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Abstract

I study how geography shaped city formation and aggregate development in the United

States prior to the Civil War. To guide my analysis, I first present a conjecture that cities’

farm hinterlands fostered both city development and aggregate growth: the hinterland hy-

pothesis. The hinterland hypothesis has rich implications on how various elements of U.S.

geography – railroads, changes in U.S. political borders, increasing U.S. population, and in-

ternational trade – affected city formation and U.S. growth. To quantitatively evaluate the

hinterland hypothesis and its implications, I assemble a novel historical dataset on popula-

tion, trading routes and agricultural productivity at a high spatial resolution, and combine

it with a dynamic quantitative model of economic geography. I find evidence for the hinter-

land hypothesis by showing that the model can quantitatively replicate the key patterns of

U.S. urbanization and city formation. Finally, I conduct a series of counterfactuals in the

model to quantify the effect of geography on cities and growth, guided by the implications

of the hinterland hypothesis. Results indicate that railroads were responsible for 8.2% of

urban population in 1860 and for 27% of real GDP growth between 1830 and 1860. The

effect of international trade was similar in magnitude, while population growth slowed down

urbanization and GDP growth. The effect of political border changes was small during the

period.

1 Introduction

In the very end of the 18th century, the United States was still a rural, pre-industrial

country. The average income of a U.S. person was below average income in England and
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Ponzetto, Stephen Redding, Jacques Thisse, Felix Tintelnot, Áron Tóbiás, Sharon Traiberman, Jaume
Ventura, four anonymous referees, as well as seminar and conference participants for helpful comments and
suggestions. I thank Adrien Bilal and Charly Porcher for help with optimizing the simulation of the model.
I acknowledge support from the International Economics Section at Princeton University. All errors are
my own.
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Wales (Lindert and Williamson, 2013). In 1790, the country had only five cities with

more than 10,000 inhabitants, and its total urban population was around 100,000. By the

middle of the 19th century, on the other hand, the U.S. was nearly the richest country

on Earth (Weiss, 1992). It had almost 100 cities, and its total urban population exceeded

1,800,000 in 1860. What can explain this astonishing episode of take-off between the

American Revolution and the Civil War? Scholars have offered the country’s high-quality

institutions as a prominent explanation (North, 2003). Another influential view, dating

back to Turner (1894), is that the abundance of land on the country’s Western frontier

played a key role: “The existence of an area of free land, its continuous recession, and the

advance of American settlement westward, explain American development” (Turner, 1894).

How could the abundance of land in the West stimulate U.S. city formation and eco-

nomic take-off? In his famous book on the rise of Chicago, William Cronon opines that

“urban-rural commerce was the motor of frontier change [...] ‘the discovery, cultivation,

and capitalization’ of land meant bringing it into the marketplace and attaching it to the

metropolis” (Cronon, 1991, p. 54). “Western cities [...] grew in tandem with the coun-

tryside and played crucial roles in encouraging settlement from a very early time. City

and country formed a single commercial system, a single process of rural settlement and

metropolitan economic growth. To speak of one without the other made little sense”

(Cronon, 1991, p. 47).

Motivated by Cronon’s observations, I formulate a conjecture on how the abundance of

land in the West fostered pre-Civil War U.S. city formation and growth: Cronon’s hinter-

land hypothesis. According to this hypothesis, the abundance of land attracted farmers to

the West. Farmers brought their products to nearby trading places, helping these places

develop into cities. The prosperity of these cities, in turn, contributed to aggregate U.S.

growth. At the same time, it spread out to these cities’ farm hinterlands, attracting even

more people to the West.

Besides rationalizing the westward expansion of U.S. economic activity and the rapid

development of cities, the hinterland hypothesis has rich implications on how different

elements of U.S. geography shaped growth. The first implication has to do with the effect

of railroads. Railroads, which started to be built in the early 1830s, increased the sizes of

cities’ potential farm hinterlands by decreasing the costs of inland trade. The hinterland

hypothesis thus implies that railroads fostered city development and aggregate growth. A

second implication of the hinterland hypothesis is that the shift of U.S. political borders to

the West, which increased the country’s land area by a factor of three, might have played

a similar role as railroads. A third implication is that the growth of U.S. population,

which decreased the amount of available land per capita, acted against urbanization and

aggregate growth. The last implication is that international trade, which favored Eastern

regions that had good access to trade with foreign markets, slowed down the westward

expansion. At the same time, it might have fostered city development in the East. Hence,
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its effect on aggregate growth is ambiguous.

In this paper, I conduct the first quantitative evaluation of the hinterland hypothesis

and its implications on how geography shaped pre-Civil War U.S. growth. To this end, I

first assemble a novel historical dataset that encompasses county, city and town popula-

tion data from U.S. censuses between 1790 and 1860, data on the geographic location of

waterways and railroads, changing U.S. political borders and agricultural productivity at

a high spatial resolution. The data allow me to characterize the patterns of urbanization

and city formation prior to the Civil War. I start by documenting the first-order feature of

the data, consistent with the hinterland hypothesis: between 1790 and 1860, U.S. economic

activity shifted substantially toward previously unoccupied land in the West. At the same

time, the share of people living in cities increased by a factor of five. Also consistent with

the hinterland hypothesis, I find that the vast majority of newly forming cities emerged at

locations with good access to trade, such as near navigable rivers or railroads. Using the

data, I document further facts about the location patterns and the growth of cities.

To quantify the importance of hinterlands in pre-Civil War U.S. development and city

formation, I combine my high-resolution historical data with a dynamic quantitative model

of economic geography.1 Studying the interaction between cities and their farm hinterlands

calls for a model with two sectors: a farm and a non-farm sector. Locations endogenously

specialize in farm or non-farm activities in the model. The farm sector uses land and labor

to produce a homogeneous good under constant returns to scale, and sells the good to

consumers and to the non-farm sector. Firms in the non-farm sector combine the farm

good with labor under economies of scale. They also hire workers to innovate, which leads

to endogenous growth in their productivity. Due to scale economies and shipping costs, a

large proportion of non-farm activities, and hence innovation, concentrate at a few locations

with large population. In other words, cities form and develop endogenously.

The model is qualitatively consistent with the hinterland hypothesis as it predicts that

cities with access to a large farm hinterland innovate more and grow faster. This is because

a large farm input market implies higher returns to innovation in the local non-farm sector.

This interconnection between the farm and non-farm sectors helps locations in the Midwest,

with access to a large farm hinterland especially after the placement of railroads, grow

fast and attract a substantial fraction of population. As a result, the model is able to

qualitatively replicate the first-order features of the data: the westward expansion and the

increasing share of people living in cities. I test the model’s fit to these and various other

untargeted moments, and find that the model fits the data not only in a qualitative, but also

in a quantitative sense. For instance, the correlation between locations’ population levels

in the model and in the data is around 0.5 throughout most of the period of investigation.

This is despite the fact that the model’s calibration does not target any moment of the

1A rapidly growing literature uses quantitative models to study how geography shapes local and aggre-
gate economic outcomes. I discuss this literature in my literature review below.
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evolution of the spatial distribution of population.

To further highlight the importance of hinterlands in explaining the first-order patterns

in the data, I contrast the fit of my model with the model of Desmet, Nagy and Rossi-

Hansberg (2018), henceforth DNR. DNR is also a dynamic quantitative geography model

in which local innovation activity induces aggregate growth and an endogenous evolution

of the spatial distribution of population. Crucially however, DNR features one sector.

Thus, it does not allow farm hinterlands to foster growth in the non-farm sector, hence

city growth and aggregate development. I take the DNR model to the data and use it

to predict how the spatial distribution of population evolved in the pre-Civil War United

States. I find that the DNR model is unable to replicate the substantial westward shift in

U.S. population and the emergence of cities outside the Northeast. These results can thus

be viewed as further evidence for the quantitative relevance of the hinterland hypothesis.

Armed with quantitative evidence that the model is able to rationalize the data, I

conduct a series of counterfactuals to measure how geography shaped U.S. growth, guided

by the implications of the hinterland hypothesis. In the first counterfactual, I measure the

effect of railroads on city formation and growth. I find that the absence of railroads would

have led to an 8.2% lower urban population in 1860, as well as a 27% drop in U.S. real

GDP growth between 1830 and 1860. Railroads thus played an important role in aggregate

U.S. growth and city development, in line with the implication of the hinterland hypothesis

that railroads fostered city growth through increasing the sizes of farm hinterlands. At the

same time, I find that the effect of political border changes is positive but small. This

is consistent with the fact that most of newly occupied land was hard to access prior to

railroad construction in the West, which only took place after the Civil War. In line with the

third implication of the hinterland hypothesis, I find that population growth acted against

city development and aggregate growth by making land more scarce, which increased farm

prices and decreased the incentives to innovate in the non-farm sector. Finally, I find that

international trade slowed down the westward expansion but fostered city development in

the Northeast, a region that enjoyed a better geographic position to trade with foreign

markets, leading to faster growth in the aggregate.

I test the robustness of my quantitative findings to changes in the values of model

parameters and modeling assumptions. One particularly important concern is that the

placement of railroads is endogenous. I carefully design my calibration strategy to allevi-

ate this concern when it comes to the identification of parameters and the results of the

counterfactual with no railroads. Nevertheless, the endogeneity of railroads is a concern

for the results of the other three counterfactuals, in which alternative railroad networks

could emerge. To address the concern, I develop an extension of the model in which rail-

roads are endogenously placed at locations with high demand for investment in transport

infrastructure. I find that railroad locations predicted by my endogenous railroad place-

ment framework feature a good fit to the actual location of railroads. I also find that the
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quantitative results of the counterfactuals are not substantially affected by the endogeneity

of railroad placement.

This paper is related to four strands of the literature. One contribution of the pa-

per is that it investigates urbanization and the interaction between city development and

aggregate growth in a spatially heterogeneous environment, which makes it suitable for

quantitative analysis. Previous studies of city formation and urban growth either assume

a set of identical sites, as Helsley and Strange (1994), Henderson and Venables (2009)

or Rossi-Hansberg and Wright (2007), or two types of locations, as Black and Henderson

(1999) or Bertinelli and Black (2004). Another, related strand of the literature, including

Ngai and Pissarides (2007), Baumol (1967), Buera and Kaboski (2012a,b) and Caselli and

Coleman (2001), focuses on structural change, which has been recognized as a key source of

urbanization. The models in these papers are also highly stylized in their spatial structure,

or are completely aspatial. On the other hand, the flexible geographic structure in my

model allows me to quantitatively evaluate the hinterland hypothesis and its implications

on how different elements of geography affected city development and aggregate growth.2

The fact that my paper models the economy over a rich geography relates it to the

rapidly growing literature applying quantitative models to examine the spatial distribution

of economic activity, such as Allen and Arkolakis (2014), Caliendo, Parro, Rossi-Hansberg

and Sarte (2018), Fajgelbaum and Redding (2018), Monte, Redding and Rossi-Hansberg

(2018) and Redding (2016). Similar to my model, these models can accommodate a large

number of locations that are heterogeneous in their factor endowments, productivity and

shipping costs. However, given that these models are static, they cannot be used to measure

how geography shapes growth. My main contribution to this literature is developing a

dynamic quantitative framework that allows me to study not only the spatial distribution

of economic activity, but also its evolution. Besides opening the door to measuring the

effect of geography on growth, incorporating the dynamics also allows me to test the model

on how well it can predict the evolution of the spatial distribution of population.

The paper is also related to the set of papers that model the evolution of productivity

and growth across space, such as Desmet and Rossi-Hansberg (2014), Desmet et al. (2018),

Eckert and Peters (2018) and Michaels, Rauch and Redding (2012).3 Relative to this liter-

ature, I emphasize the key role of cities in determining the relationship between geography

2See Herrendorf, Rogerson and Valentinyi (2014) for a review of the literature on structural change. It is
important to note that, although my paper introduces a geographic dimension into a model with structural
change, tractability requires it to abstract from certain forces that are typically present in aspatial models
of structural change. Most importantly, the model features homothetic preferences, even though non-
homotheticity has been pointed out as a potentially important source of structural change in the literature
(Herrendorf et al., 2014).

3Caliendo, Dvorkin and Parro (2019) also develop a dynamic quantitative model of economic geography.
In their model, the dynamics are driven by households making dynamic location choices subject to mobility
frictions. Unlike in Caliendo et al. (2019), my model features frictionless labor mobility but an endogenous
dynamic evolution of productivity.
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and growth. Geography, and the size of hinterlands in particular, shapes the formation

and growth of cities through affecting the non-farm sector’s incentives to innovate. The

spatial distribution of cities, in turn, drives the spatial distribution of innovation, hence

aggregate growth in the economy. Within this literature, my work is closest to Desmet et

al. (2018) (“DNR”). DNR is also a spatial growth model in which aggregate growth is

induced by firms’ incentives to innovate locally. Crucially however, DNR features a single

sector. In this paper, I show that a two-sector framework in which access to a farm hinter-

land drives innovation in the non-farm sector is essential to replicate the evolution of the

spatial distribution of population and the patterns of city formation seen in the data.

Finally, my paper is related to the literature quantifying the economic impact of U.S.

railroads. In his seminal work, Fogel (1964) aims at carefully accounting for the various

local and aggregate effects of 19th-century U.S. railroads. Donaldson and Hornbeck (2016)

revisit Fogel’s analysis, using a static quantitative trade model. They focus on the im-

pact of railroads on real output through railroads allowing for cheaper transportation of

agricultural products.4 Relative to Donaldson and Hornbeck (2016), I broaden the scope

of the investigation by also accounting for the effect of railroads on the formation and

development of cities. Using a model-based decomposition, I show that this new effect

amplifies the effect of railroads on output by at least 17%.5 The result that railroads foster

economic growth through city formation is consistent with empirical estimates by Atack

et al. (2010), who document increasing urbanization in counties along railroad lines in the

pre-Civil War Midwest.

The structure of this paper is as follows. Section 2 uses pre-Civil War U.S. data to

document the key patterns of urbanization and city formation during the period. Section

3 outlines the theoretical model, while Section 4 describes the steps of taking the model to

the data. Section 5 evaluates the model’s fit to the data, and compares it to the fit of the

DNR model. It also presents the results of the four counterfactuals aimed at quantifying

the role of geography in U.S. growth and city formation. Section 6 tests the robustness of

the results. Section 7 concludes.

2 Stylized facts: City formation in pre-Civil War U.S.

This section presents a series of stylized facts that characterize the process of urbanization

and city formation in the pre-Civil War United States. Consistent with the hinterland

4Other recent papers studying the economic impact of transport infrastructure in quantitative spatial
frameworks include Fajgelbaum and Schaal (2019), Allen and Arkolakis (2019), Herrendorf, Schmitz and
Teixeira (2012), Santamaria (2019), Swisher (2014) and Trew (2020). Also see the review of this literature
in Redding and Turner (2015).

5This finding is in line with David (1969), who argues that scale economies might lead to railroads
having indirect effects not captured in Fogel’s analysis. In his response, Fogel (1979) points to the fact that
scale economies are weak in the farm sector, but does not consider scale economies in non-farm activities.
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hypothesis, the U.S. saw a substantial shift in its population and economic activity toward

the West (Fact 1). At the same time, the share of people living in cities increased by a

factor of five, and most of this urbanization can be attributed to new cities forming as

opposed to pre-existing cities growing (Fact 2). The location of these newly forming cities

seems to be driven by better trading opportunities, such as access to navigable waterways

or railroads (Fact 3). Furthermore, there were substantial geographic differences in the

patterns of city formation: new cities appeared relatively far from each other, but less so

in the Northeast (Fact 4). Finally, the growth of cities was approximately orthogonal to

city size (Gibrat’s Law) but with slight convergence; at the same time, small towns grew

slower than cities above 10,000 inhabitants (Fact 5).

I use three datasets to document these facts. First, I use census data on county, city and

town populations that are available for every decade starting from 1790. The census reports

the population of any settlement above 2,500 inhabitants. I classify the settlements above

10,000 as cities, and those between 2,500 and 10,000 as towns.6 Second, I use data on the

location of land, rivers, canals, lakes and oceans at a high spatial resolution, which come

from the ESRI Map of U.S. Major Waters. Third, railroad maps coming from the website

oldrailhistory.com show the rail network in 1835, 1840, 1845, 1850 and 1860. Appendix B

provides a detailed description of these datasets.

My period of investigation starts with the first population census (1790), and ends right

before the U.S. Civil War (1860). The choice of 1860 as the end of the period is motivated

by the well-known fact that the Civil War had a large and long-lasting economic impact

on the U.S. economy. Besides one million people dead, the war caused dramatic losses in

both transport infrastructure and city productivity, especially in the South (Foote, 1974).

These events took the U.S. economy on a different development path, characterized by

divergence between the North and the South, which lasted for a century (Kim and Margo,

2004). Since modeling the Civil War is outside the scope of my theoretical framework, I

focus on the years 1790 to 1860 throughout the paper.

Fact 1: Westward expansion

U.S. population increased by a factor of eight between 1790 and 1860. Total U.S. population

was growing primarily because birth rates were above death rates; immigration did not

play a major role at the time, as shown by the fact that only 13% of U.S. population was

foreign-born in 1860. Also, the U.S. saw significant changes in its political borders during

the period, mainly as a result of the Louisiana Purchase (1803), the annexation of Texas

6This distinction is motivated by the finding that settlements above 10,000 inhabitants exhibited sig-
nificantly different growth patterns from those below 10,000 (Fact 5), in line with the findings of Desmet
and Rappaport (2015).
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Figure 1: Evolution of the U.S. population distribution
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The four panels of the figure present population (number of inhabitants) per square mile in each 20 by 20 arc minute grid cell of the United
States in 1790, 1820, 1840 and 1860, respectively. The red dot represents the mean center of U.S. population. The scale is bottom-coded at 5
and top-coded at 50 for visibility. Source: U.S. census.

(1845) and the Mexican–American War (1847).7 Population growth was, however, far from

uniform across space. Population in the West increased much more rapidly, as evident

from Figure 1 which shows population density and the mean center of U.S. population in

1790, 1820, 1840 and 1860. By the end of the period, the mean center of population shifted

about 400 miles to the West from Baltimore, Maryland to Columbus, Ohio.

This process led to rapid convergence in population sizes among three large regions of

the United States: the Northeast, the South and the Midwest.8 Whereas the Midwest only

had 1.3% of U.S. population in 1790, its share was almost equal to that of the Northeast

and the South in 1860 (Figure 15 in Appendix E).9

7Although modeling changes in political borders and total population is outside the scope of this paper,
the model presented in Section 3 allows for exogenous changes in both. In Section 5.4, I conduct counter-
factuals to study the effect of border changes and growth in total population on cities and aggregate U.S.
growth.

8I follow Caselli and Coleman (2001) when defining the geographic boundaries of these regions. See
Appendix B for the list of states belonging to each region.

9Although political border changes increased the area of the Midwest and the South during the period,
the increase in these regions’ population was more than proportional to the increase in their area. Popu-
lation density in the South tripled between 1790 and 1860, while it increased by more than a factor of 100
in the Midwest.
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Figure 2: Urbanization in the pre-Civil War U.S.
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In the left graph, the blue line shows the fraction of U.S. population living in cities (settlements above 10,000 inhabitants) for each census year.
The green line shows the fraction of U.S. population living in cities that were not classified as urban places by the census in 1790. The red line
shows the fraction of U.S. population living in settlements whose population exceeds 0.25% of total U.S. population in the given year. In the
right graph, the blue, red and green lines show the fraction of population living in cities (settlements above 10,000 inhabitants) in the Northeast,
South and Midwest, respectively. Source: U.S. census.

Fact 2: Rapid urbanization

While U.S. population grew and moved to the West, the fraction of people living in cities

above 10,000 inhabitants rose from 2.8% to 14.8% (blue line in the left panel of Figure 2).

Part of this increase can be the result of population growth: as total population grows,

the population of each settlement is likely to rise as well, hence more and more settlements

reach the 10,000-inhabitant threshold. To show that my results are not driven by this

mechanical effect, I set an alternative threshold that equals 10,000 in 1790, but then grows

in proportion to total population. The red line in the left panel of Figure 2 shows that the

increase in urbanization was still three-fold if I use this alternative threshold.

The fact that the number of cities above 10,000 inhabitants rose from five (New York

City, Philadelphia, Boston, Charleston and Baltimore) to 99 seems to indicate that most of

the urbanization came from new cities forming, as opposed to pre-existing cities growing.

Figure 2 provides additional evidence for this. Taking out cities that were already classified

as “urban places” in 1790, the share of cities in total population increased to 8.9% by 1860

(green line in the left panel of Figure 2). This implies that 74% of urbanization was due

to cities that did not yet exist in 1790.

Finally, the right panel of Figure 2 shows that the rapid urbanization was far from

uniform across space. The share of people living in cities increased to almost 30% in the

Northeast, while it remained relatively modest in the South. On the other hand, the end

of the period saw rapid urbanization in the Midwest, even though the region had no cities

at all until 1820.
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Table 1: Fraction of cities forming at trading routes

Fraction of cells Fraction of land Fraction of cities
water 39.1% 35.6% 98.6%
confluence 23.1% 19.9% 87.1%
railroad 24.3% 23.2% 95.7%

The first column of this table shows the number of 20 by 20 arc minute grid cells located at water, a confluence, or a railroad relative to the
total number of cells in the U.S. The second column shows the fraction of U.S. land that belongs to cells located at water, a confluence, or a
railroad. The last column shows the fraction of 1860 U.S. cities that formed in cells located at water, at a confluence, or at a railroad. A cell is
located at water if the cell, or the cell next to it, has a navigable river, canal, lake, or the sea in 1860. It is located at a confluence if the cell,
or a cell next to it, is surrounded by at least 3 cells with water in 1860. It is located at a railroad if the cell, or a cell next to it, was part of the
railroad network in 1860. Source: U.S. census, ESRI Map of U.S. Major Waters and oldrailhistory.com.

Fact 3: Cities formed at trading routes

Where did new cities form? Figure 16 (Appendix E) shows the locations of the 94 cities

coming into existence between 1790 and 1860. A striking regularity is that almost all new

cities are close to places with good trading opportunities such as rivers (especially the

Mississippi, the Ohio River and the Hudson), the Great Lakes, or the sea. To confirm this,

I discretize the territory of the U.S. into 20 by 20 arc minute grid cells,10 and classify each

cell depending on whether it is located near a waterway (i.e., next to a cell that includes

a navigable river or canal, a lake, or the sea), near a confluence of waterways, or near a

railroad in 1860. As railroads and canals might be placed near newly forming cities, the

emergence of cities at railroads and canals should not be interpreted as a causal relationship.

Nevertheless, it indicates a correlation between city locations and a good access to trade.

Table 1 shows that a disproportionately high share of cities appear in cells with better

access to trade. The fraction of cities forming in cells near water is more than 98%, an

order of magnitude larger than the fraction of cells near water, or the fraction of land that

belongs to these cells. Similarly, cities are more likely to appear near confluences than at

other places. Clearly, locating at a confluence increases trading opportunities even more

than locating only at water. Finally, cities are more likely to appear near railroads.

