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Abstract

Backward Induction is a fundamental concept in game theory. As an algorithm, it can

only be used to analyze a very narrow class of games, but its logic is also invoked, albeit

informally, in several solution concepts for games with imperfect or incomplete informa-

tion (Subgame Perfect Equilibrium, Sequential Equilibrium, etc.). Yet, the very meaning

of ‘backward induction reasoning’ is not clear in these settings, and we lack a way to apply

this simple and compelling idea to more general games. We remedy this by introducing a

solution concept for games with imperfect and incomplete information, Backwards Rational-

izability, that captures precisely the implications of backward induction reasoning. We show

that Backwards Rationalizability satisfies several properties that are normally ascribed to

backward induction reasoning, such as: (i) an incomplete-information extension of subgame

consistency (continuation-game consistency); (ii) the possibility, in finite horizon games, of

being computed via a tractable backwards procedure; (iii) the view of unexpected moves as

mistakes; (iv) a characterization of the robust predictions of a ‘perfect equilibrium’ notion

that introduces the backward induction logic and nothing more into equilibrium analysis.

We also discuss a few applications, including a new version of peer-confirming equilibrium

(Lipnowski and Sadler (2019)) that, thanks to the backward induction logic distilled by

Backwards Rationalizability, restores in dynamic games the natural comparative statics the

original concept only displays in static settings.

Keywords: backward induction, backwards procedure, backwards rationalizability, incomplete

information, interim perfect equilibrium, rationalizability, robustness

JEL codes: C72, C73, D82.

1 Introduction

Backward induction is one of the most fundamental notions of game theory. Strictly speaking,

the backward induction algorithm is only defined for games with perfect and complete informa-
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tion and without ‘relevant ties’, but its logic has a much broader scope in the discipline. For

instance, subgame perfect equilibrium is commonly viewed as the natural extension of backward

induction to games with imperfect information. But there is a sense in which also solution

concepts for incomplete information games, such as sequential equilibrium (Kreps and Wilson

(1982)) or trembling-hand perfect equilibrium (Selten (1975)), are often thought of as having

a backward induction flavor. Yet, it is not even clear what “backward induction” means in

games with incomplete information, which are typically not solved “backwards”, nor to what

extent its logic can be separated from equilibrium assumptions. More broadly: What do we

mean by “backward induction reasoning”? Despite the central position in game theory, there is

no comprehensive, formal answer to this question.

The conceptual significance of providing such an answer is obvious, but its relevance is also

practical: the many solution concepts that have been developed with a ‘backward induction’

flavor typically conflate its logic with other kinds of ideas, which often lack the cogency or the

tractability of ‘plain’ backward induction. Identifying a solution concept for general games that

distills precisely its logic, and nothing else, is thus important to recover the virtues of backward

induction in contexts where standard equilibrium concepts lack in tractability, or are hard to

justify, or fail to deliver solid economic insights. We discuss a few such cases in Section 6.

In pursuit of an answer to our main question, a good starting point is to inspect the solution

concepts that are normally associated with the idea of “backward induction reasoning”. Consider

first Subgame Perfect Equilibrium (SPE). An influential argument in support of SPE is provided

by Harsanyi and Selten (1988)’s notion of subgame consistency:

“It is natural to require that a solution function for extensive games is subgame

consistent in the sense that the behavior prescribed on a subgame is nothing else

than the solution to the subgame” (ibid., p.90)

Subgame consistency warrants SPE the recursive structure of backward induction, i.e. the

possibility of determining the solution concept’s predictions for a subgame by looking at it ‘in

isolation’. Hence the possibility (in games with finite horizon) to solve for the SPE starting from

the terminal nodes and proceeding backwards. This is extremely convenient, and certaintly one

of the main reasons for the prominence of SPE in applied work.

Several solution concepts extend the idea of SPE to games with incomplete information,

often via the introduction of trembles (cf. Selten (1975), Kreps and Wilson (1982), etc.). In

these solution concepts, trembles are a shortcut to formalize another idea that is typically associ-

ated with the logic of backward induction: that off-equilibrium moves are mistakes, unintended

deviations.1 The idea that unexpected moves are mistakes, which disrupt the implementation

of one’s plan of action, also provides conceptual motivation for the idea that the predictions

for the continuation of the game shall only depend on the continuation game itself. In fact,

we view these two complementary ideas as the building block of backward induction reasoning.

Yet, while the incomplete information counterparts of SPE are typically considered to share its

1The view of deviations as ‘mistakes’ contrasts with the logic of forward induction, which requires instead that
unexpected moves be rationalized (if possible) as purposeful deviations (e.g., Pearce (1984), Battigalli (1996)).
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backward induction flavor, they do lack its recursive structure. Under Sequential Equilibrium,

for instance, the set of predictions from an information set onwards cannot be computed by

just looking at the continuation of the game, and neither can the game be solved “backwards”.

It is thus unclear in what sense, or to what extent, these concepts really are about backward

induction reasoning, or what this even means in an incomplete information setting.

The objective of this paper is to identify a solution concept for general games, with possibly

imperfect and incomplete information, that captures precisely the logic of backward induction

reasoning, and nothing more. In particular, we look for a comprehensive answer that reconciles

the following desiderata: (i) first, a recursive structure analogous to that of SPE; (ii) second,

the ability to solve the game ‘backwards’; (iii) third, a clear formalization of the idea of unex-

pected deviation as mistakes; (iv) fourth, a connection with a ‘perfect equilibrium’ concept that

introduces backward induction logic and nothing more into equilibrium analysis.

To this end, we introduce Backwards Rationalizability (BR for short), a solution concept

for belief-free games with incomplete and imperfect information, which consists of an iterated

deletion procedure for the extensive form. At each round, a strategy is eliminated if it is not

a sequential best response to any conjecture that, at each point in the game, is concentrated

on opponents’ continuation strategies which are consistent with the previous rounds of deletion.

These continuation strategies need not be part of strategies that reach the current information

set. With this, players entertain the possibility that the opponents committed mistakes in the

past.2 Thus, if an unexpected move of an opponent is interpreted as a mistake, it need not

mean anything about her type, hence the inferences a player can draw about others’ types, after

observing an unexpected move, are unrestricted under BR. This is the key reason why, besides

satisfying a convenient order independence property (Theorem 1), BR also satisfies a property

analogous to subgame consistency, which we call continuation-game consistency : the predictions

of BR about the continuation play from any history onwards coincide with the predictions of

BR in the (belief free) game that starts at that history (Theorem 2).

Continuation-game consistency is suggestive of the possibility, in finite horizon games, that

the predictions of BR can also be computed by ‘solving the game backwards’. Indeed, as we

show (Theorem 3), the predictions of BR in these games can be computed by a convenient

backwards procedure, which consists of the iterated application of belief-free rationalizability to

the normal form of the continuation games from each information set considered “in isolation”,

starting from the end of the game and proceeding backwards.

We introduce next an equilibrium concept for dynamic Bayesian games, interim perfect

equilibrium (IPE). Bayesian games are obtained appending a model of agents’ beliefs, i.e. a type

space, to the belief-free game. IPE is the weakest equilibrium notion for Bayesian games that

is consistent with sequential rationality and with Bayesian updating, and it coincides with SPE

in complete information games (see also Watson (2017)).3 Furthermore, for reasons related to

2For complete information games, this epistemic justification of BR has indeed been formalized in a recent
paper by Battigalli and De Vito (2021). This and other epistemic characterizations are discussed in Section 5.2.

3IPE is weaker, for instance, than the Perfect Bayesian Equilibrium notion recently introduced by Watson
(2017), which also coincides with SPE under complete information.
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the seminal result by Brandenburger and Dekel (1987), we show that the set of BR strategies

in the belief-free game coincides with the set of all strategies that are played in some IPE for

some type space (Theorem 4). Hence, BR characterizes the robust predictions of IPE, that is

the predictions that do not depend on assumptions on players’ exogenous beliefs about each

other’s types, as normally represented in a standard type space.

At a practical level, our results jointly imply that instead of computing the set of IPE by

solving a large (possibly infinite, in fact) number of fixed point problems, one can compute the

set of all IPE strategies by means of a tractable backwards procedure. This also shows that

a property analogous to subgame consistency holds for the set of IPE strategies: the robust

predictions of IPE are continuation-game consistent. As we discuss at the end of the paper, the

tractability of the algorithm may prove useful in overcoming the difficulties typically faced in

applications, both in complete and in incomplete information settings. At a conceptual level, our

results reconcile all the main features that are informally associated with backward induction

reasoning, including the recursive structure of the solution, the backwards solvability, and the

idea of deviations as unintended mistakes. There is thus a precise sense in which IPE is the

incomplete information counterpart of SPE that introduces the backward induction logic and

nothing more into equilibrium analysis.

Finally, we discuss a few applications and extensions of our concepts. First, we propose a

variation of peer-confirming equilibrium (Lipnowski and Sadler (2019)), a solution concept that

combines equilibrium and non-equilibrium reasoning, whereby players have correct beliefs only

regarding their neighbours in an exogenously given network. In static games, as the network

becomes richer, the set of peer-confirming equilibria naturally shrinks, but this is not true in

dynamic games, due to a tension in the solution concept between backward and forward induction

reasoning. To correct this tension, we propose a variation of peer-confirming equilibrium, based

on Backwards Rationalizability. We show that the logic of backward induction reasoning distilled

by BR allows for a smoother integration of the equilibrium and non-equilibrium approaches, and

restores in dynamic games the natural monotonicity result of static games. Then, we discuss

other applications that are part of our published or ongoing work: Penta (2015) application

of Backwards Rationalizability to problems of robust dynamic implementation; and Catonini

and Penta (2022)’s extension of BR to solve a long-lasting puzzle in the industrial organization

literature, the two-period Hotelling model of horizontal differentiation with linear transport costs

(cf. Hotelling (1929), Osborne and Pitchik (1987)).

The rest of the paper is organized as follows. The next subsection discusses the main con-

nections with the related literature. Section 2 introduces the framework of belief-free dynamic

games. In Section 3 we define and analyze Backwards Rationalizability and the backwards pro-

cedure. Section 4 introduces Bayesian games and IPE. In Section 5 we discuss some properties

and foundational aspects of our construction, and their significance with respect to the most

closely related literature. Section 6 discussed the applications, and Section 7 concludes.
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1.1 Related Literature

Backwards Rationalizability was first introduced by Penta (2010), for games with imperfect and

incomplete information, and independently by Perea (2014), for games with complete informa-

tion. Epistemic characterizations, which we further discuss in Section 5.2, have been provided by

Perea (2014) and Battigalli and De Vito (2021) for complete-information games, and by Penta

(2012a) for incomplete-information games. Applications are discussed in Section 6.

IPE was first introduced by Penta (2010) and applied by Penta (2015) to full implementation

problems. As we will discuss, IPE provides a dynamic extension of interim equilibrium (Berge-

mann and Morris (2005)), and it is weaker than the notions of Perfect Bayesian Equilibrium

(PBE) introduced by Fudenberg and Tirole (1991b) and by Watson (2017). Unlike other notions

of weak PBE (e.g., Mas-Colell et al. (1995)), however, IPE does coincide with subgame-perfect

equilibrium in games with complete information.

In terms of solution concepts, we innovate on the existing literature both for games with

complete and incomplete information. For games with incomplete information, Backwards Ra-

tionalizability is a novel concept, and provides the first formal extension of backward induction

reasoning to this class of games. Nonetheless, the backwards procedure we develop in Section

3.3, and the result that it characterizes Backwards Rationalizability (Theorem 3), are novel also

within the special case of complete information games.4 Furthermore, as we discuss in Section

6, the properties of our solution concept have substantial implications for important economic

applications, including in settings with complete information. From a conceptual viewpoint, our

analysis also sheds new light on some important aspects of backward induction reasoning, for

instance on the role of the belief persistence hypothesis in this context (cf. Section 5).

