), except for a few cases with a small
sample; for example in the -0.9 correlation case, its size reaches 40% in the case of �n = 1:02 when
n = 100; but the oversizing disappears as n increases.

28



In terms of power, we reach a very similar conclusion to the one in the comparison with An-
drews and Guggenberger (2014) in Section 4.3.1: namely, our procedure is always more powerful
than EMW (which is asymptotically nearly-optimal under our Gaussian DGP for the innovations)
in all autoregressive speci�cations (stationary, near-stationary and left-side of local-to-unity re-
gions) except in the case of an exact unit root. The di¤erences in power in the unit root case are
small particularly when the correlation in the innovations is moderate. Moreover, in the purely
stationary speci�cations, the power gains of our IV procedure relative to EMW are very large even
for large samples. Crucially, our procedure extends in the right-side of unity and provides correct
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inference in the right side of local-to-unity, mildly explosive and pure explosive regions, for which
alternative approaches are invalid.

5 Inference in a linearised SIR model
In this section, we apply the procedure proposed in the paper on the linearised SIR model

(12) on Covid-19 data in order to construct con�dence intervals for the parameters �; ; � and
for the basic reproduction number r0 across a panel of countries. As discussed in Section 2.3,
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the triangular system in (12) implies that the dynamics of the number of infections follows an
AR(1) process with root � = 1 + � �  � �; which in the early stages of the Covid-19 outbreak,
before any government intervention, is expected to be greater than unity (since r0 > 1 implies
� > ( + �)), and the aim of containment policies has been to reduce r0 (and hence �) below unity.
After the Covid-19 outbreak, there has been a lot of interest in epidemic modelling in econometrics,
including versions of the SIR model (for example, Liu, Moon and Schorfheide (2021) perform a fully
parameteric Bayesian estimation of a piece-wise linear approximation of a nonlinear SIR model,
Li and Linton (2021) �t a nonstationary quadratic time trend model on the number of infections).
Linearising the model at the DFE reveals the inherently nonstationary dynamics of the series at
the outbreak and we stress that: (i) inference based on standard procedures such as OLS/MLE in
(12) is only valid when � < 1 corresponding to the case r0 < 1 which is not empirically relevant at
the outbreak (since it implies absence of an epidemic) but may become relevant after government
intervention, (ii) when � > 1, the series for It exhibit explosive behaviour with exponential growth
and standard semi-parametric procedures such as OLS do not provide valid inference (con�dence
intervals), unless i.i.d. Gaussianity assumption is imposed on u1t; and (iii) when � is in vicinity of
unity (i.e. when the contract rate � is approximately equal to the removal rate  + �), OLS/MLE
procedures involve nonstandard unit root or local-to-unity asymptotics and so standard inference
is invalid. Crucially, not only inference in the equation for It but also in the equations for �Rt

and �Dt (which resemble predictive regressions with regressor It), and hence inference on  and
�, is a¤ected by the level of persistence of It; and consequently, OLS/MLE inference on  and � is
only valid in the case r0 < 1. On the other hand, the IV procedure proposed in this paper remains
valid for all parameter regions for r0 and without distributional assumptions or homogeneity of the
innovations: Epidemiologists consider r0 the key parameter for determining whether an epidemic
is controllable and for understanding its transmission mechanism and, therefore, being able to
construct con�dence intervals with correct coverage regardless of the value of r0 2 (0;1) is of
great importance for policymakers.
We use a dataset on daily number of con�rmed cases, recovered and deceased obtained from

the John Hopkins University database14 for Italy, Germany, Austria, Denmark, Israel and South
Korea15. We de�ne the number of active infections as the number of con�rmed cases minus the
number of recovered cases and deaths at each period. Our sample spans from 22/01/2020 until
04/08/202116. For each country, we start our sample from the date of the �rst reported death;
and we split the remainder of the sample into four subperiods17 (�rst reported death: 24/07/2020;
25/07/2020:26/11/2020, 27/11/2020:31/03/2021, 01/04/2020:04/08/2021). We construct the con-
�dence intervals for �; ,� and r0 for each country and subsample, using the IV con�dence intervals
in Corollary 1. For the instrument construction, we use (41) with b1 = 0:85 and b2 = 0:7; which
are the values we show work well for all autoregressive regions in the Monte Carlo exercise of
Section 4. Our choice to conduct inference over subsamples is motivated by the unlikelihood that
the model�s parameters, for example r0; have remained constant over time; this is since aggressive

14https://github.com/CSSEGISandData/COVID-19
15Our choice of countries is motivated by the availability and quality of series on the number of recovered

individuals; for example, for many countries, data for recovered are not reported; and in many cases when series
are available, they are often of poor quality or stop being updated at some point in the sample.
16Series on recovered after August 2021 are not available. Arguably in late 2021, the SIR model becomes

inappropriate, since we start observing many re-infections due to mutations of the virus, so an SIS model (where
there is probability of re-infection) may be more appropriate for analysis.
17To avoid any arbitrary sample split, we use the same dates for all countries, since they give us roughly the

same number of observations in each subsample. We �nd that our results are robust to alternative sample splits.
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government policies aimed at controlling the early dynamics of the epidemic were aimed at con-
taining the outbreak either by reducing the number of new infections through imposing lockdowns
and social distancing measures (reducing �); through improved medical response to the outbreak:
hospital bed availability, improved treatment (increasing ); or later on, through vaccination by
reducing the proportion of susceptibles S0=N:

FIGURE 18

Figure 18 presents the IV estimates and 95% con�dence intervals for r0, �; �; and  for each
country and subsample. There are three main conclusions from our empirical analysis. First, the
death rate has considerably fallen over time in all countries, and the recovery rate has increased
over time for most countries; both due to availability of better medical treatment for the virus
(the overall e¤ect of those two con�icting e¤ects on the basic reproduction number r0 depends
on the relative change of � + ). Second, the contract rate is constant over time for countries
like Germany and Denmark, but increasing over time (especially during the winter of 2021) for
Italy, Israel and Austria. Third, we �nd very di¤erent values for the basic reproduction number
across countries: r0 is relatively constant over time for countries like Denmark, South Korea,
Austria and Germany and while its value is usually above unity, one is most of time included in
the 95% con�dence interval. On the other hand, for Italy, we �nd that r0 falls below unity in
the period April-August 2021 while for Israel (whose experience has been very di¤erent due to an
early vaccination programme), r0 actually surges at the summer of 2021, when cases of re-infection
begin to be reported.
While we recognise that the linearised SIR model in (12) is a very simple and stylised model and

that the data on Covid-19 infections have been shown to su¤er from serious measurement errors
and omissions, we make use of the basic SIR model to illustrate the usefulness and empirical
relevance of the inference procedure proposed in this paper. Its main advantage is that it gives
rise to con�dence intervals for the parameters of SIR-type models with correct coverage rates
in both highly infectious and remissive periods, a property of crucial empirical relevance as this
section demonstrates: r0 may take values in (0; 1); (1;1) as well as values very close to unity
depending on the various stages of the epidemic.
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6 Conclusion
The paper proposes a uni�ed, distribution-free framework of inference in both an autoregressive

and predictive regression models, when the regressor�s autoregressive root is in (�1;1) : This
includes: (i) stable and near-stable regressor processes, (ii) unit root and local-to-unity regressors,
and (iii) regressors that exhibit stochastic exponential growth (i.e. explosive and mildly explosive
processes).
The uni�ed inference is based on a novel estimation method that employs an instrumental

variable approach with an arti�cially constructed instrument with a data-driven combination of
a near-stationary and near-explosive root. The resulting IV estimators for the autoregressive
parameter in the autoregression and the slope parameter in the predictive regression framework
are both shown to have a mixed-Gaussian limit distribution under all persistence regimes, and
independently of the distribution of the innovations and the initial condition. Consequently, the
t-statistic based on the new estimators is asymptotically standard normal with uniform size and
gives rise to asymptotically correctly-sized con�dence intervals. To our knowledge, this is the �rst
method that delivers central limit theory and, consequently, general distribution-free asymptotic
inference when the regressor is purely explosive. Crucially, the method also allows for inference
with less persistent processes to the right of unity, i.e. mildly explosive and local-to-unity processes
with c > 0 (which are assumed away by the local-to-unity literature), while remaining valid when
the process is with root in the standard range of (�1; 1].
We demonstrate that our inference procedure exhibits very good �nite sample properties in

an extensive Monte Carlo study and compares favourably to existing procedures for inference in
both autoregressions (Andrews and Guggenberger (2014)) and predictive regressions (Elliott et
al. (2015)) in their parametric validity range (�1; 1] while providing correct inference on the right
side of unity (1;1), where no existing alternative approach has general asymptotic validity.
Finally, we show that the basic SIR model for modelling epidemics�dynamics upon linearisation

around the disease-free equilibrium, reveals that the number of active infections evolves as a �rst
order autoregressive process with an explosive root whenever the basic reproduction number is
above unity. We employ our procedure to model the early dynamics of the Covid-19 epidemic
across a panel of countries and construct con�dence intervals for the model�s parameters without
restricting the parameter space; i.e. without a priori knowledge of whether the epidemic is in a
controllable or uncontrollable stage.
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7 Appendix A
This Appendix contains an additional result (Lemma A1), and the mathematical proofs of

Lemmata 1-5 and Theorems 1-3 of the paper. Some further auxiliary results, as well as the proof
of Lemma A1 and Corollary 1, can be found in the Online Appendix B.

Lemma A1. Let ~z1t and ~z2t denote the instruments in (19), z1t, and z2t the processes in (30)
and (31). Let x0t denote the zero-intercept autoregression in (3) and ~z0t =

Pt
j=1 '

t�j
1n �x0j be an

instrument generated by x0t. Under Assumptions 1b, 3 and 4, the following hold:
(i) [n (1� '1n)]

p 'n1n ! 0,
Pn

t=1 t
p't1n � (1� '1n)

�p�1 � (p+ 1) for any p � 0 and any se-
quence ('1n)n2N in C(i); [n ('2n � 1)]

p '�n2n ! 0,
Pn

t=1 t
p'�t2n � ('2n � 1)

�p�1 � (p+ 1) for any
p � 0 and any sequence ('2n)n2N in C(iii), where � (�) denotes the gamma function.
(ii) Under C(i)-C(ii), the sequences r1n = ��1n

Pn
t=1 (~z1t�1 � ~z0t�1)ut, r2n = ��2n

Pn
t=1 (~z

2
1t � ~z20t),

r3n = ��2n
Pn

t=1 (~z1txt � ~z0tx0t) with �n = n1=2 (1� �2n'
2
1n)

�1=2 are all op (1).
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(iii) Under C(i)-C(ii) (1� �n'1n)
Pn

t=1 ~z1t = Op

�
n1=2

�
+ op

�
n�

�1=2
n

�
where (�n) is de�ned in

(6); under C(ii), (1� '1n)n
�1=2Pn

t=1 ~z1t = n�1=2x0n�1 + op (1).
(iv) Under C(ii)-C(iii), ~z2t = z2t � rnt, where

rnt =
�̂n � �n
'2n � �n

('2nz2t�1 � �nxt�1)1 fn j'2n � �nj ! 1g+ 't2ngn (A.1)

and gn = Op

�
n�1=2 ('2n � 1)

�1� independently of t. Moreover, all sequences de�ned by R1n =
('2n � 1) ��1n;z (

Pn
t=1 ~z2t �

Pn
t=1 z2t), R2n = ('

2
2n � 1)'�n2n (

Pn
t=1 ~z2t�1ut � z2t�1ut),

R3n = s�1n
Pn

t=1 (~z2txt � z2txt), R4n = ('22n � 1)
2
'�2n2n (

Pn
t=1 ~z

2
2t �

Pn
t=1 z

2
2t) are op (1).

(v) De�ne
�
�Yn; �Zn

�
by replacing uj by C (1) ej in the expressions for (Yn; Zn) in (38). The

following approximation holds:
�
�Yn; �Zn

�
� (Yn; Zn)!p 0.

The proof of Lemma A1 can be found in the Online Appendix B.

Proof of Lemma 1. Convergence of (�n)n2N to � 2 (�1;1) ensures that Assumption 1b holds
for the entire sequence (�n)n2N when � 6= 1, so it is enough to show the result for � = 1. Denote
(cn)n2N := fn (�n � 1) : n 2 Ng. Given an arbitrary subsequence

�
�mn

�
n2N of (�n)n2N, (cmn)n2N

has a monotone subsequence (csn)n2N (by the monotone subsequence theorem for real sequences).
By monotonicity, (csn)n2N converges to c1 2 R [ f�1;1g; hence:

�
�sn
�
n2N belongs to C(i) if

c1 = �1, or
�
�sn
�
n2N belongs to C(ii) if c1 2 R, or

�
�sn
�
n2N belongs to C(iii) if c1 =1.