The formation of most cities at trading routes does not necessarily imply that trade at-

tracted people to these locations. In particular, locations with good trading opportunities

might have better natural amenities or higher agricultural productivity, and such advan-

tages, not trade itself, may have attracted people to these locations. To control for natural

amenities and agricultural productivity, I collect data from the FAO GAEZ database,11

and consider specifications of the form

newcityi = β0 + β1tradeoppi + β2ameni + β3prodi + εi (1)

10This means that each cell is approximately 20 by 20 miles large.
11The natural amenity variables are based on measures of temperature and precipitation, while the

productivity variables are based on 1961 to 1990 yields of the major crops grown in 19th-century U.S.
Appendix B describes each of these variables in detail. Section 4.4 further discusses the assumption that
1961 to 1990 yield data are used to proxy historical productivity levels.
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Table 2: The role of trading routes, controlling for amenities and productivity

Dependent variable: newcity
(1) (2) (3) (4) (5) (6)

water 0.023** 0.018**
(0.003) (0.002)

confluence 0.033** 0.031**
(0.004) (0.005)

railroad 0.036** 0.031**
(0.004) (0.004)

Prod & amenities No No No Yes Yes Yes
No. of observations 7641 7641 7641 7641 7641 7641

This table presents the results of estimating equation (1). The unit of observation is a 20 by 20 arc minute grid cell in the 1860 United States.
The dependent variable, newcity, is a dummy variable equal to 1 if a city formed in the cell by 1860. The three independent variables, water,
confluence and railroad, are dummy variables equal to 1 if the cell is located at water, at a confluence, or at a railroad, respectively. “Prod &
amenities” refer to productivity and amenity controls. A cell is located at water if the cell, or the cell next to it, has a navigable river, canal,
lake, or the sea in 1860. It is located at a confluence if the cell, or a cell next to it, is surrounded by at least 3 cells with water in 1860. It
is located at a railroad if the cell, or a cell next to it, was part of the railroad network in 1860. Heteroskedasticity-robust standard errors in
parentheses. *: significant at 5%; **: significant at 1%. Source: U.S. census, ESRI Map of U.S. Major Waters, oldrailhistory.com and FAO
GAEZ.

where tradeoppi is one if cell i was located at a specific trading opportunity which is water,

confluence or rail depending on the specification, and zero otherwise. newcityi is a variable

that equals one if a new city appeared in cell i between 1790 and 1860, and zero otherwise.

ameni and prodi are amenity and productivity controls. I estimate specification (1) as a

linear probability model.12

The estimation results suggest that, even after controlling for amenities and produc-

tivity, cities are significantly more likely to appear near trading routes. Table 2 shows the

estimated β1 coefficients for all three types of trading opportunities, both with and without

controls. Locations at a waterway, a confluence, or a railroad receive a city with a 2 to 4

percent higher probability than other locations. The inclusion of amenity and productivity

controls hardly affects the significance or the magnitude of these estimates.

Finally, it could have also happened that migration to the West itself led to the emer-

gence of cities near trading routes. Occupying the West was a slow transition process, and

this transition might have played out in a way that more settlers happened to come together

at trading routes. For instance, river confluences could be hubs not only for trade but also

for settlers, which could have led to a larger concentration of population at these locations.

To address this concern, I model a process of slow population migration from the East in

Appendix C. In this process, the frequency at which people move to another location is

negatively related to the cost of moving to that location. I consider two calibrations for

moving costs: one in which the cost is a function of geographic distance, and another in

which the cost is lower along water routes than inland. Then I simulate the process, cal-

culate the fraction of population clusters forming at water, confluences and railroads, and

run equation (1) on the simulated data. In both calibrations, the process of slow migration

12Probit and logit estimates are very similar. These results are available from the author upon request.
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Table 3: Clustering of cities

Average distance from cities in the region (miles)
– Northeast 315.8
– Rest of the U.S. 1057.4
Average distance from closest city in region (miles)
– Northeast 50.2
– Rest of the U.S. 142.7

The first two numbers in this table correspond to the unweighted average of pairwise distances between 1860 cities in the Northeast and in the
rest of the United States, respectively. The last two numbers correspond to the unweighted average of an 1860 city’s distance from the closest
1860 city in the Northeast and in the rest of the U.S., respectively. Source: U.S. census.

is unable to replicate the disproportionate emergence of cities near trading routes. These

results together motivate the choice of a theoretical framework in which incentives to trade,

and not other forces, attract people to locations with good trading opportunities.

Fact 4: Cities clustered more in the Northeast

Besides cities’ locations relative to trading routes, cities’ locations relative to each other

might also be of interest. A quick glance at Figure 16 (Appendix E) suggests that cities

tended to form relatively far from other cities, but this was less true in the Northeast. To

check if this was indeed the case, I calculate two statistics measuring the clustering of cities

in these two regions: cities’ average distance from other cities in the region, and cities’

average distance from their closest neighbor.

Both statistics confirm the prediction that city location patterns exhibited more clus-

tering in the Northeast than outside the Northeast, as can be seen from Table 3.13

Fact 5: City growth

The final set of facts that I document is related to the growth of cities (that is, settlements

above 10,000 inhabitants) and towns (that is, settlements between 2,500 and 10,000 inhab-

itants). The separate treatment of these two types of settlements is motivated by Desmet

and Rappaport (2015), who find substantially different growth patterns between small and

large U.S. counties, and the threshold that they find between these two groups lies at about

10,000 inhabitants.

The right panel of Figure 3 plots the log decennial growth rate of cities against their

log size in the beginning of the decade. The left panel plots the same for towns.14

13One might wonder whether the differences in location patterns are caused by history, not by economic
forces. In particular, land in the West was allocated for different types of land use according to a rectangular
system called the Public Land Survey System (Cazier, 1976). Schools, roads and railroads were designed to
be built at pre-selected locations within each rectangular survey unit, which led to an equidistant placement
of these pieces of infrastructure. However, given that each rectangular unit was 6 by 6 miles large, this

12



Figure 3: Population growth versus size among towns (left) and cities (right)
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In the left scatterplot, each circle is a town (settlement between 2,500 and 10,000 inhabitants) in the United States in a census year (1790,
1800, 1810, 1820, 1830, 1840 or 1850). The horizontal axis corresponds to the log of the town’s population in the given year. The vertical axis
corresponds to the log of the town’s population growth over the subsequent decade. In the right scatterplot, each circle is a city (settlement
above 10,000 inhabitants) in the U.S. in a census year (1790, 1800, 1810, 1820, 1830, 1840 or 1850). The horizontal axis corresponds to the log
of the city’s population in the given year. The vertical axis corresponds to the log of the city’s population growth over the subsequent decade.
Source: U.S. census.

Cities and towns exhibit convergence in their size since larger settlements grow slower

than smaller ones, as can be seen in Figure 3. However, convergence is slow. The average

growth rate of large cities does not differ strikingly from the average growth rate of small

cities, and the same is true if we compare the growth rates of large and small towns. That

is, the patterns of city and town growth are quite close to Gibrat’s Law. Gibrat’s Law (the

independence of growth and size) is a well-known fact of city growth that has been docu-

mented for various countries and time periods (Eaton and Eckstein 1997, Eeckhout 2004,

Ioannides and Overman 2003). However, in the context of 19th-century U.S., Desmet and

Rappaport (2015) show that population growth deviates from Gibrat’s Law and exhibits

convergence among small counties, in line with my findings.

Figure 3 also shows that city growth rates tend to be above town growth rates. In

fact, the difference between the average growth rate of cities and towns is substantial: it is

about 1 percentage point per year. To confirm this discontinuity in growth rates between

settlements above and below 10,000 inhabitants, I estimate the specification

ln(growthst) = γ0 + γ1ln(sizest) + γ2cityst + ηst

where s indexes settlements, sizest denotes the population of settlement s in census year

t, growthst denotes the population growth rate of settlement s between t and t + 1, and

system was only likely to influence the location of cities within 20 by 20 mile cells, not across these cells.
14Cities and towns can grow through the annexation of surrounding areas. For instance, the Northern

Liberties District became part of Philadelphia in 1854, increasing the population of the city by as much
as 39% (according to 1850 census numbers). To abstract from this source of population growth, I consider
cities and towns in the same 20 by 20 arc minute grid cell as a single city or town, depending on whether
its total population is above or below 10,000. What even this strategy cannot account for is the annexation
of surrounding villages below 2,500 inhabitants.
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cityst is a dummy variable that equals one if settlement s had more than 10,000 inhabitants

in year t. Column (1) of Table 14 (Appendix E) presents the results. The fact that the

estimated coefficient on cityst is significantly different from zero confirms that the growth

rate is indeed higher in settlements above 10,000 inhabitants. Columns (2) to (4) consider

thresholds different from 10,000, and find no significant break in the growth rate at these

alternative thresholds. The finding that cities grow faster than towns is in line with the

different growth patterns of small versus large counties documented by Desmet and Rap-

paport (2015). More generally, the fact that cities can act as focal points of growth has

been pointed out by the urban growth literature, such as Black and Henderson (1999).

This section presented a set of stylized facts that characterize the process of urbanization

and city formation in the pre-Civil War U.S. To study the forces shaping this process, the

next section sets out a quantitative model of trade, geography and growth. Section 5 then

shows that the model is able to rationalize the stylized facts and can thus be credibly used

as a tool to evaluate the role of geography in U.S. city formation and aggregate growth.

3 A dynamic quantitative model of city formation

Motivated by the facts shown in Section 2, this section presents the theoretical framework

I use to study the forces shaping pre-Civil War U.S. city formation and aggregate growth.

The economy is populated by a mass of consumers who choose in which sector to work

and where to live. Locations differ in their endowment of land, their productivity, and

their shipping costs to other locations. Sectors differ in their returns to scale and in their

intensity of land use. This implies a higher concentration of non-farm production than

that of farm production in equilibrium, and thus the existence of cities. Finally, non-farm

productivity grows due to firms’ innovation activity, and diffuses across space. This leads

to the dynamic evolution of sectoral specialization patterns, and thus to the endogenous

evolution of the geographic locations and sizes of cities.

In Section 3.1, I outline the setup with a single country and define the equilibrium of the

economy. In Section 3.2, I show how to extend the model to incorporate multiple countries

and international trade. This is the version of the model I take to the data in Section 4. In

Section 3.3, I show that the recursive structure of the model allows me to solve the model

quickly and discuss how farm hinterlands shape growth in the model.

3.1 Single-country setup

3.1.1 Geography, goods and factor endowments

A country – the United States – occupies a compact subset S of a two-dimensional surface.

Individual locations (elements of S) are indexed by r, s or u. There are two sectors in the
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economy: a sector producing a homogeneous farm good, and a sector producing a continuum

of non-farm goods indexed by i ∈ [0, nt]. The mass of non-farm goods, nt, is determined

endogenously in equilibrium. Classifying economic activities into these two broad sectors

follows the literature examining the pre-Civil War period (Towne and Rasmussen 1960,

Weiss 1992). Note that the processing and the distribution of agricultural goods are non-

farm activities under this classification.

Factor endowments are as follows. In period t ∈ {1, 2, ..., }, an exogenously given mass

of L̄t consumers live in the U.S.15 Each consumer owns one unit of labor which she supplies

inelastically. Finally, the supply of land at location r is denoted by Ht (r). Ht (·) is an

exogenous measurable function.

Besides choosing where to live and what quantity of farm and non-farm goods to con-

sume, consumers choose in which sector they want to work in each time period.16 Section

3.1.2 describes the choices and constraints of those choosing to work in the farm sector

(“farmers”), while Section 3.1.3 describes the choices and constraints of those choosing to

work in the non-farm sector.

3.1.2 Farmers

Farmers pick a residential location, where they live and work, as well as a trading place

where they sell their product and buy non-farm goods. For simplicity, I assume that

consumption also happens at the trading place.17

Farmers order non-farm varieties according to CES preferences (Dixit and Stiglitz,

1977), while they have Cobb–Douglas preferences over the index of non-farm varieties

and the farm good. Therefore, a farmer with residence at r and trading place at s obtains

the following utility at time t:

UF
t (r, s) = ζ

[∫ nt

0

xNt (r, s, i)
ε−1
ε di

]ν ε
ε−1

xFt (r, s)1−ν

where xNt (r, s, i) is the quantity of non-farm variety i, and xFt (r, s) is the quantity of the

farm good consumed by the farmer. ζ = ν−ν (1− ν)−(1−ν) is a constant that simplifies the

subsequent formulas algebraically.

Farmers choose their production and consumption levels, their residence and their trad-

15Note that I allow U.S. populaton to chage over time, which allows me to incorporate birth, death and
immigration. Modeling consumers’ endogenous fertility and immigration decisions is outside the scope of
this paper. See Desmet et al. (2018) for a spatial growth model with endogenous immigration.

16Although it is possible to introduce frictions to consumers’ mobility between sectors, I assume free
mobility. This is motivated by the finding that there was no gap in real hourly income between the
agricultural and non-agricultural sectors in the pre-Civil War U.S. (David, 2005).

17This assumption allows me to abstract from shipping costs incurred between the residential location
and the trading place. Appendix A.4 presents a version of the model in which consumption happens at
the residential location, and argues that the difference between the two models is small under the values
of shipping costs chosen in the calibration.
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ing place to maximize utility, taking all prices as given. They face three constraints: the

production function in the farm sector, the shipping technology, and a budget constraint.

The production function that a farmer with residence at r faces is Cobb–Douglas in

labor and land:

qFt (r) = Bt (r) `Ft (r)α ht (r)1−α

where qFt (r) is the quantity of the good produced, Bt (r) is location-specific farm TFP,

`Ft (r) is the quantity of labor used (which equals one due to the inelastic supply of labor),

and ht (r) is the quantity of land used.

The farmer is subject to iceberg shipping costs when shipping her product to the trading

place. If qFt (r) units are shipped from r to s, the quantity that actually arrives at s is

q̃Ft (r, s) =
qFt (r)

τFt (r, s)

where τFt (r, s) ≥ 1 is the shipping cost between r and s. τFt (·, ·) is assumed to be an

exogenous measurable function that satisfies the triangle inequality, that is,

τFt (r, u) ≤ τFt (r, s) τFt (s, u)

for any r, s and u ∈ S. I normalize τFt (s, s) to one. Note that the model allows for changes

in shipping costs over time. As we will see, shipping costs lead to the concentration of farm

production around trading places in equilibrium. This agglomeration force is counterbal-

anced by the dispersion force that farmers need to use land, which is available in fixed

supply at each location.

Finally, the farmer faces the budget constraint∫ nt

0

pNt (s, i)xNt (r, s, i) di+ pFt (s)xFt (r, s) ≤ pFt (s) q̃Ft (r, s)−Rt (r)ht (r) + yt (r)

where pNt (s, i) is the price of non-farm variety i and pFt (s) is the price of the farm good at

the trading place, and Rt (r) is the land rent that the farmer pays per unit of the land she

uses at r.

I assume that land rents paid by farmers at a location are fully redistributed to them

with equal shares. I denote this redistributed amount of local rents per farmer by yt (r), and

include it on the right-hand side of the farmer’s budget constraint. Note that I make two

assumptions here: the first is that land rents are redistributed toward farmers rather than

non-farm workers or firms, while the second is that they are redistributed locally rather

than across the entire country (or within larger regions). The assumption of redistribution

toward farmers rather than the non-farm sector is supported by historical estimates that

land rents paid to non-farm land owners were tiny prior to the Civil War, never exceeding

2.5% of farm GDP (Towne and Rasmussen, 1960). The assumption of local redistribution

16



follows quantitative economic geography models such as Redding and Sturm (2008) and

Desmet et al. (2018), but is also supported by historical evidence. In particular, census

data show that 74% of farms were owned by the farmers who operated them in the first

census year in which such data are available (1880). This motivates using a framework in

which farm income gets redistributed locally rather than globally.18

Land market clearing implies that land income per farmer equals land rents paid per

farmer:

yt (r) = Rt (r)ht (r)

As a result, the farmer’s nominal income that she can spend on consumption goods equals

her production revenues, pFt (s) q̃Ft (r, s). Since the farmer’s utility is Cobb–Douglas in non-

farm and farm goods, the indirect utility of a farmer living at r and trading at s equals her

nominal income divided by the Cobb–Douglas aggregate of non-farm and farm prices:

UF
t (r, s) =

pFt (s) q̃Ft (r, s)

Pt (s)ν pFt (s)1−ν =
pFt (s) τFt (r, s)−1Bt (r)

[
Ht(r)

LFt (r)

]1−α

Pt (s)ν pFt (s)1−ν (2)

where I have used the production function to substitute for q̃Ft (r, s), LFt (r) is the farm

population of r (i.e., the total number of farmers with residence at r), and Pt (s) is the

CES price index of non-farm goods at s, that is,

Pt (s) =

[∫ nt

0

pNt (s, i)1−ε di

] 1
1−ε

.

3.1.3 Non-farm workers

Non-farm workers live, work and consume at the same location. They have the same pref-

erences as farmers. Therefore, a non-farm worker living (as well as working and consuming)

at s obtains the following utility at time t:

UN
t (s) = ζ

[∫ nt

0

xNt (s, i)
ε−1
ε di

]ν ε
ε−1

xFt (s)1−ν

where xNt (s, i) is the quantity of non-farm variety i, and xFt (s) is the quantity of the farm

good consumed by the non-farm worker. ζ = ν−ν (1− ν)−(1−ν) is a constant that simplifies

the subsequent formulas algebraically.

Non-farm workers work for firms operating in the non-farm sector, for a wage that they

take as given. Therefore, in each period t, a non-farm worker at s chooses her consumption

18Later in the 19th century, the fraction of farms owned by the farmers decreased but was still 65% in
1900. In light of this evidence, of course, assuming that farmers actually own (and, therefore, can buy and
sell) the land at their location would be even more realistic. However, making this assumption would imply
that farmers need to account for the whole future distribution of land rents when making their location
decision. This would make it infeasible to solve the model with a large number of heterogeneous locations.
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of each good to maximize her utility subject to the budget constraint∫ nt

0

pNt (s, i)xNt (s, i) di+ pFt (s)xFt (s) ≤ wt (s)

where wt (s) is the non-farm wage at s.

The indirect utility of a non-farm worker living at s can then be written as

UN
t (s) =

wt (s)

Pt (s)ν pFt (s)1−ν . (3)

3.1.4 Non-farm technology

Non-farm varieties are produced by firms operating under monopolistic competition with

free entry. This implies that each non-farm firm produces one variety i from the mass of

varieties nt (s) produced at location s. To operate for a period, the firm needs to hire f > 0

workers, hence the non-farm sector is subject to internal economies of scale, which leads to

agglomeration. Once operating, a non-farm firm needs labor and the farm good to produce.

The production function is CES with elasticity of substitution β between the two inputs,

qNt (s, i) =

[
`Pt (s, i)

β−1
β +

[
ιÂt (s, i)xFt (s, i)µ

]β−1
β

] β
β−1

where qNt (s, i) is the quantity of the variety produced, `Pt (s, i) is the quantity of labor hired

for production, Ât (s, i) is the firm’s farm good-augmenting productivity, and xFt (s, i) is

the quantity of the farm good used. ι = µ−µ (1− µ)−(1−µ) is a constant that simplifies

the subsequent formulas. Also, since varieties are symmetric within a location, I drop the

index i in what follows.

An elasticity of substitution between the two inputs different from one generates a

shift of the economy from using farm goods (indirectly, farm labor) to using non-farm

labor, hence structural change and urbanization. In particular, we need β < 1, that

is, complementarity between labor and the farm good. In this case, an increase in the

efficiency of farm good use, Ât (s), allows firms to hire more workers for production. Higher

efficiency, on the other hand, decreases demand for the farm good, lowering demand for

farm workers at s and in its surroundings. As a consequence, the ratio of non-farm to farm

population goes up, and location s becomes more urbanized. The extent of urbanization

depends on the parameter β.19 This specification relates the paper to the strand of the

literature originating from the seminal papers by Baumol (1967) and Ngai and Pissarides

(2007), in which structural change is induced by demand complementarities and differential

19As an alternative specification, one could consider the two inputs being substitutes and productivity
being labor-augmenting. This would, however, imply that larger cities, everything else fixed, grow faster
than smaller ones, which is contrary to the convergence in city sizes found in the data (Fact 5 in Section
2).
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productivity growth across sectors.

Firms can increase their productivity by hiring workers to innovate. In particular, I

assume that the firm’s period-t productivity is the product of its productivity At (s) in the

beginning of the period and its period-t innovation `It (s)1−µ. That is,

Ât (s) = At (s) `It (s)1−µ

where `It (s) denotes the number of workers hired to innovate.20 Workers can freely switch

between the two tasks, innovation and production. As I show later in Section 3.1.6, a

firm always has positive demand for both types of labor. Hence, wages of innovation

and production workers are equal in equilibrium, and the marginal non-farm worker is

indifferent between performing the two tasks.

Note that the exponents on innovation labor (1 − µ) and the farm good (µ) sum to

one. This assumption helps keep the model tractable by guaranteeing constant returns

to scale after the fixed cost has been paid. Without the assumption, one would not get

closed-form solutions for firms’ optimal levels of innovation, labor use, farm good use and

output price as a function of input prices and productivity (Section 3.1.6). As the model’s

equilibrium conditions depend on these endogenous variables, solving the model without the

assumption would require numerically solving for these variables by iterating on firms’ first-

order conditions at every location in every time period. This would make the calibration

of the model, which relies on solving the model many times, computationally infeasible.

Trade in non-farm goods is also subject to shipping costs. Non-farm firms at s can ship

their product to location u at the iceberg cost τNt (s, u). τNt (·, ·) is an exogenously given

measurable function that is symmetric, that is, τNt (s, u) = τNt (u, s). Note that these types

of shipping costs can also change over time. Also note that I assume that non-farm firms

do not have the technology to ship the farm good directly. Instead, they can trade the farm

good with other trading places after transforming it into a non-farm variety that embodies

both the good itself and the labor used in shipping and handling. In other words, I regard

the distribution of agricultural products as a non-farm activity, which corresponds to the

way farm and non-farm activities are measured in the data.

20Examples of 19th-century innovations that increased the efficiency of farm good use in two important
non-farm sectors, food distribution and food processing, are refrigeration, grain elevators and canning.
Although refrigerated railroad cars and cold-storage warehouses only appeared at a large scale after 1860,
innovations aimed at using natural ice blocks for refrigeration predated the Civil War (Anderson, 1953). To
store grain in a much more efficient way, a businessman in Buffalo, NY set up the first steam-powered grain
elevator in 1842, and Chicago had a complex system of elevators by the end of the 1850s (Cronon, 1991).
The canning industry became firmly established on the East Coast and started moving to the Midwest by
the 1840s (Pearson, 2016).
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Figure 4: Timing of events in the model

 

firms 

innovate 

firms 

produce, 

consumers 

make choices 

country- and 

size-specific 

growth 

shifters 

realized 

technology 

diffuses 

across 

space 

t t + 1 

3.1.5 Evolution of productivity

To incorporate the heterogeneity in growth between cities and towns observed in the data,

I allow productivity growth between periods t and t + 1 at location s to depend not only

on firms’ period-t innovation, but also on size-dependent dynamic externalities g
(
LNt (s)

)
,

where LNt (s) denotes the size of the non-farm population at s. Thus, I assume that the

non-farm productivity of s evolves according to the equation

Ãt+1 (s) = At (s)
[
`It (s)1−µ + g

(
LNt (s)

)]
(4)

where g (·) is an exogenously given measurable function. Guided by evidence that cities

grow faster than towns but the relationship between growth and size is close to Gibrat’s

Law in both groups, I choose the functional form of the dynamic externality such that

g
(
LNt (s)

)
= γ if LNt (s) ≥ λ, and g

(
LNt (s)

)
= 0 if LNt (s) < λ. Hence, γ > 0 is a

parameter that drives the difference in growth rates between cities (locations with non-

farm population above λ) and towns (locations with non-farm population below λ). In the

calibration of the model, I set λ = 10, 000, the threshold size between cities and towns.

