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Abstract

We study optimal policy when the planner has partial information in a
general setup where observed signals are endogenous to policy. In this context,
signal extraction and policy have to be determined jointly. We derive a general
non-standard first order condition of optimality from first principles and we use
it to find numerical solutions. This first order condition allows us to identify
widely-used special cases in the literature in which the signal extraction and
the optimal decision problems can be solved separately, using the well-known
separation principle. Our general setup, which does not feature any separation,
is relevant for most available dynamic models in macro. We apply our results to
a model of fiscal policy and show that optimal taxes are often a very non-linear
function of observed hours, calling for tax smoothing in normal times, but for a
strong fiscal reaction to output in a deeper recession. This non-linearity arises
because signal extraction interacts differently with optimal policy depending
on the range of observed signals. The non-linearity is stronger near the top of
the Laffer curve or near a debt limit. In a fully dynamic model taxes react with
a delay to adverse deficit shocks due to partial information, and this can lead
to larger low frequency fluctuations.
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“In the policy world, there is a very strong notion that if we only knew the
state of the economy today, it would be a simple matter to decide what the
policy should be. The notion is that we do not know the state of the system
today, and it is all very uncertain and very hazy whether the economy is
improving or getting worse or what is happening. Because of that, the
notion goes, we are not sure what the policy setting should be today. [...]
In the research world, it is just the opposite. The typical presumption is
that one knows the state of the system at a point in time. There is nothing
hazy or difficult about inferring the state of the system in most models.”
(James Bullard, interview on Review of Economic Dynamics, November
2013)

1 Introduction

Inferring the underlying state of the economy is a key practical difficulty in setting
macroeconomic policy, as exemplified by our opening quote. This is because the
observed signals about the state of the economy are, in general, endogenous to pol-
icy decisions and depend on multiple shocks hitting the economy. In this paper, we
address this issue and solve for optimal policy taking into account the uncertainty
(“haziness”) about the underlying state, accounting for the endogeneity of the avail-
able information.

To illustrate a practical case of endogenous signals in optimal policy, consider the
fiscal policy response at the beginning of the financial crisis. In 2008-2009, policy-
makers observed a large fall in output and employment, but it was unclear whether the
recession was due to a shock to productivity, to a demand shock or some combination
of both. Nonetheless, policy-makers had to react to the recession implicitly making
a guess about the nature of the shock. In that instance, the G20 opted for “stimulus
packages”, implicitly saying that they believed the recession to be mainly due to a
temporary demand shock. Ex-post, we know that this expansionary policy generated
very large deficits, leading later to even larger fiscal adjustments during the worst
part of the recession in some countries. The output observed during this period was,
obviously, endogenous to the policy decision that was taken.

Automatic stabilizers, e.g. income taxes and unemployment benefits, are other
leading examples of policies that respond to aggregate endogenous information such
as output, while simultaneously influencing the level of output. This paper addresses
the question of how to design such instruments optimally under Partial Information.

Generically, we consider a setup where the government observes a signal s (say,
output). The signal is determined in equilibrium by a policy variable τ (say, taxes)
and a vector of fundamental unobserved shocks A (say, demand and supply shocks).
The government chooses τ as a function of its information s, thus it sets τ = R(s) for
a certain policy function R. A key difficulty is that the optimal choice for R depends
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on the density of A conditional on s, denoted fA|s (the signal extraction, or filtering,
problem) while at the same time the density fA|s depends on the policy function R.
Therefore, the filtering and optimal choice problem have to be determined simultane-
ously. To our knowledge, all existing results in the literature on optimal policy with
Partial Information introduce timing assumptions and a structure of the economy
guaranteeing that separation holds, that is, fA|s at the optimum can be found inde-
pendently from R.1 While this literature has lead to many interesting applications,
the assumptions needed for separation typically are not satisfied in modern dynamic
models.

In this paper, we derive an optimality condition from first principles that allows
to compute the optimal policy in the general case. This optimality condition is non-
standard, as it does not set the average derivative of the objective function to zero.
Instead, the derivative at each realisation is weighted by a certain kernel. Previous
results in the literature arise as special cases.

We apply this formulation in a model of optimal fiscal policy. Our leading example
is a two-period version of the standard fiscal policy model of Lucas and Stokey (1983).
We introduce two shocks A (to demand and to supply). To make the issue of hidden
information relevant we assume incomplete insurance markets as in Aiyagari et al.
(2002). We solve for optimal Ramsey taxation τ under the assumption that the
government does not observe the realizations of the shocks, but only some endogenous
signal, such as output or hours worked, s. We argue that Partial Information has
important consequences for the design of optimal policy and for our understanding
of real-world policy decisions. In particular, optimal taxes can be fairly unresponsive
in normal times, but taxes become highly responsive to signals when the government
has strong evidence that the worst possible realizations of the shocks materialize.

This non-linearity arises because the signal extraction problem interacts in a dif-
ferent way with optimal policy depending on the range of observed signals. If the
signal is close to its worst possible realisation policy-makers are quite sure that the
worse combination of shocks A has materialised. In that case they are quite certain
that a very low tax revenue is very likely so that they raise taxes today in order to
avoid extremely high taxes tomorrow. The non-linearity is stronger with very high
government spending, when future taxes could be close to the maximum of the Laffer
curve, as was arguably the case in some European economies in the recent crisis.
Several European governments in the Great Recession made large fiscal adjustments
a few years after the start of the downturn. This delay lead to a large debt accumu-
lation which eventually amplified the fiscal adjustments needed. Our model provides
a framework where this delay in increasing taxes could be a feature of optimal de-
cision making and not necessarily of irresponsible politicians, hence the model may

1Svensson and Woodford (2004) consider a case where separation fails but they can show that
a “certainty equivalence” result holds. This allows them to solve the signal extraction and optimal
choice problems sequentially. See Section 2 for more details on this literature. Section 4.7 derives
the result of Svensson and Woodford from our general optimality condition.
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be useful to distinguish an irresponsible government from one that simply has partial
information.

We also show that hidden information can be a driver of tax smoothing, as the
contemporaneous response of taxes to underlying shocks is small relative to the case
of Full Information. This identifies a reason for tax smoothing across states that is
quite different from the standard results in presence of complete markets.

General Signal Extraction is present in most dynamic models under rational ex-
pectations. We show two versions of our model to demonstrate how GSE arises
generically. In our main example, separation fails because the income tax rate τ ,
is determined simultaneously with the signal s, which in our example is the level of
hours worked. It may seem that one can change the model slightly for separation to
hold: if taxes have to be determined one period before they are implemented, then
separation would hold in that model. However, we show that if labor supply involves
a dynamic decision, e.g. because of learning-by-doing, then we are back in a setup
where separation fails and GSE needs to be applied. In our second example with
learning-by-doing we get similar results as in the main example.

Finally, we build an infinite-horizon model. The short-run response of taxes to
underlying shocks in most periods is low relative to the case of Full Information.
Taxes do not adjust immediately after a bad shock to the deficit is realised, thus the
high-frequency response of taxes to shocks resembles tax smoothing. This is due to
the fact that optimal policy averages over all the possible unobserved contingencies
for A, as it occured in the two-period model. However, this delayed response to
shocks can lead to accumulation of large debt over time, eventually leading to large
fiscal adjustments and high volatility at lower frequencies. Therefore tax implications
are quite different from optimal tax under market completeness and Full Information
(Lucas and Stokey, 1983) since perfect tax-smoothing is not found, and different from
market incompleteness and Full Information (Aiyagari et al., 2002) where the delayed
response would never occur.

It should be noted that the technique we develop can be applied to many inter-
esting open questions in several fields. For example, the unobserved shocks A may
represent the planner (or a player)’s ignorance about the structure of the economy.
Our results would also apply to cases where the government has incomplete informa-
tion about agents’ types, about the household distribution of income and wealth or
about agents’ expectations.

The remainder of the paper is organized as follows. The related literature is dis-
cussed in Section 2. Section 3 introduces our two-period optimal fiscal policy model
with incomplete markets and Partial Information. Section 4 contains the main theo-
retical contribution. It provides the first order condition for a general static model,
it shows how this can be used to compute optimal solutions, it compares the Full
Information solution with the Partial Information solution and discusses a case of
“invertibility” when the two solutions coincide. We also study when “certainty equiv-
alence” holds. In Section 5 we apply these results to our Ramsey fiscal policy problem.
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Section 6 introduces a model with predetermined taxes and dynamic labor choice be-
cause of learning-by-doing, showing that our results are robust to changes in timing
assumptions. Section 7 presents the infinite-horizon model with non-contingent debt.
Section 8 concludes.

2 Related literature

Partial Information and signal extraction were often present in the early papers on
dynamic models with Rational Expectations. Signal extraction with an exogenous
signal is well understood; it goes as far back as Muth (1960). Typically, it just requires
a routine application of the Kalman filter. Because the signal extraction problem is
solved independently of policy choices, it is said that a “separation principle” between
signal extraction and optimization applies.

A wide literature considers competitive agents who use prices or other aggregate
endogenous variables as signals of unknown information, as early as Lucas’s (1972)
seminal paper, or Townsend’s (1983) contribution about beliefs on other agents’ in-
formation. For more recent papers with a focus on macro policy see Angeletos and
Pavan (2009) and Angeletos et al. (2015). In this literature, the choices of competi-
tive agents do not interact with price determination (in the agents’ mind), therefore
agents’ filtering problem can be solved using standard techniques, and the issue of
endogenous signal extraction that we address does not arise.

Few papers have studied optimal policy when signals are endogenous. Pearlman
(1992) and Svensson and Woodford (2003) consider linear Gaussian models where the
policy-maker and the private sector have the same information set. In other words,
information is partial but symmetric. In this case, they show that the “separation
principle” continues to hold. Baxter et al. (2007, 2011) derive an “endogenous
Kalman filter” for all these cases which is equivalent to the solution of a standard
Kalman filter of a parallel problem where all the states and signals are fully exogenous.

Closest to our work is Svensson and Woodford (2004). They consider optimal
policy in a non-microfounded linear Rational Expectations model, where the govern-
ment’s information set is a subset of the private sector’s information set. They show
that, even though the “separation principle” fails because of asymmetric information,
there is a suitable modification of the standard Kalman filter that works in the case of
linearity and additively separable shocks. Moreover, optimal policy under discretion
has the “certainty equivalence” property: under Partial Information the government
applies the Full Information policy to its best estimate of the state. Aoki (2003)
applies these results to optimal monetary policy with noisy indicators on output and
inflation. Nimark (2008) applies them to a problem of monetary policy where the
central bank uses data from the yield curve knowing that the chosen policy affects
the very same data.

Our contribution is to consider a fully microfounded optimal policy model and to
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provide a solution to the general signal extraction and optimization problem, when
the distribution of the signal depends on government policy (or, more generally, on
the actions of a Stackelberg leader). In the general case, separation does not apply
and the strict linearity requirements of Svensson and Woodford (2004) do not hold.
We show cases where a linear approximation can be misleading.2 We provide an
example that appears to be amenable to linearisation but where the correct solution
is highly non-linear in nature.

The effect of policy choices on information extraction is also considered in mod-
els of learning about unobserved variables or parameters (armed-bandit problems),
such as Prescott (1972) and Kiefer and Nyarko (1989). For some applications to
dynamic macro policy see Wieland (2000a, 2000b) and Ellison and Valla (2001). For
an application to monopoly behavior see Mirman et al. (1993). Van Nieuwerburgh
and Veldkamp (2006) use a similar learning framework with non-linearities to explain
business-cycle asymmetries. In these papers, the density of the signal is exogenous
to agents’ actions, although the planner can decide how much to learn about this
density by its actions. These papers can abstract from the issue of General Signal
Extraction because of special assumptions: signals are predetermined with respect to
policy, independent of future policies, for instance because of the absence of endoge-
nous state variables. In Section 4.1 we argue that in most modern dynamic economic
models this simplification is not available, and the issue of General Signal Extraction
that we consider would arise generically.3

Another related strand of literature is that on robust control. Hansen and Sar-
gent (2012) study Ramsey-optimal policy with ambiguity aversion and find that this
leads to violations of “certainty equivalence” even in linear-quadratic setups. In their
setup, the optimal solution is found by, first, solving for the optimal policy for each
possible value of the state, then the policy is chosen assuming the worst possible state.
Therefore this approach sidesteps the issue of finding the filter fA|s at the optimal
policy R. Adam (2004) shows that the min-max criterion arises from a sequence of
planners that have expected utility and are more and more risk-averse. Our setup is
available for any level of risk aversion of such a planner.

The literature on optimal contracts under private information and incentive com-
patibility constraints (or the “New Dynamic Public Finance” as in Kocherlakota,
2010) is perhaps less related to our work. This literature studies setups where pri-
vate information is revealed in equilibrium. As we show in Section 4.5, endogenous
filtering is not an issue when private information is revealed, therefore this literature
abstracts from the issue of the current paper. On the other hand, this literature

2Optimal non-linear policies have been found in the literature but for totally different reasons.
Swanson (2006) obtains a non-linear policy when he relaxes the assumption of normality in the
linear model with separable shocks. He considers a model where the “separation principle” applies.
The non-linearity results entirely from Bayesian updating on the a priori non-Gaussian shocks.

3In Appendix C.4 we provide a modification of our model in Section 3 that restores the simplifi-
cations in this literature and that may help clarify this issue.
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assumes that the policy function R depends on individual choices. Hence, agents
react strategically to influence the policy action τ . We abstract from this issue by
introducing atomistic agents that take the government action τ as given. It would be
of interest to apply our results on signal extraction in a setup where agents react to
the policy function R and not only to the planner’s action τ . This is left for future
research.

3 A simple model of optimal fiscal policy

We now present a simple model of optimal policy with two shocks, to supply and
demand respectively. We believe that this model and its extensions in Sections 5, 6
and 7 represent an interesting laboratory for our theory and may be useful to gain
intuition on the role of endogenous signals for optimal policy. However, we stress that
our results developed in Section 4 in a more general setup could be applied in many
fields, also outside of macro.

Specifically, our first example is a two-period version of the Lucas and Stokey
(1983) model of optimal dynamic taxation under uncertainty. We introduce incom-
plete markets to be consistent with the presence of Partial Information about the
state.

3.1 Preferences and technology

The economy lasts two periods t = 1, 2. A government needs to finance an exogenous
and constant stream of expenditure g1 = g2 = g, where subscripts indicate time
periods. The government levies distortionary income taxes (τ1, τ2) and issues bonds
bg in the first period that promise a repayment in second-period consumption units
with certainty.

The economy is populated by a continuum of agents. Each agent i ∈ [0, 1] has an
expected utility function

E
[
U
(
ci1, l

i
1, c

i
2, l

i
2; γ
)]

(1)

with
U
(
ci1, l

i
1, c

i
2, l

i
2; γ
)
= γu

(
ci1
)
− v

(
li1
)
+ β

[
u
(
ci2
)
− v

(
li2
)]

where cit and l
i
t for t = 1, 2 are consumption and hours worked respectively, and u′ > 0,

u′′ < 0, v′ > 0, v′′ > 0.
We refer to γ, a random variable with distribution Fγ, as a “demand shock”.

When γ is high, agents like first period consumption relatively more than other goods.
Hence, a high value of γ makes them willing to work more in their intratemporal labor-
consumption decision and also makes them more impatient in their intertemporal
allocation of consumption. Given that agents are identical, in the remainder we drop
the subscripts i for notational convenience, whenever this does not lead to confusion.
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The production function in each period is linear in labor. Output is given by

yt = θtlt (2)

for t = 1, 2. The random variable θ1 = θ is a “productivity shock” with distribution
Fθ. γ and θ are assumed to be independent. As far as θ2 is concerned, we assume that
both agents and government know with certainty that θ2 = Eθ, that is, the second
period productivity is a known constant, equal to the mean of the first period shock.

To summarize, the state of the economy is fully described by a realization of the
random variables A ≡ (γ, θ). These variables are observed at the beginning of period
t = 1 by consumers and firms, but not by the government. The distributions Fγ
and Fθ represent the government’s perceived distribution of the exogenous shocks,
which may or may not be equal to the true distribution of these variables. Thus this
formulation encompasses the case of “true” uncertainty as well as the government’s
ignorance about the structure of the economy.

