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Abstract. We study random utility models in which heterogeneity of preferences

is modeled using an ordered collection of utilities, or types. The paper shows that

these models are particularly amenable when combined with domains in which the

alternatives of each decision problem are ordered by the structure of the types. We

enhance their applicability by: (i) working with arbitrary domains composed of such

decision problems, i.e., we do not need to assume any particularly rich data domain,

and (ii) making no parametric assumption, i.e., we do not need to formulate any par-

ticular assumption on the distribution over the collection of types. We characterize

the model by way of two simple properties and show the applicability of our result

in settings involving decisions under risk. We also propose a goodness-of-fit measure

for the model and prove the strong consistency of extremum estimators defined upon

it. We conclude by applying the model to a dataset on lottery choices.
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1. Introduction

Consider an ordered collection of type-dependent utilities describing a behavioral

trait, such as risk aversion, delay aversion or altruism, where types higher in the or-

der represent more intense expressions of the behavioral trait. In turn, the order of

types enables some alternatives to be considered higher than simply because they are

seen to be preferred by higher types, as implied in the notions of a safer lottery, an

earlier stream of payoffs, or a more altruistic distribution. Decision problems in which

all maximal alternatives can be ordered by the higher than principle are very telling,

because, in such situations the lowest types prefer one alternative, and successively

higher types prefer successively higher alternatives. Unsurprisingly, most estimation

exercises use domains, which we call ordered, composed exclusively of such decision

problems. We then introduce heterogeneity by using the random utility model defined

over the ordered collection of type-dependent utilities; a model which we call the ran-

dom type model. The main objective of our paper is to provide characterization and

estimation results for the random type model under ordered domains. Notably, and

in order to further enhance the applicability of our results, no stage of our analysis

requires us to assume domain richness and heterogeneity is fully non-parametrically

treated throughout.

The first result of the paper provides a characterization of the choice frequencies

that can be generated by the random type model in ordered domains, using two simple

properties. The first of these, which we call extremeness after Gul and Pesendorfer

(2006), simply states that only those alternatives that are maximal for at least one

type in the population can be chosen with strictly positive probability. The second

property, which we call monotonicity, is novel and emanates directly from the higher

than principle. In a nutshell, suppose that the choice of alternative x1 in decision

problem 1 can be rationalized by a type higher than any type rationalizing the choice

of alternative x2 in decision problem 2. Then, the cumulated choice frequency of all

alternatives lower than x1 in decision problem 1 must be larger than the cumulated

choice frequency of all alternatives lower than x2 in decision problem 2.

The simplicity of these two properties proves useful beyond enabling the characteri-

zation result. We begin by illustrating the applicability of the model by particularizing

it to decisions under risk. In this setting, the most prominent type-dependent utilities

are expected utilities, ordered by increasing levels of risk aversion, and these generate
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a riskiness order on lotteries. We then present a variety of ordered decision problems,

representative of the experimental elicitation procedures existing in the literature. Ex-

amples include menus in which all lotteries are: (i) defined on the same Marschak-

Machina triangle, i.e., involve the same three monetary payoffs (ii) a combination of

a prize and a probability, (iii) composed by a good and a bad state of nature, with

fixed probabilities q and 1 − q. Therefore, our characterization result applies to any

domain containing any combination of these decision problems, and extremeness and

monotonicity are the key tools for scrutinizing whether the observed behavior responds

to the random (expected utility) type model.

We then lay down an intuitive goodness-of-fit measure based on the assumed pos-

sibility of menu-dependent perturbations of the distribution of types, provided that

the magnitude of these perturbations is bounded above. Our goodness-of-fit measure

is the minimum perturbation required to explain all the observed choice frequencies,

and implicitly defines an extremum estimator. Since our measure can use literally any

distance function on the space of probability distributions, we are indeed providing

a class of goodness-of-fit measures and estimators and, more importantly, our subse-

quent analysis shows that any estimator in this class is strongly consistent. That is,

as the number of observations per choice problem increases, the estimator converges

to the true probability distribution over types. We then expand on the most common

estimator, the maximum likelihood estimator.

In the final part of our theoretical analysis, we show that our model is flexible

enough to be straightforwardly extended to more general settings. We consider two

such exercises. First, we introduce a tremble version of the model, in which alternatives

that are never maximal can be selected. We show that the structure of our original

results is basically maintained in this richer model. Next, we consider the case in which

the analyst may have choice information that varies across subpopulations, as occurs

with control-treatment studies or gender/age-specific data. Under these conditions,

the question arises as to whether some subpopulations present higher trait levels than

others, e.g., whether the type-dependent distribution of the treatment group dominates

(or is dominated by) that of the control group. We show how to use extremeness and

monotonicity, together with an extra property, to test for these patterns.

We conclude with an empirical illustration of our theoretical results, using an existing

experimental dataset on lottery choices. We use the ordered collection of types formed
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by CRRA expected utilities and argue that the experimental domain is ordered. We

then estimate the random type model using maximum likelihood, and briefly discuss

some findings.

2. Related Literature

Apesteguia, Ballester and Lu (2017) propose a random utility model built upon

an ordered collection of utilities. They analyze the case in which utilities satisfy the

well-known single-crossing condition; crucially, with respect to the grand set of alterna-

tives.1 The current paper requires only a local version of the single-crossing notion by

imposing its logic only on alternatives that are available in the same decision problem.

This is indeed a major change that substantially enhances the applicability of random

models based on ordered collections of utilities. By adopting this weaker notion, we are

able to provide characterization and estimation results for arbitrary domains of choice

problems, responding directly to the actual requirements of virtually every empirical

dataset.2

There is a handful of recent empirical papers focused on trying to exploit the single-

crossing condition. Barseghyan, Molinari and Thirkettle (2019) use random utility

models satisfying the single-crossing condition to provide semi-parametric identification

of attention models under risk taking. Chiappori, Salanié, Salanié and Gandhi (2019)

also use the single-crossing condition on individual risk preferences in a parimutuel

horse-racing setting to establish the equilibrium conditions and ultimately identify the

model. Our paper complements this literature, with some differences, such that our

model applies to general settings beyond that of decisions under risk as well as to

arbitrary ordered domains, and that we provide foundations for the model and its

estimation.