I also assume that non-farm technology can diffuse across U.S. locations between any

two subsequent time periods, as in Desmet and Rossi-Hansberg (2014). That is, I allow

a non-farm firm in period t + 1 to benefit from its most productive neighbors in period t,

but the farther away a neighbor is, the less the firm can benefit. To model this process

in the simplest possible way, I assume that firms at location s cannot only use their own

technology Ãt+1 (s) in period t + 1, but can also borrow technology e−δ|u−s|Ãt+1 (u) from

another location u ∈ S. |u− s| denotes the great-circle distance between u and s, and

δ > 0 drives the strength of technology diffusion. The technology that firms at location s

actually use in period t+ 1 is the best of all these available technologies:

At+1 (s) = maxue
−δ|u−s|Ãt+1 (u) (5)

Figure 4 shows the timing of events that follows from the above assumptions. Firms
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at location s start with productivity At (s) in period t, and decide how much to innovate.

Next, they produce the non-farm good; in doing so, they use the productivity shifted up

by their innovation, Ât (s) = At (s) `It (s)1−µ. At the same time, consumers choose their

sector, location(s), production and consumption quantities, and markets clear. After all

these, dynamic externalities are realized and increase productivity to Ãt+1 (s), given by

(4). Finally, technology diffuses across space, which leads to a productivity level At+1 (s)

at location s, given by (5). The process starts again next period, with this new productivity

level at s.

I assume that total factor productivity in farming does not change over time. That

is, Bt (r) = B (r), where B (·) is an exogenous measurable function. This assumption

is motivated by evidence showing that only a tiny fraction of U.S. output growth can

be explained by growth in agricultural TFP in the 19th century (Mundlak, 2005). It

is important to note, however, that average labor productivity on farms, defined as real

output per farmer, did increase between 1790 and 1860, due to the occupation of new land

in the Midwest and the fact that new land was more productive than the land used before.

This increase in average labor productivity, calculated from the estimates by Towne and

Rasmussen (1960), is matched almost exactly by the model. Hence, assuming an increase

in farm TFP during the period would lead to a larger increase in labor productivity in the

model than in the data.

3.1.6 Non-farm firms’ problem and its solution

Non-farm firms choose the path of their production and innovation to maximize the present

discounted value of their profits, taking into account the technology and market constraints

described in Sections 3.1.4 and 3.1.5. Solving this dynamic optimization problem simplifies

to solving a sequence of static problems, as in Desmet and Rossi-Hansberg (2014). To see

why, note that technology diffusion is perfect locally: equation (5) implies that a firm’s

innovation in period t becomes freely available for all other firms at the same location next

period. As a result, all local firms have the same technology in the beginning of period

t + 1, irrespectively of their choice in period t. Since they also face the same prices, their

profits are identical. However, free entry drives down this common level of profits to zero.

Therefore, a firm choosing its innovation and production in period t knows that it can only

make zero profits in the future, thus the present discounted value of its profits equals its

period-t profits. In other words, the firm solves a static profit maximization problem in

period t.

Once firms solve a static problem, monopolistic competition, CES demand and iceberg

shipping costs imply that they charge a constant markup over their unit variable cost,

pNt (s) =
ε

ε− 1
c̄t (s)wt (s) (6)
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where c̄t (s) denotes the firm’s unit variable cost per wage. Also, free entry drives down

profits to zero. That is,

pNt (s) qNt (s)− c̄t (s)wt (s) qNt (s)− wt (s) f = 0

which implies, using (6), that the firm’s output is

qNt (s) = (ε− 1) f c̄t (s)−1 . (7)

As the production function is CES, the unit variable cost per wage can be expressed as

c̄t (s) =

[
1 + At (s)β−1

[
pFt (s)

wt (s)

](1−β)µ
] 1

1−β

(8)

and optimal factor quantities can be obtained from Shephard’s Lemma and equation (7)

as

`Pt (s) = (ε− 1) f c̄t (s)β−1 , (9)

`It (s) = (1− µ) (ε− 1) fAt (s)β−1

[
pFt (s)

wt (s)

](1−β)µ

c̄t (s)β−1 (10)

and

xFt (s) = µ (ε− 1) fAt (s)β−1

[
pFt (s)

wt (s)

](1−β)µ−1

c̄t (s)β−1 . (11)

Finally, market clearing for non-farm labor pins down the number of non-farm goods

produced at the location,

nt (s) =
LNt (s)

`Pt (s) + `It (s) + f
=

LNt (s)[
(ε− 1)

(
µc̄t (s)β−1 + 1− µ

)
+ 1
]
f

(12)

where LNt (s) is the non-farm population of s, determined endogenously in equilibrium by

non-farm workers’ location choices.

3.1.7 Equilibrium

I define the equilibrium of the economy as follows.

Definition. Given parameters α, β, γ, δ, ε, λ, µ, ν, f , the set of locations S, total popula-

tion L̄t, as well as functions Ht, A1, B : S → R and τFt , τ
N
t : S2 → R, an equilibrium of the

economy is a set of functions LFt , L
N
t , p

F
t , p

N
t , q

N
t , ht, `

P
t , `

I
t , x

F
t , c̄t, nt, Pt, wt, Rt, At : S → R,

as well as the level of consumers’ utility Ut for each time period t ∈ {1, 2, ...} such that the

following hold:
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1. Farmers maximize utility, and their utility is equalized across locations. That is,

UF
t (r, σt (r)) = UF

t (u, σt (u)) (13)

for any r, u ∈ S, where σt (r) denotes the trading place chosen by farmers whose

residence is at r,21 and UF
t (·, ·) is given by (2).

2. Non-farm workers maximize utility, and their utility is equalized across locations.

That is,

UN
t (s) = UN

t (u) (14)

for any s, u ∈ S with positive non-farm population, where UN
t (·) is given by (3).

3. Consumers’ utility is equalized across sectors. Hence,

Ut = UF
t (r, s) = UN

t (s) (15)

for any r, s ∈ S such that s = σt (r).

4. Non-farm firms maximize profits, and free entry drives down profits to zero. Hence,

their price is given by (6), their output by (7), their unit cost per wage by (8), and

their factor use by (9) to (11). The number of goods produced at location s is given

by (12), and the price index at s is

Pt (s) =

[∫
S

nt (u) pNt (u)1−ε τNt (u, s)1−ε du

] 1
1−ε

.22 (16)

5. The market for the farm good clears at each trading place s. That is,∫
σ−1
t (s)

ντFt (r, s)−1B (r)LFt (r)αHt (r)1−α dr = xFt (s)nt (s) + (1− ν)
wt (s)

pFt (s)
LNt (s)

(17)

where σ−1
t (s) denotes the set of locations from which farmers ship to s, the left-hand

side corresponds to supply net of farmers’ demand at s, the first term on the right-

hand side corresponds to firms’ demand, and the second term on the right-hand side

corresponds to non-farm workers’ demand.

6. The market for non-farm goods clears at each trading place s. That is,

qNt (s) =

∫
S

νpNt (s)−ε τNt (s, u)1−ε Pt (u)ε−1 It (u) du (18)

21Farmers at a given location are all identical, hence they choose the same trading place to ship to. Also,
I only consider equilibria in which σt (·) is a measurable function.

22I use continuous space notation for simplicity, but note that all the results carry over to discrete space.
In that case, integrals taken over space should be replaced by sums.
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where the left-hand side corresponds to the supply of any non-farm variety produced at

s, and the right-hand side corresponds to total demand for the variety. It (u) denotes

total income of consumers at u, and equals the sum of farmers’ and non-farm workers’

income:

It (u) =

∫
σ−1
t (u)

pFt (u) τFt (r, u)−1B (r)LFt (r)αHt (r)1−α dr + wt (u)LNt (u)

7. The national labor market clears. That is,

L̄t =

∫
S

[
LFt (r) + LNt (r)

]
dr. (19)

8. The market for land clears at each location. That is,

Ht (r) = LFt (r)ht (r) . (20)

9. Productivity levels evolve according to equations (4) and (5).

3.2 Extension to multiple countries

This section extends the model to incorporate a finite number of countries c ∈ {1, ..., C},
such that each location r belongs to one country c (r).23 Consumers can move freely

within countries, but not across countries. Thus, countries’ population levels L̄ct are given

exogenously. Trade can take place both within and across countries, but is subject to

shipping costs.

In the multi-country model, I allow productivity growth between periods t and t + 1

at location s to also depend on country-specific exogenous growth shifters fc(s),t. Thus, I

assume that the non-farm productivity of s evolves according to the equation

Ãt+1 (s) = At (s)
[
`It (s)1−µ + fc(s),t + g

(
LNt (s)

)]
. (21)

All other parts of the model are unchanged. Appendix A.1 defines the equilibrium of

the multi-country model and shows that equilibrium conditions in the multi-country model

are the same as in the single-country model, except that utility equalization is only imposed

within countries, national labor markets clear by country, and productivity is assumed to

evolve according to equation (21) instead of equation (4).

23I assume that the area of each country c is a Borel measurable subset of S.

24



3.3 The role of farm hinterlands

In this section, I show that the model displays a recursive structure. In particular, the

following lemma shows that the evolution of productivity between periods t and t+ 1 only

depends on the spatial distribution of population in period t. Besides helping solve the

model forward in time, this relationship also allows me to draw qualitative conclusions

about how farm hinterlands shape growth in the model through affecting innovation in the

non-farm sector.

Lemma 1. The amount of innovation at location s in period t is given by

`It (s)1−µ = ρ

(1 +
LNt (s)∫

σ−1
t (s)

LFt (r) dr

)−1

− (1− ν)

1−µ

(22)

where ρ =
[
ε(1−µ)
µν

f
]1−µ

is a constant. Thus, innovation at location s is increasing in the

size of s’s hinterland (the number of farmers trading at s,
∫
σ−1
t (s)

LFt (r) dr) relative to s’s

non-farm population, LNt (s).

Proof. See Appendix A.5.24

Appendix A.2 shows that the distribution of population in any period t can be obtained

by solving a system of three equations. This result, together with Lemma 1, suggests

the following way of solving the equilibrium forward. Having the initial distribution of

productivity A1 (·), one can calculate the population distribution in period 1. Then one

can use equations (22), (21) and (5) to update productivity levels at each location, and

obtain A2 (·). A2 (·), in turn, can be used to calculate the population distribution in period

2, which allows one to update productivities again, and so on.25

By Lemma 1, non-farm firms at locations with a large farm hinterland relative to their

own non-farm population innovate more. The intuition for this result is as follows. Non-

farm firms that face a large farm input market relative to the size of the non-farm labor

market necessarily have a high farm input to labor input ratio. As a result, these firms have

24The appendix proves Lemma 1 for the multi-country model, hence the lemma also holds for the special
case of a single country.

25For any given population distribution, equations (22), (21) and (5) pin down a unique distribution of
productivity next period. Therefore, uniqueness of the equilibrium depends only on whether the period-t
population distribution is unique for given period-t productivities. In economic geography models, the
equilibrium usually ceases to be unique if forces of agglomeration are very strong relative to forces of
dispersion. Although the complex structure of the model does not allow me to theoretically characterize
multiplicity of equilibria, solving the period-t equilibrium with different initial guesses on the population
distribution has always led to the same equilibrium in the simulations. This suggests that the model is
likely to feature a unique equilibrium for the values of parameters used in the calibration. Appendix A.3
provides intuition for why the structure of the model does not allow for a theoretical characterization of
equilibrium uniqueness.

25



an incentive to make their dominant input (the farm input) as efficiently used as possible.

In this model, they can do that by conducting innovation, which increases the efficiency

with which the farm input is used in their production process.26

Lemma 1 shows that the model is qualitatively consistent with the hinterland hypoth-

esis, the conjecture that large farm hinterlands can boost city growth and aggregate de-

velopment. It also highlights that changes in geography that allow the location to expand

its hinterland can speed up growth. One implication of this is that railroads might have

contributed to city development and aggregate growth if they had increased the sizes of

cities’ potential farm hinterlands. Another implication is that changing U.S. political bor-

ders, by increasing the amount of land, might have played a similar role. A third is that

increasing U.S. population, which decreased the amount of land per capita, might have

acted against urbanization and growth. A fourth is that international trade, which favored

Eastern parts of the country, might have slowed down the westward expansion. At the

same time, international trade might have fostered city development in the East, making

its effect on growth ex ante ambiguous.

To see if the model is also able to quantitatively capture the spatial reallocation of

population and the formation of cities in the pre-Civil War United States, I take it to the

data and simulate it over the period between 1790 and 1860. The next section describes

this procedure in detail.

4 Empirical strategy

This section describes the empirical strategy I follow to take the model to the data. First,

I discretize the U.S. into a fine spatial grid and incorporate the rest of the world in the

analysis. Next, I show how evidence from Fogel (1964) and Donaldson and Hornbeck

(2016) can be used to calculate (relative) shipping costs, and how data on agricultural

yields can be used to calculate the spatial distribution of farm productivity within the

U.S. Finally, I calibrate the productivity of foreign markets, the initial distribution of non-

farm productivity, the scale of shipping costs, and the values of structural parameters such

that the simulated model matches two sets of moments in the data: moments of the U.S.

economy and Europe in the initial period; and moments of aggregate U.S. growth and

urbanization between 1790 and 1820.

The advantage of this empirical strategy is twofold. First, it leaves the evolution of

26The result that innovation is increasing in hinterland size relative to non-farm population has two
further implications. First, innovation exhibits convergence: everything else fixed, locations with a large
non-farm population innovate less. This allows the model to replicate the fact that growth exhibits con-
vergence both among cities and among towns (Fact 5 of Section 2). Second, the degree of convergence is
influenced by the share of innovation labor in firms’ expenditures, 1 − µ. If this share is small, the rela-
tionship between innovation and size approximates Gibrat’s Law, that is, innovation being independent of
size.
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individual locations’ population and sectoral specialization untargeted, both before and

after 1820. This allows me to test the model by checking how well it predicts the evolution

of the U.S. population distribution and the formation of cities in Section 5.1.

The second advantage of my empirical strategy is that it mitigates the concern that

endogenous railroad and canal placement may bias the identification of structural param-

eters, since no railroads or navigable canals were built due to the lack of technology before

the 1820s. Whenever railroad and canal construction technology is available, there might

be a structural relationship that links the location of railroads and canals to economic

outcomes. The theory developed in this paper is consistent with such a relationship, but

does not model it explicitly, and ignoring the relationship in the calibration may affect

the identified values of parameters. However, this is not true for a period in which the

technology is unavailable, hence the relationship between railroad placement and economic

outcomes is irrelevant.

4.1 Setting up a spatial grid

The unit of observation I choose is a cell in a 20 by 20 arc minute grid of the United

States. Although the model allows for both discrete and continuous space, computational

tractability makes discretization of the data necessary. A discretization to 20 by 20 arc

minutes means that each cell in the grid is approximately 20 by 20 miles large, and the

entire territory of the U.S. in the final period consists of 7641 such grid cells.

Each grid cell r is characterized by three geographic attributes. Ht (r) tells us what

fraction of the cell is covered by land and is part of the U.S. in period t.27 WRt (r) is a

dummy variable taking the value of one if part of cell r is a navigable river, canal, lake or

the sea in period t. Finally, RRt (r) is a dummy variable that equals one if there was a

railroad passing through the cell in period t. Data on water come from the ESRI Map of

U.S. Major Waters, while railroad data come from historical railroad maps available online

at oldrailhistory.com.28

4.2 Incorporating international trade

I assume that the world not only consists of a single country (the United States), but also

includes a point-like country representing foreign markets that the U.S. trades with. This

international dimension is expected to be quantitatively important for the results since

economic historians estimate that exports constituted approximately 9% of U.S. GDP in

27This allows me to incorporate changes in U.S. political borders between 1790 and 1860. Note that,
as agents’ dynamic problems reduce to a sequence of static problems in the model, agents’ expectations
about future border changes do not influence the results.

28I incorporate railroads and navigable canals starting from the year of their construction. Details of
this procedure are provided in Appendix B.
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the 1790s. Although this ratio decreased later, it never went substantially below 5% (Lipsey,

1994).

I identify the foreign country with the European continent for two reasons. First, ev-

idence suggests that a vast majority, about 60% to 75%, of U.S. exports went to Europe

between 1790 and 1860 (Lipsey, 1994). Second, as explained in Section 4.5, simulation of

the model requires data on the foreign country’s GDP, farm and non-farm populations, and

high-quality data on these are not available outside Europe during the period of investiga-

tion.

4.3 Calculating shipping costs

I use grid cells’ geographic attributes to calculate bilateral shipping costs across cells.

Shipping costs largely depend on the mode of transportation that locations have access to.

Based on evidence from Fogel (1964), Donaldson and Hornbeck (2016) argue that water

transportation was the least expensive mode of shipping goods in the 19th century, followed

by rail transportation. Wagon transportation was an order of magnitude more expensive

than these other modes.

Motivated by this evidence, I assume that the cost of shipping through a cell takes the

following form. The cost of shipping through cell r in period t is (1) normalized to one if

WRt (r) = 1, that is, the cell has a waterway in it; (2) equals ςR > 1 if WRt (r) = 0 and

RRt (r) = 1, that is, the cell does not have access to water but does have railroads; and

(3) equals ςI > ςR if WRt (r) = RRt (r) = 0, that is, the cell has neither water nor railroad

access at time t. Once the cost of shipping through each cell is known, one can calculate

bilateral costs by searching for the minimum-cost route of getting from a cell r to another

cell s. I apply the Fast Marching Algorithm to determine these minimum costs.

I base the values of railroad and wagon costs relative to water costs, ςR and ςI , on the

relative freight rate estimates of Donaldson and Hornbeck (2016), who, in turn, borrow

the estimates from Fogel (1964). Since these estimates suggest a water freight rate of 49

cents per ton-mile, a rail rate of 63 cents per ton-mile and a wagon rate of 23.1 dollars per

ton-mile, this amounts to setting ςR = 0.63/0.49 and ςI = 23.1/0.49.

As I normalized the cost of shipping along water to one, these calculations only provide

me with the costs of shipping between any pair of locations relative to the water cost.

In other words, my calculation misses a scaling factor in shipping costs. Moreover, it is

reasonable to assume that this scaling factor may differ between the shipping of farm and

non-farm products. As a result, I set the iceberg cost of shipping between U.S. locations r

and s equal to

τFt (r, s) = eφ
F log ςt(r,s)

and

τNt (r, s) = eφ
N log ςt(r,s)
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for farm and non-farm goods, respectively, where ςt (r, s) denotes the relative shipping cost

calculated above between r and s in period t.29 In what follows, I treat φF and φN like

the structural parameters of the model, and calibrate them to match moments of the U.S.

economy that are intuitively related to the scale of shipping costs in Section 4.5.

Unlike Donaldson and Hornbeck (2016), my model also includes trade with Europe.

I calculate the shipping costs between U.S. locations and Europe in the following way.

For any U.S. location u that is on the Atlantic coast, I measure the great-circle distance

between u and the port of London in miles, |u− e|. I choose London since it was the

largest port of the European continent at the time, and the United Kingdom was the most

important trading partner of the U.S. within Europe (Lipsey, 1994). Next, I set up the

cost of shipping from u to Europe, analogously to within-U.S. shipping costs, as

τNt (u, e) = eφ
E log|u−e|

where φE is a parameter driving the scale of international shipping costs. Akin to φF and

φN , I treat φE like a structural parameter, and calibrate it to match the U.S. exports to

GDP ratio in 1790. Finally, for any U.S. location s that is not on the Atlantic coast, I set

the shipping cost with Europe to the minimum of the product of shipping costs to locations

along the coast and shipping costs between those locations and Europe:

τNt (s, e) = min
u∈Atlantic coast

τNt (s, u) τNt (u, e)

4.4 Calculating the distribution of farm productivity

I use high-resolution data on agricultural yields to calculate the spatial distribution of

farm productivity B (·). I collect data on potential yields of the six main 19th-century U.S.

crops (cereals, cotton, sugar cane, tobacco, white potato, and sweet potato) from the Food

and Agriculture Organization’s Global Agro-Ecological Zones database (FAO GAEZ). The

earliest period for which the yields are available in this dataset is between 1961 to 1990.

As soil and climate conditions might have changed over the last two hundred years, the

ideal data to use would be high-resolution yield data for the 19th century. Unfortunately, I

am not aware of any yield data at the 20 by 20 arc minute spatial resolution that predates

the FAO data. Hence, I follow the literature that has been using the FAO data to proxy

historical agricultural yields, such as Galor and Ozak (2016) and Mayshar et al. (2018),

and apply the filters “low input level” and “rain-fed” to be as close as possible to historical

conditions.30 Proxying 19th-century yields with the ones for the period 1961 to 1990

involves the assumption that the yields of different crops have not changed, or only by the

29As the exponents are always non-negative, this functional form also guarantees that all iceberg trade
costs are larger or equal to one.

30Costinot et al. (2016) and Dingel et al. (2019) are other papers using the FAO data, but for modern
times.
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same factor across different locations. I need to make this assumption to proceed with the

analysis.

Since different locations specialized in growing different crops, the potential yield of

sugar cane is likely to be irrelevant for farm productivity in regions growing cereals, and

vice versa. To solve this issue, I turn to the 1860 Census of Agriculture, which provides

information on the output of different crops at the county level, for the entire territory of

the U.S. For each county, I determine its main crop as the one having the largest share in

the county’s value of farm output.31 Next, I discretize counties into grid cells, and assign

the main crop to each cell. Finally, I use the spatial distribution of crop-level productivities

coming from FAO to assign the productivity of their main crop to grid cells.

4.5 Calibration

It remains to choose the initial distribution of non-farm productivity across U.S. locations,

the farm and initial non-farm productivity of Europe, the country-specific growth shifters,

the scale parameters of shipping costs, and the values of the five remaining structural pa-

rameters.

Structural parameters borrowed from the literature. I borrow the values of

four parameters – the labor share in farming α and the non-farm share in consumption

ν, consumers’ elasticity of substitution among non-farm varieties ε, and the strength of

technology diffusion δ – from the literature. In particular, I follow Caselli and Coleman

(2001) and set the labor share in farming to α = 0.71.32 To choose the non-farm share

in consumption, recall that the model regards agricultural products traded across trading

places, and not between a trading place and a farm, as non-farm goods. Therefore, the

non-farm consumption share should not only include manufacturing and services but also

interregionally traded farm goods. Guided by this and the estimates of 19th-century non-

food consumption shares by Lebergott (1996) and Lindstrom (1979) which range between

55% and 75%, I set the non-farm consumption share to the upper bound of these estimates,

ν = 0.75.

The elasticity of substitution among non-farm varieties ε drives the elasticity of trade

with respect to trade costs. Based on the estimate of Donaldson and Hornbeck (2016) for

late 19th-century trade across U.S. counties, I set this elasticity to eight, which implies a

value of ε = 9.33

31Data are not available for a few counties in the West; to these counties, I assign the main crop of their
closest neighbors.

32Caselli and Coleman (2001) find a labor share of 0.6, a land share of 0.19, and a capital share of 0.21
in farming. Since my model does not include capital use, I allocate the share of capital equally between
labor and land.