Agents have Rational Expectations: denoting by Φ the space of possible values
of A, we assume that agents know that fiscal policy is given by a triplet of functions
(τ1, τ2, b

g) : Φ → R3 and these are actually the equilibrium values of taxes and
government bonds for each A.

Consumers’ choices and prices are contingent on the state A, which agents observe
in period t = 1. Agents choose (c1, c2, l1, l2, b) : Φ → R5 knowing the fiscal policy
and the bond price function q : Φ → R. The solution of the agents’ problem in this
setup coincides with the non-stochastic model where A is known. Uncertainty will
only play a role in the government’s problem, to be specified later.

Firms also observe θ at t = 1. Profit maximization implies that agents receive a
wage equal to θt, observed by agents, so that the period budget constraints of the
representative agent are

c1 + qb = θl1(1− τ1) (3)

c2 = θ2l2(1− τ2) + b (4)

where q is the price of the government bond b. The above budget constraints have to
hold for all realizations of A.

The government’s budget constraints are analogous, they restrict the choice of the
policy (τ1, τ2, b

g).

3.2 Competitive equilibrium

Here we provide a definition of competitive equilibrium. The definition is standard
in the literature, it is common to both the Full Information (FI) and the Partial
Information (PI) equilibria that we analyze.

Definition 1 A competitive equilibrium is a fiscal policy (τ1, τ2, b
g), price q and

allocations (c1, c2, l1, l2, b) such that when agents take (τ1, τ2, q) as given the allocations
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maximize the agents’ utility (1) subject to (3) and (4). In addition, bonds and goods

markets clear, so that b̃g = b and

ct + g = θtlt for t = 1, 2. (5)

This definition embeds competitive equilibrium relations insuring that wages are
set in equilibrium and that the budget constraint of the government holds in all
periods due to Walras’ law.

Utility maximization implies for all A

v′ (l1)

u′ (c1)
= θγ(1− τ1) (6)

v′ (l2)

u′ (c2)
= θ2(1− τ2) (7)

q = β
u′ (c2)

γu′ (c1)
(8)

As anticipated, the demand shock enters the first period labor supply decision
described by (6) as well as the bond pricing equation (8). A competitive equilibrium
is fully characterized by equations (3) to (8).

3.3 Ramsey equilibrium

To describe government behavior, we now provide a definition of Ramsey equilibrium.
As is standard, we assume the government has full commitment, perfect knowledge
about how taxes map into allocations for a given value of the underlying shocks A
and that it chooses the best policy for households.

We first give the standard definition when both government and consumers observe
the realization of A.4

Definition 2 A Full Information (FI-) Ramsey equilibrium is a fiscal policy
(τ1, τ2, b

g) that achieves the highest utility (1) when allocations are determined in a
competitive equilibrium.

Our interest is in studying optimal taxes under PI. More precisely, we assume
that taxes in the first period have to be set before the shock A is known but after
observing a signal s that potentially depends on aggregate outcomes observed in
period 1, s = G(c1, l1, q, A) for a given G. It is important to highlight that the signal
depends on aggregate outcomes. In our leading example, we assume s = l1 =

∫
li1di.

The distinction between aggregate and individual choices does not matter for our
computations due to the homogeneous agents assumption, but it is important for the
interpretation of our equilibrium that the signal only depends on aggregate outcomes,
as this justifies that agents take the policy action τ as given.

4These definitions take for granted that we only consider tax policies for which a competitive
equilibrium exists and is unique.
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Definition 3 In a Partial Information (PI-) Ramsey equilibrium, condi-
tional on observing a signal s, the government chooses the policy that achieves maxi-
mum utility, subject to the constraint

τ1 = R(s) for all A ∈ Φ (9)

for some measurable function R : R → R and allocations are determined in competi-
tive equilibrium.

We are interested in the case when (9) prevents the PI-Ramsey equilibrium from
achieving the FI outcome.

Note that the definition of competitive equilibrium implies that consumers’ know
the map τ1 : Φ → R. Hence, in a PI-Ramsey equilibrium, agents’ perception of how
policy is set is consistent with equation (9). An interpretation is that the government
posts its policy R, agents understand this policy and they know the mapping from
A to s. Another equivalent interpretation is that agents simply are endowed with
knowledge of τ1(·). Even if agents know that (9) holds they can not exploit this
knowledge in their optimization problem as we consider atomistic agents that cannot
affect the aggregate signal and, hence, the tax rate.5 In this model, as is standard in
Ramsey equilibria, the tax level τ and the equilibrium allocations (and therefore s)
are determined simultaneously as a consequence of the government’s choice for R.6

FI- Ramsey equilibria
Using the so-called “primal approach” and standard arguments it is easy to show

that an allocation is a competitive equilibrium if and only if, in addition to the
resource constraints (5), the following implementability condition holds

γu′ (c1) c1 − v′ (l1) l1 + β [u′ (c2) c2 − v′ (l2) l2] = 0. (10)

The standard approach to find Ramsey policy under FI is to maximize (1) subject
to (10) and the resource constraints. We now deviate slightly from this traditional
approach so that the PI problem can be understood as an additional restriction of the
FI problem. For this purpose we do not “substitute out” τ1, instead we keep this tax
as an explicit choice variable and using (5) for t = 1 to substitute out consumption
in (6), we add the constraint

v′ (l1)

u′ (θl1 − g)
= θγ(1− τ1), (11)

5This differs from the setup in the New Dynamic Public Finance, where consumers optimize
given a policy function R that is a function of individual choices. Therefore in that literature agents
internalize the effect that their actions have on policy actions. Using our notation, the government
chooses an optimal individual tax τ it = R(lit).

6We consider the case of predetermined taxes in Section 6

10



Letting h be the function that maps τ1, θ, γ into the value for l1 that solves this
equation, we can rewrite the above equilibrium condition as

l = h(τ, A) (12)

where we have suppressed the time subscript from first period labor and tax rate.
This shows how the allocation for labor reacts to a tax choice.

The resource constraints (5) and (10) give three equations defining a map from
each possible value of l = l1 into corresponding equilibrium (c1, c2, l2). Plugging this
map into the utility function (1), welfare for each A can then be written as

W (l;A) ≡ U(c1, l, c2, l2; γ) (13)

solely as a function of l = l1, embedding in W all competitive equilibrium conditions.
The FI Ramsey Equilibrium reduces to solving

max
(τ,l):Φ→R2

E[W (l;A)] (14)

s.t. (12) (15)

Obviously the result is the same as to maximize (1) subject to (10) given A.7

PI- Ramsey equilibria
We focus on the case when the signal is just aggregate labor so s = l1 = l. The

only difference under PI is that the additional constraint (9) appears, that τ1 = τ
determines l1 = l in equilibrium through (12) and that the choice is over the policy
R.

Hence a PI-Ramsey equilibrium (given a signal l) solves

max
R:R→R; (τ,l):Φ→R2

E[W (l;A)] (16)

s.t. (12)

τ = R(l)

Notice that, mathematically, the only difference with the FI-problem is the presence
of the last constraint.

This gives rise to a non-standard maximization problem under general signal ex-
traction, where the filtering problem fA|l has to be solved jointly with the optimal
choice for the policy function R. We solve this problem in Section 4.

7Strictly speaking l should be constrained to belong to the set of feasible l’s, we are explicit about
this technicality in the next section.
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3.4 The economic consequences of PI for taxation policy

Before giving a mathematical solution, it is worthwhile discussing the economic issues
raised by PI in the fiscal policy example we use. As is well known, the optimal FI
policy is one of tax smoothing over time as the government wants to spread the
distortions equally in the two periods. In the case of CRRA preferences

u (c) =
c1+αc

1 + αc
, v (l) = B

l1+αl

1 + αl

for αc ≤ 0, αl, B > 0, tax smoothing will be perfect and Ramsey policy under FI
involves setting a tax rate τ = τ1 = τ2 constant in time, the level of taxes satisfies
the intertemporal budget constraint

τθl1 − g + β
u′(c2)

γu′(c1)
(τθ2l2 − g) = 0. (17)

It is clear from (17) that the government needs to know the realization of both
productivity and demand shocks in order to implement this policy under FI. In par-
ticular, the realization of θ = θ1 is a crucial piece of information, as it determines the
revenue that a given tax rate, together with an observed level of hours worked, is go-
ing to raise. The demand shock γ also matters as it affects both the objective function
and the interest rate that the government will have to pay on its debt. Furthermore,
both shocks clearly contribute to the determination of an allocation (c1, c2, l1, l2).

Under PI, the government can only condition its policy on l, without knowing
what combination of the shocks gives rise to a given observation. Clearly, under PI
the choice of constant taxes (optimal under FI) is not feasible. The government has
to fix τ1 while it is still uncertain about the revenue that this tax rate will generate
and it will enter period 2 with an uncertain amount of debt. Once θ and γ are known
in period 2, the period 1 deficit will materialize, the government will have to set τ2 so
as to balance the budget in the second period. Hence, in the eyes of the government,
τ2 is unavoidably a random variable at the time of choosing τ1.

Arguably, uncertain tax revenue is a crucial feature of actual fiscal policy decisions,
and tax rates are decided based on information from equilibrium outcomes that are
observed frequently. In this sense, one can interpret this model as a simple model
of optimal automatic stabilizers, as these are fiscal instruments that are designed to
respond to endogenous outcomes, such as income or unemployment, independently of
the source of fluctuations in these variables. The optimal design of these instruments
requires a simultaneous determination of the density of taxable income and the policy.
The next section studies a generic problem that allows the determination of taxes
under limited endogenous information.
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4 Optimal Control under GSE

We label maximization problems of the type (16) as “Optimal Control under General
Signal Extraction”(GSE). The key difficulty is that the distribution of the exogenous
shocks conditional on the signal, fA|s, is endogenous to the policy decision R. At the
same time, the optimal choice for R depends on fA|s, therefore separation does not
apply. This section provides a formal treatment of Optimal Control under GSE. We
first argue that GSE arises generically in most modern dynamic economic models.
We then provide results concerning existence of a solution, as well as first and second
order optimality conditions that can be used to easily compute the optimal policy.

We can see that the filter fA|s depends on tax policy in the context of the example
in Section 3. Combining equations (12) and (9) we see that the shocks A = (γ, θ) can
be mapped into a value l = h(R(l), A) for a given R. Using the chain rule, it is clear
that the conditional density fl|A depends on R. Since fA|l depends on fl|A (through
Bayes’ rule) it depends on R, so that the filtering and optimization problems can not
be separated.

Notice that h and R can be interpreted as reaction functions. In the above
formulation of Optimal Control under GSE there is a hierarchy: h is given, while
R is chosen optimally given h.8 This is a natural assumption when, as in Ramsey
policy, agents are atomistic and the signal is an aggregate variable. Extending the
setup to cases when reaction functions are determined simultaneously is left for future
research.9

4.1 GSE: a Generic Issue

The literature has, to date, avoided the issue of GSE, often by assuming that policy
decisions are predetermined.10 We show how in some models it is possible to sim-
plify things by assuming a certain timing of policy decisions that restores separation.
However, we argue that introducing state variables gives rise to GSE generically, even
if policy is predetermined. Therefore, GSE arises naturally under Partial Information
in most economic dynamic models.

In the example of Section 3 GSE arises because τ and l are determined simulta-
neously, as is standard in Ramsey equilibria. A shrewd economist might notice that
separation can be restored by assuming that taxes are predetermined, i.e. that τt

8This may be thought of as a Stackelberg-reaction-function game where the “leader” (in Section
3, the government) chooses its policy (or reaction) function R taking as given the reaction h of
the “follower”(in Section 3, the atomistic consumers), while the follower takes the action of the
government (τ) as given.

9The literature on supply function equilibria (Klemperer and Meyer, 1989) considers supply
functions that are consistent with the other players’ choice. The issue of GSE that we address arise
in principal/agent problems and supply function equilibria with multiple sources of uncertainty and
no-revelation.

10One exception is Svensson and Woodford (2004) and subsequent literature, who exploit linearity.
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must be chosen in period t−1 after observing lt−1. This might seem like an attractive
modelling alternative as policy is still determined under PI (the government chooses
taxes without knowing the revenue that a certain tax rate will raise) while avoiding
the technicalities of this paper.11

However, consider now the case in which output yt depends on a factor of pro-
duction determined in the past, say, physical or human capital. Even if τt is pre-
determined and contingent on yt−1, this tax is likely to influence tomorrow’s labor
supply lt, to affect the payoff of factors of production at t − 1 and, under Rational
Expectations, the choice for τt will affect equilibrium yt−1. Therefore we are back to
a case where the signal (yt−1) is endogenous to predetermined taxes (τt).

Therefore, a predetermined tax may restore separation in the special case of an
economy with non-storable goods, but in the presence of an endogenous predeter-
mined factors of production separation breaks down. We demonstrate this in detail
in Section 6, where we introduce predetermined taxes and human capital (learning-
by-doing) in our leading example and, as we show, issues of GSE determine the
solution.

4.2 Optimization under GSE

We now present a generic problem of optimal control under GSE. This adds formal
details to the formulation and generalizes (16) without adding any difficulty to the
proof. Consider a planner/government who chooses a policy variable τ ∈ T ⊂ R,
conditional on observing an endogenous signal s ∈ S ⊂ R, where T and S denote
the set of possible policy actions and signal.12 The planner’s objective is to maximize
E [W (τ, s, A)] for a given payoff function W : T × S ×Φ → R and random variables
A ∈ Φ ⊂ Rk with a given distribution FA.

13 This nests the case when endogenous
variables other than τ enter the objective function if these can be embedded in W, as
we did in the discussion leading to (13).

The policy variable τ maps into endogenous signals through the following equation

s = h(τ, A) a.s. in FA (18)

for a known function h : T × Φ → S. The government has to choose τ given an
observation on s, without observing the value of A. The government knows W, h, FA,
T , S and equation (18).

Optimal behavior under uncertainty implies that the government chooses a policy
contingent on the observed variable s. Therefore, the government’s problem is to set

11This is the approach commonly used in the armed-bandit literature discussed in Section 2.
12Focusing on the univariate case simplifies the analysis, the notation and highlights the main

issues. We leave the multivariate case for future work.
13FA represents the governments’ perception about A, it may or may not be equal to the true

distribution of A.

14



policy actions according to a policy function R : S → T

τ = R(s) (19)

to maximize its objective, in other words the government solves the following problem
of Optimal Control under GSE

max
{R:S→T }{τ,s:Φ→T ×S}

E [W (τ, s, A)] (20)

s.t. (18), (19).

The optimality conditions for this problem turn out to be non-standard. To see
why this happens, rewrite the objective function as follows

∫
E [W (τ, s, A)| s] fs(s) ds. (21)

where fs is the density of s. Applying a “standard recipe” to derive first order condi-
tions in stochastic discrete time models14 we would find the following condition:

E [Wτ +Wshτ |s] = 0 for all s. (22)

Notice that Wτ +Wshτ = 0 is the FI optimality condition for a Stackelberg leader
problem that takes into account the follower’s action s satisfies (18) for a known A.
Equation (22) averages this first order condition over values of A that consistent with
the observed s.

When fs(s) is exogenous to the policy choice this formula is correct. However, as
argued at the beginning of this section, fs =

∫
Φ
fs|A fA is endogenous to R, and (22)

ignores this dependence. Somehow the fact that fs depends on R should play a role
when taking derivatives of (21). Economically, the problem is that the policy choice
(namely the tax rate τ1 in the model of Section 3) influences the values of the signal
that actually happen (namely labor l1) and the optimal policy choice should take this
into account.

We now provide some further notation. Let S(R, A) be the set of observable
values of s induced by the shock A and a policy R. Formally, for a given A and R,
letting H be given by

H(s, A;R) ≡ s− h(R(s), A), (23)

elements s ∈ S(R, A) satisfy H(s, A;R) = 0. We refer to S(R, A) sometimes as “the
outcome”, as it gives the realisations of the generic control problem (20), sometimes
we refer to S(R, A) as “the equilibrium” as in a Ramsey problem of Section 3.

