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Abstract

This paper studies Laplace-type estimators that are based on simulated moments. It
shows that confidence intervals using these methods may have coverage which is far from
the nominal level. A neural network may be used to reduce the dimension of an initial
set of moments to the minimum number that maintains identification. When Laplace-
type estimation and inference is based on these neural moments, confidence intervals have
statistically correct coverage in most cases studied, with only small departures from correct
coverage. The methods are illustrated by an application to a jump diffusion model for
returns of the S&P 500 index.
Keywords: neural networks; Laplace type estimators; simulated moments; approximate
Bayesian computing
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1 Introduction

It has long been known that classical inference methods based on first-order asymptotic the-
ory, when applied to the generalized method of moments estimator, may lead to unreliable
results, in the form of substantial finite sample biases and variances, and incorrect coverage
of confidence intervals, especially when the model is overidentified (Tauchen (1986), Hall and
Horowitz (1996), Hansen, Heaton, and Yaron (1996), Donald, Imbens, and Newey (2009)).
In another strand of the literature, Chernozhukov and Hong (2003) introduced Laplace type
estimators, which allow for estimation and inference with classical statistical methods (those
which are defined by optimization of an objective function) to be done by working with the
elements of a tuned Markov chain, so that potentially difficult or unreliable steps such as
optimization or computation of asymptotic standard errors, etc., may be avoided. A third
important strand of literature is simulation-based estimation. The strands of moment-based
estimation, simulation, and Laplace type methods meet in certain applications. The code by
Gallant and Tauchen (Gallant and Tauchen (2002)) for efficient method of moments estima-
tion (Gallant and Tauchen (1996)), which has been used in numerous papers, is an example.
Another is Christiano, Trabandt, and Walentin (2010) (see also Christiano, Eichenbaum, and
Trabandt (2016)), which proposes a Laplace type estimation methodology that uses simulated
moments which are defined in terms of impulse response functions for estimation of macroe-
conomic modes. Very similar methodologies may be found in the very broad Approximate
Bayesian Computing literature, some of which uses MCMC methods and criterion functions
that involve simulated moments (e.g., Marjoram et al. (2003)).

Given the uneven performance of inference in classical GMM applications, one may wonder
how reliable are inferences made using the combination of Laplace type methods and simulated
moments. This paper provides evidence that confidence intervals derived from such estimators
may have poor coverage in some cases, and it provides evidence that a dimension reduction
technique based computing simulated moments using a trained neural net can cause inferences
to become much more reliable. The paper concludes with an example that uses the methods
to estimate a jump-diffusion model for returns of the S&P 500 index.

The next section reviews how Laplace type methods may be used with simulated moments,
and Section 3 then discusses how neural networks may be used to reduce the dimension of
the moment conditions. Section 4 presents four simple models, and Section 5 gives results for
the simple models. Section 6 illustrates the methods in the context of an empirical analysis
of a model of more complexity, and a final section summarizes the conclusions.
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2 Results and Discussion

2.1 Simulated Moments, Indirect Likelihood, and Laplace Type Inference

This section relies on results from the part of the simulation-based estimation literature that
bases estimation on a statistic, including McFadden (1989), C. Gouriéroux, Monfort, and Re-
nault (1993), Smith (1993) and Gallant and Tauchen (1996), among others, which is reviewed
in Jiang and Turnbull (2004)). Suppose there is a model M(θ) which generates data from
a probability distribution P (θ) which depends on the unknown parameter vector θ. M(θ) is
fully known up to θ, so that we can make draws of the data from the model, given θ. Let
Y = Y (θ) be a sample drawn at the parameter vector θ, where θ ∈ Θ ⊂ Rk and Θ is a known
parameter space. Suppose we have selected a finite dimensional statistic Z = Z(θ) = Z(Y (θ))
upon which to base estimation, and assume that the statistic satisfies a central limit theorem,
uniformly, for all values of θ of interest:

√
n (Z − EθZ)→d N(0, Σ̄(θ)) (1)

Let Zs(θ) = Z(Y s(θ)) be the statistic evaluated using an artificial sample drawn from
the model at the parameter value θ. This statistic has the same asymptotic distribution as
does Z(θ), and furthermore, the two statistics are independent of one another. With S such
simulated statistics, define m(θ) = Z(θ) − S−1∑

s Z
s(θ) and V̄ (θ) = (1 + S−1)Σ̄(θ). We can

easily obtain
√
nm(θ)→d N(0, V̄ (θ)). (2)

Now, suppose we have a real sample which was generated at the unknown true parameter
value θ0, and let Ẑ be the associated value of the statistic. Define m̂(θ) = Ẑ − S−1∑

s Z
s(θ).

