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Abstract

Women are underrepresented in the top ranks of the scientific career,
including the biomedical disciplines. This is not generally the result of
explicit and easily recognizable gender biases but the outcome of de-
cisions with many components of unconscious nature that are difficult
to assess. Evidence suggests that implicit gender stereotypes influence
perceptions as well as decisions. To explore these potential reasons of
women’s underrepresentation in life sciences we analyzed the outcome
of gender-science and gender-career Implicit Association Tests (IAT)
taken by 2,589 scientists working in high profile biomedical research
centers. We found that male-science association is less pronounced
among researchers than in the general population (34% below the level
of the general population). However, this difference is mostly explained
by the low level of the IAT score among female researchers. Despite
the highly meritocratic view of the academic career, male scientists
have a high level of male-science association (261% the level among
women scientists), similar to the general population.
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Lluis Companys 23, Barcelona 08010, Spain

1



1 Introduction

Dozens of indicators show that women are underrepresented in public life
and managerial positions in private companies. Women are also underrep-
resented in the academic community: while there is an increasing number of
Ph.D. degrees awarded to women, the proportion of women decreases from
the postdoctoral level to assistant professors, and ever further, to full pro-
fessor positions. For instance women obtain 45% of doctorates in science,
mathematics and engineering but they only represent 30% of the senior fac-
ulty (National Science Foundation (US), 2016). This phenomenon, perva-
sive in other disciplines such as biology (National Science Foundation (US),
2018), is sometimes referred to as a “leaky pipeline” although this view is
not shared by all the literature (Kang & Kaplan, 2019). Women account for
only 33% of the researchers of the EU, 24% of the top-level researchers, and
27% of board leaders in scientific boards (European Commission, 2019).
Many indicators suggest the existence of a certain degree of gender bias in
science at many different levels including publishing, hiring, funding, and
earnings. Female scientists get less citations for papers of similar quality
(Caplar, Tacchella, & Birrer, 2017; Ghiasi, Larivière, & Sugimoto, 2015),
even if they are in dominant author positions (Larivière, Ni, Gingras, Cronin,
& Sugimoto, 2013); women are underrepresented in the peer-review process
(Helmer, Schottdorf, Neef, & Battaglia, 2017; Wennerds & Wold, 1997);
they are less often described as “brilliant” and above others than their male
counterparts in recommendation letters for postdoctoral fellowships (Dutt,
Pfaff, Bernstein, Dillard, & Block, 2016); they are hired as independent
fellows in bio-medical research at a lower rate than males (Sheltzer, 2018)
and elite male faculty trained significantly fewer women than other female
faculty members (Sheltzer & Smith, 2014); women also have less success in
grant applications than men if research proposals are judged on the strength
of their CV (Ley & Hamilton, 2008). There is also evidence that female
scientists receive a lower salary than their male counterpart (Shen, 2013).
Recent studies, using fictional CVs, have provided strong evidence for gen-
der bias playing a major role in these inequalities(Moss-Racusin, Dovidio,
Brescoll, Graham, & Handelsman, 2012; Reuben, Sapienza, & Zingales,
2014). And there is evidence that this situation has not been improving
significantly over time (Helmer et al., 2017).
Similar patterns of general underrepresentation of women in academic posi-
tions in general are also observed in the biomedical sciences. Indeed, women
get the majority of the doctoral degrees in fields related with biology but
they only represent one third of the assistant professors in these disciplines
(National Science Foundation (US), 2018). These patterns are also very sim-
ilar in different geographical areas. For instance, in the European Union,
where we focused our study, women researchers have a success rate in fund-
ing applications which is 3 percentage points smaller than men (European
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Commission, 2019).
Recent research shows (Lerchenmueller & Sorenson, 2018) that women

become principal investigators (PI) at a 20 % lower rate than men in life sci-
ences, and discuss the so-called ”productivity paradox”. Lerchenmueller &
Sorenson, 2018 show that differences in the publication record and citations
per article can explain about 60 % of the probability of receiving an NIH
R01 grants while the differential return on the published publications and,
in particular, women receiving less credit for their citations, could explain
most of the remaining part.
But, why do women publish less than men? Why do women get less citations
than men? Several competing theories have tried to explain this persistent
phenomenon, such as putative differences in innate aptitudes among men
and women at the high end of the scientific aptitude distribution, which is
currently loosing support through increasing evidence against the innate
attitude theories (Hyde & Mertz, 2009; Hyde, Lindberg, Linn, Ellis, &
Williams, 2008); different career preferences, due to a number of consid-
erations such as for instance the willingness to work long hours or the dis-
position for service jobs, which reduces the time available for research and
increases the likelihood to decline participation in peer-evaluations (Helmer
et al., 2017); and gender bias / discrimination exemplified by negative stereo-
types with respect to scientific ability and talent. There is in fact mounting
evidence for these negative stereotypes associated with women, as we show
in the next section. Results from a survey of US academics showed that
female are underrepresented in disciplines where professors believe that in-
nate talent is the basic trait for success, and women are stereotyped as not
displaying such a talent (Hyde & Mertz, 2009). But, do scientists exhibit
a higher degree of negative stereotypes associated with women than the
general population?