Theorem 4, which shows an identity between Backwards Rationalizability and the set of IPE

strategies across all type spaces, can be seen as a dynamic counterpart of the results in Battigalli

and Siniscalchi (2003a) and Bergemann and Morris (2005), that relate (belief-free) Rationaliz-

ability with (interim) Bayesian Equilibrium. Those results, in turn, are incomplete information

extensions of the characterization in Brandenburger and Dekel (1987), which brought to light the

connection between (a posteriori) subjective correlated equilibrium (Aumann (1974)) and (cor-

related) Rationalizability (Pearce (1984), Bernheim (1984)). The robustness approach pursued

in all these papers refers to the set of predictions across all possible type spaces, and it differs

from a more recent approach which instead maintains a common prior type space to represent

the minimal information of players, and seeks to characterize the set of equilibrium distribu-

tions if players have access to extra information (cf. Bergemann and Morris (2016), Bergemann

and Morris (2013); Bergemann et al. (2015), Bergemann et al. (2017) – this approach has been

brough to the data by Magnolfi and Roncoroni (2020). Dynamic counterparts of the latter ap-

proach have been provided by Doval and Ely (2020) and Makris and Renou (2018), who seek to

bound or characterize the set of equilibrium distributions over a large class of extensive forms

which are consistent with some minimal information about the game.

Backwards Rationalizability is also related to other non-equilibrium concepts for extensive

4In complete information games, Perea (2014) defines a “backwards dominance”procedure that, with the
appropriate elimination order, can be used to obtain a superset of BR.
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form games, such as Extensive Form Rationalizability (Pearce (1984), Battigalli (1996)), and

Interim Sequential Rationalizability (Penta (2012b)). As it will be explained, Backwards Ra-

tionalizability is weaker than the former in terms of outcomes (although not necessarily nested

in terms of strategies), and it is stronger than the latter, which is based on Common Belief

in Rationality only at the beginning of the game (an idea first due to Ben-Porath (1993), for

complete information games). Zuazo-Garin (2017) studied sufficient conditions for the backward

induction outcome under uncertainty over the extensive form. A more systematic analysis of the

impact of higher order uncertainty about the observability of actions, which may or not induce

backward induction outcomes, is provided by Penta and Zuazo-Garin (2021).5

2 Belief-Free Dynamic Games

We focus on finite multistage games with observable actions.6 For each player i ∈ N = {1, ..., n},
Ai is the set of actions available to i at some point of the game. Let h0 denote the initial history.

At each non-terminal history h, all players i simultaneously choose an action from the non-empty

set Ai(h) ⊆ Ai (player i is actually inactive if |Ai(h)| = 1), so histories are sequences of action

profiles. Let H denote the set of (publicly observed) non-terminal histories, and Z the set of

terminal histories. The tree of all histories is endowed with the precedence relation ≺ (i.e., given

two histories h, h′, write h ≺ h′ when h is a prefix of h′).

Players’ preferences over terminal nodes are parameterized by

θ = (θ0, ..., θn) ∈ Θ = Θ0 × ...×Θn;

Θ0 is the set of states of nature and each Θi is the set of i’s payoff types, all assumed finite.

Player i privately observes θi at the beginning of the game; nobody observes θ0. Each player i

has payoff function ui : Z ×Θ → R.
A belief-free dynamic game is a tuple

Γ = ⟨N,H,Z,Θ0, (Θi, ui)i∈N ⟩ .

Note that this is not a Bayesian game, as Γ does not include a type space, i.e. a model of

players’ interactive beliefs about Θ and each others’ beliefs. Type spaces and Bayesian games

are introduced in Section 4.

A strategy is a function si : H → Ai such that, for each h ∈ H, si(h) ∈ Ai(h). Let Si

denote the set of i’s strategies. Any strategy profile s ∈ S = ×i∈NSi induces a terminal history

z(s) ∈ Z. The notation z(s|h) refers to the terminal history induced by strategy profile s,

5More broadly, Backwards Rationalizability is related to other versions of rationalizability for incomplete
information games, such as: belief-free rationalizability (Battigalli and Siniscalchi (2003a), Bergemann and Morris
(2005, 2009)); interim independent rationalizability (Ely and Peski (2006)); interim correlated rationalizability
(Dekel et al. (2007), Fudenberg et al. (2006), also studied by Weinstein and Yildiz (2007, 2011), Oury and Tercieux
(2012), and Penta (2013)); ∆-Rationalizability (Battigalli and Siniscalchi (2003a), also studied by Battigalli and
Siniscalchi (2003b, 2007) and Ollár and Penta (2017, 2021)). For a unified perspective, see Battigalli et al. (2011).

6See Fudenberg and Tirole (1991a), chapters 3.2 and 8.2. At the expense of heavier notation, the analysis can
be easily adapted to all finite dynamic games with perfect recall.

6



starting from history h. Strategic-form payoff functions can be defined for continuations from

any given public history: for each h ∈ H and each (s, θ) ∈ S ×Θ , let Ui(s, θ;h) = ui(z(s|h), θ)
(For the initial history h0, we will write Ui(s, θ) instead of Ui(s, θ;h

0). For each history h

and player i, we let Si(h) denote the set of strategies of i that are compatible with h. Thus,

upon reaching history h, player i learns that the behavior of the opponents is consistent with

S−i(h) = ×j ̸=iSj(h). (Note that S−i(h) = S−i(h
′) when h and h′ differ only by i’s moves.)

Finally, for each h ∈ H, let Sh
i denote the set of strategies in the continuation game starting

from h, and for each si ∈ Si, let si|h denote the continuation of si from history h.

3 Backwards Rationalizability

Backwards Rationalizability is a non-equilibrium solution concept for (dynamic) belief-free

games. Similar to baseline Rationalizability (e.g., Pearce (1984)), also Backwards Rational-

izability will be defined by an iterative deletion procedure, in which players form conjectures

about others’ information and behavior, and only entertain strategies that are optimal with

respect to those conjectures. We thus need to first introduce a model of players’ conjectures,

as well as a notion of rationality, both of which will of course reflect the dynamic nature of the

environment, and the possibility of incomplete information.

Conjectures: At every history, player i holds a conjecture about the state of nature and

the opponents’ payoff-types and behavior. These conjectures are represented by a Conditional

Probability System, i.e., an array of conditional beliefs, one for each history, which are derived

by updating whenever possible.7 Let Θ−i = ×j ̸=iΘj and S−i = ×j ̸=iSj .

Definition 1. A Conditional Probability System (CPS) over Θ0 × Θ−i × S−i is an array of

conditional distributions µi = (µi(·|h))h∈H such that:

C.1 For every h ∈ H, µi(Θ0 ×Θ−i × S−i(h)|h) = 1;

C.2 For every h, h′ with h ≺ h′, for every E ⊆ Θ0 ×Θ−i × S−i(h
′),

µi(E|h) = µi(E|h′) · µi(Θ0 ×Θ−i × S−i(h
′)|h). (1)

The set of player i’s CPSs is denoted by ∆H
i .

Condition C.1 states that a player is always certain of what she knows at h; condition C.2 states

that her beliefs are consistent with the chain rule of probability.

Sequential Rationality: Strategy si is sequentially rational for type θi given a CPS µi if, at

each history h ∈ H, it prescribes optimal behavior in the continuation game given µi(·|h) – what

7The original notion of Conditional Probability System, due to Rényi (1955), requires beliefs to satisfy the
chain rule, i.e. equation 1, whenever S−i(h

′) ⊆ S−i(h), even when h and h′ are not ordered. Battigalli et al.
(2021) show that requiring the chain rule to hold only between ordered histories is meaningful and equivalent to
the full-blown chain rule for various solution concepts, including Backwards Rationalizability.
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we call continuation best reply to µi(·|h). Formally: for any θi ∈ Θi, si ∈ Si, µ
i ∈ ∆H

i , and

h ∈ H, let

Ūi

(
si;µ

i, h, θi
)
=

∑
(θ0,θ−i,s−i)∈Θ0×Θ−i×S−i(h)

Ui(si, s−i, θ0, θi, θ−i;h)µ
i(θ0, θ−i, s−i|h).

Definition 2. Strategy si is sequentially rational for payoff-type θi given µi ∈ ∆H
i if for each

h ∈ H and s′i ∈ Si,

Ūi

(
si;µ

i, h, θi
)
≥ Ūi

(
s′i;µ

i, h, θi
)
.

The set of sequentially rational strategies for θi given µi is denoted by ri(µ
i, θi). If si ∈ ri(µ

i, θi),

we also say that µi justifies si for θi.

We can now introduce our main solution concept, Backwards Rationalizability (BR):

Definition 3. For each i ∈ N and θi ∈ Θi, let BR0
i (θi) = Si. Recursively, for k > 0, let

BRk−1
−i := {(θj , sj)j ̸=i ∈ Θ−i×S−i : ∀j ̸= i, sj ∈ BRk−1

j (θj)}, and let si ∈ BRk
i (θi) if there exists

µi ∈ ∆H
i such that:

1. si ∈ ri(µ
i; θi);

2. for each h ∈ H and (θ−i, s−i) ∈ Θ−i×S−i, if µ
i(Θ0×{(θ−i, s−i)} |h) > 0, then there exists

s′−i ∈ S−i such that s′−i|h = s−i|h and (θ−i, s
′
−i) ∈ BRk−1

−i .

The set of Backwards Rationalizable strategies for type θi is BRi(θi) = ∩k>0BRk
i (θi), and

we let BRi := {(θi, si) ∈ Θi × Si : si ∈ BRi(θi)} and BR := ×i∈NBRi.

In words, BR is an iterated deletion procedure. At each round, strategy si survives for

type θi if it is justified by a CPS concentrated on opponents’ continuation strategies that are

consistent with the previous round of deletion. Players’ conjectures about Θ0 × Θ−i, however,

are unrestricted. This property, which we call unrestricted inference, will play a crucial role for

the interpretation of BR as backward induction reasoning, as we will show in Section 3.3.

Next, we illustrate BR with an example.

Example 1. Ann (i = a) and Bob (i = b) are privately informed of the size θi = {1, 2} of their

indivisible endowment. Ann can choose between a barter economy and a production economy. In

the barter economy, players can commit to exchanging their endowments or not. Committing to

exchange costs ε ∈ (0, 1/2), and the exchange goes through only if both players commit. Setting

up the production process costs γ ∈ (ε, 1/2), the total production is 3 (θa + θb) /2, and it is equally

shared between players. The figure displays Ann’s payoffs (Bob’s payoffs are symmetric).

Barter (B):

a\b E N

E θb − ε θa − ε

N θa θa

Production (P ):
1

2
· 3
2
(θa + θb)− γ

Backwards rationalizability works as follows.
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At the first round, strategies B.E and P.E are not sequentially rational for type θa = 2 of

Ann, because choosing E at history (B) is not a continuation best reply to any belief. For Ann

of type θa = 1, instead, strategy B.N is not sequentially rational, because it is not a best reply

to any belief at the beginning of the game: it yields a sure payoff of 1, whereas strategies P.E

and P.N yield a payoff of at least 3/2− γ > 1. So we have

BR1
a(θa = 1) = {B.E, P.E, P.N}

BR1
a(θa = 2) = {B.N,P.N} .