With this, and eqn. 2,we can define the indirect likelihood function1

L = L(θ|Ẑ) =
∣∣∣2π ˆ̄V (θ)

∣∣∣−1/2
exp(−1

2H) (3)

where

H = H(θ|Ẑ) = n · m̂(θ)T ˆ̄V −1(θ)m̂(θ), (4)

where ˆ̄V (θ) is a consistent estimate of V̄ (θ).
To estimate V̄ (θ), one possibility is to use a fixed sample-based estimate that does not

rely on an estimate of θ0 (see, for example, Christiano, Trabandt, and Walentin (2010) and
Christiano, Eichenbaum, and Trabandt (2016)). Another possibility is to (1) compute the

1These definitions and notation are loosely based on Jiang and Turnbull (2004).
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estimate ˆ̄Σ(θ) of the covariance matrix in 1 as the sample covariance of R draws of
√
nZs(θ):

ˆ̄Σ(θ) = 1
R

R∑
r=1

(
√
nZr(θ)−M)(

√
nZr(θ)−M)′, (5)

where M = 1
R

∑
r

√
nZr(θ) is the sample mean of the draws, and then (2) multiply the result

by 1 + S−1 to obtain the estimate

ˆ̄V (θ) = (1 + S−1) ˆ̄Σ(θ). (6)

This estimator may be used in a continuously updating fashion, by updating ˆ̄V (θ) in eqns.
3 or 4 every time the respective function is evaluated. Alternatively, if we obtain an initial
consistent estimator of θ0, then ˆ̄V (θ) can be computed at this estimate, and kept fixed in
subsequent computations, in the usual two-step manner. Note that, if a fixed covariance
estimator is used, then the maximizer of L is the same as the minimizer of H.

Extremum estimators may be obtained by maximizing logL, or minimizing H. Laplace
type estimators, as defined by Chernozhukov and Hong (2003), may be defined by setting
their general criterion function, Ln(θ), as defined in their Section 3.1, to either logL, or
−1

2H. Once this is done, then the practical methodology is to use Markov chain Monte Carlo
(MCMC) methods to draw a chain C = {θr}, r = 1, 2, ..., R, given the sample statistic Ẑ,
where acceptance/rejection is determined using the chosen Ln(θ), along with a prior, and
standard proposal methods2. This paper will rely directly on the theory and methods of
Chernozhukov and Hong (2003), just using the criterion functions presented above to define
the specific Laplace type estimators. In the following, a primary use of the Chernozhukov and
Hong (2003) methodology will be in order to obtain confidence intervals. For a function f(θ),
Theorem 3 of Chernozhukov and Hong (2003) proves that a valid confidence interval can be
obtained by using the quantiles of {f(θr)}r=1,2,..R, based on the final chain C = {θr}, r =
1, 2, ..., R. For example, a 95% confidence interval for a parameter θj is given by the interval
(Qθj

(0.025), Qθj
(0.975)), where Qθj

(τ) is the τth quantile of the R values of the parameter θj
in the chain C.

2.2 Neural Moments

The dimension of the statistics used for estimation, Z, can be made minimal (equal to the di-
mension of the parameter to estimate, θ) by filtering an initial set of statistics, say,W , through
a trained neural net. Details of this process are explained in Creel (2017) and references cited

2It may be noted that methods other than MCMC may be used to generate the set of draws from the
posterior, C. For example, one might use sequential Monte Carlo. Point estimation and inference using C
remains the same regardless of how C is generated.
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therein, and the process is made explicit in the code archive which accompanies this paper3.
A summary of this process is: Suppose that W is a p vector of statistics W = W (Y ), with
p ≥ k, where k = dim θ. We may generate a large sample of (W, θ) pairs, following:

1. draw θs from the parameter space Θ, using some prior distribution (e.g., a uniform
distribution over Θ).

2. draw a sample Y s from the model M(θ) at θs

3. compute the vector of raw statistics W (Y s).