2 The unconscious nature of gender bias

In many instances negative stereotypes are described as an “unconscious
bias” (Mervis, 2012; Reuben, 2014). In general, women’s underrepresenta-
tion in science is not the result of explicit and easily recognizable gender
biases but the outcome of decisions with many components of unconscious
nature that are difficult to assess and address (Helmer et al., 2017). Evidence
suggests that gender stereotypes influence perceptions and performance as
well as decisions. Recent theories in social cognition recognize that implicit
measures of stereotyping are more automatic, and less conscious, than the
explicit measures derived from self-reported assessments obtained using sur-
veys. Implicit measures do not require introspection on the part of the
subject and, therefore, generate less skepticism than self-evaluations.
Since the biases that play a role in the underrepresentation of women in
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the scientific community have mostly an unconscious nature there is a need
for an instrument that can capture this implicit bias. One very successful
instrument to measure the association of stereotypes to particular groups of
the population is the Implicit Association Tests (IAT). The IAT measures,
using the response latencies and accuracy, the strength of automatic asso-
ciation of combined categories (e.g. male vs. female) and attributes stimuli
(e.g. good vs. bad). Since the original publication of the IAT in 1998
(Greenwald, McGhee, & Schwartz, 1998), many studies have established
construct validity (Nosek, Greenwald, & Banaji, 2005; K. A. Lane, Banaji,
Nosek, & Greenwald, 2007) and dissociation between implicit and explicit
measures (Hofmann, Gawronski, Gschwendner, Le, & Schmitt, 2005)1.
The evidence of implicit gender stereotypes related to science and career
has accumulated over time. Research has found that both, men and women,
are more likely to associate male and science, and that men are more likely
to pursue science careers whereas women are more likely to pursue careers
in humanities (K. Lane, Goh, & Driver-Linn, 2012). Country differences in
gender-science stereotype can predict gender differences in science and math
achievement (Nosek et al., 2009). Women implicitly identify with their gen-
der group, and associate female with liberal arts, which in turn promotes
their preference for liberal arts (Nosek, Banaji, & Greenwald, 2002). Al-
though female engineering students held weaker implicit gender-math and
gender-reasoning stereotypes than female students in humanities and male
students in engineering or humanities (Smeding, 2012), the hypothesis that
women working in scientific disciplines have weakened the science-is-male
stereotype is not supported by the available evidence (Miller, Eagly, &
Linn, 2015; Smyth & Nosek, 2015). In particular, biological science ma-
jors report a weaker explicit male-science association than other majors,
but the same level of implicit association (Smyth & Nosek, 2015). More-
over, stronger gender-science stereotypes were found to be associated with
weaker science identification and, in turn, weaker science career aspirations
(Cundiff, Vescio, Loken, & Lo, 2013).

3 Basic results

In this study we address two basic questions: Are scientists working at top
biomedical research centers also subjected to the influence of gender stereo-
types with respect to science and scientific career? Do active researchers
show more or less gender-science associations than the general population?
We used the gender-science and gender-career Implicit Association Tests
(IAT) to elicit the implicit attitudes in a large sample of active scientists.
The sample contains more than 2,500 researchers working in 13 high profile
life science research centers located in European countries and belonging

1Appendix A presents a detailed description of the test and its application.

4



to the EuLife alliance. These centers collaborate in the Leading Innovative
Measures to Reach Gender Balance in Research (LIBRA) project through
which this study was implemented. Employees at participating centers2

were asked to take the two computer-based IAT tests anonymously using
the online platform and procedures of the Implicit Project.
To assess the work environment, and the possibility of interacting sociocul-
tural factors associated with the gender composition of the workforce, we
also obtained general information on gender and professional indicators for
each of the collaborating centers (percentage of women among researchers,
proportion of women among IPs, etc.). The determinants of the scores were
also compared with the factors explaining them in the general population.
To characterize this group we used the results from individuals who took
the tests for the Project Implicit. The results are robust to restricting the
sample to Europeans over 26 years old, which is a subsample closer to the
basic demographic characteristics of our scientists than the general sample.
It should be noted that, since implicit attitudes could potentially change
over time (Charlesworth & Banaji, 2019) we only considered the tests taken
during the period in which the scientists took the IAT (2015-17). For this
period the sample for the general population includes 320,783 individuals
for the gender-science IAT and 572,262 for the gender-career IAT.
The paper contains two important novelties with respect to the previous lit-
erature. First, we present the results of Implicit Association Tests taken by
a large group of researchers working in elite biomedical research centers in
Europe. It includes researchers at all the stages of their professional career
which allows, given the large sample size, to analyze implicit association for
different professional positions. We also analyze the individual and center
determinants of their implicit association scores. Our sample is restricted to
researchers in life sciences since recent research shows that there are large
difference in implicit bias by academic major (Smyth & Nosek, 2015). This
strategy avoids pulling together researchers from different research fields,
and potentially very different implicit associations. As far as we know this
is the first time that the Implicit Association Test has been taken by such
a large number of active researchers in top research centers of life sciences.
Since gender bias can be described in many situations as an unconscious
effect we believe our analysis is very relevant for studying the persistent
issue of the low proportion of women in top scientific positions. Recent re-
search has shown that, in evaluation committees, the stronger the implicit
stereotype, the less often women are promoted (Régner, Thinus-Blanc, Net-
ter, Schmader, & Huguet, 2019). Second, we compare the IAT scores for
the gender-science and gender-career associations of researchers with those
obtained by the general population. The objective is not only to compare
the difference in the raw scores but also to examine the influence of different

2Supplementary Material, Table S1.

5



factors (gender, age, etc.) on the implicit association between gender and
science (and gender and career).
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Figure 1: Percentage of women by professional category

First of all, we looked into the gender composition of the centers by profes-
sional positions. Overall the proportion of women in these research center
ranges from 42·1% to 66·0%. The population of researchers consists of 52·5%
of women and 47·5% of men. However, Figure 1 shows that the proportion
of women decreases with rank. It is the highest for the administrative per-
sonnel (70%) and research staff (61·6%) and it goes down to 19·3% for group
leaders. If we consider the proportion of women in top roles (group leaders
and heads of units), they account only for 21·1% of the positions. This fig-
ure is very close to the average proportion of women reported for top level
researchers in the European Union (European Commission, 2019). There-
fore, the centers included in the study are quite representative of research
activities in the EU.
As shown in the literature, the available evidence points towards implicit
gender bias in many population groups, including college graduates and
university students. The novelty of our paper is to extend these results
to active research scientists working in very competitive research centers,
where merit should be the main criterion for selection and promotion, and
to compare the results with the general population. In principle, being
socialized in this kind of environment should provide scientists with some
protection against gender-science associations.
Gender-science and a gender-career Implicit Association Tests (IAT) were
completed by the subjects working at the research centers, and their per-
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formance in the tasks recorded. The main statistic used to analyzed the
IAT is the D-score. To compute these scores we use the score algorithm
that has been shown to have the best performance (Greenwald, Nosek, &
Banaji, 2003). In particular, data from all blocks of the test were used. Indi-
vidual latencies greater than 10,000 ms were eliminated as well as subjects
for whom more than 10% of trials have latency less than 300 ms. Using
all the trials, we computed the mean of each block as well as one pooled
standard deviation for all trials in the first and third block and another for
the second and fourth block. Response times when the answer was an error
was replaced by the mean of the block plus a penalty of 600 ms. Then, we
average the values of each block before computing the differences between
the third and the first block and the last and the second block. The reaction
time differences between stereotype consistent and inconsistent blocks were
divided by the standard deviations of the latency and the two quotients
were averaged out to compute the D-score. The interpretation of the score
is simple: positive scores implied male-science associations while negative
scores implied female-science association.