For Bob, at history (B), strategy E is dominated by N for type θb = 2, but not for type θb = 1.

So we have

BR1
b(θb = 1) = {E,N}

BR1
b(θb = 2) = {N} .

At the second round, for type θa = 1 of Ann, strategies B.E and P.E are not sequential

best replies to any belief µa ∈ ∆H
a such that µa(BR1

b |h0) = 1 (where we recall that BR1
b =

{(1, E), (1, N), (2, N)}), because they are not continuation best replies at history (B): they yield

payoff (1− ε) with probability 1, whereas choosing N yields a sure payoff of 1. So we have

BR2
a(θa = 1) = {P.N}

BR2
a(θa = 2) = {P.N,B.N} .

Analogously, for Bob of type θb = 1 at history (B) strategy E is not a best reply to any belief

over BR1
a|(B) = {(1, E), (1, N), (2.N)}. So we have BR2

b(θb) = {N} for both θb = 1, 2.

All the step-2 type-strategy pairs survive the third step of BR. For both types of Bob and for

type θa = 1 of Ann, we are left with just one strategy, so it cannot be eliminated. In particular,

for each type of Bob, choosing N is optimal for every belief over BR2
a|(B) = {(1, N), (2.N)}.

For Ann of type θa = 2, strategy B.N is a sequential best reply to every belief µa ∈ ∆H
a such

that µa((1, N)|h0) = 1, while strategy P.N is a sequential best reply to every belief µa ∈ ∆H
a

such that µa((2, N)|h0) = 1. In conclusion, we have that BRa(θa = 1) = {P.N,B.N} and

BRa(θa = 2) = {P.N} for Ann, and BRb(θb) = {N} for both types θb = 1, 2 of Bob. ▲.

3.1 Algorithmic properties

Since the game is finite, BR ends in finitely many steps. Hence:

Remark 1. There exists K ∈ N such that BRK = BR.

It is also easy to check that BR satisfies the following standard fixed-point property:8

Remark 2. For each i ∈ N and (θi, si) ∈ Θi × Si, we have (θi, si) ∈ BRi if and only if

si ∈ ri(µ
i; θi) for some µi ∈ ∆H

i that satisfies the following property: for each h ∈ H and

8Finiteness makes the property obvious, but it also holds in nicely-behaved infinite games, as standard.
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(θ−i, s−i) with µi(Θ0 × {(θ−i, s−i)} |h) > 0, there exists s′−i ∈ S−i such that s′−i|h = s−i|h and

(θ−i, s
′
−i) ∈ BR−i.

BR is also robust to changes in the order of elimination of type-strategy pairs, which is

helpful in practice. Order independence is also strongly related to the conceptually more relevant

possibility of “solving the game backwards”, as we will see in Section 3.3.

To formalize order independence, we rewrite BR as a reduction procedure, which is possible

because it has one-step memory : computing BRk only requires BRk−1, not BRk−2, ...,BR0. Fix

Ω̂ = ×i∈N Ω̂i, where every Ω̂i contains at least one element (θi, si) for each θi ∈ Θi. For each i ∈
N , let ρBRi (Ω̂) be the set of all (θi, si) ∈ Ω̂i such that si ∈ ri(µ

i; θi) for some µi ∈ ∆H
i that satisfies

the following property: for each h ∈ H and (θ−i, s−i) ∈ Θ−i×S−i, if µ
i(Θ0×{(θ−i, s−i)} |h) > 0,

then there exists s′−i ∈ S−i such that s′−i|h = s−i|h and (θ−i, s
′
−i) ∈ Ω̂−i. Finally, define the

reduction operator ρBR(Ω̂) = ×i∈NρBRi (Ω̂).

Definition 4. An elimination order for ρBR is a chain Ω = Ω̂0 ⊇ Ω̂1 ⊇ .... ⊇ Ω̂M such that:

1. for each m = 1, ...,M , Ω̂m ⊇ ρBR(Ω̂m−1);

2. ρBR(Ω̂M ) = Ω̂M .

BR is the maximal elimination order for ρBR, that is, for each k = 1, ..., BRk = ρBR(BRk−1).

Any alternative elimination order (Ω̂m)Mm=0 is “slower” than BR, in that at some step m, not

every type-strategy pair that can be eliminated is actually eliminated: Ω̂m ⊃ ρBR(Ω̂m−1).

To see that all elimination orders are equivalent, note that ρBR(Ω̂) ⊆ ρBR(Ω̂′) whenever

Ω̂ ⊂ Ω̂′. This monotonicity implies that “forgetting” to eliminate some type-strategy pair

cannot result in a set Ω̂m that does not contain BR. Morever, as long as Ω̂m is actually larger

than BR, it cannot have the fixed-point property highlighted in Remark 2: any set with this

property would clearly survive all steps of BR. Therefore, since an order of elimination can stop

only when a fixed point is reached (see point 2 in Definition 4), the final output will coincide

with BR. This proves the following result (the formal proof is omitted):

Theorem 1. BR is order-independent: for every order of elimination (Ω̂m)Mm=0 for ρBR, we

have Ω̂M = BR.

As we mentioned, this is a technical property that is especially convenient when one needs

to solve for an iterated deletion procedure. But, more importantly, this property is also useful

for the main results of the next subsections, which provide two of the desiderata of backward in-

duction reasoning that we discussed in the introduction; namely, continuation-game consistency

and the backwards solution.

3.2 Continuation-game Consistency

In the Introduction, we identified the following distinctive feature of backward induction rea-

soning: the set of predictions for the whole game, when restricted to a part of the game, should

coincide with the set of predictions for that part of the game analyzed in isolation. Does BR
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replicate this feature? The answer is affirmative. As customary, we take a “part of the game”

to be everything that follows a certain history. In incomplete information games, however, a

history does not define a “subgame”, because it does not suffice as a starting point: the “initial

conditions” shall also include the beliefs about payoff-types at that history. Instead of “subgame

consistency”, we thus look for continuation-game consistency : the predictions of BR from a his-

tory onwards shall coincide with the predictions of BR for a hypothetical game that starts at

that history, hence under all possible initial belief about payoff types. The key intuition for why

BR satisfies continuation-game consistency is the unrestricted inference property: According to

BR, every belief about payoff-types is possible at any history, because reaching the history is

either the only rationalizable behavior of the opponents, or it can surprise our player, who is

then free to infer whatever she wants about the opponents’ payoff-types. To formalize, let BRh

denote BR for the game with root h. Also, for each player i, let

BRi|h = {(θi, shi ) ∈ Θi × Sh
i : ∃si ∈ Si s.t. (θi, si) ∈ BRi and si|h = shi },

and let BR|h = ×i∈NBRi|h.

Theorem 2. For each h ∈ H, for each k ≥ 0, BRk|h = BRh,k.

In words, after unexpected moves, players who reason according to BR can focus on the

continuation of the game to predict the opponents’ future behavior. This is what we call

continuation-game consistency. In terms of epistemic conditions for BR, this requires play-

ers to have common belief in their future rationality only (cf. Section 5.2).

The proof, which is provided in the Appendix, is based on a simple inductive argument.

At each step k, every viable belief for BRk
i can be replicated for BRh,k

i , by just taking its

‘projection’ in the continuation game that starts at h. Conversely, every viable belief for BRh,k
i

can be replicated for BRk
i , by attaching it to a CPS where h or an earlier history from which h is

always reached comes as a surprise for i. In both directions, one obtains the same continuation

best replies, at h and onwards.

Continuation-game consistency also suggests that, when reasoning about the overall game,

players can anticipate the BR-solution of the continuation game that follows some future history,

and hence solve the game backwards, starting from preterminal histories. The next result will

formalize this intuition.

3.3 The Backwards Procedure

Continuation-game consistency and order independence provided important clues for the possi-

bility of computing the predictions of BR by “solving the game backwards”. To verify this, we

first need to clarify what it means to solve backwards a game with imperfect and incomplete

information. In absence of any assumption of equilibrium, we solve the game backwards with a

recursive use of belief-free rationalizability on the normal form of the continuation games that

follow any given history, starting from preterminal histories and proceeding backwards. The

normal form of each continuation game with root h will be first reduced to the type-strategy

pairs that are consistent with the solution of the smaller continuation games.

11



We recall briefly the definition of belief-free rationalizability, which is useful to define also

for strategic forms that consist of subsets of type-strategy pairs of the original game. So, fix a

strategic form G = ⟨N,Θ0, (Ω̃i, Ui)i∈N ⟩, where each Ω̃i ⊆ Θi × Si is a subset of type-strategy

pairs of player i, and Ui : Θ×S → R. For every i, let R0
i := Ω̃i, and recursively, for every k > 0,

Rk
i := {(θi, si) ∈ Ω̃i : ∃ν ∈ ∆(Θ0 × Rk−1

−i ) s.t. si ∈ r̂i(ν; θ)}, where r̂i(ν; θi) denotes the set of

strategies that are a best response for type θi to a conjecture ν ∈ ∆(Θ0 × Θ−i × S−i).
9 Then,

for each i ∈ N , the set of belief-free rationalizable type-strategy pairs is Ri := ∩k>0Ri.

Our Backwards Procedure, BP, is formally defined as follows:10

Definition 5. For each preterminal history h, define BPh = ×i∈NBPh
i as the output of belief-

free rationalizability on ×j∈N (Θj × Sh
j ).

Moving backwards, fix now a history h and suppose that BPh′
was defined for every immediate

successor h′ of h. For each player i, let BPh,0
i denote the set of pairs (θi, s

h
i ) ∈ Θi×Sh

i such that(
θi, s

h
i |h′

)
∈ BPh′

i for every immediate successor h′ of h. We define BPh as the output of belief-

free rationalizability on the strategic form that consists of the type-strategy pairs (BPh,0
j )j∈N .

The next example illustrates the procedure.

Example 2. Consider again the game of Example 1. The backwards procedure works as follows:

First we start from applying belief-free rationalizability to the continuation game with root

h = (B), the preterminal history. The game is symmetric: for each player i = a, b, if θi = 2, E

is dominated by N , so we have

BPh,1
i = {(1, N), (2, N)} .

Next, for every belief over BPh,1
j (j ̸= i) E yields payoff 1 − ε with probability 1, whereas N

yields a sure payoff of 1, so we have

BPh,2
i = {(1, N), (2, N)} = BPh

i .

Proceeding backwards, we move to the beginning of the game, h = h0, and we initialize

belief-free rationalizability with the set of type-strategy pairs whose continuations are belief-free

rationalizable following B. That is:

BP0
a = {(1, B.N), (1, P.N), (2, B.N), (2, P.N)} ,

BP0
b = {(1, N), (2, N)} .

For Ann of type θa = 1, strategy B.N is not a best reply to any belief, because it yields a sure

payoff of 1, whereas strategies P.E and P.N yield a payoff of at least 3/2 − γ > 1. For ann

of type θa = 2, strategy B.N is a best reply to a belief that assigns probability 1 to (1, N), and

strategy P.N is a best reply to a belief that assigns probability 1 to (2, N). No type-strategy pair

can be eliminated for Bob, as we are already left with just one strategy for each type, therefore

9Formally, r̂i(ν; θi) := {argmaxsi∈Si

∑
Ui(si, s−i, θi, θ−i, θ0) · ν(θ0, θ−i, s−i)}.

10A definition of BP that also includes the steps of belief-free rationalizability is provided in the Appendix.
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no further type-strategy pair can be eliminated for Ann at the second step. In conclusion,

BPa = {(1, P.N), (2, B.N), (2, P.N)} ,

BPb = {(1, N), (2, N)} .