1The single-crossing property has been intensively studied in economics at least since Mirrlees

(1971) and Spence (1974), and has had a large impact in the social, biological and health sciences

(see, e.g., Greene and Hensher, 2010). Recently, Filiz-Ozbay and Masatlioglu (2020) study a random

choice model using a version of the single-crossing condition in order to model boundedly rational

stochastic choice.
2Given its importance for the empirical analysis, the literature on the stochastic choice theory

is turning to the issue of data requirements. For example, Dardanoni, Manzini, Mariotti and Tyson

(2020) study limited-attention stochastic choice models, where the choice domain involves a single

menu of alternatives.
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A series of applied papers have implemented parametric versions of the random type

model in order to estimate specific behavioral traits; most frequently, risk aversion.3

Barsky, Juster, Kimball and Shapiro (1997) is one of the first examples of the use of this

methodology, where the ordered structure of a menu of lotteries is exploited to obtain

estimates and perform covariate analysis of risk aversion in the population. Cohen

and Einav (2007) use data on deductible choices in auto insurance contracts. As the

authors show, any given probability of accident leads to an ordered structure of the

menu of deductibles and premiums, thereby facilitating the estimation of risk aversion.

Andersson, Holm, Tyran and Wengström (2018) using a balanced experimental design

show that cognitive ability affects choice variability rather than risk aversion. Our

paper contributes to this literature by providing foundations for a more general, non-

parametric, version of the model.

3. A Characterization of Random Type Models

Let T = {1, 2, . . . , T} be an ordered set of types, with utility functions {Ut}t∈T
defined over a space of alternatives X.4 All our results are ordinal in nature, there-

fore no parametric assumption is required here; we could equivalently work with the

corresponding collection of ordinal preferences. We say that alternative xh is higher

than alternative xl, and write xl / xh, whenever there exists t∗ ∈ T \ {T} such that

Ut(xl) > Ut(xh)⇔ t ≤ t∗. In words, the relevant economic trait captured by the order

of types induces a notion of higher alternatives, i.e., those preferred by high types (with

at least type T expressing this preference) but not by low types (with at least type 1

expressing the opposite preference). For instance, types are ordered by risk aversion,

delay aversion or altruism and these orders induce the notions of a safer lottery, a less

delayed stream of payoffs, or a more altruistic distribution, respectively.

Menus are finite subsets of X and a domain is defined as a finite collection of menus,

{Mj}j∈J={1,2,...,J}. The alternatives in menu j ∈ J that are maximal for at least one

3See Coller and Williams (1999) and Warner and Pleeter (2001) for similar estimation exercises

within the context of time preferences, or Apesteguia, Ballester and Gutierrez (2020) and Jagelka

(2020) for joint estimations of risk and time preferences.
4We present the results with finite domains in mind; therefore we can, without loss of generality,

assume a finite number of types. The extension to infinite decision problems and sets of types is

discussed in Remark 4. For ease of exposition, we also assume no role for indifferences, i.e., utility

functions are strict over the domain for which data exist.
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type are called essential, and denoted by Ej = ∪Tt=1 arg maxx∈Mj
Ut(x) ⊆ Mj. The

only assumption in the paper relates to the domain structure. Formally, we assume

that the domain is ordered, i.e. for every menu j ∈ J , / is complete on Ej. Given the

structure of the higher than notion, the completeness assumption is indeed equivalent to

assuming that Ej is linearly ordered by /. To see that completeness implies transitivity,

let e, e′ and e′′ all belong to Ej, such that e / e′ and e′ / e′′. Then it must be that

U1(e) > U1(e′) > U1(e′′) and, given completeness, it follows that e / e′′. As a result, we

can write Ej = {ej,1, ej,2, . . . , ej,κj}, where ej,1 /ej,2 / · · ·/ej,κj , with types {1, 2, . . . , tj,1}
preferring ej,1, types {tj,1 + 1, tj,1 + 2, . . . , tj,2} preferring ej,2 and so on, ending with

types {tj,κj−1 + 1, tj,κj−1 + 2, . . . , tj,κj = T} preferring ej,κj . In words, in any decision

problem, alternatives are ordered such as to reflect the economic trait at hand. In

applications, the identification of domains satisfying this property is immediate, as

illustrated in Section 4 for the case of decisions under risk.

Let Ψ denote the set of all probability distributions over T . In the random type

model (RTM), type t ∈ T is realized according to a menu-independent distribution

ψ ∈ Ψ, which leads to the choice of alternative arg maxy∈Mj
Ut(y). Our first result works

with ideal (infinitely repeated) data and provides necessary and sufficient conditions

for these data to be generated by the RTM or, as we put it more simply, to be RTM-

rationalizable. Formally, data are modeled by a stochastic choice function, which is a

map p : X × J → [0, 1] such that, for every j ∈ J , p(x, j) > 0 implies x ∈ Mj, and∑
x∈Mj

p(x, j) = 1.

Our first property, which we adapt from Gul and Pesendorfer (2006), is an immediate

consequence of the optimizing nature of RTMs. It states that only essential alternatives

can be observed with strictly positive probability.

Extremeness (EXT): p satisfies EXT if, for every j ∈ J , p(x, j) > 0 implies

x ∈ Ej.

Suppose that alternative e in menu j is maximal for a type that is higher than any

type for which e′ is maximal in menu j′. Our second property states that, under such

conditions, the cumulative choice probability of all alternatives lower than e in menu

j must be higher than the cumulative choice probability of all alternatives lower than

e′ in menu j′.
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Monotonicity (MON): p satisfies MON if, for every j, j′ ∈ J , ej,k ∈ Ej and

ej′,k′ ∈ Ej′ , tj,k ≥ tj′,k′ implies
∑

x∈Mj ,xEej,k
p(x, j) ≥

∑
x′∈Mj′ ,x

′Eej′,k′
p(x′, j′).5

These two simple properties characterize RTMs.