We can repeat this process to generate a large data set {θs,W s}, s = 1, 2, ..., S, which can be
used to train a neural network which predicts θ, given W . This process can be done without
knowledge of the real sample data, and can in fact be done before the real sample data is
gathered. The prediction from the net will of the same dimension as θ, and if the net is of an
appropriate configuration and is well-trained using a squared error loss function, the output
of the net will be a very accurate approximation to the posterior mean of θ conditional on
W. The output of the net may be represented as θ̂ = f(W, φ̂), where f(W,φ) : Rp → Rk is
the neural net, with parameters φ, that takes as inputs the p statistics W,and has k = dim θ

outputs. The parameters of the net, φ, are adjusted using standard training methods from the
neural net literature to obtain the trained parameters, φ̂. Then we can think of θ̂ = f(W, φ̂) as
a k−dimensional statistic which can be computed essentially instantaneously once provided
with W . We will use this statistic θ̂ as the Z of the previous section. Because the statistic is
an accurate approximation to the posterior mean conditional on W (supposing the net was
well trained), it has two virtues: it is informative for θ (supposing that the initial statistics W
contain information on θ) and it has the minimal dimension needed to identify θ. From the
related GMM literature, GMM methods are known to lead to inaccurate inference when the
dimension of the moments is large relative to the dimension of the parameter vector (Donald,
Imbens, and Newey (2009)). Use of a neural net as described here reduces the dimension of
the statistic to the minimum required for identification.

When the statistic Z is the output of a neural net f(W,φ), where the parameter vector
of the net, φ, can have a very high dimension (hundreds or thousands of parameters are not
uncommon) the simulated likelihood of eqn. 3 will be a wavy function, with many local max-
ima. This will occur even if the net is trained using regularization methods. Because of this
waviness, gradient-based methods will not be effective when attempting to maximize logL
or to minimize H (eqns. 3 and 4), and attempts to compute the covariance matrix of the
estimator that rely on derivatives of the log likelihood function will also fail. However, deriva-
tive free methods4 can be used to compute extremum estimators, to obtain point estimators

3See https://github.com/mcreel/SNM. The function which specifies and trains the neural net is
https://github.com/mcreel/SNM/blob/master/src/MakeNeuralMoments.jl

4Simulated annealing (Goffe, Ferrier, and Rogers (1994)) is used in what follows.
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or to initialize a MCMC chain, and the simulation-based estimator of the covariance matrix
Σ̄(θ) of eqn. 1 discussed in the previous section does not depend on derivatives. A major
motivation of using Laplace-type estimators in the first place is to overcome problems of local
extrema, as Chernozhukov and Hong (2003) emphasize. It is worth noting that the output of
the net evaluated at the real sample statistic, θ̂, will also provide an excellent starting value for
computing extremum estimators, or for initializing a MCMC chain. Likewise, the covariance
estimator of eqn. 6 can be used to define an very effective random walk multivariate normal
proposal density for MCMC, by drawing the trial value θs+1 from N(θs, ˆ̄V ), where θs is the
current value of the chain.

Creel (2017) used neural moments to compute a Laplace-type estimator, similarly to what
is done here. That paper used nonparametric regression quantiles applied to the set of draws
from the Laplace-type posterior draws in order to compute confidence intervals, and the
posterior draws were generated by a procedure similar to sequential Monte Carlo, rather than
MCMC. Also, the metric used for selection of particles was different from the GMM criterion,
which is what is used here. The use of nonparametric regression quantiles is very costly
to study by Monte Carlo. Thus, this paper focuses on straightforward use of the methods
that Chernozhukov and Hong (2003) focus on: traditional MCMC using the GMM criterion
function, and confidence intervals are computed using the direct quantiles from the posterior
sample. These simplifications give a simpler and more tractable procedure that can reasonably
be studied and verified by Monte Carlo.

2.3 Examples

This section presents five simple example models that are used to investigate the performance
of the proposed methods. For all models, the code used (for the Julia language5) is available
in an archive6, where the details of each example may be consulted. The example models also
serve as templates that may be used to apply to proposed methods to models of the reader’s
interest: one simply needs to provide similar functions to what is found in the directory for
each example, for the model of interest. These are, fundamentally, 1) a prior from which to
draw the parameters; 2) code to simulate the model given the parameter value, and finally,
3) code to compute the initial statistics, W, given the data generated from the model.

