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Abstract
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JEL Classi�cation No.: E44, E52

Keywords: monetary policy rules, stabilization policies, asset price volatility, economic �uctuations.

�Centre de Recerca en Economia Internacional (CREI), Universitat Pompeu Fabra, and Barcelona GSE. E-mail:
jgali@crei.cat. I am thankful for comments to Davide Debortoli, Alberto Martín, Jaume Ventura, Michael Reiter, Orazio At-
tanasio, Gadi Barlevy, Óscar Arce, Franck Portier, Sergi Basco, Anton Nakov, Luca Dedola, Roberto Billi, Giorgio Primiceri,
three anonymous referees, and conference and/or seminar participants at CREI, NBER Summer Institute, U. of Mannheim,
Rome MFB Conference, Seoul National University, U. of Vienna, NYU, Columbia, Bank of Spain 1st Annual Research
conference, EEA Lisbon Congress, CEPR ESSIM, Barcelona GSE Summer Forum, 1st Catalan Economic Society Confer-
ence, UCL ADEMU Conference, 22nd Spring Meeting of young Economists (Halle). Ángelo Gutiérrez, Christian Hoynck,
Cristina Manea, and Matthieu Soupré provided excellent research assistance. I acknowledge the European Research Council
for �nancial support under the European Union�s Seventh Framework Programme (FP7/2007-2013, ERC Grant agreement
no 339656). I also thank for generic �nancial support the CERCA Programme/Generalitat de Catalunya and the Severo
Ochoa Programme for Centres of Excellence in R&D.



The rise and collapse of speculative bubbles are viewed by many economists and policymakers as an

important source of macroeconomic instability and a challenge for monetary policy.1 Yet, the recurrent

reference to bubbles in the policy debate contrasts with their conspicuous absence in modern monetary

models. A likely explanation for this seeming anomaly lies in the fact that standard versions of the

New Keynesian model, the workhorse framework used in monetary policy analysis, leave no room for the

existence of bubbles in equilibrium, and hence for any meaningful model-based discussion of their possible

interaction with monetary policy.2

In the present paper I develop a modi�ed version of the New Keynesian model which allows, under

certain conditions, for the emergence of bubble-driven �uctuations in equilibrium. The modi�cations

to the standard model involve the introduction of overlapping generations of �nitely-lived consumers

and stochastic transitions to inactivity ("retirement").3 For brevity, I henceforth refer to the proposed

framework as the OLG-NK model. The assumption of an in�nite sequence of cohorts makes it possible

for the transversality condition of any individual consumer to be satis�ed in equilibrium, even in the

presence of a bubble that grows at the rate of interest.4 Furthermore, the assumption of retirement

(or, more generally, of a relative decline of individual labor income over the life cycle) can generate an

equilibrium rate of interest that does not exceed the economy�s trend growth rate, a necessary condition

for the size of the bubble to remain bounded relative to the size of the economy. Finally, the assumption

of sticky prices �a key feature of the New Keynesian model�has two important implications that are

missing in most models with bubbles found in the literature. Firstly, price stickiness makes it possible

for an aggregate bubble to in�uence aggregate demand and, hence, output and employment. Secondly,

price stickiness makes monetary policy non-neutral, thus allowing for a meaningful discussion of the

potential role of monetary policy when the possibility of bubbles and bubble-driven �uctuations is part

of the environment. An appealing feature of the OLG-NK framework proposed here is that it nests the

standard New Keynesian model (the NK model, henceforth) as a limiting case, when the probabilities of

death and retirement approach zero.5

1See, e.g., Borio and Low (2002) for an early statement of the risks posed by asset price �uctuations and the need for an
appropriate monetary policy response. Taylor (2014) points to excessively low interest rates in the 2000s as a factor behind
the housing boom that preceded the �nancial crisis of 2007-2008. See also Barlevy (2018) for a discussion of the contrast
between economists�and policymakers�perspectives on bubbles.

2The reason is well known: the equilibrium requirement that the bubble grows at the rate of interest violates the
transversality condition of the in�nite-lived representative consumer assumed in the New Keynesian model (and in most
macro models). See, e.g., Santos and Woodford (1997) and further discussion below.

3Other authors have extended recently the New Keynesian model to incorporate overlapping generations of �nite-lived
agents into the New Keynesian framework, though none of them has investigated the possible existence of bubbles. See the
literature discussion below.

