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Abstract

This paper challenges the common perception that automation and digitalization generally

reduce employment and primarily result in political discontent. Drawing on fine-grained

labor market data from West Germany and shift-share instruments combined with two-way

fixed-effect panel models, we study how technological change affects regional electorates.

We show that the expected decline in manufacturing and routine jobs in regions with higher

robot adoption or higher investment in information and communication technology (ICT)

was in fact more than compensated by parallel employment growth in the service sector and

cognitive non-routine occupations. This change in the regional composition of the electorate

has important political implications as workers trained for these new sectors typically hold

progressive political values. Consequentially, local advances in technology are associated

with higher vote shares for progressive parties. This finding adds important nuance to the

popular narrative that technological change fuels radical right voting.
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1 Introduction

The widespread use of new technology at the workplace – ranging from self-learning software

to increasingly sophisticated industrial robots – has raised fears about wage pressure and em-

ployment loss. A vivid debate has evolved about the political and societal consequences of an

uncertain future of work. Those who lose out in this process are likely to voice their dissatisfac-

tion and seek for ways to express their discontent. Not surprisingly, observers have thus been

quick to relate the recent surge of xenophobic forces and populist anti-establishment movements

in many post-industrial democracies to technology-induced changes in the employment structure.

While bold journalistic accounts claiming that "robots have helped elect Trump" (Edsall, 2018)

seem exaggerated, a growing literature in political science suggests that direct susceptibility to

automation and robotization is related to support for anti-incumbent and anti-establishment

forces (Frey, Berger and Chen, 2018; Im et al., 2019; Anelli, Colantone and Stanig, 2019; Kurer,

2020; Milner, 2021).

This growing literature in political science builds its causal chain on research from labor

economics showing that technological change has a displacement effect for certain tasks and

occupations (Acemoglu and Restrepo, 2019). Capital in the form of industrial robots or spe-

cialized software takes over routine tasks previously done by human labor in both white- and

blue-collar occupations. The existing literature in political science then moves on to show that

manufacturing and routine workers –who are directly threatened by this process– become more

supportive of authoritarian-right parties (Frey, Berger and Chen, 2018; Im et al., 2019; Anelli,

Colantone and Stanig, 2019; Kurer, 2020; Milner, 2021).

However, and this is mostly ignored by existing work in political science, labor economists

also agree that new technologies increase productivity and contribute to rising demand for labor

in non-automatable tasks. It is widely accepted that this productivity growth leads to the cre-

ation of new jobs, yet of a very different type. Far away from the conveyer belt, new jobs tend to

pertain to more high-skilled, cognitive and interactive occupations oftentimes requiring tertiary

education (Michaels, Natraj and Van Reenen, 2014; Dauth et al., 2021; Graetz and Michaels,

2018; Koch, Manuylov and Smolka, 2019; de Vries et al., 2020). Through the widespread ex-

perience of attending university and a distinct work culture and work logic, workers in those

occupations tend to hold more cosmopolitan and progressive values (Kitschelt, 1994; Oesch,

2006a; Kitschelt and Rehm, 2014). In this sense, technological change may also lay the founda-
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tion for a socially-progressive society, a possibility that is widely appreciated in the influential

literature on the rise of the "knowledge economy" (e.g. Iversen and Soskice, 2019).

This paper explicitly recognizes that technological innovation affects regional voting out-

comes in two ways. On the one hand, there is a direct effect on workers who are threatened

by technology and arguably become more supportive of radical right and populist forces. On

the other hand, technological innovation also affects regional voting through a compositional

effect. Over time, more and more workers belong to occupations which are associated with more

progressive values. The direction of the net effect of technological innovation on regional vot-

ing outcomes is thus theoretically ambiguous and it requires an empirical analysis to determine

which effect dominates.

We advance the existing literature empirically by studying the political implications of tech-

nological change in West Germany. The West German case is highly relevant because (a) West

Germany is both one of the largest information and communication technology (ICT) markets

in the world and home to the overwhelming majority of industrial robots currently installed in

Europe, (b) West Germany has still the largest manufacturing share of employment compared to

other advanced economies and (c) has recently seen the rapid rise of the party "Alternative für

Deutschland" (AfD), which puts an end to the historic taboo of supporting right-authoritarian

parties.

Fine-grained labor market data with high levels of geographical disaggregation from the

German Institute for Employment Research (IAB) allow for a more detailed regional analysis

than most existing accounts. We combine these detailed labor market data with two distinct

empirical measures of technological change. First, we use data from the International Federation

of Robotics (IFR) to measure county-level exposure to robotization and how it has changed over

time. This mainly captures automation in the manufacturing sector. Second, we measure county-

level exposure to digitalization in the form of ICT by relying on EU-KLEMS data (Jaeger, 2016).

This constitutes a distinct form of technological change which (in contrast to robotization) also

affects the service sector. Following pioneering work in the field (Acemoglu and Restrepo,

2020), identification stems from a shift-share approach where we use pre-sample-period local

employment composition to estimate the exposure to new technologies in a time-varying fashion.

We employ a panel model with region and time fixed effects (generalized diff-in-diff) to control

for unobserved factors.

Unlike most existing work studying the political implications of the most recent wave of
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technological change, our approach allows to document technology-induced changes in the labor

market that are typically invoked to explain political reactions. This is important as all studies

on the topic –more or less explicitly– argue that technological change affects political outcomes

through the labor market. In line with previous work in labor economics, our approach reveals

that robot adoption and ICT investment shift employment from manufacturing and routine

jobs to the service sector. Furthermore, regions with faster growing technological innovation

experience stronger labor market polarization: Semi-skilled and routine occupations decline at

the expense of non-routine work at both ends of the skill spectrum. Robots primarily displace

manual routine jobs whereas ICT investment more powerfully substitutes for cognitive routine

jobs. However, importantly, overall employment does not decrease in West German counties

with higher exposure to technological change. To the contrary, we find weakly positive net

employment effects.1

Our analysis of political outcomes at the regional level does not support the narrative that

new technology at the workplace first and foremost results in right-authoritarian success. In-

stead, we find that, on average, regions more strongly affected by technological innovation shift

their political support towards socially progressive parties. The regional vote shares of center-

right and right-authoritarian parties, including the AfD, decline as a result of the labor market

transitions caused by robot adoption and ICT investment. We provide evidence that these

results are indeed the consequence of changing local labor market composition. In line with

the literature on occupational preference formation, we demonstrate that a lower number of re-

gional manufacturing jobs is associated with less support for right-authoritarian parties whereas

a larger interpersonal service sector is associated with more support for progressive left parties.

Our study of a European frontrunner in terms of technology adoption adds to a burgeoning

literature on the political and societal consequences of technological change (Frey, Berger and

Chen, 2018; Im et al., 2019; Anelli, Colantone and Stanig, 2019; Gallego, Kurer and Schöll, 2020;

Kurer, 2020). Importantly, our analysis systematically examines the entire causal chain from

technology exposure to election results including the intermediary distributive implications on

local labor markets based on geographically fine-grained labor market data. By highlighting that

new technologies not only replace human work (the replacement effect) but also create new jobs
1This finding helps correct a common misperception. Investment in new technologies is actually a sign of

a relatively healthy, future-oriented local economy. While it could be imagined that the alternative to robot
adoption were thriving manufacturing plants relying on human work, recent research suggests that the more
realistic counterfactual scenario seems to be substantial job loss and closed factories as companies without robots
fall behind in global competition (Koch, Manuylov and Smolka, 2019).
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(the productivity effect), we challenge rather gloomy perspectives on the political repercussions

of technological change. In the conclusion of the paper, we provide an extensive discussion of

the relative importance of the direct individual-level effect of automation risk that could create

support for radical-right parties vis-à-vis the aggregate-level effects of economic modernization

that may work in the opposite direction by changing the composition of local labor markets away

from manufacturing towards more high-skilled non-routine jobs. Concerning the important case

of West Germany, we show that compositional effects of technology adoption on local labor

markets can outweigh the political resentment among workers directly affected by the adverse

consequences of technological change. Hence, our results suggest that technological innovation

need not result in local political disruption. While we acknowledge that automation contributes

to the emergence of anti-establishment forces through electoral support from the segment of

society directly exposed to the negative consequences of this process, our results show that,

overall, technology adopting regions do not necessarily turn into right-authoritarian strongholds.

2 Labor Market Implications of Technological Change

In their seminal work on routine biased technological change (RBTC), Autor, Levy and Murnane

(2003) argue that new technologies primarily substitute for routine tasks that follow clearly

defined rules, which makes jobs that heavily rely on such tasks "codifiable" and hence replaceable

by computers or robots. This substitution effect mainly hits workers located at the middle of

the income and skill distribution and in particular workers in the manufacturing sector.

On the other hand, new technologies raise productivity which leads to an increased demand

for workers whose skills are complementary to automation. Newly created jobs tend to pertain

either to the growing group of white-collar professionals with college education focusing on

cognitive and interpersonal tasks (management, education and cultural and health sector) or to a

rather precarious group of low-skilled manual services (retail, restaurants and hospitality). Most

of them benefit from automation indirectly through lower prices of goods and new demands for

their products and services. This was dubbed the productivity or reinstatement effect (Acemoglu

and Restrepo, 2018, 2019).

While there seems to be a general consensus among scholars that these are the main forces

at work, it is still hotly debated whether the substitution or productivity effect dominates.

With respect to robotization, an influential paper on the US found that the substitution effect
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dominates as regions adopting more robots experienced weaker employment growth (Acemoglu

and Restrepo, 2020). On the other hand, studies focusing on Europe and on Germany in

particular found null or slightly positive employment effects (Dauth, Findeisen and Suedekum,

2019; Klenert, Fernandez-Macias and Antón, 2020). With regard to ICT, existing work appears

slightly less controversial and tends to show that investment in technology has not led to a

decline in employment (Biagi and Falk, 2017) but shifted jobs from mid-skill to high-skilled

sectors, consistent with ICT-based employment polarization (Michaels, Natraj and Van Reenen,

2014).2

Our own original analysis points in the same direction: although we do find that mid-skilled

routine jobs generally and manufacturing employment in particular are negatively affected by

technological innovation, this decline is more than offset by an increase in work in other sectors.

While no single analysis will be able conclusively answer the question of whether technology

adoption tilts the balance towards more or less employment, for our purpose the distributive

implications of robotization and ICT investment and how they transform the composition of

local labor markets are particularly relevant. Parts of society, namely manufacturing and routine

workers, stand to lose from this process whereas non-routine occupations requiring cognitive and

social skills (and oftentimes a university education) are growing in numbers.

3 Political Implications of Technological Innovation

The distributive implications of technological innovation as described in the previous section

give rise to two distinct and most likely countervailing political implications. On the one hand,

studies that focus on the direct effect are interested in the individual-level consequences of di-

rect exposure to automation. On the other hand, a different strand of literature has studied

the consequences of economic modernization and occupational change at the aggregate level and

emphasizes the changing composition of postindustrial societies, i.e. general upskilling and the

emergence of modern "knowledge economies". These two perspectives have most often been

studied in isolation and it should not come as a surprise that they come to fundamentally differ-

ent conclusions about the prospects for advanced capitalist democracy exposed to automation.

While the first is often motivated by a concern about the potential substitution of human labor
2It should be noted, however, that it remains unclear to what extent the findings on traditional ICT investment

can be applied to the most recent and, especially, future developments in the domain of software development
and artificial intelligence (Graetz, 2020; Frank et al., 2019).
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and resulting political disruption, the second provides a much more optimistic outlook emphasiz-

ing economic opportunity and mobility through widespread higher education. Interestingly, the

net impact of the two effects remains unclear and the relative importance of winners and losers

is at the root of much of the debate about the political implications of technological change.

3.1 Direct Effect

Existing papers that according to our grouping study the direct effect of automation risk fo-

cus on individual-level effects on political preferences and voting behavior. Despite the fact

that technological change creates both winners and losers, it seems safe to say that most ex-

isting work investigates the political reactions of workers who stand to lose from technological

change. Alluding to the historical examples of Luddites destroying machines during the Indus-

trial Revolution, pundits and academics alike have raised concerns that the left-behind would

turn against the system. In short, it is argued that losers of technological become more attracted

to anti-establishment forces due to their economic decline (Frey, Berger and Chen, 2018; Anelli,

Colantone and Stanig, 2019; Kurer and Palier, 2019; Im et al., 2019). Specifically looking at the

impact of robots, Frey, Berger and Chen (2018) showed an association between robot adoption

and anti-incumbent voting in the U.S. and Anelli, Colantone and Stanig (2019) and Milner (2021)

provide evidence for a link between local robot penetration and support for right-authoritarian

parties across Western Europe.

The political reactions of winners of technological change have received considerably less

attention in individual-level research. Gallego, Kurer and Schöll (2020) examine political pref-

erences of "ordinary winners" of digitalization in the United Kingdom. They show that a

majority of the population, but especially high-skilled workers, benefit from ICT capital invest-

ment and that these economic benefits translate into more support for moderate incumbent

parties, in particular those from the center right. The intragenerational experience of growing

economic prosperity as a consequence of technological innovation hence creates a stabilizing

pro-system force. A recent working paper suggests that governments’ investment in higher

education, which demonstrably mitigates negative labor market consequences of technological

change, might represent one important mechanism explaining such a pro-government shift in

partisan voting (Lastra-Anadon, Scheve and Stasavage, 2020). The more specific literature on

political consequences of robotization has so far exclusively focused on the downsides of this

process. We are not aware of scholarly work analyzing how robotization affected the political

6



attitudes of those who benefited from this process.

Summing up, workers imminently threatened by automation tend to become more supportive

of radical parties challenging the political status quo. The direct effect of automation seems to

primarily benefit authoritarian-right parties. Voters who benefit at least moderately from the

"digital revolution", in contrast, tend to vote for more centrist ideological positions and support

incumbent parties. Technological change hence potentially creates political divergence between

winners and losers and can contribute to increasing political polarization.

3.2 Compositional Effect

While research on individuals’ susceptibility to automation has concentrated on the downsides of

the technological revolution, its upside is at the heart of a different body of work that describes

the transition of modern society into "knowledge economies". Starting back in the late 1970s,

technological progress has facilitated a transition in advanced capitalist democracies from a

manufacturing-based to a more services dominated economy with an ever greater reliance on in-

tellectual capabilities rather than on physical inputs or natural resources (Powell and Snellman,

2004). Although the inclusiveness of contemporary knowledge economies remains somewhat

disputed (Unger, 2019), influential recent accounts highlight the value of the educational ex-

pansion (Boix, 2019) and a broad (upper) middle class enjoying economic growth, wealth and

opportunity (Iversen and Soskice, 2019).