5https://julialang.org/
6https://github.com/mcreel/SNM
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2.3.1 Stochastic Volatility

The simple stochastic volatility (SV) model is

yt = φ exp(ht/2)εt
ht = ρht−1 + σut

where εt and ut are independent standard normal random variables. We use a sample size of
500 observations, and the true parameter values are θ0 = (φ0, ρ0, σ0) = (0.692, 0.9, 0.363).
These parameter values have been chosen to facilitate comparison with results of a number
of previous studies that have used the SV model to check properties of estimators. For
estimation, 11 statistics are used to form the initial set, W, which include moments of y and
of |y| , as well as the estimated parameters of a HAR auxiliary model (Corsi (2009)) fit to |y|.7

2.3.2 Dynamic Panel Data

The dynamic panel data (DPD) model is borrowed from Forneron and Ng (2018), who adapted
the model of Christian Gouriéroux, Phillips, and Yu (2010). The model is

yit = αi + ρyit−1 + βxit + σεit

where αi, xit, and εit are all mutually independent standard normal random variables, for
i = 1, 2, ..., n, and t = 1, 2, ..., T. We set T = 5 and n = 100. For initialization, yi0 is generated
as a draw from it’s unconditional distribution, for each i. We estimate the parameter vector
θ0 = (ρ0, β0, σ

2
0), where the true values are 0.6, 1.0 and 2.0, respectively. This is the same

design as is used by Forneron and Ng (2018) in their Table 3, to facilitate comparison. Eight
statistics are included in the initial set, W , for estimation of the three parameters. The first
four are the three ordinary least squares estimates of the regression yit = φ1 +φ2yit−1 +φ3xit+
ηit, which simply ignores the panel data structure, along with the estimated variance of the
error term. The next four statistics are the fixed effects estimator, obtained by subtracting
cross sectional means from all variables.8

2.3.3 ARMA

The next example is a simple ARMA(1,1) model

xt = αxt−1 + ft − βft−1

ft ∼ IIN(0, σ2),
7See the file https://github.com/mcreel/SNM/blob/master/examples/SV/SVlib.jl for details.
8Details are in the file https://github.com/mcreel/SNM/blob/master/examples/DPD/DPDlib.jl.
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with true values θ0 = (α0, β0, σ
2
0) = (0.95, 0.5, 1.0). The sample size is n = 300. The 13

statistics used to define the initial set, W, include sample moments and correlations, OLS
estimates of an AR(1) auxiliary model fit to xt, as well as an another AR(1) model fit to the
residuals of the first model, plus partial autocorrelations of xt9

2.3.4 Mixture of Normals

The final example model is a mixture of normals (MN). The variable y is drawn from the distri-
bution N(µ1, σ

2
1) with probability p and from N(µ1−µ2, σ

2
1+σ2

2) with probability 1−p. Sam-
ples of 1000 observations are drawn. The true parameter values are θ0 = (µ1, σ1, µ2, σ2, p) =
(1.0, 1.0, 0.2, 1.8, 0.4), and the prior restricts all parameters to be positive. Thus, the param-
eterization and the prior together impose that the first component has a larger mean and a
lower variance than does the second component, in order to ensure identification. Also, the
probability that either component is sampled is restricted to be at least 0.05. The 15 auxiliary
statistics are the sample mean, standard deviation, skewness, kurtosis„ and 11 quantiles of
y.10

2.3.5 Auction Model

Li (2010) proposes to use II for estimation of structural econometric models, and illustrates
with a Monte Carlo example of estimation of the parameters of a Dutch auction, where only
the winning bid is observed. We use the the same data generating process as in Li’s paper,
for comparability. In particular, we observe a sample of n i.i.d. auctions. At each auction
i = 1, 2, ..., n, the quality xi of the item being auctioned is observed as xi = 4u2

i , where ui
follows a uniform (0, 1) distribution. Given this signal, N agents make a bid based on their
private value of the item. Their privates values are mutually independent and come from
a common exponential distribution with mean exp(θ0 + θ1xi). The equilibrium strategy for
the winning bid is then b∗i = v∗i −

∫ v∗
i

0 FN−1(u|xi)du/FN−1(v∗i |xi) where v∗i is the highest
private valuation, and F (·|xi) is the exponential distribution function. For a given value of
N , symbolic computation software can be used to obtain an analytic solution for the winning
bid, so simulations can be generated very quickly. The observed data are the n values of
{xi, b∗i }, and we seek to estimate θ0 and θ1. The Monte Carlo results are for the following
design: n = 100, N = 6, and the true parameter values to θ0 = 1.0 and θ1 = 0.5. The auxiliary
statistics are the regression coefficients and estimated standard deviation of the error of the
auxiliary model log b∗i = β0 +β1xi+β2x