33This mapping between the trade elasticity in my model and the elasticity estimated by Donaldson
and Hornbeck (2016) is perfect under the assumption that all cross-county trade took place across trading
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Finally, to obtain the value of the technology diffusion parameter δ, I rely on evidence

provided by Comin, Dmitriev and Rossi-Hansberg (2013) on the spatial diffusion of technol-

ogy. Comin et al. (2013) estimate the value of δ for various 20th-century technologies, and

find an average of δ = 0.0025. They also argue that technology diffusion depends crucially

on the frequency of human interactions across space, and that human interactions have

become more frequent as newer technologies replaced older ones. Guided by these findings,

I use a conservative estimate of δ = 0.006, which implies a spatial decay of 45% in pro-

ductivity over 100 kilometers. Given the uncertainty about the specific value of δ, I check

the robustness of my quantitative results to different values of this parameter in Section 6.1.

Non-farm productivity in Europe. To choose the initial non-farm productivity of

Europe A1 (e) and the European growth shifters fet,
34 note that, by equation (21), this is

the same problem as choosing the non-farm productivity of Europe every period, At (e).

Also note that, combining equations (8), (11), (12) and (17), it is possible to express the

non-farm productivity of Europe as

At (e) = ε
1

β−1 B̃ (e)−µ LFt (e)(1−α)µ

 µ (ε− 1)

ν
LFt (e)

LNt (e)
− (1− ν)

− µ− ε (1− µ)

 1
1−β

(23)

where B̃ (e) = B (e)H (e)1−α is a combination of European farm productivity and land.

Hence, the non-farm productivity of Europe can be obtained from the continent’s land-

adjusted farm productivity, farm population, and non-farm population.

Although the literature does not have precise estimates of farm and non-farm popu-

lations for the first half of the nineteenth century, there exist good estimates for urban

and rural populations (Bairoch and Goertz, 1985). Having those estimates, I follow Allen

(2000) and assume that 75% of rural population was employed in farming, while 25% of

rural population and 100% of urban population was employed in the non-farm sector. This

provides me estimates of European farm and non-farm populations.35 Plugging these es-

timates into equation (23), I can back out the non-farm productivity of Europe in every

period t as a function of land-adjusted farm productivity B̃ (e) and structural parameters.

Initial non-farm productivity in the U.S. Five cities already existed in the U.S.

in 1790: New York City, Philadelphia, Boston, Charleston and Baltimore. Through the

lens of the model, this means that these five locations might have accumulated non-farm

places and not between a trading place and its farm hinterland. Although the lack of data does not allow
me to test this assumption empirically, a vast majority of trade across grid cells is indeed non-farm good
trade in the model simulations.

34I normalize the U.S. growth shifter to zero in each period.
35According to the estimates, the share of the non-farm sector in European employment was 32.8% in

1790. This share increased to 39.1% by 1860.
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productivity prior to my initial period, which should be taken into account in the calibra-

tion. As a result, I allow the non-farm productivity of these five locations to differ from the

non-farm productivity of other U.S. locations: I assume that non-farm productivity was

initially distributed such that A1 (s) = Ā if cell s is one of the five pre-existing cities, and

A1 (s) = A otherwise. I treat Ā and A like the structural parameters of the model, and

calibrate them to match moments of the U.S. population distribution in 1790, as explained

below.

Calibration. We are left with choosing the values of non-farm productivity parameters

Ā and A, the scale parameters of shipping costs φF , φN and φE, Europe’s land-adjusted

farm productivity B̃ (e), and the five remaining structural parameters: the fixed cost in non-

farming f , the elasticity of substitution between labor and the farm good in non-farming

β, the share of the farm input in non-farming µ, as well as λ and γ that drive dynamic

externalities. I choose the values of these eleven parameters such that simulated moments

of the U.S. and European economies in the initial period and aggregate U.S. growth and

urbanization until 1820 equal the corresponding moments in the data.

Finding the vector of model parameters π that rationalize the data moments requires

me to choose the π that minimizes the loss function

Loss =
11∑
j=1

∣∣Mm
j (π)−Md

j

∣∣
where j is the index of moment j, Mm

j (π) denotes the value of this moment in the model

for a given parameter vector π, and Md
j denotes the value of the same moment in the data.

Given that I choose the same number of moments (eleven) as the number of parameters, I

conjecture that the loss function reaches its minimum at zero. In other words, my aim is

to find a set of parameters at which the model moments exactly coincide with the corre-

sponding data moments. Although the complex non-linear structure of the model does not

allow me to prove this conjecture, I find that it is true in practice: at the calibrated values

of structural parameters, the value of each model moment coincides with its counterpart

in the data.

In what follows, I describe the moments I choose to match for each model parameter.

Although the identification of each parameter depends on the values of other parameters,

it is still intuitive to think of the calibration as if each parameter were chosen to match

one moment between the model and the data. Table 4 provides a brief summary of the

calibration.

As for the fixed cost in non-farming f , Lemma 1 establishes a positive relationship

between this parameter and the growth rate of productivity, as an increase in f raises

innovation uniformly across space. Therefore, I choose the value of f to match the fact
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Table 4: Calibration summary

Parameter Target
f = 0.62 Annual growth rate of U.S. real GDP per capita before 1820 (Weiss, 1992)
β = 0.78 Change in urbanization between 1790 and 1820
µ = 0.75 Farm employment share, 1800 (Weiss, 1992)
λ = 10, 000 Threshold between cities and towns (Fact 5 in Section 2)
γ = 0.0085 Difference in avg decennial growth rate b/w cities and towns, 1790 to 1820
Ā = 2.62 Total population of city cells, 1790
A = 2 Total population of town cells, 1790

B̃ (e) = 0.609 Europe’s real GDP (relative to U.S.), 1790
φF = 0.07 Convergence in decennial city growth, 1790 to 1820
φN = 0.04 Ratio of non-farm population living in cities to total population, 1790
φE = 0.075 U.S. export to GDP ratio, 1790 (Lipsey, 1994)

Each row in this table corresponds to one of the 11 calibrated structural parameters of the model of Section 3. The first column shows the value
of the parameter chosen in the baseline calibration. The second column specifies the moment targeted with the parameter.

that U.S. real GDP per capita grew by 0.46% per year before 1820 (Weiss, 1992). This

procedure pins down f = 0.63.

To find the elasticity of substitution β, recall that it plays a key role in generating

urbanization, as discussed in Section 3.1.4. The lower the value of β, the higher the degree

of complementarity between productivity and non-farm labor, hence the more productivity

growth induces urbanization. Thus, I choose the value of β such that urbanization, mea-

sured by the ratio of non-farm population in cities above 10,000 inhabitants to total U.S.

population, increases by the same factor in the model between 1790 and 1820 as in the

data. This suggests setting β = 0.78.

To choose the farm input share in the non-farm sector µ, note that an increase in µ

increases demand for the farm input, and therefore farm labor. Thus, I calibrate µ to match

the share of farm employment in total employment, which equaled 74% in 1800 (Weiss,

1992).

The presence of dynamic externalities in cities implies that productivity growth differs

between cities and towns in the model. Evidence on city and town growth from the data

(Fact 5 in Section 2) suggests that the threshold between these two types of locations lied at

10,000 inhabitants, which suggests setting λ = 10, 000. The difference between the average

decennial population growth rates of cities above 10,000 inhabitants and towns between

2,500 and 10,000 inhabitants is 0.08 log points in the data between 1790 and 1820. I choose

the value of γ such that the decennial growth rates of cities and towns (locations above

versus below a non-farm population of λ) differ by the same number in the model. This

implies γ = 0.0085. In Section 6.1, I check the robustness of my quantitative results to

shutting down dynamic externalities in cities, i.e., to setting γ = 0 instead.

To calibrate the parameter driving the non-farm productivity of pre-existing cities, Ā,
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I measure the total population of cells with pre-existing cities. I choose the value of Ā

such that the population of these cells is identical between the model and the data, thus

capturing the initial stock of productivity accumulated at these locations before 1790. I

use a similar procedure to calibrate the value of non-farm productivity outside pre-existing

cities, A. In particular, I choose A such that the total population of town cells (cells with

a non-farm settlement above 2,500 inhabitants) coincides in the model and in the data.

Intuitively, increasing A makes the non-farm sector outside cities more productive, hence

attracting workers from the farm sector and increasing the population of non-farm towns.

As a higher value of Europe’s land-adjusted farm productivity B̃ (e) implies a higher

real GDP in Europe, I choose the value of this parameter to match Europe’s real GDP

(relative to that of the U.S.) in 1790.

To identify the parameters driving the scale of shipping costs, φF , φN and φE, note

first that Lemma 1 establishes a relationship between the growth rate of a location and the

size of the location’s farm hinterland. In a world in which the sizes of farm hinterlands are

proportional to locations’ non-farm populations, all locations grow at the same rate and

city growth exhibits no convergence. In another extreme case in which farm hinterlands

are identical in size, growth rates only depend on non-farm population and therefore city

growth exhibits strong convergence. As the scale of farm shipping costs φF is a crucial

parameter influencing the sizes of farm hinterlands, it is intuitive to use cities’ degree

of convergence in the data to calibrate the value of this parameter. Matching degree of

convergence, that is, the coefficient of log city size on log city growth, between the model

and the data implies setting φF = 0.07.

To calibrate the scale of non-farm shipping costs φN , note that lower non-farm costs

imply a larger role of non-farm trade in the economy, hence a higher concentration of people

in the largest clusters of non-farm population: cities. Therefore, I calibrate the value of φN

such that the model replicates the ratio of non-farm population living in cities to total U.S.

population in 1790.36 This procedure leads to a value of φN = 0.04. The fact that φN/φF

is less than one is in line with the observation that transporting manufacturing goods was

substantially cheaper during the pre-Civil War era than transporting agricultural products

(Herrendorf et al., 2012).

The scale parameter of international shipping costs, φE, drives the importance of in-

ternational trade in the model. As a result, I calibrate the value of φE to match the U.S.

export to GDP ratio of 9% in 1790 (Lipsey, 1994). This procedure yields φE = 0.075.

Finally, I need to decide on the length of a time period. Given that railroad data come

at a frequency of five years, I choose this as the length of one period. This implies that the

simulated population distribution of every second period can be compared to the decennial

census data. It also implies that the model needs to be simulated for 15 consecutive periods,

36Note that β was chosen to match the increase in this ratio between 1790 and 1820, but not the initial
level.
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Table 5: Correlation of population between the model and the data

Correlation, period t Correlation, change from 1790 to t
t Population Population density Population Population density

(1) (2) (3) (4)
1790 0.270 0.302 – –
1800 0.397 0.417 0.401 0.440
1810 0.456 0.493 0.468 0.557
1820 0.492 0.532 0.479 0.571
1830 0.563 0.562 0.574 0.584
1840 0.521 0.424 0.445 0.341
1850 0.575 0.464 0.488 0.381
1860 0.531 0.470 0.466 0.427

Column (1) of this table shows the correlation between grid cells’ population in the data and their population in the baseline simulation of the
model, by census year, from 1790 until 1860. Column (2) shows the same between population per unit of land instead of population. Column (3)
shows the correlation between the change in population from 1790 until the given year in the data and the same object in the model. Column
(4) shows the same between population per unit of land instead of population. Source: U.S. census.

starting from 1790 and ending in 1860.

5 Results

5.1 Model fit

To assess the quantitative performance of the theoretical framework, this section studies

the evolution of the spatial distribution of economic activity predicted by the model, and

compares it to the one seen in the data. As the evolution of individual locations’ population

and sectoral specialization is not targeted in the calibration, this can be viewed as a test

of the model.

Since the model is simulated over 20 by 20 arc minute grid cells, comparing simulation

results to the evolution of actual population requires me to assign census data on county

populations to these cells. Therefore, I distribute the population of each county across the

grid cells it occupies based on the share of land belonging to each cell. In other words, I

assume that population density was uniform within each county. Although it is unlikely

that the distribution was exactly uniform, this assumption must lead to little bias since

the most densely populated counties were small, usually fully contained in a single cell.

Column (1) of Table 5 shows that the correlation between cells’ population levels pre-

dicted by the model and those in the data is high. Column (2) shows the same for population

density (that is, population per unit of land). Even though I only match city and town

cells’ total population and the share of non-farm population living in cities, the correlation

coefficient is already above 0.25 in 1790. As the dynamics of the model start playing out,
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Figure 5: Population distribution: model versus data
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The three left panels of the figure present population (number of inhabitants) per square mile in each 20 by 20 arc minute grid cell of the
U.S. in the baseline model simulation in 1790, 1820 and 1860, respectively. The three right panels present the same in the data. The scale is
bottom-coded at 5 and top-coded at 50 for visibility. Source: U.S. census.
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correlation increases further to values around 0.5.37 Moreover, columns (3) and (4) show

that the correlation is high even if I calculate it between changes in population levels rela-

tive to the initial period, rather than between the levels of population or density in a given

year. Thus, the model truly captures the movement of people to the same locations as in

the data. In Figure 5, one can see that the location of regions with highest population

density in the last period, such as the Northeast seashore and the areas around the Erie

Canal and the Ohio River, coincides in the model and in the data. One can even spot the

emergence of population clusters around Atlanta, Detroit and St. Louis in the model.

Besides featuring a high correlation with the data, the model can also replicate the

first-order qualitative features of the evolution of U.S. population and economic activity.

In line with the data, the model predicts a substantial westward expansion of population.

By 1860, the population share of the Midwest increases to about 29% both in the model

and in the data (Table 15 in Appendix E). The model also predicts that the Northeast

featured higher per capita nominal income than the Midwest and the South both in 1790

and in 1860, due to its high-productivity cities (Table 16 in Appendix E). Evidence for this

qualitative pattern in the data goes back to Easterlin (1960), and has been considered as a

paradox as it is seemingly at odds with labor reallocating toward the Midwest. The model,

however, implies that prices were also higher in the Northeast, so much so that real income

levels were equalized across regions, consistent with spatial equilibrium. Using spatially

disaggregated data on prices, Margo (1998, 1999) finds that prices were indeed lower in the

Midwest than in the Northeast prior to the Civil War, thus offering the same explanation

for the Easterlin paradox as the model.

To assess performance of the model in replicating urbanization as well as the locations

and sizes of cities, I define a city in the model as a grid cell with non-farm population above

10,000 inhabitants. In any time period, I measure urbanization as the ratio of non-farm

population living in cities to total U.S. population, just like in the data. Figure 6 presents

the evolution of urbanization in the model. The left panel of Figure 6 shows that the

fraction of U.S. population living in cities started to increase rapidly after 1820 both in

the model and in the data. In 1860, 14.8% of U.S. population lived in cities in the data,

while the corresponding number is 16.0% in the model. The right panel of Figure 6 shows

that urbanization is mainly due to the Northeast, where the share of people living in cities

in 1860 was more than ten times as high as the U.S. urbanization rate in 1790. In the

model, this is largely due to the productivity advantage of pre-existing Northeast cities,

which allows them to remain strong over the whole period of investigation.

37In the slow migration process presented in Section 2, the correlation is one in 1790 as the data are
matched exactly in the initial period. However, the correlation drops quickly over time, and is already
below 0.3 in 1860. I also simulate a process in which I extrapolate the 1790 to 1820 population growth of
every cell to the period between 1820 and 1860. In this latter case, the correlation is below 0.35 by 1840
and below 0.05 by 1860. That is, these simple benchmark processes do poorly in replicating the population
movements seen in the data.
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Figure 6: Urbanization in the model
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In the left graph, the solid blue line shows the ratio of non-farm population living in cities (cells with more than 10,000 non-farm inhabitants)
to total U.S. population in the baseline model simulation for each census year. The dotted blue line shows the fraction of U.S. population living
in cities (settlements above 10,000 inhabitants) in the data for each census year. In the right graph, the solid blue, red and green lines show the
ratio of non-farm population living in cities to the total population of the region in the three large U.S. regions: the Northeast, the South and
the Midwest, respectively, in the baseline model simulation. The dotted blue, red and green lines show the fraction of population living in cities
(settlements above 10,000 inhabitants) in the Northeast, South and Midwest, respectively, in the data. Source: U.S. census.

Figure 7: City locations in 1860: model versus data

Model Data

In the left map, yellow 20 by 20 arc minute grid cells are those that have a city in them by 1860 in the baseline model simulation. In the right
map, yellow grid cells are those that have a city in them by 1860 in the data. Source: U.S. census.

Figure 7 presents the set of cells in which cities form by 1860 in the model, and contrasts

it with the data. As the location of cities other than the five pre-existing ones is completely

untargeted in the calibration, it is natural that the model does match city locations ex-

actly. Nonetheless, it is reassuring that both the number of cells that contain cities (48 in

the model, 75 in the data) and the geographic location pattern of cities look similar. In

particular, cities are not all clustered together but rather spread out across the Northeast,

the Midwest and the South both in the model and in the data.

In the model, the fact that cities are spread out in space is tightly linked to the key

role that farm hinterlands play in city formation. Close to cities, workers have an incen-

tive to specialize in farm activities and ship their product to the city rather than create

another concentration of non-farm activity. However, one would expect this effect to be
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Table 6: Clustering of cities: model versus data

Model Data
Average distance from cities in the region (miles)
– Northeast 443.2 315.8
– Rest of the U.S. 703.7 1057.4
Average distance from closest city in region (miles)
– Northeast 104.9 50.2
– Rest of the U.S. 105.4 142.7

The first two numbers in the “Model” column correspond to the unweighted average of pairwise distances between 1860 cities in the Northeast
and in the rest of the United States, respectively, in the baseline model simulation. The last two numbers of the “Model” column correspond
to the unweighted average of an 1860 city’s distance from the closest 1860 city in the Northeast and in the rest of the U.S., respectively, in the
baseline model simulation. The “Data” column reports the same numbers in the data. Source: U.S. census.

Table 7: Fraction of cities forming at trading routes: model versus data

Fraction Fraction Fraction of cities
of cells of land Model Data

water 39.1% 35.6% 91.7% 98.6%
confluence 23.1% 19.9% 70.8% 87.1%
railroad 24.3% 23.2% 79.2% 95.7%

The first column of this table shows the number of 20 by 20 arc minute grid cells located at water, a confluence, or a railroad relative to the
total number of cells in the U.S. The second column shows the fraction of U.S. land that belongs to cells located at water, a confluence, or a
railroad. The third column shows the fraction of 1860 U.S. cities that formed in cells located at water, at a confluence, or at a railroad in the
baseline model simulation, while the last column shows the same numbers in the data. A cell is located at water if the cell, or the cell next to
it, has a navigable river, canal, lake, or the sea in 1860. It is located at a confluence if the cell, or a cell next to it, is surrounded by at least 3
cells with water in 1860. It is located at a railroad if the cell, or a cell next to it, was part of the railroad network in 1860. Source: U.S. census,
ESRI Map of U.S. Major Waters and oldrailhistory.com.

somewhat muted in the Northeast, where spatial technology diffusion from pre-existing

high-productivity cities gives an advantage to pursuing non-farm activities nearby. Thus,

everything else fixed, one would expect cities to cluster more in the Northeast than in the

rest of the United States. Section 2 shows that this is true in the data (Fact 4), while Table

6 verifies it in the model: average distance from other cities and average distance from the

closest neighbor were both smaller in the Northeast, although the difference between the

Northeast and the rest of the country is less striking in the model than in the data.

Just like in the data, most cities form near trading routes in the model (Table 7).

In particular, 91.7% of cities form at water, 70.8% form at confluences, and 79.2% form

near railroads in the model. These numbers are somewhat lower than in the data, but

substantially exceed the fraction of cells located at trading routes. In the model, the dis-

proportionate emergence of cities near trading routes is due to trade playing an important

role in city formation. Cities formed at trading routes to benefit from these locations’

better access to other locations.

The model is also quite successful at predicting the history of the largest U.S. cities. In

1860, Baltimore is the largest city in the model (391,300 inhabitants), while it was the third

largest in the data (279,200 inhabitants). New York was the largest city in the data (slightly
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above 1 million inhabitants) and the third largest in the model (364,600 inhabitants).38

Looking at the other three cities already existing in 1790, Boston and Philadelphia both

exceed 150,000 inhabitants, while Charleston remains below 100,000 both in the model

and in the data. In the Midwest, the largest city that appears in the model has 162,600

inhabitants in 1860. It forms in a cell right next to the actual location of Cincinatti, OH,

which was the largest city of the Midwest at the time, with 187,600 inhabitants.

Unfortunately, the lack of high-resolution 19th-century spatial data prevents me from

testing the model on most variables other than population, city locations and city sizes.

Apart from already discussed suggestive evidence on regional income levels, one aggregate

variable that can be compared between the model and the data is exports. Although the

1790 U.S. export to GDP ratio is targeted in the calibration, the evolution of this variable

after 1790 is not. Figure 17 (Appendix E) presents the evolution of U.S. exports to GDP

in the model, and contrasts them with historical estimates from Lipsey (1994). One can

see that the model is able to predict the U-shaped pattern in this variable: exports as a

fraction of GDP first declined, then increased over the course of the 19th century. It is true,

however, that the model overpredicts the increase in exports to GDP during the second

half of the period. In Section 5.4.3, I discuss potential consequences of this.

5.2 Model fit relative to Desmet et al. (2018)

How surprising is it that the model features a good fit to the dynamic evolution of the

U.S. population distribution and to the locations and sizes of cities? This question cannot

be answered without a benchmark to which the model’s fit is compared. One natural

benchmark is the model developed in Desmet et al. (2018) (“DNR”). DNR is also a

dynamic quantitative model of economic geography, and therefore can be used to predict the

evolution of the spatial distribution of population. Unlike the model of Section 3, however,

DNR features one sector. As a result, besides serving as a benchmark, a comparison

with the DNR model can also clarify whether a two-sector framework consistent with the

hinterland hypothesis is crucial to quantitatively replicate the key patterns of the evolution

of the U.S. population distribution and city formation.

In Appendix D, I develop an extension of the DNR model that I can use as a benchmark.

Relative to Desmet et al. (2018), I make three necessary but minor modifications that make

the DNR model comparable to the model of Section 3. First, I allow the exogenous supply

of land to change over time, so that I can incorporate changes in U.S. political borders.39

Second, I allow total world population to grow as population growth is a prominent feature

38Glaeser (2011) argues that the leading position of New York over other major ports in the Northeast
depended on its deep and protected harbor that could accommodate big clipper ships. As this force is
outside my model, the fact that New York only becomes the third largest city in the model may suggest
that it could not have become the largest city without this advantage.

39Desmet et al. (2019) also consider an extension of the DNR framework with time-varying land supply.
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Figure 8: Population distribution: DNR model versus data
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The three left panels of the figure present population (number of inhabitants) per square mile in each 20 by 20 arc minute grid cell of the U.S.
in the DNR model in 1790, 1820 and 1860, respectively. The three right panels present the same in the data. The scale is bottom-coded at 5
and top-coded at 50 for visibility. Source: U.S. census.
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of the data. Finally, I allow shipping costs across locations to change over time as the

U.S. transportation network develops. Appendix D.1 provides a detailed description of

this model.