Note that BPa = BRa and BPb = BRb. ▲

As noted, in this example BP yields exactly the predictions of BR in terms of behavior of

every single player, from every history onwards. The next result shows that in fact this is a

general property. The only possible difference between the two concepts is that, unlike BP, in

some games BR may exclude certain combinations of behavior of player i from h onwards and

from a later history h′ onwards, when i’s behavior alone precludes reaching h′ from h. Hence, the

two concepts do not necessarily coincide in terms of full strategies, but this difference does not

affect the actual predictions on players’ behavior in any continuation game. To formalize this, we

introduce the notion of realization-equivalence of continuation strategies: given a continuation

strategy shi , the realization-equivalent class
[
shi
]
is the set of all strategies s̃hi ∈ Sh

i that, for

every s−i ∈ Sh
−i, yield the same terminal history as shi . We also write

[
(θi, s

h
i )
]
for {θi} ×

[
shi
]
,

and given a subset Ω̃i ⊆ Θi × Sh
i , we let [Ω̃i] = ∪

ωi∈Ω̃i
[ωi].

Theorem 3. For each h ∈ H, for each i ∈ N , [BRi|h] =
[
BPh

i

]
.

In words, for every continuation game, the strategies that survive the backwards procedure

for a type are realization-equivalent to the backwards rationalizable ones. Thus, while BP may

include more strategies than BR, the extra strategies would only differ for the behavior they

entail at histories h′ which are prevented from being reached by the strategies themselves –

hence, they are realization-equivalent to strategies in BR. Furthermore, if one conditions on h′

the entire sets BRi and BP i, the resulting sets of continuation strategies are still realization-

equivalent from h′ onwards. Hence, effectively, the possible behavior of each player in each

continuation game is exactly the same under the two solution concepts. 11

The proof of Theorem 3, which is provided in the Appendix, combines continuation-game

consistency and order independence. Continuation-game consistency allows to focus on BRh in

place of BR|h for the comparison with BPh. By order independence, we can focus on a slow

elimination order for BRh, where the strategies that are not continuation best replies at histories

that follow h for a type are iteratively eliminated first. This order of elimination yields type-

strategy pairs whose continuations after each h′ that immediately follows h coincide with BRh′
.

Assuming
[
BRh′

]
= [BPh′

i ] by induction from the bottom of the game, we have thus mirrored (in

terms of realization-equivalent classes) the initialization of BPh. Then, the equivalence between

BPh and BR|h is preserved step by step as we carry out BPh on one side, and we move on to

the elimination of strategies that are not continuation best replies at h on the other side.

11This point is further explained in Section 5.3.
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4 Interim Perfect Equilibrium

This section explores the connection between BR and equilibrium predictions. In an incomplete

information game, equilibrium means that players have correct beliefs about how the opponents

would play given their payoff-relevant information and their belief hierarchy about the payoff-

relevant information of everyone. At the beginning of the game, these belief hierarchies cannot be

determined endogenously from equilibrium conditions; they must be specified exogenously. To

do this, we follow the traditional approach (Harsanyi (1967)) of modeling the belief hierarchies

implicitly, by means of type spaces. Appending a type space to a game yields a Bayesian game.

4.1 Bayesian Games

Because the game is finite, it is without loss of generality for equilibrium predictions to focus

on finite type spaces. For each player i, fix a finite set Ti of types. Fix also an onto function

ϑi : Ti → Θi assigning the payoff-type to each type. The belief map τi : Ti → ∆(Θ0×T−i), where

T−i = ×j ̸=iTj , specifies the initial belief of each type ti about state of nature and opponents’

types. We call T =(Ti, ϑi, τi)i∈N a (Θ-based) type space.

A Bayesian Game is obtained by appending the type space T to the belief-free game Γ:

ΓT = ⟨N,H,Z,Θ0, (Ti, ϑi, τi,Θi, ui)i∈N ⟩ .

We write τi(θ0, t−i|ti) for the probability that type ti assigns to (θ0, t−i).

In a Bayesian game, we call interim strategies the elements of Si, and interim mixed strategies

the elements of ∆(Si).
12 We will also use replacement plans: given an interim strategy si and a

history h, let ϱi,h(si) denote the interim strategy s′i ∈ Si(h) such that s′i(h
′) = si(h

′) for every

h′ ̸≺ h. We call just strategies the functions bi : Ti → ∆(Si) that assign an interim mixed

strategy to each epistemic type. We write bi(si|ti) for the probability that bi(ti) assigns to the

interim strategy si ∈ Si.

4.2 Interim Perfect Equilibrium

In a dynamic Bayesian game, an equilibrium is described as a strategy profile coupled with

systems of beliefs about state of nature and opponents’ types. These belief systems must be part

of the definition of equilibrium, because the beliefs after a deviation from equilibrium behavior

are not pinned down by initial beliefs and equilibrium conditions. Formally, we introduce a map

pi : Ti→ (∆(Θ0 × T−i))
H that associates each type of player i with an array of beliefs about state

of nature and opponents’ types, one for each history. We write pi(θ0, t−i|h; ti) for the probability
that pi(ti) assigns to (θ0, t−i) at history h.

An assessment consists of a strategy profile b = (bi)i∈N and a profile of belief systems

p = (pi)i∈N . Given an assessment (b, p), for each i ∈ N and ti ∈ Ti, it will be useful to derive a

12We use mixed strategies in place of behavior strategies because it is notationally more convenient. Given a
type space, there could be more IPE in mixed strategies than in behavior strategies. However, our equivalence
between BR and IPE across types spaces would hold also if we restrict the attention to IPE in behavior strategies,
because the IPE we construct for the proof actually uses only pure strategies.
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CPS µ̂ti
(b,p) = (µ̂ti

(b,p)(·|h))h∈H over Θ0 × T−i × S−i through the following recursive procedure.

For each (θ0, (tj)j ̸=i, (sj)j ̸=i) ∈ Θ0 × T−i × S−i, let

µ̂ti
(b,p)(θ0, (sj , tj)j ̸=i|h0) = pi(θ0, (tj)j ̸=i|h0; ti) ·

∏
j ̸=i

bj(sj |tj). (2)

Now fix h ̸= h0, let p(h) denote the immediate predecessor of h, and suppose that µ̂ti
(b,p)(·|p(h))

was defined. If µ̂ti
(b,p)(Θ0 × T−i × S−i(h)|p(h)) > 0, for each ω ∈ Θ0 × T−i × S−i(h), let

µ̂ti
(b,p)(ω|h) =

µ̂ti
(b,p)(ω|h̃)

µ̂ti
(b,p)(Θ0 × T−i × S−i(h)|h̃)

, (3)

otherwise, for each (θ0, (tj)j ̸=i, (sj)j ̸=i) ∈ Θ0 × T−i × S−i, let

µ̂ti
(b,p)(θ0, t−i, s−i|h) = pi(θ0, (tj)j ̸=i|h; ti) ·

∏
j ̸=i

bj(ϱ
−1
j,h(sj)|tj). (4)

In the CPS µ̂ti
(b,p), the beliefs about types and strategies of the opponents are derived from

the assessment at the beginning of the game (eq. 2) and after every unexpected move (eq. 4).

At the other histories, the beliefs are derived by updating (eq. 3).

For consistency of the assessment with the context described by the type space, one shall

require that the initial beliefs specified by pi (hence by each µ̂ti
(b,p)(·|h

0)) coincide with the ones

specified by τi. For internal consistency, one shall require that, for each ti, the beliefs specified

by pi(ti) at each history are updated in view of b−i whenever possible, as in µ̂ti
(b,p).

13

Definition 6. An assessment (b, p) is weakly pre-consistent if, for every i ∈ N , ti ∈ Ti, and

for every (θ0, t−i) ∈ Θ0 × T−i:

1. pi(θ0, t−i|h0; ti) = τi(θ0, t−i|ti),

2. pi(θ0, t−i|h; ti) = µ̂ti
(b,p)({(θ0, t−i)} × S−i|h) for each h ∈ H.

Given the CPS µ̂ti
(b,p), we can derive a CPS µti

(b,p) over the payoff-relevant uncertainty Θ0 ×
Θ−i × S−i as follows: for each h ∈ H and (θ0, θ−i, s−i) ∈ Θ0 ×Θ−i × S−i, let

µti
(b,p)(θ0, θ−i, s−i|h) = µ̂ti

(b,p)({θ0} × ϑ−1
−i (θ−i)× {s−i} |h), (5)

where ϑ−1
−i ((θj)j ̸=i) = ×j ̸=iϑ

−1
j (θj).

When (b, p) is an equilibrium, the CPSs µti
(b,p) constitute the equilibrium beliefs over the

relevant uncertainty. With this, the definition of Interim Perfect Equilibrium is straightforward.

Definition 7. An assessment (b, p) is an Interim Perfect Equilibrium of ΓT if:

1. it is weakly pre-consistent;

2. for all i ∈ N , ti ∈ Ti, and si ∈ Si with bi(si|ti) > 0, si is sequentially rational under µti
(b,p).

13When this is impossible, note that pi(·|h; ti) can be arbitrary and µ̂ti
(b,p)(·|h) is consistent with it by definition,

so that at the later histories beliefs are updated from the actual belief at h.
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Example 3. Append to the game of Example 1 a type space T =(Ti, ϑi, τi)i=a,b where, for every

i = a, b, Ti =
{
t1i , t

2
i

}
and ϑi(t

k
i ) = k for each k = 1, 2. We study the set of IPE, as the belief

maps (τi)i=a,b vary.

Let (bi, pi)i=a,b be a candidate IPE. For type t2a of Ann, at history (B), action N is dominant,

therefore we must have ba(t
2
a) ∈ ∆({B.N,P.N}). Then, for Bob, for each k = 1, 2, we have

µ̂
tkb
(b,p)(

{
(t1a, B.E), (t1a, B.N), (t2a, B.N)

}
|h = (B)) = 1.

Thus, the payoff of strategy E is 1 − ε, whereas the payoff of strategy N is k. Hence, we must

have bb(t
k
b ) = N . Then, for each k = 1, 2, we have

µ̂
tka
(b,p)(

{
(t1b , N), (t2b , N)

}
|h0) = 1.

It follows that, for type t1a of Ann, the only sequential best reply is P.N , thus ba(t
1
a) = P.N .

There only remains to determine ba(t
2
a). This depends on τa(t

2
a). Note indeed that, by weak

preconsistency,

pa(t
k
b |h0; t2a) = τa(t

k
b |t2a), k = 1, 2

and by construction of µ̂
t2a
(b,p),

µ̂
t2a
(b,p)({t

k
b} × Sb|h0) = pa(t

k
b |h0; t2a), k = 1, 2.

Therefore, strategy P.N is optimal for t2a if

3

4

(
2 + (2τa(t

2
b |t2a) + τa(t

1
b |t2a))

)
− γ ≥ 2,

while strategy B.N is optimal with the opposite weak inequality. Thus, we get
ba(t

2
a) = P.N if τa(t

2
b |t2a) >

4
3γ − 1

3

ba(t
2
a) = B.N if τa(t

2
b |t2a) <

4
3γ − 1

3

ba(t
2
a) ∈ ∆({P.N,B.N}) if τa(t

2
b |t2a) =

4
3γ − 1

3

.

This completes the characterization of the IPE of the game, as a function of players’ beliefs. ▲

IPE can be seen as a dynamic counterpart of interim equilibrium, as defined in Bergemann

and Morris (2005), obtained by imposing two natural conditions: (i) weak pre-consistency of

the belief system, and (ii) sequential rationality. Notice that weak preconsistency imposes no

restrictions on the beliefs held at histories that receive zero probability at the preceding node.