2
i +εi, plus the mean of winning bids and the standard

deviation, skewness and kurtosis of the residuals of the auxiliary regression. Thus, we have
seven statistics to identify the two parameters11

9Details are in the file https://github.com/mcreel/SNM/blob/master/examples/ARMA/ARMAlib.jl.
10Details are in the file https://github.com/mcreel/SNM/blob/master/examples/MN/MNlib.jl.
11Details are in the file https://github.com/mcreel/SNM/blob/master/examples/Auction/Auctionlib.jl.
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2.4 Monte Carlo Results

This section reports results for Laplace type MCMC estimation of each of the test models,
using the GMM-like criterion function H (see eqn. 4) as the Ln of Chernozhukov and Hong
(2003). Results using the criterion L (see eqn. 3) are qualitatively very similar, and are thus
not reported. For three of the test models (SV, DPD and ARMA) the covariance matrix
V̄ (θ) was estimated using eqn. 6 in a continuous updating fashion, at each parameter trial.
For the MN and Auction models, the traditional two-step procedure was used. Concretely,
the parameter vector θ was consistently estimated using arg minH(θ), where ˆ̄V (θ) in eqn.
4 was set to an identity matrix, using simulated annealing to do the minimization. Then,
the resulting estimate θ̂ was used to compute ˆ̄V (θ̂) using eqn. 6, and this was kept fixed for
the remainder of the MCMC computations. This makes the MCMC iterations faster, as the
simulation-based update of the covariance estimate at each MCMC step is avoided. For all
of the test models, the number of artificial samples used to train the neural net was 20,000
times the number of parameters of the model. This is actually a fairly small number, given
that generating the samples and training the nets is an operation that takes only 10 minutes
or less for the test models. The reason that a larger number of samples was not used is that
it was desired to obtain results that may be more relevant for cases where it is more costly
to simulate from the model, as is the case of the jump diffusion model studied in the next
section.

For the SV, DPD and ARMA models, two versions are reported: first, using the initial
statistics,W , and, second, using the statistics Z which are the output of the trained neural net.
For the MN and Auction models, the MCMC estimators using W were not computed, as this
is quite time consuming when the dimension of the statistics is large, and, from the previous
models, it was already clear that using the neural statistics dominated using the full vector
of statistics. Results include root mean squared error (RMSE) and bias for the extremum
estimator which minimizes H, as this was found to have slightly better (but qualitatively
very similar) performance than the posterior mean or median of the tuned MCMC chain, and
coverage of 90, 95 and 99% confidence intervals computed using the appropriate quantiles
of the final tuned MCMC chain, following Chernozhukov and Hong (2003). For the SV,
DPD and ARMA models, 500 Monte Carlo replications were used. For the MN and Auction
models, 1000 replications were used, as, for these models, the procedures were less costly due
to the use of two step estimation and the omission of the computations using the full vector
of statistics.

Table 1 reports RMSE for the test models. RMSE is in most cases not dramatically
different between estimators that use the full set of statistics and those based on the neural
net filtered statistics, and there is no clear pattern in the differences that do exist. In six of
nine cases where the comparison may be made, the neural net filtered statistics lead to lower
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RMSE, but in most instances, the difference is fairly small. There is no clear reason to prefer
one version based on RMSE. Table 2 reports bias. In all cases, bias is low, relative to the true
parameter values, and there is no clear pattern of differences between estimators based on W
and those based on Z. In some cases, the results of these two tables may be compared with
findings of other studies. For the SV model, Creel and Kristensen (2012), Table 3, collects
results from a number of studies that report Monte Carlo results for the SV model. The
RMSE and bias results reported here are very competitive with what is summarized there.
The DPD results may be compared with Forneron and Ng (2018), Table 3. The present
results are overall very similar to those they report, except that the bias in the estimation
of the σ2 parameter is considerably smaller using the methods proposed in this paper. The
ARMA results may be compared with the middle panel of Table 1 of Fiorentini, Galesi, and
Sentana (2018). The procedures used here lead to somewhat less bias, most notably for the
β parameter, though the differences are not great. Finally, for the Auction model, bias and
RMSE are improved compared to the results reported in Li (2010), Tables 1 and 2, especially
for the θ0 parameter. It should be noted that the objectives of the referenced studies did not
necessarily include the identification of statistics (the W of this paper) that lead to the lowest
RMSE or bias possible for a given method, but, rather to compare methods using a given set
of statistics. This paper, in general, uses different raw statistics than do the cited studies,
to highlight the fact that neural statistics can combine the information contained in a larger
group of raw statistics to lead to a relatively efficient estimator. The reason for making these
comparisons is simply to indicate that the methods proposed in this paper lead to results that
are competitive, in terms of low bias and efficiency, with what is in the literature.