The D-scores of the gender-science IAT show evidence of gender stereo-
typing both among biomedical researchers (Project LIBRA) and general
population (Project Implicit). We consider the subsample of LIBRA that
includes only scientist (excluding the administrative staff working at the
centers)3. Table 1 shows that the score for the sample of scientists is 0·23,
95% CI[·21, ·24], and for the participants in the Project Implicit is 0·312,
95% CI[·311, ·313]. The internal consistency between blocks shows that
the measurements are robust, with correlations above the standard figures
found in gender-science IAT (Greenwald et al., 2003). The order effect, or
sensitivity of the score to the order of the blocks in the test, is also smaller
than the usual value in the gender-science IAT among the general popula-
tion (Greenwald et al., 2003). These tests show that the measurements of
the IAT are robust.
Are workers at research center more or less gender biased than the general
population? To answer this question we compared the basic results of the
biomedical researchers working in top EU research centers with the results
from the general population. Given the large size of the general population
sample we report size effects, mostly Cohen’s ds. Cohen’s d measures the
effect-size parameter of interest in the scaled difference between means

d =
(x̄1 − x̄2)

s∗
(1)

where

3The Supplementary Material shows the robustness of these results to the whole sample of
workers at the research centers.
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s∗ =

√
(n1 − 1)s21 − (n2 − 1)s22

n1 + n2 − 2
(2)

Since Cohen’s d is biased there is an unbiased version, Hedges’ g, which
takes the form g=d.c(m) where m = n1 + n2 − 2

c(m) =
Γ(m2 )√

m
2 Γ(m−12 )

(3)

Table 1: Comparison between Project LIBRA and Project Implicit.

Science Career
Project LIBRA Project Implicit Project LIBRA Project Implicit

Mean D-Score 0.23 0.31 0.34 0.34
Internal consistency 0.71 0.69 0.65 0.62
Order effect 0.20 0.03 0.18 0.03
Number of obs. 2,535 320,783 2,589 572,262
Note: In this table the LIBRA sample excludes administrative staff.
Source: Our elaboration on Project LIBRA and Project Implicit data

Table 1 shows that the gender-science IAT score of scientists is lower
than the score of the general population, while for gender and career the
scores are identical. Cohen’s d indicates that the average score of the IAT
for science differs between the sample of the general population (project
Implicit) and the sample of researchers (project LIBRA) by 0.18 standard
deviations with a 95% CI[0·14, 0·22]. Table 2 breaks the results by gender4.
It shows that most of the lower implicit association of gender and science
among scientists is actually due to the lower implicit association of women
in research centers with respect to women in the general population, while
male researchers have a similar score to the general male population5. In
particular, Cohen’s d points out that the difference in the science IAT of
males comparing the general population and the researchers is 0·05 with
a 95% CI[-0·01, 0·12] while Cohen’s d for the comparison between females
in the general population and in the sample of researchers is 0·26 with a
95% CI[0·18, 0·34]. The difference between men and women at the research
centers in the science IAT is 0·42 standard deviations with a 95% CI[0·50,
0·34]. In this set-up the previous Cohen’s ds are almost identical to their
corresponding Hedges’ gs.

4Table S2 in the Supplementary Material shows that the results of Table 2 are robust to
including all the workers and not only the researchers at the center.

5Table S3 in the Supplementary Material shows that, in the sample of researchers in top
roles (group leaders and head of units) the difference in the IAT of science between scientist
and the general population is not statistically significant. This is mostly due to the fact
that researcher in top roles are predominantly men.
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Table 2: Comparison by Gender.

Project LIBRA Project Implicit

Female Male Female Male

Mean D-score: Science 0.13 0.34 0.28 0.36
Mean D-score: Career 0.36 0.27 0.38 0.29

Note: In this table the LIBRA sample excludes administrative staff.

Our elaboration on Project LIBRA and Project Implicit data

Figure 2 and Figure 3 show the distribution of the D-Score by gender for
both Science and Career in the two samples: LIBRA Project (scientists) and
the Project Implicit (general population). The comparison of the score dis-
tributions shows a large displacement towards the right (higher values) for
male scores versus female scores for the gender-science IAT (Figure 2a). In
fact, male scientists working at top research centers have a mean score of 0·34
while women’s mean score is 0·13 as shown in Table 2 (dif=0·21, p<0·001
Student’s t test). This shift is much less pronounced in the general popula-
tion (Figure 2b and Table 2) (dif=0·08, p<0·001 Student’s t test). Figure
3a and 3b show the distributions of the IAT score for the gender-career as-
sociation for men and women across the two datasets (Project LIBRA and
Project Implicit). In both cases there is a shift of the distribution of women
scores toward the right showing that women association of male and career
is stronger than the association among men. The difference in the mean
IAT score for gender-career of male versus female is almost identical in both
datasets (researchers and general population) (dif=-0·1, p<0·001 Student’s
t test).
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Figure 2: Distribution of the D-score for the gender-science IAT
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Figure 3: Distribution of the D-score for the gender-career IAT

4 The determinants of the IAT score

In this section we adopt a conditional approach in the analysis of the IAT
scores. First of all, we performed a within and between decomposition to
understand the basic sources of variation of the IAT (individual or center
specific). In order to understand the source of variation in D-scores we run
a hierarchical linear model to decompose the total variance into its sources.
Equation 4 shows the specification used to obtain the within and between
decomposition, and includes two random components, an individual and a
research center random component:

Dscoreij = β0j + β1Malei + εij

β0j = β0 + ε0j (4)

where Dscorei is the dependent variable for gender-science or gender-career
IAT, β0j is the center specific effect which has two components: a fixed
parameter (β0) and a random component (ε0j). The εij is the error term.
In the second specification of Table 3 we also include the dummy variable
Malei.