To take the DNR model to the data, I apply a procedure that follows, as closely as

possible, the calibration strategy developed in Desmet et al. (2018). This calibration

strategy involves matching the initial (1790) population distribution to recover location-

specific productivity levels. It also involves using the next observed population distribution

(1800) to back out the levels of moving costs across locations. Nonetheless, the calibration

leaves the evolution of the population distribution after 1800 untargeted. As a result, I can

simulate the DNR model until 1860, and compare how well it can replicate the evolution

of the population distribution and the locations of cities to the model of Section 3.40

Figure 8 compares the evolution of the population distribution in the DNR model to

the data. The figure shows that the DNR model is unable to replicate the first-order

feature of the data: the substantial reallocation of U.S. population to the West. The

intuition for this is as follows. In the DNR model, locations with the highest population

density (and therefore the largest markets) offer the highest returns to innovation. As

population density is initially the highest in the Northeast, these locations innovate the

most, which reinforces their productivity advantage over the rest of the United States.

Changing political borders and the expanding transport infrastructure in the West mitigate

this effect, but are quantitatively unable to overturn it.

A key difference relative to the DNR model is that innovation is not a function of local

population density in the model of Section 3. Instead, innovation depends on the size of

the hinterland that the location sources its farm input from (Lemma 1). This feature of

the model helps locations in the Midwest, with access to a large farm hinterland especially

after the construction of railroads, to grow fast and attract a substantial fraction of U.S.

population by 1860. This force, coming from the interaction between the farm and non-farm

sectors, is absent from one-sector models such as the DNR model.

In line with this, the DNR model seems unable to rationalize the formation of cities in

the Midwest. Although it is not obvious how to define the notion of a city in a one-sector

model, I can select the cells with the highest population density in 1860, such that their

total population equals total city population in the data. This gives me a total of 30 city

cells in 1860. Figure 9 presents the location of these cells and contrasts them with the

locations of 1860 cities in the data. As expected, the DNR model features a single cluster

of cities in the Northeast, unlike the data and the model of Section 3.

In conclusion, the one-sector framework of Desmet et al. (2018) is unable to replicate the

striking westward expansion of population and the process of city formation. The reason

the model of Section 3 does substantially better seems to be that it gives a role to farm

40Appendix D.2 describes the procedure of taking the DNR model of the data, while Appendix D.3
provides details on the simulation.
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Figure 9: City locations in 1860: DNR model versus data

DNR model Data

In the left map, yellow 20 by 20 arc minute grid cells are those that have a city in them by 1860 in the DNR model. In the right map, yellow
grid cells are those that have a city in them by 1860 in the data. Source: U.S. census.

hinterlands in the growth of the non-farm sector. This interaction between the two sectors

allows cities to form at Western locations with access to a large farm hinterland, which in

turn can explain both the shift of U.S. economic activity to the West and the geographic

patterns of city formation prior to the Civil War. In other words, the comparison of my

model to the DNR framework further highlights the quantitative relevance of the hinterland

hypothesis.

5.3 Counterfactual: The effect of railroads

This section evaluates the first implication of the hinterland hypothesis: the prediction

that railroads fostered city development and aggregate U.S. growth. How much railroads

contributed to American economic growth and output has been the subject of long debates

in economic history. In his book, Fogel (1964) attempts to account for the various local and

aggregate effects of late-nineteenth century railroads, and finds that the overall impact of

railroads on agricultural output was rather modest. Donaldson and Hornbeck (2016) revisit

the topic through the lens of market access. They argue that railroads decreased land

shipping costs dramatically. Hence, they made it possible to source agricultural products

from locations from which shipping was prohibitively expensive earlier. This led to an

increase in market access and a decrease in agricultural prices at most U.S. locations, but

especially at those near railroads. As a result, welfare and output increased, the latter

being 3.22% higher in 1890 in the presence of railroads than in their absence. Relative to

Donaldson and Hornbeck (2016), my model also allows me to account for the impact of

railroads on U.S. output and welfare through railroads changing the dynamic evolution of

cities.

To assess the impact of railroads on city formation, growth and output, I simulate the

model under the assumption that no railroads were built during my period of investigation.

The absence of railroads directly increases shipping costs in 1.4% of grid cells in 1840, in
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Figure 10: Population distribution in 1860: baseline versus no railroads
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The top map presents population (number of inhabitants) per square mile in each 20 by 20 arc minute grid cell of the U.S. in the baseline model
simulation in 1860. The bottom panel presents the same in the counterfactual with no railroads. The scale is bottom-coded at 5 and top-coded
at 50 for visibility.
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3.0% of the cells in 1850, and in 8.2% of the cells in 1860. As I argue, however, the absence

of railroads affects a much larger share of U.S. locations indirectly through its effects on

trade and the formation of cities.

The results indicate that the U.S. economy would look fairly different in the absence of

railroads. Figure 10 plots the 1860 distribution of population in the no-railroad counter-

factual, as well as in the baseline calibration. As can be seen from the figure, the lack of

railroads makes population shift toward navigable rivers, whereas regions far from water

remain lower-density, especially in the Midwest. Many of the large cities remain substan-

tially smaller without railroads. The grid cell in which Philadelphia is located loses 6% of

its population relative to the baseline, while Chicago loses 14%, Buffalo, NY loses 25%,

and Boston loses as much as 86% of its population in 1860.

Without railroads, the total number of people living in cities would be 8.2% lower,

making the urbanization rate 14.7% in 1860, as opposed to the baseline value of 16.0%.

These results show that the effect of railroads on city growth, through railroads expanding

cities’ farm hinterland, is quantitatively large. In the absence of railroads, hinterlands are

smaller, hence non-farm firms’ incentives to innovate are lower. This implies slower city

growth and less urbanization.

The substantial impact that railroads have on the development of cities translates to a

large effect on output and consumers’ welfare. Figure 18 (Appendix E) shows the evolution

of U.S. real GDP per capita, which also equals U.S. consumers’ per-period utility in the

model. The absence of railroads decreases the growth rate of the U.S. economy between

1830 and 1860 by 27%, from 0.69% to 0.50% per year. As a result, real GDP is 5.5% lower

in 1860 than in the presence of railroads. Even if the growth rates in the two scenarios

were equal after 1860, this would imply a permanent loss of 5.5% in consumers’ long-run

welfare.

A substantial fraction of these gains arises due to railroads changing the incentives to

innovate in the non-farm sector and, hence, the formation and development of cities. To

show this, I consider an alternative version of the model of Section 3 in which productivity

growth in the non-farm sector is uniform across space:

At+1 (s) = f̃At (s)

for any U.S. location s and time period t. In the model of Section 3, railroads increase

the incentives to innovate at locations whose hinterlands expand, implying faster non-farm

productivity growth at these locations. In the model with uniform productivity growth,

this channel is absent as non-farm productivity growth is the same across locations.

To make the model with uniform productivity growth comparable to the model of

Section 3, I calibrate the value of productivity growth parameter f̃ to match the growth

rate of U.S. real GDP before 1820. Recall that this moment was also targeted in the
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baseline model calibration. Hence, the model with uniform productivity growth features

the same growth rate as the baseline prior to railroad construction.

Next, I simulate the model with uniform productivity growth both in the presence and

in the absence of railroads. I find that the absence of railroads leads to a 4.7% loss in

real GDP in 1860 in the model with uniform productivity growth. Thus, differences in

growth rates across space, arising from differences in innovation and dynamic externalities

in cities, increase the effect of railroads on output from 4.7% to 5.5%, that is, by a factor

of 17%. It is, however, important to note that cities still form and develop in the model

with uniform productivity growth, due to population growth and consumers relocating to

places with better access to trade, and consumers moving to newly forming cities benefit

from agglomeration. In other words, the 17% number should be viewed as a lower bound

on the contribution of city formation to the effect of railroads on U.S. output. In line with

the first implication of the hinterland hypothesis, city formation and development seems

to be an influential factor driving the impact of railroads on economic growth, output and

welfare.

5.4 Further counterfactuals

The remaining three implications of the hinterland hypothesis have to do with how other

elements of U.S. geography – political border changes, increasing total U.S. population and

international trade – shaped U.S. growth and city formation. To evaluate these implications

one by one, I conduct three further counterfactuals. In the first one, I evaluate the role of

changes in U.S. political borders. In the second one, I assess how the eight-fold increase

in total U.S. population affected city formation and growth. In the third counterfactual, I

quantify the effect of international trade on cities and growth.

5.4.1 The effect of political border changes

In 1790, the political border of the United States mostly coincided with the Mississippi

River in the West and with the current Georgia-Florida border in the South. Areas farther

West and South were under French, Spanish or British rule. The total land area of the U.S.

was 864,746 square miles. By 1860, the U.S. reached the Pacific coast in the West, covering

2,969,640 square miles, almost equal to its current contiguous area. This means that the

land area of the country increased by a staggering 211.8%. According to the second impli-

cation of the hinterland hypothesis, this process could have led to faster city development

and aggregate growth through increasing the size of cities’ potential hinterlands.

To see how much the expansion of U.S. political borders changed the process of city

formation and development prior to the Civil War, I conduct a counterfactual in which

I keep U.S. land area at its initial level. That is, I assume that grid cells that were not

part of the U.S. in 1790 never became part of the country. I compare the results of this
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Figure 11: Further counterfactuals: population distribution in 1860
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The top left map presents population (number of inhabitants) per square mile in each 20 by 20 arc minute grid cell of the U.S. in the baseline
model simulation in 1860. The top right panel presents the same in the counterfactual with no political border changes (Section 5.4.1); the
bottom left panel presents the same in the counterfactual with no increase in total U.S. population (Section 5.4.2); and the bottom right panel
presents the same in the counterfactual with no international trade (Section 5.4.3). The scale is bottom-coded at 5 and top-coded at 50 for
visibility.
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counterfactual to the baseline calibration, in which I change U.S. political borders as in the

data.

The top right map of Figure 11 shows the 1860 population distribution without political

border changes, while the top left map shows the same distribution in the baseline. The

differences are surprisingly small. Some clusters along the Mississippi and in northern

Florida do not get to form without changing borders, but the population distribution in

the rest of the country hardly changes. Overall, real GDP per capita is 2.7% lower in 1860

without changes in political borders. This number may not be small in absolute terms, but

it is certainly small relative to the 211.8% increase in land area that the border changes

led to.

The reason for the small effect of political border changes is that the region West of the

Mississippi had few navigable rivers and few railroads in 1860. The first transcontinental

railroad crossing the region was built in 1869, opening up the land to the settlement of

population. With the transport infrastructure in place before 1860, the region could hardly

serve as a farm hinterland. At the same time, given all the transport improvements after

the Civil War, pre-1860 political border changes might have brought substantial gains after

1860 – but not during my period of investigation.

5.4.2 The effect of increasing U.S. population

In another counterfactual, I evaluate the third implication of the hinterland hypothesis by

investigating how much the eight-fold increase in total U.S. population between 1790 and

1860 slowed down city formation and aggregate development. To this end, I simulate the

model under the assumption that total U.S. population stayed at its 1790 level all the way

until 1860.

The bottom left map of Figure 11 presents the 1860 population distribution with total

population kept at its 1790 level. A comparison to the baseline (top left map of Figure 11)

suggests that population growth had a substantial effect on the distribution of population

within the U.S. In particular, the distribution looks more concentrated near a handful of

cities in the Northeast and in the Eastern parts of the Midwest. In line with this, I find

that the 1860 urbanization rate is 19.5% in the counterfactual, while it is 16.0% in the

baseline.

These findings are not surprising as population growth acts as a force against urbaniza-

tion in the model. Everything else fixed, rising total population decreases the amount of

land available per capita, thus increasing land prices. This increases the price of farm goods

(and non-farm firms’ unit cost of production; see equation 8). Since the farm input and

non-farm labor used in production are complements, non-farm firms decrease their demand

for labor used in production (equation 9). As a result, one can expect slower urbanization

in a world with growing population.
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While population growth acts against urbanization, its effect on innovation is ambiguous

from a purely theoretical perspective. On the one hand, higher farm prices make firms

substitute innovation labor for production labor (the term
[
pFt (s)

wt(s)

](1−β)µ

in equation 10).

On the other hand, higher farm prices increase firms’ unit costs of production (equation

8), which leads to firms decreasing their demand for all inputs, including innovation labor

(the term c̄t (s)β−1 in equation 10). In practice, the second effect dominates. I find that

the counterfactual U.S. economy grows at a yearly growth rate that is 97% higher than the

baseline (1.08% instead of 0.55%) between 1790 and 1860. This makes 1860 real GDP per

capita 44.5% higher than in the baseline.

In line with the third implication of the hinterland hypothesis, the results of this coun-

terfactual suggest that population growth, by making land relatively more scarce, slowed

down both urbanization and aggregate growth in the pre-Civil War United States. More-

over, the effects are quantitatively large. Due to transport infrastructure improvements

in the West after the Civil War, the increasing stock of accessible land might have mit-

igated the substantial negative effect of population growth, but only after my period of

investigation.

5.4.3 The effect of international trade

My final counterfactual investigates the fourth implication of the hinterland hypothesis by

quantifying the effect of international trade on U.S. city formation and growth. The United

States was a relatively export-oriented country in the first half of the nineteenth century.

For instance, the share of U.S. trade in world trade was well above the share of U.S. output

in world output (Lipsey, 1994). The U.S. only ceased to be an open economy for a few

months starting from December 1807, when Congress imposed an almost complete embargo

on foreign trade at the request of President Thomas Jefferson (Irwin, 2005). The embargo

was lifted in March 1809.

To study the overall impact of international trade, I simulate the model in an extreme

counterfactual scenario. In particular, I make the assumption that President Jefferson’s

trade embargo remained in place forever, implying that the U.S. was in autarky from period

5 (1810) until period 15 (1860). To implement this counterfactual, I raise the cost of trading

with Europe for every U.S. location to infinity during this entire period.

The bottom right map of Figure 11 shows the 1860 population distribution under au-

tarky. Comparing it to the baseline (top left map of Figure 11), one can conclude that

international trade was a factor mitigating westward expansion. Under autarky, the spatial

distribution of population shifts from regions close to the Atlantic coast toward regions far-

ther West. Total population of the Midwest, for instance, is 16.3% higher under autarky.

The intuition for these results is straightforward. As the Eastern regions of the U.S. were

geographically closer to Europe, they could reap the benefits from trading with Europe.
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The lack of foreign trade hurts smaller cities in the Northeast particularly severely. In

1860, the cell in which Providence, RI is located loses 8% of its population, while Syracuse,

NY loses as much as 81% of its population relative to the baseline. Somewhat surprisingly

at first glance, the largest cities in the Northeast gain in population. Boston and New York

increase their populations by 58% and 50%, respectively. However, this is not surprising

in light of the quantitative economic geography literature, which has found that losses

in market access tend to hurt small cities more, and population might reallocate toward

larger cities as a result (Redding and Sturm, 2008). Nevertheless, small cities’ losses seem

to dominate in the aggregate. In 1860, the urbanization rate decreases from 16.0% under

international trade to 9.4% under autarky according to the model.

These losses in urbanization translate to substantial losses in growth. Between the

period right before the embargo (1805) and 1860, the growth rate of U.S. real GDP per

capita is 22% lower under autarky. Real GDP in 1860 is 6.4% lower. Based on these

findings, one can conclude that international trade slowed down westward expansion but

fostered the development of cities in the Northeast, in line with the fourth implication of

the hinterland hypothesis. Due to its favorable effect on Northeast cities, international

trade significantly increased aggregate growth in the pre-Civil War United States.

One should take the quantitative findings of Section 5.4.3 with a grain of salt, however.

As discussed in Section 5.1, the model overestimates the share of international trade in U.S.

GDP throughout most of the period of investigation. It is therefore likely that the model

overstates the role of trade relative to the data. Although there is no reason to believe that

the model is wrong about the effects of trade in a qualitative sense, the numbers found

above should be interpreted as upper bounds on the effects of trade on the pre-Civil War

U.S. economy.

6 Robustness

This section examines the robustness of the results presented in Section 5. In Section

6.1, I investigate whether spatial technology diffusion and dynamic externalities in cities

have a substantial impact on my quantitative findings. In Section 6.2, I focus on the

concern that the placement of railroads is not exogenous, which may bias the results of the

counterfactuals conducted in Section 5.4.

6.1 Technology diffusion and dynamic externalities

To study whether the assumptions of spatial technology diffusion and dynamic externalities

in cities have a significant impact on my quantitative results, I conduct three robustness

exercises in this section. In one exercise, I strengthen spatial technology diffusion by

decreasing the diffusion parameter δ from its baseline value, 0.006, to 0.003. In a second
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Table 8: Robustness: Technology diffusion and dynamic externalities

Baseline δ = 0.003 δ = 0.009 γ = 0
Correlation of population with the data, 1860 0.531 0.500 0.533 0.579
Regions’ shares in total U.S. population, 1860
– Northeast 32.9% 32.8% 33.0% 27.0%
– South 36.4% 36.5% 36.4% 38.7%
– Midwest 29.9% 29.8% 29.8% 33.4%
– West 0.8% 0.9% 0.8% 0.9%
Fraction of cities forming at
– water 91.7% 92.3% 91.5% 94.1%
– confluence 70.8% 67.3% 72.3% 73.5%
– railroad 79.2% 78.9% 78.7% 88.2%
Average distance between cities (miles), 1860
– Northeast 443.2 385.8 443.2 396.0
– Rest of the U.S. 703.7 697.4 697.2 644.9
Difference in avg decennial growth rate b/w
cities and towns, 1790 to 1820 (log points) 0.08 0.08 0.08 -0.03
Counterfactuals: Change in U.S. real GDP per capita relative to the baseline, 1860
– No railroads -5.5% -5.5% -5.9% -5.6%
– No political border changes -2.7% -2.7% -2.7% -3.2%
– No increase in total U.S. population 44.5% 44.5% 44.5% 44.0%
– No international trade -6.4% -6.4% -6.4% -6.5%

The “Baseline” column presents a set of statistics obtained in the baseline model simulation: the correlation between grid cells’ population in
the model and in the data in 1860; the share of U.S. population living in either of the four large regions; the fraction of 1860 cities that formed
at water, at a confluence, or at a railroad; the unweighted average of pairwise distances between 1860 cities in the Northeast and in the rest of
the United States, respectively; the difference in average log decennial population growth rate between cities and towns over the period 1790 to
1820; and the change in U.S. real GDP per capita in the four counterfactuals (Sections 5.3 and 5.4) relative to the baseline. Columns δ = 0.003
and δ = 0.009 present the same statistics in two alternative model simulations in which the technology diffusion parameter δ is set to 0.003 and
0.009, respectively. Column γ = 0 presents the same statistics in an alternative model simulation in which the dynamic externality parameter
γ is set to zero.

exercise, I weaken technology diffusion by increasing δ to 0.009. In the third exercise, I

eliminate dynamic externalities in cities by setting their scale parameter γ to zero.

For each of the three exercises, I simulate the model in all the periods between 1790 and

1860, and measure the fit of the model to the same untargeted moments of the population

distribution and city formation as in the baseline calibration. Finally, I conduct the four

counterfactuals described in Sections 5.3 and 5.4: one without railroad construction; one

without political border changes; one without increasing U.S. population; and one in which

President Jefferson’s trade embargo lasts all the way until 1860.

Table 8 confirms the robustness of my findings to the alternative values of technology

diffusion and dynamic externality parameters. Each of the last three columns in the table

corresponds to a robustness exercise, while the first column repeats the results obtained

under the baseline calibration. The correlation of cell populations between the model and

the data, the population shares of the three large regions, the fraction of cities forming at

trading routes and the clustering of cities, measured by the average distance between them,

all look very similar to the baseline. Intuitively, the difference in cross-city average distance
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between the Northeast and the rest of the U.S. is larger if technology diffusion is strong, as

more cities form closer to high-productivity cities that spread out their technology in the

Northeast.41 Conversely, the difference between the Northeast and the rest of the country

is smaller if technology diffusion is weak. Also, the difference between cities’ and towns’

growth rates, which is the moment I targeted when choosing γ in the baseline, is no longer

matched if dynamic externalities are absent in cities (γ = 0). In fact, cities grow slower

than towns in this case, due to the convergence in growth rates.

The last four rows of Table 8 present the counterfactual results in the three robustness

exercises, and compare them to the baseline. One can see that the counterfactual changes in

U.S. real GDP per capita are almost identical between the baseline and the three robustness

exercises.

6.2 Endogenous railroads

Clearly, the placement of railroads is not exogenous. As discussed in Section 4, this cannot

bias the identification of the model’s structural parameters, since I calibrate these param-

eters exclusively to moments before railroad construction begins in the 1820s. It cannot

bias the results of the counterfactual conducted in Section 5.3 either, as that counterfactual

compares the U.S. economy with the actual set of railroads to an economy with no railroads

whatsoever.

This argument, however, does not apply to the counterfactuals presented in Section

5.4. Take Section 5.4.1 as an example. In that section, I compare the U.S. economy with

the observed changes in political borders to a counterfactual economy in which political

borders did not change. Both in the baseline and in the counterfactual, I assume that the

actual set of railroads were built. But is this a realistic assumption in the counterfactual?

One could think that railroad placement, if it is endogenous, must have been affected by

the location of U.S. borders. Hence, the counterfactual with no political border changes

should feature an endogenous counterfactual set of railroads, not the actual ones.

To see whether the results of Section 5.4 are robust to this issue, I develop a procedure of

endogenous railroad placement. In various models of endogenous transport infrastructure

investment (Allen and Arkolakis 2019, Fajgelbaum and Schaal 2019, Santamaria 2019), the

optimal amount of investment allocated to a location is an increasing function of how much

the location trades with others. This is intuitive: a larger volume of trade implies that

there is more demand for infrastructure investment at the location.42

41In this exercise (δ = 0.003), the number of cities forming in the Northeast by 1860 increases by one
third, from 15 to 20.

42The other major factor affecting the allocation of investment in these models is the location-specific
cost of building infrastructure. In my framework, I abstract from these costs, which is identical to assuming
that they do not vary across locations. Although the cost of building railroads undoubtedly varies across
space, I find that my framework can predict the actual location of railroads well even if I do not take these
costs into account.
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Figure 12: Location of endogenous and actual railroads in 1860

Endogenous railroads Actual railroads

In the left map, yellow 20 by 20 arc minute grid cells are those into which the model with endogenous railroads places a railroad by 1860. In
the right map, yellow grid cells are those that have an actual railroad in 1860. Source: oldrailhistory.com.

Motivated by this relationship between trade and optimal infrastructure investment, I

consider the following extension of the model of Section 3. Before 1830, I assume that the

techology to build railroads was not available, just like in the baseline model. In 1830, I

first simulate the model without any railroad. I select the grid cell that has largest volume

of trade with others from the set of cells without a navigable waterway. I assign a railroad

to this cell, then recalculate all shipping costs, and determine the volume of trade for every

cell.43 I again select the cell with the largest volume of trade from the set of cells without a

railroad or a waterway. I continue this procedure until the number of railroad cells equals

the number of cells that received an actual railroad in 1830 (excluding the cells that had

both railroad and water access in the data). Taking past railroad investments as given, I

repeat the procedure for the next period, then for the next period, and so on.

The left map of Figure 12 displays the set of grid cells to which my railroad placement

procedure assigns an endogenous railroad by 1860, while the right map of Figure 12 shows

the actual set of railroad cells (excluding those with both railroad and water access) in

the data. Even though my railroad placement procedure is undoubtedly a stylized one,

it can successfully predict a dense railroad network in the Eastern regions of the United

States. That said, the procedure somewhat underpredicts the set of railroads built in the

Western parts of the South and the Midwest. According to the model, these areas do

not have enough trading activity to justify the construction of railroads. Nonetheless, the

stylized railroad placement framework can correctly predict 49.4% of the grid cells in which

railroads get constructed by 1860, despite the fact that these cells only constitute 4.1% of

the total number of cells.