The main focus of this paper is, however, the reliability of inferences. Results for confidence
interval coverage are presented in Tables 3, 4 and 5, for 90, 95 and 99 percent intervals,
respectively. Monte Carlo confidence interval coverage is the proportion of times that the
true parameter value is not rejected, at the chosen confidence level. Before interpreting
results, we remind the reader that R Monte Carlo replications were done, where R = 500 for
the SV, DPD and ARMA models, and R = 1000 for the MN and Auction models. Critical
values for the hypothesis that a 100·p% confidence interval has correct coverage can be found
using the quantiles of a binomial(R,p) random variable. In Tables 3-5, cases where correct
coverage is rejected at the 1% significance level are indicated by italic typeface. Here, we see
some important differences. Coverage is poor for estimators that directly use the full set of
moments, W, for the SV and ARMA models, where correct coverage is rejected in all cases
except for one of 18 (the 90% interval for the φ parameter of the SV model). For the DPD
model, the estimators based on W and on Z both perform well, as correct coverage is never
rejected. For the five test models, when the neural net statistics are used, correct coverage
is rejected in 10 of 48 cases. Eight of these cases correspond to the MN test model. When
correct coverage is rejected, there are no cases where the departure from correct coverage
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Table 1: RMSE of arg minH, using raw (W ) or neural net (Z) statistics

Model Parameter true value W Z

SV
φ 0.692 0.123 0.075
ρ 0.90 0.086 0.072
σ 0.363 0.138 0.133

DPD
ρ 0.6 0.035 0.034
β 1.0 0.075 0.067
σ2 2.0 0.138 0.151

ARMA
α 0.95 0.030 0.046
β 0.5 0.078 0.081
σ2 1.0 0.099 0.086

MN

µ1 1.0 na 0.029
σ1 0.2 na 0.114
µ2 0.0 na 0.029
σ2 2.0 na 0.073
p 0.4 na 0.034

Auction θ1 1.0 na 0.031
θ2 0.5 na 0.022

is large, and in all cases, confidence intervals contain the true parameter more often that
what corresponds to the nominal level, so the error is one of conservatism, with Type I error
occurring less frequently than what would be correct12.

2.5 Application: A Jump Diffusion Model of S&P 500 Returns

The previous examples are all small models that are not costly to simulate. As an example
of a more computationally challenging model, this section presents results for estimation of
a jump diffusion model of S&P 500 returns. Solving and simulating13 the model for each
MCMC trial parameter acceptance/rejection decision takes about 13 seconds, so training a
net and estimation by MCMC is somewhat costly, requiring about 2 days to complete using a
moderate power workstation and threads-based parallelization, where possible. This example
is intended to show that the methods are feasible for research projects where simulation from
the model is costly, but not extremely so.

The jump diffusion model is
12The results for the MN model can be improved if a larger set of artificial data is used to train the neural

net. When the training/testing size was increased 10 fold, the number of rejections of correct coverage reduced
to 5 out of 15, instead of 8 out of 15, as reported in the tables.

13The model is solved and simulated using the SRIW1 strong order 1.5 solver from the DifferentialEquations.jl
package for the Julia language.
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Table 2: Bias of arg minH, using raw (W ) or neural net (Z) statistics

Model Parameter true value W Z

SV
φ 0.692 0.011 -0.018
ρ 0.90 0.001 0.003
σ 0.363 0.012 -0.005

DPD
ρ 0.6 -0.001 0.002
β 1.0 0.000 0.000
σ2 2.0 0.010 0.003

ARMA
α 0.95 -0.014 -0.015
β 0.5 0.008 0.001
σ2 1.0 0.004 -0.006

MN

µ1 1.0 na 0.008
σ1 0.2 na 0.034
µ2 0.0 na 0.006
σ2 2.0 na -0.024
p 0.4 na 0.005

Auction θ1 1.0 na 0.013
θ2 0.5 na 0.004

dpt = µdt+
√

exphtdW1t + JtdNt

dht = κ(α− ht) + σdW2t

where pt is log price, ht is log volatility, Jt is jump size, and Nt is a Poisson process with
jump intensity λ0. W1t and W2t are two standard Brownian motions with correlation ρ.
When a jump occurs, its size is Jt = aλ1