Proof of Lemma 2. First, we show that, when (�n)n2N belongs to C(i) or C(iii), the OLS
estimator �̂n satis�es

�n :=
�̂n � �n
1� �n

!p � < 1 (A.2)

where � is a non-random constant. When (�n)n2N belongs to C(i) n (1� �n)!1, and �̂n � �n =
Op

�
n�1=2 (1� �n)

1=2
�
under Assumption 2 by Theorem 1 of Giraitis and Phillips (2006), giving

�n = Op

�
[n (1� �n)]

�1=2
�
= op (1) and � = 0; under Assumption 4, Lemma A0(i) implies that

�n = (1 + �n)
�
1� �2n

��1
(�̂n � �n)!p � (�) :=

(1 + �) �

�2 + 2��
;

and we need to show that � (�) < 1 for all � 2 (�1; 1). Since � � 0) � (�) � 0, it is su¢ cient to
consider � > 0. Di¤erentiating � (�) we obtain

�0 (�) =
(�2 � 2�) �
(�2 + 2��)2

and sign f�0 (�)g = sign
�
�2 � 2�

�
since � > 0. Hence if �2 > 2�, � (�) is increasing so � (�) � lim�!1 � (�) = 2�= (�2 + 2�) < 1;
if �2 < 2�, � (�) is decreasing so � (�) � lim�!�1 � (�) = 0; if �2 = 2�, � (�) = 1=2: In all cases,
� (�) < 1 completing the proof of (A.2) under C(i). When (�n)n2N belongs to C(iii), Theorem 4.3
of Phillips and Magdalinos (2007) gives �̂n � �n = Op (�

�n
n (�2n � 1)), so �n = Op (�

�n
n ) proving

(A.2) with � = 0. Recalling the expression for Fn in (13), write
n (�̂n � 1) = n (�n � 1) + n (�̂n � �n) = n (�n � 1) (1� �n)

where �n is de�ned in (A.2). By (A.2), we may choose some � 2 (0; 1� �); for arbitrary � > 0 and
mn !1 we obtain

P (mn1 �Fn > �) � P (mn1 �Fn > �; �n � 1� �) + P (�n > 1� �)

= P (mn1 fn (�n � 1) (1� �n) > 0g > �; �n � 1� �) + P (�n > 1� �)

� P (mn1 fn (�n � 1) � > 0g > �) + P (�n > 1� �)

� P (mn1 fn (�n � 1) > 0g > �) + P (�n > 1� �) :
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When (�n)n2N belongs to C(i), n (�n � 1) ! �1 so there exists n0 2 N such that n (�n � 1) < 0
for all n � n0; hence P (mn1 �Fn > �) � P (�n > 1� �) for all n � n0 and all � > 0 so part (i) follows
since P (�n > 1� �) ! 0 by (A.2) and the choice � 2 (0; 1� �). When (�n)n2N belongs to C(iii),
using the same argument and choice of � 2 (0; 1� �), we may write

P (mn1Fn > �) � P (mn1 fn (�n � 1) (1� �n) � 0g > �; �n � 1� �) + P (�n > 1� �)

� P (mn1 fn (�n � 1) � 0g > �) + P (�n > 1� �) :
Since n (�n � 1) ! 1 under C(iii), there exists n1 2 N such that n (�n � 1) > 0 for all n � n1
and all � > 0; hence, lim supn!1 P (mn1Fn > �) � lim supn!1 P (�n > 1� �) = 0 by (A.2).

Proof of Lemma 3. Using the approximation for r3n in Lemma A1(ii), we may write

(1� �n'1n)
1

n

Pn
t=1 xt�1~zt�1 = (1� �n'1n)

1

n

Pn
t=1 x0t�1~z0t�1 + op (1)

= �2 +
1

n

Pn
t=1 ~z0t�1ut +

1

n
(2�n � 1)

Pn
t=1 x0t�1ut

+�n (�n � 1)
1

n

Pn
t=1 x

2
0t�1 + op (1) (A.3)

where the last asymptotic equivalence follows by equations (66)-(68) of Magdalinos and Phillips
(2020) (henceforth MP(2020)). Under Assumption 4 on (ut), n�1

Pn
t=1 ~z0t�1ut = �n + op (1) by

Lemma 3.1(ii) of MP(2020). Also, under C(i), Lemma A1(iii) and �x0n�1 = Op

�
n�1=2�n

�
give

n�1 (1� �n'1n)n�z1n�1�xn�1 = Op (�n=n) + Op

�
n�1 (1� '1n)

�1� = op (1), since �n=n ! 0 under
C(i). Under C(ii), Lemma A1(iii) yields

n�1 (1� �n'1n)n�z1n�1�xn�1 =
x0n
n1=2

1

n3=2
Pn

j=1 x0j�1 + op (1) : (A.4)

Combining (A.3)-(A.4) and using (1� �2n'
2
1n) = (1� �n'1n) � 1 + �n, we obtain that�

1� �2n'
2
1n

� 1
n

Pn
t=1 xt�1~zt�1 =

~	n + op (1) (A.5)

with ~	n de�ned in (35) under C(i)-C(ii), with the term in (A.4) being op (1) under C(i). Under
C(i), n�1

Pn
t=1 x0t�1ut !p � by Lemma 2.2(i) of MP(2020), so the identity (obtained from the

recursion for x0t)
1

n

�
1� �2n

�Pn
t=1 x

2
0t�1 =

1

n

Pn
t=1 u

2
t + 2�n

1

n

Pn
t=1 x0t�1ut �

1

n
x20n !p �

2 + 2�� (A.6)

implies that ~	n !p �2 + 2�� under C(i). Under C(ii), �n ! � and standard local to unit
asymptotics, e.g. Phillips (1987b), yield

~	n = 2

 
!2 +

1

n

Pn
t=1 x0t�1ut � �+ c

1

n2
Pn

t=1 x
2
0t�1 �

x0n
n1=2

Pn
j=1 x0j�1

n3=2

!
+ op (1)

!d 2
�
!2 +

R 1
0
Jc (r) dB (r) + c

R 1
0
Jc (r)

2 dr � Jc (1)
R 1
0
Jc (r) dr

�
= !2 + Jc (1)

2 � 2Jc (1)
R 1
0
Jc (r) dr

where the last equality holds by applying the integration by parts formula to the stochastic in-
tegral

R 1
0
Jc (r) dB (r); see equation (79) of MP(2020). The expression for the weak limit ~	c

in the lemma follows since �2 + 2�� = !2 under C(ii), completing the proof of part (i). For
part (ii), by the approximation for r2n in Lemma A1(ii), it is enough to show that ~v0n :=
(1� �2n'

2
1n)n

�1Pn
t=1 ~z

2
0t !p �

2+2��. The proof of Lemma 3.1(iv) of MP(2020) shows that ~v0n =
(1� '21n)n

�1Pn
t=1 z

2
1t + op (1) !p !

2 when (1� '1n)�n ! 1 and ~v0n = (1� �2n)n
�1Pn

t=1 x
2
0t +

op (1) when (1� '1n)�n ! 0. In both cases, ~v0n !p �
2 + 2��; by (A.6) when (1� '1n)�n ! 0

and the fact that (1� '1n)�n ! 1 implies that � = 1 and �2 + 2�� = !2. It remains to show
that that (1� �2n'

2
1n)n

�1Pn
t=1 ~z

2
0t !p !

2 when (1� '1n) = (1� �n) ! � 2 (0;1): in this case,
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(�n) belongs to C(i) and equations (74) and (75) of MP(2020) imply that
1

n

�
1� �2n'

2
1n

�Pn
t=1 ~z

2
0t�1 =

1� �2n'
2
1n

1� '21n

�
!2 � 2 1� �n

1� �2n'
2
1n

�
1� �2n'

2
1n

� 1
n

Pn
t=1 x0t�1~z0t�1

�
+op (1) :

Since n�1 (1� �2n'
2
1n)
Pn

t=1 x0t�1~z0t�1 !p !
2 (recall that we are under C(i)), the result follows

from
1� �2n'

2
1n

1� '21n

�
1� 2 (1� �n)

1� �2n'
2
1n

�
� 2�n
1� '21n

(1� '1n)! 1

since '1n ! 1 and �n ! 1. For part (iii), in view of the approximation for r1n in Lemma A1(ii),
it is su¢ cient to show the result for

Pn
t=1 �nt with �nt := n�1=2 (1� �2n'

2
1n)

1=2
~z0t�1et. Since �nt is

an Ft-martingale array under Assumption 4 that satis�es the Lindeberg condition by Lemma 3.2
of MP (2020) andPn

t=1 EFn;t�1
�
�2nt
�
= �2e

�
1� �2n'

2
1n

� 1
n

Pn
t=1 ~z

2
0t�1 !p �

2
e

�
�2 + 2��

�
by part (ii) of the lemma, the result follows by a standard martingale central limit theorem (e.g.
Corollary 3.1 of Hall and Heyde (1980)).

Proof of Lemma 4. The statement for
�Pn

t=1 z2t�1ut;
Pn

t=1 z
2
2t�1
�
and

�
�Yn; �Zn

�
!d [Y; Z] follow

by Lemma 5 and Lemma 2 of Magdalinos (2012). Hence [Yn; Zn]!d [Y; Z] of part (i) follows from
the martingale approximation of Lemma A1(v). The only statement of part (i) that requires proof
is for s�1n

Pn
t=1 xt�1z2t�1: The recursions for xt and zt in (2) and (31) give

(�n'2n � 1)
Pn

t=1 xt�1z2t�1 = xnz2n � '2n
Pn

t=1 z2t�1ut � �n
Pn

t=1 xt�1ut �
Pn

t=1 u
2
t

+'2n� (�n � 1)
Pn

t=1 z2t�1 + � (�n � 1)
Pn

t=1 ut

= xnz2n + op (�n�n;z) (A.7)
where the order of magnitude follows from: ��1n (�n � 1)

Pn
t=1 ut is of orderOp(�

�n
n (n (�n � 1))

1=2) =
op (1) by Lemma A1(i) under C(iii) and Op (n

�1) under C(ii); ��1n ��1n;z
Pn

t=1 z2t�1ut is of or-

der Op[�
�1
n ('2n � 1)

�1=2] = op(�
�n
n [n (�n � 1)]

1=2) = op (1) under C(iii) (by Lemma A1(i)) and
Op[(n ('2n � 1))

�1=2] under C(ii); by (B.3) ��1n ��1n;z
Pn

t=1 xt�1ut is of orderOp('
�n
2n [n ('2n � 1)]

1=2) =
op (1) by Lemma A1(i); �nally, the recursion (31) gives
��1n ��1n;z (�n � 1)

Pn
t=1 z2t�1 = ��1n ��1n;z (�n � 1) ('2n � 1)

�1 (z2n �
Pn

t=1 ut) = op
�
n�1=2

�
+ op

�
'�n2n

�
since z2n = Op (�n;z) and

Pn
t=1 ut = Op

�
n1=2

�
. The proof of (A.7) follows by Lemma A1(i) and

the fact that n ('2n � 1) ! 1. By (A.7), we conclude that s�1n
Pn

t=1 xt�1z2t�1 =
xn
�n

z2n
�n;z

+ op (1)

and the result follows from the de�nitions of Zn and Xn in (38) and (39).
For part (ii), the martingale approximation of Lemma A1(v) implies that

[Yn; Xn]
0 = C (1)

Pn
j=1 cnjej + op (1) with cnj =

h�
'22n � 1

�1=2
'
�(n�j)�1
2n ;

�
�2n � 1

�1=2
��jn

i0
(A.8)

(for Xn we may use the part of Lemma A1(v) corresponding to Zn replacing '2n with the
mildly explosive root �n). We apply a standard martingale central limit theorem, e.g. Corol-
lary 3.1 of Hall and Heyde (1980), to the martingale array in (A.8): the conditional variance
matrix Vn =

Pn
j=1 cnjc

0
njEFj�1

�
u2j
�
has typical elements: V (n)

11 = !2 ('22n � 1)
Pn

j=1 '
�2j
2n ! !2;

V
(n)
22 = !2 (�2n � 1)

Pn
j=1 �

�2j
n ! !2; V (n)

12 = (�2n � 1)
1=2
('22n � 1)

1=2
'�n�12n

Pn
j=1

�
'2n
�n

�j
. When

n j�n � '2nj ! 1, evaluating the geometric progression yields V (n)
12 = O

�
'�n2n

�
+ O (��nn ); when

j�n � '2nj = O (n�1),
Pn

j=1 ('2n=�n)
j � bn for some b > 0 and

���V (n)
12

��� � bn ('22n � 1)'�n�12n = o (1)

by Lemma A1(i). In both cases V (n)
12 ! 0 so Vn ! !2I2 as required for the covariance matrix of

a random vector [Y;X]0 consisting of independent N (0; !2) variates. For the Lindeberg condition
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associated with (A.8), the bound maxj�n kcnjk2 � 2�n with �n = ('22n � 1) _ (�2n � 1) yieldsPn
j=1 kcnjk

2 E
�
e2t1
�
kcnjk2 e2j > �

	�
� max

j�n
E
�
e2j1
�
e2j > ��1n �=2

	�Pn
j=1 kcnjk

2 ! 0

by uniform integrability of
�
e2j
�
j2N, since �

�1
n !1 when �n ! 1 and

Pn
t=1 kcntk

2 = O (1).