4And even though that transversality condition does not hold for the economy as a whole.
5 In Galí (2014) I also analyzed an OLG model with sticky prices and bubbles. That model, however, did not allow for
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After deriving the equations describing the model�s equilibrium, I characterize the (perfect foresight)

balanced growth paths consistent with that equilibrium and discuss the conditions under which a (non-

vanishing) bubble may exist along those paths. If the incidence of retirement is su¢ ciently low (relative

to the consumer�s discount rate), there exists a unique balanced growth path, and it is a bubbleless one

(as in the standard model). On the other hand, if the probability of retirement is su¢ ciently high (but

plausibly so), a multiplicity of bubbly balanced growth paths is shown to exist (each characterized by a

di¤erent bubble-output ratio), in addition to a bubbleless one (which always exists).

After characterizing the existence and potential multiplicity of balanced growth paths �bubbly and

bubbleless� I turn to the analysis of the stability properties of those paths and the role of monetary

policy in shaping those properties. In order to do so, I log-linearize the equilibrium conditions around a

balanced growth path, as in the standard analysis of the textbook NK model, underscoring throughout

the tractability of the new framework.

Several �ndings of interest emerge from the analysis of the equilibrium dynamics of the OLG-NK

model.

Firstly, the introduction of an overlapping generations structure by itself does not change any of

the qualitative properties of the standard NK model. Thus, in the absence of bubbles, the resulting

equilibrium conditions describing the dynamics of in�ation and the output gap are isomorphic to those of

the standard model with a "modi�ed" discount factor. Among other properties, the so called "forward-

guidance puzzle" carries over unaltered to the OLG-NK framework despite the introduction of �nitely-

lived consumers.

Secondly, and most importantly, the OLG-NK structure allows for the existence, under certain con-

ditions, of bubble-driven �uctuations. A "leaning against the bubble" (LAB, henceforth) interest rate

policy, if precisely calibrated, may succeed in insulating output and in�ation from aggregate bubble �uc-

tuations. Furthermore, if aggressive enough, the LAB policy may be able to rule out bubble �uctuations

themselves, with the required strength of the response depending in a nonlinear way of the value of the

bubble-output ratio along the associated balanced growth path. On the other hand, a LAB policy which

does not succeed in eliminating bubble �uctuations may end up increasing the volatility and persistence

of bubble �uctuations, as in Galí (2014).

Thirdly, a policy that targets the output gap (or in�ation) while ignoring the bubble will generally

succeed at stabilizing those macro variables. On the other hand, only if the average size of the bubble-

the possibility of bubble-driven �uctuations in output, nor did it nest the standard New Keynesian model. See the literature
review below.
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output ratio lies above a certain threshold, a su¢ ciently aggressive output-based stabilization policy will

succeed in ruling out �uctuations in the bubble as well.

Finally, and with regard to the welfare implications of the OLG-NK model, two main results are

derived. First, expected lifetime utility along a deterministic balanced growth path (BGP) is increasing

in the associated bubble-output ratio. Secondly, an increase (decrease) in the size of the aggregate bubble

raises (lowers) the expected lifetime utility of all cohorts, as long as monetary policy doesn�t "overreact"

to it. However, and to the extent that consumers are risk averse, recurrent symmetric bubble-driven

�uctuations will be welfare-reducing, and will thus justify policies that eliminate them. In sum: large

bubbles are good, but their �uctuations are generally not (unless they imply larger bubbles, as in one of

the examples analyzed).

The paper concludes with some re�ections on the caveats and limitations of the OLG-NK model

developed here and points to some directions for future research. An important caveat of the present

model, worth emphasizing at the outset, is that bubble �uctuations have an impact on the economy

mainly as aggregate demand shifters.6 In particular, they do not generate any distortion that would

break down the "divine coincidence" property, which still holds in the OLG-NK economy. Accordingly,

the role of monetary policy is either to o¤set the e¤ects of bubbles on aggregate demand or to prevent

the emergence of bubble �uctuations altogether. In both cases, the central bank aims at stabilizing the

output gap and in�ation. As I discuss in the concluding section, one can think of extensions of the basic

model developed here where the emergence of a bubble may generate a tradeo¤ calling for a more nuanced

policy response.