Using a results of Table 3 we can conclude that most of the variation
comes from the individual component. The hierarchical model with two
random components shows that the research center effect explains less than
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Table 3: Between/Within center variation of D-Score

D-Score Science Career
(1) (2) (1) (2)

Male 0.181∗∗∗ -0.093∗∗∗

(0.017) (0.015)
Constant 0.227∗∗∗ 0.161∗∗∗ 0.341∗∗∗ 0.375∗∗∗

(0.013) (0.015) (0.008) (0.010)
Random-effects Parameter
Research Center: SD Constant 0.036 0.040 0.007 0.012
Individual: SD Residual 0.401 0.391 0.364 0.362
Observations 2,394 2,387 2,430 2,422
Standard errors in parentheses. P-values are exact values calculated for a two
sided test of the parameter being equal to 0. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.
Source: Our elaboration on Project LIBRA data

1% of the variance of the gender-science IAT D-score. The explanatory
power of the centers’ identity on the gender-career IAT D-score is even
smaller than in the gender-science test. In general top research centers
attract researchers from many different countries and, therefore, we should
not expect to see cultural differences reflected in the IAT score related with
the center in which scientists work.
Since almost all the variability of the implicit association between gender
and science, and gender and career, comes from individual differences, it
is interesting to analyze the determinants at the individual level. Table
4 reports the estimation of the determinants of the gender-science score
for the sample of non-administrative staff6. The first column includes the
basic specification. As we already noticed using descriptive statistics, age
increases the implicit association of male and science. The coefficient is
statistically significant at the usual level of confidence (β=0·004, P<0·01
Student’s t test): a difference of 10 years in the age of a researcher increases
the IAT D-score by 0·04 points, or 16% of the unconditional mean. The
most relevant variable is, as expected, gender. Conditional on the rest of
the variables, male researchers have a male-science IAT D-score above half
the unconditional average (β=0·20, P<0·001 Student’s t test). The post-doc
indicator has a negative coefficient showing that individuals in this group
have less gender-science implicit association (β=-0·06, P<0·01 Student’s t
test). The results are basically unaffected by the inclusion of a dummy
variable to control for the research center (column 2 of Table 4).
One potentially important explanation of the IAT score are interacting socio-
cultural factors. Previous research on national differences in gender-science
stereotypes shows that a higher female employment in the research sector

6Table S5 shows the results of the estimation including all the employees of the research
centers.
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in a particular country reduces the explicit national gender-science stereo-
type but does not affect the implicit stereotype (Miller et al., 2015). Even
countries located at the top of the ranking of overall gender equity present
strong gender-science implicit stereotypes if the field is dominated by men.
We can control for this type of effect at the center level by adding the
proportion of women in different positions (Column 3 of Table 4). The
proportion of female employment in a particular center does not have any
significant influence on individual IAT scores. To investigate further the role
of women at the level of research centers, Columns 4 and 5 of Table 4 con-
sider separately the proportion of women by professional category. Column
4 of Table 4 shows that the proportions of women that are head of units
(β=0.001, P<0.05 Student’s t test) have a positive and significant impact
on the male-science association at the individual level, though small. This
effect is confirmed by the aggregation of both groups as top roles in Column
5 of Table 4. The post-doc effect found in the specifications of Columns 1
and 2 loses statistical significance when center-specific variables are included
in the regression (Columns 3 to 5 of Table 3). Instead, the proportion of
women among the postdoc group decreases the male-science association, al-
though the effect is not very intense (β=-0·007, P<0·05 Student’s t test).
Including these additional covariates increases the size of the effect of gender
on the gender-science IAT D-score.
The determinants of the gender-career IAT score among researchers are con-
sidered in Table 57. In this case males have a lower tendency to associate
male and scientific career than female (β=-0·08, P<0·001 Student’s t test).
This result is very consistent across different specifications. The postdoc
and Ph.D. students have also a lower gender-career association than any
other positions in the research centers. The effect is large and statistically
significant. Considering all the covariates (column 5) the impact of being a
postdoc or a Ph.D. student is, in absolute value, even larger than the effect
of male on the gender-career IAT (for postdoc β=-0·097, P<0·001 Student’s
t test; for Ph.D. students β=-0·095, P<0·01 Student’s t test). In the case
of the gender-career IAT score the administrative staff does not have any
significant difference with respect to the rest of the employees. The per-
centage of women among employees increases the gender-career association
(β=0·01, P<0·05 Student’s t test) although the effect is small.

7Table S6 shows the results of the estimation including all the employees of the research
centers.
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Table 4: Determinants of D-Score : Science. LIBRA non-
administrative staff

D-Score Science
(1) (2) (3) (4) (5)

Age 0.004∗∗ 0.004∗∗∗ 0.005∗∗ 0.005∗∗ 0.006∗∗

(0.001) (0.001) (0.002) (0.002) (0.002)
Male 0.200∗∗∗ 0.205∗∗∗ 0.237∗∗∗ 0.232∗∗∗ 0.234∗∗∗

(0.017) (0.017) (0.021) (0.023) (0.022)
Group Leader 0.001 -0.001 -0.010 -0.028 0.001

(0.036) (0.037) (0.046) (0.051) (0.049)
Head of Unit 0.005 -0.000 0.022 0.044 0.063

(0.044) (0.046) (0.058) (0.068) (0.063)
Postdoc -0.067∗∗ -0.061∗ -0.031 -0.029 -0.011

(0.024) (0.025) (0.029) (0.034) (0.032)
Ph.D student -0.030 -0.032 0.036 0.051 0.071∗

(0.027) (0.028) (0.033) (0.038) (0.036)
% of women by institute -0.000 -0.002

(0.002) (0.006)
% women Top Roles by institute 0.005∗

(0.002)
% women Group Leader by institute 0.005

(0.003)
% women Head of Unit by institute 0.001∗

(0.001)
% women Postdoc by institute -0.007∗ -0.004

(0.003) (0.003)
% women Ph.D. Student by institute 0.008∗ 0.004∗

(0.003) (0.002)
% women Research Staff by institute 0.001 0.001

(0.001) (0.001)
Constant 0.025 0.061 -0.062 -0.351∗ -0.158

(0.051) (0.054) (0.116) (0.177) (0.143)
Institute fixed effect No Yes No No No
Observations 2199 2126 1476 1207 1320