For part (iv), �n ! � > 1; X1 in (8) is well-de�ned a:s: because �n :=
Pn

j=1 �
�juj con-

verges a:s: under Assumption 4: P
�
supk�1

�n+k � �n

L1
> �
�
� ��1E

�
supk�1

�n+k � �n

L1

�
for any � > 0 and E

�
supk�1

�n+k � �n

L1

�
� supk�1 kukkL1

P1
j=n+1 j�j

�j ! 0. By the above

convergence of X1 and since X0 (n) !p X0 when �n ! � > 1 by Assumption 3, Xn !p X1
will follow from showing that

Pn
j=1 (�

�j
n � ��j)uj !L1 0, which, in turn, will follow from show-

ing that
Pn

j=1 j��jn � ��jj ! 0. To prove the last statement, we apply the mean value theo-
rem to the function x 7! x�j: ��jn � ��j = � (�n � �) j��j�1n for some �n ! �; hence, we
may choose � 2 (0; �� 1) and n0 (�) 2 N such that for all n � n0 (�): �n > � � � which
implies that

Pn
j=1 j��jn � ��jj = j�n � �j

Pn
j=1 j�

�j�1
n � j�n � �j

P1
j=1 j (�� �)�j�1 ! 0 since

� � � > 1 from the choice � 2 (0; �� 1). Next we show that X1 6= 0 a:s: under Assumption

4. Writing X1 = limn!1
Pn

i=1 �iei + Y0 a:s:, where �i = (�2 � 1)�1=2
�P1

j=0 �
�jcj

�
��i and

Y0 = (�2 � 1)�1=2
�P1

i=0

�P1
j=1 �

�jcj+i

�
e�i +X0 � �

�
satisfy

P1
i=1 j�ij < 1 and �i 6= 0 for

all i by Assumption 4 and is an F0-measurable random variable by Assumptions 3 and 4 (un-
der Assumption 2, �i = (�2 � 1)�1=2 ��i and Y0 = (�2 � 1)�1=2 (X0 � �)). By EFt�1 (e2t ) = �2

and lim inft!1 EFt�1 jetj > 0 a:s:, the martingale di¤erence sequence (et;Ft)t2N satis�es the local
Marcinkiewicz-Zygmund conditions (equation (1.1) of Lai and Wei (1983)), so applying Corollary
2 of Lai and Wei (1983) to X1 yields P (X1 = 0) = P (limn!1

Pn
i=1 �iei = �Y0) = 0.

We turn to the limit distribution of g (Xn)Yn. Let (kn)n2N � N be an increasing sequence

satisfying kn=n ! 0 and kn= ('22n � 1)
�1 ! 1 and let Y 0

n = ('
2
2n � 1)

1=2
C (1)

Pn
t=kn

'
�(n�t)�1
2n et:

It is easy to see that
 �Yn � Y 0

n


L2
= O

�
'�kn2n

�
= o (1) so Lemma A1(v) implies that kYn � Y 0

nk =
op (1). Also,

jXn �Xkn�1j �
�
�2n � 1

�1=2 �Pn
j=kn

��jn uj +X0 (n)�X0 (kn � 1)
�
!p 0

by Assumption 3. Using the fact that X1 6= 0 a:s: and the continuity of g away from zero,
jg (Xn)� g (Xkn�1)j !p jg (X1)� g (X1)j = 0, so we conclude that

g (Xn)Yn = g (Xkn�1)Y
0
n + op (1) =

Pn�kn
t=0 �n;t + op (1) (A.9)

where �n;t = C (1) �ntet+kn and �nt = ('22n � 1)
1=2
'
�(n�kn�t)�1
2n g (Xkn�1) : Since �nt is an Fkn�1-

measurable sequence for all n; t,
��
�n;t;Fn;t

�
: 0 � t � n� kn

	
with Fn;t = Ft+kn is a martingale

di¤erence array with Fn;t � Fn+1;t since the sequence (kn)n2N was chosen to be increasing. We
apply a martingale central limit theorem (Corollary 3.1 of Hall and Heyde (1980)) to a mixed
Gaussian distribution. The conditional variance of the martingale array in (A.9) is given byPn�kn

t=0 EFn;t�1
�
�2n;t
�
= !2

Pn�kn
t=0 �2nt = !2g2 (Xkn�1)

�
'22n � 1

�Pn�kn
t=0 '

�2(n�kn�t+1)
2n

!p !2g (X1)
2 : (A.10)

For the Lindeberg condition, Ln (�) :=
Pn�kn

t=0 EFn;t�1
�
�2n;t1

�
�2n;t > �

	�
!p 0 for all � > 0, let

�n (�) := C (1)�1 ('22n � 1)
�1=2

�1=2 and note that �n (�)!1 for any � > 0. The estimation
1
�
�2n;t > �

	
� 1

�
g2 (Xkn�1) e

2
t+kn > �n (�)

2	 � 1�g2 (Xkn�1) > �n (�)
	
+ 1

�
e2t+kn > �n (�)

	
and Fkn�1-measurability of Xkn�1 imply that Ln (�) � L1n (�) + g2 (Xkn�1)L2n (�), where

L2n (�) = C (1)2
�
'22n � 1

�Pn
t=kn

'
�2(n�t+1)
2n EFt�1

�
e2t1
�
e2t > �n (�)

	�
!L1 0
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since kL2n (�)kL1 � O (1)maxt�n E (e2t1 fe2t > �n (�)g)! 0 by UI of (e2t ) and
L1n (�) = !21

�
g2 (Xkn�1) > �n (�)

	Pn�kn
t=0 �2nt !p 0

since both g2 (Xkn�1) and
Pn�kn

t=0 �2nt converge in probability to g
2 (X1) < 1 a:s: and �n (�) !

1. We conclude that, for any � > 0, Ln (�) � op (1) + g2 (Xkn�1) op (1) = op (1) proving
the Lindeberg condition. In view of (A.10), the martingale central limit theorem applied toPn�kn

t=0 �n;t in (A.9) then implies that g (Xn)Yn !d  where  has characteristic function � (x) =
exp

�
�1
2
t2�2g (X1)

2	 i.e.  =d MN
�
0; �2g (X1)

2�. The statement for g (Xn)Y
"
n follows by an

identical argument by replacing C (1) et by "t in �Yn.

Proof of Lemma 5. Denote �nt =
�
�1;nt; �2;nt; �3;nt

�0
with �1;nt =

�
n (1� '21n)

�1
��1=2

z1t�1et,

�2;nt = C (1)n�1=2et and �3;nt = C (1) ('22n � 1)
1=2
'
�(bnsc�t)�1
2n et. The martingale approximation

of Lemma A1(v) for Yn (s) and a standard approximation for Bn (s) give
[Un (s) ; Bn (s) ; Yn (s)]

0 =
Pbnsc

t=1 �nt + op (1) : (A.11)
Since z1t�1 is Ft�1-measurable, �nt is a Ft-martingale di¤erence array and we may apply a
Lindeberg-type functional CLT for vector-valued martingale di¤erence arrays to (A.11): see The-
orem 3.33 (pp. 478) of Jacod and Shiryaev (2003). The conditional Lindeberg condition on k�ntk

2

(3.31 in Jacod and Shiryaev (2003)) is implied by the stronger unconditional Lindeberg condition
(LC) on k�ntk

2 which, in turn, is implied by establishing the LC on each of �21;nt, �
2
2;nt and �

2
3;nt.

The LC for �21;nt is established by Proposition A1 and Lemma 3.3 of MP(2020). The LC for �
2
2;nt

follows from the bound
Pbnsc

t=1 E
�
�22;nt1

�
�22;nt > �

	�
� C (1)2maxt�n E

�
e2t1
�
e2t > n�C (1)�2

	�
and

uniform integrability of (e2t )t2N. For the LC for �
2
3;nt, '

�2(bnsc�t+1)
2n � 1 for all t � bnsc and s 2 [0; 1]

implies thatPbnsc
t=1 E

�
�23;nt1

�
�23;nt > �

	�
� C (1)2max

t�n
E
�
e2t1
�
e2t > �n (�)

2	� �'22n � 1�Pn
t=1 '

�2t
2n (A.12)

where �n (�) = C (1)�1 ('22n � 1)
�1=2

�1=2 ! 1 for any � > 0. Since ('22n � 1)
Pn

t=1 '
�2t
2n =

O (1), (e2t )t2N is a UI sequence and �n (�)
2 ! 1, the right side of (A.12) is o (1). This es-

tablishes the LC for the martingale di¤erence array �nt in (A.11). The conditional variance
matrix of the array in (A.11) is given by V (n) :=

Pbnsc
t=1 EFt�1 (�nt�

0
nt); denoting the typical el-

ements of V (n) by
h
V
(n)
ij

i3
i;j=1

: V (n)
11 = �2"

1
n
(1� '21n)

Pbnsc
t=1 z

2
1t�1 !p �

2
e!

2s, by Lemma 3.1(iv)

of MP(2020); V (n)
22 = !2 bnsc =n ! !2s; V (n)

33 = !2 ('22n � 1)
Pbnsc

t=1 '
�2t
2n ! !2 for all s >

0; V (n)
23 = !2n�1=2 ('22n � 1)

1=2Pbnsc
t=1 '

�t
2n = O

�
[n (1� '2n)]

�1=2
�
= o (1); since

Pbnsc
t=1 z1t�1 =

Op

�
n1=2 (1� '21n)

�1
�
, V (n)

12 = !2 1
n
(1� '21n)

1=2Pbnsc
t=1 z1t�1 = Op

�
(n (1� '21n))

�1=2
�
= op (1);

V
(n)
13 = !2 ('22n � 1)

1=2
(1� '21n)

1=2
n�1=2

Pbnsc
t=1 '

�(bnsc�t+1)
2n z1t�1 satis�esV (n)

13


L1
� C (1)�2emax

t�n

�1� '21n
�1=2

z1t


L2

�
'22n � 1

�1=2
n�1=2

Pn
t=1 '

�t
2n = O

�
(n ('2n � 1))

�1=2
�
:

We conclude that V (n) !p diag (�
2
e!

2s; !2s; !2) for s 2 [0; 1], and applying Theorem 3.33 of
Jacod and Shiryaev (2003) to (A.11),

Pbnsc
t=1 �nt ) � (s) where � (s) is a continuous Gaussian

martingale with quadratic variation h�is = diag (�2e!
2s; !2s; !2). By Levy�s characterisation (e.g.