The rest of the paper is organized as follows. Section 2 summarizes the related literature. Section 3

describes the basic framework underlying the analysis in the rest of the paper. Section 4 characterizes

the economy�s balanced growth paths. Section 5 analyzes the potential role of bubbles as a source

of �uctuations, and discusses the consequences of alternative policies in that regard. Section 6 makes

some considerations about the welfare implications of bubbles and bubble-driven �uctuations. Section 7

summarizes and concludes.

1 Related Literature

Much of the literature on rational bubbles in general equilibrium has been based on real models.7 An early

reference in that category is Tirole (1985), using a conventional overlapping generations (OLG) framework

6 I write "mainly" because as discussed below, they may also have an impact on the distribution of wealth.
7See Martín and Ventura (2018) and Miao (2014) for recent surveys on the theory of bubbles.
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with capital accumulation. More recently, Farhi and Tirole (2012), Martín and Ventura (2012), Miao and

Wang (2012, 2014, 2018), Basco (2014), Aoki and Nikolov (2015), Hirano and Yanagawa (2017), Bengui

and Phan (2018), and Ikeda and Phan (2019), among others, have studied the role of bubbles in real

models with �nancial frictions, in which bubbles interact with �nancial constraints, generally relaxing

them.

There is also an extensive literature on bubbles using monetary models with fully �exible prices. In

most of those models, including the seminal paper by Samuelson (1958), money itself is the bubbly asset.

Asriyan et al. (2019) provide a more recent example, introducing the notion of a "nominal" bubble.

While monetary policy is not always neutral in those models, the mechanism through which its e¤ects

are transmitted is very di¤erent from that emphasized in models with nominal rigidities.

A number of papers have modi�ed the standard NK model by introducing overlapping generations

à la Blanchard-Yaari, though none of them has considered the possibility of bubbles. Piergallini (2006)

develops a related model with money in the utility function to analyze the implications of the real

balance e¤ect on the stability properties of interest rate rules. Nisticò (2012) discusses the desirability of

a systematic monetary policy response to stock price developments in a similar model, but in the absence

of bubbles. Del Negro, Giannoni and Patterson (2015) propose a related framework as a possible solution

to the "forward guidance puzzle." None of the previous authors allow for retirement or declining labor

income in their frameworks. That feature plays a central role in the emergence of asset price bubbles in

the model proposed here.

Bernanke and Gertler (1999, 2001) analyze the possible gains from "leaning against the wind" mon-

etary policies in a NK model in which stock prices contain an ad-hoc deviation from their fundamental

value. The properties of that deviation di¤er from those of a rational bubble, which cannot exist in their

model, which assumes an in�nitely-lived representative consumer.

In Galí (2014) I studied the interaction between rational bubbles and monetary policy in a two-period

overlapping generations model with sticky prices, emphasizing some of the risks associated with "leaning

against the bubble" policies.8 While closest in spirit to the present paper, the framework used in that

paper had important limitations. In particular, it ruled out the possibility of bubble-driven �uctuations,

since employment and output were constant in equilibrium, with the bubble only having redistributive

e¤ects. By contrast, the model developed here shows how bubble �uctuations, in combination with price

stickiness, can have an impact on economic activity, with an explicit analysis of the mechanisms that

8See also the comment by Miao et al. (2018) for an analysis of e-learnability of the bubbly equilibria in Galí (2014),
around both a stable and an unstable steady state.
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determine the size of that impact (i.e. the "bubble multiplier"). On the other hand, the assumption

of two-period lived individuals made in Galí (2014), while convenient, cannot be easily reconciled with

the frequency of observed asset boom-bust episodes (not to say with the observed duration of individual

prices). By way of contrast, the model developed here is consistent with a calibration to a quarterly

frequency (as is conventional in the business cycle literature) and could thus be potentially embedded in

a quantitative medium-scale DSGE model. Finally, it is worth noting that the structure of the linearized

equilibrium conditions of the OLG-NK model developed below is isomorphic to that of the familiar

textbook NK model, with the aggregate bubble being now a driver of aggregate demand whose evolution

is described by an additional equation. Some special cases of interest nested in the OLG-NK model

below include (i) the standard NK model itself, (ii) an economy with �nite lives and retirement but no

bubbles, and (iii) and economy with a constant bubble-output ratio. The use of those special cases as

benchmarks facilitates the understanding of the factors driving the properties of the OLG-NK economy.