The emergence of the knowledge economy is intimately linked to the distributional implica-

tions of technological change discussed above. Non-routine and service sector jobs, especially

higher skilled ones, have expanded at the expense of mid-skilled routine jobs. Importantly, this

change in the composition of local labor markets has important political implications since oc-

cupations are known as important sites of preference formation (Kitschelt, 1994; Oesch, 2006b;

Kitschelt and Rehm, 2014). Occupations shape political preferences through both a market logic

reflecting vertical divisions in marketable skills and economic self-interest, and an important ad-

ditional horizontal differentiation in terms of work logic. Key contributions to the literature

differentiate between a technical, organizational/bureaucratic and interpersonal work logic de-

pending on the education level required, setting of the work process, the relation to authority,

the primary type of client relation and the kind of skills applied (Oesch, 2006a,b). At the risk of

simplification, the theory of occupational preference formation thus posits that lower education

levels, strict hierarchies and dealing with objects and files (rather than people) are associated
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with authoritarian views. Occupations that require university educations, which are based on

cooperation (rather than hierarchies), which focus on social interactions and culture tend to

entertain more cosmopolitan and progressive values (Kitschelt, 1994).3 Translating this into

actual occupational groups and milieus means that mid-skilled, routine occupations in the man-

ufacturing sector are characterized by disproportionate support for authoritarian-right parties

(see, e.g. Oesch, 2008b). Much in contrast, the growing number of highly educated workers

engaging in more analytical and interactive work (“socio-cultural professionals”) tend to belong

to a milieu which is more left-leaning and cosmopolitan. Gingrich and Häusermann (2015) show

how this transformation of the employment structure has resulted in a decline of traditional class

voting: contemporary progressive left parties draw substantial electoral support from among an

expanding highly educated middle class.4

Going back to the expected distributional implications of automation, it becomes clear that

the compositional effect shifts political support to progressive left parties. The manufacturing

sector and in particular semi-skilled routine work is shrinking through the substitution effect. At

the same time, occupations with higher educational requirements and a more client-interactive

work logic are growing due to the productivity effect of automation.5

3.3 Net Effect

The political space in Germany and many other postindustrial democracies is composed of an

economic and a cultural dimension (see, e.g., Kitschelt, 1994). The lion’s share of voters as well

as the relevant political actors tend to cluster along the diagonal, which is characterized by a

progressive, economically left-leaning pole and an authoritarian, economically right-leaning pole

with progressive left parties and authoritarian-right parties representing "polar normative ideals"

(Bornschier, 2010). Appendix Figure A.1 provides a descriptive overview of the contemporary

German partisan landscape. From a theoretical perspective, the direct and the compositional

effect of automation work as opposing forces. While the direct effect of automation risk and

substitution may fuel individual support for the authoritarian right, the accompanying shift in

the composition of the labor force fuels party support for more progressive, cosmopolitan left
3Kitschelt and Rehm (2014) provide an extensive discussion on whether these correlations may result from a

selection into occupations ("weak theory") or from socialization within occupations ("strong theory").
4Section 5.2 provides additional micro-level evidence from household panel data bolstering this conjecture.
5Note that the regional labor force composition can change through different mechanisms: (a) workers can

retrain and change occupations as demand for their original occupation declines, (b) the region can attract
migrant workers from elsewhere if they have the education and skills now required and (c) new generations will
choose a different educational path and take up occupations that are now in high demand.
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parties. Hence, a priori, technological innovation could affect regional party support in either

way. We treat the question of which factor dominates as an empirical issue and strive to provide

an answer, at least for the German case, in below analysis.

4 Data

Our empirical analysis focuses on the important case of West Germany. The number of voters

potentially affected by technological change is larger than in other advanced economies as West

Germany still has a large manufacturing sector and at the same time has deployed the largest

number of robots anywhere outside Asia (see Figure 1). Furthermore, West Germany also

experienced large investments in ICT over the years.6

Figure 1: Evolution of manufacturing share, robot penetration and ICT
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Note: The graph shows (a) the share of employees working in the manufacturing sector, (b) the number of robots per thousand employees
and (c) the ICT capital stock per worker in 1000e. Compared to other advanced economies, West Germany still has a large manufacturing
sector while robots are already playing an important role. Digitalization also plays an important role in West Germany. Sources: IFR, ILO,
EUKLEMS, own calculations.

We apply a regional approach similar in spirit to previous studies in economics and political

science (Acemoglu and Restrepo, 2020; Dauth et al., 2021; Anelli, Colantone and Stanig, 2019;

Frey, Berger and Chen, 2018). We chose counties, Landkreise und kreisefreie Städte, to be the

regional unit of analysis (n = 324, NUTS-3).7 In the following, we describe how we constructed
6We do not consider regions of the former GDR for their quite distinct economic and political trajectory. The

structure of the manufacturing sector differs quite fundamentally, with technology penetration being much slower
in the East. In addition, while East German manufacturing has imploded right after the fall of the iron curtain
in 1989, resulting in a much lower but eventually slightly growing manufacturing share (19% in 2017, up from
17% in 1994), West German manufacturing has seen a more steady decline (25% in 2017, down from 32% in
1994). Finally, with respect to the political arena, existing research shows that support for radical right parties
has historically been stronger in the East. In light of the time period under consideration, we think that a focus
on West German counties is reasonable in that it provides a cleaner, more homogeneous sample to study the
questions at hand.

7In the early nineties there were still almost 400 counties in West Germany which were then merged and
reshaped in various rounds of regional reforms. Election results and other control variables are according to those
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a yearly panel of economic and political variables on county level for the time period 1994 to

2017.

4.1 Robot exposure

To calculate how a county’s exposure to robots is changing over time, we use data on robot

adoption from the International Federation of Robotics (IFR). A robot is defined as an "au-

tomatically controlled, re-programmable, and multipurpose machine". As explained in more

detail in IFR (2016), this means that robots are "fully autonomous machines that do not need a

human operator and that can be programmed to perform several manual tasks such as welding,

painting, assembling, handling materials, or packaging". The yearly data differentiates between

25 industries, mostly in manufacturing.

To measure robot exposure at a time-varying county level, we follow Acemoglu and Restrepo’s

(2020) approach to exploit information on pre-sample regional employment composition. The

idea is to distribute the robots of a given sector to regions based on the the number of employees

in the region working in the sector relative to the nation-wide employment in the sector. Since

we are interested in the robot intensity of a region, i.e. the number of robots per workers, we

normalize by the region’s total employment in thousands. Finally, to account for the heavily

skewed distribution of robots across regions, we apply a logarithmic scale. (The robustness

section demonstrates that our results do not hinge on this transformation of the explanatory

variable.)

Robot intensityr,t “ log

ˆ

1

Er

ÿ

j

Robotsj,t ˚ Ej,r

Ej{1000

˙

(1)

where Er is the employment in region r, Ej,r is the employment in industry j in region r,

Robotsj,t is the number of robots in industry j in year t and Ej is the total employment in

industry j across all regions.

Information on local employment composition is derived from administrative data of the

Institute for Employment Research (IAB). In particular, we use employment records from a

2% sample randomly drawn from the universe of German employees subject to social security

(Antoni et al., 2019). For those, we have information on employment status, employer and oc-

cupation for any given day for the entire sampling period. An adjacent firm data set includes

historic definitions of counties. To create a consistent panel based on the current shape of counties, we employ
population weights which we obtained from the Federal Statistics Office.
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information on the firm’s industry classification, its number of employees and geographic infor-

mation. We aggregate information on all firms in a 10-year window prior to our sample period

by region and industry to approximate local employment composition. Employment data is used

from pre-sample period as later sectorial employment composition might be endogenous to the

adoption of robots.8

The measure constitutes a typical Bartik-style shift-share variable where an industry-level

shock is apportioned across regions (Bartik and Doeringer, 1993).9

4.2 ICT investment

To measure digitalization, we follow Michaels, Natraj and Van Reenen (2014), who use yearly

changes in ICT capital stocks within industries(see also Graetz and Michaels, 2018; Acemoglu

and Restrepo, 2020). We use the 2019 release of the EU-KLEMS dataset (Stehrer et al., 2019),

which contains yearly measures of output, input and productivity for 40 industries in a wide range

of countries, including Germany, and covers the period 1995 to 2017. The data is compiled using

information from the national statistical offices and then harmonized to ensure comparability.

Most importantly for our purposes, the database provides a breakdown of capital into ICT and

non-ICT assets (O’Mahony and Timmer, 2009). We define the industry-level ICT capital stock

as the capital stock in information technologies, communication technology and software and

databases. Based on this, we create a time-varying measure of digitalization using a shift-share

approach analog to our robot intensity measure. More specifically, we calculate the ICT capital

stock per 1000e in region r in year t as

ICTr,t “
1

Er

ÿ

j

ICTj,t ˚ Ej,r

Ej
(2)

where Er is the employment in region r in the base year, Ej,r is the employment in industry j

in region r in the base year, ICTj,t is the industry ICT capital stock in 1000e in industry j in
8In the construction of the measure of robot intensity, we closely follow Dauth et al. (2021) who study the labor

market effects of robot adoption in Germany using the same data sources. Unlike them, we do not have access to
the universe of German employees but only to a (still very large) 2% sample of all employees provided to external
researchers by the IAB. To get closer to the universe of employees, we take advantage of the fact that the IAB
provides information on number of coworkers for all of the sampled workers. By counting all employees of their
respective workplaces we increase the effective sample size drastically. Furthermore, we considered information
from all years between 1984 and 1994 to get a clear estimate of regional employment composition. In Section
A.5 of the appendix, we confirm that – despite the lack of access to the full employee sample – our proposed
approach can successfully replicate the main results of Dauth et al. (2021).

9Even though popular in the literature, this approach has also received criticism in recent years (for discussions
see Goldsmith-Pinkham, Sorkin and Swift, 2020; Jaeger, Ruist and Stuhler, 2018)
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Figure 2: Regional distribution of new technologies
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year t and Ej is the total employment in industry j across all regions.

This allows for the creation of time-varying, industry-specific indicators of digitalization

based on ICT stocks.

Figure 2 shows the spatial distribution of both measures of technological change per county

for 2017. The left panel shows that most robots can be found in regions dominated by the

automotive industry: For example, Volkswagen has its headquarters in Wolfsburg, Audi in

Ingoldstadt, Opel in Gross-Gerau and Dingolfing-Landau and Emden are major production

sites of BMW and Volkswagen respectively. Hence, face validity of our measure is high: All

regions standing out due to their exceptionally high exposure to robotization can be clearly

associated to (car) manufacturing hot-spots. The right panel shows that ICT is concentrated

in the major service-sector business hubs of Munich, Frankfurt and Stuttgart. This shows that

we capture two distinct forms of technological change. In fact, the correlation between the two

measures is low (0.12).

4.3 Elections

For each county we gathered official election results for all Federal, State and European elections

between 1994 and 2017 which yields 7 federal, 40 state elections and 5 European elections. If
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multiple election were held in the same year, we only consider one of them, preferring federal

election over state election over EU election (order of voter turnout) which gives a total of 4277

county-election pairs.

We consider all parties currently represented in national parliament: Grünen (greens), Linke

(leftist), SPD (social democrats), FDP (pro market), CDU-CSU (christian democrats) and the

AfD (right-authoritarian). Since the AfD was only founded in 2013, we pool it with other

right-authoritarian parties (NPD, DVU, Republikaner). Previous research shows that the AFD

grew strongly in regions that have been strongholds of other right-authoritarian parties before

(Cantoni et al., 2019).

4.4 Other data sources

From the IAB data, we can additionally derive regional and time-varying employment shares

along other dimensions that allow us to carefully trace distributional implications on the re-

gional level. For our purposes, we distinguish between manufacturing and non-manufacturing

employment, employment shares by main task, employment shares by skill requirements and

employment shares by education attainment of the region’s workforce.

Employment shares by main task are derived from occupation descriptions filled out by

the employer which can matched to task profiles (Dengler, Matthes and Paulus, 2014). Em-

ployment shares by skill and education are also derived from information provided by the

employer. Occupational skill requirements range from low-skilled (Helfertätigkeit) over mid-

skilled (Fachliche Tätigkeit to high-skilled (komplexe Spezialistentätigkeit, hochkomplexe Exper-

tentätigkeit).Education is classified by thee level of school leaving certificates ranging from school

drop outs, over high school diploma (Hauptschule, Realschule) to A-levels (Abitur) which enables

students to pursue a university education. 10

In addition, we will control for increasing trade with eastern Europe and China as they are

potentially correlated with the adoption of new technology and have been shown to affect voting

behavior of affected workers (Dippel, Gold and Heblich, 2015; Colantone and Stanig, 2018).

We obtained data from the UN Comtrade database on industry level net-exports to construct

another shift-share variable. To calculate net exports of goods, we first compute German net

exports vis-a-vis China and Eastern European for every product category from UN Comtrade

data. Using an official transition matrix provided by the UN, we calculate industry level net
10For a detailed description of the classifications see Antoni et al. (2019).
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exports. If a product group is associated with multiple industries, we weight by industry-level

employment shares and normalize by the initial number of employees in the sector to account

for industry size. To calculate regional exposures, we then employ shift-share instruments where

regional employment composition was calculated analogously to the robots data. Finally, we

obtained information about regional GDP per capita from the federal statistics office.

4.5 Empirical Approach

We employ a two-way fixed effect panel model (generalized diff-in-diff) to measure the effect of

new technologies, measured as robotization or ICT investment, respectively, on economic and

political outcomes:

Yr,t “ β1Technologyr,t ` µt ` ηr ` εr,t (3)

The dependent variable Yr,t is a party vote share or an employment outcome in region r in

year t which is regressed on Technologyr,t measured as (a) the number of log robots per 1000

workers or (b) the ICT capital stock per worker in 1000e.The model also includes region fixed

effects ηr and year fixed effects µt. As robustness checks, we will further add a vector of control

variables in later specifications.

5 Results

5.1 Political Outcomes

In line with our theoretical point of departure, we first turn our attention to political outcomes

and look at "reduced-form" specifications modelling the direct relationship between regional

technological adoption and regional election outcomes.11 Figure 3 plots estimated marginal effect

of regional robot intensity (see Panel 3a) and ICT investment (see Panel 3b) on regional electoral

vote shares of all major German parties. The reported coefficients each stem from a separate

regression. We first run a specification where only include one of the technological change

measures (blue triangles) and secondly a specification including both measures of technological

change simultaneously (red circles). Both specifications include a region and an election fixed

effect.12

11We call this "reduced form" as it is not the technological innovation itself which affects election results.
Instead, our imagined causal chain is that technological innovation affects the fate of workers, who react to the
change through altered voting pattern.