Theorem 4.4 II of Jacod and Shiryaev (2003), � (s) is characterised by its quadratic variation
process, � (s) =d [U (s) ; B (s) ; Y ]

0 with the right side de�ned in the statement of the lemma and
independence between the components of � (s) implied by the diagonality of the quadratic variation
matrix h�is.
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Proof of Theorem 3. Under C(i)-C(ii) of Assumption 1b,

n1=2
�
1� �2n'

2
1n

��1=2
(~�1n � �n) =

n�1=2 (1� �2n'
2
1n)

1=2
(
Pn

t=1 ~z1t�1ut � n�z1n�1�un)

n�1 (1� �2n'
2
1n)
Pn

t=1 xt�1~z1t�1
with Lemma 3(i) and �un = Op

�
n�1=2

�
implying that

n�1=2
�
1� �2n'

2
1n

�1=2
n�z1n�1�un = Op

�
n�1=2

�
1� �2n'

2
1n

��1=2�
+Op

�
n�1

�
1� '21n

��1�
= op (1)

and, similarly for ~�1n, n
�1=2 (1� �2n'

2
1n)

1=2
n�z1n�1�"n = op (1) : By Lemma 3(ii), the common de-

nominator of �n (~�1n � �n) and �n
�
~�1n � �

�
is asymptotically equivalent to ~	n in (35) we obtain,

under C(i)-C(ii),

n1=2
�
1� �2n'

2
1n

��1=2 h
~�1n � �n;

~�1n � �
i
= [1 + op (1)]

1
~	n

h
~Un (1) ; ~U

"
n (1)

i
(A.13)

where ~Un (�) is de�ned as Un (�) in Lemma 5 with z1t�1 replaced by ~z1t�1 (and et = ut under
Assumption 2) and ~U "

n (�) as ~Un (�) with et replaced by "t.
We now prove part (i) of the theorem for ~�n: under C(i) and Assumption 2, ut = et and � = 0

so ~	 (c) = �2 and ~Un (1)!d N (0; �4) by Lemma 3, so substituting into (A.13) yields
n1=2

�
1� �2n'

2
1n

��1=2
(~�1n � �n)!d N (0; 1) : (A.14)

We complete the proof by combining (A.14) with Lemma 2: under C(i), Lemma 2(i) implies that
mn1 �Fn !p 0 for mn := �n k~�2n � ~�1nkL1, so (20) yields �n k~�n � ~�1nkL1 = �n k~�2n � ~�1nkL1 1 �Fn !p

0 and the proof of �n (~�n � �n)!d N (0; 1) under C(i) and Assumption 2 follows from (A.14). For
~�n under C(i) and Assumption 4, ~	 (c) = �2+2�� by Lemma 3(i) and ~U "

n (1)!d N (0; (�2 + 2��)�2")
by Lemma 3(iii) with the martingale di¤erence et replaced by "t, giving

n1=2
�
1� �2n'

2
1n

��1=2 �~�1n � �
�
!d N

�
0; �2"=

�
�2 + 2��

��
: (A.15)

Choosing mn = �n

~�2n � ~�1n
L1
in Lemma 2(i) shows that �n

~�n � ~�1n
L1
= op (1), so the left

side of (A.15) is asymptotically equivalent to �n(~�n � �), completing the proof of part (i).
Under C(ii)-C(iii) of Assumption 1b, ('22n � 1)'�n2n jn�z2n�1�un � �un

Pn
t=1 z2t�1j = op (1) from

R1n = op (1) in Lemma A1(iv). Since ('22n � 1)'�n2n n�1=2
Pn

t=1 z2t�1 = Op(n
�1=2 ('22n � 1)

�1=2
), we

conclude that ('22n � 1)'�n2n (n�z2n�1�un) = op (1). For ~�2n, ('
2
2n � 1)'�n2n (n�z2n�1�"n) = op (1) by a

similar argument. The above and Lemma 4(i) imply that the numerators of �n (~�2n � �n) and
�n(~�2n � �) are asymptotically equivalent to�

'22n � 1
�
'�n2n [

Pn
t=1 ~z2t�1ut;

Pn
t=1 ~z2t�1"t] = [YnZn; Y

"
nZn] + op (1) : (A.16)

The approximation for R1n in Lemma A1(iv) and (B.12) give

n (�n'2n � 1) ��1n ��1n;z�xn�1�z2n�1 = [1 + op (1)]
�n
n
��1n;z (�n'2n � 1)

Pn
t=1 z2t�1

��1n
�n

Pn
j=1 xj�1 (A.17)

which is op (1) under C(iii): Op (�n=n) if (�n � 1) = ('2n � 1) ! 0 and Op(('2n � 1)
�1 =n) if

('2n � 1) = (�n � 1) = O (1). Under C(ii), (A.17) becomes Znn�3=2
Pn

j=1 xj�1 + op (1) by (B.11),
showing that (A.17) contributes asymptotically under C(ii). Combining the above with the ap-
proximation of s�1n

Pn
t=1 xt�1z2t�1 in Lemma 4(i), we obtain that the common denominator of

�n (~�2n � �n) and �n
�
~�2n � �

�
satis�es

s�1n
Pn

t=1 xt�1z2t�1 = ZnXn + op (1) ; Xn := Xn � n�3=2
Pn

j=1 xj�1 (A.18)
under C(ii)-C(iii) and Assumption 4, where Zn and Xn are de�ned in (38) and (39). Recalling the
de�nition of sn in (37) and noting that �n'2n � 1 � '2n � 1 under C(ii), the normalisation under
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C(ii)-C(iii) becomes
sn

('22n � 1)
�1
'n2n

=
�n ('

2
2n � 1)

1=2

�n'2n � 1
�
(
2n1=2 ('22n � 1)

�1=2
under C(ii)

�nn ('
2
2n � 1)

1=2
(�2n � 1)

�1=2
(�n'2n � 1)

�1 under C(iii)
(A.19)

which is �n under C(iii) and 2�n under C(ii). Combining (A.18) and (A.16), we obtain
('22n � 1)

1=2
�n

�n'2n � 1

h
~�2n � �n; ~�2n � �

i
=

1

Xn

[Yn; Y
"
n ] + op (1) (A.20)

under C(ii)-C(iii) and Assumption 4.
We now prove part (iii) of Theorem 3: under C(iii), Xn = Xn + op (1) and applying parts (ii)

and (iii) of Lemma 4 and the continuous mapping theorem to (A.20) we obtain

�n (~�2n � �n)!d Y=X and �n

�
~�2n � �

�
!d Y

"=X (A.21)

where X =d N (0; !2) when �n ! 1 and X = X1 when �n ! � > 1, so that X 6= 0 a:s: under
C(iii), X is independent of (Y; Y ") and Y =d N (0; �2), Y " =d N (0; �2") by Lemma 4. Under As-
sumption 2, !2 = �2, so Y=X =d MN (0; �2=X2); under Assumption 4, Y "=X =d MN (0; �2"=X

2).
Thus, (A.21) gives the correct limit distributions for part (iii) of the theorem and it is enough to

show that �n (~�n � ~�2n) = op (1) and �n
�
~�n � ~�2n

�
= op (1) under Assumption C(iii). By (20)

and (21) �n k~�n � ~�2nkL1 = �n k~�1n � ~�2nkL1 1Fn and �n

~�n � ~�2n
L1
= �n

~�1n � ~�2n
L1
1Fn

the right side being op (1) by applying Lemma 2(ii) with the choices mn = �n k~�1n � ~�2nkL1 and
mn = �n

~�1n � ~�2n
L1
. Combined with (A.21), this shows part (iii) of the theorem.

We proceed to prove part (ii) of the theorem under Assumption C(ii). In the notation of

(A.13) and Lemma 5,
��� ~Un (1)� Un (1)

��� = op (1) by the approximation for r1n of Lemma A1(ii) and

Lemma 3.2(i) of MP(2020). Combining, (20), (A.13) and (A.20) and recalling the normalisation
in (A.19) and the above approximation for ~Un (1), we obtain

�n (~�n � �n) = n1=2
�
1� '21n

��1=2
(~�1n � �n)1Fn + n1=2

�
'22n � 1

��1=2
(~�2n � �n)1 �Fn

=
Un (1)
~	n

1Fn +
1

2

Yn (1)

Xn

1 �Fn + op (1) (A.22)

Un (�) and Yn (�) are de�ned in Lemma 5 (with ut = et under Assumption 2). ~	n in (35), n�1=2xn;
1Fn and 1 �Fn are functionals of Bn (s) = n�1=2

Pbnsc
t=1 ut, onD [0; 1], so the functional CLT of Lemma

5 on [Un (s) ; Bn (s) ; Yn (s)] and the continuous mapping theorem imply that
Un (1)
~	n

1Fn +
1

2

Yn (1)

Xn

1 �Fn !d
U (1)

!2	� (c)
1Fc +

Y

!	+ (c)
1 �Fc (A.23)

since, by Lemma 3(i), ~	n !d
~	 (c) with �2 + 2�� = !2 under C(ii), ~	 (c) = !2	� (c) on

the event Fc and 2
�
Jc (1)�

R 1
0
Jc (r) dr

�
= !	+ (c) on the event �Fc. The continuous mapping

theorem is applicable to (A.23) because x = 0 is the only discontinuity point of the function
x 7! 1(�1;0] (x) and P (Kc + c = 0) = 0 since Kc in (34) is a continuously distributed random
variable for all c 2 R. Denoting � := [��2U (1) ; ��1Y ]0, Lemma 5 implies that � is independent
of FB = � (B (s) : s 2 [0; 1]) and � =d N (0; I2). Since the random variables Jc (1), 	(c), 1Fc and
1 �Fc are FB-measurable (as non-stochastic functionals of B (r) on D [0; 1]) the independence of �
and FB implies the independence of the random vectors � and

h
Jc (1) ; ~	 (c) ;1Fc ;1 �Fc

i0
. Under

Assumption 2, !2 = �2 and we conclude that the limit in (A.23) is given by
h

1
	�(c)

1Fc ;
1

	�(c)
1 �Fc

i
�
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has aMN
�
0; 1

	2�(c)
1Fc +

1
	2+(c)

1 �Fc

�
distribution as required by the theorem for �n (~�n � �n). For

�n

�
~�n � �

�
, the same argument applies with ~Un (s) and Yn replaced by ~U "

n (s) and Y
"
n in (A.22);

de�ning ~Un (s) and Y "
n (s) as Un (s) and Yn (s) with et replaced by "t, Lemma 5 implies that

�n

�
~�n � �

�
!d

~U (1)

!2	� (c)
1Fc +

Y "

!	+ (c)
1 �Fc =

�"
!

�
1

	� (c)
1Fc ;

1

	� (c)
1 �Fc

�
~�

where ~� =d N (0; I2), which yields the limit distribution of part (ii).

It remains to prove that �n
�
~�n � ��n

�
!p 0; since �

�
n =

~�n = ~�2n on the event �Fc by

construction, it is enough to show the result under C(i)-C(ii): �n
�
~�1n � ��1n

�
!p 0 with �n =

n1=2 (1� �2n'
2
1n)

�1=2. From the de�nitions in (21) and (25)

�n

�
~�1n � ��1n

�
= ��1n xn�z1n�1

�
��2n

Pn
t=1 xt�1~z1t�1

��1
�̂"u�̂"=!̂u;

so it is enough to show that ��1n xn�z1n�1 !p 0. By Lemma A1(iii) and xn = Op(�
1=2
n ), xn�z1n�1 =

Op((1� �2n'
2
1n)

�1
); ��1n (1� �2n'

2
1n)

�1
= n�1=2 (1� �2n'

2
1n)

�1=2 ! 0 completes the proof.

Proof of Theorem 1 and Theorem 2. By using (18) and the fact that �̂n !p � and �̂" !p �"

we obtain that Tn (~�n) = [1 + op (1)]Tn, and Tn
�
~�n

�
= [1 + op (1)]Tn where

Tn = T1n1Fn + T2n1 �Fn ; Tin =
j	inj
	in

� in; � in =

Pn
t=1 ~zit�1vt�Pn
t=1 ~z

2
it�1
�1=2 ; 	in =Pn

t=1 xt�1~zit�1 (A.24)

for i 2 f1; 2g, where vt := ut=� for Tn (~�n) and vt := "t=�" for Tn
�
~�n

�
. Proving the more general

result Tn !d N (0; 1) for any innovation sequence (vt) satisfying Assumption 2 with EFt�1 (v2t ) = 1
a:s: and xt generated by (1) with innovations (ut) satisfying Assumption 4 will establish theN (0; 1)

asymptotic distribution of both Tn (~�n) under Assumption 2 and Tn
�
~�n

�
under Assumption 4.