14More precisely, we take the “standard recipe” to be: i) find the derivative of the objective
function (or Lagrangean) with respect to a choice variable under certainty, ii) take the expectation
of this derivative conditional on the information available at the time the variable is chosen and, iii)
set this conditional expectation to zero.
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The policy variables that can be realized for each value of the shock A and for a
given policy function R are then given by

T (R, A) = R (S(R, A))

Notice the distinction between the objects S, T and R: the latter is a function of s
while S and T are functionals mapping R and the realizations of the shocks into S,
T .

4.3 Assumptions, Conditions on R and outcomes S(R, A).

We now state some assumptions on the fundamentals and impose some conditions on
the admissible set of policy functions R. These conditions ensure that the outcomes
S(R, A) are well defined when we derive the optimality conditions that are the focus
of this section.

Assumption 1 W (·, A) is continuous, and h(·, A) continuously differentiable for all
A ∈ Φ.

Assumption 2 The sets T ,S are bounded closed intervals, T = [τ , τ ] ,S = [s, s], and
Φ is compact.

Our aim is to state Conditions on R that are generically satisfied at an uncon-
strained maximum and that can be checked at a computed solution. Denote the
support of possible outcomes for R as

SR = {s ∈ S : s = h(R(s), A) for some A ∈ Φ} =
⋃

A∈Φ

S(R, A)

Condition 1 R is absolutely continuous in SR. Also, |R′(s)| < KL for some con-
stant KL <∞ and all s ∈ SR where R′ exists.

One could equivalently state that R is a Lipschitz function with a Lipschitz con-
stant KL. Condition 1 will be naturally satisfied at the optimum in most models.15

We wish to ignore issues of multiplicity of equilibria in this paper, so we consider a
planner constrained to choosing policies for which S(R, A) is a singleton. This could
be justified by appealing to a principle that “good policy” avoids multiple equilibria,
or to the principle that a good research strategy starts with the simpler case.16

We now state a condition that is generically equivalent to imposing uniqueness
of outcomes, that allows us to derive optimality conditions and that can be checked

15It is possible that under Assumptions 1-2 or further assumptions one can prove that Condition
1 (as well as Condition 2 stated below) hold at the optimum. We leave this for future research.

16Multiplicity of equilibria could be dealt with at the cost of having to introduce selection criteria
or randomization in the model, we leave this for future research.
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easily. Let us recall a few well known facts about fixed points. Consider an absolutely
continuous function g : X → X for a compact set X ⊂ R. Two facts are well known
about fixed points of g: i) g has at least one fixed point. Assume in addition that the
derivative g′ exists at all fixed points xf = g(xf ) and that g′(xf ) 6= 0, then ii) a fixed
point exists such that g′(xf ) > 1 if and only if there are multiple fixed points.17

Applying these properties to the map h(R(·), A) establishes that S(R, A) is non-
empty and that imposing that S(R, A) is a singleton is essentially equivalent to
imposing the following

Condition 2 There is an ε > 0 such that, for all A ∈ Φ where R′ exists at all
elements of S(R, A) then

hτ (R(s), A)R′(s) ≤ 1− ε (24)

at all s ∈ S(R, A).

This Condition guarantees that H is a well-conditioned non-linear equation and
this ensures uniquenes in the following Lemma. This condition is also used in the
optimality condition in Proposition 2 and existence result in Proposition 5. We show
in Section 5.2 that Condition 2 can be checked in a specific computed policy.

To guarantee that the outcomes of a given variation S(R + αδ,A) are well de-
fined and they the converge to S(R, A) we need the requirements on h stated in the
following

Assumption 3 W is differentiable everywhere with respect to (τ, s), with bounded

derivatives |Wτ | , |Ws| < Q. Also, |hτ | < Q and hτ is Lipschitz continuous:
∣∣∣hτ (s,A)−hτ (s

′,A)
s−s′

∣∣∣ ≤
QL uniformly on S × Φ for constants Q,QL <∞.18

The first order condition (26) allows for a non-differentiable optimal solution R∗.
Indeed, we will see that a non-differentiable R∗ can arise in our computations. To
guarantee that the outcomes of variations S(R + αδ,A) converge we need that non-
differentiabilities of R∗ occur with probability zero. We make the following assump-
tion for this purpose

Assumption 4 Given any pair (s, τ) ∈ S×T , the set of realizations {A : s = h(τ, A)}
has probability zero.

17Obviously i) follows from Brouwer’s fixed point theorem. Property ii) is easy to see with a
simple graph, it has been encountered in economics long ago. One example is the old literature
on deterministic growth with increasing returns where the law of motion of capital g had multiple
steady states, the steady state with g′ > 1 being unstable while a low stable steady state with g′ < 1
was a poverty trap. A detailed proof of ii) is available upon request.

18Obviously Lipschitz continuity of hτ is guaranteed if hττ exists everywhere and is uniformly
bounded. In fact |hτ | < Q follows from the Lipschitz condition.

17



This is easy to ensure if at least one element in the vector of shocks A has a
continuous density. We point out in Section 4.6 that this is needed for the case of
interest, namely non-invertibility.

Lemma 1 Assume Assumptions 1,2,4 and consider an R that satisfies Conditions 1-
2. Then S(R, A) is a singleton almost surely. Assume in addition Assumption 3 holds
and the outcomes of R are interior, that is SR ⊂ int(S) and R(SR) ⊂ int(T ). Fix
a variation δ : S → R uniformly bounded, differentiable everywhere with a uniformly
bounded derivative. Then the set of outcomes S(R+αδ,A) is a singleton for all α ∈ R
small enough a.s. Furthermore S(R+ αδ,A) → S(R, A) as α → 0 a.s.

Lemma 1 is proved in Appendix A.1.19 The “almost surely” statement is over the
distribution of A.

Notice that even though the calculus of variations often uses indicator functions δ,
these are ruled out in the Lemma by the differentiability requirement on δ. In fact the
result in this Lemma would break down with indicator functions because outcomes
could fail to exist, that is S(R+ αδ,A) could be empty with positive probability for
any α, continuity of δ ensures that S(R+αδ,A) is non-empty. In our proofs and even
when we check second order conditions in practice, we always work with continuous
δ’s.

4.4 General formulation

Let F be the value of the objective function for a given R20

F (R) ≡ E [W (T (R, A) , S (R, A) , A)] .

We can now re-state the Optimal Control with GSE problem as

max
{R:S→T }

F(R) (25)

s.t. R ∈ E

where, E is a pre-specified set of admissible policy functions. Note that restriction
(18) is left implicit but guaranteed to hold in this formulation, as it is embedded in
the definition of S (R, A) .

The expectation defining F integrates over A. The set E has to be restricted so
that S (R, A) is a singleton a.s. for all R ∈ E , guaranteeing that the expectation that
gives F(R) is well defined. Also, E has to be restricted to ensure that a solution to
the optimization problem exists. We discuss in more detail the choice for E in Section
4.9.

We denote the solution to Problem (25) by R∗.

19Although perhaps only a curiosity, we point out that the uniform bound in Condition 2 is
stronger than needed for this Lemma, as it also holds if hτ (R(s), A)R

′
(s) < 1.

20Notice that F maps the space of functions into the real line R.
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4.5 Apparent Partial Information: Revelation and Invert-
ibility

In some cases the government can still implement the FI policy even if it does not
observe the shocks. This occurs whenever the government can learn the true state of
the economy A from observing the signal s.21

To formally define Invertibility, let (τFI , sFI) : Φ → T × S be the FI solution and
S∗,F I be the support of sFI .

Definition 4 Invertibility holds if for any signal that occurs in equilibrium s ∈ S∗,F I

there exists a unique A ∈ Φ such that sFI(A) = h(τFI(A), A).

Invertibility will often occur when the dimension of τ is the same as the dimen-
sion of A. In this case knowledge of s in equilibrium reveals A. Even if A is high-
dimensional, Invertibility holds if Φ is a finite set, as only by coincidence would the
same equilibrium point (τ, s) occur for two different realizations of A.

Proposition 1 Under Invertibility R∗ solves the FI-problem.

This follows from the fact that the PI case is a constrained FI problem, therefore
the value in the PI case is less than or equal to the FI case, and the value of the FI
case is achievable under Invertibility.

A large part of the literature has considered this case, in particular all the papers
assuming revelation in incentive problems or those justifying the FI assumption by
appealing to the fact that signals can be backed out from prices.

To illustrate a case of Invertibility within the example of Section 3, assume that
γ = 1 with certainty. The government does not observe the random value of θ and it
has to choose taxes observing l. This is only apparently a PI problem, because the
government can infer θ from observing the labor choice, hence the government can
implement the FI policy. In this case the solution would coincide with the FI solution
and, therefore, it would show perfect tax smoothing.

4.6 First order conditions under GSE

The case of interest in this paper arises when knowledge of (τ, s) is not sufficient to
back out the actual realizations of the shocks from (18), so that Invertibility as in the
previous subsection does not obtain. In general, Invertibility fails if A has dimension
higher than 1, at least one element of A has a continuous distribution and the other
elements of A are non-degenerate. This is related to Assumption 4. For example, in

21In the literature of optimal contracts under private information and incentive compatibility
constraints this is the standard assumption, which amounts to assuming full revelation. Invertibility
also holds in the supply function model of Klemperer and Meyer (1989), where uncertainty is one-
dimensional.
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the model of Section 3, the values of θ, γ remain hidden even after the choice of τ
has been made for a given observed labor l if either θ, γ, (or both) have continuous
distributions and the other random variable is non-degenerate.22

We can now state our main result, namely a first order optimality condition un-
der GSE. Let W ∗

τ ,W
∗
s , h

∗
τ denote Wτ ,Ws, hτ evaluated at s = S(R∗, A) and τ =

R∗(S(R∗, A)).

Proposition 2 Assume Assumptions 1-4. Assume that a solution to (25) exists
denoted R∗. Assume, R∗ satisfies Conditions 1-2, the interiority conditions stated in
Lemma 1 hold and R∗ ∈ int(E). Then R∗ satisfies the following necessary first order
condition

E

(
W ∗
τ +W ∗

s h
∗
τ

1− h∗τR
∗′

∣∣∣∣S(R
∗, A)

)
= 0 (26)

almost surely in A.

We have already discussed the generality of all Assumptions and Conditions in-
volved. Given fundamentalsW,h, FA, the interiority requirement on equilibrium (τ, s)
can often be satisfied by enlarging the sets T ,S.23 We imposed minimal restrictions
on the set of admissible functions E hence interiority of R∗ is likely to hold.

The proof of Proposition 2 uses an argument similar to the one often used in
the literature on calculus of variations. Notice, however, that our approach is not a
special case of the standard calculus of variations: unlike in the standard case, the
choice of R involves choosing measurability conditions relating the observable signal
and the underlying variables of integration. We refer the interested reader to Section
4.11, where we explain this difference in more detail.

In the following paragraphs we show some of the key steps in the proof and we
comment where each assumption is needed. For a detailed proof see Appendix A.2.

Take any function (a variation) δ : S → R and a constant α ∈ R. Now consider
reaction functions of the form R∗ + αδ. For a given δ consider solving the (one-
dimensional) maximization problem

max
α∈R

F(R∗ + αδ) (27)

so that now we maximize over small deviations of the optimal reaction function in
the direction determined by δ. It is clear that 0 ∈ argmaxα∈ℜ F(R∗+αδ). Lemma 1
already guaranteed that the solution S(R∗+αδ,A) is unique so that F(R∗ + αδ) is
well defined. Hence, we can take derivatives involved in the function F . Appendix
A.2 shows the first equality in

∂F(R∗+αδ)

∂α

∣∣∣∣
α=0

= E

(
W ∗
τ +W ∗

s h
∗
τ

1− h∗τR
∗′
δ(S(R∗, A))

)
= 0 (28)

22Even in the case that A is one-dimensional Invertibility is also violated if h
(
RFI∗ (·) , ·

)
is

non-monotonic. We leave an exploration of this case for future work.
23See footnote 42.
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and the second equality follows because α = 0 is a solution of (27). Since the con-
ditional expectation is a function defining an orthogonal error, this implies (26).24

Furthermore, even if (26) holds “only” almost surely, continuity of R∗ (Condition 1)
and the fact that S(R∗, A) has a density implies that this equation characterizes the
whole function R∗.

As we anticipated the first order condition (26) does not coincide with the “stan-
dard recipe” FOC (22). The term 1

1−h∗τR
∗′ acts as a kernel, or measure change. This

is the new term relative to the standard case under separation, when fA|s does not
depend on R. The term 1

1−h∗τR
∗′ captures the effect of the choice of R on the density

fs. More precisely, denoting Sδ′(α,A) ≡ d S(R∗+αδ,A)
dα

, in Appendix A.2 we show that

Sδ′(0, A) =
h∗τδ

1− h∗τR
∗′

(29)

The numerator h∗τδ captures the direct effect of a small (α) change in policy through
(18). The term 1

1−h∗τR
∗′ captures the degree to which the signal responds in equilibrium

to a marginal α change, near the optimum and along each direction δ.
At this point, Figure 1 may provide useful intuition. The notation for the shocks

and signal structure are from the example in Section 3. Given a choice for R, upon
observing a certain value of the signal s (in the example, hours worked l), the planner
cannot be sure if it was determined by a value of shocks (γ1, θ1) or the value (γ2, θ2),
as illustrated by the intersection of a policy R with two possible reaction functions
h. The issue of General Signal Extraction is to realise that the choice of R influences
the likelihood of observing s. Small changes in the choice of R impact on s differently
for each realisation. In particular, consider a small deviation R + αδ, when δ is the
indicator function of an interval around s.25 The figure illustrates how the impact of
this deviation on the signal will be different if realisation (γ1, θ1) or (γ2, θ2) actually
materialise (even though these two realisations give rise to the same outcome for R).
The diference in the outcome s for each realisation is proportional to the term 1

1−hτR′

that appears in (26). Notice that if R and h−1(·, A) are nearly parallel then 1−hτR
′

is close to zero and the kernel is large. Hence, the kernel gives more weight in the FOC
to realisations such that a small change in the policy has large effects on equilibrium
s.

24More precisely, take random variables X,Y. We know the conditional expectation E [X | Y ] =
f(Y ) for a function f such that E [(X − f(Y ))g(Y )] for all functions g. To go from (26) to (28) we

take
W

∗

τ
+W

∗

s
h
∗

τ

1−h∗

τ
R∗′

to play the role of X, S(R, A) to play the role of Y, 0 the role of f(Y ) and δ the role

of g.
25This Figure uses an indicator function δ for illustrative purposes and because it is often used

in the calculus of variations literature. However, as pointed out after Lemma 1, in our proofs we
require continuous δ’s.
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Figure 1: Optimal policy R and deviation

l

τ

h−1(., θ1, γ1)

h−1(., θ2, γ2)

R+ αδ

R

The figure refers to the example of Section 3 to illustrate the effect of a deviation R+αδ on the signal,

that is the intersection with two possible reaction functions h associated with different realisations

of the shocks θ and γ. The signal is on the x-axis, and the policy on the y-axis.

4.6.1 A convenient optimality condition

Condition (26) is useful for comparability with the standard FOC and to point out
the role of the kernel 1

1−hτR∗′ . However, it suggests that computing the solution
involves solving a differential equation, since the derivative of the policy function R∗′

is involved in (26). In that case numerical solutions should ensure that both R∗ and
R∗′ are well approximated. As it turns out, we can simplify things by deriving an
optimality condition in which R∗′ is not present. This happens because R∗′ is also
present in the density fA|s which defines the integral in (26). A sufficient condition to
derive this result is the following assumption. In the following we denote a random
variable with an upper case, say X, its density fX , and we use lower case, say x, for
possible values of X.

Denote the support of A2’s conditional on observing s, τ as

Θ2 (s, τ) = {A2 : s = h(τ, A1, A2) for some (A1, A2) ∈ Φ} .