Hence, even if agents’ initial beliefs admit a common prior, IPE is weaker than the notions of

Perfect Bayesian Equilibrium (PBE) introduced by Fudenberg and Tirole (1991b) and by Watson

(2017). However, unlike other notions of weak PBE (see, e.g., Mas-Colell et al. (1995)), IPE

requires players’ beliefs to be consistent with Bayesian updating also off-the-equilibrium path.

Hence, in complete information games, IPE does coincide with subgame-perfect equilibrium.
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4.3 Characterization of the set of IPE

The set of IPE of a Bayesian game crucially depends on the exogenous hierarchies of beliefs

about payoff-relevant types. By contrast, BR is a belief-free solution concept, where no exoge-

nous structure on beliefs is imposed. Moreover, IPE is an equilibrium concept, thus players are

assumed to hold correct beliefs about how the opponents will behave, conditional on their pos-

sible types. By contrast, BR is a rationalizability procedure, where beliefs are purely subjective

and need not be correct. Despite these important differences, is it possible to draw a connection

between the two solution concepts?

There are two clues in our previous analysis that suggest a connection. First, the BR set has

a fixed point property, by Remark 2. This means that all backward rationalizable type-strategy

pairs can be justified under the correct belief that, from every point on, the opponents will follow

backwards rationalizable continuation strategies. Second, IPE is based on type spaces which in

principle may contain types with different beliefs about the types of others. Therefore, different

types can have different beliefs about the payoff-types and the strategies of the opponents, and

hence optimally play differently (even when they have the same payoff-type). There remains

the important difference that the type structure fixes a subset of hierarchies of beliefs about

payoff-types, while such beliefs are free in BR. But this difference can be overcome by looking

at the set of all possible IPE across all type structures.

The conclusion is that there is indeed a very strong connection between the two solution

concepts: BR yields exactly the set of IPE strategies across all type structures.

Theorem 4. Fix a belief-free game Γ. For each i ∈ N , (θi, si) ∈ BRi if and only if there exists

a type space T , an IPE (b∗, p∗) of ΓT , and a type ti ∈ Ti s.t. ϑi(ti) = θi and b∗i (si|ti) > 0.

Thus, BR characterizes the set of predictions on players’ strategies that are consistent with

IPE, but which do not depend on exogenous restrictions on the type space. In that sense, BR
characterizes the robust predictions of IPE, across all the exogenous hierarchies of beliefs.

The proof of Theorem 4 is in the Appendix. The ‘if’ direction is straightforward: given an

IPE, all the type-interim strategy pairs that can be derived from the IPE strategies iteratively

survive BR because they “justify each other”. The ‘only if’ direction is proven through the

construction of just one type space that comprises all the backwards rationalizable type-strategy

pairs. In particular, for each payoff-type and each associated interim strategy, we construct a

type with initial belief over the opponents’ types that mirrors the belief we obtain for the pair

from the fixed-point property of BR (see Remark 2).

5 Discussion

In this section we discuss some important or subtle aspects of our concepts and results.

5.1 Complete Information, Redundant Types and IPE

In games with complete and perfect information and no relevant ties, Backwards Rationaliz-

ability coincides with the backward induction solution, hence with SPE. The next example
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(borrowed from Perea (2014)) shows that if the game has complete but imperfect information,

the set of strategies played in the SPE of the game may be a strict subset of BR:

Example 4. Consider the game in the following figure:

Pℓ. 1

Out ↙ ↘ In

4, 0 1\2 f g h

c 2, 3 5, 1 2, 0

d 3, 1 2, 3 2, 0

e 1, 4 1, 3 6, 0

In this game, BR1 = {Out.c,Out.d, In.c} and BR2 = {f, g}. The game, however, has only

one SPE, in which player 1 chooses Out: in the proper subgame, the only Nash equilibrium

entails the mixed (continuation) strategies 1
2c+

1
2d and 3

4f + 1
4g, yielding a continuation payoff

of 11
4 for player 1. Hence, player 1 chooses Out at the first node. ▲

In games with complete information, IPE coincides with SPE, but BR in general is weaker

than SPE. At first glance, this may appear in contradiction with Theorem 4, which says that

BR characterizes the set of strategies played in IPE across models of beliefs. The reason is that

IPE is a solution concept for Bayesian games (i.e., for pairs ⟨Γ, T ⟩), and even if the environment

has no payoff uncertainty (i.e., if Θ is a singleton), the complete information model in which

Ti is a singleton for every i is not the only possible one: models with redundant types may

exist, for which the IPE strategies differ from the SPE strategies that are played in the com-

plete information model. The source of the discrepancy is analogous to the one between Nash

equilibrium and subjective correlated equilibrium (Aumann (1974); see also Brandenburger and

Dekel (1987)), with the type space playing the role of the correlating device.14We illustrate the

point by constructing a type space and an IPE in which strategy In.c is played by some type

of player 1. Consider a type space T̂ such that T̂1 = {tOut.c
1 , tOut.d

1 , tIn.c1 } and T̂2 = {tf2 , t
g
2}, with

the following beliefs:15

τ1(t
f
2 |t1) =


1 if t1 = tOut.d

1
1
2 if t1 = tOut.c

1

0 if t1 = tIn.c1

,

τ2(t
Out.d
1 |tg2) = 1, and τ2(t

Out.c
1 |tf2) = 1.

The equilibrium strategy profile b is such that, for each player i and type tsii , bi (t
si
i ) = si. The

belief systems agree with the beliefs of the type space at the initial history. At history (In), the

belief of player 1 remains the same by updating, whereas the belief of player 2 must be revised,

14For more on the effects that redundant types may have on expanding the set of predictions for solution concepts
that incorporate conditional independence restrictions on agent’s conjectures (such as Bayes-Nash equilibrium,
Interim Independent Rationalizability, etc.), see Ely and Peski (2006)

15It is easy to see that such a difference is not merely due to the possibility of zero-probability types. Also the
relaxation of the common prior assumption is not crucial for this particular point.
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but we can maintain the same belief each type had at the beginning of the game. Then, it is

easy to verify that (b, p) is an IPE.

On the other hand, if Θ is a singleton and the game has perfect information (no stage

with simultaneous moves), then BR does coincide with the set of SPE strategies. Hence, in

environments with no payoff uncertainty and with perfect information, only SPE strategies are

played as part of an IPE for any model of beliefs.

5.2 Epistemic characterizations

An earlier version of this paper (Penta (2012a)) showed that BR characterizes the behavioral

implications of Rationality and Common Belief in Future Rationality (RCBFR). The same result

was also independently provided by Perea (2014), but for complete information games. Common

belief in future rationality means that, at every point in the game, there is common belief that

everybody will follow an optimal continuation plan, without necessarily assuming that past

moves were part of the same plan.

In complete information games with observable actions, Battigalli and De Vito (2021) con-

struct an epistemic model where plans and actual play are formally distinguished. (Their epis-

temic model can also be extended to incomplete-information games.) With this, they show

that BR characterizes the behavioral implications of the following epistemic hypotheses. First,

players formulate an optimal plan for the entire game and execute it correctly. At every history,

there is common belief that everybody has an optimal plan for the entire game, not just for the

future. However, there is only common belief that everybody will correctly execute her plan

in the future. Therefore, after observing an unexpected move, a player is free to believe that

the move was carried out by mistake. On the other hand, we emphasize that these epistemic

conditions do not rule out the possibility that the unexpected move was part of an optimal plan,

just different than previously believed. We clarify this aspect in the next subsection.

5.3 On the BR-BP comparison

To better understand the observations made in Section 3.3, on the possible difference between

BR and BP in terms of full strategies, note that compared to BP, BR further eliminates any

strategy that is a continuation best reply to some belief at h, but not a continuation best

reply to the same belief at some later history h′ that is precluded by the strategy itself. Such

combinations of continuation best replies to different beliefs are instead allowed by BP, which

uses normal form best replies in place of sequential rationality. In other words, some strategies

in BP may not be dynamically consistent plans under the beliefs allowed by BR, but these

inconsistencies only occur after a deviation from the own plan and do not introduce any non-

backwards rationalizable continuation plan.16 This is the reason why, as we explained in Section

3.3, the possible behavior of each player in each continuation game is exactly the same under

16In a previous version of this paper, BR allowed players to change their beliefs after a deviation from their
own plan, by using CPSs over strategy profiles instead of just opponents’ strategies. In this way, the equality
BR = BP was established. Thus, modifying the CPS in the definition of BR in this way would weaken the
solution concept without affecting its predictions in terms of outcomes, conditional on every history, and would
establish the full equivalence with BP.
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the two solution concepts. We provide next an example of a game without payoff uncertainty

in which the difference between BR and BP in terms of eliminations of strategies emerges (and

makes BP much easier to compute than BR).

Example 5. Consider the following complete information game:

Pℓ. 2

Out ↙ ↘ In

0, 4 Pℓ. 1

ℓ ↙ ↘ r

3, 5 1\2 w m e

n 2, 3 2, 2 2, 0

c 1, 2 8, 0 8, 1

s 0, 0 9, 2 9, 3

Strategies r.n and ℓ.s are not sequentially rational for player 1: the first is dominated by ℓ

at history (In), the second is not a continuation best reply at (In, r) to any belief that makes ℓ

optimal. All the strategies of player 2 are sequentially rational, therefore at the second step of

BR no strategy of player 1 can be eliminated. Thus, consider the possible beliefs of player 2.

There are two cases.

Case 1: player 2 is initially certain that player 1 will play (a strategy that prescribes) ℓ.

Then, player 2 will choose In, and upon observing r, player 2 must revise her belief. Every

action of player 1 at history (In, r) is prescribed by some sequentially rational strategy, therefore

player 2 can form any belief about the continuation play. As a consequence, all the strategies of

player 2 that prescribe In survive the second step of BR.

Case 2: player 2 gives positive initial probability to {r.c, r.s}. If this probability is large

enough, player 2 will plan to choose Out, and if she unintentionally plays In and observes r,

she must update her initial belief. Hence, she still cannot give positive probability to r.n. As a

consequence, strategy Out.m does not survive the second step of BR (while strategies Out.w and

Out.e do). This elimination is however immaterial for the beliefs of player 1 at the third step of

BR, therefore all the remaining strategies are backwards rationalizable.

Move now to BP. In the simultaneous-moves subgame with root (In, r), every action is

rationalizable. Consider thus the (non-reduced) subgame with root (In). Strategies r.c and

r.s are normal-form best replies to sufficiently optimistic beliefs about the action of Player 2

at (In, r). Strategy r.n is instead eliminated, because it yields a sure payoff of 2, while the

strategies ℓ.n, ℓ.c, ℓ.s yield 3. The latter strategies all survive BP, because they are normal-form

best replies to a sufficiently pessimistic belief about the action of Player 2 at (In, r), including

strategy ℓ.s, which is not backwards rationalizable. Note however that there do exist backwards

rationalizable strategies of Player 1 that prescribe s, namely r.s. Finally, move to the root of

the game and consider the reduced strategic-form obtained after removing r.n. Every strategy

of Player 2 is a strategic-form best reply to some belief: the strategies that prescribe Out are

best replies to beliefs concentrated on the strategies of Player 1 that prescribe r, whereas the

stategies that prescribe In are best replies to beliefs concentrated on the strategies of Player 1

20



that prescribe ℓ. Hence, all the strategies of Player 2 survive BP, including strategy Out.m which

is not backwards rationalizable, but again, there do exist backwards rationalizable strategies of

Player 2 that prescribe Out or m. ▲

5.4 Belief persistence

Subgame perfect equilibrium embodies another idea which is commonly associated with back-

ward induction reasoning: the idea of “belief persistence”. Belief persistence means that players

never change their belief about the strategies of the opponents, no matter how many deviations

from the expected strategies they have observed. A possible way to interpret belief persistence

is the following: Upon observing an unexpected move, players are fully convinced that the move

was carried out by mistake, as a deviation from the optimal plan (they don’t merely entertain

such a possibility). This attitude, we argue, is a consequence of equilibrium play and not of back-

ward induction reasoning per se: absent equilibrium restrictions, after being surprised a player

may as well question her previous belief regarding the opponents’ types and strategies, and

form new beliefs by focusing on the continuation game. Indeed, some backward rationalizable

strategies can only be justified without imposing the strong form of belief persistence.