Theorem 1. p is RTM-rationalizable if, and only if, p satisfies EXT and MON.

Proof of Theorem 1: Note that, under the infinite data assumption, the observed

choice frequency of any alternative in any menu must correspond to the sum of masses

of all the types for which this alternative is maximal in the menu. Now, first suppose

that p is RTM-rationalizable, i.e., there exists an RTM, with distribution ψ, generating

the choice probabilities. EXT is a version of the property used by Gul and Pesendorfer

(2006) to characterize the random expected utility model and, by the same logic, it

is satisfied by RTMs. We now see that MON also holds. Notice that we just showed

that
∑

x∈Mj ,xEej,k
p(x, j) =

∑
x∈Ej ,xEej,k p(x, j) must hold. Now, the ordered nature of

Ej guarantees that the latter is equal to
∑k

l=1 p(ej,l, j) and, given our notation, this

simply corresponds to
∑tj,k

t=1 ψ(t). Then, MON immediately follows.

Now suppose that p satisfies both EXT and MON. We define a mapping F on a

sub-collection T ′ ⊆ T by setting, for every menu j ∈ J , and k ∈ {1, 2, . . . , κj},
F (tj,k) =

∑
x∈Mj ,xEej,k

p(x, j) =
∑k

l=1 p(ej,l, j). Notice that MON guarantees that

tj,k = tj′,k′ implies
∑

x∈Mj ,xEej,k
p(x, j) =

∑
x∈Mj′ ,xEej′,k′

p(x, j′), which makes F a

single-valued map. Similarly, MON also guarantees that this map is weakly increas-

ing on T ′. Notice, moreover, that T must belong to T ′, because, for every menu

j ∈ J , T = tj,κj . Notice also that, since Ej is totally ordered by /, it must be that

1 =
∑

x∈Mj
p(x, j) ≥

∑
x∈Mj ,xEej,κj

p(x, j) = F (tj,κj) = F (T ) ≥
∑

x∈Ej p(x, j). EXT

guarantees that the latter summand is also 1 and, hence, it must be that F (T ) = 1.

It is then evident that F can be extended to a CDF over the entire set of types T ,

which, for simplicity, we denote by F . Letting F (0) = 0, it is immediate to see that

the induced probability distribution ψ(t) = F (t)− F (t− 1) rationalizes p. �

The proof is constructive. Intuitively, type tj,k is the last type to select ej,k in menu

j. The order structure guarantees that any lower type must choose ej,l, with l ≤ k and

any higher type must choose ej,h with h > k. Hence, we can define the CDF over the

types as F (tj,k) =
∑

x∈Mj ,xEej,k
p(x, j) =

∑k
l=1 p(ej,l, j), and MON guarantees that it is

5As usual, x E e whenever x / e or x = e.
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a weakly increasing single-valued map. Also, since EXT guarantees that only essential

alternatives have strictly positive probability, it must be that F (T ) = 1.

Remark 1. If data are available only on a small number of menus, the CDF will

be identified only for a number of types, with an upper bound given by
∑J

j=1 |Ej| − J .

This upper bound is tight if the threshold types tj,k of essential alternatives all differ

across menus. In an experimental setting, the analyst may obviously design menus

that help to identify F wherever desired. It is obvious that the model is fully identified

whenever, for every t ∈ T , there exists a menu j ∈ J and k ∈ {1, 2, . . . , κj} such that

tj,k = t. For instance, the simplest way of doing this is to observe the binary menu

Mj = {x, y}, with x / y and such that t∗ = t.

Remark 2. The assumption on the completeness of / on each Ej could be sub-

stantially relaxed. The logic of our results only requires the following weaker version,

where a domain is said to be an interval-domain if, for every j ∈ J and e ∈ Mj:

e = arg maxx∈Mj
Utl(x) = arg maxx∈Mj

Uth(x) implies that e = arg maxx∈Mj
Utm(x) for

every tl < tm < th. That is, if an alternative is maximal for two types, it is also

maximal for the intermediate types. Under this interval condition, we can order the

essential alternatives of a menu as ej,1, ej,2, . . . , ej,κj , with types {1, 2, . . . , tj,1} prefer-

ring ej,1, types {tj,1 + 1, tj,1 + 2, . . . , tj,2} preferring ej,2 and so on, ending with types

{tj,κj−1 +1, tj,κj−1 +2, . . . , tj,κj = T} preferring ej,κj . Importantly, notice that this order

does not necessarily require alternatives to be related by /, thus showing that this is a

weaker assumption.

Remark 3. We have opted for the practical approach, in which an arbitrary col-

lection of ordered menus is considered. Interestingly, our results are also informative

about domains in which the order property does not necessarily hold, but where a

richness condition is met instead. Suppose a menu that is not ordered. That is, the set

of types is partitioned into the largest possible intervals, where each interval has the

same maximal alternative, but contrary to the structure in ordered domains, the same

alternative corresponds to two of these intervals. The richness condition required for

our results calls for the existence of a /-replica of this menu, i.e., an ordered menu with

a partition of types coinciding exactly with that of the non-ordered menu. In domains

containing /-replicas, a stochastic choice function is RTM-rationalizable if, and only if,

(i) EXT and MON hold for ordered menus, and (ii) for any non-ordered menu j ∈ J
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and every e in menu j, p(e, j) is equal to the choice probability of all the alternatives

that replace e in the /-replica of menu j.

Remark 4. The entire analysis immediately extends to RTMs defined on infi-

nite type-spaces {Uω}ω∈Ω and infinite ordered menus, under the usual continuity and

measurability assumptions. We can reformulate EXT by stating that only subsets of

alternatives that are maximal for a measurable set of types can have strictly positive

choice probability. For MON, denote by ωj,e the largest type for which essential al-

ternative e is maximal in menu j. The continuous version of MON requires larger

values of ωj,e to be associated with larger choice probabilities for the measurable set of

alternatives that are lower than e.