Assumption 5 The vector A can be partitioned as A = (A1, A2) for a1 ∈ R such
that, i) the conditional density fA1|A2

exists with probability one on A, ii) for any
(s, τ, a2) ∈ S × T ×Θ2 (s, τ) there is a unique a1 such that s = h(τ, a1, a2), iii) the
partial derivative hA1

exists everywhere in T × Φ and it is bounded away from zero.
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Part i) strengthens Assumption 4. Part ii) means that one can recover A1 from
knowledge of the other variables, i.e. there is a well defined function A1 = A∗(s, A2)
satisfying s = h(R∗(s),A∗(s, a2), a2) for all (s, a2) ∈ SR∗×Θ2 (s) that occur in the
optimal policy. Equivalently, we could define A∗(s, a2) as the inverse function of
S(R∗,·, a2).

Proposition 3 In addition to the assumptions and conditions needed for Proposi-
tion 2, assume Assumption 5. Then, R∗ satisfies the following necessary optimality
condition
∫

Θ2(s,R∗(s))

W ∗
τ +W ∗

s h
∗
τ∣∣h∗A1

∣∣ fA1|A2
(A∗(s, a2), a2) dFA2

(a2) = 0 for almost all A (30)

and for s where the marginal density of S(R∗, A) is positive.

The proof is in Appendix A.3. As in Proposition 2 the functions W ∗
τ ,W

∗
s , h

∗
τ , h

∗
A1

are evaluated at equilibrium values.
As promised, this optimality condition does not involve R∗′.
In Section 4.10 we discuss how to set up an algorithm that uses this optimality

condition. In addition to simplifying computations this proposition honors the title
of the paper, as the proof involves computing the filter fA|s explicitly, highlighting
that in general this filter depends on the optimal policy R∗ and its derivative R∗′ ,as
it appears in the Jacobian in (77).

4.7 Relation to previous results on optimal policy with PI

Previous results available in the literature on optimal policy under PI can be derived
as special cases of Proposition 2. In those cases the “standard recipe” worked and
(22) gave the correct solution.

Corollary 1 Assume for some s ∈ SR∗ one of the following Cases holds

1. (Invertibility) there is a unique A ∈ Φ such that S(R∗, A) = s.

2. (exogenous signals) the welfare-relevant allocation is a function of τ , the signal
s is independent of τ , and given by s = h(A), hence hτ = 0.

3. (linearity of h) hτ is constant for all A ∈ Φ such that S(R∗, A) = s.

Then the general FOC (26) reduces to the FOC (22) at this s.

The proof is trivial: in all cases the term 1
1−h∗τR

∗′ cancels out because it is known

given s so that this term can be pulled outside of the conditional expectation in (26).
We now discuss how each case has been used in the literature and how it arises using
variations of our example of Section 3.
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Case 1 is related to the case discussed in Section 4.5. It generalizes that section
as invertibility here can hold only for a subset of SR∗ .

In Case 2, signals are exogenous. There is indeed PI, but the optimal policy
can be found under separation. Some references for this case are in the first two
paragraphs of the literature review (Section 2). For a concrete example, modify our
fiscal policy example of Section 3 so the signal is given by s = θ + ψ, where ψ is
noise (measurement error) and the state is A = (θ, γ, ψ). The associated first order
condition (26) would simplify to equation

E [Wl|s] = 0 (31)

as there would be no kernel related to the endogeneity of the distribution of the signal.
Therefore, in this case there is separation: one can compute fA|s without knowledge
of the optimal solution (for example, using the Kalman filter). This density is then
applied to find the optimal solution with (31). In this case, the government would
have to choose τ also under PI without knowing the revenue generated by this tax,
so that perfect tax smoothing is not possible, but the signal extraction problem is
exogenous to the optimal solution.

We discussed in Section 2 how the literature on learning and experimentation
(or armed-bandit problems) could abstract from issues of GSE because it considered
models where Case 2 can be applied. This is because this literature assumes a sequen-
tial structure between signals and actions, implying that signals are predetermined
with respect to policy, and can thus be treated as exogenous in the optimization. We
illustrate this in the context of our model of fiscal policy in Appendix C.4. However,
as we already emphasized in Section 4.1, in models with state-variables and signals
generated by forward-looking behaviour, Case 2 is violated and our general result
applies. We show in Section 6 a modification of our main example that illustrates
this point.

Case 3 highlights that for the kernel to be relevant, hτ has to assume different
values for different possible realizations of the shocks, conditional on the signal. It
applies if h is linear in τ as in Svensson and Woodford (2004). Since this paper is the
closest to ours, we now derive their results as a special case of the FOC (26) in the
Corollary below.

First of all, it is helpful to distinguish two different roles played by the function
h in our setup. First, h maps the shocks into a part of the allocation that enters the
objective function W (in our fiscal policy example, hours). Second, it is what the
PI literature (e.g. Svensson and Woodford, 2004) calls the “measurement equation”,
mapping the shocks (and the policy) into an observed signal.

Corollary 2 IfW is a quadratic function of τ and s and h is linear in τ , then optimal
policy has the “certainty equivalence” property, that is, optimal policy under PI calls
for applying the FI policy function to the conditional expectation of the shocks.
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Let A = (1, θ, γ) and for simplicity of notation, consider the case where the objec-
tive function depends only on the policy τ and an endogenous signal s, and it involves
only quadratic terms (i.e. the linear terms are zero):

W (τ, s) = −
ωτ
2
τ 2 −

ωss
2

2
(32)

and the reaction function is

s = h+ hττ + hθθ + hγγ (33)

where the ω’s are positive coefficients and the h’s are constants.
The FOC under PI (26) becomes

E [ωττ + ωshτ (h+ hττ + hθθ + hγγ) |s] = 0 (34)

which can be rewritten as
τ = FE [A|s] (35)

for a vector of coefficents

F ≡

(
−

ωshτh

ωτ + ωsh2τ
,−

ωshτhθ
ωτ + ωsh2τ

,−
ωshτhγ
ωτ + ωsh2τ

)
.

It is easy to check that the FI solution satisfies τ = FA. Comparing this FI solution
with (35) shows that there is “certainty equivalence”, that is, the government forms
the best estimate of the state and behaves as if this estimate was certainty, or FI.

However, as noted by Svensson and Woodford (2004), the “separation principle”
does not hold. To see this, notice for example that E [θ|s] satisfies

E [θ|s] = E [θ|h+ hτFE [A|s] + hθθ + hγγ = s] (36)

so that the density of fθ|s depends on the optimal choice determined by F.

4.8 Second order condition

After Proposition 2 we discussed how the result is obtained using ∂F(R∗+αδ)
∂α

∣∣∣
α=0

= 0.

Similarly, the second order condition ∂2F(R∗+αδ)
∂α2

∣∣∣
α=0

≤ 0 has to hold for any δ.

Using this principle, we can obtain the following second order condition that
further restricts the solution. This can be useful in practice if we find two solutions
to (30), the second order condition may help to select the correct one. The proposition
is stated for the case where W does not depend on τ, the case when τ is an argument
can be treated similarly to obtain a more involved expression.

First, we make a regularity assumption and impose a new condition that allows
us to compute the second derivative of the objective function using a variational
argument similar to the one used to prove Proposition 2.
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Assumption 6 W is twice differentiable everywhere with respect to s, h is twice
differentiable everywhere with respect to τ and the second derivatives |Wss| , |hττ | < Q
uniformly on S × T × Φ for a constant Q <∞.

Condition 3 R∗ is twice differentiable almost everywhere with respect to s, with∣∣R′′
∣∣ < Q uniformly on SR.

Proposition 4 In addition to the assumptions, conditions on R and interiority con-
ditions of Proposition 2, assume Assumption 6 and Condition 3. Then, for all contin-
uously twice differentiable deviations δ : S → R, R∗ satisfies the following necessary
second order condition

E
[
W ∗
ss

(
Sδ′(0, A)

)2
+W ∗

s S
δ′′(0, A)

]
≤ 0 (37)

where Sδ′(0, A) is given by equation (29) and

Sδ′′(0, A) =
δ′∗h∗τS

δ′ + (δ∗)2 h∗ττ + δ∗h∗ττR
∗′Sδ′ − δ′∗ (h∗τ )

2 R∗′Sδ′ + δ∗δ′∗ (h∗τ )
2 + δ∗ (h∗τ )

2 R∗′′Sδ′

(1− h∗τR
∗′)2

(38)

Here, W ∗
ss, h

∗
τ , h

∗
ττ , δ

∗, δ′∗ denote the respective functions evaluated at s =
S(R∗, A) and τ = R∗(S(R∗, A)). Moreover, Sδ′ is evaluated at α = 0 as in (37).

The proof is in Appendix A.4.
Two important remarks: i) this is only a necessary condition, we leave research for

a sufficient second order condition for later, ii) different from second order conditions
found in the calculus of variations literature, the above condition involves (δ∗)2 and δ′∗

along with δ itself. The literature on the calculus of variations often arrives at simpler
expressions by taking indicator functions, indeed these terms would disappear from
the above expression in this case, as (δ∗)2 = 0 or 1 and δ′∗ = 0 almost everywhere
for δ. However, as pointed out after Lemma 1, in our analysis we need continuous
variations, so we stay away from indicator function δ’s so we keep these terms in the
expression.

In practice we take δ’s that put almost all weight in a small neighborhood of s.
In this way we can check the second order condition “around” many specific points s
while maintaining continuity, see Section 5.2.

4.9 Existence of a maximum

Obviously, the optimality conditions can be misleading if a maximum does not exist,
as emphasized by some famous examples in the calculus of variations literature.26

One way to guarantee existence is to restrict the set of functions E to be compact
but keeping E as large as possible so as to include global maxima in most models.

26See page 294 Clarke (2013).
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In view of the previous results it may be tempting to specify E as the set of
all functions satisfying Conditions 1-2. It turns out, however, that this set is not
compact.27 The following strengthened condition is enough to guarantee compactness.

Condition 4 Same as Condition 2 but (24) holds at all s where R′ exists, where
|s− h(R(s), A)| ≤ δ for some δ > 0, for some A as in the first line of Condition 2.28

This condition requires that well-conditioning (24) holds uniformly around all
points that are “nearly” fixed points of h(R(·), A). If R satisfies Condition 4 then it
satisfies Condition 2 as well.

Proposition 5 Define E as the set of all functions R satisfying Conditions 1 and 4
for some KL, ε, δ > 0. Let Assumptions 1,2,4 hold. Then there exists a solution R∗

attaining the maximum of problem (20).

Choosing a large KL and small ε, δ should include in E the global optimum for
most models.

The proof follows because E is obviously non-empty, E a compact set in the sup-
norm, because of the continuity of the objective function and boundedness of T , S.
For details see Appendix A.5

4.10 Putting everything together

The above results give a clear path to find solutions to (20): i) Find a solution to R∗

for all (or a fine grid of) s using

Algorithm 1 Discretize the set of possible values for s. For each possible value
of s ∈ SR∗ and a candidate τ = R∗(s), evaluate each function in the integrand of
(30) at (τ, s,A∗(s, a2), a2). Find the integral on the left side of (30) by integrating a2
over all possible values in Θ2(s, τ) given the candidate τ. This set can be found by
checking whether the implied a1 = A∗(s, a2) is within the support of A1. This maps
each possible τ into a value for the integral on the left side of (30). The optimal
choice R∗(s) is found by solving a non-linear equation that maps a candidate τ into
an integral as close as possible to zero.

ii) if a unique solution is found check that Conditions 1-2 and interiority conditions
are satisfied.

If we find several solutions in i) then proceed to: ii’) check if some solutions can
be ruled out with the second order condition.

27It is possible to find a sequence of functions fk each with one fixed point satisfying Condition
2 but converging to a function with two fixed points. Therefore the set of functions satisfying
Condition 2 is not closed.

28To clarify, |s− h(R(s), A)| ≤ δ is only required for A’s such that the derivative of of R exists
at all elements of S(R, A).

27



If still several solutions survive proceed to: ii”) evaluate the objective function
E(W ) at each candidate solution and pick the R with the highest value.29

4.11 Relation with Calculus of Variations

In this subsection we clarify the distinction between our contribution and the type of
problems addressed with standard Calculus of Variations and explain why we need to
go to first principles to derive our optimality condition since our case is not a special
case of the standard approach.

It is clear that problem (20) can be reformulated as

max
R:S→T

∫

Φ

W (R(S(R, A)), S(R, A), A) dFA. (39)

Although related, (39) is not a special case of the standard formulation in the litera-
ture on the Calculus of Variations. Consider the following citation:

“The basic problem in the subject that is referred to as Calculus of Variations
consists of minimizing an integral functional of the type

∫
Λ(x(t), x′(t), t)dt. (40)

over a class of functions x” (p. 287 Clarke, 2013). Optimality conditions for this
problem were first formulated by Euler in 1744 and they have been generalized in
many directions.30

The two problems are clearly related, they both involve an integral of a known
function (W or Λ) and the choice is over a function (R or x). A notable difference
between our problem (39) and (40) is that the object to be chosen in our case (namely
R) is not a function of the variable of integration (namely A), while the standard
case requires x to be a function of the variable of integration t.31

Our problem is to choose the measurability conditions relating observables s and
the underlying variable of integration A, while this is not an issue in (40). To our
knowledge, this has not been treated in the literature. Hence, we need to derive
optimality condition from first principles.

29In purity one should still check that the objective function can not be improved by using some R
for which the Lipschitz bounds of Conditions 1-2 and interiority conditions are binding. This would
require either to apply Kuhn&Tucker conditions or to prove that the optimal R can not violate
these bounds. We leave this for another paper.

30They have been applied in various economic models including, for example, the neoclassical
growth model in continuous time.

31Another difference is a simplification: the objective function in the standard case involves the
derivative x′, while in our case R′ is not an argument of W .
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5 Solution of fiscal policy model with GSE

We now apply our theoretical results to solve for optimal policy under PI in the model
of Section 3.32 In Section 6 we extend the analysis to study a dynamic labour supply
decision in presence of learning-by-doing and in Section 7 we present an infinite-
horizon model.

5.1 Low government spending and optimal tax smoothing

We parametrize the economy as follows. We assume u(c) = log(c) and v(l) = B
2
l2.

We set β = .96. B and the mean of θ are set to normalize average output to 1 and
average hours to a third. We let θ be uniformly distributed on a support [θmin, θmax]
and γ uniformly distributed on [γmin, γmax]. Government expenditure is constant and
equal to 25% of average output. The mean of γ is 1. The supports of both shocks
imply a range of ±10% from the mean.

We first present the FI solution in order to illustrate the optimal response of
taxes and allocations to the two different shocks we consider. In Figure 2 we show
how hours and taxes move with the two different shocks under FI. On the left side of
the figure, we keep γ constant and equal to its mean and we show that both hours
and taxes are decreasing in the productivity shock. On the right side, we keep θ
constant and equal to its mean and show that labor is increasing in γ, while taxes are
decreasing. This shows that when we introduce PI with only hours being observed,
if the government sees an increase in l, it would want to react in opposite directions
depending on the source of the shock: this would call for a tax increase, if driven by
low θ, or a tax cut if driven by high γ. Hence, this model is particularly interesting to
analyze optimal policy with endogenous PI since by observing a certain value l and
imposing a tax rate τ , the government cannot infer the value of the shocks.

We now discuss the problem of optimal policy with PI. Notice that the equilibrium
condition (6) becomes

Bl1c1 = γθ(1− τ1) (41)

and after substituting out consumption using the resource constraint, we obtain that
labor supply is the positive root of a quadratic equation, so that the reaction function
(12) specializes to

l = h(τ, θ, γ) =
Bgθ−1 +

√
(Bg)2θ−2 + 4Bγ(1− τ)

2B
. (42)

This equation gives the signal observed by the government, namely the level of
hours worked, as a function of the tax rate and the two unobserved shocks. While it is

32Consistent with the presentation of the model in Section 3, we focus on productivity and demand
shocks that hit the economy only in the first period and assume that the signal is the level of hours
worked. In Appendix C, we also consider permanent shocks to productivity (Appendix C.1) and the
case in which the signal is output (Appendix C.2).
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Figure 2: Hours and taxes with Full Information
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Left panels: top, hours under FI as a function of the productivity shock; bottom, tax rate under

FI as a function of the productivity shock. Right panels: top, hours under FI as a function of the

demand shock; bottom, tax rate under FI as a function of the demand shock.

clear that hours are unambiguously increasing in the demand shock γ, it is important
to note that the productivity shock θ has two opposing effects on l: the substitution
effect between leisure and consumption and the wealth effect, that acts in the opposite
direction.