R2 0.08 0.10 0.10 0.10 0.11

Adjusted R2 0.08 0.09 0.10 0.10 0.10
The variables included in the regressions are age, gender (categorized as 0=Female, 1=Male), professional
category (categorized as Group Leader, Head of Unit, Postdoc, Ph.D. Student, Research Staff as reference
category), the proportion of women by institute, the proportion of women by institute and professional
category, and a constant term. Standard errors in parentheses. P-values are exact values calculated for a
two sided test of the parameter being equal to 0. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
Source: Our elaboration on Project LIBRA data
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Table 5: Determinants of D-Score: Career.LIBRA non-
administrative staff

D-Score Career
(1) (2) (3) (4) (5)

Age 0.001 0.001 0.002 0.001 0.001
(0.001) (0.001) (0.002) (0.002) (0.002)

Male -0.089∗∗∗ -0.089∗∗∗ -0.090∗∗∗ -0.094∗∗∗ -0.088∗∗∗

(0.016) (0.016) (0.020) (0.021) (0.021)
Group Leader -0.045 -0.045 -0.082 -0.058 -0.073

(0.032) (0.034) (0.043) (0.047) (0.046)
Head of Unit 0.041 0.053 -0.006 0.065 0.039

(0.040) (0.042) (0.054) (0.063) (0.059)
Postdoc -0.051∗ -0.067∗∗ -0.072∗ -0.072∗ -0.097∗∗

(0.022) (0.023) (0.028) (0.032) (0.031)
Ph.D student -0.045 -0.058∗ -0.071∗ -0.075∗ -0.095∗∗

(0.025) (0.026) (0.032) (0.036) (0.035)
% of women by institute 0.002 0.013∗

(0.002) (0.006)
% women Top Roles by institute -0.004

(0.002)
% women Group Leader by institute 0.000

(0.002)
% women Head of Unit by institute -0.000

(0.001)
% women Postdoc by institute -0.002 -0.002

(0.003) (0.003)
% women Ph.D. Student by institute 0.004 -0.003

(0.003) (0.002)
% women Research Staff by institute 0.001 -0.002

(0.001) (0.001)
Constant 0.371∗∗∗ 0.368∗∗∗ 0.242∗ 0.205 0.183

(0.047) (0.050) (0.111) (0.165) (0.139)
Institute fixed effect No Yes No No No
Observations 2,246 2,163 1,474 1,216 1,326

R2 0.02 0.03 0.03 0.03 0.03

Adjusted R2 0.02 0.02 0.02 0.02 0.02
The variables included in the regressions are age, gender (categorized as 0=Female, 1=Male), professional
category (categorized as Group Leader, Head of Unit, Postdoc, Ph.D. Student, Research Staff as reference
category), the proportion of women by institute, the proportion of women by institute and professional
category, and a constant term. Standard errors in parentheses. P-values are exact values calculated for a
two sided test of the parameter being equal to 0. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
Source: Our elaboration on Project LIBRA data

To complete the analysis of the individual specific determinants of the
IAT score among biomedical researchers versus the general population we
consider a comparison of their determinants. We include three covariates
that are common to both datasets: age, gender, and education. Figure 4
shows the point estimate and the 95% confidence interval of the parameter
estimates for each sample. The results are basically identical if we use the
subsample of the general population of Project Implicit that includes only
people 26 years old, or older, who are Europeans8.

First we analyzed the gender-science IAT score. As we already mentioned
in the descriptive section, age has a statistically positive influence on the
association gender-science among researchers. This is also the case for the
general population although the different between both parameters is not
statistically significant. The variable ‘male’ has a much higher coefficient for
the sample of researchers (β=0·19, P<0·001 Student’s t test) than for the
sample of the general population (β=0·076, P<0·001 Student’s t test). This

8Table S7 in the Supplementary Material presents the estimations. The last two columns
of Table S7 include the results considering among the general population only Europeans
older than 26 years old.
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implies that male researchers have a much higher association of men and
science, relative to female, than the general population. This is consistent
with the previous descriptive results that showed that women researchers
are the basic reason of the smaller gender-science IAT score in the sample of
researchers than in the general population. As expected, the coefficients for
age and gender are very similar to the ones obtained in Table 3 and 4, which
confirms that working with the common available covariates in both samples
does not have a significant impact on the results. Having a university degree
or a Ph.D. reduces the male-science association of researchers more than in
the case of the general population. In fact, there is a large difference in the
effect of a Ph.D. versus a university degree among the general population
while the difference is much smaller in the sample of researchers.
The analysis of the comparative determinants of the IAT gender-career score
between researchers and general population presented in Figure 4 is also in-
teresting. Age and gender have similar influence on the IAT score across
both samples. As we already showed, women tend to depict a higher in-
tensity than men in the association of men and career. The negative effect
of a university degree or a Ph.D. on the IAT score is more intense in the
case of the sample of researchers than in the general population. Basically,
the influence of the different characteristics on the gender-career IAT is very
similar in both samples.
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Figure 4: Comparison of the effect of the determinants of the IAT
D-Score

15



5 Discussion

Are biomedical researchers less gender biased than the general population?
The methodological approach followed by scientists in their research may
support their belief that scientific careers are determined by strictly merito-
cratic procedures. However, implicit biases can hinder the workings of these
procedures. Our study provides for the first time an analysis of gender
implicit association for science and career among active scientists working
in top biomedical research centers across Europe. We show that implicit
male-science stereotypes (as measured by the Implicit Association Test) are
less prevalent among active scientists working in biomedical research cen-
ters than in the general population. However, this result is driven by the
low association among female scientists. Male scientists have the same level
of implicit male-science association as the general population. Since men
dominate decision-making positions, this implicit bias can produce gender
inertia at the high levels of the scientific career.
We also found that scientists in top positions have a much higher implicit
association for male and science than the general population and that age
is a clear determinant. Although the proportion of women in the centers
has not impact on individual D-scores, postdoc and PhD students have the
lowest scores compared to any other category of employees. Concerning
gender-career association, female scientists have a higher score than their
fellow male scientists but slightly lower than the general population.
Previous research, using self-reported answers to surveys of academics, ar-
gued that to increase women representation among researchers there is need
to highlight the importance of effort for pursuing a successful scientific ca-
reer, instead of innate intellectual gifts (Leslie, Cimpian, Meyer, & Freeland,
2015). Other proposals include to weaken stereotypes highlighting examples
of female scientists as part of regular classroom instruction (Miller et al.,
2015). The implicit bias among male researchers working in research cen-
ters, even stronger in those at top positions, seems to indicate that these
strategies would not be enough to revert the gender stereotype in scientific
research. In fact previous studies indicated that male scientists are, in gen-
eral, quite reluctant to accept the existence of a gender bias, what has been
described as the myth of “other people are biased not me” (Kang & Kaplan,
2019). Our research shows the existence of implicit gender bias among male
scientists, and women in top roles. Therefore, guidelines that enforce a high
proportion of women in hiring and promotion committees at the highest
levels may not be effective.