4. Applications to Decision under Risk

In this section, we discuss the case in which X is a set of monetary lotteries. We

consider the most natural ordered set of types in this setting; namely, a collection of

expected utilities, {EUt}t∈T ={1,2,...,T}, in increasing order of risk aversion, i.e., ordered

by increasing concavity of monetary utility. Thus, the induced relation / represents

the notion of a safer lottery. Theorem 2 below proves that the most standard menus

of lotteries in experimental studies are ordered. Then, whenever the domain is formed

by any combination of such menus, we can use MON and EXT to determine whether

behavior corresponds to the RTM based on expected utility.

We consider three possible sets of menus. The first are Marschak-Machina menus, in

which all the lotteries belong to the same Marschak-Machina triangle; i.e., they are all

composed of the same three monetary payoffs. The second are basic menus, in which

all lotteries are basic, i.e., they all comprise a (possibly different) strictly positive prize

and a (possibly different) probability of receiving this prize. The third are binary-state

menus, in which all lotteries entertain a good-state payoff and a bad-state payoff with

fixed probabilities.6 We can now establish the following result.

Theorem 2. Let {EUt}t∈T ={1,2,...,T} be ordered by increasing risk aversion. The es-

sential lotteries of any Marschak-Machina menu, basic menu or binary-state menu are

6Notice that this formulation is a generalization of widely used experimental decision problems,

such as those in Holt-Laury (2002) and Choi, Fisman, Gale, and Kariv (2007).
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completely ordered by /. Hence, in any domain formed by a combination of Marschak-

Machina menus, basic menus or binary-state menus, EXT and MON are necessary and

sufficient conditions for RTM-rationalizability.

Proof of Theorem 2: First consider a menu of lotteries in a Marschak-Machina

triangle and let e = (qBe , 1 − qBe − qWe , q
W
e ) and e′ = (qBe′ , 1 − qBe′ − qWe′ , q

W
e′ ) be two

essential lotteries in this menu, where lotteries are referred to by their probabilties

on the different prizes B > I > W . Since the lotteries are essential, it must be the

case that none of them first-order stochastically dominates the other and hence we can

assume, w.l.o.g., that qBe > qBe′ and qWe < qWe′ . It is immediately evident that e will

be preferred to e′ if, and only if, the slope of the linear indifference curve of the EU

type is below
qBe −qBe′
qW
e′ −q

W
e

.7 Since types are ordered by increasing slopes and both lotteries

are essential, it must be that e / e′ and so we are done. Similarly, consider a menu

of basic lotteries and let e = (q, n) and e′ = (q′, n′) be two essential lotteries, where

lotteries are referred to by the probability and monetary size of the strictly positive

prize. Again, since the lotteries are essential, they cannot be related by first-order

stochastic dominance, thus guaranteeing that one of the lotteries, say (q, n), has a

strictly higher payoff, while the other has a strictly higher probability. By normal-

izing ut(0) = 0, it is then evident that (q, n) is preferred to (q′, n′) if, and only if,
ut(n)
ut(n′)

≥ q′

q
, which is true if, and only if, the curvature of ut is sufficiently low. Since

types are ordered by increasing curvature and both lotteries are essential, it must be

that (q, n) / (q′, n′), thus proving that essential alternatives are ordered by /. Finally,

consider a binary-state menu and let e = (n1, n2; q) and e′ = (n′1, n
′
2; q) be two essential

alternatives, where notation is used to describe the good-state payoff, that of state 1;

the bad-state payoff, that of state 2; and the (common) probability of state 1. Absence

of first-order stochastic dominance guarantees that q 6= {0, 1} and that payoffs can be

ordered, w.l.o.g, as n1 > n′1 > n′2 > n2. We can normalize the monetary utilities to

ut(n1) = 1 and ut(n2) = 0. Suppose then that e′ is preferred to e by some type t ∈ T .

Then q ≤ qut(n
′
1) + (1 − q)ut(n

′
2), i.e.,

1−ut(n′1)

ut(n′2)
≤ 1−q

q
. Let type s > t be more risk

averse than type t. Since type t is indifferent between receiving n′2 with certainty and

receiving n1 and n2 with probabilities ut(n
′
1) and 1− ut(n′2), the more risk-averse type

must strictly prefer to receive n′2 with certainty, and hence us(n
′
2) > ut(n

′
2). Similar

7Notice that we can normalize ut(W ) = 0 and ut(B) = 1 and hence, any variation in expected

utility can be related to the value ut(I) = ω ∈ (0, 1). The slope of the linear indifference curves is a

monotone transformation of ω.
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reasoning proves that us(n
′
1) > ut(n

′
1). Hence,

1−us(n′1)

us(n′2)
<

1−ut(n′1)

ut(n′2)
≤ 1−q

q
and e′ must

also be preferred to e by the more risk-averse type s. Essential alternatives in binary-

state menus are thus completely ordered by /. Having therefore proved that the three

classes of menus are ordered, the second claim follows immediately from Theorem 1.�

Remark 5. Gul and Pesendorfer’s (2006) random expected utility assumes the

existence of a probability distribution over the entire family of expected utilities. In our

approach, we assume an ordered family of expected utilities. Notice that in some spaces,

such as the one in which X corresponds to a Marschak-Machina triangle, all expected

utilities can be ordered by risk aversion; hence, EXT and MON provide an alternative

characterization of random expected utility. In other spaces, not all expected utilities

can be ordered by risk aversion; but the standard estimation procedure is to consider

an ordered family, such as those given by CARA and CRRA utilities. In these cases,

we can use EXT and MON to characterize the corresponding RTMs.