By setting the tax rate, the government affects the informativeness of the signal.
Notice that the government can actually achieve full revelation of the value of pro-
ductivity θ, by setting a tax rate of 100%. This would reveal θ = g

l
, but imply zero

consumption. Hence, this choice would clearly by suboptimal. This illustrates that
the government faces a trade-off between learning about the state of the economy
and choosing a suitable policy under uncertainty.

To the extent that θ is the most important shock affecting tax smoothing, we
could expect that extracting a better signal about theta is valuable to the government.
Combining this with the discussion in the previous paragraph suggests that higher
taxes in the first period are valuable because they narrow the range of possible θ’s.

Furthermore, the extent to which hours are an informative signal about produc-
tivity depends importantly on the level of government spending, through its effect on
the marginal utility from consumption. If g = 0, then substitution and wealth effect
exactly offset each other and hours are independent of θ. In the presence of positive
government spending, the wealth effect dominates the substitution effect and hence
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high realizations of θ will lead to low labor, ceteris paribus. The higher g, the higher
the marginal utility of consumption, the stronger the wealth effect on labor supply,
and the more informative hours become about productivity.33

The partial derivatives hτ and hγ that we need to derive to solve the optimality
condition (30) are easily obtained analytically in this example. In particular,

hτ (τ, θ, γ) =
−1√

(Bg)2 (θγ)−2 + γ−14B(1− τ)
. (43)

It is clear that both the productivity shock and the demand shock affect this
slope, therefore the kernel in the optimality condition (30) is not a constant. Hence,
we proceed to find a R∗ that satisfies (30) using Algorithm 1 described above.

Figure 3 illustrates the optimal policy for this case, plotting the tax rate against
observed labor. The red line is R∗, while the yellow region is the set of all equilibrium
pairs (lFI , τFI) that could have been realized under FI.

The limits of the signal l = L(R∗; θmax, γmin) are easy to find ex-ante by exploiting
the fact that the extreme values for the signal l coincide with the FI allocation, which
we denote by LFI(θ, γ). As l is increasing in γ and decreasing in θ, letting lmin and
lmax be the extreme values of l in the PI solution, we have

lmin = L(R∗; θmax, γmin) = LFI(θmax, γmin)

lmax = L(R∗; θmin, γmax) = LFI(θmin, γmax)

and the PI solution is in the interval [lmin, lmax].
For these extremes values of the signal, there is full revelation, but anywhere

between these two extremes the government has to choose a policy without knowing
the values of γ, θ that give rise to equilibrium taxes or labor. It can be seen that
the optimal policy calls for a tax rate in between the minimum and the maximum FI
policies for each observation.

At low realizations of hours, the government learns that productivity must be
high, so the tax rate can be rather low. The lowest labor realization leads to the
FI equilibrium for (θmax, γmin). Then, taxes start to increase: higher l’s signal lower
expected productivity and hence revenue, as the set of admissible θ’s is gradually
including lower and lower realizations. This goes on up to a point where the set of
admissible θ’s conditional on l is the whole set [θmin, θmax]. From that point on, the
tax rate changes slope and becomes decreasing with respect to l. This is because now,
with any θ being possible, increasing l signals an increasing expected revenue, hence
allowing lower tax rates on average, up to the point where the highest θ’s start being
ruled out, at which point the policy becomes increasing again, up the full revelation
point lmax = LFI(θmin, γmax).

33In order to illustrate the non-linear effect of government spending g on the signal extraction, we
discuss both a case with low g (in this subsection) and a case with high g (in Section 5.3).
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Figure 3: Optimal policy with low g
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Optimal tax rate as function of hours under PI. Red line: R∗; yellow region: set of FI pairs (l, τ) for

all possible realizations of (θ, γ); black line: linear policy connecting the two full revelation points.

To gain further understanding on the implications of PI for the properties of
the model, we plot again hours and taxes as functions of each shock individually in
Figure 4. In all four panels, we reproduce the FI outcomes shown in Figure 2 (blue
dashed-dotted lines). The red lines represent the PI outcomes. For instance, in the
left panels we keep γ equal to its mean and we plot hours and taxes as functions
of θ. Interestingly, it can be seen that hours become more volatile in response to
productivity shocks under PI, while taxes become smoother and change the sign of
their response to θ. This is because under this parametrization the government learns
little about the realizations of θ and hence optimally chooses to cut taxes as hours
increase.34 On the right-hand side, we plot again hours and taxes as functions on γ,
keeping θ equal to the mean. For intermediate values of γ, the government is relatively
confident about the realization of the demand shock, hence the policies under FI and
PI are very close. However, for extreme realizations, the government is uncertain
about which shock is driving hours, hence it cuts taxes for very low γ’s and increases
taxes for very high γ’s, believing that changes in productivity are responsible for the
observed behavior of hours.

We also plot the locus of admissible realizations of shocks conditional on observing
an average level of hours, l = .33, in Figure 5. The wealth effect of productivity makes

34We will see in Section 5.3 that this property of the solution will change with higher government
expenditure.
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Figure 4: Hours and taxes with Partial Information and Full Information
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Left panels: top, hours as a function of the productivity shock (solid red line for PI, blue dashed-

dotted line for FI); bottom, tax rate as a function of the productivity shock. Right panels: top,

hours as a function of the demand shock; bottom, tax rate as a function of the demand shock.

this locus an increasing function in the (θ, γ) space. As hours are increasing in γ and
decreasing in θ, a given level of hours could be due to combinations of high demand
and high productivity, or low demand and low productivity. It should be noted that
the locus of shocks realizations conditional on l is endogenous to policy. Importantly,
τ affects the slope of this locus, implying that the government can choose to some
extent on what shocks the signal extraction will be more precise. To see this, observe
that a horizontal locus would imply revelation of the value of γ, while a vertical locus
would imply revelation of the value of θ.

Optimal policy with PI calls for a substantial smoothing of taxes across states.
This can be seen in Figure 6, where the equilibrium cumulative distribution function
of tax rates under PI (red line) is contrasted with the one obtained under FI (blue
dotted line). This result is rather intuitive and it carries a general lesson for optimal
fiscal policy decisions under uncertainty: when the government is not sure about what
type of disturbance is hitting the economy, it seems sensible to choose a policy that is
not too aggressive in any direction and just aims at keeping the budget under control
on average.

In our model, this smoothing of taxes across states will imply a larger variance of
tax rates in the second period with respect to the FI policy. In the second period,
all the uncertainty is resolved and the tax rate will take whatever value is needed to
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Figure 5: Set of admissible shocks consistent with observing l = .33
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Set of combinations of (θ, γ) that have positive density in equilibrium, conditional on a particular

realization of the signal, namely l = .33. Solid red line for PI, blue dashed-dotted line for FI.

balance the budget constraint. This is of course taken into account at the time of
choosing a policy under uncertainty, so that we could say that optimal policy is very
prudent while the source of the observed aggregate variables is not known and then
responsive after uncertainty has been resolved.

This result is related to the question on whether taxes should be smooth across
states or over time, depending on the completeness or incompleteness of financial
markets. With complete markets and FI, tax smoothing happens across states (Lucas
and Stokey, 1983). When markets are incomplete, the FI government substitutes tax
smoothing across states with tax smoothing over time (Aiyagari et al., 2002). In our
model, with incomplete markets and PI, we find that taxes are smoother across states
than over time. This suggests that tax smoothing across states may not necessarily be
an indication of market completeness and full insurance on the part of the government,
but simply a sign of incomplete information about the state of the economy.

Because of this property, our model can rationalize the slow reaction of some
governments to big shocks like the Great Recession. The Spanish example in the
latest recession is a case in point. In 2008, it was far from clear how persistent the
downturn would be and also whether is was demand-driven or productivity-driven and
the government did not adjust its fiscal stance quickly, only to make large adjustments
in the subsequent years. We will discuss this effect further in Section 7.
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Figure 6: Equilibrium CDF of tax rates
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5.2 Checking Conditions 1-2 and Second Order Condition

In this subsection we briefly discuss how we check Conditions 1 and 2 as well as the
Second Order Condition of Proposition 4 in this numerical example. First, notice
from our Figures that our computed R∗ is a continuous function and its derivative is
never too large, implying that we can easily find a bounding constant KL < ∞ that
makes Condition 1 satisfied.

As far as Condition 2 is concerned, we verify numerically that the term hτR
∗′ is

bounded above by a number less than 1. Indeed, in this numerical example, its range
of values is between -0.34 and 0.08, depending on the realizations of A.

In order to check the Second Order Condition, we implement the following pro-
cedure. We parametrize δ(s) = φ(s;µ, σ) where φ is the probability density function
of a Normal distribution with mean µ and standard deviation σ. We then set a very
small σ = 0.005 to put most of the weight around certain µ ’s, and we vary µ on a
grid of s ’s ranging from the minimum value to the maximum value in SR∗ . Next, we
check the inequality (37) for all value of µ on this grid.

5.3 Close to the top of the Laffer curve

Let us now look at the case where government expenditure is very high, equal to 60%
of average output in both periods.35 We will see that this leads to a very non-linear

35All other assumptions on preferences and shocks are the same as in Section 5.1.
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optimal policy and to an exception to tax-smoothing across states. This example is
of interest for several reasons. From an economic point of view, Partial Information
is of higher importance here: since the government needs to balance the budget
in the second period it is now concerned about the possibility of a very low level of
productivity θ, as in this case tax revenue is low in the first period and a large amount
of debt will need to be issued. A high debt, combined with high future expenditure,
may call for very high taxes in the future, it could even mean getting the economy
closer to the top of the Laffer curve, where taxation is most distortionary.

This example will also be of interest because the PI solution has some very different
features from the FI outcome. By increasing marginal utility from consumption, high
government spending makes the wealth effect of a productivity shock larger, with the
consequence that hours worked become a stronger signal about θ. The government
will optimally exploit this in the signal extraction.

Figure 7 shows optimal policy for this case (red line), again contrasted with the
set of tax-labor outcomes under FI (yellow region).

Figure 7: Optimal policy with high g
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Optimal tax rate as function of hours under PI. Red line: R∗; yellow region: set of FI pairs (l, τ) for

all possible realizations of (θ, γ); black line: linear policy connecting the two full revelation points.

The figure shows that the optimal solution is highly non-linear. The derivativeR∗′

is positive and relatively high in a middle range of levels of l, but both to the left and
to the right of this middle range R∗ it is much flatter. Notice that this is the opposite
of what happens with a low level of g in Section 5.1. When government expenditure
is sufficiently low, the government is very uncertain about the true realization of θ.
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Hence higher labor does not allow a more precise signal extraction about productivity.
On the other hand, when g is sufficiently high, there is an intermediate region of
observables where the government becomes confident about low realizations of θ. In
Appendix B we prove this result by illustrating how g affects the slope of the loci of
realizations of the shocks through its impact on the wealth effect.

To illustrate how the PI policy involves a relatively precise signal extraction on
θ with high government expenditure, compare the sets of possible realizations of θ
conditional on hours (on the x-axis) under FI in Figure 8 and under PI in Figure 9.
Consider Figure 8 first. It can be seen that under FI any realization of θ is consistent
with an intermediate realization of l, but each of these θ’s would call for a different
tax rate. However, under PI, there can only be one tax rate for each observed l and
the government uses this policy to extract information on θ.

Figure 8: Set of admissible θ’s with FI
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positive density in equilibrium under FI.

To see this, consider now Figure 9. The minimum value of l is only consistent
with the highest possible θ (and lowest possible γ) because the wealth effect dom-
inates. Under PI, increasing l from this point, the government becomes uncertain
and lower realizations of productivity become consistent with the observations. At
first, uncertainty is rising with l, but in the intermediate region of l’s the government
becomes more and more confident about low realizations of productivity. This leads
to the sharp increase in the tax rate, which in turn gives rise to feedback effect on
the set of possible θ’s: high taxes discourage work effort, so higher labor now is an
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Figure 9: Set of admissible θ’s with PI
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even stronger signal of low θ (high marginal utility from consumption). In this way
an optimal policy and a conditional distribution of shocks consistent with it confirm
each other in equilibrium.

Consistently with this analysis of the signal extraction, we also plot hours and
taxes as functions of each shock individually, and we contrast the PI outcomes with
the FI solution in Figure 10. On the left-hand side we consider productivity shocks
only. As illustrated above, in the intermediate region of l’s the government has a
precise signal about θ, hence PI and FI policies and allocations are very close to
each other. However for extreme realizations of θ the government is fooled about the
source of the fluctuations and does hardly respond to productivity. On the right-hand
side we consider only demand shocks. It can be seen that the PI government has very
imprecise information about γ. Hence it responds to these shocks with the opposite
slope with respect to the FI government.

The case of high government expenditure shows that optimal policy with PI can
be very non-linear in order to avoid the worst outcomes, e.g. in the model hitting
the top of the Laffer curve or, in the real world, a debt crisis. As shown in the
previous Section 5.1, when expenditure is low and there are no concerns related to
the government budget constraint, policy has to be smooth, but when there are
contingencies that are particularly dangerous for agents, then optimal policy calls
for being very reactive to observables in order to prevent those cases to materialize.
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Figure 10: Hours and taxes with PI and FI: high g
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Left panels: top, hours as a function of the productivity shock (solid red line for PI, blue dashed-
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hours as a function of the demand shock; bottom, tax rate as a function of the demand shock.

This is exemplified by the optimality of increasing taxes steeply in the first period
to avoid having to distort the economy too heavily in the second period if realized
productivity turn out to be low (and hence the fiscal deficit turns out to be high).
This lesson seems relevant for the understanding of the fiscal policy reaction to the
financial crisis in 2008 and afterward, especially in countries like Spain and Italy, that
arguably where in danger of getting close to the top of the Laffer curve, as testified
by the fact that significant increases in taxes after 2009 did not raise the amount of
revenue as much as it was desired by these governments.

5.4 Linear-quadratic approximation

We now compare our solution to existing methods based on linear-quadratic optimiza-
tion (Svensson and Woodford, 2004). In order to do so, we modify our distributional
assumption and we assume that both θ and γ are normally distributed. We then trun-
cate these distributions at three standard deviations from the mean in order to have
a bounded support for the shocks in our solution method. The standard deviation of
each of the shocks is assumed to be 3% of the mean.

In order to compute the linear approximation, we take a second-order approxima-
tion of the objective function and a first-order approximation of the reaction function
h around the allocation and policy that arises under FI when the shocks take their
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mean value. Then, we compute the “certainty equivalent” policy as described in
Section 4.7. Importantly, this policy can be found under FI and then applied to the
PI case by simply computing the conditional mean of the shocks for each value of l.
Figures 11 and 12 compare the optimal policy and the linear approximation in the
case of low g and high g respectively. It can be seen that the approximation is quite
accurate for intermediate realizations of labor, but less so for extreme values. This
suggests that linear approximations can be misleading when there is endogenous PI
and the economy is hit by large shocks.

An important difference between the non-linear solution and the linear approxi-
mation is that in the linearized model the government cannot affect the slope of the
loci of shocks realizations conditional on the signal. In the Svensson and Woodford
(2004) environment, this slope is constant and exogenous to policy, hence there is no
scope for a choice of better signal extraction about one shock or the other.

Figure 11: Linear approximation, low g
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Figure 12: Linear approximation, high g
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6 A model with dynamic labor decision and pre-

determined taxes

We now describe a version of the model with a dynamic labor supply choice and a
different timing assumption for taxes and show that our results are robust to this
modification and do not depend on taxes and signals happening simultaneously. In
this model, the policy instrument is predetermined, as a future tax rate is decided
conditional on a currently realized signal (hours).36 Because of learning-by-doing, the
labor supply decision is dynamic and the signal function h is implicitly defined by
an Euler equation for labor supply.37 Agents have Rational Expectations and choose
current hours depending, among other things, on taxes paid next period, making the
signal endogenous to future policy. This shows that (i) the general issue of endogeneity
of signals to policy does not depend on simultaneity of policy and signals and (ii) our
results can be easily applied to models where the signal is determined by a dynamic
equation, as opposed to an intratemporal condition as in the previous section.