To study how robust the counterfactual results of Section 5.4 are to endogenous rail-

road placement, I conduct each of the three counterfactuals in the extended model with

43I select from the set of cells without a waterway since the cost of railroad transportation was slightly
higher than the cost of water transportation. Hence, there would be no incentive to build a railroad in a
cell that already has water access.
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Table 9: Counterfactual results under endogenous railroads

Counterfactual Actual railroads Endogenous railroads
No political border changes -2.7% -2.2%
No increase in total U.S. population 44.5% 47.5%
No international trade -6.4% -7.2%
No railroads -5.5% -6.7%

The first column of this table shows the change in U.S. real GDP per capita in the four counterfactuals (Sections 5.3 and 5.4) relative to the
baseline model simulation. The second column shows the change in U.S. real GDP per capita in the four counterfactuals (Sections 5.3 and 5.4)
relative to a new baseline model simulation such that railroads in both the counterfactuals and the new baseline are placed endogenously.

endogenous railroads. In other words, I allow railroad placement to react to political bor-

der changes, total U.S. population, or international trade. The only variable I keep fixed

between the counterfactuals and the baseline is the total number of cells that receive a rail-

road in a given period. The first three rows of Table 9 present the changes in U.S. real GDP

per capita in each of the counterfactuals, and contrast them with the corresponding real

GDP changes found without endogenous railroads. The differences are small, suggesting

that the effects of political border changes, increasing U.S. population and international

trade are robust to incorporating the endogeneity of railroad placement.

In the last row of Table 9, I compare the equilibrium with endogenous railroads to

the no-railroad counterfactual. Not surprisingly, endogenous railroads lead to a somewhat

larger increase in U.S. real GDP than actual railroads, as they are built where demand

for them is the highest according to the model. The difference, however, is not large.

Endogenous railroads induce a 6.7% increase in 1860 U.S. real GDP, while the actual set of

railroads increases real GDP by 5.5%. This result is in line with the fact that the placement

of endogenous railroads quite closely follows the placement of actual railroads.

7 Conclusion

In this paper, I argue that farm hinterlands played an important role in U.S. city formation

and aggregate growth prior to the Civil War. The relationship I identify between hinter-

lands, city formation and endogenous growth constitutes a novel mechanism through which

geography can affect growth in economies at an early stage of development. This immedi-

ately implies that studying the drivers of pre-Civil War U.S. growth is not the only possible

application of the quantitative framework proposed in the paper. Studying today’s devel-

oping economies is one particularly fruitful direction for further research. China and India

have seen massive changes in their geography due to recent large-scale transport infrastruc-

ture improvements (Faber 2014, Ghani et al. 2016). How did these transport improvements

affect the formation and growth of cities? How much does their potential contribution to

city development add to the returns to these infrastructure improvements? What would be
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the effect of proposed infrastructure projects, or the effect of further economic integration

between these countries and their foreign markets?

Another question is how the mechanism identified in the paper may interact with institu-

tions, which have been viewed by many economists as a crucial determinant of development

(North, 2003). The quantitative analysis of the paper is conducted under the assumption

that market institutions were available at every location in the U.S. and over the entire

period of investigation. This assumption might be realistic in a U.S. context, but not nec-

essarily in the case of other economies. Institutions may indeed develop endogenously over

time, similar to local innovations. Can institutions, and their endogenous evolution, shape

the effect of geography on cities and growth? My hope is that the setup proposed in this

paper opens a door to research that can answer these, as well as other interesting questions.
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A Theory appendix

This appendix supplements the theoretical framework presented in Section 3 in five respects.

First, Section A.1 defines the equilibrium of the multi-country model. Next, Section A.2

shows how the population distribution in period t in the multi-country model can be ob-

tained by solving a system of three equations, and describes an algorithm to solve these

equations. Based on these results, Section A.3 discusses why multiplicity of equilibria may

arise in this model, as well as why the complex structure of the model does not allow for

a theoretical characterization of equilibrium uniqueness. Section A.4 presents a version of

the model in which consumption happens at the residential location, as well as a condition

on shipping costs that guarantees isomorphism between this alternative model and the

model of Section 3. Finally, Section A.5 provides the proofs of Lemma 1 of Section 3.3 and

Lemma 2 of Appendix A.2.
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A.1 Definition of the equilibrium in the multi-country model

Definition. Given parameters α, β, γ, δ, ε, λ, µ, ν, f , the set of locations S, countries’

population L̄ct and growth shifters fct, as well as functions Ht, A1, B : S → R and τFt , τ
N
t :

S2 → R, an equilibrium of the economy is a set of functions LFt , L
N
t , p

F
t , p

N
t , q

N
t , ht, `

P
t , `

I
t , x

F
t , c̄t,

nt, Pt, σt, wt, Rt, At : S → R, as well as countries’ utility levels Uct for each time period

t ∈ {1, 2, ...} such that the following hold:

1. Farmers maximize utility, and their utility is equalized across locations within each

country. That is,

UF
t (r, σt (r)) = UF

t (u, σt (u)) (24)

for any r, u ∈ Sc, where σt (r) denotes the trading place chosen by the residents of r,

and UF
t (·, ·) is given by (2).

2. Non-farm workers maximize utility, and their utility is equalized across locations

within each country. That is,

UN
t (s) = UN

t (u) (25)

for any s, u ∈ Sc with positive non-farm population, where UN
t (·) is given by (3).

3. Consumers’ utility is equalized across sectors within each country. Hence,

Uct = UF
t (r, s) = UN

t (s) (26)

for any r, s ∈ Sc such that s = σt (r).

4. Non-farm firms maximize profits, and free entry drives down profits to zero. Hence,

their price is given by (6), their output by (7), their unit cost per wage by (8), and

their factor use by (9) to (11). The number of goods produced at location s is given

by (12), and the price index at s is

Pt (s) =

[∫
S

nt (u) pNt (u)1−ε τNt (u, s)1−ε du

] 1
1−ε

. (27)

5. The market for the farm good clears at each trading location s. That is,∫
σ−1
t (s)

ντFt (r, s)−1B (r)LFt (r)αHt (r)1−α dr = xFt (s)nt (s) + (1− ν)
wt (s)

pFt (s)
LNt (s)

(28)

where σ−1
t (s) denotes the set of locations from which farmers ship to s, the left-hand

side corresponds to supply net of farmers’ demand at s, the first term on the right-

hand side corresponds to firms’ demand, and the second term on the right-hand side

corresponds to non-farm workers’ demand.

61



6. The market for non-farm goods clears at each trading location s. That is,

qNt (s) =

∫
S

νpNt (s)−ε τNt (s, u)1−ε Pt (u)ε−1 It (u) du (29)

where the left-hand side corresponds to the supply of any non-farm variety produced at

s, and the right-hand side corresponds to total demand for the variety. It (u) denotes

total income of consumers at u, and equals the sum of farmers’ and non-farm workers’

income:

It (u) =

∫
σ−1
t (u)

pFt (u) τFt (r, u)−1B (r)LFt (r)αHt (r)1−α dr + wt (u)LNt (u)

7. National labor markets clear. That is,

L̄ct =

∫
Sc

[
LFt (r) + LNt (r)

]
dr (30)

where Sc denotes the set of locations that belong to country c.

8. The market for land clears at each location. That is,

Ht (r) = LFt (r)ht (r) . (31)

9. Productivity levels evolve according to equations (21) and (5).

The equilibrium of the multi-country model differs in three respects from the equilibrium

of the single-country model, which was defined in Section 3.1.7. First, as consumers cannot

move across countries, utility equalization conditions (24), (25) and (26) are only imposed

across locations that are in the same country. Second, the national labor market clearing

condition (30) is imposed by country, rather than across all locations. Finally, equation

(21) replaces equation (4) as the law of motion for local productivity.

A.2 Solving the equilibrium population distribution in period t

To simplify the model’s period-t equilibrium conditions – that is, the system of equations

(2), (3), (6) to (12) and (24) to (31) –, note first that farmers living at a trading place

always want to trade there. The intuition for this result is that, if farmers living at s

preferred some other trading place u to s, then, by the triangle inequality of shipping costs,

farmers living at any other location would also prefer u to s. Hence, s would not even arise

as a trading place.

But what is the trading place chosen by farmers who do not live at one? Clearly, farmers

living at a location r in country c choose the trading place that maximizes their utility (2).
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Note also that, by (26), the utility of a farmer living at a trading place s ∈ Sc equals the

utility of a non-farmer (3),

pFt (s)B (s)
[
Ht(s)

LFt (s)

]1−α

Pt (s)ν pFt (s)1−ν =
wt (s)

Pt (s)ν pFt (s)1−ν

from which the price of the farm good can be expressed as

pFt (s) = B (s)−1

[
LFt (s)

Ht (s)

]1−α

wt (s) . (32)

Plugging this back into (2), one obtains

UF
t (r, s) = τFt (r, s)−1 B (r)

B (s)

[
Ht (r)

Ht (s)

]1−α [
LFt (r)

LFt (s)

]−(1−α)

Uct

where I used (26) again to substitute Uct = wt(s)

Pt(s)
νpFt (s)1−ν . The trading place s which is

optimal for farmers at location r is the one that maximizes the above expression, thus it is

σt (r) = argmaxs∈Scτ
F
t (r, s)−1B (s)−1H (s)−(1−α) LFt (s)1−α . (33)

Once we know who trades where, utility equalization relates the farm population of

any location to the farm population of its trading place. To see this, consider a location r

together with its trading place σt (r). By (24), farmers living at these two places have the

same utility, that is,

UF
t (r, σt (r)) = UF

t (σt (r) , σt (r)) .

Substituting for UF
t (·, ·) using (2), one can express the farm population of r as

LFt (r) = τFt (r, σt (r))−
1

1−α
Ht (r)

Ht (σt (r))

[
B (r)

B (σt (r))

] 1
1−α

LFt (σt (r)) (34)

We are only left with finding the distribution of farmers across trading places since

equations (33) and (34) pin down farm population at any location r conditional on this

distribution. To obtain the farm population of trading places, I use the price index (27),

the non-farm market clearing condition (29), and utility equalization. The result is stated

in the following lemma.

Lemma 2. In any period t, the distribution of farm population is the solution to the

following system of equations:

B (s)−
1−ν
ν

ε(ε−1)
2ε−1

[
LFt (s)

Ht (s)

](1−α) 1−ν
ν

ε(ε−1)
2ε−1

c̄t (s)
(ε−1)2

(2ε−1) = κU
− ε(ε−1)

2ε−1

c(s),t ·
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∫
S

U
− (ε−1)2

2ε−1

c(u),t

B (u)
1−ν
ν

(ε−1)2

2ε−1

[
LFt (u)

Ht(u)

]−(1−α) 1−ν
ν

(ε−1)2

2ε−1
c̄t (u)−

ε(ε−1)
(2ε−1)

(1− ν) [ε (1− µ) + µ] + (ε− 1)µ
[
1− νc̄t (u)β−1

] [∫
σ−1
t (u)

LFt (r) dr

]
τNt (u, s)1−ε du

(35)

where LFt (r) as a function of LFt (u) is given by (34), σ−1
t (u) is given by (33), c̄t (s) is

given by (8), and κ = ε1−ε (ε− 1)ε−2 µ−1f−1 is a constant.

Proof. See Appendix A.5.

Next, non-farm population at trading places can be obtained using the distribution of

farm population and farm market clearing (28). Combining (28) with (11) and (12) yields

LNt (s) =
ν

(1− ν) + µ (ε− 1)
[
µ+ ε (1− µ) + ε

c̄t(s)
1−β−1

]−1

∫
σ−1
t (s)

LFt (r) dr (36)

as the non-farm population of location s. Note that, by (36), the non-farm population of

places to which no one ships farm goods is zero. Since the supply of farm goods is zero

at these locations, non-farm production cannot take place, hence non-farm workers do not

move to these locations in equilibrium. On the other hand, equation (34) implies that every

location with a positive amount of land has some farm population. Pulling these results

together, one can conclude that there are two types of locations in equilibrium: locations

that have both farm and non-farm population and serve as trading places for farmers, and

locations that only have farm population and do not serve as trading places. Whether a

given location belongs to the first or the second type is an endogenous outcome shaped by

the fundamentals of the model, including geography.

Finally, countries’ utility levels Uct can be obtained by imposing national labor market

conditions (30). Hence, we have the following lemma.

Lemma 3. Given the values of parameters, geography S, countries’ population L̄ct and

growth shifters fct, functions Ht (·), B (·), τFt (·, ·) and τNt (·, ·) and the distribution of non-

farm productivity At (·), the system of three equations (30), (35) and (36) determines the

spatial distribution of population and countries’ utility levels in period t.

As a result of Lemma 3, obtaining the population distribution in period t requires

solving the system of equations (30), (35) and (36). In the two-country world considered

in this paper, I solve this system by an iteration algorithm, similar to the one applied in

Nagy (2018). The algorithm consists of the following steps.

1. Calculate the non-farm productivity of Europe, using equation (23).

2. Guess country utility levels UUS,t and Uet.

64



3. Guess the farm population trading at each location,
∫
σ−1
t (s)

LFt (r) dr.

4. Guess the farm population living at each trading location, LFt (s).

5. Use equation (8) to calculate c̄t (s). Then calculate the right-hand side of equation

(35). Setting the left-hand side equal to the right-hand side, update c̄t (s). Then use

equation (8) again to update LFt (s). Keep updating LFt (s) until convergence.

6. Use the values of LFt (s), as well as equations (33) and (34) to calculate optimal

trading places and the farm population of any location r. Using these, update the

farm population trading at each location,
∫
σ−1
t (s)

LFt (r) dr, and continue from step 4.

Keep updating
∫
σ−1
t (s)

LFt (r) dr until convergence.

7. Solve equation (36) for non-farm populations LNt (s).

8. Check if national labor market clearing conditions (30) hold. If not, modify UUS,t and

Uet, and continue from step 3.

Although the complex structure of the model does not allow me to derive conditions

under which the algorithm converges to the equilibrium distribution of population, simula-

tion results suggest that the algorithm displays good convergence properties unless either

agglomeration or dispersion forces are very strong. In particular, the algorithm always

converges to the equilibrium in a broad neighborhood around the parameter values chosen

in the calibration.

A.3 Difficulties of characterizing equilibrium uniqueness

This section of the appendix builds intuition for why it is difficult to theoretically charac-

terize the uniqueness of the period-t equilibrium in the model of Section 3. To this end,

I consider two special cases of the model in which uniqueness can be characterized. Next,

I turn to the general case and point out how features of the model that are not present

in the special cases prevent the theoretical characterization of uniqueness. For simplicity,

I restrict my attention to the single-country version of the model in this section of the

appendix. Generalizing the results to the multi-country version is straightforward.

Case 1: An economy with only a farm sector. I first consider a special case of the

model in which the share of non-farm goods in consumption is zero: ν = 0. This implies

that there is no demand for non-farm goods in the economy. Therefore, the non-farm sector

is absent and does not employ any workers, implying that the population of any location

r equals the location’s farm population: Lt (r) = LFt (r).

As the farm sector produces a homogeneous good under constant returns to scale, no

equilibrium of this economy can feature trade by the spatial impossibility theorem (Starrett,
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1978). As locations are in autarky, the utility that a farmer residing at r obtains is given

by

Ut (r) = xFt (r) = B (r)

[
Ht (r)

Lt (r)

]1−α

.

By free mobility, Ut (r) becomes equal to the utility level of the country at each location:

Ut (r) = Ut. Substituting this into the previous equation, one can express the equilibrium

population of location r at time t as

Lt (r) = U
− 1

1−α
t B (r)

1
1−α Ht (r) (37)

while the condition L̄t =
∫
S
Lt (r) dr pins down the level of utility as

Ut = L̄
−(1−α)
t

[∫
S

B (r)
1

1−α Ht (r) dr

]1−α

. (38)

Equations (37) and (38) uniquely pin down the population of every location. Thus,

in the version of the model with only a farm sector, the equilibrium is guaranteed to be

unique. This is not surprising as the farm sector does not feature any agglomeration force

(such as economies of scale), while it features a force of dispersion in the form of land use.

If more people move to a location, the share of land that any of them can use decreases,

decreasing farm output and hence utility per individual. This dispersion force prevents the

emergence of multiple equilibria.

Case 2: An economy with only a non-farm sector. I now consider a special case

of the model in which the share of farm goods in consumption is zero, ν = 1, and farm

goods are not used as intermediates in non-farm production either, µ = 0. As a result,

there is no demand for farm goods and farmers, and the population of any location r equals

the location’s non-farm population: Lt (r) = LNt (r).

Plugging ν = 1 and µ = 0 into the period-t equilibrium conditions of the model, I

obtain that the spatial distribution of population at time t is the solution to the system of

equations

c̄t (s)
(ε−1)2

2ε−1 =
κ̃

ε
U1−ε
t

∫
S

c̄t (u)−
ε(ε−1)
2ε−1 Lt (u) τNt (s, u)1−ε du (39)

where κ̃ =
(
ε−1
ε

)ε−1
f−1, c̄t (s) =

[
1 + At (s)β−1

] 1
1−β

, and the level of utility, Ut, is pinned

down by the national labor market clearing condition

L̄ =

∫
S

Lt (r) dr.

Equation (39) is a special case of the population equations considered in Allen and
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Arkolakis (2014), which take the form

f1 (s)Lt (s)γ1 = kU1−ε
t

∫
S

f2 (u)Lt (u)γ2 du (40)

such that f1 (s) and f2 (u) are exogenously given continuous functions, and k is a constant.

Theorem 2 in Allen and Arkolakis (2014) shows that equation (40) has a unique positive

solution for the population distribution, Lt (·), if γ2

γ1
∈ [−1, 1]. This condition does not hold

for equation (39), as γ1 = 0 and γ2 = 1 in that case. Although the condition γ2

γ1
∈ [−1, 1]

is not necessary for uniqueness, Allen and Arkolakis (2014) show that one can construct

geographies featuring multiple equilibria if it does not hold. Hence, one can conclude that

the version of the model with only a non-farm sector tends to feature multiple equilibria

in general.

The fact that an economy with only a non-farm sector tends to feature equilibrium mul-

tiplicity is not surprising either. The non-farm sector itself does not feature any dispersion

force such as land use, but it features the classical agglomeration force of Krugman (1991),

due to transport costs and economies of scale. If more people move to a location, more

firms enter the location’s non-farm sector, which decreases the price index of non-farm

goods. Moreover, local non-farm firms face a larger demand for their product, which allows

them to pay higher nominal wages. Higher nominal wages and lower non-farm prices, in

turn, attract even more people to the location. This force of circular causation can lead to

various equilibria that involve the concentration of population at different locations.

The general case. In the previous paragraphs, I argued that the presence of the

farm sector works in favor of equilibrium uniqueness, while the presence of the non-farm

sector works in favor of equilibrium multiplicity. The general model of Section 3 features

both sectors and as a result, intuitively, can feature either multiplicity or uniqueness. But

why is the structure of this general model too complex to prevent one from theoretically

characterizing when uniqueness arises? Recall that the distribution of farm population

across trading places, LFt (s), is pinned down by the equation

B (s)−
1−ν
ν

ε(ε−1)
2ε−1

[
LFt (s)

Ht (s)

](1−α) 1−ν
ν

ε(ε−1)
2ε−1

c̄t (s)
(ε−1)2

(2ε−1) = κU1−ε
t ·

∫
S

B (u)
1−ν
ν

(ε−1)2

2ε−1

[
LFt (u)

Ht(u)

]−(1−α) 1−ν
ν

(ε−1)2

2ε−1
c̄t (u)−

ε(ε−1)
(2ε−1)

(1− ν) [ε (1− µ) + µ] + (ε− 1)µ
[
1− νc̄t (u)β−1

] [∫
σ−1
t (u)

LFt (r) dr

]
τNt (u, s)1−ε du

(41)

while the distribution of farmers at locations r that trade at trading place σt (r) is given
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by

LFt (r) = τFt (r, σt (r))−
1

1−α
Ht (r)

Ht (σt (r))

[
B (r)

B (σt (r))

] 1
1−α

LFt (σt (r)) (42)

where

c̄t (s) =

[
1 + At (s)β−1B (s)(β−1)µ

[
LFt (r)

Ht (r)

](1−α)(1−β)µ
] 1

1−β

(43)

as a result of (8) and (32), the non-farm population of a location s is given by

LNt (s) =
ν

(1− ν) + µ (ε− 1)
[
µ+ ε (1− µ) + ε

c̄t(s)
1−β−1

]−1

∫
σ−1
t (s)

LFt (r) dr (44)

and the level of utility, Ut, is pinned down by national labor market clearing

L̄ =

∫
S

[
LFt (r) + LNt (r)

]
dr.

If the distribution of farm population across trading places, LFt (s), is unique, then the

farm population distribution across other locations is uniquely determined by equation (42)

and the non-farm population distribution is uniquely determined by equation (44). But

does equation (41) pin down a unique distribution of LFt (s)? Equation (41) differs from

equation (39) in three respects:

1. In the general model, people can consume the farm good. This feature of the gen-

eral model is responsible for the terms
[
LFt (s)

Ht(s)

](1−α) 1−ν
ν

ε(ε−1)
2ε−1

and
[
LFt (u)

Ht(u)

]−(1−α) 1−ν
ν

(ε−1)2

2ε−1

appearing on the left- and right-hand sides of equation (41), respectively.

2. In the general model, the farm good can be used as an intermediate in non-farm pro-

duction. This feature of the general model is responsible for the term
[
LFt (r)

Ht(r)

](1−α)(1−β)µ

appearing in equation (43), as well as for c̄t (u) appearing in the denominator on the

right-hand side of equation (41).

3. Farmers trade the farm good, and hence choose which trading place they want to trade

at. This feature of the general model is responsible for the term
∫
σ−1
t (u)

LFt (r) dr on

the right-hand side of equation (41).

These three additional features of the general model introduce non-linearities in equa-

tions (41) and (43), which together imply that the system is no longer a special case of

equation (40).44 As a result, one can no longer use the mathematical results underlying

Theorem 2 in Allen and Arkolakis (2014) and characterize uniqueness of the equilibrium

distribution of farm population.

44With feature 1 alone, the system would still be a special case of (40), but not with features 2 and/or
3.

68



Intuitively, even though the farm and non-farm sectors solely feature forces for and

against equilibrium uniqueness, respectively, their complex interconnections make a clean

theoretical characterization of uniqueness infeasible. Although land use provides incentives

for farmers to spread out across space, they may be driven to different regions in two

distinct equilibria that feature different spatial distributions of non-farm population, and

therefore different spatial distributions of demand for their product. Alternatively, even

though the agglomeration force works in favor of multiple equilibria in the non-farm sector,

their indirect use of land through the farm input might still lead to a unique equilibrium

distribution of non-farm population. In the simulations, I find the latter to be the case.

A.4 A model with home consumption

This section of the appendix presents a version of the model of Section 3 in which farmers

consume goods at their residential location, not at the trading place. For non-farm goods,

which farmers purchase from others, this assumption results in an extra shipping cost that

they need to incur between the trading place and their residence. For the farm good, which

they produce, the assumption leads to savings on shipping costs as farmers do not need

to ship the fraction of the good that they consume to the trading place. In what follows,

I describe the farmer’s problem, as well as the set of equilibrium conditions that change

relative to Section 3.