Several insights emerge from that analysis, discussed in detail below, pertaining to the persistence of the

"forward guidance puzzle" in the presence of �nite horizons, and the role played by di¤erent factors in

strengthening or weakening the requirements on the policy rule in order to guarantee a unique equilibrium.

Two recent working papers have explored, using alternative perspectives, the connection between

monetary policy and asset bubbles. In contrast with the present contribution, however, both papers

involve frameworks characterized by a monetary transmission mechanism very di¤erent from that found

in the standard NK model. Thus, Allen et al. (2017) revisit the relationship between interest rates

and asset bubbles discussed in Galí (2014) using a variety of frameworks (mostly non-monetary), and

exploring the conditions and environments that determine the sign of that relation. Dong et al. (2017)

analyze the implications of alternative monetary policy rules (including rules that respond systematically

to asset bubbles) in a NK model with in�nitely-lived agents, and where a bubbly asset can help alleviate

entrepreneurs�funding constraints. Monetary policy a¤ects the amount of liquidity in the economy �and,

as a result, the value attached to the bubbly asset�through the impact of in�ation on real reserves. They

show how in that framework a "leaning against the bubble" policy may reduce bubble volatility, but

possibly at the cost of raising in�ation volatility.

Finally, my paper is also related to Caballero and Simsek (2020), which study a New Keynesian

economy in which asset valuations, partly driven by investors�heterogeneous beliefs, are an important

determinant of aggregate demand and output. The authors examine the role the both monetary and

macroprudential policies can play at dampening the resulting excessive �uctuations in asset valuations

and output.
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2 A New Keynesian Model with Overlapping Generations

Next I describe the basic framework underlying the analysis in the rest of the paper.

2.1 Consumers

I assume an economy with overlapping generations of the "perpetual youth" type, as in Yaari (1965) and

Blanchard (1985). The size of the population is constant and normalized to one. Each individual has

a constant probability  of surviving into the following period, independently of his age and economic

status ("active" or "retired"). A cohort of size 1�  is born (in an economic sense) and becomes active

each period. Thus, the size in period t � s of the cohort born in period s is given by (1� )t�s.

At any point in time, two types of individuals coexist in the economy, "active" and "inactive." Active

individuals supply labor and manage their own �rms, which they set up when they are born. I assume

that each active individual faces a constant probability 1� � of becoming "inactive," i.e. of permanently

losing his job and quitting his entrepreneurial activities. For concreteness, below I refer to that transition

as "retirement," though it should be clear that it can be given a broader interpretation.9 The previous

assumptions imply that the size of the active population (and, hence, the measure of �rms) at any point

in time is constant and given by � � (1� )=(1� �) 2 (0; 1].

A representative consumer from cohort s chooses a consumption plan to maximize expected lifetime

utility

Es
1X
t=s

(�)t�s logCtjs

subject to the sequence of period budget constraints

1

Pt

Z �

0
Pt(i)Ctjs(i)di+ Etf�t;t+1Zt+1jsg = Atjs +WtNtjs (1)

for t = s; s + 1; s + 2; ::. � � 1=(1 + �) 2 (0; 1) is the discount factor. Ctjs �
�
��

1
�

R �
0 Ctjs(i)

1� 1
� di
� �
��1

is a consumption index. Ctjs(i) is the quantity purchased of good i 2 [0; �] at a price Pt(i). Pt ��
��1

R �
0 Pt(i)

1��di
� 1
1�� is the price index.

Complete markets for state-contingent securities are assumed, with Zt+1js denoting the stochastic

payo¤ at t + 1 (expressed in units of the consumption index) generated by the portfolio of securities

purchased in period t. The market value of that portfolio is given by Etf�t;t+1Zt+1jsg, where �t;t+1 is the
9Gertler (1999) introduces retirement in a similar fashion in a model of social security. More recently, Carvalho et al

(2016) have used a version of the Gertler model to analyze the sources of low frequency changes in the equilibrium real rate.
Blanchard (1985) assumes that relative productivity declines with age and analyzes its impact on the real rate. All these
papers develop real models, in contrast to the present one, and do not consider the possibility of bubbles.
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stochastic discount factor for one-period-ahead (real) payo¤s. Only individuals who are alive can trade

in securities markets. Note that the existence of complete securities markets allows individuals to insure

against the "risk" of retirement.