We �rst prove that Tn !d N (0; 1) under the stronger Assumption 1b and then we employ
Lemma 1 to extend the validity of the theorem under Assumption 1a. Since T1n = Op (1) and
T2n = Op (1) by Lemmata 3 and 4, jTn � T1nj = jT2n � T1nj1 �Fn = op (1) under C(i) by Lemma
2(i) and jTn � T2nj = jT2n � T1nj1Fn = op (1) under C(iii) by Lemma 2(ii). Under C(i), 	1n !p

�2 + 2�� (Lemma 3(i)) and �1n !d N (0; 1) (by Lemma 3(iii) with �2e = EFt�1 (v2t ) = 1), so
T1n = (1 + op (1)) �1n !d N (0; 1) as required. Under Assumption C(iii), Lemma 4 implies that
T2n = (1 + op (1)) (jXnj =Xn)Yn (v) with

Yn (v) =
�
'22n � 1

�1=2Pn
t=1 '

�(n�t)�1
2n vt !d �2 =d N (0; 1)

from the convergence Yn !d Y with !2 = 1. Since [Xn; Yn (v)] !d [X; �2] where X 6= 0 a:s: and
X is independent of �2, T2n !d sign (X) �2 =d N (0; 1). Under C(ii), de�ning Ûn (�) and Ŷn (�) in
the same way as Un (�) and Yn (�) in Lemma 5 with ut replaced by vt, Lemmata 3, 4 and 5 give

Tn = !�1
����~	n��� =~	n� Ûn (1)1Fn + (jXnj =Xn) Ŷn (1)1 �Fn + op (1)!d Tc (A.25)

where Tc := sign (	1) �11Fc + sign (	2) �21 �Fc, 	1 = !2 + Jc (1)
2 � 2Jc (1)

R 1
0
Jc (r) dr; 	2 =

Jc (1) �
R 1
0
Jc (r) dr and �1; �2 =d N (0; 1) with �1 independent of (	1; Fc) and �2 independent of�

	1; �Fc
�
. Since 	1 and 	2 are continuously distributed 	1	2 6= 0 a:s:. By independence of �1

and (	1; Fc) and the fact that ��1 =d N (0; 1) we obtain
P (�1sign (	1) � x; Fc) = P (�1 � x; Fc;	1 > 0) + P (��1 � x; Fc;	1 < 0)

= P (�1 � x)P (Fc;	1 > 0) + P (��1 � x)P (Fc;	1 < 0)
= � (x) [P (Fc;	1 > 0) + P (Fc;	1 < 0)] = � (x)P (Fc) :

43



The above argument also gives P
�
�2sign (	2) � x; �Fc

�
= �(x)P

�
�Fc
�
, so the distribution function

of the limit Tc in (A.25) is given by
P (Tc � x) = P (�1sign (	1) � x; Fc) + P

�
�2sign (	2) � x; �Fc

�
= �(x)

�
P (Fc) + P

�
�Fc
��
= �(x) :

The above argument proves that Tn in (A.24) satis�es Tn !d N (0; 1) for any (vt) satisfying
Assumption 2 with EFt�1 (v2t ) = 1 a:s: under Assumption 1b, when (�n)n2N in (1) belongs to one
of the autoregressive classes C(i)-C(iii) of Assumption 1b.
Now suppose that (�n)n2N in (1) satis�es Assumption 1a and consider an arbitrary subsequence�

�kn
�
n2N of (�n)n2N and (Tkn)n2N of (Tn)n2N. By Lemma 1, there exists a further subsequence�

�mn

�
n2N of

�
�kn
�
n2N satisfying Assumption 1b; as a result,

�
�mn

�
n2N belongs to one of the classes

C(i)-C(iii) and the preceding argument shows that Tmn !d N (0; 1). We conclude that for any
subsequence (Tkn)n2N of (Tn)n2N there exists a further subsequence (Tmn)n2N of (Tkn)n2N such that
Tmn !d N (0; 1); but this implies that the entire sequence (Tn)n2N satis�es Tn !d N (0; 1).
Using the argument following (A.24), we conclude that Tn (~�n)!d N (0; 1) under Assumptions

1a, 2 and 3 and Tn
�
~�n

�
!d N (0; 1) under Assumptions 1a, 3 and 4.

For the con�dence interval In (~�n; �), we verify Assumptions A1 and S of Andrews, Cheng and
Guggenberger (2020), abreviated to ACG (2020). Given the parameter space � in (7), and � =
(�; F;X0) 2 �, the coverage probability of In (~�n; �) is CPn (�) = P� (jTn (~�n)j � ��1 (1� �=2))
in the notation of ACG (2020). Consider a sequence (�n)n2N = (�n; Fn; X0 (n))n2N � � and
an arbitrary subsequence (wn)n2N � N. Since

�
�wn
�
n2N � [�1 + �;M ] is bounded, there exists a

subsequence (kn)n2N � (wn)n2N such that �kn ! � 2 [�1 + �;M ], so
�
�kn
�
n2N satis�es Assumption

1a. Since (Fwn ; X0 (wn))n2N � A, (Fwn ; X0 (wn))n2N � An for all but �nitely many n; since
kn � wn, (Fkn ; X0 (kn)) 2 Akn for all n. We conclude that there exists a subsequence (kn)n2N
of (wn)n2N such that (�kn)n2N =

�
�kn ; Fkn ; X0 (kn)

�
n2N satis�es Assumptions 1a, 2 and 3 which

implies that limn!1 P�kn
�
T�kn (~�n) � x

�
= �(x) and

lim
n!1

CPkn (�kn) = lim
n!1

P�kn
���T�kn (~�n)�� � ��1 (1� �=2)

�
= 1� �: (A.26)

Convergence in (A.26) proves simultaneously the validity of Assumptions A1 and S of ACG(2020)
and the claim limn!1 inf�2� P [� 2 In (~�n; �)] = 1�� follows from Theorem 2.1(e) of ACG(2020).
It remains to prove that Tn (�

�
n)!d N (0; 1). We �rst show that Tn

�
~�n

�
�Tn (��n)!p 0 under

Assumption 1b. Since Tn (�
�
n) = Tn

�
~�n

�
on the event �Fn, it is enough to show that Tn

�
~�1n

�
�

Tn (�
�
1n) !p 0 under C(i)-C(ii) of Assumption 1b. Since n�z21n = op

�
n (1� �n'1n)

�1� = op (�
2
n)

by Lemma A1(iii), the denominator of Tn (�
�
1n) in (26), v

2
1n :=

Pn
t=1 ~z

2
t�1 � n�z21;n�1

�
1� �̂2"u

�
1Fn,

satis�es ��2n
�Pn

t=1 ~z
2
1t�1 � v21n

�
!p 0. Hence,���Tn �~�1n�� Tn (�

�
1n)
��� � 1

�̂"

����2n Pn
t=1 xt�1~z1t�1

�� [�n ���~�1n � ��1n

��� (��2n nX
t=1

~z21t�1)
�1=2+op (1)] = op (1)

since �n
���~�1n � ��1n

��� !p 0 by Theorem 3 are the other sample moments are Op (1) by Lemma

3. This proves that Tn (�
�
n) !d N (0; 1) under Assumption 1b and the subsequential argument

employed on Tn shows that Tn (�
�
n)!d N (0; 1) under Assumption 1a.
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Supplementary Online Appendix B
This online Appendix contains: (i) a collection of auxiliary results (Lemma B1) and its proof

as well as the proofs of Lemma A1 and Corollary 1 of the main paper in Section 1.1 and (ii) some
additional simulation results in Section 2.2 below.

1.1 Additional mathematical results
Lemma B1 is concerned with the limit distribution of the normalised and centred OLS es-

timator �̂n in (15) obtained from the autoregression (2)/(14) under weakly dependent errors.
The result is well-known for the near-nonstationary class C(ii), so we concentrate on the near-
stationary/explosive classes C(i) and C(iii).

Lemma B1. Consider the autoregressions xt in (2)/(14) and x0t in (14) and the stochastic
sequences Xn in (39) and

�n =
�
�2n � 1

�1=2Pn
t=1 �

�(n�t+1)
n ut:

Under Assumptions 1b and 3, the following hold:
(i) Under C(i) and Assumption 4, �xn�1 = [1 + op (1)] (�+ �x0n�1),

n�1=2
�
1� �2n

�1=2 ��Pn
t=1 xt�1ut �

Pn
t=1 x0t�1ut

�� = op (1)

n�1
�
1� �2n

� ��Pn
t=1 x

2
t�1 �

Pn
t=1 x

2
0t�1
�� = op (1)

and (1� �2n)
�1
(�̂n � �n)!p �= (�

2 + 2��) :

(ii) Under C(i) and Assumption 2,
�
n (1� �2n)

�1
�1=2

(�̂n � �n)!d N (0; 1) :

(iii) Under C(iii), (�2n � 1)
1=2
(�n � 1) ��nn n�xn = Xn + op (1) ;�

�2n � 1
�2
��2nn

Pn
t=1 x

2
t�1 = X2

n + op (1) ;

(�2n � 1)
�1
�nn (�̂n � �n) = �n=Xn + op (1) and j�n=Xnj = Op (1). When �n ! 1, �n=Xn !d C

(standard Cauchy distribution); when �n ! � > 1 �n=Xn !d �1=X1 where �1 =d X1 and the
random variables X1 and Y1 are independent.

Proof. Denote x0 = X0 (n) for brevity. By employing (3), we obtain

�xn�1 = �+ �x0n�1 + (x0 � �)
1

n

1� �nn
1� �n

: (B.1)

Under C(i), �x0n = Op

�
n�1=2 (1� �n)

�1� and, by Assumption 3, the order of the last term of (B.1)
is given by Op

�
n�1 (1� �n)

�3=2
�
: Since

n�1 (1� �n)
�3=2

n�1=2 (1� �n)
�1 = (1� �n)

�1=2 n�1=2 ! 0

the last term of (B.1) is dominated by �x0n. In turn, �x0n = op (1) when n1=2 (1� �n) ! 1 (the
half of the C(i) region closer to stationarity), in which case � is the dominant term in (B.1). This
proves the claim �xn = [1 + op (1)] (�+ �x0n) of part (i). For the second claim of part (i), (3) and
�x0n = Op

�
n�1=2�n

�
and �un = Op

�
n�1=2

�
givePn

t=1 xt�1ut �
Pn

t=1 x0t�1ut = �
Pn

t=1 ut + (x0 � �)
Pn

t=1 �
t�1
n ut � [1 + op (1)]n (�+ �x0n�1) �un

= (x0 � �)
Pn

t=1 �
t�1
n ut � n�x0n�1�un + op (n) (��un + �x0n�1�un)

= op (�n) +Op (�n) + op
�
n1=2

�
showing that n�1=2 (1� �2n)

1=2 ��Pn
t=1 xt�1ut �

Pn
t=1 x0t�1ut

�� = op (1). For the third claim of part
(i), (3) givesPn

t=1 x
2
t�1 =

Pn
t=1 x

2
0t�1 + 2�

Pn
t=1 x0t�1 + n�2

+2 (x0 � �)
Pn

t=1 x0t�1�
t
n + 2� (x0 � �)

Pn
t=1 �

t
n + (x0 � �)2

Pn
t=1 �

2t
n : (B.2)
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We know that
Pn

t=1 x
2
0t�1 = Op

�
n (1� �2n)

�1
�
under C(i). By Assumption 3, the last three terms

in (B.2) are of order op (�2n) dominated by that of
Pn

t=1 x
2
0t�1 (for the �rst of these terms the inequal-

ity k
Pn

t=1 x0t�1�
t
nkL1 � maxt�n kx0tkL2

Pn
j=1 j�nj

j is used). Since
Pn

t=1 x0t�1 = Op

�
n1=2�n

�
=

op (n�n), the second term in (B.2) dominated by
Pn

t=1 x
2
0t�1; hence

n�1
�
1� �2n

�Pn
t=1 x

2
t�1 = n�1

�
1� �2n

�Pn
t=1 x

2
0t�1 +

�
1� �2n

�
�2:

Using the above and the �rst claim, we conclude that
n�1

�
1� �2n

�Pn
t=1 x

2
t�1 = n�1

�
1� �2n

� �Pn
t=1 x

2
t�1 � n�x2n�1

�
= n�1

�
1� �2n

� �Pn
t=1 x

2
0t�1 + n�2 � [1 + op (1)]n (�+ �x0n�1)2

�
= n�1

�
1� �2n

� �Pn
t=1 x

2
0t�1 + op (n) +Op

�
n1=2�n

�
+Op

�
�2n
��

= n�1
�
1� �2n

�Pn
t=1 x

2
0t�1 + op (1) ;

completing the proof of the third claim.
For the OLS estimator, n�1

Pn
t=1 x0t�1ut !p � under C(i) and Assumption 4 by Lemma 2.2(i)

of Magdalinos and Phillips (2020). Using the recursion for x0t, we obtain the identity
n�1

�
1� �2n

�Pn
t=1 x

2
0t�1 = n�1

Pn
t=1 u

2
t + 2�nn

�1Pn
t=1 x0t�1ut � n�1x20t�1

= �2 + 2�� + op (1) :
Hence, using the previous claims we may write�

1� �2n
��1

(�̂n � �n) =
1
n

Pn
t=1 x0t�1ut

(1� �2n)
1
n

Pn
t=1 x

2
0t�1

+ op (1)!p
�

�2 + 2��
:

For part (ii), using the approximations of part (i) we may write�
n
�
1� �2n

��1�1=2
(�̂n � �n) =

n�1=2 (1� �2n)
1=2Pn

t=1 x0t�1ut
n�1 (1� �2n)

Pn
t=1 x

2
0t�1

+ op (1)

and the last term converges in distribution to N (0; 1) under Assumption 2 by Giraitis and Phillips
(2006). For part (iii), (B.1) and

Pn
t=1 x0t�1 = (�n � 1)

�1 (x0n +
Pn

t=1 ut) give

n�xn�1 = n�+ n�x0n�1 + (x0 � �)
�nn � 1
�n � 1

=
x0n

�n � 1
+ (x0 � �)

�nn
�n � 1

+ n�+ op

�
(�n � 1)

�3=2
�

so (�2n � 1)
1=2
(�n � 1) ��nn n�xn�1 = (�2n � 1)

1=2 f��nn x0n + (x0 � �)g + Op (n (�n � 1) ��nn ). Since
n (�n � 1) ��nn ! 0 under C(iii) by Lemma A1(i) and ��nn x0n =

Pn
j=1 �

�j
n uj, the claim follows

from the above display and the de�nition of Xn. For the second claim, the second and �fth terms
on the right of (B.2) are at most Op

�
(�n � 1)

�3=2 �nn

�
= op

�
(�2n � 1)

�2
�2nn

�
; for the fourth term

on the right of (B.2), since x0;0 = 0:Pn
t=1 �

t�1
n x0t�1 =

Pn�1
t=1 �

t
n

Pt
j=1 �

t�j
n uj =

Pn�1
j=1

�Pn�1
t=j �

2t
n

�
��jn uj

=
1

�2n � 1
�2nn
Pn�1

j=1 �
�j
n uj �

1

�2n � 1
Pn�1

j=1 �
j
nuj

=
1

�2n � 1
�2nn
Pn�1

j=1 �
�j
n uj +Op

�
(�n � 1)

�3=2 �nn

�
:

Using the approximation (�2n � 1)
2
��2nn

��Pn
t=1 x

2
0t�1 � x20n

�� = op (1) ; established in Phillips and
Magdalinos (2007), and substituting in (B.2), we conclude that�
�2n � 1

�2
��2nn

Pn
t=1 x

2
t�1 =

�
�2n � 1

� ��
��nn x0n

�2
+ (x0 � �)2 + 2 (x0 � �)

Pn
j=1 �

�j
n uj

�
+ op (1)

=
�
�2n � 1

� �Pn
j=1 �

�j
n uj + x0 � �

�2
+ op (1)

since ��nn x0n =
Pn

j=1 �
�j
n uj and the claim follows from the de�nition of Xn. For the �nal claim,
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for the denominator of the OLS estimator, (3) gives�
�2n � 1

�2
��2nn n�x2n�1 =

�
�2n � 1

�2
��2nn nOp

�
1

n2
(�n � 1)

�3 ��2nn

�
= Op

�
1

n
(�n � 1)

�1
�
= op (1)

showing that (�2n � 1)
2
��2nn

��Pn
t=1 x

2
t�1 �

Pn
t=1 x

2
t�1
�� = op (1). For the numerator of the OLS

estimator, (3) and the approximation�
�2n � 1

�
��nn

Pn
t=1 x0t�1ut =

�
�2n � 1

� �Pn
j=1 �

�j
n uj

�Pn
t=1 �

�(n�t+1)
n ut + op (1) ;

established in Phillips and Magdalinos (2007), give�
�2n � 1

�
��nn

Pn
t=1 xt�1ut =

�
�2n � 1

� �
��nn

Pn
t=1 x0t�1ut + (x0 � �)

Pn
t=1 �

�(n�t+1)
n ut

�
+ op (1)

=
�
�2n � 1

� �Pn
t=1 �

�(n�t+1)
n ut

� �Pn
j=1 �

�j
n uj + x0 � �

�
+ op (1)

= �nXn + op (1) :

Also (�2n � 1) ��nn
��Pn

t=1 xt�1ut �
Pn

t=1 xt�1ut
�� = (�2n � 1) ��nn n j�xn�1�unj = Op(n

�1=2 (�2n � 1)
�1=2

) =
op (1). Using the above approximations, we may write�

�2n � 1
��1

�nn (�̂n � �n) =
(�2n � 1) ��nn

Pn
t=1 xt�1ut

(�2n � 1)
2 ��2nn

Pn
t=1 x

2
t�1

=
(�2n � 1) ��nn

Pn
t=1 xt�1ut

(�2n � 1)
2 ��2nn

Pn
t=1 x

2
t�1

+ op (1)

=
�nXn

X2
n

+ op (1) =
�n
Xn

+ op (1)

as required. When �n ! 1, Magdalinos (2012) shows that [Xn;�n]!d N (0; �2I2) implying that
�n=Xn !d C; when �n ! � > 1, Lemma 4(iii) shows that Xn !p X1 6= 0 a:s:, and E�2n ! �2, so
in both cases j�n=Xnj = Op (1) and (�2n � 1)

�1
�nn (�̂n � �n) = Op (1) over the C(iii) range. This

completes the proof of Lemma B1.
As a consequence of Lemma B1 and Phillips (1987b), the following orders of magnitude apply

under C(ii)-C(iii):Pn
t=1 xt�1ut = Op

�
�1=2n �n

�
;
Pn

t=1 x
2
t�1 = Op

�
�n�

2
n

�
and j�̂n � �nj = Op

�
��1=2n ��1n

�
: (B.3)

Proof of Lemma A1. For part (i), write 'n1n = en log[1�(1�'1n))] = e�n(1�'1n)(1+o(1)) since
log (1� x) = �x + O (x2) as x ! 0; hence [n (1� '1n)]

p 'n1n = [n (1� '1n)]
pO
�
e�n(1�'1n)

�
! 0

for any p � 0 since n (1� '1n) ! 1 under C(i). Under C(iii), n ('2n � 1) ! 1 and '�n2n =
e�n log[1+('2n�1)] = O

�
e�n('2n�1)

�
shows that [n ('2n � 1)]

p '�n2n ! 0 for any p � 0. The orders ofPn
t=1 t

p't1n and
Pn

t=1 t
p't2n for p = 0 are trivial (geometric progression). For p > 0, employing an

Euler summation argument and the change of variables s = (1� '1n) tPn
t=1 t

p't1n =

Z n+1

1

btcp 'btc1ndt

= (1� '1n)
�1�p

Z (n+1)(1�'1n)

1�'1n

 �
(1� '1n)

�1 s
�

(1� '1n)
�1

!p

'
b(1�'1n)�1sc
1n ds: (B.4)

Since 1� '1n ! 0; n (1� '1n)!1 and

'
b(1�'1n)�1sc
1n = (1� (1� '1n))

b(1�'1n)�1sc = exp
��
(1� '1n)

�1 s
�
log (1� (1� '1n))

	
= exp

�
�
�
(1� '1n)

�1 s
�
(1� '1n) +O ((1� '1n))

	
! e�s

the dominated convergence theorem implies that the integral on the right side of (B.4) converges toR1
0
spe�sds = � (p+ 1) ; and the claim for

Pn
t=1 t

p't1n follows from (B.4). The result for
Pn

t=1 t
p'�t2n

can be derived in the same way by interchanging the roles of 1� '1n and '2n � 1.
For part (ii), applying (3) to the instrument ~z1t =

Pt
j=1 '

t�j
1n �xj in (19), we obtain the following

decomposition:
~z1t = ~z0t + (X0 (n)� �) qnt; ~z0t =

Pt
j=1 '

t�j
1n �x0j; (B.5)
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where qnt =
1��n
'1n��n

(�tn � 't1n) when n j'1n � �nj ! 1 and qnt = t (1� '1n)'
t
1n [1 +O (n

�1)] when
j'1n � �nj = O (n�1). We show that

[�1n; �2n] = n�1=2
h�
1� �2n'

2
1n

�1=2
�1=2n ;

�
1� �2n'

2
1n

�
o (�n)

i �Pn
t=1 q

2
nt

�1=2 ! 0: (B.6)

When n j'1n � �nj ! 1, �1n = (�n ('1n � �n))
�1=2 (n�1

Pn
t=1 (�

2t
n � '2t1n))

1=2 ! 0 and �2n =

o (1) (n�1
Pn

t=1 (�
2t
n � '2t1n))

1=2 ! 0. When j'1n � �nj = O (n�1),
Pn

t=1 t
2'2t1n = O

�
(1� '1n)

�3� by
part (i) and ��1n = O (1� '1n) imply that both �1n and �1n are O

�
n�1=2 (1� '1n)

�1=2
�
.

Now (B.5) and Assumption 3 give r1n = n�1=2 (1� �2n'
2
1n)

1=2
op

�
�
1=2
n

�Pn
t=1 qntut. Since

k
Pn

t=1 qntutk
2

L2
� 2

Pn
s=1

Pn
t=s jqntj jqnsj ju (t� s)j = 2

Pn
t=0 ju (t)j

Pn�t
s=1 jqnt+sj jqnsj

� 2
Pn

t=0 ju (t)j
�Pn�t

s=1 q
2
ns

�1=2 �Pn�t
s=1 q

2
n;t+s

�1=2 � 2Pn
s=1 q

2
ns

P1
t=0 ju (t)j

and
P1

t=0 ju (t)j < 1 by Assumption 4, r1n !p 0 follows from the fact that �1n ! 0 in (B.6).
For r2n, (B.5) gives

Pn
t=1 (~z

2
1t � ~z20t) = (X0 (n)� �)2

Pn
t=1 q

2
nt + 2 (X0 (n)� �)

Pn
t=1 ~z0tqnt with

(X0 (n)� �) j
Pn

t=1 ~z0tqntj � (
Pn

t=1 ~z
2
0t)

1=2 �
(X0 (n)� �)2

Pn
t=1 q

2
nt

�1=2
by the Cauchy-Schwarz in-

equality. We conclude that
jr2nj � �21n + 2

�
n�1

�
1� �2n'

2
1n

�Pn
t=1 ~z

2
0t

�1=2 �
�21n
�1=2

= op (1)
by (B.6) since n�1 (1� �2n'

2
1n)
Pn

t=1 ~z
2
0t = Op (1) by Lemma 3.1 in Magdalinos and Phillips (2020).

For r3n = r03n + r003n, with
[r03n; r

00
3n] = n�1

�
1� �2n'

2
1n

�
[
Pn

t=1 (~z1t � ~z0t)xt;
Pn

t=1 (xt � x0t) ~z0t] ;

the Cauchy-Schwarz inequality and (B.5) imply that r03n � Op (1) �2n (n
�1��1n

Pn
t=1 x

2
t )
1=2
= op (1)

by (B.6) and n�1��1n
Pn

t=1 x
2
t = Op (1). For r003n, (3) and the

Pn
t=1 ~z0t = Op

�
n1=2 (1� �2n'

2
1n)

�1
�

imply that
r003n = op (1) r

000
3n +Op

�
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�
; r0003n = n�1

�
1� �2n'

2
1n

�
�1=2n

Pn
t=1 ~z0t�

t
n: (B.7)

When j'1n � �nj = O (n�1), the Cauchy-Schwarz inequality and n�1 (1� �2n'
2
1n)
Pn

t=1 ~z
2
0t = Op (1)

imply that r0003n � Op (1)
�
n�1 (1� �2n'

2
1n)�

1=2
n

Pn
t=1 �

2t
n

�1=2
= Op (1)

�
n�1 (1� '21n)

�1=2
�1=2

= op (1).