Remark 6. In relation to Remark 3, it is interesting to note that we can use any

Marschak-Machina triangle to construct /-replicas of any menu of lotteries. To see this,

consider the relevant partition of types in a menu j ∈ J , {1, 2, . . . , tj,1}, {tj,1 + 1, tj,1 +

2, . . . , tj,2}, . . . , {tj,κj−1 +1, tj,κj−1 +2, . . . , tj,κj = T}, where the corresponding maximal

alternatives ej,k are not necessarily ordered. Hence, for a given Machina-Marschak

triangle, denote by m(t) the (strictly positive) slope of the indifference curves of type

t. Notice that m(t) must be strictly increasing in t, because types are ordered by risk

aversion. Now, construct the /-replica of menu j as follows. Let x1 = (1
2
, 0, 1

2
) and,

for k ∈ {2, . . . , κj}, let xk = xk−1 + (−αk−1, αk−1 + βk−1,−βk−1), with m(tj,k−1) <
αk−1

βk−1
< m(tj,k−1 +1) and such that

∑κ
k=2 αk and

∑κ
k=2 βk are both smaller than 1

2
, thus

guaranteeing that all vectors correspond to lotteries in the triangle. It is then evident

that lottery xk is maximal for, and only for, types {tj,k−1 + 1, . . . , tj,k}, as desired.

Therefore, a complete characterization of any RTM based on expected utilities can

be obtained by assuming EXT and MON on menus ordered by / (say, those of one

Machina-Marschak triangle), together with the replica property of Remark 3.

5. ε-rationalizability and Strongly Consistent Estimators

In this section, we present several results relating to the estimation of RTMs. We

start by providing an intuitive generalization of the RTM-rationalizability notion, which
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takes into account menu-dependent perturbations. More concretely, we contemplate

the possibility that the choice probabilities are generated by menu-dependent distribu-

tions of types ψj. We say that data are dε-rationalizable if there exists a distribution

ψ ∈ Ψ such that max
j∈J

d(ψ,Ψj) ≤ ε, where d is a distance function on Ψ, and Ψj ⊆ Ψ

is the set of all distributions that generate the choice probabilities of menu j ∈ J .8

Trivially:

Corollary 1. p is RTM-rationalizable if, and only if, p is d0-rationalizable. Further-

more, every p satisfying EXT is dε-rationalizable for some value of ε.

The first part of the result shows that dε-rationalizability constitutes a generalization

of RTM-rationalizability in which there exist no menu-dependent perturbations. The

second part of the result simply states that, with ε large enough, any behavior that

satisfies EXT can be explained by the menu-dependent variant of the model.9 Hence,

the question arises as to which minimal value of ε guarantees dε-rationalizability, thus

providing a natural goodness-of fit-measure for the model. This is in line with Afriat’s

(1973) goodness-of-fit measure in deterministic consumer settings.10

We now consider the practical case of finite data and the estimation exercise. For-

mally, data are represented by way of a map z : X×J ⇒ Z+, with z(x, j) = 0 whenever

x 6∈Mj, describing the number of times that alternative x has been chosen from menu

j ∈ J . For every menu j ∈ J , we denote by zj the vector describing the observed

choices in this menu, and by Zj =
∑

x∈Mj
z(x, j) > 0 the total number of observations

regarding this menu. Observed choice frequencies in each menu j ∈ J are therefore
zj
Zj

. When the choice frequencies satisfy EXT and MON, the first part of Corollary 1

guarantees the existence of an RTM generating a stochastic choice map equal to the

observed choice frequencies. With data not satisfying MON, the second part of Corol-

lary 1 guarantees the existence of an RTM that minimizes the ε-perturbation required

to accommodate all the data. In essence, this analysis provides an intuitive estimator

of the model, denoted as ψ̂d, which can be shown to be strongly consistent.

Theorem 3. ψ̂d is strongly consistent.

8We define, as usual, the distance of ψ to Ψj as the minimum distance of ψ to any element of Ψj .

In the case of Ψj being empty, we say that the distance is infinite.
9Section 7 studies the case where EXT is not required.

10See Apesteguia and Ballester (2020) for other goodness-of-fit measures in stochastic settings.
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Proof of Theorem 3: Consider an RTM with probability distribution ψ ∈ Ψ and the

domain of menus {Mj}j∈J={1,2,...,J}. Trivially, the stochastic choice function implied

by ψ is equivalent to the one implied by the restricted RTM defined on the support

of ψ, ordered as in T . Also, since x ∈ Mj \ Ej will never be chosen, the choice

probabilities generated by the restricted RTM are equivalent to those generated by the

same restricted RTM on the domain formed by the corresponding menus of essential

alternatives {Ej}j∈J={1,2,...,J}. Hence, we can assume, w.l.o.g., that ψ has full support

and that Mj = Ej for all j ∈ J .

Let Θj be the space of all strictly positive (multinomial) probability distributions

on menu j and Θ = Θ1 × Θ2 × · · · × ΘJ .11 Any RTM distribution of types ψ cor-

responds to one such multinomial distribution θ = (θ1, θ2, . . . , θJ) ∈ Θ, where θj(e)

is equal to the mass of all types, according to ψ, for which essential alternative e

is maximal in menu j. Notice that not all the elements of Θ correspond to an

RTM, since some multinomial distributions may, obviously, fail to satisfy the addi-

tional structure imposed by MON. Formally, taking into consideration the full sup-

port, the multinomial distributions associated with the RTM must be those for which

tj,k ≥ tj′,k′ ⇔
∑k

l=1 θj(ej,l) ≥
∑k′

l′=1 θj′(ej′,l′).