Another proposal to address the issue of implicit association of science
and male is controlling individual bias directly using diversity training.
This strategy seems to be consistent with recent findings (Régner et al.,
2019)(Girod et al., 2016). In addition, recent research shows that women
are being evaluated less favorably as principal investigators than for the
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quality of the proposals (Witterman, Hendricks, Straus, & Tannenbaum,
2019). Since selection processes are mostly based on the merits of the can-
didates, we propose to facilitate a transparent and equitable hiring by asking
committees to write detailed discussions on the explicit merits of the candi-
dates for a job/promotion to be reviewed afterwards, in order to limit the
scope for unconscious reasons in the selection/promotion process. Most of
the time these decisions are taken in oral discussions and, therefore, it is
difficult to avoid the influence of implicit biases based on applying different
arguments to different candidates depending on their gender. The written
documents of the discussions should help to produce consistent decisions
over time, and cumulative guidelines for gender neutral decisions that could
be analyzed by external experts and improved over time.
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Appendix A

The Implicit Association Test

The gender-science IAT measures the relative speed at which the experimental
subject can associate categories, such as men or women, and attributes, related
with science and liberal arts. In the case of the gender-career IAT the attributes
are related with family and career. The relative speed at which the subject can
pair categories and attributes, and the number of classification errors, measures
implicitly the strength of the association between categories and attributes (see
Methods and Materials for details). The response time differences provide a
score that can be interpreted as evidence of implicit gender-science, or gender-
career, stereotypes. For instance, fast sorting of stereotype-congruent categories
and attributes relative to incongruous ones points out to higher association of
science and male than science and female.

The scientists in the research centers in our sample performed a computer-
based set of trials that allow the measurement of the strength of automatic
associations between concepts by analyzing latency in the responses provided to
each of the tasks. For analyzing the automatic association of gender with science
in comparison to liberal arts, attributes needed to be sorted into categories
defined by one or two of the following four concepts Female, Male, Science,
and Liberal arts. The displayed attributes per concept were as follows: Female:
Mother, Wife, Aunt, Women, Girl, Female, Grandma, Daughter; Male: Man,
Son, Father, Boy, Uncle, Grandpa, Husband, Male; Science: Astronomy, Math,
Chemistry, Physics, Biology, Geology, Engineering; Liberal arts: History, Arts,
Humanities, English, Philosophy, Music, Literature. The categories were defined
differently in seven individual tasks and respondents were asked to sort above
mentioned attributes into the two categories as quickly as possible by using the
two keys an E key for one and I for the other category. Items appeared on
the screen one at a time and each item belongs to only one category. If the
respondent did a mistake, a red X appeared on the screen and the respondent
had to press the other key to correct the answer. The seven tasks were as
follows: (1) Put a left finger on the E key for items that belong to the category
Liberal Arts. Put the right finger on the I key for the items that belong to the
category Science.; (2) Put a left finger on the E key for items that belong to
the category Male. Put the right finger on the I key for the items that belong
to the category Female.; (3) Use the E key for Liberal Arts and for Male. Use
the I key for Science and for Female.; (4) This is the same as the previous part.
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Use the E key for Liberal Arts and for Male. Use the I key for Science and for
Female.; (5) Watch out, the labels have changed position! Use the left finger
on the E key for Science. Use the right finger on the I key for Liberal Arts.;
(6) Use the E key for Science and for Male. Use the I key for the Liberal Arts
and for Female.; (7) This is the same as the previous part. Use the E key for
Science and for Male. Use the I key for the Liberal Arts and for Female. In the
two task blocks 3/4 and 6/7 respondents repeated the same task with the same
keys for the same gender but with exchanged second concept. For example, in
block 3/4 one category combines Male with Liberal Arts, while in block 6/7
Male is combined with Science, and in both blocks items need to be sorted with
the key E. The difference in average latency between those two task blocks is at
the base of the IAT measure. As an example, a faster performance in tasks 6/7
shows a stronger association of Male than Female with Science. The order of
the blocks can influence the overall results slightly. If the first block is pairing
Science and Male and then pairing Science and Female, the results might show
a slightly stronger association of Male with Science than in the reversed order
of pairing. Therefore, the IAT foresees two measures for minimizing the order
effect. First, in this case giving more practice trials before the second pairing
than for the first pairing, and second, the participants are randomly assigned to
a specific order. Half of test-takers complete first the Science and Male block,
and then the Science and Female block, while the other half of test-takers get
the opposite order.

For analyzing the automatic association of gender with career in compari-
son to family the same principles of the IAT apply. While the gender concepts
Male and Female are also used in this test, the concepts Science and Liberal
Arts were replaced by Career and Family. Related attributes which needed
to be sorted were as follows: Female: Rebecca, Michelle, Emily, Julia, Anna;
Male:Ben, Paul, Daniel, John, Jeffrey; Career : Career, Corporation, Salary, Of-
fice, Professional, Management, Business; Family : Wedding, Marriage, Parents,
Relatives, Family, Home, Children. The seven tasks were as follows: (1) Put a
left finger on the E key for items that belong to the category Family. Put the
right finger on the I key for the items that belong to the category Career. (2)
Put a left finger on the E key for items that belong to the category Male. Put
the right finger on the I key for the items that belong to the category Female.
(3) Use the E key for Family and for Male. Use the I key for Career and for
Female. (4) This is the same as the previous part. Use the E key for Family
and for Male. Use the I key for Career and for Female. (5) Watch out, the
labels have changed position! Use the left finger on the E key for Career. Use
the right finger on the I key for Family. (6) Use the E key for Career and for
Male. Use the I key for the Family and for Female. (7) This is the same as the
previous part. Use the E key for Career and for Male. Use the I key for the
Family and for Female.
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Supplementary material