When n j'1n � �nj ! 1, the de�nition of ~z0t, the summation by parts formula and the Cauchy-
Schwarz inequality givePn

t=1 ~z0t�
t
n =

Pn
t=1

Pt
j=1 '

t�j
1n �x0j�

t
n =

Pn
j=1 �

j
n�x0j

Pn�j
t=0 ('1n�n)

t

= (1� '1n�n)
�1
�Pn

j=1 �
j
n�x0j � '1n�

n
n~z0n

�
= (1� '1n�n)

�1
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(1� �n)

Pn
j=1 �

j
nx0j + �nn (x0n � '1n~z0n)

i
� (1� '1n�n)

�1
�
(1� �n)

�Pn
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n

�1=2 �Pn
j=1 x

2
0j
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�
�nn�
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��
:

Since (1� �n)
�Pn

j=1 �
2j
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�1=2
= O

�
�
�1=2
n

�
, jr0003nj � O (1)

�
n�2

Pn
j=1 x

2
0j

�1=2
+ Op (�

n
n) = Op (1) so

r3n = op (1) follows from (B.7).
For part (iii), (B.5) gives (1� �n'1n)

Pn
t=1 qnt � (1� '1n)

2Pn
t=1 t'

t
1n = O (1) by part (i) when
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Pn

t=1 qnt = O (��1n )
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when n j'1n � �nj ! 1. Substituting into (B.5) gives (1� �n'1n)
Pn
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op(�
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�1), and the order of magnitude of part (iii) follows from (1� �n'1n)
Pn

t=1 ~z0t =
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�
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�
byMagdalinos and Phillips (2020). Under C(ii), �n = n so n�1=2 (1� '1n)
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�1=2Pn

t=1 ~z0t�1 = n�1=2 (x0n � ~z0n)
and part (iii) follows from the fact that n�1=2~z0n !p 0.
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For part (iv), applying the identity ût = ut � (�̂n � �n)xt�1 to ~z2t =
Pt

j=1 '
t�j
2n ûj in (17), we

obtain the decomposition
~z2t = z2t � (�̂n � �n) nt�1 + 't2ngn;t;  nt�1 =

Pt
j=1 '

t�j
2n xj�1 (B.8)

gn;t := [(�̂n � �n) �xn�1 � �un]
�
1� '�t2n

�
= ('2n � 1) satis�esmax1�t�n jgn;tj = Op

�
n�1=2 ('2n � 1)

�1�
since (�̂n � �n) �xn�1 = Op

�
�
1=2
n =n

�
by Lemma B1(iii) under C(iii) and standard local to unity

asymptotics under C(ii). When n j'2n � �nj ! 1, (A.1) will follow from the following identity
for  nt�1 in (B.8):

 nt�1 =
1

'2n � �n

�
'2nz2t�1 � �nxt�1 + 't2ng

0
n;t

�
(B.9)

where g0n;t = X0 (n)� �
�
1� '

�(t�1)
2n

�
�n�1
'2n�1

, with the order in (A.1) following from

('2n � �n)
�1 (�̂n � �n)max1�t�n

��g0n;t�� = Op

�
��1n ��nn ('2n � 1)

�1� = Op

�
n�1 ('2n � 1)

�1� under
C(ii)-C(iii). To prove (B.9), substituting xt in (3) into the expression for  nt�1 in (B.8) we obtain

 nt�1 = 't�12n X0 (n) + �
't�12n � 1
'2n � 1

+ 't2n
Pt�1

i=1 �
�i�1
n ui

Pt
j=i+1

�
�n
'2n

�j
+'t2n�

�1
n (X0 (n)� �)

Pt
j=2

�
�n
'2n

�j
: (B.10)

Evaluating the geometric progressionPt
j=i+1

�
�n
'2n

�j
=

'2n
'2n � �n

(�
�n
'2n

�i+1
�
�
�n
'2n

�t+1)
when n j'2n � �nj ! 1, we obtain

 nt�1 = 't�12n X0 (n)+�
't�12n � 1
'2n � 1

+
1

'2n � �n

�Pt�1
i=1 '

t�i
2n ui �

Pt�1
i=1 �

t�i
n ui

	
+
(X0 (n)� �) �n

'2n � �n

�
't�12n � �t�1n

�
and using the expression for xt in (3) and z2t =

Pt
i=1 '

t�i
2n ui proves (B.9). This completes the

proof of (A.1) when n j'2n � �nj ! 1.
When j'2n � �nj = O (n�1), �n='2n = 1+(�n � '2n) ='2n = 1+O (n

�1) so
Pt

j=i+1

�
�n
'2n

�j
� nb

for all i < t � n and some b > 0: Substituting into (B.10) we conclude that

gn = (�̂n � �n) max
1�t�n

��'�t2n nt�1�� � 4bn (�̂n � �n) max
1�t�n

��Pt�1
i=1 �

�i�1
n ui

�� = Op

�
n'�n2n ('2n � 1)

1=2
�

= Op

�
n�1=2 ('2n � 1)

�1 n3=2'�n2n ('2n � 1)
3=2
�
= op

�
n�1=2 ('2n � 1)

�1�
by Assumption 3 and Lemma A1(i) since j'2n � �nj = O (n�1) and the choice of '2n imply that
(�n)n2N belongs to C(iii). This completes the proof of (A.1) when j'2n � �nj = O (n�1).
For the remainder of part (iv), we employ (A.1) to each of R1n; :::; R4n. Using (19),

('2n � 1) v�1n;z
Pn

t=1 z2t�1 = v�1n;zz2n � v�1n;z
Pn

t=1 ut = Zn + op (1) (B.11)

since n1=2v�1n;z = n1=2 ('2n � 1)
1=2 '�n2n ! 0 by Lemma A1(i); also (3) givesPn

t=1 xt = n�+ (X0 (n)� �)O (�nn�n) +
Pn

t=1 x0t = Op (�n�n) (B.12)
since

Pn
t=1 x0t = Op (�n�n) by Lemma B1(iii). Using (A.1) and the above orders for

Pn
t=1 z2t�1

and
Pn

t=1 xt we obtain

R1n = gn�
�1
n;zO ('

n
2n) + 1 fn j'2n � �nj ! 1gOp

 
('2n � 1)�

�1=2
n ��1n;z�

�1
n

'2n � �n

!Pn
t=1 (z2t�1 + xt�1)

= Op

�
n�1=2 ('2n � 1)

�1=2
�
+ 1 fn j'2n � �nj ! 1gOp

�
n1=2 ('2n � 1)

1=2 '�n2n

�
= op (1)

by Lemma A1(i).
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For R2n =
Pn

t=1 rnt�1ut, the second term arising from (A.1): ('22n � 1)'�n2n gn
Pn

t=1 '
t�1
2n ut =

Op

�
n�1=2 ('22n � 1)

�1=2
'�n2n

�
= op (1) by Lemma A1(i); when n j'2n � �nj ! 1, (A.1) and the

triangle inequality, give

jR2nj �
j�̂n � �nj ('2n � 1)
j'2n � �nj'n2n

fj
Pn

t=1 z2t�2utj+ j
Pn

t=1 xt�2utjg+ op (1)

=
('2n � 1)
j'2n � �nj

Op

�
'�n2n �

�1=2
n ��1n

�n
Op

�
�1=2n �n

�
+Op

�
('2n � 1)

�1=2 �n;z

�o
+ op (1)

by (B.3). The �rst term above is Op

�
'�n2n

�
and the second term is Op

�
��nn

�nj'2n��nj

�
which is Op (�

�n
n )

under C(iii) and Op

�
1

nj'2n�1j

�
; since both terms are op (1) we conclude that jR2nj = op (1) under

C(ii)-C(iii).
For R3n = s�1n

Pn
t=1 rntxt, we estimate the two terms arising from (A.1): by (3)

s�1n gn
Pn

t=1 '
t
2nxt = s�1n gn

�Pn
t=1 '

t
2nx0t + �

Pn
t=1 '

t
2n + (X0 � �)

Pn
t=1 ('2n�n)

t� : (B.13)

Using the rate of gn in (A.1), the third term on the right is op
�
n�1=2 ('22n � 1)

�1=2
�
. The second

term is op
�
n�1=2

�
under C(ii); under C(iii); the third term is op

�
��nn �

�1=2
n

�
if (�n � 1) = ('2n � 1) =

O (1) and Op

�
n�2 ('2n � 1)

�3=2 (n (�n � 1))
3=2 ��nn

�
= op

�
n�1=2

�
if (�n � 1) = ('2n � 1)!1. We

conclude that the second and the third terms of (B.13) are op (1). For the �rst term of (B.13),
s�1n gn

Pn
t=1 '

t
2nx0t = s�1n gn

Pn
t=1 '

t
2n

Pt
j=1 �

t�j
n uj = s�1n gn

Pn
j=1 �

�j
n uj

Pn
t=j ('2n�n)

t

=
s�1n gn

'2n�n � 1

�
'n+12n

Pn
j=1 �

n�j+1
n uj �

Pn
j=1 '

j
2nuj

�
= s�1n gnOp

�
'n2n�n

'2n�n � 1

�
= Op

��
'22n � 1

�1=2
gn

�
= Op

�
n�1=2 ('2n � 1)

�1=2
�

which shows that the left side of (B.13) is op (1). When n j'2n � �nj ! 1, (A.1)

jR3nj � s�1n
j�̂n � �nj
j'2n � �nj

(j
Pn

t=1 z2t�1xtj+ j
Pn

t=1 xt�1xtj)

� bs�1n
j�̂n � �nj
j'2n � �nj

�
j
Pn

t=1 z2t�1xt�1j+
Pn

t=1 x
2
t�1
�

(B.14)

for all but �nitely many n for some b > 0, because (14) gives j
Pn

t=1 z2t�1xtj � j�nj j
Pn

t=1 z2t�1xt�1j+
j� (�n � 1)j j

Pn
t=1 z2t�1j + j

Pn
t=1 z2t�1utj, the �rst term on the right side dominates the other

two terms as n ! 1 and a similar inequality holds for j
Pn

t=1 xt�1xtj with
Pn

t=1 x
2
t�1 dominat-

ing. By Lemma 4(i), j
Pn

t=1 z2t�1xt�1j = Op (sn) so using the orders in (B.3), the �rst term

on the right of (B.14) is Op

�
��1n ��nn
j'2n��nj

�
= Op

�
1

nj'2n��nj

�
under C(ii)-C(iii) (under C(iii) it is

op

�
1

nj'2n��nj

�
by Lemma A1(i)). The second term on the right of (B.14) is Op

�
�
1=2
n ��1n;z

�
=

op

�
(n ('2n � 1))

1=2 '�n2n

�
= o (1) by the orders in (B.3) and Lemma A1(i). This proves that

R3n = op (1).
For R4n, recalling that rnt = z2t � ~z2t, the identity ~z22t � z22t = r2nt + 2z2trnt gives

R4n �
�
'22n � 1

�2
'�2n2n

�Pn
t=1 r

2
nt + 2 j

Pn
t=1 z2trntj

�
�

�
'22n � 1

�2
'�2n2n

Pn
t=1 r

2
nt +Op (1)

n�
'22n � 1

�2
'�2n2n

Pn
t=1 r

2
nt

o1=2
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because the Cauchy-Schwarz inequality gives�
'22n � 1

�2
'�2n2n j

Pn
t=1 z2trntj �

��
'22n � 1

�2
'�2n2n

Pn
s=1 z

2
2s

�1=2 n�
'22n � 1

�2
'�2n2n

Pn
t=1 r

2
nt

o1=2
and ('22n � 1)

2
'�2n2n

Pn
s=1 z

2
2s = Op (1). We conclude that
R04n =

�
'22n � 1

�2
'�2n2n

Pn
t=1 r

2
nt = op (1)

is su¢ cient to show that R4n = op (1). Using the identity (A.1) and the inequality (a+ b)2 �
2 (a2 + b2) we obtain

R04n � 4

�
�̂n � �n
'2n � �n

�2 �
'22n � 1

�2
'�2n2n

�
'22n

Pn
t=1 z

2
2t�1 + �2n

Pn
t=1 x

2
t�1
�
1 fn j'2n � �nj ! 1g

+2g2n
�
'22n � 1

�2
'�2n2n

Pn
t=1 '

2t
2n:

The last term is O(n�1 ('22n � 1)
�1
) = o (1); using (B.3), the second term is Op(

�
'22n�1
'2n��n

�2
'�2n2n ) =

Op((n ('2n � �n))
�2 (n ('2n � 1))

2 '�2n2n ) = op((n ('2n � �n))
�2) = op (1) by LemmaA1(i). By

Lemma 4(i) and (B.3), the �rst term is Op(�
�2
n ��2nn ('2n � �n)

�2) which is Op((n ('2n � �n))
�2)

under C(ii) and Op((n=�n)
2 ��2nn n�2 ('2n � �n)

�2) = op(n
�2 ('2n � �n)

�2) under C(iii) by Lemma
A1(i). The above shows that R04n = op (1) and R4n = op (1). This completes the proof of part (iv).
For part (v), we begin by showing that

�1n := ('2n � 1)
P1

j=1

�Pn
t=1 '

�t
2nct+j

�2
, �2n := ('2n � 1)

P1
j=1

�Pn
t=1 '

�(n�t+1)
2n ct+j

�2
(B.15)

satisfy �1n ! 0 and �2n ! 0. Choosing mn !1 with mn ('2n � 1)! 0

�1n � ('2n � 1)
hP1

j=mn

�Pn
t=1 '