Let us now consider an increasing number of observations for each menu. The multi-

nomial structure guarantees, almost surely, that the strict part of MON must hold

across observed frequencies, guaranteeing that the smallest frequencies will correspond

to all pairs (j, k) such that tj,k = 1, the next larger frequencies will correspond to all

pairs (j, k) such that tj,k = 2, etc, with the largest frequencies corresponding to all

pairs (j, k) such that tj,k = T −1.12 Importantly, notice that these frequencies may not

be RTM-rationalizable, because two pairs associated with the same type t may, due to

sampling, have slightly different frequencies. Given the structure of the d-extremum

estimator, it is evident that, in all these cases, the estimator will construct the CDF of

type t by selecting a probability value within the interval determined by all the type t

frequencies.13 As the intervals shrink and, almost surely, converge to the corresponding

value, the estimator converges almost surely to ψ. �

11Notice that, with a slight modification of the structure, this simply corresponds to the space of

all stochastic choice functions with strictly positive probabilities defined on {Mj}j∈J={1,2,...,J}.
12Note that, when tj,k = T , the associated probabilities are always 1.
13The exact value will obviously depend on the distance function d being used.
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Theorem 3 shows that every d-extremum estimator is strongly consistent. The proof

is based on the fact that stochastic choice functions are collections of multinomials (one

for each menu), and that the collections generated by RTMs have a clear structure

determined by MON. We then argue that, when the number of observations increases,

the choice data generated by an RTM must almost surely satisfy the strict part of

MON. The estimator will reflect this, and simply equalize the remaining frequencies,

which should be equal. Thus, the result follows from the known fact that all these

frequencies must converge to the values determined by the RTM.

6. Maximum Likelihood Estimation

We now briefly comment on the most common estimator, the maximum likelihood

(ML) estimator, denoted by ψML.14

Theorem 4. Suppose that the likelihood of ψML is strictly positive. Then, for every

pair of types t, s in the support of ψML, it is the case that:∑
(j,k):tj,k−1<t≤tj,k

z(ej,k, j)∑tj,k
t=tj,k−1+1 ψ

ML(t)
=

∑
(j,k):tj,k−1<s≤tj,k

z(ej,k, j)∑tj,k
t=tj,k−1+1 ψ

ML(t)
.

Proof of Theorem 4: It is immediately evident that the likelihood can be strictly

positive if, and only if, z satisfies EXT; hence, we can assume, w.l.o.g., that z is re-

stricted to menus Ej. In an RTM with distribution ψ, the probability of observing ej,k

in menu j is given simply by the mass of types for which ej,k is maximal in menu j. We

know that this is ψ({tj,k−1 +1, tj,k−1 +2, . . . , tj,k}) = ψ(tj,k−1 +1)+ · · ·+ψ(tj,k). We can

write the ML estimator as the real-vector ψ that maximizes the total log-likelihood,

subject to the constraint that ψ is a probability distribution. That is, ψML must coin-

cide with the real vector that maximizes
∑

(j,k) z(ej,k, j) log(ψ(tj,k−1 +1)+ · · ·+ψ(tj,k))

subject to the constraint that
∑

t∈T ψ(t) = 1 and to positivity constraints. Hence,

for any two types t, s in the support of ψML, the first-order condition of the corre-

sponding Lagrangian must take the form
∑

(j,k):tj,k−1<t≤tj,k
z(ej,k,j)

ψML(tj,k−1+1)+···+ψML(tj,k)
=∑

(j,k):tj,k−1<s≤tj,k
z(ej,k,j)

ψML(tj,k−1+1)+···+ψML(tj,k)
, thus concluding the proof. �

14It is well-known that this estimator converges to the one that minimizes the Kullback-Leibler

divergence. Since the result in the previous section applies equally to both divergence and distance

measures, the ML estimator ψML is strongly consistent.
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Any observation that could potentially be explained by type t is relevant for deter-

mining the mass of t, and hence must be counted using the conditional probability

formula, i.e., taking into account the fact that the type must cover the entire interval

revealed by the observation. For instance, an observation showing that the type is ex-

actly t should be weighted much more than an observation showing that the parameter

matches a large superset of t. The ML estimator equalizes this value across all relevant

types in the support.

Example 1. Consider T = 5, and X = {a, b, c, d} with a / b / c / d. The domain is

composed of menus of (essential) alternatives E1 = {a, b, d}, E2 = {b, c, d} and E3 =

{b, d} for which we know that t1,1 = 1, t2,1 = 2, t1,2 = t3,1 = 3, t2,2 = 4 and t1,3 = t2,3 =

t3,2 = 5. This example corresponds to a subset of lotteries and CRRA expected utilities

analyzed in our empirical study of Section 8.15 The choice of a from menu 1 is the

only choice revealing exclusively type {1}. Similarly, (b, 1), (b, 2), (c, 2), (d, 2) and (b, 3)

are the only choices associated with the intervals of types {2, 3}, {1, 2}, {3, 4}, {5} and

{1, 3}, respectively. The choices of d from menus 1 and 3 reveal the same information;

namely, that the type belongs to {4, 5}. Hence, we can write the log-likelihood as

z(a, 1) log(ψ(1)) + z(b, 1) log(ψ(2) +ψ(3)) + z(b, 2) log(ψ(1) +ψ(2)) + z(c, 2) log(ψ(3) +

ψ(4)) + z(d, 2) log(ψ(5)) + z(b, 3) log(ψ(1) +ψ(2) +ψ(3)) + (z(d, 1) + z(d, 3)) log(ψ(4) +

ψ(5)), with the extra condition that ψ is a probability distribution. Consider, for

instance, the actual data from the experiment, z(a, 1) = 12, z(b, 1) = 5, z(b, 2) = 14,

z(c, 2) = 8, z(d, 2) = 15, z(b, 3) = 41, z(d, 1) = 19 and z(d, 3) = 46. Theorem 4 can

be applied immediately to obtain the ML estimator as ψML(1) = .33, ψML(2) = .05,

ψML(3) = .09, ψML(4) = .12 and ψML(5) = .41.

Remark 7. In many experimental studies, the data exclusively comprise choices

over binary menus, {Mj = Ej = {ej,1, ej,2}}Jj=1.16 Based on our previous discussions,

we can assume, w.l.o.g., that the ordered collection of types is composed of types

{t1,1, t2,1, . . . , tJ,1, T}. We can then provide an immediate algorithm for the computa-

tion of the ML estimator. Denote ρ(j, j) =
∑j
j=j z(ej,1,j)∑j

j=j Zj
. Then, define j0 = 0 and F0 = 0

and, recursively, jn (with jN = J obviously being the last element of the sequence) as

15Namely, alternatives a, b, c and d correspond to lotteries l3, l4, l5 and l1, respectively, and the

types correspond to the CRRA relevant types.
16We assume that menus are formed by essential alternatives; as, otherwise, only one alternative

would be chosen with probability one.
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the largest integer j, with jn−1 < j ≤ J minimizing ρ(jn−1 + 1, j), and let Fn be equal

to the corresponding minimized argument. Then, it can be seen that the ML estimator

is:

ψML(t) =


Fn − Fn−1 if t = t1,jn−1 + 1

1− FN if t = T

0 otherwise.