Table S1: Names and acronyms of the research centers
Acronym Name

CRG Centre for Genomic Regulation
CeMM Center for Molecular Medicine of the Austrian Academy of Sciences
IC Institut Curie
BI The Babraham Institute
IEO European Institute of Oncology
BRIC Biotech Research and Innovation Centre
FMI Friedrich Miescher Institute for Biomedical Research
MDC Max- Delbrueck Center for Molecular Medicine
CEITEC Central European Institute of Technology
NKI The Netherlands Cancer Institute
VIB Vlaams Instituut voor Biotechnologie
FiMM Institute for Molecular Medicine Finland
IGC Instituto Gulbenkian de Ciência

Source: Project LIBRA

It is interesting to check the robustness of the results (Table 2) to the full sample
of employees at research centers (including administrative staff). The basic
results are robust to including the administrative staff although the difference
between the gender-science IAT scores of men and women (dif=0·17, p<0·01
Student’s t test) is a bit smaller when considering all the employees as shown
in Table S2.
In fact, the scores for males with or without administrative staff are identical
whereas female scientists have an even lower score when considered on their
own (without female administrative staff). Altogether female scientists have
a significantly lower score for male-science association than their fellow men
scientists or other females administrative staff members working in the same
institutes.

Table S2: Comparison by Gender: full sample
Project LIBRA Project Implicit

Female Male Female Male

Mean D-score: Science 0.17 0.34 0.28 0.36
Mean D-score: Career 0.38 0.28 0.38 0.29

Note: In this table the Project LIBRA sample includes the administrative staff.

Source: Our elaboration on Project LIBRA and Project Implicit data

Restricting the sample even further to analyze only researchers in top roles
(Table S3) shows that their implicit association of male and science is higher
than in the general population. This substantial change could be related with
the higher proportion of men among researchers with top roles, but also with a
higher association of male and science among women in top roles versus women
in other positions.
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Table S3: Comparison between researchers in top roles and general
population

Science Career

Project LIBRA Project Implicit Project LIBRA Project Implicit

Mean D-Score 0.33 0.31 0.35 0.34
Internal consistency 0.75 0.69 0.71 0.62
Order effect 0.21 0.03 0.21 0.03
Number of obs. 318 320,783 341 572,262

Note: Project LIBRA includes only researchers in top roles.

Source: Our elaboration on Project LIBRA and Project Implicit data

Another important determinant is the age of the researchers. We should notice
that, since we are working with a cross section of subjects, it is not possible
to identify separately the cohort effect from the effect of age. However, this is
less of an issue if we want to compare the effect of age between researchers and
general population. The correlation of age with the gender-science IAT D-score
is higher in the case of researchers than in the general population (Table S4).
In contrast, the correlation of age with the gender-career score is identical.

Table S4: Correlation of the IAT D-Score with age.
Project LIBRA Project Implicit

D-score Science 0.14 0.08
D-score Career 0.06 0.06
Source: Our elaboration on Project LIBRA and Project Implicit data
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The basic results are also robust using the full sample, which includes the admin-
istrative staff of the centers (Table S5 and Table S6). Table S5 shows that males
working at the research centers have a higher D-score than females being the
estimates (β=0·18 to β=0·23 depending on the specification, P<0·001 Student’s
t test) quite similar to the ones presented in Table 6, which do not included the
administrative staff in the sample. The personnel in the administrative group
shows a higher level of association of male and science than researchers (β=0·17
to β=0·24, P<0·001 Student’s t test), despite the fact that women represent
the largest proportion in this group. However, Table S6 shows that the admin-
istrative staff do not have a robust differential effect on the gender-career IAT
D-score. Finally the effect of gender on the score is not affected by the inclusion
of the administrative staff in the sample once all the conditioning variables are
included in the specification.

Table S5: Determinants of the D-Score: Science. LIBRA full sample
D-Score Science

(1) (2) (3) (4) (5)

Age 0.004∗∗ 0.004∗∗∗ 0.005∗∗ 0.005∗∗ 0.006∗∗
(0.001) (0.001) (0.001) (0.002) (0.002)

Male 0.186∗∗∗ 0.193∗∗∗ 0.233∗∗∗ 0.216∗∗∗ 0.220∗∗∗
(0.017) (0.017) (0.020) (0.024) (0.023)

Group Leader 0.008 0.006 -0.003 -0.007 0.017
(0.035) (0.036) (0.045) (0.054) (0.052)

Head of Unit 0.012 0.008 0.029 0.073 0.079
(0.043) (0.045) (0.057) (0.072) (0.066)

Postdoc -0.066∗∗ -0.059∗ -0.032 -0.002 0.008
(0.024) (0.025) (0.029) (0.037) (0.034)

Ph.D student -0.032 -0.033 0.031 0.072 0.083∗
(0.026) (0.027) (0.032) (0.041) (0.039)

Administrative 0.178∗∗∗ 0.153∗∗∗ 0.203∗∗∗ 0.217∗∗∗ 0.236∗∗∗
(0.031) (0.032) (0.040) (0.047) (0.044)

% of women by institute -0.000 0.025
(0.002) (0.016)

% women Top Roles by institute 0.000
(0.004)

% women Group Leader by institute 0.005∗
(0.002)

% women Head of Unit by institute 0.002∗∗
(0.001)

% women Postdoc by institute -0.008∗ -0.014∗∗
(0.003) (0.005)

% women Ph.D. Student by institute 0.008∗ -0.003
(0.004) (0.005)

% women Research Staff by institute 0.001 -0.004
(0.001) (0.003)

% women Administrative by institute 0.000 0.003
(0.001) (0.003)

Constant 0.042 0.069 -0.045 -0.404∗ -0.664∗
(0.046) (0.050) (0.109) (0.172) (0.320)

Institute fixed effect No Yes No No No

Observations 2,473 2,372 1,627 1,151 1,275

R2 0.09 0.10 0.11 0.11 0.11

Adjusted R2 0.08 0.09 0.10 0.10 0.10

The variables included in the regressions are age, gender (categorized as 0=Female, 1=Male), professional
category (categorized as Group Leader, Head of Unit, Postdoc, Ph.D. Student, Administrative, Research
Staff as reference category), the proportion of women by institute, the proportion of women by institute
and professional category, and a constant term. Standard errors in parentheses. P-values are exact values
calculated for a two sided test of the parameter being equal to 0. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Source: Our elaboration on Project LIBRA data
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Table S6: Determinants of the D-Score: Career. LIBRA full sample.
D-Score Career