12See column (1) and (3) of Tables A.1-A.12 in the Appendix. Further note that election fixed effects differ
from year fixed effects in the case of multiple state elections held in the same year.
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The results show that regions exposed to more intense technology adoption generally shifted

their electoral support to the progressive-left of the political spectrum. For ICT, the patterns

are consistent and robust. We find that the green party Die Grünen and leftist party Die

Linke were the parties that gained most votes in digitalizing regions. The social-democratic

SPD has positive but imprecisely estimated positive effect. On the other hand, the center-right

CDU/CSU and the authoritarian-right party AfD received less support. The estimated effect

for the pro-market party FDP is marginally negative. These findings are not affected when

controlling for the effect of regional robotization. These reduced form models hence provide

evidence that the compositional effect of digitalization (measured as ICT investment) favoring

progressive left parties dominates at the regional level.

For robotization, the picture is less clear. When considering the effect of robotization in

isolation, we find a similar gradient across the political spectrum: progressive-left parties gain

whereas conservative and authoritarian-right parties tend to receive less votes when a region

adopts robots. However, only the effect of the progressive-left party Die Grünen is statistically

significant. Moreover, when controlling for the parallel influence of ICT, the marginal effects of

robotization hover around zero and none of them is significant. We interpret this as evidence

that for robotization, the direct effect favoring authoritarian-right parties and the compositional

effect favoring progressive left parties are on balance. Nevertheless, we consider this an important

result as it contrasts with previous work claiming that robotization leads to an unambiguous

shift towards the right of the political spectrum.

In terms of effect magnitude, our baseline models predict that a one standard deviation

increase in the log number of robots per thousand workers (+30% more robots) is associated

with an increase of the Grünen vote share of 0.15 percentage points. Taken as such, we interpret

this as modest effects. However, considering that the average region increased its number of

robots by 270% between 1994 and 2017, the accumulated effect for Die Grünen is an estimated

increase of the vote share by 0.71 percentage points, which is important for a party which usually

attracted a vote share of less than 10%.13 A one standard deviation increase of within-region

robot exposure (+30% more robots) decreases support for right-authoritarian parties by 0.06
13Using the formula

∆vote share “ β̂ ˚ logp
robots growth in %` 100

100
q

implies the overall increase in robot exposure over our sample period (on average +270% between 1994 and 2017)
predicts an increase of Die Linke vote share of 0.54 ˚ logp 270`100

100
q “ 0.71 percentage points.

Note, however, that this back-of-the-envelope calculation should be interpreted with a large grain of salt as it
ignores equilibrium effects such as the endogenous responses of parties to changing electorates.

15



percentage points (not statically significant) or 0.27 percentage points considering the estimated

effect of the average increase in robot intensity over the entire sample period.

Figure 3: Region-level exposure to technological change and Party Vote Shares
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(b) Marginal Effect of ICT

Note: The graph shows estimated marginal effect of the (a) regional log number of robots per thousand workers
and (b) the regional ICT capital stock per worker in 1000e on regional party vote shares in percentage points
(see Column (1) and (3) of Tables A.1-A.12). The sample consists of all federal, state and European elections
between 1994 and 2017 measured on a county level (324 Kreise und kreisfreie Städte, NUTS-3) . AfD, DVU,
Republikaner and NPD are coded as right-authoritarian parties.
Standard errors clustered at the county level. Bars represent 95% confidence intervals.

An increase of the ICT capital stock by one within-region standard deviation (+520e per

worker) is associated with an increase of the vote for Die Grünen by 0.19 percentage points and

a decrease of the right-authoritarian vote share by -0.11 percentage points.

We resist the temptation to compare the magnitude of effects sizes of the two technologies for

two reasons. First, we cannot directly compare the absolute change in robot intensity and ICT

capital stocks as the former is measured in counts whereas the latter is measured in monetary

terms. Secondly, the comparison would implicitly assume that we measure both concepts equally

well. However, we have to be clear that both measures are only an approximation of the

underlying concept and both suffer from measurement bias to some extent, which attenuates

effect sizes.

Next, we run a series of robustness checks to increase confidence in our results (see Appendix

A.2 for details). First, additional to the two-way fixed effects, we control for the trade exposure

vis-à-vis China and Eastern Europe as an additional economic shock and GDP growth. Further-

more, we use an instrumental variable (IV) approach where we instrument technology adoption
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in Germany with values from other European countries. Considering digitalization (ICT), effects

are marginally attenuated when controlling for net exports or GDP growth. The IV results for

ICT are in fact stronger than the OLS results: The progressive parties Die Grünen and Die

Linke have larger positive coefficients whereas the socially-conservative and authoritarian-right

end of the party spectrum has stronger negative effects. We conclude that the ICT results are

very robust.

Considering the automation in the form of robots, all results turn statistically insignifi-

cant when controlling for GDP or when considering the IV results. This again highlights that

robotization may not have clear-cut political implications at the regional level. In additional

robustness checks for the analysis on robots, we use an alternative specification of our main

explanatory variable using the number of robots per thousand workers in levels rather than in

logs. Using this alternative specification, the effects change substantially and in fact reverse to

some extent, i.e. we find negative coefficients for progressive-left parties and weakly positive

coefficients for the authoritarian-right AfD. However, the bottom panel of Tables A.1-A.6 in the

Appendix show that the effect of the non-logged specification is driven by a few regions with

extreme robot concentration. When excluding the top 10 region in terms of robotization, the

estimated gradient between the progressive-left and the authoritarian-right reverts back to what

we found in the main results. It seems that different specification implying different relative

weights of each region can be enough to change the interpretation of the results. The fact that

results are quite unstable may be a further indication that direct and compositional effect are

broadly on par.

5.2 Understanding Compositional Effects and Underlying Mechanisms

Our findings conflict with more gloomy projections put forward in the media and the public

debate but also in important scholarly work, in which automation has been unambiguously

related to the rise of populism and the success of right-authoritarian parties not only on the

individual but also on the regional level (Anelli, Colantone and Stanig, 2019; Milner, 2021).

The remainder of the empirical exercise makes use of our fine-grained labor market data to

demonstrate that the adoption of new technologies affects the composition of local labor force

towards higher skilled and less routine occupations. Second, we show that the disappearing jobs

are associated with conservative and authoritarian-right vote whereas the newly appearing jobs

are associated with voting for more progressive parties. We build on both regional-level and
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individual-level data to bolster our arguments. In sum, the analysis of intermediary distributive

mechanisms on labor markets supports our conjecture that technological change results in a

relative growth of occupations that are generally more supportive of progressive left parties.

Regional-Level Economic Outcomes

We first turn our attention to the economic effects of technology adoption by simply switching

the dependent variable from voting results to labor market indicators. In line with much of the

existing literature in labor economics (Michaels, Natraj and Van Reenen, 2014; Biagi and Falk,

2017; Dauth et al., 2021; Graetz and Michaels, 2018; Klenert, Fernandez-Macias and Antón, 2020;

de Vries et al., 2020), we find that robot adoption and ICT investment affect the composition of

the labor force but do not result in net employment loss. Both forms of technological innovation

(if anything) marginally decreases manufacturing employment. Importantly, this decline in

manufacturing is more than offset by an increase in the non-manufacturing (service) sector

employment. The sum of both coefficients represents the effect of robot exposure on total

employment relative to population. This hold considering each technology on its own or both

jointly (see Figure 4 and Tables A.13-A.18).

The point estimates imply that focusing on the within-region variation, a one standard de-

viation increase in robot exposure (+30% more robots) is associated with a decrease of the

manufacturing employment to population ratio of -0.09 percentage points (not statistically sig-

nificantly different from zero) and a statistically significant increase of the non-manufacturing

employment to total population ratio of +0.65 percentage points. On the other hand, an in-

crease of the ICT capital stock of one within-region standard deviation (+520e) is associated

with a decrease of the manufacturing employment to population ratio of -0.14 percentage points

(not statistically significantly different from zero) and a statistically significant increase of the

non-manufacturing employment to total population ratio by +0.60 percentage points. When

considering the effect of both technologies jointly, effect sizes are somewhat attenuated. Again,

we want to emphasize that we believe that these figures to not lend themselves for a horse race

to determine which technology has a larger impact.

The main reason for an increase in aggregate employment is that the fall of routine jobs is

often accompanied by disproportionate job growth in non-routine occupations (de Vries et al.,

2020). Our results align well with this explanation. When looking at labor shares of task

groups instead of sectors, we find that technology adoption increases non-routine cognitive jobs
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Figure 4: Region-level exposure to robots and employment effects
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Note: Estimated coefficients of effect of log number of robots per thousand workers on employment to population ratios (in %) after controlling
for region and year fixed effects. See column (1) of Table A.13 - A.15. Black bars represent 95% confidence intervals.

at the cost of routine jobs (see Figure 5). In line with our intuition, robots have a stronger

replacement effect with respect to routine manual jobs whereas ICT investment substitutes in

particular for routine cognitive occupations. The share of low-skilled manual non-routine jobs

is not significantly affected by technology adoption in Germany.

This pattern, which one might call "polarized upgrading" (Oesch and Rodriguez-Menes,

2010), is largely confirmed when looking at labor shares by skill group. Technology-adopting

regions experience a strong increase in the share of high-skilled jobs and stagnation or even

decline in mid- and low-skill jobs (see Figure 6). ICT investment in particular seems to foster

upskilling. We also find evidence that education requirements are changing in a region more

exposed to technology. Investment in robots or ICT increases the share of workers with at

least a university entrance degree (Abitur) but decreases the share of workers with only High

school degrees. Interestingly, with respect to education requirements, we find some evidence of

polarizing labor markets in the sense that technology adoption does not reduce the the share

of workers who did not finish secondary school. These workers presumably find jobs in low-

skilled services which are created due to positive spillover effects of technology adoption (see

Figure 7). The described are generally robust to controlling for the other type of technology

adapted. Only the effect of robotization on the education composition of the labor force changes

markedly. When additionally controlling for ICT, the effect of robotization turn statistically
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Figure 5: Technological change and Regional Task Composition
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Note: All variables are expressed as changes in regional employment shares in percentage points such that coefficients sum up to zero. Bars
represent 95% confidence intervals where standard errors are clustered at the commuting zone-year level.

insignificant and changes signs. This again supports the conjecture that ICT has a stronger

impact on the overall labor force than robotization, a finding that makes sense in light of the

strong concentration of robots in a few highly-exposed sectors.

Summing up, we show that regions with stronger exposure to technology adoption experience

a polarized upgrading of labor markets. While overall employment is not negatively affected, the

share (and numbers) of jobs in the semi-skilled and manufacturing domain decreases markedly.

These findings are not in itself ground-breaking as they are largely in line with previous papers

studying the labor market effects of automation. Nevertheless, they provide a vital first piece

of evidence to strengthen our argumentation that compositional effects play an important role

to understand how automation affects political preferences at a regional level.

Regional-Level Relationship between Occupation and Vote Choice

To understand why technological change may shift the regional electoral landscape to the pro-

gressive left, it is important to analyze how the local labor force composition affects voting

outcomes. As we showed before, increased exposure to technology is associated with a shift

from manufacturing to services, from (manual) routine occupations to non-routine (cognitive)

occupations, from low- and mid-skilled jobs to high-skilled jobs and towards a more educated

local workforce. According to the theory of occupational preference formation, all these changes
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Figure 6: Technological change and Regional Skill Requirements
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Note: All variables are expressed as changes in regional employment shares in percentage points such that coefficients sum up to zero. Bars
represent 95% confidence intervals where standard errors are clustered at the commuting zone-year level.

Figure 7: Technological change and Regional Education Levels
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in the labor market composition should shift political support more towards progressive parties.

In order to corroborate these underlying expectations, the following analyses zoom in on the

relationship between regional employment composition and party vote shares.

For this, we focus on the results of the 2017 Federal Elections (the last year in our sample)

and regress the county-level party vote share on the local employment share as of 2017.14 For

each party p - employment share s (manufacturing share, routine worker share, etc.) pair we

run a separate regression of the following kind:

V oteSharepr “ β ˚ EmploymentSharesr ` εr (4)

where V oteSharepr is the vote share of party p in region r which is regressed on the employ-

ment share of type s in region r.

The results presented in Figure 8 shows that a higher non-manufacturing (service) employ-

ment to population ratio is associated with more vote for progressive-left parties and a less sup-

port with conservatives and right-authoritarian parties. This closely resembles the effect of tech-

nological change on voting outcomes. On the other hand, conservatives and right-authoritarian

parties perform particularly well where the manufacturing employment to population ratio is

high (see Panel 8a).

Similarly, regional labor market characterised by a high share of cognitive non-routine oc-

cupations display more support for cosmopolitan-left parties less support for conservative and

authoritarian-right parties. Conversely, regions with a large share of manual workers (both rou-

tine and non-routine) tend to be less support of the progressive left parties and more supportive

of authoritarian right parties (see Panel 8b).

Furthermore, we find evidence that a high number of high-skilled workers is associated with

more support for progressive left parties and less support for center-right and right-authoritarian

parties. Conversely, it is mostly regions harboring more low-skilled and mid-skilled workers that

are less supportive of progressive-left parties and more supportive of right-authoritarian parties.

(see Panel 8c).

Finally, a higher share of highly educated workers is associated with more support for pro-

gressive workers and a lower support for conservative workers. The opposite is true looking

at the share of workers with only intermediate levels of education. The share of High School
14Using previous election years leads to similar results.
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drop-outs is weakly correlated with more support for authoritarian-right parties. However, the

effects are imprecisely estimated (see Panel 8d).
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Figure 8: Cross-sectional correlations of regional employment shares and party vote shares in 2017 Federal
Elections
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Note: Cross-sectional regression of regional party vote shares in 2017 federal elections on regional employment shares without controls (n=324

counties). The estimated coefficients are proportional to raw correlations. Bars represent 95% confidence intervals.
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Individual-Level Relationship between Occupation and Vote Choice

To increase confidence in these patterns, we analyze the aggregate party preferences of different

occupation groups using individual-level data from the German Socio-Economic Panel (SOEP).

This allows us to test more directly how local labor market composition affects election results.

Our aim here was to recreate the sectorial and occupational groups from the previous analysis

as closely as possible to ensure comparability. Therefore, we considered all respondents between

18 and 65 for the years 1994 to 2018 (n=323000) and classified them into manufacturing and

non-manufacturing, by main task (see Section 4 for details) and created three education groups

ranging from low (High school drop-outs and basic secondary education, Hauptschule) over

middle (intermediate secondary education, Realschule) to high (A-levels, Abitur). Figure 9 plots

the party support of different occupational groups over time. To facilitate the visualization we

grouped responses in 5-year intervals.