�t
2n jct+jj

�2
+
Pmn

j=1

�Pn
t=1 '

�t
2n jct+jj

�2i
� ('2n � 1)

hPn
t=1 '

�t
2n

P1
j=mn

jct+jj
Pn

s=1 '
�s
2n jcs+jj+mn (

P1
t=1 jctj)

2
i

�
�P

j>mn
jcjj
�2
('2n � 1)

Pn
t=1 '

�t
2n + ('2n � 1)mn (

P1
t=1 jctj)

2 ! 0

and, since
Pn

t=1 '
�(n�t+1)
2n =

Pn
t=1 '

�t
2n, the above bound applies to �2n. To show part (i) for Zn,

writing ut =
Pt

j=1 ct�jej +
P1

j=0 ct+je�j and changing the order of summation of the �rst sum we
obtain

Zn = ('2n � 1)
1=2Pn

j=1 '
�j
2n

�Pn�j
t=0 '

�t
2nct

�
ej + ('2n � 1)

1=2P1
j=0

�Pn
t=1 '

�t
2nct+j

�
e�j

=
�Pn

t=0 '
�t
2nct
�
('2n � 1)

1=2Pn
j=1 '

�j
2nej � Z1n + Z2n (B.16)

where Z1n = ('2n � 1)
1=2Pn

j=1 '
�j
2n

�Pn
t=n�j+1 '

�t
2nct

�
ej and Z2n = ('2n � 1)

1=2P1
j=0

�Pn
t=1 '

�t
2nct+j

�
satisfy E (Z22n) � E (e21) �1n ! 0 by (B.15) and

E
�
Z21n
�
� E

�
e21
�
(
P1

t=1 jctj)
2
n ('2n � 1)'

�2(n+1)
2n ! 0

by Lemma A1(i). Since '2n ! 1 and
P1

t=0 jctj < 1,
Pn

t=0 '
�t
2nct ! C (1) by the dominated

convergence theorem and Zn � �Zn !p 0 follows from (B.16). A similar computation to that used
for Zn yields
Yn =

�
'22n � 1

�1=2 �Pn
j=1 '

�j
2nen�j+1

Pj�1
t=0 '

t
2nct +

P1
j=0 e�j

Pn
t=1 '

�(n�t)�1
2n ct+j

�
= Y1n + Y2n

in order of appearance, with E (Y 2
2n) � E (e21) �2n ! 0 by (B.15). Since

Y1n � �Yn =
�
'22n � 1

�1=2Pn
j=1 '

�j
2nen�j+1

�Pj�1
t=0

�
't2n � 1

�
ct �

P1
t=j ct

�
;

we will show that
Y1n � �Yn


L2
! 0 by showing that

pn =
�
'22n � 1

�Pn
j=1 '

�2j
2n

�Pj�1
t=0

�
't2n � 1

�
ct

�2
! 0: (B.17)

Applying the mean value theorem to the increasing function x 7! 'x2n around (0; t) we obtain the
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inequality
't2n � 1 � t't2n log'2n (B.18)

and note that log'2n ! 0 since '2n ! 1. Choosing a sequence mn !1 and mn log'2n ! 0,

pn �
�
'22n � 1

�
(log'2n)

2Pn
j=1 '

�2j
2n

�Pj�1
t=1 t'

t
2nct

�2
=

�
'22n � 1

�
(log'2n)

2Pn�1
t=1 t'

t
2nct

Pn�t�1
s=1 s's2ncs

Pn�t�s
j=1 '�2j�2t�2s2n

�
�
log'2n

Pn�1
t=1 t'

�t
2n jctj

�2 �
'22n � 1

�Pn
j=1 '

�2j
2n

�
�
log'2n

Pn�1
t=mn

t'�t2n jctj
�2
O (1) +O

�
(mn log'2n)

2�
�

�Pn�1
t=mn

jctj
�2
O (1) +O

�
(mn log'2n)

2�
since '�t2nt log'2n = (log'

t
2n) ='

t
2n � 1 from the inequality log x � x for x � 1. This proves (B.17)

and completes the proof of part (iv).

Proof of Corollary 1. For the last two t-statistics in (29) Tn (~n) ; Tn
�
~�n

�
!d N (0; 1) follow

directly from Theorem 1 by putting vt = u2t=� and vt = u3t=�� in (A.24). For Tn (~rn), write

~rn � r0 =
~�n � �n

~n + ~�n
� �n � 1�

~n + ~�n

�
( + �)

�
~n �  + ~�n � �

�

=

264 1

~n + ~�n
;� �n � 1�

~n + ~�n

�2 ;� �n � 1�
~n + ~�n

�2
375
24 ~�n � �n
~n � 
~�n � �

35
= �̂0n

Pn
t=1 ~zt�1utPn
t=1 It�1~zt�1

where

�̂n =

264 1

̂n + �̂n
;� �̂n � 1�

̂n + �̂n

�2 ;� �̂n � 1�
̂n + �̂n

�2
375
0

;

and ut = (u1t; u2t; u3t)
0 in the notation of Assumption 5. Under Assumption 5, �̂n !p � > 0,

�̂n !p � =
h

1
+�

;� ��1
(+�)2

;� ��1
(+�)2

i0
and �̂2r0 !p �

0��; hence Tn (~rn) = [1 + op (1)]Tn with Tn

given by (A.24) with vt = �0ut= (�
0��)1=2. By Assumption 5, (vt) satis�es Assumption 2 with

EFt�1 (v2t ) = 1 a:s:, so Tn !d N (0; 1) by Theorem 1.

For Tn
�
~�n

�
, denoting � = (1; 1; 1)0, and employing the identity ~�n = ~�n + ~n +

~�n and a

similar argument to Tn (~rn) we obtain Tn

�
~�n

�
= [1 + op (1)]Tn with Tn given by (A.24) with

vt = �0ut= (�
0��)1=2. By Assumption 5, (vt) satis�es Assumption 2 with EFt�1 (v2t ) = 1 a:s:, so

Tn !d N (0; 1) by Theorem 1.

1.2 Additional Simulation Results
In this section, we present some additional simulation results. Tables B1 and B2 below contain

the empirical size and Figure B1 displays the power of the two-sided test of our procedure for the
predictive regression slope parameter � for n = 1; 000 based on 10; 000 replications for a grid of
points for b1 and b2 for �"u = 0:99 and �"u = �0:99 respectively for the case � = 1; which we
use for the instument selection of Section 4.1 of the main paper. Figures B2 and B3 contain the
empirical size of our two-sided IV-based test for correlation �"u of �0:45 and 0:45 respectively.
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Figure B4 displays the proportion of times the mildly explosive instrument is chosen. Figure B5 is
a comparison of the length of con�dence intervals of IV and OLS under misspeci�cation of the last
observation (note, in this case, OLS has no valid coverage for the purely explosive speci�cations).
Figures B6 and B7 present the coverage and length of con�dence intervals of the IV and the
equal-tailed two-sided intervals (ETCI) of Andrews and Guggenberger (2014) respectively. Figure
B8 displays the empirical size of the OLS- and IV-based one-sided test under misspeci�cation of
the last observation.

Table B1: Empirical size, �"u=0:99;n=1;000

b1=b2 0.650 0.675 0.700 0.725 0.750 0.775 0.800 0.825 0.850 0.875 0.900 0.925 0.950

0.650 5.01% 5.25% 5.76% 5.62% 5.63% 6.35% 6.52% 6.63% 6.16% 5.44% 5.80% 5.80% 5.98%

0.675 5.17% 5.46% 5.71% 5.52% 6.03% 5.87% 6.73% 6.63% 6.02% 5.74% 5.84% 5.94% 6.02%

0.700 5.53% 5.39% 5.61% 5.73% 6.18% 6.70% 6.69% 6.66% 6.13% 5.73% 5.79% 5.93% 6.35%

0.725 5.42% 5.51% 5.95% 5.59% 6.00% 6.72% 6.75% 6.45% 6.30% 6.20% 5.80% 5.78% 6.25%

0.750 5.33% 5.48% 5.71% 6.08% 6.03% 6.46% 6.97% 6.91% 5.70% 5.95% 5.79% 6.28% 6.34%

0.775 5.65% 5.67% 5.44% 5.66% 6.13% 6.48% 6.98% 6.62% 6.01% 5.92% 5.85% 6.04% 6.41%

0.800 5.25% 5.85% 5.56% 6.16% 5.90% 6.90% 6.64% 6.89% 6.61% 5.99% 6.21% 6.29% 5.92%

0.825 5.68% 5.44% 5.80% 6.09% 6.39% 6.83% 7.01% 6.61% 6.37% 5.89% 6.11% 6.48% 6.24%

0.850 5.57% 6.21% 5.45% 6.07% 6.39% 6.78% 7.23% 7.15% 6.35% 5.94% 5.95% 6.19% 6.59%

0.875 5.87% 6.17% 6.00% 6.04% 6.13% 6.41% 6.82% 6.71% 6.60% 6.31% 6.02% 6.56% 6.10%

0.900 5.87% 6.04% 5.77% 6.37% 6.22% 6.84% 6.72% 7.17% 6.69% 5.98% 6.01% 6.06% 7.03%

0.925 6.01% 5.83% 5.78% 6.05% 6.33% 6.83% 7.08% 6.48% 6.60% 6.21% 6.08% 5.98% 6.87%

0.950 6.46% 6.19% 5.92% 6.19% 6.40% 6.24% 7.02% 7.04% 6.70% 6.17% 6.30% 6.86% 7.16%

Table B2: Empirical size, �"u=�0:99;n=1;000

b1=b2
0.650 0.675 0.700 0.725 0.750 0.775 0.800 0.825 0.850 0.875 0.900 0.925 0.950

0.650 5.88% 5.20% 5.43% 5.72% 5.64% 5.92% 6.38% 6.83% 5.93% 5.48% 6.02% 5.38% 6.38%

0.675 5.26% 5.35% 5.50% 5.57% 6.09% 6.15% 6.53% 6.63% 6.49% 5.47% 5.51% 6.20% 6.05%

0.700 5.81% 5.59% 5.17% 6.00% 5.60% 6.41% 6.65% 6.82% 6.15% 5.95% 5.88% 6.02% 6.09%

0.725 5.31% 5.72% 5.41% 5.80% 6.44% 6.28% 6.67% 6.64% 6.60% 6.17% 5.63% 5.95% 6.68%

0.750 5.75% 5.53% 5.25% 5.84% 6.14% 6.37% 7.18% 6.66% 6.21% 5.74% 6.15% 6.03% 6.28%

0.775 5.51% 5.59% 5.90% 5.93% 6.17% 6.32% 7.00% 6.91% 6.07% 6.09% 5.79% 6.18% 6.22%

0.800 4.97% 5.70% 5.45% 5.67% 5.98% 6.71% 7.06% 6.85% 5.97% 5.93% 6.09% 6.28% 5.97%

0.825 5.89% 5.82% 5.81% 5.59% 6.06% 6.04% 6.56% 6.96% 6.22% 6.00% 5.97% 5.94% 6.67%

0.850 5.79% 5.49% 5.50% 5.69% 6.11% 6.62% 7.07% 6.88% 6.63% 6.26% 6.74% 5.79% 6.63%

0.875 6.10% 5.89% 5.85% 5.98% 6.23% 6.38% 7.03% 6.84% 6.51% 6.16% 6.81% 5.83% 6.57%

0.900 5.45% 6.48% 6.36% 6.25% 6.13% 6.88% 6.85% 6.98% 6.36% 6.66% 6.13% 6.27% 6.29%

0.925 6.11% 5.80% 6.29% 6.19% 6.35% 6.68% 6.65% 7.03% 6.23% 6.54% 6.07% 6.17% 6.65%

0.950 6.21% 6.27% 6.13% 6.42% 6.40% 6.71% 6.94% 6.64% 6.69% 6.23% 6.95% 6.46% 7.19%
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Figure B1: Power at � = 1 over a grid for b1 and b2

Figure B2: Empirical size of the two-sided test on �; �"u = �0:45
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Figure B3: Empirical size of the two-sided test on �; �"u = 0:45

Figure B4: Proportion of times ~z2t is chosen
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Figure B5: Length of intervals of IV and OLS under misspeci�cation of the last observation

Figure B6: Coverage of con�dence intervals of IV and ETCI of Andrews and Guggenberger (2014).
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Figure B7: Length of con�dence intervals of IV and ETCI of Andrews and Guggenberger (2014).

Figure B8: Size of OLS- and IV-based one-sided test under misspeci�cation of the last observation
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