√
expht, where a is 1 with probability 0.5 and −1

with probability 0.5. So, jump size depends on the current standard deviation, and jumps are
positive or negative with equal probability. Log price, pt, is simulated using 5 minute tics, and
the observed log price adds a N(0, τ2) measurement error to pt. From this model, 1000 daily
observations on returns, realized volatility (RV), and bipower variation (BV) are generated.
Both RV and BV are informative about volatility , and, because BV is somewhat robust to
jumps, while RV is not, the difference between the two can help to identify the frequency
and size of jumps (Barndorff-Nielsen and Shephard (2002)). The model is simulated on a
continuous 24 hour basis, and returns are computed using the change in daily log closing
price, for trading days only. Overnight periods and weekends are simulated, but returns, RV
and BV are recorded only at the close of trading days. In summary, the seven parameters
are θ = (µ, κ, α, σ, ρ, λ0, λ1, τ), and simulated data consists of 1000 daily observations on
returns, RV and BV. The model studied here is quite similar to that studied in Creel and
Kristensen (2015) and Creel (2017), except that the drift process is simplified to be constant,
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Table 3: 90% confidence interval coverage using H to define the Laplace type estimator, using
raw (W ) or neural net (Z) statistics. Italic typeface indicates that correct coverage is rejected
at the 1% level.

Model Parameter W Z

SV
φ 0.876 0.936
ρ 0.732 0.894
σ 0.762 0.88

DPD
ρ 0.888 0.896
β 0.900 0.914
σ2 0.908 0.898

ARMA
α 0.786 0.914
β 0.814 0.938
σ2 0.808 0.908

MN

µ1 na 0.935
σ1 na 0.930
µ2 na 0.930
σ2 na 0.932
p na 0.947

Auction θ1 na 0.915
θ2 na 0.921

and the jump process is modeled somewhat differently, with constant intensity, and with the
magnitude of a jump depending on the current instantaneous volatility. These changes were
motivated by the results of the previous papers, and by the better tractability of the present
specification.

The raw statistics, W, which are used to train the net and to do estimation are a combina-
tion of coefficients from auxiliary regressions between the three observed variables, summary
statistics, and functions of quantiles of the variables. It is possible to tune the choice of statis-
tics through experimentation with artificially generated data, to ensure that the parameters
are all well identified, and it is possible to check that statistics have a minimal importance,
by examining the weights of the first layer of the neural net14. The details of the 25 statistics
which are used are found in the file JDlib.jl (this same file also gives details of the priors,
which are uniform over fairly broad supports, for all parameters). The importances of the
statistics are seen in the figure ImportanceOfStatistics.svg.

The model was fit to S&P500 data15 from 16 Dec. 2013 to 05 Dec. 2017, which is an
interval of 1000 trading days, the same as was used to train the neural net. The data may be
seen in Figure 1, where we observe typical volatility clusters and some jumps. For example,
the Brexit drop of June, 2016 is clearly seen, and the more extreme spike in RV versus BV at

14See the file Importance.jl for how to do this, as well as discussion in Creel (2017).
15The data source is the Oxford-Man Institute’s realized library, v. 0.2, https://realized.oxford-

man.ox.ac.uk/images/oxfordmanrealizedvolatilityindices-0.2-final.zip

13

https://github.com/mcreel/SNM/blob/master/examples/JD/JDlib.jl
https://github.com/mcreel/SNM/blob/master/examples/JD/ImportanceOfStatistics.svg
https://github.com/mcreel/SNM/blob/master/src/Importance.jl
https://realized.oxford-man.ox.ac.uk/images/oxfordmanrealizedvolatilityindices-0.2-final.zip
https://realized.oxford-man.ox.ac.uk/images/oxfordmanrealizedvolatilityindices-0.2-final.zip


Table 4: 95% confidence interval coverage using H to define the Laplace type estimator, using
raw (W ) or neural net (Z) statistics. Italic typeface indicates that correct coverage is rejected
at the 1% level.