The findings confirm a few common priors of the relevant literature (e.g. Kitschelt and

Rehm, 2014). First, we find that the progressive-left party Die Grünen is mainly supported

by non-manufacturing (service sector) workers whereas manufacturing workers became more

and more supportive conservative and authoritarian-right parties over the last years (see panel

9a). Secondly, we observe the cognitive non-routine workers disproportionately support the

progressive-left party Die Grünen whereas conservative parties are mainly supported by rou-

tine workers and authoritarian-right parties draw most support from manual occupations (both

routine and non-routine) (see panel 9b). Finally, we find a strong education gradient. Highly

educated workers are the core constituents of the green party (and the pro-market FDP) whereas

conservative and far-right parties find most support among middle and low educated workers (see

Panel 9c). This further corroborates the the idea that those occupational groups which expand

due to technological change are more supportive of progressive-left parties whereas conservative

and authoritarian-right parties find the size of occupational groups that mainly supported them

to be in decline.15

In sum, a theory of occupational preference formation in tandem with a gradually chang-

ing composition of local labor markets provides a reasonable explanation of why technological

innovation can shift the regional electoral landscape to the progressive left. This is what we

dubbed the "compositional effect". Perhaps somewhat counter-intuitively, the deployment of
15To be sure, the results also show that over the last years, authoritarian-right parties gained disproportionately

within those occupation groups that stand to lose from technological change, i.e, manufacturing workers, the lower
educated and manual workers.
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new technologies in a region fosters the creation of employment far away from the conveyor belt

in service-oriented human-interaction occupations. Workers in these occupations often belong

to the expanding "new middle class" and are generally open to the ideas of cosmopolitan-left

parties as their education, their organizational structure and their work environment is more

conducive to inclusive views on society (Kitschelt, 1994; Kriesi, 1998; Oesch, 2008a; Gingrich

and Häusermann, 2015).
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Figure 9: Party support of different segments of the workforce over time
(a) Sector

FDP CDU/CSU Authoritarian Right

Grünen Linke SPD

1
9

9
4

−
1

9
9

8

1
9

9
9

−
2

0
0

3

2
0

0
4

−
2

0
0

8

2
0

0
9

−
2

0
1

3

2
0

1
4

−
2

0
1

8

1
9

9
4

−
1

9
9

8

1
9

9
9

−
2

0
0

3

2
0

0
4

−
2

0
0

8

2
0

0
9

−
2

0
1

3

2
0

1
4

−
2

0
1

8

1
9

9
4

−
1

9
9

8

1
9

9
9

−
2

0
0

3

2
0

0
4

−
2

0
0

8

2
0

0
9

−
2

0
1

3

2
0

1
4

−
2

0
1

8

30%

40%

50%

60%

2%

4%

6%

0%

2%

4%

30%

35%

40%

45%

5%

10%

15%

20%

2%

3%

4%

5%

6%

P
a
rt

y
 s

u
p
p
o
rt

 b
y
 w

o
rk

e
rs

’ 
in

d
u
s
tr

y
 s

e
c
to

r

Non−manufacturing Manufacturing

(b) Main Task

FDP CDU/CSU Authoritarian Right

Grünen Linke SPD

1
9

9
4

−
1

9
9

8

1
9

9
9

−
2

0
0

3

2
0

0
4

−
2

0
0

8

2
0

0
9

−
2

0
1

3

2
0

1
4

−
2

0
1

8

1
9

9
4

−
1

9
9

8

1
9

9
9

−
2

0
0

3

2
0

0
4

−
2

0
0

8

2
0

0
9

−
2

0
1

3

2
0

1
4

−
2

0
1

8

1
9

9
4

−
1

9
9

8

1
9

9
9

−
2

0
0

3

2
0

0
4

−
2

0
0

8

2
0

0
9

−
2

0
1

3

2
0

1
4

−
2

0
1

8

30%

40%

50%

0%

3%

6%

9%

0%

2%

4%

6%

8%

35%

40%

45%

10%

20%

30%

2%

4%

6%

P
a
rt

y
 s

u
p
p
o
rt

 b
y
 w

o
rk

e
rs

’ 
m

a
in

 t
a
s
k

Cognitive non−routine Cognitive routine Manual routine Manual non−routine

(c) Education

FDP CDU/CSU Authoritarian Right

Grünen Linke SPD

1
9

9
4

−
1

9
9

8

1
9

9
9

−
2

0
0

3

2
0

0
4

−
2

0
0

8

2
0

0
9

−
2

0
1

3

2
0

1
4

−
2

0
1

8

1
9

9
4

−
1

9
9

8

1
9

9
9

−
2

0
0

3

2
0

0
4

−
2

0
0

8

2
0

0
9

−
2

0
1

3

2
0

1
4

−
2

0
1

8

1
9

9
4

−
1

9
9

8

1
9

9
9

−
2

0
0

3

2
0

0
4

−
2

0
0

8

2
0

0
9

−
2

0
1

3

2
0

1
4

−
2

0
1

8

30%

40%

50%

0%

3%

6%

9%

0%

1%

2%

3%

4%

5%

30%

35%

40%

45%

10%

20%

30%

2%

4%

6%

8%

P
a
rt

y
 s

u
p
p
o
rt

 b
y
 w

o
rk

e
rs

’ 
e
d
u
c
a
ti
o
n
 l
e
ve

l

High Middle Low

Note: Graphs show self-reported party support of different occupation groups over time (clustered into 5-year

intervals). Bars represent 95% confidence intervals.
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6 Reconciling Conflicting Evidence

Our findings conflict with more gloomy projections put forward in the media and the public

debate but also in important scholarly work, in which especially robotization has been related

to the rise of populism and the success of right-authoritarian parties (Frey, Berger and Chen,

2018; Im et al., 2019; Anelli, Colantone and Stanig, 2019; Kurer, 2020; Milner, 2021).

We argued before that the differences partially stem from different level of analysis. Studies with

individual level data focus on what we dubbed the direct effect : those threatened by technological

innovation (normally measured through robotization) become more supportive of authoritarian

right parties.

However, some studies also use regional data which includes the compositional effect and still

find a shift towards authoritarian right parties. This is at odds with our theory and empirical

findings and in the following, we will try to determine why this is the case.

For this, we replicate the work of Anelli, Colantone and Stanig (2019) (henceforth ACS) which

also inspired the work of Milner (2021). Their regional analysis is the study most similar to our

setting. ACS find that Western European regions with increasing robot exposure became more

supportive of right-authoritarian parties. They argue that displaced or economically threatened

manufacturing workers turned to right-authoritarian parties as they felt left behind.

We present the details of our replication exercise in Appendix A.4. In short, we demonstrate

that the conflicting evidence is a consequence of different modelling approaches. In our under-

standing, the reason for diverging results lies in the difference between levels and changes. What

the ACS approach captures is that new robots are installed where the level of manufacturing

employment is high. This is intuitive as industrial robots are most needed in manufacturing hot-

spots. As we showed before, manufacturing workers (who are also concentrated in manufacturing

hot-spots) feel attracted by right-authoritarian parties and hence there is a positive correlation

between the change in robot exposure, the level of the manufacturing share and the level of

right-authoritarian support. Yet, this does not prove that regional growth in robot exposure

leads to positive change in regional right-authoritarian support. Our approach using fixed effects

instead captures how the change in robot exposure affects the change in partisan support. To

be sure, regions initially specialized in manufacturing adopted more robots and were generally

more supportive of right-authoritarian parties. Yet, their support of right-authoritarian parties

grew slower than in regions without robots due to the compositional effect: robots increased
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the local share of, for example, socio-cultural professionals in sectors with a strong emphasis on

interpersonal interactions, which in turn limited the appeal of right-authoritarian parties.16

7 Discussion

In this paper, we demonstrate that, on average, technological innovation increased the regional

vote shares of cosmopolitan left parties whereas right-authoritarian parties receive less votes in

affected regions. The increased prevalence of robots and ICT changes the local labor market

composition and shifts the employment structure from routine to non-routine jobs. This shift

has important indirect consequences in that it opens more jobs for highly-educated, high skilled

workers who often work on cognitive interactive tasks. Such "children of digitalization" gravitate

towards the cosmopolitan left whereas routine workers in manufacturing whose jobs were, as we

show, partly replaced by robots, often feel attracted by the promises of right-wing populism.

Hence, the common narrative that technological change and robotization will first and foremost

result in political disruption may provide an incomplete perspective.

How can we reconcile our findings with previous work who showed evidence in favor of the

populism narrative? Our study finds that regions exposed to robotization and digitalization tend

to shift employment away from manufacturing and routine jobs, which in turn leads to less sup-

port for right-authoritarian parties. Hence, we would not expect that right-authoritarian parties

make the strongest inroads in strongly technology-adopting regions. Here, the composition of lo-

cal labor markets changes more substantially than in regions less exposed to technological change

and economic modernization. And yet, it is important to repeat that we do not claim that tech-

nological innovation is unrelated to the recent surge in right-authoritarian and populist voting in

Germany and elsewhere. It is entirely plausible that robotization increases right-authoritarian

support among individuals or occupational groups that are imminently affected – or threatened

– by automation. However, we wish to highlight that the broader compositional changes in local

labor markets work in the opposite direction and may well dominate the political response by

those disaffected voters who lose out in the process of economic modernization.
16Our rich data set allows to provide further empirical support for this line of argumentation by studying

intermediary economic outcomes of robotization relying on ACS’ empirical strategy. This empirical exercise shows
why the mix of changes in the independent variable and levels in the dependent variables might be problematic.
In fact, strictly applying ACS’s modelling approach suggests that robotization leads to more manufacturing,
routine and mid-skilled jobs (see Appendix A.4). Hence, there seems to be a mismatch between the theoretically
hypothesized mechanism (robots threaten the jobs of manufacturing and routine workers) and the empirical
reality resulting from the applied modelling approach (robots increase manufacturing and routine employment).
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Hence, we can resolve the apparent conflict by a conceptual differentiation between a compo-

sitional (regional) and a direct (individual) effect. This differentiation has important implications

for future research, as it highlights the pros and cons of using a regional approach versus an

occupational/individual level approach. The disadvantage of our regional analysis is its inability

to isolate those workers directly threatened by technological innovation. Our approach inher-

ently bundles winners and losers within the unit of analysis. Depending on the workers’ skills

and occupation, the adoption of robots can have either positive or negative effects, even if they

live in the same region.

On the positive side, a regional approach allows us to capture the compositional effect of

changing local labor markets. Recall that a focus on within-individual changes lets us focus on

the direct effect but – by design – neglects the compositional effect. Positive indirect effects of

technological innovation such as the creation of new jobs can only be captured by a regional

approach. Also, the fact that new generations joining the labor market enter into different occu-

pations and hold different political attitudes than previous generation is hidden when focusing

on within-individual changes. The academic literature shows that technological change mostly

shapes employment composition through generational turnover rather than directly displacing

affected workers (Cortes, 2016; Dauth et al., 2021; Kurer and Gallego, 2019). Hence, in the long

term, the compositional effect may be considered more important and more consequential in

political terms.17

Finally, we want to reflect about why ICT produces clearer effect on voting patterns com-

pared to robotization. One reason might be that the two technologies are different in scope.

Digitalization in the shape of computers can be seen as a general purpose technology and as such,

is complementary to workers as it increases their productivity. This is predominantly true for

what we previously introduced as "socio-cultural professionals". Their interactive and cognitive

work logic is clearly complementary to computer technology, some occupations in this domain

were even only made possible by the introduction of computers. In general, direct replacement

effects of computers seem relatively rare. Robots on the other hand were specifically developed
17Reflecting on the value of regional shift-share approaches more generally, we have to realize that, by con-

struction, the measure of robot exposure needs to be interpreted as an intention to treat (ITT) variable. We do
not know if a county actually invested in robots or ICT. Instead, it is inferred from the pre-sample local industry
structure combined with industry-level data on robot adoption. Hence, this approach necessarily includes some
regions that should have adopted robots but in fact did not. Therefore, we cannot distinguish if a worker’s posi-
tion is threatened due to innovation (robots taking over workers’ jobs) or the lack thereof (jobs are endangered
to due decreasing competitiveness of the firm). Yet, this distinction is crucial if we believe that job loss due to
automation has a distinct effect on the workers’ attitudes beyond the "normal" effect of job loss.
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to replace certain tasks in manufacturing. This might be perceived as more of a threat by some

segments of the labor force and hence, a direct negative effects is more important in this context.

Our results suggest that at the regional level, the direct effect resulting from a fear of being re-

placed is on par with the compositional effect (and heavily dependent on model specification).

While previous studies interested in the political ramification of technological change almost

exclusively focused on a replacement narrative motivated by robotization, this paper suggests

that extending the perspective to digitalization and incorporating compositional effects leads to

a quite different outlook on the link between new technologies and voting behavior.
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A.1 The Political Space in Germany

Figure A.1 shows that party positions in Germany are broadly aligned along one one dimension. They

span from progressive-left (Die Linke) to authoritarian-right (AFD and other right-authoritarian par-

ities). Notable exception is the pro-business party FDP which combines economic conservatism with

social progressiveness. However, they do not play a central role in our analysis as their electoral support

does not seem to be affected by robots adoption.

Figure A.1: Political Parties in the Two-Dimensional Space
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A.2 Robustness Checks

In this section we report in more detail on the robustness checks we briefly described in Section 5.1. We

report one regression table for each economic and political outcome, once for robot adoption and once

for ICT investment in the section that follows. In the first column of each table we present our baseline

model which relies on county and year fixed effects.18 Note that the two-way fixed effect specification

is already quite demanding as it holds constant all factors that are either constant over time within a

region (for example if a region belonged to the former GDR, an important factor to explain electoral

differences in Germany) or common shocks to all regions in a given year (for example changing party

platforms or external events that affect the general success of parties).

Next, we add economic shocks as control variable to rule out that our results suffer from omitted

variable bias. In column (2) of each table, we control for the net trade balance of each region vis-à-vis

China and Eastern Europe. This is important as thriving manufacturing regions, which adopt robots at

a fast pace are likely to also be more involved in international trade. At the same time, it has been shown

that trade exposure affects the political preferences of voters (Dippel, Gold and Heblich, 2015; Colantone

and Stanig, 2018). We find that this is not a major confounder as the unconditional correlation of net

exports and robot intensity (0.04) or ICT (0.12) is low and also the estimated effect of regional robot

intensity and regional ICT investment on regional election results and regional economic outcomes remain

stable. Column (3) includes the other source of technological change as an additional control. Again,

the concern is that it is an alternative economic shock is correlated with our technology shock.As noted

before, the correlation between per worker ICT capital stocks and robot intensity is rather low (0.12).

The effect of robotization on voting patterns virtually disappears after controlling for ICT. The effect of

ICT on regional-level election outcomes on the other hand is not affected. As a third control, we include

GDP per capita (column 4). This is important as robot adoption could be just one symptom of generally

thriving regions (on the other hand, it could also be argued that GDP is a bad control as it part of the

mechanism how technological change affects economic and political outcomes). Similar to controlling for

the influence of the other technology, the point estimates of ICT on voting shares is not affected whereas

there is no effect robotization on party support after controlling for GDP growth. Regarding the labor

market consequences of technological change, it turns out that point estimates become more negative

after controlling for GDP growth. This is intuitive as newly created job usually go hand in hand with

economic growth.