Example 6. Consider the game of Example 5. Recall that strategies ℓ.s and r.n are not sequen-

tially rational for player 1. Introduce now belief persistence: if player 2 is initially certain of ℓ

but then observes r, she remains convinced that player 1 planned to choose ℓ but executed r by

mistake. At the second step of reasoning, player 2 must give zero probability to {ℓ.s, r.n} at the

beginning of the game. Therefore, if she is initially certain of ℓ, she must give probability 1 to

{ℓ.n, ℓ.c}. Under belief persistence, this means that at history (In, r) she gives probability 1 to

{r.n, r.c}. Therefore, she will not choose m. If she gives positive initial probability to {r.c, r.s},
she must give probability 1 to {r.c, r.s} at history (In, r), but then again she has no incentive to

play m. Hence, not just Out.m, but also In.m would not survive the second step of reasoning

under belief persistence. However, In.m is backwards rationalizable. Therefore, imposing belief

persistence refines the possible paths. ▲

Backwards Rationalizability thus captures an agnostic attitude as to whether the unexpected

moves of the opponents are mistakes or deliberate choices. Extensive-form rationalizability

(Pearce (1984), Battigalli (1997)) captures instead the view that unexpected moves are definitely

deliberate utility maximizing choices (if possible). By doing so, it refines BR (cf. Perea (2018),

Catonini (2020)).17 In contrast, belief persistence means that unexpected moves are definitely

interpreted as mistakes; hence, restricting beliefs to satisfy belief persistence at every step of

elimination would also refine BR, albeit differently from EFR.

17These papers show that extensive-form rationalizability refines BR in terms of outcomes. But it also makes
sense to define extensive-form rationalizability explicitly as a refinement of BR, that is, initializing the procedure
with the backward rationalizable strategies. In this way, both views of unexpected moves are captured, but
differently than in BR, with an epistemic priority ordering (Catonini (2019)): unexpected moves are interpreted
as utility maximizing choices if possible, as mistakes otherwise. The proofs of Perea (2018) and Catonini (2020)
indeed show that this procedure is outcome-equivalent to extensive-form rationalizability.
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A natural question arises at this point: Given the lack of belief persistence, how is it possible

that BR captures the robust implications of IPE, which – just like any standard equilibrium

concept for Bayesian games – is based on the very notion of belief-persistence?

To see this, consider a game with no payoff uncertainty (i.e., Θ is a singleton), and let T
denote a type space. If T contains only one type for every player, so that ⟨Γ, T ⟩ is a standard

game with complete information, then IPE boils down to SPE. So, in the example above, In.m

cannot be played with positive probability in any IPE. However, as discussed in Section 5.1, even

in a game without payoff uncertainty there can be many types of an opponent. For instance,

similar to the type space T̂ in Section 5.1, one can think of a type for each of the backwards

rationalizable strategies: while all such types would share the same (degenerate) belief hierarchies

about the (commonly known) payoffs of the game, they would differ in their belief hierarchies

about each others’ strategies in the game.18 Then, after observing an unexpected move, a player

can change her belief about the type of the opponent, and hence also change her belief about

his moves in the continuation game, despite keeping fixed the (correct) belief about how each

type would play in the game.

This means that, from the viewpoint of an external analyst, belief-persistence only has bite

insofar as the analyst has information about the precise set of types that players have in mind

(that is, the ‘mental states’ that players may use to index others’ behavior, with the associated

beliefs), also when they revise their beliefs after observing an unexpected move. These are

precisely the restrictions that are captured by the type space in a standard Bayesian game. If,

however, the analyst does not wish to exogenously restrict such universe of conceivable types,

and hence wishes to capture the set of all IPE-predictions across all possible type spaces, then

the richness of the resulting type space voids the belief-persistence of IPE of any bite: the set of

all such predictions is captured by a solution concept for belief-free games (namely, BR) which

does not satisfy belief-persistence.

6 Applications and Extensions

In this section we briefly discuss some applications of Backwards Rationalizability to illustrate

its relevance and tractability. First, we apply backwards rationalizability to develop a variation

of a recent work by Lipnowski and Sadler (2019), who put forward a solution concept that allows

for a combination of equilibrium and non-equilibrium reasoning. In this context, we show that

Backwards Rationalizability allows for a smoother integration of the two approaches, and for

a natural extension of important properties of their solution concept from static to dynamic

settings. Then, we discuss other applications that are part of our published or ongoing work.

6.1 Peer-Confirming Equilibrium with Backward Induction Reasoning

In a recent paper, Lipnowski and Sadler (2019) define the notion of peer-confirming equilibrium

(PCE) for complete information games in which players are organized in a network. In a PCE,

players have correct beliefs about the strategies of their neighbours; the beliefs about the other

18The proof of Theorem 4 shows how to construct such a type structure.
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players are consistent with common belief in rationality and in correctness of beliefs about

neighbours’ play. In static games, PCE spans from Nash equilibrium, when the network is

complete, to rationalizability, when the network is empty, and a nice monotonicity result holds:

as the number of the connections in the network increases, the set of PCE shrinks.

Lipnowski and Sadler (2019) also apply their concept to dynamic games. Players are as-

sumed to have correct beliefs about their neighbors also off-path, and these beliefs need not be

consistent with forward induction reasoning. Thus, players display belief persistence towards

their neighbors, and when the network is complete, PCE coincides with subgame perfect equi-

librium. In contrast, when there are opponents who are not in a player’s neighbourhood, then

this players’ beliefs about non-neighbors must be consistent, whenever possible and both on-

and off-the-path, with common belief in rationality and correctness of beliefs about neighbours.

Therefore, forward induction considerations ensue. As a result, when the network is empty,

PCE coincides with extensive-form rationalizability (Pearce (1984)), and thus the monotonicity

result from the static settings is not preserved: as it is well-known, subgame perfect equilibrium

and extensive-form rationalizability yield non-nested predictions.

The reason behind the lack of monotonicity is the tension in PCE between the subgame

perfect equilibrium logic that players apply to their neighbors and the forward induction logic

that they apply to the other players. Without a way to capture the non-equilibrium implica-

tions of backward induction reasoning, this tension in Lipnowski and Sadler (2019) was in a way

unavoidable: the key idea of PCE of weakening equilibrium restrictions only for non-neighbors

translates into a hybrid of plain subgame perfect equilibrium and extensive form rationalizability,

thereby mixing backwards and forward induction logic. Endowed with the tools we developed

above, we propose next a modification of peer-confirming equilibrium that is entirely based on

backward induction reasoning. As in Lipnowski and Sadler (2019), we maintain that players

have correct beliefs about their neighbors, as well as the equilibrium view that a player never

changes beliefs about their continuation play. Regarding the non-neighbors, instead, we drop

belief persistence – which as argued pertains to an equilibrium logic, not to backward induc-

tion per se – but we maintain the view that anyone’s unexpected moves may be regarded as

mistakes, and hence they need not mean anything about their continuation play. As a result,

our version of peer-confirming equilibrium (a solution concept we formally denote by PC below)

spans from subgame perfect equilibrium, when the network is complete, to backwards rational-

izability, when the network is empty. Thus, the monotonicity result is restored: peer-confirming

equilibrium with backward induction reasoning (i.e., PC) does become more restrictive as the

network becomes richer.

Formally, for each player i ∈ N , let N i ⊆ N denote i’s network neighbourhood, which

includes her neighbours and herself. As in Lipnowski and Sadler (2019), we focus on games

without payoff uncertainty, therefore we omit everywhere the sets of types.

Definition 8. Let PC0 = S. For any k > 0, s∗ = (s∗i )i∈N ∈ PCk if and only if, for each i ∈ N ,

there exists µi ∈ ∆H
i such that: (i) s∗i ∈ ri(µ

i); and (ii) for each h ∈ H and s−i ∈ suppµi(·|h),
s−i|h = s′−i|h for some s′ = (s′j)j∈N ∈ PCk−1 such that (s′j)j∈N i = (s∗j )j∈N i. Then, the set of

peer-confirming equilibria with backward induction reasoning is defined as PC := ∩k>0PCk.
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PC is an iterated elimination procedure for strategy profiles, rather than strategies. This is

important because the candidate strategy profile restricts the viable beliefs of players: at every

history, a player shall assign probability one to continuation strategies that are consistent with a

strategy profile where all the neighbours (and herself) play as in the candidate profile. Without

this restriction (that is, with the empty network), the focus on profiles becomes immaterial and

PC coincides with plain BR.

Remark 3. If N i = {i} for every i ∈ N , then PC = BR.

With the complete network, given a candidate profile s∗, each player i is forced to believe

in s∗−i|h from every history h onwards. Therefore, PC boils down to the set of pure SPE of the

game (which of course can be empty).

Remark 4. If N i = N for every i ∈ N , then PC is the set of pure SPE.

In the original definition of peer-confirming equilibrium of Lipnowski and Sadler (2019), the

requirement on players’ beliefs is split into two. The first requirement concerns the neighbours:

the beliefs about their continuation play must coincide with the candidate profile. The second

requirement concerns the other players: at every history h, the beliefs about their play must be

consistent with strategy profiles of step k − 1 that coincide after h with the candidate profile

in i’s neighbourhood and reach h, if any; otherwise, these beliefs are unrestricted. A richer

network restrains the set of viable beliefs at the first step of reasoning, so that fewer profiles

survive. However, fewer profiles reach fewer histories, therefore the second-step beliefs with

the richer network need not be a subset of those with a poorer network. This is the source of

the non-monotonicity in the original notion of peer-confirming equilibrium. By contrast, under

backward induction reasoning, a smaller set of possible strategy profiles entails a smaller set of

viable beliefs. This observation was key for the order independence of BR, and is key here for

the monotonicity of PC with respect to the network structure.

Theorem 5. Suppose that N̂ i⊇N̄ i for every i ∈ N . Let P̂C and P̄C denote, respectively, PC
under (N̂i)i∈N and under (N̄i)i∈N . We have P̂C ⊆ P̄C.

Proof. By induction. The basis step, P̂C0 ⊆ P̄C0, is trivial. Fix now k > 0 and suppose

that P̂Ck−1 ⊆ P̄Ck−1. Fix s∗ ∈ P̂Ck
. We want to show that s∗ ∈ P̄C

k
. Fix i ∈ N . Fix µi ∈ ∆H

i

such that µi and s∗i satisfy requirement (ii) in Definition 8 with PCk−1 = P̂Ck−1
and N i = N̂ i.