36Clymo and Lanteri (2019) study optimal fiscal policy under FI with this timing assumption on
policy decisions.

37Stantcheva (2015) studies optimal taxation with truthful revelation in a similar model with
learning-by-doing and private information about productivity.

41



6.1 Preferences and technology

The economy lasts for three periods t = 1, 2, 3. The representative agent’s utility is

E

3∑

t=1

βt−1 [γtu(ct)− v(lt)] (44)

with γ1 = γ, a random variable with distribution Fγ (demand shock), while γ2 =
γ3 = 1.

The resource constraints in the three periods are

ct + g = θtχ(lt−1)lt (45)

for t = 1, 2, 3, given l0, with θ1 = θ, a random variable with distribution Fθ (pro-
ductivity shock). Instead, θ2 = θ3 = θ̄, a known number. χ is a “learning-by-doing”
function that maps work experience in period t into productivity in period t+1, with
χ(l) > 0, χ′ > 0, χ′′ < 0.

The household’s budget constraints are

ct + qtbt = θtχ(lt−1)lt(1− τt) + bt−1 (46)

for t = 1, 2, 3, starting from zero initial debt b0 and with b3 = 0. We assume that
learning-by-doing is fully internalized by individual agents. This makes the labor
choice truly “dynamic”, which is what we need for future taxes to affect current
behavior.

6.2 Government

The government finances expenditure g using income taxes and debt. The govern-
ment’s budget constraints are

τtθtχ(lt−1)lt + qtbt = g + bt−1 (47)

for t = 1, 2, 3, with b3 = 0.
Taxes are announced one period in advance. Hence, the tax rate τ1 is a given of

the problem and cannot be modified by the government. This captures the idea that
a new government inherits the current fiscal policy stance from its predecessor. The
tax rate τ2 is announced by the government at t = 1, conditional on the realization of
l1, and τ3 is announced at t = 2 (and will take the value that balances the government
budget at t = 3).

6.3 Competitive equilibrium and signal determination

The household’s first order conditions with respect to l1 and c1 can be combined to
give the intertemporal optimality condition that defines the “reaction function” h.
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v′(l1)− γu′(c1)θχ(l0)(1− τ1)− βu′(c2)θ̄l2(1− τ2)χ
′(l1) = 0. (48)

The last term of this expression is the key new element, and represents the discounted
marginal benefit of experience through its future productivity effect, net of future
taxes. Hours not only depend on current taxes through the standard substitution
effect, but also on future taxes, because they affect the returns from learning-by-
doing. The implicit function h maps the expected policy τ2 into the signal l1, for a
given realization of the shocks and associated future level of hours l2.

The other optimality conditions, as well as a brief discussion of the FI-Ramsey
problem, are in Appendix C.3.

6.4 Optimal policy

We assume u(c) = log(c) and v(l) = B lη

η
. In the numerical example below, we set

η = 1 and set the value of B such that average hours equal 1/3. The learning-by-
doing function is given by χ(l) = Clψ and we set C = (1/3)−ψ, ψ = .1 and l0 = 1/3.
Assumptions on the distributions of the shocks are as in the previous sections.

The government chooses a function R such that τ2 = R(l1) in order to maximize
(44) subject to competitive equilibrium conditions. In order to apply the optimality
condition derived in Proposition 3, two steps are required.

First, we need to compute the marginal effect of hours in the first period on hours
in the second and third periods; this is done by using total differentiation of the
first order conditions with respect to l1, l2 and l3. Second, we need to compute the
derivatives of the reaction function with respect to future taxes (hτ2) and with respect
to the demand shock (hγ); to do this, we totally differentiate the system of FOCs
with respect to l1, l2, l3, τ2 and γ1 and solve the obtained system for the derivatives
of interest. This new additional step is required because the signal is determined
through a dynamic condition that involves l2, differently from the baseline model
without learning-by-doing.

We compare the solution with low government spending (g = .25) to the solution
with high government spending (g = .60). These two cases are illustrated in Figures
13 and 14 respectively. As can be seen in the two figures, the results are qualitatively
similar to those arising in the two-period model with simultaneity. In particular, both
the presence of non-linearities and the different slope of R in the central region of
the signal are evident in Figures 13 and 14, where we plot the optimal tax function
R (red line) as well as the set of Full Information couples (l1, τ2) (yellow region).

The results of this model show that for the endogeneity of signals to arise, it is not
necessary that signals and policy apply in the same period. As agents are forward-
looking, their actions respond to future taxes, leading to GSE issues in a dynamic
context.
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Figure 13: Optimal policy in the 3-period model with low g
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Optimal tax rate τ2 as function of hours l1 under PI, with g = .25. Red line: R∗; yellow region: set

of FI pairs (l1, τ2) for all possible realizations of (θ, γ).

7 An infinite-horizon model with debt

In this section, we present an infinite-horizon version of the optimal fiscal policy model
we have considered. We show that the key intuitions developed in the two-period
model are still present and lead to interesting dynamics. In particular, optimal policy
is more responsive to signals when the government is close to a debt limit. Moreover,
the government sometimes reacts slowly to recessions and, as a consequence, needs
to raise taxes by more and for a long time.

As is well known, in the case of non-linear utility, the current bond price depends
on future taxes, hence the optimal policy under full commitment would be time
inconsistent, leading to some complications in the solution of optimal policy.38 In
order to avoid these difficulties we assume linear utility from consumption.

We also assume that the shocks are i.i.d. over time as this reduces the number of
state variables and allows us to abstract from the issues of government experimen-
tation that have been studied in the armed-bandit literature of optimal policy that
we discussed in Section 2.39 In this way we are left with the simplest infinite horizon
model of fiscal policy where endogenous signals play a role.

38Under FI, this issue was first addressed in Aiyagari et al. (2002).
39For example Wieland (2000a, 2000b), Kiefer and Nyarko (1989), Ellison and Valla (2001)
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Figure 14: Optimal policy in the 3-period model with high g
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of FI pairs (l1, τ2) for all possible realizations of (θ, γ).

7.1 Full Information

Our model under FI is a small variation of Example 2 of Aiyagari et al. (2002),
with linear utility from consumption and standard convex disutility from labor effort.
Preferences of the representative agent are given by:

E0

∞∑

t=0

βt [γtct − v(lt)] (49)

where γt is a demand shock, i.i.d. over time.
The period t budget constraint of the representative agent is

ct + qtbt = θtlt(1− τt) + bt−1 (50)

where θt is an i.i.d. productivity shock. Note that the government can only issue real
riskless bonds bt.

The standard first order conditions for utility maximization are

v′(lt)

γt
= θt(1− τt) (51)

and

qt = β
γ̄

γt
. (52)
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where γ̄ is the unconditional expectation of the demand shock γ.
The Ramsey government finances a constant stream of expenditure gt = g ∀t and

chooses taxes and non-contingent one-period debt in order to maximize utility of the
agent subject to the above competitive equilibrium conditions as well as the resource
constraint ct + g = θtlt. Under FI, the government can choose a sequence of taxes
conditional on a sequence of shocks At = (At, At−1, ..., A0), where At = (θt, γt).

The period-t implementability constraint is

bt−1 = ct −
v′(lt)

γt
lt + β

γ̄

γt
bt. (53)

We now introduce an upper bound on debt, bmax. We will assume that whenever
debt goes above this threshold, the government pays a quadratic utility cost β χ

2
(bt−

bmax)2 and we will set the parameter χ to be a large number in order to mimic a model
with an occasionally binding borrowing constraint while still retaining differentiability
of the problem.

The first order conditions for Ramsey allocations with respect to hours and debt
are:

γtθt − v′(lt) + λtθt −
λt
γt

[v′(lt) + v′′(lt)lt] = 0 (54)

and

λt
γ̄

γt
= Etλt+1 + χ(bt − bmax)I[bmax,∞)(bt). (55)

where λt is the Lagrange multiplier of constraint (50) and we denote by I[bmax,∞)(b)
the indicator function for the event b > bmax.

Thanks to the assumption of linear utility from consumption, the Ramsey policy
is time-consistent and allocations satisfy a Bellman equation that defines a value
function V FI(bt−1, At). Thus, optimal taxes are given by a time-invariant policy
function τt = RFI(bt−1, At)

7.2 Partial Information

We start the description of the PI problem by specifying its timing. At the beginning
of each period t, the Ramsey government observes the realization of the exogenous
shocks of last period At−1, the value of its outstanding debt bt−1 and the realization
of current labor lt. Based on this information, but before knowing the value of At, it
sets the tax rate τt. Formally, the choice of taxes at time t is contingent on - i.e. a
function of - (At−1, lt).

Note that because of the i.i.d. assumption on the shocks At, information about
outstanding debt summarizes all the information about past realizations that is rel-
evant in terms of the objective function and the constraints of the Ramsey problem.
In other words, the government cares about past realizations of the exogenous shocks
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only to the extent that they affect the level of current outstanding debt. As a con-
sequence, debt is a sufficient state variable in addition to the current observed signal
lt. Hence the optimal policy has a recursive structure and taxes are given by a policy
function τt = R(bt−1, lt).

Define V as the value of the utility (49) at the optimal choice for given initial debt,
before seeing the realization of l0. By a standard argument, the choice from period 1
onwards is feasible from period 0 onwards given the same level of debt. Therefore V
satisfies the following Bellman equation

V (b) = max
R: ℜ2→ℜ+

E

[
γ(θl − g)− v(l) + βV

(
(b+ g − θl + v′(l)l

γ
)γ

βγ̄

)
+

− β
χ

2
(
(b+ g − θl + v′(l)l

γ
)γ

βγ̄
− bmax)2I[bmax,∞)(

(b+ g − θl + v′(l)l
γ

)γ

βγ̄
)

]
(56)

where l satisfies l = h(R(b, l), θ, γ) and h(τ, θ, γ) is the level of hours that satisfies
(51).

The only difference with respect to the reaction function in the two-period model
is that now the government should recognize that debt affects labor indirectly through
the tax rate.

With linear utility from consumption, the reaction function is given by

l = v′−1 (θγ(1− τ)) , (57)

hence the locus of shocks realization conditional on l is increasing, that is, a certain
level of hours can be generated by combinations of high productivity and low demand
or vice versa. High θ and low γ is good news for the government for two reasons:
revenue is high and the interest rate is low. On the other hand, low θ and high γ put
pressure on the government budget constraint both by inducing low revenue and a
high interest rate on the newly issued debt.

At this point it may be worth pausing the maths and discussing how shocks and
PI influence the optimal choice of taxes. Under incomplete markets, a sequence of
adverse shocks (low θ) will lead to an increase in debt. This will be more so under PI
than under FI, because under PI the government only learns that a low tax revenue
materialised with a delay. The reason why b is an argument in R is that, in the
presence of incomplete markets, debt grows after a few bad shocks, more so than
under FI, therefore the government will have to increase the level of taxes for a given
lt to avoid debt from becoming unsustainable.

Note that in (56) we have substituted future debt using the budget constraint
(53). It is important to highlight a key difference with respect to the FI problem:
while in that case a choice of τt implied a choice of bt, now, bt is a random variable
even for a given choice of τt. In other words, just like in the two-period model, the
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government is uncertain about how much debt will need to be issued and in particular
must take into account that bad realizations of productivity may lead to a debt level
above bmax, if taxes are not sufficiently high.

In order to solve the model, we exploit its recursive structure, by solving for the
PI first order condition at each point on a grid for debt and iterating on the value
function of the problem. To see how this works, consider the objective function
defined by the right-hand side of (56).

For a given guess for the value function, this is just a function of observed labor
to which we can apply Proposition 3 and obtain the general first order condition with
PI.40

This first order condition involves the derivative V ′(b). In standard dynamic pro-
gramming it is well known that an envelope condition applies that allows the sim-
plification of the derivative of the value function. In Appendix D we show that an
analogous envelope condition holds under our PI model so that

V ′(b) = E

[
γ

γ̄
V ′(b′)

]
− χ

γ

γ̄
(b′ − bmax)I[bmax,∞)(b

′). (58)

Hence by solving the first order condition using (58) and iterating on the Bellman
equation (56), we can approximate the optimal policy. In the next subsection, we
show some numerical results obtained after parametrizing the economy. While the
model is not meant to be a quantitative model of fiscal policy, it is helpful to illustrate
the key properties of optimal policy with endogenous signals in a dynamic model with
debt limits.

7.3 Numerical results: non-linearities and delayed adjust-
ments

In order to parametrize the economy, we assume quadratic disutility from labor, and
the other parameters are as in the two-period model. The shocks are uniformly
distributed on a support of ± 5% from their means, implying a standard deviation of
2.89%. The debt limit is set at 20% of average output.

We now illustrate two interesting properties of optimal policy in this model. First,
the response of taxes to endogenous signals is quite non-linear and it depends on the
level of debt. When debt is low, optimal policy calls for smooth taxes regardless
of the realization of labor. When debt is close to the limit, taxes become highly
responsive to the signal, in particular in the central region of the signal, where there
is higher uncertainty on the state of the economy. Figure 15 illustrates this property
by plotting taxes against labor, as given by the function R∗(b, ·) evaluated at different
values of debt. Notice that taxes are in general decreasing in labor, because, with
linear-quadratic utility, hours are increasing in θ, since the only effect of this shock is

40The FOC is explicitly shown in Appendix D.
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the substitution effect. It can be seen that for lower levels of debt (namely for b = 0
and b = .1), taxes are relatively flat with respect to the signal. However, close to the
debt limit (b=.18), they become highly responsive, with a higher slope in the middle
region of realizations of hours.

Figure 15: Tax policy for different levels of debt
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Optimal tax rate as a function of the signal l, for different values of outstanding debt b. Red solid

line: b = .18; black dashed-dotted line: b = .10; blue dashed line: b = 0.

Second, optimal policy with PI can rationalize delayed fiscal adjustments following
negative productivity shocks. While optimal policy with FI can respond contempo-
raneously to such shocks, under PI the government can only respond with a lag, after
observing a higher than expected level of debt, leading to a delayed, persistent tax
adjustment. This feature of the model is illustrated in the Impulse Response Function
in Figure 16.41

We initialize both the FI and the PI economy at a level of debt equal to .12.
When the productivity shock hits, the FI government is successful at making a tax
correction to keep the economy sufficiently far from the borrowing constraint. On the
other hand, the initial tax increase under PI is small, and the PI government imposes
a fiscal adjustment only with a delay, after it learns that debt had increased. As a
consequence of this delay, the postponed tax hike needs to be larger. Notice that
because of market incompleteness, both the tax change under FI and PI are highly
persistent, even though the shock is transitory as the government smooths taxes over
time (Aiyagari et al. 2002).

41These non-linear impulse response functions are computed as percentage deviations from the
path that would arise absent all shocks.
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Figure 16: Impulse response function: θ shock
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8 Conclusion

We derive a method to solve models of optimal policy with Partial Information gener-
ically. In our setup, there is no separation between the optimization and signal ex-
traction problem, as the optimal decision influences the distribution of the shocks
conditional on the observed endogenous signal. Therefore, the signal extraction and
optimization problem are solved consistently and simultaneously.

The method works in general and we show an easily applicable numerical algorithm
to find a solution. We also show that Partial Information on endogenous variables
matters as some revealing non-linearities appear in very simple models. These non-
linearities are due to the fact that in different regions of the observed signal the
information revealed about the underlying state changes in a non-linear fashion.

Optimal fiscal policy under General Signal Extraction calls for smooth tax rates
across states when the government budget is under control, and for regions of large
response to aggregate data when the economy is close to the top of the Laffer curve or
to a borrowing limit. Uncertainty about the state of the economy helps to understand
the slow reaction of some European governments to the Great Recession, followed by
sharp fiscal adjustments and prolonged downturns: as the signal worsens and debt
increases, the government becomes more certain about lower productivity. The tax
choice can be highly non-linear as a function of the signal even in setups that are
essentially linear.