Variable Atjs denotes �nancial wealth at the start of period t, for a member of cohort s � t. For

individuals other than those born in the current period, Atjs = Ztjs=, where the term 1= captures the

additional return on wealth resulting from an annuity contract. As in Blanchard (1985), that contract

has the holder receive each period from a (perfectly competitive) insurance �rm an annuity payment

proportional to his �nancial wealth, in exchange for transferring that wealth to the insurance �rm upon

death.10

Variable Wt denotes the (real) wage per hour, and Ntjs individual work hours for a member of cohort

s � t. Both the wage and work hours are taken as given by each worker. Each �rm determines the work

hours it wants to hire, given desired output and technology. Aggregate work hours, Nt, are allocated

uniformly among all active individuals, i.e. Na
tjs = Nt=�.11 Note that N r

tjs = 0 for retired individuals.

Normalizing an individual�s time endowment to unity, it must be the case that Nt � � for all t, which I

assume throughout.

Finally, I assume a solvency constraint of the form limT!1 TEtf�t;t+TAt+T jsg � 0 for all t, where

�t;t+T is determined recursively by �t;t+T = �t;t+T�1�t+T�1;t+T .12

The problem above yields a set of optimal demand functions

Ctjs(i) =
1

�

�
Pt(i)

Pt

���
Ctjs (2)

for all i 2 [0; �], which in turn imply
R �
0 Ptjs(i)Ctjs(i)di = PtCtjs. Thus we can rewrite the period budget

constraint as:

Ctjs + Etf�t;t+1At+1jsg = Atjs +WtNtjs (3)

10Thus, individuals who hold negative assets will pay an annuity fee to the insurance company. The latter absorbs the debt
in case of death. The insurance arrangement can also be replicated through securities markets. In that case the individual
will purchase a portfolio that generates a random payo¤ At+1js if he remains alive, 0 otherwise. The value of that payo¤
will be given by Etf�t;t+1At+1jsg which is equivalent to the formulation in the main text, given that Atjs = Ztjs=.
11Note that by assuming an inelastic labor supply and demand-determined work hours I abstract from a labor supply

decision. An alternative setup with labor disutilty and a competitive labor market would generate systematic counterfactual
di¤erences in the quantity of labor supplied by active individuals across age groups, due to wealth e¤ects. Alternatively one
may assume preferences that rule out those wealth e¤ects, but at the cost of rendering the analysis below less tractable.
12Note that (�)�1 is the "e¤ective" (i.e. including the impact of the annuity) interest rate paid by a borrower in the

steady state. The solvency constraint thus has the usual interpretation of a no-Ponzi game condition.
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The consumer�s optimal plan must satisfy the optimality condition13

�t;t+1 = �
Ctjs
Ct+1js

(4)

and the transversality condition

lim
T!1

TEt
�
�t;t+TAt+T js

	
= 0 (5)

with (4) holding for all possible states of nature (conditional on the individual remaining alive in t+ 1).

As shown in the Appendix, by combining (3), (4), and (5) one can derive the following consumption

functions for active and retired individuals respectively:

Catjs = (1� �)
"
Aatjs +

1

�

1X
k=0

(�)kEtf�t;t+kWt+kNt+kg
#

(6)

Crtjs = (1� �)A
r
tjs (7)

where the superscript fa; rg denotes the consumer�s status, active or retired.14

2.2 Firms

Each individual is endowed with the know-how to produce a di¤erentiated good, and sets up a �rm with

that purpose at birth. That �rm remains operative until its founder retires or dies, whatever comes

�rst.15 All �rms have an identical technology, represented by the linear production function

Yt(i) = �
tNt(i) (8)

where Yt(i) and Nt(i) denote output and employment for �rm i 2 [0; �], respectively, and � � 1 + g � 1

denotes the (gross) rate of productivity growth. Individuals cannot work at their own �rms, and must

hire instead labor services provided by others.16

Aggregation of (2) across consumers yields the demand schedule facing any given �rm

Ct(i) =
1

�

�
Pt(i)

Pt

���
Ct (9)

13Note that in the optimality condition the survival probability  and the extra return 1= resulting from the annuity
contract cancel each other. Complete markets guarantee the same consumption growth rate between two di¤erent periods
for all consumers alive in the two periods, including those who are retiring. Thus, individual consumption is equated within
each cohort, with di¤erences across cohorts resulting from di¤erences in their relative wealth (�nancial and human) at birth.
14The assumption of complete markets guarantees that for any given cohort s, Catjs = Crtjs for all t � s. It follows that