Farmers choose their production and consumption levels, their residence and their trad-

ing place to maximize utility subject to the constraints

qFt (r) = B (r) `Ft (r)α ht (r)1−α

and∫ nt

0

pNt (s, i) τNt (s, r)xNt (r, s, i) di+Rt (r)ht (r) ≤ pFt (s) τFt (r, s)−1 [qFt (r)− xFt (r, s)
]
+yt (r)

where the definitions of all variables are the same as in Section 3. Notice the two differences

between the budget constraint presented here and the one in Section 3.1. First, the farmer

needs to pay the additional cost τNt (s, r) of shipping non-farm varieties home from the

trading place. Second, the right-hand side has qFt (r)−xFt (r, s), the difference between the

quantity of the farm good produced and the quantity consumed by the farmer herself.

The farmer’s indirect utility is then given by

UF
t (r, s) =

pFt (s) τFt (r, s)−1 qFt (r)

[τNt (s, r)Pt (s)]
ν [
τFt (r, s)−1 pFt (s)

]1−ν
=
pFt (s) τFt (r, s)−ν τNt (r, s)−ν Bt (r)

[
Ht(r)

LFt (r)

]1−α

Pt (s)ν pFt (s)1−ν .

(2’)
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Combining this with equations (3), (26) and (32) implies that the trading place chosen by

farmers living at location r is

σt (r) = argmaxs∈Sc

[
τNt (s, r)ν

τFt (r, s)1−ν

]−1

ςt (r, s)−1B (s)−1H (s)−(1−α) LFt (s)1−α (33’)

where I normalized τNt (s, s) to one, and the farm population of r is

LFt (r) =

[
τNt (σt (r) , r)ν

τFt (r, σt (r))1−ν

]− 1
1−α

ςt (r, σt (r))−
1

1−α
Ht (r)

Ht (σt (r))

[
B (r)

B (σt (r))

] 1
1−α

LFt (σt (r)) .

(34’)

As a result, equations (35) and (36) become

B (s)−
1−ν
ν

ε(ε−1)
2ε−1

[
LFt (s)

Ht (s)

](1−α) 1−ν
ν

ε(ε−1)
2ε−1

c̄t (s)
(ε−1)2

(2ε−1) = κŪ
− ε(ε−1)

2ε−1

c(s),t ·

∫
S

Ū
− (ε−1)2

2ε−1

c(u),t

B (u)
1−ν
ν

(ε−1)2

2ε−1

[
LFt (u)

Ht(u)

]−(1−α) 1−ν
ν

(ε−1)2

2ε−1
c̄t (u)−

ε(ε−1)
(2ε−1)

(1− ν) [ε (1− µ) + µ] + (ε− 1)µ
[
1− νc̄t (u)β−1

] ·
[∫

σ−1
t (u)

τNt (u, r)ν

τFt (r, u)1−νL
F
t (r) dr

]
τNt (u, s)1−ε du (35’)

and

LNt (s) =
ν

(1− ν) + µ (ε− 1)
[
µ+ ε (1− µ) + ε

c̄t(s)
1−β−1

]−1

∫
σ−1
t (s)

τNt (s, r)ν

τFt (r, s)1−νL
F
t (r) dr,

(36’)

respectively.

A comparison of equations (33’), (34’), (35’) and (36’) to their counterparts (33), (34),

(35) and (36) reveals how additional shipping costs τNt (s, r)ν and shipping cost savings

τFt (r, s)1−ν alter the equilibrium relative to Section 3. If these shipping cost changes ex-

actly counterbalance each other, that is,
τNt (s,r)ν

τFt (r,s)1−ν = 1, then the equilibrium population,

productivity and utility levels of the two models become identical. This is stated formally

in the next proposition.

Proposition 1 (Isomorphism with model of Section 3). Assume
τNt (s,r)ν

τFt (r,s)1−ν = 1 for all r, s ∈
S. Then the model with home consumption is isomorphic in its evolution of population,

productivity and utility to the model presented in Section 3.

In the baseline calibration of the model of Section 3, we have ν = 0.75 and τNt (s, r) =

τFt (r, s)φ
N/φF . We obtain the isomorphism whenever

τFt (r,s)0.75φN/φF

ςt(r,s)
0.25 = 1, that is, 0.75φN/φF−

0.25 = 0, or φN/φF = 1/3. The value of φN/φF used in the calibration is indeed close to

70



this value. Therefore, Proposition 1 implies that the difference between the two models

should be small, and changing the assumption about where consumption happens in space

is unlikely to alter the results substantially.

A.5 Proofs

Proof of Lemma 1

The firm’s optimal innovation decision (10) implies

`It (s)1−µ = (1− µ)1−µ (ε− 1)1−µ f 1−µ

[
At (s)β−1

[
pFt (s)

wt (s)

](1−β)µ

c̄t (s)β−1

]1−µ

from which, using (8), we obtain

`It (s)1−µ = (1− µ)1−µ (ε− 1)1−µ f 1−µ
[
1− c̄t (s)β−1

]1−µ
. (45)

Equation (36) implies that the unit cost per wage at s can be written as

c̄t (s) =

 ν

(
1 +

LNt (s)∫
σ−1
t (s)

LFt (r)dr

)
(
ν + (1−ν)ε

µ(ε−1)

)
LNt (s)∫

σ−1
t (s)

LFt (r)dr
− ν

(
ε

µ(ε−1)
− 1
)


1
1−β

.

Plugging this into equation (45) and rearranging yields the result.

Proof of Lemma 2

Equation (27) provides the price index at any trading place s. Combining it with equations

(6) and (12) yields

Pt (s)1−ε =

(
ε− 1

ε

)ε−1

f−1

∫
S

c̄t (u)1−ε

(ε− 1)
(
µc̄t (u)β−1 + 1− µ

)
+ 1

wt (u)1−ε LNt (u) τNt (u, s)1−ε du.

(46)

Alternatively, one can express the price index at s from equation (3) as

Pt (s) = U
− 1
ν

c(s),tB (s)
1−ν
ν

[
LFt (s)

Ht (s)

]−(1−α) 1−ν
ν

wt (s)

where I used equations (26) and (32). Plugging this into the left-hand side of equation (46)

implies

U
ε−1
ν

c(s),tB (s)−(ε−1) 1−ν
ν

[
LFt (s)

Ht (s)

](1−α)(ε−1) 1−ν
ν

wt (s)1−ε =
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κ̃

∫
S

c̄t (u)1−ε

(ε− 1)
(
µc̄t (u)β−1 + 1− µ

)
+ 1

wt (u)1−ε LNt (u) τNt (u, s)1−ε du (47)

where κ̃ =
(
ε−1
ε

)ε−1
f−1.

Equation (29) provides the market clearing condition for each non-farm good at any

trading place s. Combining it with equations (6) and (7) yields

c̄t (s)ε−1wt (s)ε = νε−ε (ε− 1)ε−1 f−1

∫
S

Pt (u)ε−1 It (u) τNt (s, u)1−ε du (48)

where

It (u) =

∫
σ−1
t (u)

pFt (u) τFt (r, u)−1B (r)LFt (r)αHt (r)1−α dr + wt (u)LNt (u)

is the sum of farmers’ and non-farm workers’ income at trading place u. Equations (2) and

(24) allow me to rewrite income as

It (u) = pFt (u)B (u)

[
Ht (u)

LFt (u)

]1−α ∫
σ−1
t (u)

LFt (r) dr + wt (u)LNt (u)

from which, by equation (32), we obtain

It (u) = wt (u)

[∫
σ−1
t (u)

LFt (r) dr + LNt (u)

]
.

Also, combining (28) with (11) and (12) yields

LNt (s) =
ν

(1− ν) + µ (ε− 1)
[
µ+ ε (1− µ) + ε

c̄t(s)
1−β−1

]−1

∫
σ−1
t (s)

LFt (r) dr

hence income can be written as

It (u) = wt (u)
ν−1ε

(ε− 1)
(
µct (u)β−1 + 1− µ

)
+ 1

LNt (u)

and equation (48) can be written as

c̄t (s)ε−1wt (s)ε = κ̃

∫
S

U
− ε−1

ν

c(u),t

B (u)(ε−1) 1−ν
ν

[
LFt (u)

Ht(u)

]−(1−α)(ε−1) 1−ν
ν

(ε− 1)
(
µc̄t (u)β−1 + 1− µ

)
+ 1

wt (u)ε LNt (u) τNt (s, u)1−ε du

(49)

where κ̃ =
(
ε−1
ε

)ε−1
f−1, and I used equations (3), (26) and (32) to substitute for the price

index on the right-hand side.
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In what follows, I show that equations (47) and (49) reduce to a single equation. To

see this, note first that, since non-farm shipping costs are symmetric, τNt (s, u) = τNt (u, s).

Second, guess that wages at location s take the form

wt (s) = U ι1
c(s),tB (s)ι2

[
LFt (s)

Ht (s)

]ι3
c̄t (s)ι4

where ι1, ι2, ι3 and ι4 are constants. Plugging the guess into (47) and (49), one obtains that

both of these equations hold if and only if ι1 = ε−1
ν(2ε−1)

, ι2 = −1−ν
ν

ε−1
2ε−1

, ι3 = (1− α) 1−ν
ν

ε−1
2ε−1

,

and ι4 = − ε−1
2ε−1

. Thus, wages at s can be written as

wt (s) = U
ε−1

ν(2ε−1)

c(s),t B (s)−
1−ν
ν

ε−1
2ε−1

[
LFt (s)

Ht (s)

](1−α) 1−ν
ν

ε−1
2ε−1

c̄t (s)−
ε−1
2ε−1

and equations (47) and (49) reduce to equation (35).

B Data appendix

This appendix describes the datasets used to document the major patterns of pre-Civil

War U.S. urban history, to take the model to the data, and to evaluate the model’s fit. I

use geographic data on the location of the sea, navigable rivers, canals and lakes, as well

as railroads to calculate shipping costs and to quantify the importance of trading routes

in city location. I use census data on county, city and town locations and populations to

calibrate the model and to evaluate how well the model fits the evolution of population

seen in the data.

My unit of observation is a cell in a 20 by 20 arc minute grid of the United States. I

create this grid of the U.S. using Geographic Information Software (GIS), and combine it

with other sources of geographic data to determine whether any given cell is at a water-

way or at a railroad, and to calculate the agricultural productivity, natural amenities, and

population of the cell. In what follows, I provide additional details on this procedure.

Waterways. I use the ESRI Map of U.S. Major Waters and the 20 by 20 arc minute

grid of the U.S. to determine whether a grid cell is at the sea. In particular, I regard a cell

as being at the sea if a positive fraction of its area is in the sea.

I follow Donaldson and Hornbeck’s (2016) definition of navigable rivers, lakes and canals,

who, in turn, borrow the definition from Fogel (1964). Combining the definition with the

ESRI Map of U.S. Major Waters and the 20 by 20 arc minute grid of the U.S., I classify

each cell based on whether it contains a navigable waterway. As canals were gradually

constructed during the 19th century, I do this classification of cells separately for every

time period t, using the set of canals that were already open at t. Table 10 provides a list
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Table 10: Navigable canals constructed between 1790 and 1860

Year of
opening Canal name Canal was constructed to connect...
1823 Champlain Canal Lake Champlain and Hudson River
1825 Erie Canal Lake Erie and Hudson River
1827 Schuylkill Canal Port Carbon, PA and Philadelphia
1828 Erie Canal, Oswego branch Erie Canal and Lake Ontario
1828 Union Canal Middletown, PA and Reading, PA
1828 Delaware and Hudson Canal Delaware River and Hudson River
1828 Farmington Canal New Haven, CT and

interior of Connecticut
1828 Blackstone Canal Worcester, MA and Providence, RI
1829 Chesapeake and Delaware Canal Chesapeake Bay and Delaware River
1831 Morris Canal Phillipsburg, NJ and Jersey City, NJ
1832 Ohio and Erie Canal Lake Erie and Ohio River
1832 Pennsylvania Canal System, Easton, PA and Bristol, PA

Delaware Division
1832 Cumberland and Oxford Canal lakes in Southern Maine and

Portland, MA
1834 Delaware and Raritan Canal Delaware River and New Brunswick, NJ
1834 Chenango Canal Binghamton, NY and Utica, NY
1835 Pennsylvania Canal System several rivers and canals in Pennsylvania
1840 Susquehanna and Tidewater Canal Wrightsville, PA and Chesapeake Bay
1840 Pennsylvania and Ohio Canal Ohio and Erie Canal and

Beaver and Erie Canal
1840 James River and Kanawha Canal Lynchburg, VA and Richmond, VA
1841 Genesee Valley Canal Dansville, NY and Rochester, NY
1844 Beaver and Erie Canal Lake Erie and Ohio River
1845 Miami and Erie Canal Lake Erie and Cincinatti, OH
1847 Whitewater Canal Ohio River and Lawrenceburg, IN
1848 Illinois and Michigan Canal Lake Michigan and Illinois River
1848 Wabash and Erie Canal, section 1 Miami and Erie Canal and

Terre Haute, OH
1848 Sandy and Beaver Canal Ohio and Erie Canal and Ohio River
1850 Chesapeake and Ohio Canal Cumberland, MD and Washington, D.C.
1853 Wabash and Erie Canal, section 2 Ohio River and Terre Haute, OH
1855 Black River Canal Black River and Erie Canal
1858 Chemung and Junction Canals Erie Canal and Pennsylvania Canal
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Table 11: Productivity of the six main U.S. crops

Name of crop Minimum Maximum Mean Standard deviation
Cereals 0 1.716 1.481 0.303
Cotton 0 1.708 0.627 0.739
Sugar cane 0 1.715 0.138 0.427
Sweet potato 0 1.716 0.320 0.604
Tobacco 0 1.710 1.060 0.657
White potato 0 1.708 1.373 0.376

The four columns of this table show the minimum, the maximum, the unweighted mean and the unweighted standard deviation of grid cell-level
yields for the six major crops in the United States. Filters “low-input level” and “rain-fed” have been applied for each crop. Source: FAO
GAEZ.

of navigable canals, along with their locations and opening dates.

Railroads. The website http://oldrailhistory.com includes maps of the U.S. railroad

network in 1835, 1840, 1845, 1850 and 1860.45 I georeference these maps to the 20 by 20

arc minute grid of the U.S., and classify each cell depending on whether it contained some

railroads in any given period t between 1835 and 1860.46

Agricultural productivity. I collect high-resolution data on agricultural yields from

the Food and Agriculture Organization’s Global Agro-Ecological Zones database (FAO

GAEZ). This database contains the potential yield of various crops at a 5 by 5 arc minute

spatial resolution, under different irrigation and input conditions. To provide the best

possible approximation to 19th-century productivity, I calculate the yields under the as-

sumption of no irrigation and low input levels. I use data on the potential yields of cereals,

cotton, sugar cane, sweet potato, tobacco, and white potato.47 I aggregate the data to the

20 by 20 arc minute level by calculating the average productivity of each crop within each

20 by 20 minute cell. Table 11 provides summary statistics of productivity for each crop.

Natural amenities. The FAO GAEZ dataset also includes data on natural ameni-

ties as they heavily influence agricultural yields. I select five climate variables that are

the closest to standard measures of natural amenities in the literature (see, for instance,

Desmet and Rossi-Hansberg, 2013): the mean annual temperature, the annual temperature

range, the number of days with minimum temperature below 5 ◦C, the number of days with

mean temperature above 10 ◦C, and the annual precipitation.48 To be as close as possible

45Although the first railroads started to be built in the late 1820s, there only existed a small number of
short and disconnected segments in 1830. Therefore, it is reasonable to assume that no U.S. location had
access to a rail network until 1830.

46Lacking the map of the network in 1855, I need to approximate it by the network in 1850.
47According to the 1860 Census of Agriculture, these were the six major crops grown in the United

States.
48Although these variables are close to the ones considered in the literature, they do not exactly coincide
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Table 12: Natural amenity variables

Variable Minimum Maximum Mean Standard deviation
Mean annual temperature ( ◦C) -2.1 24.4 10.9 5.1
Annual temperature range ( ◦C) 5.3 37.4 24.6 5.4
Number of days with minimum
temperature below 5 ◦C 0 269 111.7 61.0
Number of days with mean
temperature above 10 ◦C 23.4 365 201.9 58.3
Annual precipitation (mm) 44.8 2607.8 694.7 416.8

The four columns of this table show the minimum, the maximum, the unweighted mean and the unweighted standard deviation of grid-cell level
natural amenity variables for the United States. All data are for 1960, except annual temperature range which is for the period between 1961
and 1990. Source: FAO GAEZ.

to 19th-century conditions, I use the earliest data available (1961 to 1990 for the annual

temperature range, and 1960 for the other variables). I aggregate the variables to the 20

by 20 arc minute level using the same procedure as the one used for productivity. Table

12 provides summary statistics of the natural amenity variables.

County, city and town populations. The National Historical Geographic Informa-

tion System (NHGIS) provides census data on county populations for 1790, 1800, 1810,

1820, 1830, 1840, 1850 and 1860, along with maps of county boundaries.49 I use the county

population data to calculate the population of each 20 by 20 arc minute grid cell. For

each census year, I transform the county map into a raster of 2 by 2 arc minute cells, and

allocate the population of each county equally across the small cells it occupies. Next, I

calculate the population of each 20 by 20 minute cell by summing the population levels of 2

by 2 minute cells inside the cell. Finally, I obtain city and town populations from a census

database that provides the population of settlements above 2,500 inhabitants in each census

year,50 while I use Google Maps to determine the geographic location of each town and city.

Large regions. Based on the boundaries of U.S. states today, I assign each 20 by 20

arc minute grid cell to the state to which its centroid belongs. Next, I assign the cell to

one of the four large U.S. regions: the Northeast, the South, the Midwest or the West,

following the mapping of states to regions in Caselli and Coleman (2001). Therefore, the

Northeast constitutes of Connecticut, Delaware, Massachusetts, Maryland, Maine, New

Hampshire, New Jersey, New York, Pennsylvania, Rhode Island and Vermont; the South

with them. Therefore, as a robustness check, I collect the climate variables used in Desmet and Rossi-
Hansberg (2013) from weatherbase.com for a 845-element subset of U.S. grid cells. Using these alternative
variables does not alter the results substantially. These results are available from the author upon request.

49The database is available at nhgis.org. Source: Minnesota Population Center.
National Historical Geographic Information System: Version 2.0. Minneapolis, MN: University of
Minnesota 2011.

50This database is available at census.gov/population/www/documentation/twps0027/twps0027.html.

76



includes Alabama, Arkansas, Florida, Georgia, Kentucky, Louisiana, Mississippi, North

Carolina, Oklahoma, South Carolina, Tennessee, Texas, Virginia and West Virginia; the

Midwest constitutes of Iowa, Illinois, Indiana, Kansas, Michigan, Minnesota, Missouri,

North Dakota, Nebraska, Ohio, South Dakota and Wisconsin; and the remaining states

belong to the West.

U.S. land. I also use the NHGIS database to calculate the fraction of cells that is

covered by land and is part of the U.S. in any census year. In particular, I determine

whether each 2 by 2 arc minute cell was part of U.S. territory in census year t. Then I

calculate the land area of each 20 by 20 minute cell as the fraction of 2 by 2 minute cells

inside the 20 by 20 minute cell that were part of U.S. territory at t.

For periods between census years (1795, 1805, 1815, 1825, 1835, 1845 and 1855), I use

the fact that no significant border change took place between 1790 and 1800, between 1805

and 1815, between 1825 and 1840, and between 1855 and 1860. Therefore, I can use the

1790 (or the 1800) distribution of land in 1795, the 1810 distribution in 1805 and 1815, the

1830 (or 1840) distribution in 1825 and 1835, and the 1860 distribution in 1855. This leaves

me with the task of obtaining the distribution in 1845. To accomplish this, I georeference a

map showing 1845 borders to the 20 by 20 minute grid, and determine whether the centroid

of each grid cell was in U.S. territory in 1845.

C Slow migration to the West

C.1 Setup

The slow settlement of the West could be another reason for the emergence of cities at

trading routes. To see if such a slow migration process could quantitatively generate the

disproportionate emergence of cities at trading routes, I consider a simple process in which

a resident of location j moves to location i next period with probability πji ∈ [0, 1]. That

is, I assume that the population distribution evolves according to the equation

`i,t+1 = νt+1

∑
St

`jtπji

where i and j index locations, St denotes the set of U.S. locations in period t, and `i,t is

the population (per unit of land) of location i at time t. νt+1 is a number that guarantees

that population levels sum to total population in period t+ 1.

To generate slow transitions, I assume that the probability of moving from j to i is

negatively related to the moving cost between these two locations:

πji = e−mji
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where mji is the cost of moving from j to i. Moving from j to i requires passing through a

set of locations that connect i to j. I denote the cost of passing through a specific location

k by ξk > 0. This means that the total cost of moving from j to i is

mji =
∑
gji

ξk

where gji denotes the least-cost route from j to i. Note that this formulation implies that

staying put is costless but moving to another location is costly. As a result, people mostly

stay where they have lived in the past and occupy previously uninhabited Western regions

at a slow pace. The speed of the transition is driven by the magnitude of the moving cost

parameters ξk.

I simulate this benchmark process of slow migration to see if it is able to replicate

the disproportionately frequent emergence of population clusters at water, confluences or

railroads. Simulation of the process requires choosing the length of a time period, defining

the set of locations for each period, choosing an initial (period 1) distribution of population

across locations, and calibrating the values of moving cost parameters ξk. I choose the

length of a period to be five years.51 I define the set of locations in period t as the set of

20 by 20 arc minute grid cells that were part of the U.S. in period t.52 To obtain the initial

distribution of population, I assign the population of each county from the 1790 census to

the grid cells it occupies, based on the share of land belonging to each cell.

For the key parameters ξk, I consider two calibrations. In one calibration, I make the

simplest possible assumption and set ξk equal across locations: ξk = ξ. This implies that

the cost of moving between two locations is proportional to the geographic distance between

them. As the magnitude of ξ drives the speed of transition, I choose the value of ξ such

that the mean center of population moves as much to the West in the model as in the data.

This implies ξ = 0.016. Under this value of moving costs, the probability that a person

moves 50 miles from her current residence next period is 45% of the probability that she

does not move.

One concern about the assumption of equal moving costs is that migration may have

been, similarly to trade, less costly along water routes than inland. I address this issue in the

second calibration by making moving costs heterogeneous across locations. In particular, I

assume that ξk equals ξW if location k is located at a waterway, and ξI otherwise. Since I

have two structural parameters now, I need to calibrate them to two moments in the data.