Requirement (ii) is then satisfied also with PCk−1 = P̄C
k−1

and N i = N̄ i because N̄ i ⊆ N̂ i and

P̄C
k−1 ⊇ P̂Ck−1

by the inductive hypothesis. Hence, s∗ satisfies the requirements for P̄Ck. ■

6.2 Other Applications

Compared to the earlier literature, Backwards Rationalizability provides the first well-defined

notion of backward induction reasoning in incomplete information settings. An early application

with incomplete information is provided by Penta (2015), who studies the problem of robust

implementation in dynamic settings. In that context, Backwards Rationalizability enables two

main achievements. First, it extends the robust implementation approach of Bergemann and
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Morris (2009) to dynamic environments, in which agents may obtain information over time.

In principle, doing so would require studying whether a mechanisms exists for which, for all

possible models of beliefs over the stochastic process that generates players types over periods,

and for all the perfect Bayesian equilibria associated with each such model, agents behave so as

to induce outcomes consistent with the designer’s objective. A direct approach to the question

would thus require the solution of a continuum of complicated fixed-points problems, each of

difficult solution, since even for a single model of beliefs characterizing the set of PBE can be

very challenging. Resorting to Backwards Rationalizability instead makes it possible to pursue

a much more tractable approach, that enables a seamless extension of Bergemann and Morris

(2009) static analysis to dynamic environments. Second, the analysis in Penta (2015) also sheds

light on Bergemann and Morris (2007) results on the advantages of using dynamic mechanisms in

static environments. In particular, Penta (2015) results show that the fundamental insight that

robustness may be favored by the reduction of strategic uncertainty that backwards induction

grants in a dynamic mechanism under complete and perfect information, does not survive the

introduction of incomplete information.

Importantly, however, we would like to stress that the advantages of Backwards Rationaliz-

ability can be seen even without the extra complexity associated with incomplete information.

That is, attaining a precise understanding of backward induction reasoning, independent of other

equilibrium restrictions, may prove useful in applications even under complete information. A

notable case in point – which is important both economically and historically – is provided by

the original two-period Hotelling model of horizontal differentiation. Backward induction is a

natural way of reasoning in this game: before considering the possible positioning, a firm wants

to understand which prices could emerge in the second stage depending on the locations chosen

in the first stage. Yet, in the baseline specification with linear transportation cost (Hotelling

(1929)), subgame perfect equilibrium fails to provide a tractable and intuitive solution to the

location problem. A numerical solution was found by Osborne and Pitchik (1987), whereby

the chosen locations induce a complicated mixed pricing equilibrium where firms may engage

in a price war, whereas slightly higher differentiation would induce certain prices and overall

higher profits. Attempts to recover some tractability have explored alternative cost functions,

but have produced insights that often clash with basic economic intuition.19 As a consequence,

the literature on the two-period Hotelling model has pretty much died, ending up considering it

as a sort of puzzle, despite the inherent plausibility of the baseline model.

In an ongoing project (Catonini and Penta (2022)), we show that the tools developed in

this paper may be fruitfully applied to think about the two-period Hotelling model afresh.

That is, as a way to still maintain the fundamental logic of backward induction reasoning –

which is inherently compelling in this setting – without the entanglement with other kinds

of assumptions that are implicitly in the SPE notion. In particular, we append Backwards

Rationalizability with a simple refinement, that formalizes the idea that firms know the path of

19For instance, d’Aspremont et al. (1979) explored the variation of the model with quadratic transport costs, and
showed the existence of an easy-to-compute SPE. Such an equilibrium, however, induces maximal differentiation
(the two firms position themselves at the opposite extremes of the Hotelling interval), a result which is considered
at odds with factual observation.
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play but face strategic uncertainty after a deviation, plus an additional hypothesis of “closedness

under rational behavior” (Basu and Weibull (1991)) that is motivated by a requirement of self-

enforceability along the path. We show that the resulting concept rules out coordination on

specific randomizations, since they are not self-enforceable, and we identify the transportation-

efficient location pair as the only location pair that is consistent with this solution concept.20

Overall, in our view the applications above show that Backwards Rationalizability not only

is a tractable and ready-to-use solution concept, but it may also serve as basis to impose extra

desiderata (dictated by the specific economic context) over the simple and compelling logic of

backward induction, separate from other kinds of assumptions that are entangled with it in

existing solution concepts, and which do not always prove tractable or plausible.

7 Conclusion

The idea of backward induction reasoning is informally associated with several solution concepts

for dynamic games with incomplete information. Yet, we lack a precise understanding of what

backward induction reasoning means in these context, to what extent it can be separated from

other kinds of assumptions, and to what extent familiar ideas that are intuitively associated

with backward induction reasoning can be reconciled with incomplete information.

This paper covers this gap by introducing a new solution concept, Backwards Rationalizabil-

ity, that captures precisely the behavioral implications of backward induction reasoning in games

with imperfect and incomplete information, without extraneous restrictions on players’ beliefs

or equilibrium assumptions. Our results show that Backwards Rationalizability satisfies several

desiderata that are more or less directly associated with backward induction reasoning. Namely:

(i) it satisfies continuation-game consistency, which provides a natural incomplete-information

extension of the recursive structure of subgame perfect equilibrium; (ii) in finite horizon games,

it can be computed with a ‘backwards procedure’, that starts from the end of the game and

proceeds backwards, considering each continuation-game in isolation (very much like one can do,

under complete information, for backward induction or subgame perfection); (iii) third, the so-

lution concept directly embodies the view of unexpected moves as possible mistakes; (iv) fourth,

it characterizes the set of equilibrium strategies that may be played, across all type spaces that

could be defined over the underlying space of payoff uncertainty, for an equilibrium concept that

introduces backward induction logic and nothing more into equilibrium analysis.

Besides these results, which jointly provide a unified perspective on the meaning of backward

induction reasoning in games with incomplete and imperfect information, we stress that as a

solution concept for belief-free (dynamic) games Backwards Rationalizability does not impose the

equilibrium assumption that players have correct beliefs about others’ behavior. This allows to

make predictions based on a backward induction logic, even in contexts in which the equilibrium

assumptions are difficult to operationalise, or in which they are not necessarily compelling.

20An earlier paper by Catonini (2021) also analyzed an example of the Hotelling model with linear costs, but
simplified to a discrete space of locations, and adopting a notion of self-enforcing agreements under forward
induction reasoning. The results in Catonini and Penta (2022) therefore strengthen the earlier ones in that they
are based on a much weaker solution concept, which is both easier to apply and closer to more standard notions in
the applied literature, and for being based on the original (non discretized) model with a continuum of locations.
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Backwards Rationalizability may thus prove fruitful in a number of applications, even in settings

with complete information (which of course are a special case of those considered in this paper).

A notable case in point, which we discussed in Section 6, is provided by the two-period

Hotelling model of horizontal differentiation: the basic logic of backward induction is inherently

compelling in that model, and yet standard subgame perfect equilibrium analysis has proven

intractable and has produced results that are at odds with basic economic intuition. In Catonini

and Penta (2022) we show that the plain logic of backward induction that we have distilled in

this paper, appended with a basic requirement of self-enforceability on path, yields a unique so-

lution in the Hotelling model that is both easy to compute and consistent with sound economic

intuition. Another example is the version of peer-confirming equilibrium that we developed in

Section 6, modifying the original concept of Lipnowski and Sadler (2019) so as to accommodate

backward induction reasoning. As we showed, besides making it easier to apply the idea of

peer-confirming to dynamic settings, the adoption of Backwards Rationalizability in this con-

text restores the natural comparative statics results that the original concept only features in

static games. Since most equilibrium refinements are based on backward induction reasoning,

the seamless integration of equilibrium and strategic reasoning achieved by Backwards Ratio-

nalizability for peer-confirming equilibrium is likely to carry over to other models of partial

coordination that could be further explored.

In our view, the extensions we discussed here and in Section 6 show that distilling the

precise implications of backward induction reasoning, separate from everything else (such as the

equilibrium hypothesis, belief persistence, and other kinds of assumptions), may prove useful in

applications both to increase the tractability of the analysis, and to restore natural economic

intuition, in settings with complete and incomplete information alike.

Appendix

A Proofs

We first introduce some additional terminology that will be used in the proofs.

Fix an elimination procedure of type-strategy pairs ((Ω̂h,k
i )i∈N )k≥0 for the continuation game

with root h. We say that a CPS µi,h over Θ0 × Θ−i × Sh
−i is viable for Ω̂h,k

i when, for every

h′ ⪰ h and (θ−i, s
h
−i) such that µi,h(Θ0 ×

{
(θ−i, s

h
−i)

}
|h′) > 0, there is (θ̃−i, s̃

h
−i) ∈ Ω̂h,k−1

−i such

that s̃h−i|h′ = sh−i|h′ and θ̃−i = θ−i. We say that µi,h “justifies (θi, s
h
i ) ∈ Ω̂h,k

i ” when µi,h is

viable for Ω̂h,k
i and shi is a sequential best reply to µi,h for θi.

Proof of Theorem 2.

The statement is an identity for h = h0, so suppose h ̸= h0.

Trivially, BR0|h = BRh,0. Now fix k > 0 and suppose by induction that BRk−1|h = BRh,k−1.
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First we show BRk|h ⊆ BRh,k. Fix i ∈ N , (θi, si) ∈ BRk
i , and a CPS µi that justifies this.

Define the map

ς : (θ0, θ−i, s−i) 7→ (θ0, θ−i, s−i|h) .

Construct a CPS µi,h =
(
µi,h(·|h′)

)
h′⪰h

over Θ0 × Θ−i × Sh
−i as follows: for each h′ ⪰ h, let

µi,h(·|h′) be the pushforward of µi(·|h′) through ς. By the induction hypothesis, BRk−1
−i |h′ =

BRh,k−1
−i |h′, so the fact that µi is viable for BRk

i implies that µi,h is viable for BRh,k
i . More-

over, µi(·|h′) and µi,h(·|h′) induce the same distribution over types and continuation strategies,

therefore the fact that si is a continuation best reply to µi(·|h′) for θi implies that so is si|h to

µi,h(·|h′). Thus, (θi, si|h) ∈ BRh,k
i .

Now we show BRk|h ⊇ BRh,k. Fix i ∈ N . Let h ⪯ h be the shortest history such that

s−i|h ∈ Sh
−i(h) for all (θ−i, s−i) ∈ BRk−1

−i . Thus, if h ̸= h0, there exists (θ−i, s−i) ∈ BRk−1
−i such

that s−i|p(h) ̸∈ S
p(h)
−i (h), but since s−i|h ∈ Sh

−i(h), we must have s−i|p(h) ̸∈ S
p(h)
−i (h). Let µ̄i be

a viable CPS for BRk
i such that, if h ̸= h0, at every history h′ ≺ h, player i assigns probability

1 to (θ−i, s−i|h′),21 so that µ̄i(Θ0 × Θ−i × S−i(h)|p(h)) = 0. Fix a map ς that associates each

(θ̄0, θ̄−i, s
h
−i) ∈ Θ0 × Θ−i × Sh

−i with some22 (θ̄0, θ̄−i, s−i) ∈ Θ0 × Θ−i × S−i(h) such that (a)

s−i|h = sh−i and (b) if
(
θ̄−i, s

h
−i

)
∈ BRh,k−1

−i , then (θ̄−i, s−i|h) ∈ BRk−1
−i |h — requirement (b) is

compatible with (a) and with s−i ∈ S−i(h) because, by the induction hypothesis, sh−i = ŝ−i|h
for some (θ̄−i, ŝ−i) ∈ BRk−1

−i , and by definition of h, ŝ−i|h ∈ Sh
−i(h), so one can choose any

s−i ∈ S−i(h) such that s−i|h = ŝ−i|h.
Now fix (θi, s

h
i ) ∈ BRh,k

i and a CPS µi,h that justifies this. Construct an array of conditional

beliefs µi = (µi(·|h))h∈H as follows:

1. for each h′ ⪰ h, let µi(·|h′) be the pushforward of µi,h(·|h′) through ς;

2. for each h′ ⪰ h with h′ ≺ h, let µi(·|h′) = µi(·|h);

3. for every other h′ ≻ h with µi(Θ0 × Θ−i × S−i(h
′)|h) > 0, derive µi(·|h′) from µi(·|h) by

conditioning;

4. for every other h′, let µi(·|h′) = µ̄i(·|h′).