Artjs = A
a
tjs +

1
�

P1
k=0(�)

kEtf�t;t+kWt+kNt+kg
15The assumption of �nitely-lived �rms (or more generally, �rms whose dividends shrink relative to the size of the economy)

is needed in order for bubbles to exist in equilibrium, which requires that the interest rate is no greater than the economy�s
trend growth rate, as shown below. By equating the probability of a �rm�s survival to that of its owner remaining active I
e¤ectively equate the rate at which dividends and labor income are discounted, which simpli�es considerably the analysis
below. All the qualitative results discussed below carry over to the case of di¤erent rates of "retirement" for �rms and
individuals, but at the cost of more cumbersome algebra.
16 I assume that each �rm newly set up in any given period inherits the index of an exiting �rm.
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where Ct � (1 � )
Pt
s=�1 t�sCtjs is aggregate consumption. Each �rm takes as given the aggregate

price level Pt and aggregate consumption Ct.

As in Calvo (1983), each �rm is assumed to freely set the price of its good with probability 1�� in any

given period, independently of the time elapsed since the last price adjustment. With probability �, an

incumbent �rm keeps its price unchanged, while a newly created �rm sets a price equal to the economy�s

average price in the previous period.17 Accordingly, the aggregate price dynamics are described by the

equation

P 1��t = �P 1��t�1 + (1� �)(P �t )1��

where P �t is the price set in period t by �rms optimizing their price.
18 A log-linear approximation of the

previous di¤erence equation around the zero in�ation equilibrium yields (letting lower case letters denote

the logs of the original variables):

pt = �pt�1 + (1� �)p�t (10)

i.e. the current price level is a weighted average of last period�s price level and the newly set price, all in

logs, with the weights given by the fraction of �rms that do not and do adjust prices, respectively.

In both environments, a �rm adjusting its price in period t will choose the price P �t that maximizes

max
P �t

1X
k=0

(��)kEt
�
�t;t+kYt+kjt

�
P �t
Pt+k

�Wt+k

��
subject to the sequence of demand constraints

Yt+kjt =
1

�

�
P �t
Pt+k

���
Ct+k (11)

for k = 0; 1; 2; :::where Yt+kjt denotes output in period t+ k for a �rm that last reset its price in period t,

Wt �Wt=�
t is the productivity-adjusted real wage.19 Note that the (�)k term used in the discounting of

future pro�ts corresponds to the probability that the �rm remains operative k periods ahead, while �k is

the probability that the newly set price remains e¤ective k periods ahead. Other than for the additional

discounting, the present optimal price-setting problem is identical to that in the standard model, so the

reader is referred to Galí (2015) for a discussion and derivation details.

The optimality condition associated with the problem above takes the form

1X
k=0

(��)kEt
�
�t;t+kYt+kjt

�
P �t
Pt+k

�MWt+k

��
= 0 (12)

17Alternatively, a fraction � of newly created �rms "inherit" the price in the previous period for the good they replace. In
either case I assume a transfer system which equalizes the wealth across members of the new cohort.
18Note that the price is common to all those �rms, since they face an identical problem.
19The �rm�s demand schedule (11) can be derived by aggregating (9) across cohorts.
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whereM� �
��1 is the optimal markup under �exible prices.

A �rst-order Taylor expansion of (12) around the zero in�ation balanced growth path yields, after

some manipulation:

p�t = �+ (1� ����)
1X
k=0

(����)kEtf t+kg (13)

where  t � logPtWt is the (log) nominal marginal cost, � � logM, and � � 1=(1+ r) is the steady state

stochastic discount factor, with r being the steady state real interest rate. Throughout I maintain the

assumption that ��� 2 [0; 1), which guarantees that the �rm�s problem is well de�ned in a neighborhood

of the zero in�ation balanced growth path.

Letting �t � pt �  t = � logWt denote the average (log) price markup, and combining (10) and (13)

yields the in�ation equation:

�t = ���Etf�t+1g � �(�t � �) (14)

where �t � pt � pt�1 denotes in�ation and � � (1� �)(1� ����)=� > 0.20

The details of wage setting are not central to the main point of the paper. As noted above, work hours

are demand determined and allocated uniformly among active individuals.21 For convenience, I assume

an ad-hoc wage schedule linking the productivity-adjusted real wage Wt to work hours per capita:

Wt =

�
Nt
�

�'
(15)

where Nt �
R �
0 Nt(i)di denotes aggregate work hours and � is the aggregate labor supply. The wage is

taken as given by �rms. The previous wage schedule implies a countercyclical price markup, �t � � =

�' log(Nt=N).