(1) (2) (3) (4) (5)

Age 0.001 0.001 0.002 0.002 0.002
(0.001) (0.001) (0.001) (0.002) (0.002)

Male -0.084∗∗∗ -0.085∗∗∗ -0.084∗∗∗ -0.079∗∗∗ -0.076∗∗∗
(0.015) (0.016) (0.019) (0.022) (0.022)

Group Leader -0.049 -0.049 -0.085∗ -0.086 -0.096∗
(0.032) (0.033) (0.042) (0.050) (0.049)

Head of Unit 0.037 0.046 -0.009 0.006 -0.017
(0.039) (0.041) (0.053) (0.065) (0.062)

Postdoc -0.051∗ -0.068∗∗ -0.072∗∗ -0.092∗∗ -0.112∗∗∗
(0.022) (0.023) (0.028) (0.035) (0.033)

Ph.D student -0.043 -0.057∗ -0.071∗ -0.094∗ -0.115∗∗
(0.024) (0.025) (0.031) (0.039) (0.038)

Administrative 0.064∗ 0.052 0.048 0.043 0.027
(0.028) (0.030) (0.038) (0.044) (0.042)

% of women by institute 0.003 0.032∗
(0.002) (0.015)

% women Top Roles by institute -0.009∗
(0.004)

% women Group Leader by institute 0.001
(0.002)

% women Head of Unit by institute -0.000
(0.001)

% women Postdoc by institute -0.003 -0.007
(0.003) (0.005)

% women Ph.D. Student by institute 0.008∗ -0.007
(0.004) (0.005)

% women Research Staff by institute 0.002 -0.006
(0.001) (0.003)

% women Administrative by institute -0.002 0.003
(0.001) (0.003)

Constant 0.359∗∗∗ 0.358∗∗∗ 0.223∗ 0.126 -0.254
(0.043) (0.046) (0.104) (0.161) (0.308)

Institute fixed effect No Yes No No No

Observations 2,520 2,407 1,624 1,147 1,267

R2 0.03 0.04 0.04 0.05 0.05

Adjusted R2 0.03 0.03 0.03 0.04 0.04

The variables included in the regressions are age, gender (categorized as 0=Female, 1=Male), professional
category (categorized as Group Leader, Head of Unit, Postdoc, Ph.D. Student, Administrative, Research
Staff as reference category), the proportion of women by institute, the proportion of women by institute
and professional category, and a constant term. Standard errors in parentheses. P-values are exact values
calculated for a two sided test of the parameter being equal to 0. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Source: Our elaboration on Project LIBRA data

The previous analysis uses age as a covariate. We also analyzed this effect using
age grouped by cohort. Figure S1 depicts the coefficients of each cohort, and
its corresponding standard deviation, coming from a regression that includes all
the covariates of column 5 of Table 3 and 4 but substitute age by age-cohorts.
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Figure S1: Cohort effect on the IAT LIBRA
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The last two columns of Table S7 include the analysis of the IAT scores for
a subsample of the general population of Project Implicit that includes only
people 26 years old, or older, who are Europeans. Since the scientists analyzed
in this paper work in European research centers, this sub-sample is the closest,
in the Project Implicit data, to the researchers who took our IAT.1 With respect
to the difference in gender-science score between male and females the results
are quite similar to the ones obtained using all the respondents of the Project
Implicit: the difference is around 0·19 among the scientists while it is 0·08 for
the whole population of the Project Implicit, and 0·09 for the sub-group of
European citizens 26 years old or older. The effect of age on the score is similar
to the one obtained in the sample of researchers. However, the European male
graduates have a much lower (-0·05) difference with respect to females in the
gender-science IAT score than the difference obtained in the full sample of the
Project Implicit data (-0·09) or in the sample of researchers (-0·21). The gender-
career IAT shows similar results in all the groups with respect to the effect of
gender: women have a higher intensity of association of male and career than
men in the tree groups (scientists, general population and Europeans).

Table S7: Determinants of D-Score: Project LIBRA and Project Im-
plicit

D-Score Project LIBRA Project Implicit: All Project Implicit: Europeans
Science Career Science Career Science Career

(1) (2) (3) (4) (5) (6)

Age 0.004∗∗∗ 0.002∗ 0.003∗∗∗ 0.002∗∗∗ 0.004∗∗∗ 0.002∗∗∗
(0.001) (0.001) (0.000) (0.000) (0.000) (0.000)

Male 0.188∗∗∗ -0.085∗∗∗ 0.076∗∗∗ -0.093∗∗∗ 0.089∗∗∗ -0.067∗∗∗
(0.016) (0.015) (0.002) (0.001) (0.007) (0.006)

Uni Degree or higher -0.175∗∗∗ -0.062∗ -0.019∗∗∗ -0.006∗∗∗ 0.045∗ -0.002
(0.030) (0.028) (0.002) (0.001) (0.017) (0.013)

Ph.D. or more -0.212∗∗∗ -0.101∗∗∗ -0.091∗∗∗ -0.019∗∗∗ -0.048∗∗ -0.002
(0.026) (0.024) (0.004) (0.002) (0.017) (0.014)

Constant 0.188∗∗∗ 0.398∗∗∗ 0.206∗∗∗ 0.322∗∗∗ 0.141∗∗∗ 0.343∗∗∗
(0.042) (0.039) (0.002) (0.002) (0.022) (0.018)

Observations 2,473 2,520 224,436 387,511 14,701 16,627

R2 0.08 0.03 0.02 0.02 0.03 0.01

Adjusted R2 0.08 0.03 0.02 0.02 0.03 0.01

Columns 1 and 2 correspond to Project LIBRA data and include the following variables: age, gender
(categorized as 0=Female, 1=Male), education level (categorized as 1=Lower than University Degree
the reference category, University Degree or higher, Ph.D. or more) and a constant term. Columns 3
and 4 of Project Implicit show the results of the regressions using the full sample of general population.
Columns 5 and 6 include the results corresponding to the regressions using a subsample of the general
population that includes only Europeans 26 years old or older. The educational level variable is defined
as before. Standard errors in parentheses. P-values are exact values calculated for a two sided test of
the parameter being equal to 0. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Source: Our elaboration on Project LIBRA and Project Implicit data

1Notice that there are also US citizen working at these research centers.

7