Model Parameter W Z

SV
φ 0.916 0.966
ρ 0.796 0.950
σ 0.824 0.950

DPD
ρ 0.966 0.956
β 0.966 0.960
σ2 0.954 0.946

ARMA
α 0.838 0.966
β 0.856 0.966
σ2 0.880 0.954

MN

µ1 na 0.963
σ1 na 0.962
µ2 na 0.970
σ2 na 0.970
p na 0.977

Auction θ1 na 0.962
θ2 na 0.960

this point illustrates the fact that jumps can be identified by comparing the two.
The estimation results are in Figure 2, which shows nonparametric plots of the marginal

posterior density for each parameter, along with posterior means and medians, and 90%
confidence intervals defined by the limits of the green areas. All posteriors are considerably
more concentrated than are the priors. Drift (µ) is not significantly different from zero. There
is quite a bit of persistence in volatility, as mean reversion, κ, is estimated to be between
0.09 and 0.13. Leverage (ρ) is quite strong, estimated between -0.85 and -0.65. The jump
probability per day (λ0) is estimated to be between 0.01 and 0.04, with the point estimate
being approximately 0.02. So, jumps are a statistically important feature of the model. When
a jump does occur, its magnitude (λ1) is approximately 3.2 times the current instantaneous
standard deviation. An interesting result is that the standard deviation of measurement error,
τ , is estimated to be approximately 0.01. The hypothesis that this parameter is zero cannot
be rejected at the 10% significance level, but most posterior probability is on positive values.
Thus, it appears that it is a safer option to allow for measurement error in the model, as its
omission could bias the estimates of the other parameters.

Creel (2017) uses similar methods to analyze the S&P 500 data over the Jan. 2015 - May
2016 interval. That paper found that mean volatility (α) was higher than the estimate here,
the variance of volatility (σ) was lower than that found here, and that mean reversion (κ)
was faster than that estimated here. These results are consistent with what is seen in Figure

14



Figure 1: Plot of returns, RV and BV, S&P 500, 16 Dec. 2013 - 05 Dec. 2017.

(a) Returns

(b) RV and BV
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Table 5: 99% confidence interval coverage using H to define the Laplace type estimator, using
raw (W ) or neural net (Z) statistics. Italic typeface indicates that correct coverage is rejected
at the 1% level.

Model Parameter W Z

SV
φ 0.936 0.984
ρ 0.848 0.988
σ 0.888 0.984

DPD
ρ 0.996 0.994
β 0.988 0.986
σ2 0.996 0.978

ARMA
α 0.898 0.998
β 0.916 0.988
σ2 0.920 0.992

MN

µ1 na 0.996
σ1 na 0.989
µ2 na 0.993
σ2 na 0.995
p na 0.996

Auction θ1 na 0.991
θ2 na 0.987

1. The Jan. 2015 - May 2016 interval is one of relatively high volatility, with less pronounced
clusters. For this shorter data window, volatility is higher on average and less variable, with
less clustering. The differences in the estimated parameters between the earlier paper and the
results here are consistent with these facts.

3 Conclusions

This paper has shown, through Monte Carlo experimentation, that confidence intervals based
upon quantiles of a tuned MCMC chain may have coverage which is far from the nominal
level, even for simple models with few parameters. It has proposed to use neural networks
to reduce the dimension of an initial set of moments to the minimum number of moments
needed to maintain identification. When estimation and inference using well-known MCMC
methods and the Laplace version of GMM is based on neural moments, confidence intervals
have statistically correct coverage in most cases studied by Monte Carlo, and departures from
correct coverage are small. The methods have been illustrated by the estimation of a jump
diffusion model for S&P 500 data.

It is to be noted that the step of filtering moments though a neural net is very easy and
quick to perform using modern deep learning software environments. The software archive
that accompanies this paper provides a function for automatic training, requiring no human
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Figure 2: MCMC results for the jump-diffusion model of S&P 500 data. Posterior mean in
blue, posterior median in black. The green-yellow borders define the limits of a 90% confidence
interval.

(a) µ (b) κ

(c) α (d) σ

(e) ρ (f) λ0

(g) λ1 (h) τ
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intervention. It only requires functions that provide simulated moments computed using data
drawn from the model at parameter values drawn from the prior. Filtering moments through
a neural net gives an informative, minimal dimension statistic as the output. This provides
a convenient and automatic alternative to moment selection procedures. Uninformative mo-
ments are essentially removed, and correlated moments are combined.

This paper has examined how inference using quantiles of traditional MCMC chains may be
improved when neural moments are used. It seems likely that other inference methods which
are used with simulation-based estimators, such as Hamiltonian Monte Carlo and sequential
Monte Carlo, among others, may be made more reliable if neural moments are used, as
dimension reduction while maintaining relevant information is likely to be generally beneficial.
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