Wage schedule (15), together with the assumption of a constant gross markupM under �exible prices

and production function (8), implies a natural (i.e. �exible price) level of output given by Y nt = �tY,

where Y � �M� 1
' . The previous expression also corresponds to aggregate hours under �exible prices.

Note that as long as �rms exercise their market power (M > 1), aggregate hours under �exible prices

will be less than the available aggregate time endowment �. This will also be true in the sticky price

equilibrium, as long as �uctuations are "small". The fact that the natural level of output follows a

20Note that in the standard NK model with a representative consumer, the coe¢ cient on expected in�ation is given by
� while the slope coe¢ cient is � � (1��)(1���)

�
. Those expressions correspond to the limit of the expressions in the text as

� ! 1, and given that �� = � along a balanced growth path under the assumption of an in�nitely-lived representative
consumer with log utility.
21The alternative of a perfectly competitive labor market, combined with an inelastic labor supply at the individual level

would imply constant aggregate employment, and rule out the possibility of bubble-driven �uctuations. On the other hand,
introducing labor disutility would lead to a dispersion in hours worked across cohorts driven by a wealth e¤ect, an implication
that is likely counterfactual and would complicate the analysis substantially.
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deterministic trend is, of course, a consequence of the (deliberate) absence of fundamental shocks in the

above framework. But it implies a convenient property of the present model: bubble-driven �uctuations

in output and employment cannot emerge under fully �exible prices, since in that case those variables

are pinned down by the supply block of the model.

Log-linearizing (15), and combining the resulting expressions with (14) we obtain a version of the

New Keynesian Phillips curve

�t = ���Etf�t+1g+ �byt (16)

where � � �', and byt � log(Yt=Y nt ) is the output gap. Two remarks are worth making with regard to the
properties of (16). Firstly, one should note that, in contrast with the standard NKmodel, the coe¢ cient on

expected in�ation is not pinned down by the consumer�s discount factor. Instead it depends on parameters

a¤ecting the life expectancy of �rms (through �), as well as the gap between the real interest rate and

the growth rate along a balanced growth path (as captured by ��), all of which determine the e¤ective

"forward-lookingness" of price-setting. In contrast with the standard model, however, and as discussed

below, the interest rate along a balanced growth path, r = ��1 � 1, is not always uniquely determined

by primitive parameters, and may be instead related to the size of the bubble along a balanced growth

path. Secondly, the assumed environment and, in particular, the absence of time varying distortions on

the supply-side (related or not to the presence of a bubble), imply the absence of a trade-o¤ between

stabilization of in�ation and the output gap, i.e. the "divine coincidence" holds in the present model,

as is clear from (16). In other words, the macroeconomic e¤ects of bubble �uctuations in the model

are restricted to work through its impact on aggregate demand. Things would likely be di¤erent in an

environment with �nancial frictions in which bubbles a¤ected borrowing constraints for �rms�working

capital and/or distorted a consumption-investment decision, thus implying an ine¢ cient allocation even

under �exible prices. The analysis of such an extension is beyond the scope of the present paper.22

2.3 Asset Markets

In addition to annuity contracts and a complete set of state-contingent securities, I assume the existence

of markets for some other speci�c assets, whose prices and returns must satisfy certain equilibrium

conditions. In particular, the yield on a one-period nominally riskless bond purchased in period t, denoted

22Note, however, that the Phillips curve is not completely independent from the presence of a bubble, since the latter�s
size along a balanced growth path will generally a¤ect the real interest rate and hence discount factor �.
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by it, must satisfy23

1 = (1 + it)Et
�
�t;t+1

Pt
Pt+1

�
(17)

thus implying that the relation � � 1=(1+r) between the discount factor and the real return on a riskless

nominal bond (r) will hold along a perfect foresight balanced growth path.