For example, consider T = 4, X = {a, b, d} with a / b / d, and the menus of (essential)

alternatives Ē1 = {a, b}, Ē2 = {a, d} and E3 = {b, d}, with t1,1 = 1, t2,1 = 2, t3,1 = 3.

This, again, corresponds to the case analyzed in Section 8, with data z(a, 1) = 37,

z(b, 1) = 50, z(a, 2) = 35, z(c, 2) = 52, z(b, 3) = 41 and z(d, 3) = 46. Since ρ(1, 1) =

.43, ρ(1, 2) = .41 and ρ(1, 3) = .43, it must be that j1 = 2 and F1 = .41. Now, ρ(3, 3) =

.47; hence, j2 = 3 and F2 = .47. Thus, the ML estimator is simply ψML(1) = .41,

ψML(2) = 0, ψML(3) = .06 and ψML(4) = .53.

7. Extensions

7.1. Tremble. Random type models cannot explain the choice of non-essential alter-

natives, such as first-order stochastically dominated lotteries. In some cases, however,

a significant number of non-essential alternatives are chosen and the analyst may there-

fore wish to extend RTMs to accommodate this behavioral regularity. A convenient

way of doing this is to extend RTMs to include trembling behavior, thus giving rise to

what we call the random type model with tremble (RTMT). We say that p is RTMT-

rationalizable if there exists a probability distribution over the set of types, ψ, and a

tremble value, λ ∈ [0, 1), such that: (i) whenever Mj = Ej, choices are determined

according to ψ and (ii) whenever Mj 6= Ej, choices are determined according to ψ with

probability (1−λ); and uniformly randomly on Mj \Ej, otherwise.17 RTMT is a simple

model, and its characterization follows immediately from the analysis in Theorem 1.

Corollary 2. p is RTMT-rationalizable if, and only if, p satisfies

(1) EXT*: For every j, j′ ∈ J ,
∑

x 6∈Ej p(x, j) =
∑

x 6∈Ej′
p(x, j′), and

(2) MON*: For every j, j′ ∈ J , ej,k ∈ Ej and ej′,k′ ∈ Ej′, tj,k ≥ tj′,k′ implies that∑
x∈Mj,xEej,k

p(x,j)∑
x∈Ej

p(x,j)
≥

∑
x′∈Mj′ ,x

′Eej′,k′
p(x′,j′)∑

x∈Ej′
p(x,j′)

.

17We select the simplest tremble model for purposes of illustration. Similar techniques can be used

with many other trembling mechanisms.
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Corollary 2 provides a simple test for the RTMT model. The probability of a mistake

is constant across menus and hence a simple reformulation of EXT must hold. Similarly,

once the observed probabilities have been normalized by the possible trembling in

the menu, MON must hold. The practical implementation of this simple model is

illustrated in our empirical application, described below.

7.2. Subpopulations. In many applications, the analyst envisions a model in which

different subpopulations behave differently, and wishes to establish a relationship across

the RTMs of these subpopulations. We illustrate this idea with the intuitive case in

which an ordered characteristic (say age or income, or a gender dummy or one of a set

of treatment dummies) is such that higher subpopulations have RTM distributions that

are first-order stochastically dominating, i.e., they are skewed towards higher types.

Formally, let G = {1, . . . , G} be a partition of the population into G groups. We

say that the collection of RTMs {ψg}g∈G is monotone-in-characteristics if, for every

g, g′ ∈ G, with g < g′, and every t ∈ T ,
∑t

s=1 ψg(s) ≥
∑t

s=1 ψg′(s). Denote by pg the

stochastic choice function of subpopulation g. Then,

Corollary 3. The collection of stochastic choice functions {p1, p2, . . . , pG} can be repre-

sented by a monotone-in-characteristics collection of RTMs if, and only if, {p1, p2, . . . , pG}
satisfies

(1) For every g ∈ G, pg satisfies EXT and MON, and

(2) For every g, g′ ∈ G, with g < g′, every j ∈ J and every e ∈ Ej, we have∑
x∈Mj ,xEe

pg(x, j) ≥
∑

x∈Mj ,xEe
pg′(x, j).

Clearly, the stochastic choice function of each of the subgroups must, by Theorem

1, satisfy EXT and MON. Then, a distribution with more mass on higher types will

generate higher choice probabilities for alternatives in the menu that are higher.

8. Empirical Illustration

We now illustrate our framework and results using the experimental dataset analyzed

in Apesteguia and Ballester (2020). This dataset involves 87 UCL undergraduates

choosing lotteries from menus of lotteries of sizes 2, 3, and 5. Concretely, there were

nine equiprobable monetary lotteries, described in Table 1. Each of the participants

faced a total of 108 different menus of lotteries, including all 36 binary menus; 36 menus
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with 3 alternatives out of the possible 84; and another 36 menus with 5 alternatives out

of the possible 126. Random individual processes, without replacement, were used to

select the menus of 3 and 5 alternatives to determine the order of presentation, and to

locate the lotteries on the screen and the monetary prizes within a lottery. There were

two treatments, NTL and TL. Treatment NTL was a standard implementation, that is,

the choice was not time-constrained. In treatment TL, subjects had to select a lottery

within 5, 7 and 9 seconds from the menus with 2, 3, and 5 alternatives, respectively.18

Table 1. Lotteries

l1 = (17) l4 = (30, 10) l7 = (40, 12, 5)

l2 = (50, 0) l5 = (20, 15) l8 = (30, 12, 10)

l3 = (40, 5) l6 = (50, 12, 0) l9 = (20, 12, 15)