To find the right data moments, note that the speed of the transition now depends on the

average of these costs. On the other hand, the difference between inland and water costs

drives the extent to which people locate near rivers, hence the concentration of population

51Using a different period length does not alter the results substantially.
52That is, I incorporate political border changes between 1790 and 1860 by allowing the set of inhabitable

locations to change across periods.
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Table 13: Slow migration process: simulation results

Slow migration process
Fraction of cities at... Data Equal cost Heterogeneous cost

calibration calibration
water 98.6% 49.3% 62.7%
confluence 87.1% 33.3% 48.0%
railroad 95.7% 60.0% 58.7%

Dependent variable: newcity
Data Equal cost calibration Heterogeneous cost calibration

(1) (2) (3) (4) (5) (6) (7) (8) (9)
water 0.018** -0.006 0.003

(0.002) (0.004) (0.003)
confluence 0.031** -0.004 0.008

(0.005) (0.004) (0.004)
railroad 0.031** 0.008 0.007

(0.004) (0.004) (0.004)
Prod & amenities Yes Yes Yes Yes Yes Yes Yes Yes Yes
No. of observations 7641 7641 7641 7641 7641 7641 7641 7641 7641

The first column of the top table shows the fraction of 1860 U.S. cities that formed in 20 by 20 arc minute grid cells located at water, at a
confluence, or at a railroad in the data. The second and third columns show the same numbers in the slow migration model of Appendix C.
“Equal cost” refers to the calibration in which moving costs are equal across locations; “heterogeneous cost” refers to the calibration in which
moving costs are lower along water than inland. The bottom table presents the results of estimating equation (1) on actual data as well as
on simulated data coming from the slow migration model. The unit of observation is a 20 by 20 arc minute grid cell in the 1860 U.S. The
dependent variable, newcity, is a dummy variable equal to 1 if a city formed in the cell by 1860 in the data (columns 1 to 3), or in the simulation
(columns 4 to 9). The three independent variables, water, confluence and railroad, are dummy variables equal to 1 if the cell is located at water,
at a confluence, or at a railroad, respectively. “Prod & amenities” refer to productivity and amenity controls. A cell is located at water if the
cell, or the cell next to it, has a navigable river, canal, lake, or the sea in 1860. It is located at a confluence if the cell, or a cell next to it, is
surrounded by at least 3 cells with water in 1860. It is located at a railroad if the cell, or a cell next to it, was part of the railroad network in
1860. Heteroskedasticity-robust standard errors in parentheses. *: significant at 5%; **: significant at 1%. Source: U.S. census, ESRI Map of
U.S. Major Waters, oldrailhistory.com and FAO GAEZ.

in space. Therefore, I calibrate average costs ξW+ξI

2
to match the movement in the mean

center of population by 1860, while I calibrate the difference in costs ξI − ξW to match the

concentration of population, measured by Theil index, in 1860. The resulting estimates

are ξW = 0.01575 and ξI = 0.01725. This implies that moving 50 miles inland decreases

the probability of moving (and, therefore, the number of migrants) by 6 percent more than

moving 50 miles along water.53

Given that cities appeared in 75 grid cells in the data between 1790 and 1860, I define

cities in the simulated data as the 75 grid cells with largest population in 1860. Then

I calculate the fraction of simulated cities at water, confluences and railroads. Next, I

control for the amenities and productivity of each location and estimate equation (1) on

the simulated data.

C.2 Simulation results

Table 13 presents the results and confirms that the process of slow migration is unable to

replicate the disproportionately high share of cities near trading routes. In particular, the

53To find the least-cost routes in an efficient way, I apply the Fast Marching Algorithm for any parameter
vector

(
ξW , ξI

)
.
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top panel of Table 13 shows that the fraction of cities forming near a waterway, a confluence

or a railroad is substantially lower under both calibrations than in the data.

The bottom panel presents the results of estimating equation (1) on the simulated data

(columns 4 to 9), and contrasts them with the estimates coming from the actual data

(columns 1 to 3). As columns (1) to (3) show, the probability that a city appears at water,

confluences or railroads conditional on amenities and productivity is significantly higher

in the data than the probability that it appears elsewhere. This is never the case in the

simulated data, no matter whether moving costs are only a function of geographic distance

(columns 4 to 6), or are lower along water routes than inland (columns 7 to 9).

To sum up, the slow migration process presented in this appendix is unable to replicate

the disproportionate emergence of cities near good trading opportunities. To match these

facts in the data, it seems essential to have a framework in which incentives to trade attract

people to these locations.

D The DNR model

D.1 Setup

The setup is identical to the one in Desmet, Nagy and Rossi-Hansberg (2018), with three

necessary but minor modifications that make the model comparable to the model of Section

3. First, I allow the exogenous supply of land to change over time, so that I can incorporate

changes in U.S. political borders that made land in the West available. Hence, I assume

that the world is a subset S of a two-dimensional surface, and the supply of land at location

r ∈ S is given by Ht (r), potentially changing across periods t ∈ {0, 1, ...}. Second, I allow

total world population to grow as population growth is a prominent feature of the data.

Hence, an exogenous number of L̄t agents occupy the world in period t, and each of them

supplies one unit of labor. Third, I allow shipping costs across locations to change over

time as the transportation network develops.

The rest of the model is the same as Desmet et al. (2018). Most importantly, and

unlike in the model of Section 3, the economy in DNR is assumed to consist of one sector

that produces a continuum of differentiated varieties ω ∈ [0, 1].

D.1.1 Consumption and location choice

Each agent derives utility from consuming the varieties produced by the single sector, from

consuming amenities at her location and from her idiosyncratic taste for the location. Her

utility is also affected by the costs of moving across locations in the past. As a result, the

utility of agent i living at r in period t and having a history of past locations {r0, ..., rt−1}
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is given by

uit (r0, ..., rt−1, r) = at (r)

[∫ 1

0

cωt (r)ρ dω

] 1
ρ

εit (r)
t∏

s=1

m (rs−1, rs)
−1

where at (r) is the level of amenities at r, cωt (r) is the agent’s consumption of variety ω,

ρ is a measure of substitutability across varieties (such that 1/ (1− ρ) is the elasticity of

substitution), εit (r) is the agent’s taste for location r, and m (rs−1, rs) is the moving cost

from location rs−1 to location rs. Local amenities are given by at (r) = ā (r) L̄t (r)−λ,

where ā (r) is the time-invariant fundamental amenity of the location, while L̄t (r)−λ is

a congestion externality that makes locations with higher population density, L̄t (r), less

attractive.

For tractability, moving costs need to be modeled as a product of an origin-specific term

and a destination-specific term, that is,

m (r, s) = m1 (r)m2 (s) .

It is reasonable to assume that staying put is costless, implying m (r, r) = 1 for any r and

hence

m1 (r) = m2 (r)−1 .

As a result, the spatial distribution of moving costs is fully characterized by the function

m2 (·).
Location tastes εit (r) are drawn independently across agents, locations and time from a

Fréchet distribution with shape parameter 1/Ω. This implies that the equilibrium number

of people choosing to reside at location r is given by

Ht (r) L̄t (r) =
ut (r)1/Ω m2 (r)−1/Ω∫
S
ut (s)1/Ω m2 (s)−1/Ω

L̄t (50)

where ut (r) is the agent’s utility stemming from her consumption of local amenities and

varieties, thus equal to

ut (r) = at (r)
wt (r) +Rt (r) /L̄t (r)

Pt (r)
(51)

where wt (r) is the agent’s labor income, Rt (r) denotes local land rents (per unit of land)

redistributed to agents at r, and Pt (r) denotes the CES price index of varieties at r.
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D.1.2 Technology

At any location r, there is a large number of competitive firms producing each variety ω.

Each of these firms has access to the production function

qωt (r) = φωt (r)γ1 zωt (r)Lωt (r)µ

where qωt (r) denotes the firm’s output per unit of land, Lωt (r) denotes labor per unit of

land used by the firm in the production of ω, zωt (r) is a location-, variety- and time-

specific productivity shifter, and φωt (r) is the amount of innovation conducted by the firm

to increase its productivity. Innovation requires labor, such that the firm needs to hire

νtφ
ω
t (r)ξ workers to innovate φωt (r) in period t. Idiosyncratic productivity shifters zωt (r)

are drawn independently across locations, varieties and time from a Fréchet distribution

with cdf

Pr [zωt (r) ≤ z] = e−Tt(r)z
−θ

such that the scale parameter of the distribution is given by Tt (r) = τt (r) L̄t (r)α. L̄t (r)α is

an agglomeration externality that makes the location’s productivity increase in population

density, while τt (r) evolves according to the law of motion

τt (r) = φt−1 (r)θγ1

[∫
S

ητt−1 (s) ds

]1−γ2

τt−1 (r)γ2 (52)

where the term
[∫
S
ητt−1 (s) ds

]1−γ2 allows for global diffusion of technology as long as

γ2 < 1, while φt−1 (r) stands for average innovation conducted by local firms at time

t − 1.54 As a result, innovation at a location not only increases the location’s current

productivity but also shifts up the distribution of local productivity draws next period.

Thus, innovation can increase not only short-run productivity but also long-run growth.

At the same time, just like in the model of Section 3, firms in the DNR model are aware that

their innovation spills over to their local competitors next period, driving down their future

profits to zero. Hence, they choose a level of innovation that maximizes their current-period

profits. In other words, firms solve a static optimization problem each period, which makes

the model computationally tractable even though it features dynamics with a large number

of asymmetric locations. The optimal level of innovation chosen by each firm at location r

is given by

φt (r) =

[
γ1

νt (µξ + γ1)
L̄t (r)

]1/ξ

. (53)

Varieties are tradable across locations, but trade is subject to shipping costs. Shipping

costs take the iceberg form. If q units of a variety are shipped from location r to location

54In equilibrium, all firms in a given location conduct the same level of innovation. Hence, it does not
matter which moment of the distribution of innovation levels I consider; for completeness, I assume that
it is the average level of innovation that matters for the evolution of productivity.
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s, the quantity that actually arrives at s is given by q
ςt(r,s)

. Thus, ςt (r, s) ≥ 1 denotes the

iceberg shipping cost between r and s.

D.1.3 Equilibrium

Competition among firms implies that the price of any variety produced at r and sold at s

becomes equal to its marginal cost:

pωt (r, s) =
mct (r) ςt (r, s)

zωt (r)

where

mct (r) = µ−µ
(
νtξ

γ1

)1−µ [
γ1Rt (r)

wt (r) νt (ξ (1− µ)− γ1)

](1−µ)− γ1
ξ wt (r) ςt (r, s)

zωt (r)
. (54)

Using similar steps as in Eaton and Kortum (2002), this relationship between the price

and mct (r) as well as the Fréchet distribution of zωt (r) can be used to obtain the share of

location s’s spending on varieties from location r as

πt (r, s) =
Tt (r) [mct (r) ςt (r, s)]−θ∫

S
Tt (u) [mct (u) ςt (u, s)]−θ du

(55)

while, by the definition of the CES price index,

Pt (s) = Γ

(
1− ρ

(1− ρ) θ

)− 1−ρ
ρ
[∫

S

Tt (r) [mct (r) ςt (r, s)]−θ dr

]− 1
θ

. (56)

Firms’ Cobb–Douglas technology in labor and land and the local redistribution of land

rents imply that land rents at location r are proportional to labor income:

Rt (r) =
ξ − µξ − γ1

µξ + γ1

wt (r) L̄t (r) (57)

and therefore market clearing conditions can be written in the form

wt (r)Ht (r) L̄t (r) =

∫
S

πt (r, s)wt (s)Ht (s) L̄t (s) ds. (58)

For a given initial spatial distribution of productivity τ0 (·), equations (50) to (58)

characterize the equilibrium spatial distribution of productivity, innovation, wages, land

rents, trade flows and population levels in any period t ∈ {0, 1, ...}. Desmet et al. (2018)

show that the equilibrium of the model exists and is unique if

α

θ
+
γ1

ξ
< λ+ 1− µ+ Ω (59)
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which is a condition that, intuitively, requires that agglomeration forces are weaker than

congestion forces. Following the same steps as in Desmet et al. (2018), it is straightfor-

ward to prove that condition (59) is also sufficient for the existence and uniqueness of the

equilibrium in this model. Moreover, condition (59) holds under the values of structural

parameters chosen in the calibration. Hence, one can be sure that the equilibrium of the

DNR model found in the simulation is indeed the only equilibrium.

In the model of Desmet et al. (2018), the equilibrium growth rate of the world economy

is increasing in world population. I assume that world population grows in the current

model, which, everything else fixed, should then lead to accelerating growth. To avoid this,

I follow footnote 11 in Desmet et al. (2018) and assume that the cost of innovation, νt,

is linear in world population: νt = νL̄t. In this case, Desmet et al. (2018) show that the

growth rate is still a function of the population distribution, but not a function of L̄t.

D.2 Taking the DNR model to the data

This section describes how I take the DNR model to the data. Similarly to the model

of Section 3, I treat each 20 by 20 arc minute grid cell of the U.S. as one location. One

additional location represents Europe. I calculate the supply of land, Ht (r), at each U.S.

location in the same way as in the model of Section 3. I set the supply of land in Europe,

Ht (e), to 10, 000, as the land area of the European continent is approximately 10,000 times

the land area of a grid cell. I also follow the model of Section 3 by setting the length of

one period to five years.

Next, I need to choose the values of structural parameters, the distribution of shipping

costs, amenities, initial productivity at time t = 0, and moving costs. I discuss each of

these below.

Calibration of structural parameters. The scale parameter of firms’ productivity

draws, θ, equals the trade elasticity in the DNR model, which I set to eight, in line with

how I calibrate the model of Section 3. I choose the share of land in production to equal

0.2, guided by Desmet and Rappaport (2015). This implies µ = 0.8. Just like Desmet

et al. (2018), I calibrate the level parameter of innovation costs, ν, to match the growth

rate of the economy. In particular, I choose the value of ν for which the annual growth

rate in U.S. real GDP per capita between 1800 and 1820 matches the growth rate in the

data, 0.46% (Weiss, 1992). Unfortunately, the data do not provide any guidance on the

calibration of the remaining structural parameters. As a result, I set them equal to their

baseline calibrated values in Desmet et al. (2018). This implies setting α = 0.06, ξ = 125,

γ1 = 0.319, γ2 = 0.99246, Ω = 0.5 and λ = 0.32.

Shipping costs. I calculate shipping costs across locations in the same way as in the
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model of Section 3. In particular, I borrow the relative costs of shipping via rail, water or

wagon from Fogel (1964) and Donaldson and Hornbeck (2016). Just like in the calibration

of the model of Section 3, I calibrate parameter φB, which drives the level of per-distance

shipping costs between U.S. coastal locations and Europe, to match the U.S. export to

GDP ratio in 1790. The level of per-distance shipping costs within the U.S. are driven by

two separate parameters in the model of Section 3: parameter φF for the farm sector, and

parameter φN for the non-farm sector. The DNR model features only one sector, hence

only one parameter φ. In the baseline calibration of the DNR model, I set φ = φF , but the

results are robust to setting φ = φN instead.

Amenities and initial productivity. In Desmet et al. (2018), fundamental amenities

relative to initial utility ā(r)
u0(r)

and initial productivity levels τ0 (r) are calibrated such that

the model matches the period-0 distribution of population and nominal income across

locations. This procedure cannot be applied in my setting, as there are no consistent data

on nominal income at the grid cell level for the pre-Civil War United States. As a result,

I make the assumption that every location features the same level of amenities, which I

normalize to ā (r) = 1. It is an extreme assumption, but it is consistent with the model

of Section 3, in which I also abstract from amenity differences across locations. As the

primary aim of the DNR model is that it serves as a benchmark to which my model’s fit

can be compared, it is in fact reassuring that the two models share this feature.

In Desmet et al. (2018), initial utility levels u0 (r) are chosen to match country-level

subjective wellbeing data, with the assumption that u0 (r) do not vary within countries. I

adopt this assumption, setting u0 (r) = u0 for every U.S. location and normalizing u0 to

one. For Europe, I calibrate the value of initial utility u0 (e) to match Europe’s real GDP

in 1790, which, by the assumption that ā (e) = 1, also equals u0 (e).

Once ā(r)
u0(r)

are known for every r, equations (50) to (58) can be used to back out

the distribution of initial productivities τ0 (·) that rationalize the initial distribution of

population in 1790, L̄0 (·). In particular, we have the following lemma.

Lemma 4. Given ā(·)
u0(·) , H0 (·), ς0 (·, ·) and L̄0 (·), the spatial distribution of initial produc-

tivity levels τ0 (·) can be obtained as the solution to the equation

[
ā (r)

u0 (r)

]− θ(1+θ)
1+2θ

τ0 (r)−
θ

1+2θ H0 (r)
θ

1+2θ L̄0 (r)λθ−
θ

1+2θ [α−1+[λ+
γ1
ξ
−(1−µ)]θ] =

κ1

∫
S

[
ā (s)

u0 (s)

] θ2

1+2θ

τ0 (s)
1+θ
1+2θ H0 (s)

θ
1+2θ ς0 (s)−θ L̄0 (s)1−λθ+ 1+θ

1+2θ [α−1+[λ+
γ1
ξ
−(1−µ)]θ] ds

where κ1 =
[
µξ+γ1

ξ

]−(µ+
γ1
ξ )θ

µµθ
[
ξν
γ1

]− γ1θ
ξ

Γ
(

1− ρ
(1−ρ)θ

)θ 1−ρ
ρ

.

Proof. Combining equations (50), (51) and (53) to (58) yields the result.
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Lemma 4 provides me with an initial productivity level for every location that was part

of the U.S. in 1790. I assign the productivity of the nearest location to locations that

became part of the U.S. due to the political border changes after 1790.

Moving costs. I follow the procedure in Desmet et al. (2018) to back out location-

specific moving costs m2 (r). In particular, I choose m2 (r) such that I exactly match the

change in location r’s population between 1790 and 1795. For U.S. grid cells, population

data are available for the census years of 1790 and 1800 but not for 1795. Hence, I assume

that the growth rate of population in any cell was the same between 1790 and 1795 as

between 1795 and 1800. Desmet et al. (2018) show that, whenever condition (59) holds, this

procedure identifies a unique set of moving costs that rationalize the changes in population.

Just like with productivity, I assign the moving cost of the nearest locations to locations

that became part of the U.S. after 1790.

D.3 Simulation and robustness

Armed with values of the model’s fundamentals, I simulate the DNR model for 14 subse-

quent periods, corresponding to the years 1795, 1800, ..., 1860.55 During the simulation,

I change world population L̄t (sum of the population of the U.S. and Europe), U.S. land

Ht (r) and shipping costs ςt (r, s) as they change in the data. In particular, I feed the con-

struction of railroads and canals into the model through changes in ςt (r, s). To simulate

the model, I use the iterative procedure proposed in Desmet et al. (2018).

This simulation procedure matches world population every period, but not necessarily

U.S. population every period. In particular, U.S. population grows somewhat less in the

model than in the data, which suggests that the frictions to moving from Europe to the U.S.

might have become weaker over time. To see if my results are robust to this discrepancy

between the model and the data, I simulate an alternative version of the DNR model, which

I call “DNR (match total U.S. population).” In this version of the model, I let m2 (e) change

over time. As only the ratio of moving costs matters for the equilibrium, this procedure is

equivalent to letting the cost of entering any U.S. location change to the same extent. I

choose the value of m2t (e) in every period t such that the model matches U.S. population

at t.

Figure 13 presents the evolution of the population distribution in the “DNR (match

total U.S. population)” model. The figure shows that matching total U.S. population does

not change the overall picture: the one-sector DNR model cannot replicate the westward

movement of U.S. population. This is not surprising as the ratio of two locations’ innovation

rates depends on the ratio of their population density in the DNR model, not on absolute

population levels (Desmet et al., 2018).

55The model does not need to be simulated for 1790, as it matches the 1790 population data exactly.
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As a second robustness check, I also simulate an alternative version of the DNR model

in which productivity does not grow over time. This alternative model, which I call “DNR

(no productivity growth),” can be thought of as a one-sector static quantitative model

of economic geography, simulated over a sequence of time periods over which total world

population, U.S. land and shipping costs change as in the data.

Figure 14 shows that this model also fails to replicate the westward movement of popu-

lation. This is not surprising as, unlike the model of Section 3, this alternative model also

lacks the relationship between farm hinterland size and productivity growth. Figure 14 con-

firms that absent this relationship, cities do not start to develop and attract a substantial

fraction of U.S. population to the West.
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Figure 13: Population distribution: DNR (match total U.S. population) versus data
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The three left panels of the figure present population (number of inhabitants) per square mile in each 20 by 20 arc minute grid cell of the U.S.
in the DNR (match total U.S. population) model in 1790, 1820 and 1860, respectively. The three right panels present the same in the data. The
scale is bottom-coded at 5 and top-coded at 50 for visibility. Source: U.S. census.
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Figure 14: Population distribution: DNR (no productivity growth) versus data
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The three left panels of the figure present population (number of inhabitants) per square mile in each 20 by 20 arc minute grid cell of the U.S.
in the DNR (no productivity growth) model in 1790, 1820 and 1860, respectively. The three right panels present the same in the data. The
scale is bottom-coded at 5 and top-coded at 50 for visibility. Source: U.S. census.
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E Additional tables and figures

Table 14: Discontinuity in the population growth rate of settlements

Dependent variable: ln(growth)
Threshold between cities and towns

(1) (2) (3) (4)
10,000 6,000 8,000 15,000

ln(size) -0.02 0.05** 0.01 -0.01
(0.02) (0.02) (0.02) (0.03)

city 0.12** -0.05 0.05 0.10
(0.05) (0.04) (0.04) (0.06)

No. of observations 371 371 371 371
R2 0.03 0.01 0.01 0.02

This table presents the results of regressing log settlement population growth on log settlement size and a variable indicating whether the
settlement is a city. The unit of observation is a settlement (city or town) in the United States in a given census year (1790, 1800, 1810,
1820, 1830, 1840 or 1850). The dependent variable, ln(growth), is the log of the settlement’s population growth over the subsequent decade.
Independent variable ln(size) is the log of the settlement’s population. Independent variable city is a dummy variable equal to 1 if the settlement
is classified as a city in the given year. A settlement is classified as a city if it exceeds a given population threshold. The columns of the table
correspond to different population thresholds. For instance, column (1) classifies every settlement above 10,000 inhabitants in the given year as
a city. Heteroskedasticity-robust standard errors in parentheses. *: significant at 5%; **: significant at 1%. Source: U.S. census.

Table 15: Large regions’ shares in total U.S. population, 1860

Region Model Data
Northeast 32.9% 36.3%
South 36.4% 32.7%
Midwest 29.9% 29.0%
West 0.8% 2.0%

The first column of this table presents the share of 1860 U.S. population living in either the four large regions (Northeast, South, Midwest and
West) in the baseline model simulation. The second column presents the same population shares in the data. Source: U.S. census.
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Table 16: Average nominal wages relative to the Northeast in the model

Region 1790 1860
Northeast 1 1
South 0.978 0.979
Midwest 0.955 0.988
West – 1.032

The first column of this table shows the 1790 unweighted average nominal wage of inhabitants in the three large U.S. regions relative to the
Northeast in the baseline model simulation. The second column shows the same for the four large U.S. regions in 1860.

Figure 15: Population of the four large U.S. regions
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The four lines represent the population of the four large U.S. regions (Northeast, South, Midwest and West), measured in millions of inhabitants,
in each census year. Source: U.S. census.
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Figure 16: U.S. cities forming between 1790 and 1860

Each red dot in the map represents a city (a settlement above 10,000 inhabitants) that came into existence between 1790 and 1860 in the United
States. The West has been cut for visibility. Source: U.S. census.

Figure 17: Exports to U.S. GDP: model versus data
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The left graph shows the ratio of exports, measured in U.S. prices, to U.S. GDP in each census year in the baseline model simulation. The right
graph shows the same object in the data. Source: Lipsey (1994).
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Figure 18: U.S. real GDP per capita, baseline simulation (blue) versus no railroads (red)
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The blue line corresponds to U.S. real GDP per capita relative to 1790 in the baseline model simulation. The red line corresponds to U.S. real
GDP per capita relative to 1790 in the counterfactual with no railroads (Section 5.3).
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