It is easy to check that µi is a CPS. For each h′ ⪰ h and (θ−i, s−i) with µi(Θ0×{(θ−i, s−i)} |h′) >
0, by 1. and (a) we have µi,h(Θ0 × {(θ−i, s−i|h)} |h′) > 0, so by the fact that µi,h is viable for

BRh,k
i , we get (θ−i, s−i|h′) ∈ BRh,k−1

−i |h′, and hence by the induction hypothesis (θ−i, s−i|h′) ∈
BRk−1

−i |h′. For each h′ ⪰ h with h′ ≺ h and (θ−i, s−i) with µi(Θ0 × {(θ−i, s−i)} |h′) > 0, by 2.

we have µi(Θ0 × {(θ−i, s−i)} |h) > 0, so as just argued (θ−i, s−i|h) ∈ BRh,k−1
−i , and hence by

1. and (b) we get
(
θ−i, s−i|h

)
∈ BRk−1

−i |h, which implies (θ−i, s−i|h′) ∈ BRk−1
−i |h′. Therefore,

together with 3. and 4., we can conclude that µi is viable for BRk
i . Finally, for each h′ ⪰ h,

by 1. and (a), µi(·|h′) and µi,h(·|h′) induce the same distribution over types and continuation

strategies, therefore µi justifies (θi, si) ∈ BRk
i for some si with si|h = shi . ■

21Since µ̄i(·|h′) is a probability measure over Θ0 × Θ−i × S−i, not Θ0 × Θ−i × Sh′
−i, we refer of course to the

belief induced over the continuation strategies.
22Note that we keep fixed (θ̄0.θ̄−i). Throughout all the proofs, we will always do so in the construction of maps.
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For the proof of Theorem 3, we will refer to the following definition of BP, which includes

the steps of belief-free rationalizability. For each h ∈ H, let ϕ(h) denote the set of immediate

successors of h in H (if any).

Definition 9. Fix h ∈ H and suppose that, for each h′ ≻ h (if any) BPh′
has already been

defined.

Step 0: For each i ∈ N , let

BPh,0
i =

{
(θi, s

h
i ) ∈ Θi × Sh

i : ∀h′ ∈ ϕ(h), (θi, s
h
i |h′) ∈ BPh′

i

}
.

(if h is preterminal, ϕ(h) = ∅, thus BPh,0
i = Θi × Sh

i ).

Step k: For each i ∈ N and (θi, s
h
i ) ∈ Θi × Sh

i , let (θi, s
h
i ) ∈ BPh,k

i if there exists νhi ∈
∆(Θ0 ×Θ−i × Sh

−i) such that:

BP1h: shi ∈ r̂hi (ν
h
i ; θi).

BP2h: νhi (Θ0 × BPh,k−1
−i ) = 1.

For each i ∈ N , let BPh
i = ∩k>0BPh,k

i .

Proof of Theorem 3.

We are going to write shi ≃ s̃hi when
[
shi
]
=

[
s̃hi
]
(i.e., shi and s̃hi belong to the same

realization-equivalent class).

By Theorem 2, BR|h = BRh, so we can prove
[
BRh

i

]
=

[
BPh

i

]
for all i ∈ N . The proof is

recursive on the length of histories, starting from preterminal histories and moving backwards.

So, suppose that the result holds for every history longer than history h.

Define an elimination procedure ((Ω̂h,k
i )i∈N )k≥0 as follows. For each i ∈ N , let Ω̂h,0

i = Θi×Sh
i .

For each k > 0, let
(
θi, s

h
i

)
∈ Ω̂h,k

i if there exists a viable CPS µh
i for Ω̂h,k

i such that, for each

h′ ≻ h, shi is a continuation best reply to µh
i (·|h′) for θi, even if not at h. Let K be the first step

k such that Ω̂h,k = Ω̂h,k+1. Now define an elimination order of the backwards rationalizability

operator in the continuation game with root h, denoted by BR̂h
, as follows. For each k = 0, ...,K,

let BR̂h,k
= Ω̂h,k. For each k > K and i ∈ N , let

(
θi, s

h
i

)
∈ BR̂h,k

i if there exists a CPS µh
i that

justifies this. By Theorem 1, BR̂h
= BRh, so we can prove [BR̂h

i ] =
[
BPh

i

]
.

It is easy to see that, for every i ∈ N , (θi, s
h
i ) ∈ BR̂h,K

i if and only if (θi, s
h
i |h′) ∈ BRh′

i

for all h′ ∈ ϕ(h). (Thus, BR̂h,K |h′ = BRh′
= BRh|h′ = BR̂h|h′, where the second equality is

by Theorem 2 and the last equality by Theorem 1.) By definition, (θi, s
h
i ) ∈ BPh,0

i if and only

if (θi, s
h
i |h′) ∈ BPh′

i for all h′ ∈ ϕ(h). By the recursive hypothesis, [BRh′
i ] = [BPh′

i ]. Hence,

[BR̂h,K
i ] = [BPh,0

i ].

Now fix k > 0 and assume by way of induction that [BR̂h,K+k−1
i ] = [BPh,k−1

i ] for all i ∈ N .

Fix (θi, s
h
i ) ∈ BR̂h,K+k

i and µi,h that justifies this. By the induction hypothesis, we can fix

a map ς that associates each (θ̄0, (θ̄j , s
h
j )j ̸=i) ∈ Θ0 × BR̂h,K+k−1

−i with some (θ̄0, (θ̄j , s̃
h
j )j ̸=i) ∈

Θ0 ×BPh,k−1
−i such that shj ≃ s̃hj for every j ̸= i. Let νhi be the pushforward of µi,h(·|h) through
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ς; it satisfies BP2h. Since shi is a continuation best reply to µi,h(·|h), it satisfies BP1h with νhi ,

so (θi, s
h
i ) ∈ BPh,k

i .

Fix (θi, s
h
i ) ∈ BPh,k

i and νhi that satisfies BP1h and BP2h at step k. By the induction

hypothesis, there exists ŝhi ≃ shi such that (θi, ŝ
h
i ) ∈ BR̂h,K

i . Thus, there exists a CPS µ̂i,h such

that, for each h′ ≻ h, ŝhi is a continuation best reply to µ̂i,h(·|h′) for θi, and for each (θ−i, s
h
−i)

with µ̂i,h(Θ0 ×
{(

θ−i, s
h
−i

)}
|h′) > 0, (θ−i, s

h
−i|h′) ∈ BR̂h,K

−i |h′ = BR̂h
−i|h′, where the equality is

given by the argument in brackets above. By the induction hypothesis, we can fix a map ς that

associates each (θ̄0, (θ̄j , s
h
j )j ̸=i) ∈ Θ0 × BPh,k−1

−i with some (θ̄0, (θ̄j , s̃
h
j )j ̸=i) ∈ Θ0 × BR̂h,K+k−1

−i

such that s̃hj ≃ shj for every j ̸= i. Construct µi,h as follows: let µi,h(·|h) be the pushforward

of νhi through ς, and for each h′ ≻ h, derive µi,h(·|h′) from µi,h(·|h) by conditioning if possible,

otherwise let µi,h(·|h′) = µ̂i,h(·|h′). It is easy to see that µi,h justifies (θi, ŝ
h
i ) ∈ BR̂h,K+k

i . ■

Proof of Theorem 4.

“If” part. Every interim strategy si that is played with positive probability in the IPE (b, p)

by some type ti is sequentially rational for ϑi(ti) given the CPS µti
(b,p). At every history h, µti

(b,p)

assigns positive probability only to pairs (θj , s
′
j) where s′j |h = sj |h for some sj that is played

with positive probability in the IPE by some type tj ∈ ϑ−1
j (θj). Hence, a simple inductive

argument shows that all type-interim strategy pairs induced by b survive all steps of BR.

“Only if” part. Construct a type structure as follows. For each i ∈ N , let Ti = BRi, and for

each ti = (θi, si) ∈ Ti, let ϑi(ti) = θi. Now fix ti = (θi, si) ∈ Ti. By the fixed-point property of

BR, we can fix µti such that (i) si ∈ ri(µ
ti ; θi) and (ii) for each h ∈ H, there is a map ξtih that

associates each (θ̄0, (θ̄j)j ̸=i, (sj)j ̸=i) ∈ Suppµti(·|h) with some (θ̄0, (θ̄j , s
′
j)j ̸=i) ∈ Θ0 × T−i such

that s′−i|h = s−i|h. Let τi(·|ti) be the pushforward of µti(·|h0) through ξtih .

Now construct the desired IPE as follows. For each i ∈ N , define the strategy bi as bi(ti) =

si for each ti = (θi, si). For each ti ∈ Ti, define pi(·|ti) recursively as follows. First, let

pi(·|h0; ti) = τi(·|ti). So, p satisfies condition 1 of weak preconsistency. From this, derive

µ̂ti
(b,p)(·|h

0) with equation 2. Now fix h ≻ h0 and suppose that µ̂ti
(b,p)(·|p(h)) was defined. If

µ̂ti
(b,p)(Θ0 × T−i × S−i(h)|p(h)) > 0, derive µ̂ti

(b,p)(·|h) with equation 3 and let pi(·|h; ti) be its

marginal on Θ0 × T−i; otherwise, let pi(·|h; ti) be the pushforward of µti(·|h) through ξtih and

derive µ̂ti
(b,p)(·|h) with equation 4; either way, pi(·|h; ti) satisfies condition 2 of pre-consistency.

Thus, to prove that (b, p) is an IPE, there only remains to show the optimality of b.

Fix i ∈ N and ti = (θi, si). Fix h ∈ H such that h = h0 or µ̂ti
(b,p)(Θ0×T−i×S−i(h)|p(h)) = 0.

Then, for each ω = (θ0, (tj)j ̸=i, (sj)j ̸=i), we have

µ̂ti
(b,p)(ω|h)

(Eqs 2,4)
= pi(θ0, t−i|h; ti) ·

∏
j ̸=i bj(ϱ

−1
j,h(sj)|tj)

(def. of p)
= µti

i ((ξ
ti
h )

−1 (θ0, t−i) |h) ·
∏

j ̸=i bj(ϱ
−1
j,h(sj)|tj)

(def. of b)
=

{
µti
i ((ξ

ti
h )

−1 (θ0, t−i) |h) if sj = ϱj,h(bj(tj)) (∀j ̸= i),

0 otherwise
.

Now, if sj = ϱj,h(bj(tj)) for every j ̸= i, for each ω′ = (θ0, (θj)j ̸=i, (s
′
j)j ̸=i) ∈

(
ξtih

)−1
(ω), we

have θj = ϑj(tj) and s′j |h = sj |h for every j ̸= i. Hence, µti
(b,p)(·|h) (which is the pushforward of
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µ̂ti
(b,p)(·|h) through ×j ̸=iϑj) and µti

i (·|h) induce the same distribution over types and continuation

strategies, therefore si is a continuation best reply also to µti
(b,p)(·|h) for θi. At every other h ∈ H,

si is a continuation best reply as well because µti
(b,p) satisfies the chain rule. ■
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