Next, we use an instrumental variable approach where we instrument industry-level technology adop-

tion in Germany with values from other European countries.19 As argued before, the pace of robot

18To be precise, we use election fixed effects for political outcomes. These differ from year fixed effects in the
case of state elections as each state has its own fixed effect.

19For robotization, we use data on all European countries included in the IFR database: Sweden, Denmark,
Italy, Belgium, Netherlands, Austria, Slovenia, Spain, Slovakia, France Finland, Czech Republic. For ICT, we
use data from all other EU member state countries (EU28 including the UK).
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adoption or ICT investment might be influenced by surrounding labor market institutions. In Germany,

workers councils and trade unions have been shown to affect the process how companies digitalize (Genz,

Bellmann and Matthes, 2019). Simultaneously, labor unions have strong linkages to leftist and social

democratic parties which could create an omitted variable bias in our OLS estimates. Using the speed of

adoption in other European countries as a valid instrument implies the exclusion restriction that specific

labor market and political institution in Germany do not affect industry level decision to adopt new

technologies abroad. Instead, it is assumed to be driven by a technological frontier. In a second panel

of each table we replicate all specifications using a 2SLS estimator. We find that labor market outcomes

are comparable to the OLS estimates when considering ICT. Again, for robotization the result are less

stable. Concerning the case of robots, it has been noted that despite the strong first stage, using other

Western countries as an instrument might be problematic in the case of Germany as it precedes other

Western countries when it comes to adopting robots. Nevertheless, we included the instrumental variable

analysis to facilitate the comparison to previous research.

Finally, we use the number of robots per thousand workers in levels (not in logs) as main explanatory

variable (third panel). This gives more weight to outlier region (recall that a few manufacturing hot-

spots attracted the bulk of new robots). The voting pattern results completely change and this analysis

suggests that automation is associated with less support for progressive-left parties and more support

for conservative and authoritarian-right parties. However, as is shown in the last panel of each table,

this pattern reverts if we exclude the top ten regions in terms of robot intensity. The estimated labor

market consequences of both specifications are similar and in line with the results described previously.

This suggests that the general distributive effects are captured with either approach. However, voting

results depend on the specification. We interpret this as further evidence that here, the compositional

and the treatment are of similar strength.

Summing up, we find stable results for ICT with respect to voting and labor market outcomes.

Regarding robotization, the labor market effects are relatively robust, the political consequences are

robotization are not robust.
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A.3 Regression Tables

A.3.1 Robots & Election Outcomes

Table A.1: Fixed-Effects Estimation of robot exposure on support for Die Grünen

(1) (2) (3) (4) (5)

OLS
Robots 0.536˚˚ 0.571˚˚ 0.261 0.364 0.278

(0.227) (0.230) (0.240) (0.237) (0.248)

Net Exports ´0.036 ´0.045
(0.033) (0.031)

ICT 0.323˚˚˚ 0.216˚˚
(0.091) (0.101)

GDP per capita 0.038˚˚˚ 0.034˚˚˚
(0.012) (0.012)

2SLS
Robots ´0.204 ´0.182 ´0.270 ´0.239 ´0.213

(0.327) (0.330) (0.321) (0.355) (0.353)

First-stage F-stat 252.44 124.72 153.61 146.35 78.66

Non-logged robots
Robots 0.0004 0.001 ´0.014˚ ´0.020˚˚˚ ´0.026˚˚˚

(0.007) (0.007) (0.007) (0.007) (0.008)

Non-logged robots exclude outliers
Robots 0.024 0.026 0.007 ´0.004 ´0.007

(0.025) (0.025) (0.023) (0.025) (0.023)

Region FE X X X X X
Election FE X X X X X
Observations 4,276 4,276 4,276 4,135 4,135
Adjusted R2 0.937 0.937 0.937 0.937 0.938

Note: Fixed-effects regressions of party vote share (in %) on log number of robots per 1000 workers for federal, state
and European Elections. Column (2) adds net exports per worker (in 1000 e), column (3) adds ICT capital stocks per
worker (in 1000 e), column (4) adds GDP per capita (in 1000 e). Column (5) adds all three controls jointly. Below are
reported the estimates for our variable of interest same specifications as above. Once instrumenting robot adoption in
Germany with values from other EU countries (2SLS), once using the number of robots per 1000 workers in levels instead
of logs (Non-logged robots) and once using robots in levels but excluding 10 outlier counties (Non-logged robots exclude
outliers). All models include region and election fixed effects. Standard errors reported in parenthesis are clustered by
county. ˚pă0.1; ˚˚pă0.05; ˚˚˚pă0.01
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Table A.2: Fixed-Effects Estimation of robot exposure on support for Die Linke

(1) (2) (3) (4) (5)

OLS
Robots 0.406˚ 0.382 ´0.048 0.258 ´0.105

(0.246) (0.244) (0.275) (0.252) (0.271)

Net Exports 0.024 0.021
(0.022) (0.022)

ICT 0.534˚˚˚ 0.561˚˚˚
(0.115) (0.116)

GDP per capita 0.011 ´0.004
(0.008) (0.008)

2SLS
Robots 0.388 0.365 0.315 0.265 0.232

(0.351) (0.351) (0.371) (0.352) (0.371)

First-stage F-stat 236.7 116.74 141.53 142.26 74.08

Non-logged robots
Robots 0.011 0.010 ´0.009 0.002 ´0.012

(0.009) (0.009) (0.010) (0.012) (0.012)

Non-logged robots exclude outliers
Robots 0.057˚ 0.055˚ 0.035 0.042 0.028

(0.030) (0.029) (0.030) (0.028) (0.028)

Region FE X X X X X
Election FE X X X X X
Observations 3,792 3,792 3,792 3,651 3,651
Adjusted R2 0.888 0.888 0.890 0.892 0.894

Note: Fixed-effects regressions of party vote share (in %) on log number of robots per 1000 workers for federal, state and
European Elections. Column (2) adds net exports per worker (in 1000 e), column (3) adds ICT capital stocks per worker
(in 1000 e), column (4) adds GDP per capita (in 1000 e). Column (5) adds all three controls jointly. Below are reported
the estimates for our variable of interest same specifications as above. Once instrumenting robot adoption in Germany
with values from other EU countries (2SLS) and once using the number of robots per 1000 workers in levels instead of
logs (Non-logged robots). All models include region and election fixed effects. Standard errors reported in parenthesis are
clustered by county. ˚pă0.1; ˚˚pă0.05; ˚˚˚pă0.01
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Table A.3: Fixed-Effects Estimation of robot exposure on support for SPD

(1) (2) (3) (4) (5)

OLS
Robots 0.055 0.082 ´0.209 ´0.261 ´0.442

(0.394) (0.400) (0.445) (0.416) (0.447)

Net Exports ´0.028 ´0.026
(0.044) (0.044)

ICT 0.309˚ 0.331˚
(0.183) (0.197)

GDP per capita 0.016 0.007
(0.019) (0.019)

2SLS
Robots ´0.215 ´0.193 ´0.268 ´0.783 ´0.784

(0.684) (0.694) (0.698) (0.591) (0.599)

First-stage F-stat 252.44 124.72 153.61 146.35 78.66

Non-logged robots
Robots ´0.010 ´0.010 ´0.023 ´0.033˚ ´0.041˚˚

(0.012) (0.012) (0.014) (0.019) (0.020)

Non-logged robots exclude outliers
Robots ´0.026 ´0.025 ´0.041 ´0.062˚ ´0.068˚

(0.038) (0.038) (0.039) (0.037) (0.038)

Region FE X X X X X
Election FE X X X X X
Observations 4,276 4,276 4,276 4,135 4,135
Adjusted R2 0.962 0.962 0.963 0.962 0.962

Note: Fixed-effects regressions of party vote share (in %) on log number of robots per 1000 workers for federal, state and
European Elections. Column (2) adds net exports per worker (in 1000 e), column (3) adds ICT capital stocks per worker
(in 1000 e), column (4) adds GDP per capita (in 1000 e). Column (5) adds all three controls jointly. Below are reported
the estimates for our variable of interest same specifications as above. Once instrumenting robot adoption in Germany
with values from other EU countries (2SLS) and once using the number of robots per 1000 workers in levels instead of logs
(Non-logged robots). All models include region and year fixed effects. Standard errors reported in parenthesis are clustered
by county. ˚pă0.1; ˚˚pă0.05; ˚˚˚pă0.01
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Table A.4: Fixed-Effects Estimation of robot exposure on support for FDP

(1) (2) (3) (4) (5)

OLS
Robots 0.0002 0.038 0.125 ´0.070 0.092

(0.161) (0.162) (0.165) (0.169) (0.168)

Net Exports ´0.039˚˚ ´0.042˚˚
(0.019) (0.019)

ICT ´0.146˚˚ ´0.183˚˚
(0.071) (0.074)

GDP per capita 0.011 0.017˚˚
(0.007) (0.006)

2SLS
Robots ´0.060 ´0.026 ´0.040 ´0.097 ´0.038

(0.253) (0.255) (0.258) (0.250) (0.253)

First-stage F-stat 252.44 124.72 153.61 146.35 78.66

Non-logged robots
Robots 0.003 0.003 0.008 0.002 0.007

(0.007) (0.007) (0.008) (0.008) (0.008)

Non-logged robots exclude outliers
Robots 0.004 0.007 0.010 ´0.005 0.001

(0.014) (0.014) (0.013) (0.014) (0.013)

Region FE X X X X X
Election FE X X X X X
Observations 4,276 4,276 4,276 4,135 4,135
Adjusted R2 0.917 0.917 0.917 0.917 0.918

Note: Fixed-effects regressions of party vote share (in %) on log number of robots per 1000 workers for federal, state and
European Elections. Column (2) adds net exports per worker (in 1000 e), column (3) adds ICT capital stocks per worker
(in 1000 e), column (4) adds GDP per capita (in 1000 e). Column (5) adds all three controls jointly. Below are reported
the estimates for our variable of interest same specifications as above. Once instrumenting robot adoption in Germany
with values from other EU countries (2SLS) and once using the number of robots per 1000 workers in levels instead of
logs (Non-logged robots). All models include region and election fixed effects. Standard errors reported in parenthesis are
clustered by county. ˚pă0.1; ˚˚pă0.05; ˚˚˚pă0.01
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Table A.5: Fixed-Effects Estimation of robot exposure on support for CDU / CSU

(1) (2) (3) (4) (5)

OLS
Robots ´0.825 ´0.926˚ ´0.329 ´0.035 0.022

(0.542) (0.543) (0.611) (0.586) (0.612)

Net Exports 0.103 0.121
(0.078) (0.076)

ICT ´0.582˚˚˚ ´0.302
(0.212) (0.229)

GDP per capita ´0.096˚˚˚ ´0.091˚˚
(0.036) (0.037)

2SLS
Robots 0.073 ´0.008 0.182 0.765 0.660

(0.949) (0.957) (0.965) (0.859) (0.867)

First-stage F-stat 252.44 124.72 153.61 146.35 78.66

Non-logged robots
Robots ´0.017 ´0.018 0.006 0.036 0.042

(0.019) (0.019) (0.021) (0.027) (0.027)

Non-logged robots exclude outliers
Robots ´0.048 ´0.053 ´0.023 0.043 0.043

(0.058) (0.058) (0.058) (0.059) (0.059)

Region FE X X X X X
Election FE X X X X X
Observations 4,276 4,276 4,276 4,135 4,135
Adjusted R2 0.924 0.924 0.924 0.926 0.926

Note: Fixed-effects regressions of party vote share (in %) on log number of robots per 1000 workers for federal, state and
European Elections. Column (2) adds net exports per worker (in 1000 e), column (3) adds ICT capital stocks per worker
(in 1000 e), column (4) adds GDP per capita (in 1000 e). Column (5) adds all three controls jointly. Below are reported
the estimates for our variable of interest same specifications as above. Once instrumenting robot adoption in Germany
with values from other EU countries (2SLS) and once using the number of robots per 1000 workers in levels instead of
logs (Non-logged robots). All models include region and election fixed effects. Standard errors reported in parenthesis are
clustered by county. ˚pă0.1; ˚˚pă0.05; ˚˚˚pă0.01
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Table A.6: Fixed-Effects Estimation of robot exposure on support for right-authoritarian Parties

(1) (2) (3) (4) (5)

OLS
Robots ´0.205 ´0.216 ´0.022 ´0.295 ´0.118

(0.160) (0.163) (0.168) (0.180) (0.191)

Net Exports 0.013 0.013
(0.029) (0.029)

ICT ´0.209˚˚ ´0.306˚˚˚
(0.089) (0.095)

GDP per capita 0.006 0.014˚˚
(0.007) (0.007)

2SLS
Robots ´0.294 ´0.304 ´0.265 ´0.373 ´0.381

(0.209) (0.212) (0.212) (0.245) (0.247)

First-stage F-stat 234.07 116.32 139.11 142.37 73.7

Non-logged robots
Robots 0.008˚ 0.008˚ 0.019˚˚˚ 0.006 0.015˚˚

(0.005) (0.005) (0.005) (0.007) (0.007)

Non-logged robots exclude outliers
Robots ´0.022 ´0.022 ´0.009 ´0.019 ´0.011

(0.014) (0.014) (0.013) (0.016) (0.014)

Region FE X X X X X
Election FE X X X X X
Observations 3,197 3,197 3,197 3,056 3,056
Adjusted R2 0.925 0.925 0.926 0.924 0.925

Note: Fixed-effects regressions of party vote share (in %) on log number of robots per 1000 workers for federal, state and
European Elections. Column (2) adds net exports per worker (in 1000 e), column (3) adds ICT capital stocks per worker
(in 1000 e), column (4) adds GDP per capita (in 1000 e). Column (5) adds all three controls jointly. Below are reported
the estimates for our variable of interest same specifications as above. Once instrumenting robot adoption in Germany
with values from other EU countries (2SLS) and once using the number of robots per 1000 workers in levels instead of
logs (Non-logged robots). All models include region and election fixed effects. Standard errors reported in parenthesis are
clustered by county. ˚pă0.1; ˚˚pă0.05; ˚˚˚pă0.01
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A.3.2 ICT & Election Outcomes

Table A.7: Fixed-Effects Estimation of ICT on support for Die Grünen

(1) (2) (3) (4) (5)

OLS
ICT 0.359˚˚˚ 0.363˚˚˚ 0.323˚˚˚ 0.240˚˚ 0.216˚˚

(0.087) (0.087) (0.091) (0.099) (0.101)

Net Exports ´0.032 ´0.045
(0.031) (0.031)

Robots 0.261 0.278
(0.240) (0.248)

GDP per capita 0.033˚˚˚ 0.034˚˚˚
(0.012) (0.012)

2SLS
ICT 0.732˚˚˚ 0.734˚˚˚ 0.742˚˚˚ 0.660˚˚˚ 0.659˚˚˚

(0.152) (0.152) (0.164) (0.169) (0.179)