Our methodology allows to study the effects of Partial Information about the state
of the economy in models that feature important non-linearities. While we have illus-
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trated the technique in a simple model of optimal fiscal policy, the methodology can
be easily extended to address many other questions in optimal policy, such as models
with heterogeneity and unobserved idiosyncratic shocks and models with unobserved
belief fluctuations.
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A Proofs

A.1 Proof of Lemma 1

To prove Lemma 1, we first state a generic result guaranteeing that for a sequence
of functions f, fk : X → R such that fk → f , the solutions χ, χk satisfying f(χ) =
fk(χk) = 0, are well defined and χk → χ. To obtain convergence we need to ensure
that the non-linear equations fk(·) = 0 are well-conditioned.42

We make the following Assumptions

• L1 : X is compact. f and fk absolutely continuous.

• L2 : fk converge uniformly to f : d(f, fk) → 0 as k → ∞.

where d is distance implied by the sup-norm.

• L3 : there is a unique solution to f(χ) = 0, satisfying χ ⊂ int(X).

The interiority condition holds generically, if it did not, it can often be restored
by expanding X.43

Let Xd ⊂ X be the set containing all points where the derivatives f ′ and fk′ exist
for all k. Because of absolute continuity the set Xd has full Lebesgue measure in X.

• L4 The derivatives of fk converge uniformly on Xd :

sup
Xd

∣∣f ′(x)− fk′(x)
∣∣→ 0 as k → ∞

• L5 : The derivative of f exists at the solution and f ′(χ) 6= 0.

L5 ensures that the non-linear equation f(x) = 0 is well-conditioned. L5 strength-
ens mildly L3 in the sense that, loosely speaking, L3 and L5 are generically either
both satisfied or both violated for a given f .44

Lemma 2 Under Assumptions L1-L5, for k sufficiently high there exists a unique
solution to fk(·) = 0, this solution satisfies χk ∈ int(X), and χk → χ as k → ∞.

42Note that the notation for this Lemma differs from the rest of paper, here f denotes a function
and X denotes the admissible set of variables x.

43To see this, consider this example: f(x) = x, for X = [0, 1]. The interiority assumption is
violated because χ = 0. In this case one can find fk → f where the Lemma would indeed fail, for
example fk(x) = −1/k+x, where it is clear that χk is empty. But just enlarging X, for example to
X = [−1, 2], would restore the interiority condition of χ and then χk = 1/k exists.

44Consider for example f(x) = yx+x3 for y ≥ 0; both L3 and L5 hold for all y > 0; the exception
is only for y = 0, where L3 holds but L5 fails. Or, consider f(x) = |x|+ y; both L3 and L5 fail for
all y 6= 0, the exception is for y = 0 where L3 holds but L5 fails. Assumption L5 just ensures that
the cases y = 0 are excluded.
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Proof of Lemma 2
Without loss of generality we consider f ′(χ) > 0. The statements in the proof are

taken to hold for sufficiently high k.
We first prove that the solution to fk(·) = 0 exists and is interior. Given L3 and

L5 there is an ε > 0 sufficiently small so that (χ− ε, χ + ε) ⊂ int(X) and, for some
K > 0,

f ′(x) exists and f ′(x) > K for all x ∈ (χ− ε, χ+ ε). (59)

L1, f(χ) = 0 and the fundamental theorem of calculus imply the equality in

f(χ+
ε

2
) =

∫ χ+ε/2

χ

f ′ > K
ε

2
, (60)

the inequality follows from (59). Similarly, integrating over [χ− ε/2, χ] we find

−
ε

2
K > f(χ−

ε

2
)

L2 implies that there is a k sufficiently high d(fk, f) < ε
4
K. Together with the last

two inequalities we have

fk(χ−
ε

2
) < −

ε

4
K < 0 <

ε

4
K < fk(χ+

ε

2
)

Therefore fk(·) takes a positive and a negative value in (χ − ε, χ + ε). Continuity
and the intermediate value theorem imply that a solution to fk(·) = 0 exists in
(χ− ε, χ+ ε) and, therefore, that this solution is interior.

Take for now χk to be the set of solutions, so far we have proved χk is non-empty
and one of its elements is in (χ − ε, χ + ε). We now prove χk is a singleton. Let
V ≡ inf{x:|x−χ|≥ε} |f(x)| . Compactness of {x ∈ X : |x− χ| ≥ ε} and continuity of f
imply that the infimum is attained at some x∗ ∈ X with |x∗ − χ| ≥ ε. L3 implies
that x∗ can not solve f(·) = 0, so we have the second inequality in

|f(x)| ≥ |f(x∗)| = V > 0 for all x, |x− χ| ≥ ε. (61)

This and uniform convergence implies that for large k
∣∣fk(x)

∣∣ > V/2 > 0 for all x, |x− χ| ≥ ε. (62)

Consider two possibly different solutions x′, x′′ ∈ χk. Applying a similar argument
as the one below equation (60), denoting x′ ≥ x′′ then

∫ x′

x′′
fk′ = fk(x′)− fk(x′′) = 0. (63)

Now, (62) implies x′, x′′ ∈ (χ− ε, χ+ ε). Therefore (59) holds in the interval [x′′, x′]
we have ∫ x′

x′′
fk′ >

K

2
(x′ − x′′).
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Since K > 0, combining this with (63) implies x′ = x′′ so that χk is a singleton.
To prove convergence of χk, using similar arguments as before

∣∣f(χ)− fk(χ)
∣∣ =

∣∣fk(χ)
∣∣ =

∣∣∣∣∣

∫ χk

χ

fk′

∣∣∣∣∣ >
K

2

∣∣χk − χ
∣∣ ,

L2 implies that the left side goes to zero so that χk → χ as k → ∞.�

Proof of Lemma 1
Fix A ∈ Φ such that R is differentiable at all s ∈ S(R, A). Denote the bounds

Kδ, Kδ′ <∞ for |δ(s)| ≤ Kδ and |δ′(s)| ≤ Kδ′ for all s ∈ S.
The discussion in the text prior to the statement of Condition 2 shows that S(R, A)

is a singleton.
Given A ∈ Φ as above, the proof of convergence applies previous Lemma 2 when
-s in the text takes the role of x in Lemma 2.
- f and fk in Lemma 2 are given by f(·) ≡ H(·, A;R) and fk(·) ≡ H(·, A;R+αkδ)

for a sequence αk → 0. The interiority assumption ensures that R+αkδ takes values
in T for k large, hence H(·, A;R+ αkδ) is well defined.

-S(R, A), S(R+αkδ, A) take the role of χ, χk.
We now check assumptions L1-L5.
Assumptions 1, 2, and Condition 1 imply L1.
Assumption 3 implies

|H(s, A;R)−H(s, A;R+ αδ)| < Q |α|Kδ.

Since Q,Kδ < ∞ we have H(·, A;R∗ + αkδ) converge uniformly to H(·;R∗) so that
L2 holds.

L3 follows because S(R, A) is a singleton.
Using Hs(s, A;R) = 1− hτ (R(s), A)R′(s) we have

|Hs(s, A;R)−Hs(s, A;R+ αδ)| =

| [hτ ((R+ αδ)(s), A)− hτ (R(s), A)] (R′ + αδ′)(s) + hτ (R(s), A) αδ′(s) |≤

QL |α|Kδ(KR + |α|Kδ′) + |α|Kδ′Q

the equality follows from adding and substracting hτ (R(s), A)αδ′(s), where QL, Q as
in Assumption 3 and KR as in Condition 1. Letting α → 0 we have that Hs(·, A;R+
αkδ) → Hs(·, A;R) uniformly as k → ∞ so that L4 holds.

L5 is given by Condition 2.
All that is left to show is that A ∈ Φ such thatR is differentiable at all s ∈ S(R, A)

occurs with probability 1. Notice that Assumption 4 will only be needed in this part
of the proof.

Denote the set of non-differentiable points of R

SNDR = {s ∈ SR : R is non-differentiable at s} .
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Denote the set of realisations that give rise to non-differentiable outcomes as

ΦND
R =

{
A ∈ Φ : for some s ∈ S (R, A) we have s ∈ SNDR

}
.

We need to prove that Prob
(
ΦND

R

)
= 0. Clearly

ΦND
R ⊂s∈SND

R

{A : s = h(R(s), A)} . (64)

For any s ∈ SNDR , Prob{A : s = h(R(s), A)} = 0 by Assumption 4. Since by Condi-

tion 1 SNDR has Lebesgue measure zero, this implies Prob
(
s∈SND

R

{A : s = h(R(s), A)}
)
=

0. Then (64) implies that Prob
(
ΦND

R

)
= 0.�

A.2 Proof of Proposition 2

Consider the problem defined by (27). Fix δ. Given the boundedness assumptions on
δ and interiority it is clear that R∗ + αδ ∈ E for α small enough and that R∗ + αδ
satisfies Conditions 1-2. This implies that the solution of (27) is attained at α = 0
and by the maximum principle

dF(R∗ + αδ)

dα

∣∣∣∣
α=0

= 0 (65)

if this derivative exists. We first prove that this derivative exists and that (65) implies
(26).

We use the following notation: for each functionG = W,Wτ ,Ws, δ,R
∗, δ′,R∗′, hτ , S

we denoteGδ a function mapping arguments (α,A) into the value of the corresponding
G function evaluated at S (R∗ + αδ,A) and/or T (R∗ + αδ,A) , namely

Gδ(α,A) ≡ G(T (R∗ + αδ,A) , S (R∗ + αδ,A) , A).

That is, we have for example W δ(α,A) ≡ W (T (R∗ + αδ,A) , S (R∗ + αδ,A) , A) and
so on.

Let

M(α,A) ≡
W δ(α,A)−W δ(0, A)

α
. (66)

Take any sequence αk → 0. We now show that the limit and integration operators
can be exchanged as follows

lim
k→∞

∫

Φ

M(αk, A) dFA(A) =

∫

Φ

lim
k→∞

M(αk, A) dFA(A). (67)

Fix A /∈ ΦND
R∗ where, as in the proof of Lemma 1, ΦND

R∗ denotes the set of realiza-
tions where R∗ is non-differentiable at S (R∗, A).
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It is clear that as long as

Sδ′(α,A) ≡
dSδ(α,A)

dα
=
dS(R∗ + αδ,A)

dα
(68)

exists we have

dW δ(α,A)

dα
=

[
W δ
τ (α,A)(R

∗′δ(α,A) + αδ′δ(α,A)) (69)

+W δ
s (α,A)

]
Sδ′(α,A) +W δ

τ (α,A)δ
δ(α,A).

To prove existence of Sδ′(α,A), for given A,R∗, δ interpret

s = h((R∗+αδ)(s), A) (70)

as a an equation involving s and α. The implicit solution of this equation for each
given (small) α is Sδ(α,A). Lemma 1 implies that the map α → Sδ(α,A). The implicit
function theorem implies that Sδ′ in (68) exists. Furthermore, carefully differentiating
(70) with respect to α we have

Sδ′(α,A) =
hδτ (α,A) δ

δ(α,A)

1− hδτ (α,A) R
∗′δ(α,A)

(71)

Notice how the numerator of this expression in non-zero by Condition 2.

This implies that dW δ(0,A)
dα

exists, that

lim
k→∞

M(αk, A) =
dW δ(0, A)

dα
(72)

and dW δ(0,A)
dα

given by (69) and (71) for all A /∈ ΦND
R∗ .

At the end of the proof of Lemma 1 we showed that Prob(ΦND
R∗ ) = 0. Therefore

(72) holds almost surely in A.
Collecting the bounds implied by various assumptions and conditions

|M(αk, A)| ≤ Q

([
KL + αkK

δ′ + 1
] Q
ε
+Kδ

)
(73)

for all k, where Kδ, Kδ′ were defined at the beginning of the proof of Lemma 1. With
this uniform bound we can apply Lebesgue Dominated Convergence to conclude (67).

Given that
F(R∗ + αkδ)−F(R∗)

αk
=

∫

Φ

M(αk, A) dFA(A)

(67) implies that the derivative dF(R∗+αδ)
dα

∣∣∣
α=0

exists and it is equal to
∫
Φ
dW δ(0,A)

dα
dFA.

To find dW δ(0,A)
dα

we evaluate (69) at α = 0 and

dF(R∗ + αδ)

dα

∣∣∣∣
α=0

=

∫

Φ

{
[W ∗

τR
∗′ +W ∗

s ]S
δ′(0, ·) +W ∗

τ δ(S(R
∗, ·))

}
dFA
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Finally, (65), (71) and rearranging gives
∫

Φ

W ∗
τ +W ∗

s h
∗
τ

1− h∗τR
∗′
δ(S(R∗, ·)) dFA = 0. (74)

Since (74) holds for any bounded δ with a bounded derivative it also holds for any
bounded measurable δ. Therefore, the general definition of conditional expectation
implies (26) (see footnote 24).�

A.3 Proof of Proposition 3

Take random variables X, Y, Z. Assume there is a function g such that X = g(Y, Z)
a.s.; clearly for any function φ

E(φ(X, Y ) | Z) = E(φ(g(Y, Z), Y ) | Z). (75)

Letting A1 play the role of X, S(R∗, A) the role of Z, A2 the role of Y and A∗

the role of g we have the second equality in

E

(
W ∗
τ +W ∗

s h
∗
τ

1− h∗τR
∗′

∣∣∣∣S(R
∗, A) = s

)
=

E

(
Wτ +Wshτ
1− hτR∗′

(τ ∗, s, A1, A2)

∣∣∣∣S(R
∗, A) = s

)
=

E

(
Wτ +Wshτ
1− hτR∗′

(τ ∗, s,A∗ (s, A2) , A2)

∣∣∣∣S(R
∗, A) = s

)
=

∫

Θ2(s,R∗(s))

Wτ +Wshτ
1− hτR∗′

(τ ∗, s,A∗ (s, a2) , a2) dFA2|S(R∗,A)(a2, s) (76)

For simplicity in the last equality and the rest of the proof we consider the case where
A2 has a density, if A2 is a discrete variable the argument can be readily adapted.

We apply Bayes’ formula to find dFA2|S(R∗,A). First we find fS(R∗,A)|A2
. Since

A∗ (s, A2) is the inverse function of S(R∗, ·, A2), by the change of variable rule the
density fS(R∗,A)|A2

exists and is given by

fS(R∗,A)|A2
(s, a2) = fA1|A2

(A∗(s, a2), a2) |A∗
s(s, a2)| (77)

where A∗
s = ∂A∗

∂s
. To find this derivative we apply once again the implicit function

theorem to H to find

A∗
s =

1− h∗τR
∗′

h∗A1

, (78)

given Assumption 5 h∗A1
6= 0 hence this derivative is well defined. Plugging (78) into

(77) gives fS(R∗,A)|A2
. Applying Bayes’ rule, for any point with a positive density

fS(R∗,A) =
∫
fS(R∗,A)|A2

fA2
da2 we have

dFA2|S(R∗,A) =
fS(R∗,A)|A2

dFA2

fS(R∗,A)

. (79)

60



Plugging the above formula for dFA2|S(R∗,A) we see the last expression in (76) becomes

∫

Θ2(s,τ∗)

(Wτ +Wshτ )
fA1|A2

fS(R∗,A)

∣∣h∗A1

∣∣ (τ
∗, s,A∗ (s, a2) , a2) dFA2

(a2)

where we cancelled out 1−h∗τR
∗′ > 0 in the numerator and denominator. Using (26)

we set this equal to zero, the term fS(R∗,A)(s) drops out. This gives (30).�

A.4 Proof of Proposition 4

We consider a variationR∗+αδ as in the proof of Proposition 2. To prove Proposition

4, we need to compute the second derivative d2F(R∗+αδ)
dα2 |α=0. A necessary condition

for a maximum is that this second derivative is non-positive.
Thanks to Assumption 6, we can use Lebesgue Dominated Convergence to pass

the derivative inside the integral over the realizations of the shocks A (as we did in
the proof of Proposition 2).