The set of types is defined by adopting expected utility and CRRA, i.e., we use

monetary utilities x1−ω

1−ω , whenever ω 6= 1, and log x for ω = 1, where ω represents the

risk-aversion coefficient.19 Given the decision problems considered in the experiment,

there are exactly 30 relevant types, which are ordered by increasing risk aversion and

described in Columns 1-3 of Table 2. Column 1 reports the type number and Column

2 reports the upper bound of ω corresponding to that type. Finally, Column 3 reports

the preference over the lotteries of the respective type. We describe the preference of

the first type and then specify the pair(s) of alternatives that flip from the previous

type. Given the types, it is easy to see that all menus of lotteries are ordered by / and,

hence, our basic framework can be used.20

There are several menus with non-essential alternatives, such as, for example, the

binary menu {l5, l9}, where l5 first-order stochastically dominates l9. We observe sig-

nificant choice probabilities for non-essential alternatives (that is, EXT clearly fails),

and thus prefer to use the tremble version of the model, RTMT. We then analyze the

ML estimator of the data. In Columns 4-7 in Table 2, we report the estimated den-

sities of the RTMT using all the data (Column 4); the treated data (Column 5); the

18Experimental payoffs were determined by randomly selecting one menu, and the subject was paid

according to his or her choice from that menu.
19Since lotteries l2 and l6 involve 0 payoffs, we assume a small fixed positive background consump-

tion.
20Note that some of these menus do not fall within the classes covered in Theorem 2, thus reinforcing

our claim regarding the wide applicability of the setting studied in this paper.
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Table 2. Preferences and Estimation Results

Preferences Estimated RTMTs

ID ω All Obs TL NTL Only Binary

1 -4.148 2-6-3-7-4-8-5-9-1 0.1166 0.1173 0.1158 0.2197

2 -0.518 (1, 9) 0 0 0 0

3 -0.313 (3, 6) 0.1009 0.0937 0.1081 0.0673

4 -0.083 (4, 7) 0 0 0 0

5 0.065 (5, 8) 0 0 0 0

6 0.154 (4, 6) 0 0 0 0

7 0.209 (1, 8) 0 0 0 0

8 0.229 (3, 2) and (7, 6) 0.0561 0.0713 0.0289 0

9 0.258 (5, 6) 0 0 0.031 0

10 0.262 (1, 6) 0.0274 0.009 0.0263 0

11 0.273 (5, 7) 0 0 0 0

12 0.339 (4, 2) and (8, 6) 0 0 0 0

13 0.342 (1, 7) 0 0 0 0

14 0.358 (5, 2) and (9, 6) 0 0 0 0

15 0.363 (1, 2) 0 0 0 0

16 0.374 (7, 2) 0 0 0 0

17 0.408 (8, 2) 0 0 0 0

18 0.443 (9, 2) 0.0915 0.067 0.1172 0.1545

19 0.516 (4, 3) and (8, 7) 0.0079 0.013 0 0

20 0.607 (6, 2) 0 0 0 0

21 0.652 (5, 3) and (9, 7) 0 0 0 0

22 0.808 (1, 3) 0 0 0 0

23 0.844 (8, 3) 0 0 0.009 0

24 1.000 (9, 3) 0.1388 0.1482 0.1182 0.0645

25 1.124 (5, 4) and (9, 8) 0 0 0 0

26 1.309 (1, 4) 0 0 0 0

27 2.000 (7, 3) 0.0497 0.0473 0.0594 0

28 2.826 (9, 4) 0.0489 0.025 0.0632 0

29 4.710 (1, 5) 0 0 0.0373 0.0573

30 ∞ (8, 4) 0.3622 0.4082 0.2856 0.4368

Estimated λ

0.2516 0.2829 0.2199 0.1744

Log Likelihood

-10.7168 -5.3898 -5.2938 -27.1106

non-treated data (Column 6); and the binary data, that is, the aggregated treated and

non-treated data (Column 7).

The estimated RTMT using all the data shows that a relatively small number of

types, a third of the total, is sufficient to capture the behavior of the population in this

experiment. The results depict a very significant fraction of highly risk-averse types.

The fraction of types with curvature close to or higher than logarithmic (type 24 and
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Figure 1.—CDFs of the estimated RTMTs of the treated and non-treated data.

above) is 60%, with more than a third of decisions corresponding to the highest type,

type 30, which represents risk-aversion levels as high as 4.7 and above. Interestingly,

the results also show that a relevant fraction of the decisions correspond to highly

risk-seeking attitudes (22%), and even to extreme risk-seeking behavior, (with 12%

of decisions corresponding to the lowest type, type 1, which represents risk-aversion

coefficients below −4.8). The estimated probability of tremble is .25, thus reflecting

the behavioral relevance of non-essential alternatives.

Comparison of the estimated RTMTs in the treatment-control data yields some

interesting results. See Columns 5 and 6 in Table 2 for the densities, and Figure

1 for a representation of the corresponding CDFs. Both RTMTs allocate masses to

similar preferences, although there is a slight tendency towards more risk aversion in

the treated data. The masses allocated to types with curvature close to logarithmic

or higher are 63% and 56% in the treated and non-treated data, respectively. This

can also be seen in Figure 1, where starting from the 10th preference, the CDF of the

treated RTMT dominates that of the non-treated. In addition, note that the estimated

tremble with the treated data is about 22% larger than with the non-treated data.

In sum, there are differences between treatment and control, suggesting a behavioral

shift towards more risk aversion, and to large choice inconsistencies, but the latter do

not appear dramatic. They may be due to the fact that the subject population was

highly risk averse to begin with, thus leaving little room for the identification of larger



21

effects in the treatment-control comparison, and also to the fact that the imposed time

constraints were probably not strict enough. Finally, Column 7 reports the estimated

RTMT using all the binary data. The estimation of the binary data can be computed

exactly following the simple algorithm given in Remark 7. Interestingly, the binary

data reveal risk-aversion levels analogous to those obtained previously.
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