First-stage F-stat 296.46 147.08 127.71 137.83 71.04
Region FE X X X X X
Election FE X X X X X
Observations 4,276 4,276 4,276 4,135 4,135
Adjusted R2 0.937 0.937 0.937 0.937 0.938

Note: Fixed-effects regressions of county-level party vote share (in %) on ICT capital stocks per worker (in 1000 e) for
federal, state and European Elections. Column (2) adds net exports per worker (in 1000 e), column (3) adds log number
of robots per 1000 workers, column (4) adds GDP per capita (in 1000 e). Column (5) adds all three controls jointly. Below
are reported the estimates for our variable of interest same specifications as above instrumenting ICT capital stocks in
Germany with values from other EU countries (2SLS). All models include region and election fixed effects. Standard errors
reported in parenthesis are clustered by county: ˚pă0.1; ˚˚pă0.05; ˚˚˚pă0.01.
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Table A.8: Fixed-Effects Estimation of ICT on support for Die Linke

(1) (2) (3) (4) (5)

OLS
ICT 0.527˚˚˚ 0.524˚˚˚ 0.534˚˚˚ 0.552˚˚˚ 0.561˚˚˚

(0.106) (0.106) (0.115) (0.112) (0.116)

Net Exports 0.022 0.021
(0.022) (0.022)

Robots ´0.048 ´0.105
(0.275) (0.271)

GDP per capita ´0.004 ´0.004
(0.008) (0.008)

2SLS
ICT 0.691˚˚˚ 0.689˚˚˚ 0.711˚˚˚ 0.722˚˚˚ 0.740˚˚˚

(0.164) (0.164) (0.180) (0.171) (0.179)

First-stage F-stat 246.95 122.56 105.71 112.41 58.55
Region FE X X X X X
Election FE X X X X X
Observations 3,792 3,792 3,792 3,651 3,651
Adjusted R2 0.890 0.890 0.890 0.894 0.894

Note: Fixed-effects regressions of county-level party vote share (in %) on ICT capital stocks per worker (in 1000 e) for
federal, state and European Elections. Column (2) adds net exports per worker (in 1000 e), column (3) adds log number
of robots per 1000 workers, column (4) adds GDP per capita (in 1000 e). Column (5) adds all three controls jointly. Below
are reported the estimates for our variable of interest same specifications as above instrumenting ICT capital stocks in
Germany with values from other EU countries (2SLS). All models include region and election fixed effects. Standard errors
reported in parenthesis are clustered by county: ˚pă0.1; ˚˚pă0.05; ˚˚˚pă0.01.
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Table A.9: Fixed-Effects Estimation of ICT on support for SPD

(1) (2) (3) (4) (5)

OLS
ICT 0.281˚ 0.285˚ 0.309˚ 0.282 0.331˚

(0.166) (0.166) (0.183) (0.191) (0.197)

Net Exports ´0.031 ´0.026
(0.043) (0.044)

Robots ´0.209 ´0.442
(0.445) (0.447)

GDP per capita 0.005 0.007
(0.019) (0.019)

2SLS
ICT 0.078 0.079 0.079 0.059 0.084

(0.253) (0.254) (0.279) (0.283) (0.296)

First-stage F-stat 296.46 147.08 127.71 137.83 71.04
Region FE X X X X X
Election FE X X X X X
Observations 4,276 4,276 4,276 4,135 4,135
Adjusted R2 0.963 0.963 0.963 0.962 0.962

Note: Fixed-effects regressions of county-level party vote share (in %) on ICT capital stocks per worker (in 1000 e) for
federal, state and European Elections. Column (2) adds net exports per worker (in 1000 e), column (3) adds log number
of robots per 1000 workers, column (4) adds GDP per capita (in 1000 e). Column (5) adds all three controls jointly. Below
are reported the estimates for our variable of interest same specifications as above instrumenting ICT capital stocks in
Germany with values from other EU countries (2SLS). All models include region and election fixed effects. Standard errors
reported in parenthesis are clustered by county: ˚pă0.1; ˚˚pă0.05; ˚˚˚pă0.01.
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Table A.10: Fixed-Effects Estimation of ICT on support for FDP

(1) (2) (3) (4) (5)

OLS
ICT ´0.129˚ ´0.124˚ ´0.146˚˚ ´0.177˚˚ ´0.183˚˚

(0.068) (0.068) (0.071) (0.073) (0.074)

Net Exports ´0.036˚˚ ´0.042˚˚
(0.018) (0.019)

Robots 0.125 0.092
(0.165) (0.168)

GDP per capita 0.016˚˚ 0.017˚˚
(0.007) (0.006)

2SLS
ICT ´0.051 ´0.049 ´0.056 ´0.091 ´0.094

(0.115) (0.115) (0.125) (0.126) (0.131)

First-stage F-stat 296.46 147.08 127.71 137.83 71.04
Region FE X X X X X
Election FE X X X X X
Observations 4,276 4,276 4,276 4,135 4,135
Adjusted R2 0.917 0.917 0.917 0.918 0.918

Note: Fixed-effects regressions of county-level party vote share (in %) on ICT capital stocks per worker (in 1000 e) for
federal, state and European Elections. Column (2) adds net exports per worker (in 1000 e), column (3) adds log number
of robots per 1000 workers, column (4) adds GDP per capita (in 1000 e). Column (5) adds all three controls jointly. Below
are reported the estimates for our variable of interest same specifications as above instrumenting ICT capital stocks in
Germany with values from other EU countries (2SLS). All models include region and election fixed effects. Standard errors
reported in parenthesis are clustered by county: ˚pă0.1; ˚˚pă0.05; ˚˚˚pă0.01.
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Table A.11: Fixed-Effects Estimation of ICT on support for CDU / CSU

(1) (2) (3) (4) (5)

OLS
ICT ´0.628˚˚˚ ´0.642˚˚˚ ´0.582˚˚˚ ´0.288 ´0.302

(0.190) (0.193) (0.212) (0.221) (0.229)

Net Exports 0.097 0.121
(0.076) (0.076)

Robots ´0.329 0.022
(0.611) (0.612)

GDP per capita ´0.087˚˚ ´0.091˚˚
(0.037) (0.037)

2SLS
ICT ´0.835˚˚ ´0.840˚˚ ´0.822˚˚ ´0.528 ´0.542

(0.324) (0.327) (0.345) (0.378) (0.391)

First-stage F-stat 296.46 147.08 127.71 137.83 71.04
Region FE X X X X X
Election FE X X X X X
Observations 4,276 4,276 4,276 4,135 4,135
Adjusted R2 0.924 0.925 0.924 0.926 0.926

Note: Fixed-effects regressions of county-level party vote share (in %) on ICT capital stocks per worker (in 1000 e) for
federal, state and European Elections. Column (2) adds net exports per worker (in 1000 e), column (3) adds log number
of robots per 1000 workers, column (4) adds GDP per capita (in 1000 e). Column (5) adds all three controls jointly. Below
are reported the estimates for our variable of interest same specifications as above instrumenting ICT capital stocks in
Germany with values from other EU countries (2SLS). All models include region and election fixed effects. Standard errors
reported in parenthesis are clustered by county: ˚pă0.1; ˚˚pă0.05; ˚˚˚pă0.01.

A15



Table A.12: Fixed-Effects Estimation of ICT on support for right-authoritarian Parties

(1) (2) (3) (4) (5)

OLS
ICT ´0.212˚˚ ´0.214˚˚ ´0.209˚˚ ´0.317˚˚˚ ´0.306˚˚˚

(0.086) (0.086) (0.089) (0.093) (0.095)

Net Exports 0.013 0.013
(0.028) (0.029)

Robots ´0.022 ´0.118
(0.168) (0.191)

GDP per capita 0.014˚ 0.014˚˚
(0.007) (0.007)

2SLS
ICT ´0.382˚˚˚ ´0.384˚˚˚ ´0.398˚˚˚ ´0.475˚˚˚ ´0.475˚˚˚

(0.122) (0.123) (0.131) (0.138) (0.142)

First-stage F-stat 210.8 104.69 88.26 93.46 48.56
Region FE X X X X X
Election FE X X X X X
Observations 3,197 3,197 3,197 3,056 3,056
Adjusted R2 0.926 0.926 0.926 0.925 0.925

Note: Fixed-effects regressions of county-level party vote share (in %) on ICT capital stocks per worker (in 1000 e) for
federal, state and European Elections. Column (2) adds net exports per worker (in 1000 e), column (3) adds log number
of robots per 1000 workers, column (4) adds GDP per capita (in 1000 e). Column (5) adds all three controls jointly. Below
are reported the estimates for our variable of interest same specifications as above instrumenting ICT capital stocks in
Germany with values from other EU countries (2SLS). All models include region and election fixed effects. Standard errors
reported in parenthesis are clustered by county: ˚pă0.1; ˚˚pă0.05; ˚˚˚pă0.01.
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A.3.3 Robots & Labor Market Composition

Table A.13: Fixed-Effects Estimation of robot exposure on total employment

(1) (2) (3) (4) (5)

OLS
Robots 1.840˚˚ 1.811˚˚ 1.234˚ ´0.264 ´0.192

(0.849) (0.849) (0.717) (0.471) (0.454)

Net Exports 0.029 0.013
(0.063) (0.053)

ICT 0.772˚˚ ´0.165
(0.307) (0.196)

GDP per capita 0.238˚˚˚ 0.242˚˚˚
(0.023) (0.025)

2SLS
Robots 0.991 0.947 0.946 0.291 0.268

(0.832) (0.833) (0.802) (0.578) (0.585)

First-stage F-stat 202.29 98.9 121.66 141.65 76.81

Non-logged robots
Robots 0.138˚˚˚ 0.138˚˚˚ 0.127˚˚ 0.003 0.006

(0.049) (0.049) (0.049) (0.018) (0.017)

Non-logged robots exclude outliers
Robots 0.155˚˚ 0.152˚˚ 0.143˚˚ 0.030 0.034

(0.067) (0.066) (0.067) (0.046) (0.044)

Region FE X X X X X
Year FE X X X X X
Observations 7,774 7,774 7,774 7,492 7,492
Adjusted R2 0.978 0.978 0.978 0.985 0.985

Note: Fixed-effects regressions of total employment to population ratio (in %) on log number of robots per 1000 workers.
Column (2) adds net exports per worker (in 1000 e), column (3) adds ICT capital stocks per worker (in 1000 e), column
(4) adds GDP per capita (in 1000 e). Column (5) adds all three controls jointly. Below are reported the estimates for our
variable of interest same specifications as above. Once instrumenting robot adoption in Germany with values from other
EU countries (2SLS), once using the number of robots per 1000 workers in levels instead of logs (Non-logged robots) and
once using robots in levels but excluding 10 outlier counties (Non-logged robots exclude outliers). All models include region
and year fixed effects. Standard errors reported in parenthesis are clustered by county: ˚pă0.1; ˚˚pă0.05; ˚˚˚pă0.01.
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Table A.14: Fixed-Effects Estimation of robot exposure on manufacturing employment

(1) (2) (3) (4) (5)

OLS
Robots ´0.326 ´0.339 ´0.127 ´1.219˚˚ ´0.867

(0.619) (0.623) (0.597) (0.559) (0.628)

Net Exports 0.013 0.009
(0.062) (0.065)

ICT ´0.254 ´0.684˚˚˚
(0.196) (0.172)

GDP per capita 0.081˚˚˚ 0.099˚˚˚
(0.020) (0.021)

2SLS
Robots 0.026 0.019 0.042 ´0.292 ´0.347

(0.596) (0.603) (0.599) (0.660) (0.684)

First-stage F-stat 202.29 98.9 121.66 141.65 76.81

Non-logged robots
Robots 0.045 0.045 0.061˚˚ ´0.009 0.005

(0.029) (0.030) (0.029) (0.020) (0.018)

Non-logged robots exclude outliers
Robots 0.010 0.009 0.028 ´0.017 ´0.007

(0.057) (0.058) (0.056) (0.053) (0.050)

Region FE X X X X X
Year FE X X X X X
Observations 7,774 7,774 7,774 7,492 7,492
Adjusted R2 0.958 0.958 0.959 0.965 0.966

Note: Fixed-effects regressions of manufacturing employment to population ratio (in %) on log number of robots per 1000
workers. Column (2) adds net exports per worker (in 1000 e), column (3) adds ICT capital stocks per worker (in 1000 e),
column (4) adds GDP per capita (in 1000 e). Column (5) adds all three controls jointly. Below are reported the estimates
for our variable of interest same specifications as above. Once instrumenting robot adoption in Germany with values
from other EU countries (2SLS), once using the number of robots per 1000 workers in levels instead of logs (Non-logged
robots) and once using robots in levels but excluding 10 outlier counties (Non-logged robots exclude outliers). All models
include region and year fixed effects. Standard errors reported in parenthesis are clustered by county: ˚pă0.1; ˚˚pă0.05;
˚˚˚pă0.01.
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Table A.15: Fixed-Effects Estimation of robot exposure on non-manufacturing employment

(1) (2) (3) (4) (5)

OLS
Robots 2.166˚˚˚ 2.149˚˚˚ 1.361˚ 0.955˚ 0.675

(0.667) (0.673) (0.722) (0.515) (0.587)

Net Exports 0.016 0.004
(0.041) (0.038)

ICT 1.026˚˚˚ 0.519˚˚˚
(0.195) (0.164)

GDP per capita 0.157˚˚˚ 0.143˚˚˚
(0.027) (0.027)

2SLS
Robots 0.964 0.928 0.904 0.583 0.615

(0.745) (0.755) (0.724) (0.599) (0.623)

First-stage F-stat 202.29 98.9 121.66 141.65 76.81

Non-logged robots
Robots 0.093˚˚˚ 0.092˚˚˚ 0.065˚˚˚ 0.012 0.001

(0.023) (0.023) (0.024) (0.014) (0.014)

Non-logged robots exclude outliers
Robots 0.145˚˚˚ 0.142˚˚˚ 0.115˚˚˚ 0.048 0.041

(0.045) (0.045) (0.044) (0.036) (0.036)

Region FE X X X X X
Year FE X X X X X
Observations 7,774 7,774 7,774 7,492 7,492
Adjusted R2 0.979 0.979 0.980 0.984 0.984

Note: Fixed-effects regressions of non-manufacturing employment to population ratio (in %) on log number of robots per
1000 workers. Column (2) adds net exports per worker (in 1000 e), column (3) adds ICT capital stocks per worker (in
1000 e), column (4) adds GDP per capita (in 1000 e). Column (5) adds all three controls jointly. Below are reported
the estimates for our variable of interest same specifications as above. Once instrumenting robot adoption in Germany
with values from other EU countries (2SLS), once using the number of robots per 1000 workers in levels instead of logs
(Non-logged robots) and once using robots in levels but excluding 10 outlier counties (Non-logged robots exclude outliers).
All models include region and year fixed effects. Standard errors reported in parenthesis are clustered by county: ˚pă0.1;
˚˚pă0.05; ˚˚˚pă0.01.