Hence, we get
d2F(R∗ + αδ)

dα2
= E

d2W δ(α,A)

dα2
(80)

Next, we compute the derivative inside the expectation term in (80). This is given
by

d2W δ(α,A)

dα2
=
d(W δ

ss(α,A)
(
Sδ′(α,A)

)

dα
= W δ

ss(α,A)
(
Sδ′(α,A)

)2
+W δ

s (α,A)S
δ′′(α,A)

(81)
where the first derivative of the signal with respect to α, Sδ′(α,A), is given by equation
(71) and the second derivative, Sδ′′(α,A), is

Sδ′′(α,A) =
Bα

1 [1− hτ (R
∗′ + αδ′)] + Bα

2 δhτ

[1− hτ (R∗′ + αδ′)]2
(82)

with
Bα

1 ≡ δ′hτS
δ′ + δ2hττ + δhττ (R

∗′ + αδ′)Sδ′

Bα
2 ≡ hττ (R

∗′ + αδ′)
2
Sδ′ + δhττ (R

∗′ + αδ′) + hτδ
′ + hτ (R

∗′′ + αδ′′)Sδ′

where we dropped the functions arguments to avoid excessively heavy notation, but
it is understood that Sδ′ is evaluated at (α,A).

Evaluating this expression at α = 0, we get

Sδ′′(0, A) =
B1 (1− h∗τR

∗′) + B2δh
∗
τ

(1− h∗τR
∗′)2

(83)

with
B1 ≡ δ′h∗τS

δ′ + δ2h∗ττ + δh∗ττR
∗′Sδ′
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B2 ≡ h∗ττ (R
∗′)

2
Sδ′ + δh∗ττR

∗′ + h∗τδ
′ + h∗τR

∗′′Sδ′

where Sδ′ is now evaluated at (0, A).
Doing some simple algebra, this expression simplifies to (38). Hence, evaluating

(81) at α = 0, integrating it over the distribution of the shocks A and imposing that
this integral is non-positive gives condition (37).�

A.5 Proof of Proposition 5

It is clear that E is non-empty. For example, a constant policy R(s) = τ̃ for some
τ̃ ∈ T satisfies Conditions 1 and 4.

To prove that E is compact take a sequence Rk ∈ E for k = 1, 2, ... Condition 1
is equivalent to Lipschitz continuity, the Arzelà-Ascoli theorem guarantees that there
is a subsequence Rki such that Rki → Rlim uniformly in S as i → ∞ and Rlim is
Lipschitz, therefore Rlim satisfies Condition 1.

Take A such that the derivative of Rlim exists at all elements of S(Rlim, A) and
take s such that

∣∣s− h(Rlim(s), A)
∣∣ < δ. Fix any ε > 0. For any s′ such that∣∣s− h(Rlim(s), A)

∣∣ < δ we have

h(Rlim(s), A)− h(Rlim(s′), A)

s− s′
=
h(Rlim(s), A)−h(Rki(s), A)

s− s′

+
h(Rki(s

′), A)− h(Rlim(s′), A)

s− s′
+
h(Rki(s), A)−h(Rki(s

′), A)

s− s′

Since Rki → Rlim the first two numerators to the right of the equality are eventually
less than ε. Applying (yet again) the fundamental theorem of calculus, the last fraction
is less than the a.e. derivative of h(Rki(s), A) and, since all Rki ’s satisfy Condition
4, the last fraction above is less than 1 − ε for all i. Hence, taking limit as i → ∞,
for all ε > 0 we have

h(Rlim(s), A)− h(Rlim(s′), A)

s− s′
≤

2ε

s− s′
+ 1− ε.

Since this holds for all ε > 0, it also holds for ε = 0 so that h(Rlim(s),A)−h(Rlim(s′),A)
s−s′

≤

1− ε and it means that Rlim satisfies (24). Therefore Rlim satisfies Condition 4.
This proves that any sequence Rk ∈ E has a subsequence converging uniformly

to a limit Rlim that satisfies Conditions 1 and 4 therefore E is compact. Since the
objective function is continuous and it takes values on bounded sets S×T , a maximum
exists.�
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B The effect of government expenditure on the

signal extraction

In this Appendix we show that in the log-quadratic case an increase in g can change
the sign of optimal policy in the intermediate region of the signal.

First, for a given l̄ consider the locus γ̃(R(l̄), θ, l̄) which is the inverse of the
reaction function h with respect to γ, implicitly defined by

h(R(l̄), θ, γ̃(R(l̄), θ, l̄))− l̄ = 0. (84)

Let ζ be the derivative of this function with respect to θ. This can be found using
the implicit function theorem, which gives the positive slope

ζ = −
hθ
hγ

=
g
√
(Bg)2 + 4Bθ2γ(1− τ) + Bg2

2θ3(1− τ)
(85)

Now we differentiate ζ with respect to g and get

dζ

dg
=
∂ζ

∂g
+
∂ζ

∂τ

∂τ

∂g
. (86)

All the partial derivatives in the right-hand side of (86) are positive. Hence, higher
government expenditure makes the loci of realizations of the shocks steeper.

Now we illustrate how this effect changes the nature of the signal extraction on
the shocks and hence the slope of optimal policy in the intermediate region of the
signal. For this purpose, we will take a first order approximation of the loci γ̃.45

Consider Figures 17 and 18. When g is sufficiently low, the map of loci (solid blue
lines) moving in the direction of increasing l’s looks like in Figure 17. Starting at lmin
(bottom right corner) and increasing l the loci first hit the bottom-left corner, where
the lowest θ becomes possible, and then the top-right corner, where the highest values
for θ start to be inconsistent with the observed l’s. Hence in the intermediate region
of l’s all θ’s are possible, but clearly not all γ′s. In this region, the government learns
little about productivity. All the government learns is that the agent is working more
as l increases so expected output is higher and taxes can be lower. This gives the
negative slope of R∗ with low government expenditure.

On the other hand, when g is sufficiently high, the slope of the loci becomes higher.
Hence, as illustrated in Figure 18, in the intermediate region of l’s the government
learns that only a relatively small set of θ’s is possible, whereas any γ is consistent
with the observations. This leads to the positive slope of the optimal tax rate with
high government expenditure.

45In our computed examples these loci are very close to linear.
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Figure 17: Loci of shocks realizations with low g

2.8 2.9 3 3.1 3.2 3.3
0.9

0.92

0.94

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

θ

γ

l
min

l
max

increasing l

X-axis: θ, Y-axis: γ. This figure illustrates how the set of (θ, γ) with positive density changes as the

value of the signal l increases, starting from the bottom-right corner for lmin and moving up and

left until reaching the top-left corner for lmax. With low g, these loci of shocks hit the bottom-left

corner at a lower value of l than the top-right corner.

C Additional models

In this appendix we present two additional versions of our two-period model. In the
first additional model, we assume that the productivity shock is permanent and we
maintain labor as the signal. In the second model, we consider output as a signal,
instead of labor. Next, we provide some additional derivations of the model with
learning-by-doing introduced in Section 6. Finally, we present a modification of our
model that helps clarifying the relation between GSE and issues of learning and
experimentation studied in the previous literature.

C.1 Permanent productivity shock

We now consider a permanent productivity shock, that is θ2 = θ1 = θ, while we
maintain the assumption of transitory demand shock γ. This setup would be unin-
teresting with log-quadratic preferences because hours would become independent of
θ as wealth and substitution effects would cancel out. Therefore we assume linear
utility from consumption (as in the infinite-h orizon model) u(c) = c and quadratic
disutility from labor v(l) = B

2
l2, which give another case with an analytical solution
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Figure 18: Loci of shocks realizations with high g
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X-axis: θ, Y-axis: γ. This figure illustrates how the set of (θ, γ) with positive density changes as the

value of the signal l increases, starting from the bottom-right corner for lmin and moving up and

left until reaching the top-left corner for lmax. With high g, these loci of shocks hit the top-right

corner at a lower value of l than the bottom-left corner.

for the reaction function h and its derivatives.
In particular, it is easy to see from the first order condition (6) that the reaction

function (12) specializes to

l = h(τ, θ, γ) =
γθ

B
(1− τ), (87)

The optimal policy is illustrated in Figure 19 and is compared with the set of
FI tax rates conditional on l. In general, R∗ is decreasing as higher observed labor
suggests higher conditional expectation for productivity, hence allowing to balance
the intertemporal budget constraint with a lower distortionary tax. The figure also
compares the optimal policy with a linear policy obtained connecting the two full
revelation points with a straight line.

C.2 Observable output

Our benchmark example assumed that labor was observable. As a further exercise,
we now consider the case in which the signal observed by the government is output, so
s = y = θl. The government cannot sort out the values of the θ and l independently,
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Figure 19: Optimal policy with permanent productivity shock
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R∗; yellow region: set of equilibrium (l, τ) under FI.

hence there still is a problem of signal extraction as the government can not back out
the values of (θ, γ). In addition, to make the problem of PI more relevant, we assume
that the productivity shock is permanent, that is θ1 = θ2 = θ as in the subsection
above. We consider again preferences that are linear in consumption and quadratic
in labour.

Figure 20 illustrates the optimal policy for this case. When the signal is output,
the government has a lot more information than in the case studied in the main text.
This can be seen by observing that the yellow region is thinner than in Figure 19
(for the same size of the shocks). The reason for this is that current revenue τθl is
known, and hence there is no uncertainty about the amount of debt that needs to be
issued. The only uncertainty is about the amount of revenue that will be collected in
the future, as the value of (permanent) productivity is unknown.46 As we have seen,
uncertainty about debt is key to get fiscal adjustments as in our benchmark example
and this motivates our choice to focus on hours as the signal in our analysis.

46Note that if we had assumed that θ2 is not random the model would not be interesting, since
in that case there would be no uncertainty about either current or future revenue.
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Figure 20: Optimal Policy with output observed
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C.3 Additional derivations of the model with learning-by-
doing in Section 6

We report here the optimality conditions omitted in Section 6 and define the FI-
Ramsey problem in this model.

First order conditions with respect to bonds, and with respect to hours and con-
sumption in periods 2 and 3 give

qt = β
γt+1u

′(ct+1)

γtu′(ct)
(88)

for t = 1, 2,

v′(l2)− u′(c2)θ̄χ(l1)(1− τ2)− βu′(c3)θ̄l3(1− τ3)χ
′(l2) = 0 (89)

and
v′(l3)− u′(c3)θ̄(1− τ3) = 0. (90)

By substituting all household FOCs into the intertemporal government budget
constraint, and using our assumed functional forms, we can obtain the implementabil-
ity constraint of the FI-Ramsey problem:

γ −Bl1+η1 + β
[
1−Bl1+η2 (1− ψ)

]
+ β2

[
1− Bl1+η3 (1− ψ (1− ψ))

]
= 0 (91)
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The FI-Ramsey problem is to choose the allocation that maximizes (44) subject
to the implementability constraint (91) and subject to the additional constraint

Bl1+η1 −
γθ(1− τ1)l1

c1
− βψ

(
Bl1+η2 − βψBl1+η3

)
= 0, (92)

given τ1.
This additional, non-standard, constraint is obtained by combining the labor

FOCs in periods 1 and 2 and reflects the fact that the government is not free to
choose any allocation that satisfies implementability, because the tax rate in period
1 is predetermined. Hence, the Ramsey allocation has to satisfy the FOC for labor
supply in period 1 at the given value of τ1.

C.4 Learning, experimentation and GSE

We now present a modification of our model that may help to clarify the distinction
between General Signal Extraction and the related issues that are the focus of other
papers in which posterior beliefs about the uncertain state of the economy are endoge-
nous to policy decisions. For instance, Prescott (1972), Kiefer and Nyarko (1989) and
Wieland (2000a, 2000b) study optimal experimentation in linear models, whereas Van
Nieuwerburgh and Veldkamp (2006) consider a model of endogenous learning with
non-linearities, but abstract from incentives to active experimentation. Our example
shows that by assuming that policy actions are predetermined with respect to the
determination of signals, these papers avoid the issue of GSE, which arises in more
general setups and is the focus of our paper.

In order to illustrate this point, we modify our simple model of Section 3 to
obtain endogenous posterior beliefs, but in absence of endogeneity of signals to the
contingent policy function, because taxes are predetermined. The economy lasts for
three periods t = 1, 2, 3.

The utility function is

γu(c1)− v(l1) + β [u(c2)− v(l2)] + β2 [u(c3)− v(l3)] (93)

As in our baseline model, the preference shock is temporary and only hits in
the first period. However, in order to generate incentives to learn, we assume the
productivity shock is permanent, that is θ1 = θ2 = θ3 = θ.

Taxes in the first two periods are predetermined with respect to allocations.
Specifically, the government chooses τ1 before observing any signal (it is a non-
contingent policy), then chooses τ2 contingent on the signal l1, that is τ2 = R(l1),
without observing the realizations of the shocks, nor the rest of the allocations and
prices in period 1 and finally, in period 3, observes the realizations of the shocks and
the allocation and sets τ3 to the value that balances the budget.

In this model, the government understands that a choice of τ1 will affect the dis-
tribution of the signal l1, making the posterior distributions of the shocks at t = 2
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endogenous to policy in period 1. This endogeneity of posteriors generates an incen-
tive to experiment, and violates the “separation principle”, as discussed by Wieland
(2000a, 2000b). However, importantly, the signal l1 does not depend on R, because
of the absence of any physical state variable linking the labor supply decision at t = 1
to taxes at t = 2.

To see this, notice that in equilibrium, hours in the first period are given by

v′(l1)

u′(θl1 − g)
= θγ(1− τ1) (94)

and hence do not depend on the function R. In this model, the only variable in
period 1 that responds to expectations about future taxes is the bond price q1.

In a more general model with endogenous state variables, such as the model of
learning-by-doing of Section 6, or in a model where policy is contingent on contempo-
raneous signals, such as the simple model of Section 3, the distribution of the signal
is a function of the policy R, hence the issue of GSE, which is the focus of our paper,
arises.

D Derivation of the Envelope Condition (58)

In this Appendix we derive the Envelope Condition (58). First of all let us introduce
the necessary notation. A tax policy is a function of debt and labor R(b, l) and labor
is a function of a policy R, outstanding debt and the exogenous shock, L(R; b, A)
defined by the zero of

H(l, A,R) ≡ l − h(R(b, l), A), (95)

in analogy with the two-period model. By total differentiation of (95), the partial
derivative of labor with respect to debt, Lb, is given by

Lb(R, b, A) =
γθRb(b, l)

v′′(l) + γθRL(b, l)
. (96)

Now, for simplicity consider a case without borrowing penalty. In order to derive
the envelope condition, we differentiate (56) with respect to b and get

V ′(b) = E

[
(γθ − v′(l∗))L∗

b + V ′
(
b∗

′

)(γ
γ̄
+ βb∗

′

LL
∗
b

)]

where

b∗
′

L =
−θγ + [v′′(L(R∗, A, b))L(R∗, A, b) + v′(L(R∗, A, b))]

βγ̄

l∗ = L(R∗; b, A)

L∗
b = Lb(R

∗; b, A).
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Using (96) we can write

V ′(b) = E

[(
γθ − v′(l∗) + βV ′

(
b∗

′

)
b∗

′

L

) −γθR∗
b(l, b)

v′′(l) + γθR∗
L(l, b)

+ V ′
(
b∗

′

) γ
γ̄

]
. (97)

Using Proposition 3, the FOC of PI Ramsey problem is

E

[(
θγ − v′(l∗) + βV ′(b′∗)b∗

′

L

) h∗τ
1− h∗τR

∗
L

|l̄

]
= 0 (98)

for all l̄. Furthermore, we have that the partial derivative of the reaction function h
with respect to taxes is

hτ =
−γθ

v′′(l)
.

So from (97) we get

V ′(b) = E

[(
γθ − v′(l∗) + βV ′

(
b∗

′

)
b∗

′

L

) h∗τ R∗
b(l, b)

1− h∗τR
∗
L(L, b)

+ V ′
(
b∗

′

) γ
γ̄

]
.

Now, applying the law of iterated expectations, using the fact that Rb(l, b) is known
given L, b and using (98), we obtain

V ′(b) = E

[
E

((
γθ − v′(L∗) + βV ′

(
b∗

′

)
b∗

′

L

) h∗τ R∗
b(L, b)

1− h∗τR
∗
L (L, b)

∣∣∣∣L
)
+ V ′

(
b∗

′

) γ
γ̄

]
(99)

= E

[
0 + V ′

(
b∗

′

) γ
γ̄

]
(100)

Finally, adding the marginal cost of excessive debt this becomes

V ′(b) = E
γV ′(b′)

γ
−
γ

γ
χ(b′ − bmax)I[bmax,∞)(b

′).
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