A19



A.3.4 ICT & Labor Market Composition

Table A.16: Fixed-Effects Estimation of ICT on total employment

(1) (2) (3) (4) (5)

OLS
ICT 0.929˚˚˚ 0.922˚˚ 0.772˚˚ ´0.179 ´0.165

(0.357) (0.357) (0.307) (0.202) (0.196)

Net Exports 0.042 0.013
(0.060) (0.053)

Robots 1.234˚ ´0.192
(0.717) (0.454)

GDP per capita 0.242˚˚˚ 0.242˚˚˚
(0.024) (0.025)

2SLS
ICT 0.034 0.031 ´0.175 ´0.746˚˚˚ ´0.756˚˚˚

(0.323) (0.322) (0.361) (0.284) (0.287)

First-stage F-stat 217.32 108.13 96.27 97.68 52.87
Region FE X X X X X
Year FE X X X X X
Observations 7,774 7,774 7,774 7,492 7,492
Adjusted R2 0.978 0.978 0.978 0.985 0.985

Note: Fixed-effects regressions of total employment to population ratio (in %) on log number of robots per 1000 workers.
Column (2) adds net exports per worker (in 1000 e), column (3) adds log number of robots per thousand workers, column
(4) adds GDP per capita (in 1000 e). Column (5) adds all three controls jointly. Below are reported the estimates for our
variable of interest using the same specification as above while instrumenting ICT capital stocks in Germany with values
from other EU countries (2SLS). All models include region and year fixed effects. Standard errors reported in parenthesis
are clustered by county: ˚pă0.1; ˚˚pă0.05; ˚˚˚pă0.01.
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Table A.17: Fixed-Effects Estimation of ICT on manufacturing employment

(1) (2) (3) (4) (5)

OLS
ICT ´0.270 ´0.272 ´0.254 ´0.759˚˚˚ ´0.684˚˚˚

(0.216) (0.218) (0.196) (0.161) (0.172)

Net Exports 0.011 0.009
(0.063) (0.065)

Robots ´0.127 ´0.867
(0.597) (0.628)

GDP per capita 0.095˚˚˚ 0.099˚˚˚
(0.023) (0.021)

2SLS
ICT ´1.067˚˚˚ ´1.068˚˚˚ ´1.125˚˚˚ ´1.445˚˚˚ ´1.402˚˚˚

(0.263) (0.263) (0.275) (0.318) (0.281)

First-stage F-stat 217.32 108.13 96.27 97.68 52.87
Region FE X X X X X
Year FE X X X X X
Observations 7,774 7,774 7,774 7,492 7,492
Adjusted R2 0.959 0.959 0.959 0.966 0.966

Note: Fixed-effects regressions of total employment to population ratio (in %) on log number of robots per 1000 workers.
Column (2) adds net exports per worker (in 1000 e), column (3) adds log number of robots per thousand workers, column
(4) adds GDP per capita (in 1000 e). Column (5) adds all three controls jointly. Below are reported the estimates for our
variable of interest using the same specification as above while instrumenting ICT capital stocks in Germany with values
from other EU countries (2SLS). All models include region and year fixed effects. Standard errors reported in parenthesis
are clustered by county: ˚pă0.1; ˚˚pă0.05; ˚˚˚pă0.01.
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Table A.18: Fixed-Effects Estimation of ICT on non-manufacturing employment

(1) (2) (3) (4) (5)

OLS
ICT 1.199˚˚˚ 1.194˚˚˚ 1.026˚˚˚ 0.580˚˚˚ 0.519˚˚˚

(0.195) (0.195) (0.195) (0.150) (0.164)

Net Exports 0.031 0.004
(0.041) (0.038)

Robots 1.361˚ 0.675
(0.722) (0.587)

GDP per capita 0.147˚˚˚ 0.143˚˚˚
(0.028) (0.027)

2SLS
ICT 1.101˚˚˚ 1.099˚˚˚ 0.950˚˚˚ 0.700˚˚ 0.646˚˚

(0.377) (0.376) (0.331) (0.313) (0.287)

First-stage F-stat 217.32 108.13 96.27 97.68 52.87
Region FE X X X X X
Year FE X X X X X
Observations 7,774 7,774 7,774 7,492 7,492
Adjusted R2 0.980 0.980 0.980 0.984 0.984

Note: Fixed-effects regressions of total employment to population ratio (in %) on log number of robots per 1000 workers.
Column (2) adds net exports per worker (in 1000 e), column (3) adds log number of robots per thousand workers, column
(4) adds GDP per capita (in 1000 e). Column (5) adds all three controls jointly. Below are reported the estimates for our
variable of interest using the same specification as above while instrumenting ICT capital stocks in Germany with values
from other EU countries (2SLS). All models include region and year fixed effects. Standard errors reported in parenthesis
are clustered by county: ˚pă0.1; ˚˚pă0.05; ˚˚˚pă0.01.
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A.4 Replication of Anelli, Colantone and Stanig (2019)

In this section we replicate parts of Anelli, Colantone and Stanig (2019) (henceforth ACS). The aim

is to compare their regional approach to ours to determine where conflicting results stem from. We

consider three potential explanations. First, it could be that West Germany is a special case, which

deviates from the general patterns across Western European democracies presented in ACS. Recall the

exceptional importance of robots in West German manufacturing or the fact that, at least partly for

historical reasons, no right-authoritarian party was represented in German national parliament until

2017. Second, the competing results could arise from differences in how the data set is constructed. Our

studies differ in the level of regional disaggregation, the sample period, and which election types are used.

In particular, we have much more fine-grained levels of regional disaggregation (NUTS-3) than the data

ACS use to analyze the German case (NUTS-1). Third, it could be that distinct modelling approaches

make the difference. While we employ a fixed effect panel model, ACS rely on a repeated short difference

specification.

A.4.1 ACS’s model

ACS regress party vote shares of right-authoritarian parties (in levels) on robot exposure (in changes) as

a repeated cross section. They define regional robot exposure as the change of regional robot intensity

(robots per thousand workers) in the two years prior to the elections (short-difference approach). Since

they do not dispose over the data on employment composition at the county level (NUTS-3), they

calculate robot exposure at the broader state level (NUTS-1 for Germany). Election results are measured

at the more fine-grained county level. The estimated model is:

Yr,s,t “ β1pRobotss,t´1 ´Robotss,t´nq ` µelection ` εr,s,t (5)

where Yr,s,t is the electoral outcome in region r located in state s in year t. The difference between

Robotss,t´1 and Robotss,t´n (number or robots per 1000 employees on state level) expresses their measure

of robot exposure. µelection is an election specific fixed effect. Contrary to our model, no geographic

fixed effects are used.

A.4.2 Political Outcomes

In general, we can replicate their result that robotization is associated with more right-authoritarian

support if we use ACS’s modelling approach even though they jointly analyzed several European countries

and we only have data on Germany.

Similar to ACS, we find that one standard deviation increase in robot exposure (+0.25 robots /

1000 workers) is associated with a significant increase in the vote share of right-authoritarian parties by
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Figure A.2: Replication ACS
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Note: The graph shows the effect of state level robot exposure on county-level vote shares (left panel) and county-level robot exposure on
county-level vote share (right panel. Robot exposure defined as change in the number of robots per thousand workers in a two year window
prior to the election. The left panel shows a replication of the specification of ACS which measures robot exposure at the state level (NUTS-1)
and includes election fixed effects. The right panel measures robot exposure at the region level (401 Kreise und kreisfreie Städte, NUTS-3)
and adds region fixed effects. Standard errors are clustered at the state-election level (left panel) or at the commuting-zone election level
(right panel). Bars represent 95% confidence intervals.

0.54 percentage points when we apply their statistical model to our data.20 These results remain stable

when using an instrumental variable approach (panel B of Table A.19). We thus conclude differences in

observed results do not stem from the uniqueness of the German case.

Next we turn our attention to the question if differences in the geographic disaggregation of the robot

exposure, the sample period or the types of elections considered could be explaining the different results.

Recall that our approach uses county-level variation (NUTS-3) whereas ACS’s approach uses state-level

variation (NUTS-1 for Germany). Therefore, we now want to apply their modelling approach to county

level rather than state-level variation in robot exposure:

Yr,t “ β1pRobotsr,t´1 ´Robotsr,t´3q ` µelection ` εr,t (6)

We now regress the electoral outcome in a region Yr,t directly on the regional robot exposure measured

as the difference in robot intensity in the two years prior to the elections (Robotsr,t´1 ´ Robotsr,t´n).

Otherwise we use the same specifications as before, namely a plane OLS (see right panel of Figure A.2

and panel A of Table A.20) and a 2SLS specification (panel B). .21

20More generally, we find that increased exposure to robots shift party support to the right. Besides right-
authoritarian parties, this modelling approach implies that Germany’s Christian Democrats CDU has the largest
point estimate, even though imprecisely estimated. On the other hand, the results show that according to this
modelling approach, left and liberal parties lose support in affected areas.The only significant result is for leftist
party Die Linke (see left panel of Figure A.2 and panel A of Table A.19).

21The remaining difference is that ACS’s approach uses the change in number of robots in a time window two
years prior to the elections as main explanatory variable. Our approach instead directly uses the log-number
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Figure A.3: Robots and Employment: ACS approach
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Note: The graph shows the effect of regional robot exposure on regional employment relative to population in %. Robot exposure defined as
change in the number of robots per thousand workers in a two year window prior to the election. The left panel shows a replication of the
specification of ACS which measures robot exposure at the state level (NUTS-1) and includes election fixed effects. The right panel measures
robot exposure at the county level NUTS-3). Standard errors are clustered at the state-election level (left panel) or at the county level (right
panel). Bars represent 95% confidence intervals.

The general pattern remains that increases in robot exposure are associated with a shift of political

support more to the right of the political spectrum. This is remarkable as we note that point estimates

are reduced dramatically if we use regional instead of state variation in the measure of robot exposure.

The positive effect of robotization on right-authoritarian support also remain stable if we restrict our

sample period to the one used by ACS (they only look at the years 1999-2015), or if we remove European

or state elections (both not reported).

Hence, we conclude that different results are also not driven by differences in data set construction.

A.4.3 Implied Economic Outcomes

Next, we want to ask the question if the two approaches (i.e. our two-way fixed panel model approach

and ACS’s short-difference repeated cross-section) indeed capture the same labor market transformation.

For this, we analyze the effect of robot exposure on the same economic outcomes as used previously in

Section 5.2 but now using their modelling approach. ACS do not report own labor market results but

instead refer to previous literature which showed that robotization decreased manufacturing employment.

It is tacitly assumed that their approach would lead to the same results.

However, Figure A.3 shows that their modelling approach suggests that increased robot adoption

leads to more manufacturing employment. This holds using either the replication of their approach (left

side) or using a model employing more fine-grained regional variation of robot exposure (right side).

of robots per thousand workers in the year of the elections. As argued before, their approach mixes levels and
changes whereas our approach uses levels for LHS and RHS variables. Note that due to the region and year fixed
effect, our approach is equivalent to using a difference estimator (differences on the LHS and RHS).
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Table ?? repeats the region-level analysis using a plain OLS model (panel A) and a 2SLS model (panel

B). Under all specifications, the results indicate that increased exposure to robotization is associated

with a larger fraction of workers being employed in the manufacturing sector. Additionally, we analyze

what changing job requirements are implied by the approach of ACS. Figure A.4 shows that the repeated

short-difference approach suggests that regions adopting more robots create more manual-routine jobs

and using state-level variation in robot adoption, this modelling approach does not replicate well the

often described ’hollowing out of the middle class’. These results stand in contrast to what we found

before (see Section 5.2). Furthermore, they do not square well with the hypothesized mechanisms put

forward by ACS. Rather than left behind, this approach suggests that semi-skilled routine workers in

manufacturing are doing well in the face of increased robotization.

More generally, these patterns also do not align well with the RBTC paradigm. Both theoretical

and empirical studies on the matter agree that semi-skill routine jobs are taken over by robots and

diminish in numbers if a region is more exposed to automation (Acemoglu and Restrepo, 2020; Dauth

et al., 2021). Note however, that our proposed compositional story fits the economic and political results

proposed by this approach. Automation affects party support mainly through changing occupational

structures and regions who still harbor a large group of semi-skilled routine workers are the ones who are

most supportive of conservative and authoritarian-right parties. Since this approach predicts growing

manufacturing employment with routine jobs, etc. it does not come as a surprise that this approach

concludes that robotization is associated with more support for right-authoritarian parties.

As mentioned before, we believe that the results stem from mixing the change in robot penetration

with levels of employment shares and party vote shares in the modelling approach (see Equation 5).

However, since the number of robots grows most where there is a large manufacturing sector and routine

work, this approach implicitly correlates the size of the manufacturing sector or the number of routine

workers with right-authoritarian support. As we have shown in Section 5.2, larger shares of routine,

mid-skilled manufacturing workers are associated with political support for right-authoritarian parties.
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Figure A.4: Changing Job requirements: ACS approach
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Note: The graph shows estimated effect of the robot exposure (change of number of robots per thousand workers
over previous two years) on regional employment outcomes including year fixed effects (similar to election fixed
effects used by AVS. The dependent variable in panel (a) is the main task of regional occupation composition.
Panel (b) show the effect on regional jobs by skill requirement. Panel (c) shows the effect of robotization on
regional employment composition by education level.).
All variables are expressed as share of regional employment in % such that coefficients sum up to zero. Black
bars represent 95% confidence intervals.
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A.4.4 Regression Tables

Table A.19: State-level Robot Exposure and Party Vote Shares
(A) OLS

Dependent variable:
Grünen Linke SPD FDP CDU/CSU Authoritarian right

State-Level Robot Exposure 1.784 0.267 ´18.588˚ ´0.969 14.558 2.016˚˚
(3.424) (2.207) (9.982) (2.790) (11.363) (1.015)

Election FE X X X X X X
Observations 1,619 1,619 1,619 1,619 1,619 1,619
R2 0.166 0.710 0.431 0.745 0.123 0.753

(B) 2SLS
Dependent variable:

Grünen Linke SPD FDP CDU/CSU Authoritarian right
State-Level Robot Exposure 1.164 ´0.578 ´8.726 ´1.815 7.835 1.679

(4.770) (2.113) (20.367) (3.803) (16.756) (1.464)

Election FE X X X X X X
First-stage F-stat 10.69 10.69 10.69 10.69 10.69 10.69
Observations 1,619 1,619 1,619 1,619 1,619 1,619
R2 0.166 0.709 0.420 0.745 0.117 0.753

Note: Regressions of regional party vote share (in %) on robot exposure (change in number of robots per thousand workers
over 2 years prior to the elections) measured at state level. Panel (A) shows plain OLS with election fixed effects. Panel
(B) instruments robot exposure with values from other European countries. Panel (C) adds region fixed effects.
Replication of Table 1 from Anelli, Colantone and Stanig (2019).
Standard errors reported in parenthesis are clustered at the state-election level. ˚pă0.1; ˚˚pă0.05; ˚˚˚pă0.01

Table A.20: County-level Robot Exposure and Party Vote Shares
(A) OLS

Dependent variable:
Grünen Linke SPD FDP CDU/CSU Authoritarian right

Regional Robot Exposure ´0.228 0.019 ´0.453 ´0.204˚ 0.705 0.131˚˚
(0.153) (0.079) (0.752) (0.109) (0.805) (0.064)

Election FE X X X X X X
Observations 1,619 1,619 1,619 1,619 1,619 1,619
R2 0.164 0.710 0.393 0.745 0.097 0.741

(B) 2SLS
Dependent variable:

Grünen Linke SPD FDP CDU/CSU Authoritarian right
Regioanal Robot Exposure ´0.493˚ 0.012 0.342 ´0.423˚˚ 0.340 0.173˚

(0.256) (0.113) (1.302) (0.196) (1.367) (0.095)

Election FE X X X X X X
First-stage F-stat 35.04 35.04 35.04 35.04 35.04 35.04
Observations 1,619 1,619 1,619 1,619 1,619 1,619
R2 0.162 0.710 0.392 0.744 0.097 0.741

Note: Regressions of regional party vote share (in %) on robot exposure (change in number of robots per thousand workers
over 2 years prior to the elections) measured at region level. Panel (A) shows plain OLS with election fixed effects. Panel
(B) instruments robot exposure with values from other European countries. Standard errors reported in parenthesis are
clustered at the state-election level. ˚pă0.1; ˚˚pă0.05; ˚˚˚pă0.01
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A.5 Replication of Dauth, Findeisen, Südekum and Wössner (2021)

In this section, we replicate a set of basic results of Dauth et al. (2021) (henceforth DFSW) which is

the study most closely related to the economic aspect of this paper. This serves mainly as a validation

of our approach how to measure robot intensity. As explained in Section 4, DFSW also use IAB data

to study labor market consequence of robot adoption in Germany. However, they have access to a more

encompassing data set to construct their measure of robot intensity and we want to show that using our

measure leads to comparable results. In contrast to our analysis, they also include Eastern Germany.

We will follow their sample choice for the replication.

DFSW use a long difference approach where they analyze how increases in the robot exposure between

1994 and 2014 changed the labor market composition over the same time period. Their main findings

are that while overall employment is not affected by the adoption of new robots, there are distributional

consequences. Manufacturing jobs disappear but this is compensated by the creation of jobs in the non-

manufacturing sector. Additionally leveraging on individual level data, they can show that incumbent

workers are not displaced. New generations have to cope with changing labor demand by either obtaining

a college education and to move into non-routine cognitive jobs or settling with rather precarious low

skilled service sector jobs. Furthermore, they find evidence for skill polarization.

We replicate the part of their study focusing on regional employment effects of robotization. We suc-

cessfully replicate the main figure and two main tables of the previous study using specifications as close

as possible to DFSW. Figure A.5 plots the relationship between regional robot adoption and employment

change. The x-axis shows that change in the number of robots per thousand workers (conditional on em-

ployment shares in broad industry groups and federal state dummies). The y-axis displays the regional

employment growth. The correlation is slightly positive but not statistically significant. DFSW’s graph

shows similar results.

These (null-)findings are validated in a long-difference regression analysis where we regress a region’s

employment growth between 1994 and 2014 on changes of the region’s robot exposure (see Table A.21).

Again following DFSW, we additionally control for regional employment composition in the base year

(employment shares of nine industry groups, share of high-, mid- and low-skilled workers, share of

workers above fifty, share of female workers, share of foreign workers, 4 broad economic region dummies).

Furthermore, we successively add changes in the region’s trade exposure and changes in ICT capital stocks

as addition controls.

Table A.21 which is an exact replication of Table 2 of DFSW shows that robots do not have an

effect on total employment. The point estimate is always small and insignificant. The change of the

number of robots per worker between 1994 and 2014 does not predict employment changes over the same

time period. This effect holds controlling for a wide range of demographic characteristics of the region

(column 2) and controlling for other economic shocks such as changes in trade exposure (column 3) and
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Figure A.5: Region-level exposure to robots and employment growth.

Note: The graph plots the change in estimated number of robots per thousand workers (conditional on regional employment shares in nine
broad industry groups and federal state dummies) for 401 German counties (Kreise und kreisfreie Städte) and the growth rate of total
employment between between 1994 and 2014.

investments in ICT (column 4).22 These results are very close to the ones DFSW find.

Table A.22 distinguishes between the manufacturing and the non-manufacturing sector. Again following

DFSW, we use the same specifications as column 2-4 from Table A.21. However, the dependent variable is

now either the growth of manufacturing employment or the growth of non-manufacturing manufacturing

employment. While the effect of robots on manufacturing employment is slightly negative (column 2-4),

the effect of robots on non-manufacturing employment is positive (column 5-7).

The coefficient we find are smaller in size (maybe due to higher measurement error) but the general

pattern is close to DFSW. Note that we were not able to exactly reconstruct their ICT measure and

instead use changes in the regional ICT capital stock per worker.23

Finally, we analyze how robots affect employment composition relative to the region’s population. As

Table A.23 shows, we also find a shift away from manufacturing employment towards non-manufacturing

employment. However the overall trend is slightly more positive. The estimated effect of increasing

robot exposure on manufacturing employment hovers around zero (column 2-4) while employment in the

non-manufacturing sector is increasing (column 7-9).

What is interesting about this specification is that it allows us to calculate the effect a of single

robot. We find that each robot affects manufacturing between -0.3 and +0.1 jobs depending on the

specification. At the same time an additional robot is associated with the creation of between .9 and

1.5 non-manufacturing jobs. These numbers smaller than the results of DFSW who find that each robot

22We use the changes in the capital stock in information technology, communication technology and software
and databases normalized by employment from the EUKLEMS database. Since the time series only starts in
1995 we use the difference 1995-2014 in the long-difference approach.

23See Gallego, Kurer and Schöll (2020) for a detailed description of the construction of our ICT measure. Note
that EUKLEMS data only starts in 1995. Therefore, we use the difference between 1995-2014.
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replaces between 1.6-1.8 manufacturing jobs while it creates additional 1.4-1.8 non-manufacturing jobs.24

24We calculate the absolute number effects of one additional robot similar to Acemoglu and Restrepo (2020):

Employment2
Population2

“
Employment1
Population1

` β
∆robots

Employment1
1000

Assuming a constant population (population2 “ population1), dividing the point estimate as it was in percentage
points and rearranging:

Employment2 ´ Employment1 “
β̂

100

∆robots
Employment1{Population1

1000

The average employment to population ratio across all regions in our base year
(Employment1994{Population1994) is 0.301. Hence, each additional robot affects employment as:

∆Employment “ 10
β̂

0.301
∆robots
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Table A.21: Robot Exposure and Employment

Dependent variable:
% change in total employment between 1994 and 2014

(1) (2) (3) (4)
∆ robots per 1000 workers 0.132 0.023 0.050 ´0.189

(0.105) (0.119) (0.126) (0.139)

% manufacturing ´0.217˚
(0.123)

% food products 2.575˚˚˚ 2.517˚˚˚ 2.518˚˚˚
(0.383) (0.372) (0.386)

% consumer goods 0.439 0.493 0.419
(0.308) (0.316) (0.327)

% industrial goods 0.475˚˚ 0.412˚ 0.419˚˚
(0.207) (0.215) (0.212)

% capital goods 0.884˚˚˚ 0.825˚˚˚ 0.753˚˚˚
(0.248) (0.257) (0.257)

% construction 1.179˚˚˚ 1.116˚˚˚ 1.046˚˚˚
(0.307) (0.317) (0.322)

% services 0.260 0.252 ´0.294
(0.244) (0.246) (0.325)

% public sector 0.656˚˚˚ 0.635˚˚ 0.546˚˚
(0.250) (0.250) (0.255)

∆ net exports 0.588 0.422
(0.407) (0.446)

∆ ICT capital stock 6.050˚˚˚
(2.051)

Observations 401 401 401 401
R2 0.469 0.556 0.558 0.567

Note: Replication of Table 2 from Dauth et al. (2021). Regressions of total employment growth (in %) on the change
in robot exposure between 1994 and 2014. All specifications include a constant, broad region dummies indicating if the
region is located in the north, west, south, or east of Germany and demographic control variables, measured in the base
year 1994. The demographic control variables are the employment shares of female, foreign, age ą 50, medium skilled
(fachliche Tätigkeit), and high skilled (komplexe Spezialistentätigkeit, hochkomplexe Expertentätigkein) workers relative
to total employment (reference category: Helfertätigkeit). In column 1, we control for the manufacturing share in total
employment. In columns 2-4, we instead include broad industry shares to control better for regional industry patterns.
Industry shares cover the percentage of workers in eight broad industry groups (agriculture (reference); food products;
consumer goods; industrial goods; capital goods; construction; services; public sector) in the base year 1994. Columns 3
and 4 successively take into account the change in German net exports vis-à-vis China and Eastern Europe (in 1000 e per
worker), and the change in ICT capital stock (in 1000 e per worker), both between 1994 and 2014.
Standard errors reported in parenthesis are clustered at the level of 50 commuting zones. ˚pă0.1; ˚˚pă0.05; ˚˚˚pă0.01
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Table A.22: Composition Effects - Employment Growth
Dependent variable:

Employment growth %
Total Manufacturing Manufacturing Manufacturing Non-manufacturing Non-manufacturing Non-manufacturing
(1) (2) (3) (4) (5) (6) (7)

∆ robots per 1000 workers ´0.189 ´0.081 ´0.010 ´0.173 0.373˚˚ 0.389˚˚ 0.220
(0.139) (0.163) (0.174) (0.264) (0.185) (0.191) (0.212)

% manufacturing 2.518˚˚˚ 2.016˚˚ 1.863˚˚ 1.863˚˚ 3.012˚˚˚ 2.978˚˚˚ 2.979˚˚˚
(0.386) (0.786) (0.777) (0.767) (0.426) (0.414) (0.426)

% food products 0.419 ´0.361 ´0.217 ´0.268 1.032˚˚˚ 1.064˚˚˚ 1.012˚˚˚
(0.327) (0.672) (0.650) (0.632) (0.344) (0.345) (0.364)

% consumer goods 0.419˚˚ ´0.291 ´0.456 ´0.451 1.035˚˚˚ 0.999˚˚˚ 1.004˚˚˚
(0.212) (0.765) (0.754) (0.751) (0.220) (0.241) (0.241)

% industrial goods 0.753˚˚˚ 0.437 0.283 0.233 1.117˚˚˚ 1.083˚˚˚ 1.032˚˚˚
(0.257) (0.714) (0.702) (0.679) (0.268) (0.289) (0.299)

% capital goods 1.046˚˚˚ 0.371 0.204 0.157 1.318˚˚˚ 1.281˚˚˚ 1.232˚˚˚
(0.322) (0.903) (0.876) (0.866) (0.401) (0.429) (0.439)

% construction ´0.294 ´1.045 ´1.068 ´1.441˚ 0.541˚˚˚ 0.536˚˚ 0.151
(0.325) (0.844) (0.827) (0.750) (0.209) (0.217) (0.344)

% services 0.546˚˚ 0.084 0.031 ´0.031 0.716˚˚˚ 0.705˚˚˚ 0.641˚˚
(0.255) (0.697) (0.686) (0.668) (0.257) (0.260) (0.275)

% public sector 0.422 1.555˚˚˚ 1.442˚˚ 0.340 0.224
(0.446) (0.533) (0.565) (0.596) (0.631)

∆ net exports 6.050˚˚˚ 4.134 4.265
(2.051) (3.234) (2.927)

Observations 401 401 401 401 401 401 401
R2 0.567 0.352 0.361 0.364 0.644 0.645 0.647

Note: Replication of Table 3 Panel A from Dauth et al. (2021). Regressions of employment growth (in %) on the change
in robot exposure between 1994 and 2014 for different sectors. See Table A.21 for further details.
Standard errors reported in parenthesis are clustered at the level of 50 commuting zones. ˚pă0.1; ˚˚pă0.05; ˚˚˚pă0.01

Table A.23: Composition Effects - Employment to Population Ratio
Dependent variable:

Employment growth %
Total Manufacturing Manufacturing Manufacturing Non-manufacturing Non-manufacturing Non-manufacturing
(1) (2) (3) (4) (5) (6) (7)

∆ robots per 1000 workers 0.017 0.002 0.006 ´0.010 0.044˚ 0.041˚ 0.027
(0.056) (0.027) (0.026) (0.033) (0.023) (0.023) (0.034)

% manufacturing 0.202˚˚ 0.064 0.055 0.055 0.140˚˚ 0.147˚˚ 0.147˚˚
(0.095) (0.047) (0.046) (0.046) (0.071) (0.070) (0.070)

% food products ´0.053 ´0.092˚˚ ´0.083˚˚ ´0.088˚˚˚ 0.047 0.040 0.036
(0.083) (0.036) (0.035) (0.034) (0.056) (0.055) (0.057)

% consumer goods ´0.040 ´0.069 ´0.079˚ ´0.079˚ 0.031 0.038 0.039
(0.083) (0.048) (0.047) (0.046) (0.051) (0.052) (0.053)

% industrial goods 0.077 0.039 0.030 0.025 0.049 0.056 0.052
(0.085) (0.044) (0.043) (0.041) (0.053) (0.054) (0.056)

% capital goods ´0.096 ´0.00002 ´0.010 ´0.015 ´0.084 ´0.077 ´0.081
(0.098) (0.058) (0.057) (0.056) (0.068) (0.070) (0.072)

% construction ´0.169˚˚ ´0.113˚˚ ´0.115˚˚ ´0.153˚˚˚ 0.015 0.016 ´0.016
(0.084) (0.054) (0.053) (0.047) (0.042) (0.043) (0.061)

% services ´0.003 ´0.025 ´0.028 ´0.034 0.034 0.037 0.031
(0.095) (0.038) (0.038) (0.036) (0.071) (0.072) (0.073)

% public sector 0.001 0.092 0.081 ´0.070 ´0.080
(0.113) (0.072) (0.074) (0.071) (0.072)

∆ net exports 0.776 0.419 0.357
(0.581) (0.275) (0.503)

Observations 401 401 401 401 401 401 401
R2 0.499 0.383 0.386 0.389 0.653 0.653 0.654

Note: Replication of Table 3 Panel B from Dauth et al. (2021). Regressions of change in the employment to population
ratio on the change in robot exposure between 1994 and 2014 for different sectors. See Table A.21 for further details.
Standard errors reported in parenthesis are clustered at the level of 50 commuting zones. ˚pă0.1; ˚˚pă0.05; ˚˚˚pă0.01
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