Stocks in individual �rms trade at a price (before dividends) QFt (i), for all i 2 [0; �], which must

satisfy the asset pricing equation:

QFt (i) = Dt(i) + �Et
�
�t;t+1Q

F
t+1(i)

	
(18)

where Dt(i) � Yt(i)
�
Pt(i)
Pt

�Wt

�
denotes �rm i�s dividends, and � is the probability that �rm i survives

into next period. Solving (18) forward under the assumption that limk!1(�)kEt
�
�t;t+kQ

F
t+k(i)

	
= 0,

and aggregating across �rms:

QFt �
Z �

0
QFt (i)di

=
1X
k=0

(�)kEtf�t;t+kDt+kg (19)

where Dt �
R �
0 Dt(i)di denotes aggregate dividends. Note that the fact that individual �rms are �nitely-

lived makes it possible for the aggregate value of currently traded �rms to be �nite even if the interest

rate is lower than the growth rate of aggregate dividends.

Much of the analysis below focuses on intrinsically worthless assets �i.e., assets generating no dividend,

pecuniary or not�which may yet be traded at a positive price, constituting a pure bubble.24 Let QBt

denote the aggregate value of bubble assets in period t. In equilibrium, that variable evolves over time

according to the following two equations:

QBt = Ut +Bt (20)

QBt = Etf�t;t+1Bt+1g (21)

where Ut � QBtjt � 0 is the value in period t of new bubbles introduced by the newly born cohort,
25 and

Bt �
Pt�1
s=�1QBtjs � 0 is the aggregate value in period t of pre-existing bubble assets, already available for

trade in period t�1, with QBtjs denoting the period t value of bubble assets introduced in period s � t. The

non-negativity constraints follow from the assumption of free disposal. Note also that the introduction

23Note also that in the asset pricing equations, and from the viewpoint of an individual investor, the probability of
remaining alive  and the extra return 1= resulting from the annuity contract cancel each other.
24 In Jean Tirole�s words, pure bubbly assets are "best thought of as pieces of paper."
25Think of pieces of paper of a cohort-speci�c color or stamped with the birth year of their originators.
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of new bubble assets by incoming cohorts makes it possible for an aggregate bubble to re-emerge after a

hypothetical collapse, thus overcoming a common criticism of early models of rational bubbles. A similar

environment with bubble creation was �rst introduced and analyzed in Martín and Ventura (2012) in the

context of an overlapping generations model with capital accumulation and �nancial frictions.26

Note that in the previous environment, the initial �nancial wealth of a member of a cohort born in

period t is given by:

Atjt = QFtjt + Ut=(1� )

where QFtjt is the value in period t of a newly created �rm.
27

2.4 Market Clearing

Goods market clearing requires Yt(i) = (1 � )
Pt
s=�1 t�sCtjs(i) for all i 2 [0; �]. Letting Yt ��

��
1
�

R �
0 Yt(i)

1� 1
� di
� �
��1

denote aggregate output, we have:

Yt = (1� )
tX

s=�1
t�sCtjs

= Ct

Note also that in equilibrium

Nt =

Z �

0
Nt(i)di

= �ptYt

' Yt

where Yt � Yt=�
t is aggregate output normalized by productivity and �pt � 1

�

R �
0 (Pt(i)=Pt)

��di ' 1 is

an index of relative price distortions which, up to a �rst-order approximation, equals one near a zero

in�ation balanced growth path.

With all securities other than stocks and bubbly assets being in zero net supply, asset market clearing

requires

(1� )
tX

s=�1
t�s(�t�sAatjs + (1� �

t�s)Artjs) = QFt +Q
B
t (22)

26One possible interpretation is that the bubble introduced by each individual is "attached" to the stock of his �rm and
hence it bursts whenever the �rm stops operating (i.e. with probability 1 � �). See below for an example of such an
stochastic bubble.
27QFtjt should be interpreted as net of transfers assumed in order to equate the value of entering �rms independently of

whether they optimize or not their initial price.
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Aggregation of consumption functions (6) and (7) across individuals and cohorts, combined with

asset market clearing condition (22) and the expression for fundamental �nancial wealth (19), yields the

aggregate consumption function

Ct = (1� �)
�
QBt +Xt

�
(23)

where

Xt �
1X
k=0

(�)kEtf�t;t+kYt+kg (24)

can be interpreted as total fundamental wealth (�nancial plus human), i.e. the discounted sum of current

and future income expected to accrue to currently alive consumers.

Next I characterize the economy�s perfect foresight balanced growth paths consistent with zero in�a-

tion.

3 Balanced Growth Paths

In a perfect foresight balanced growth path (henceforth, BGP) the discount factor is constant and satis�es

� = 1=(1 + r), as implied by (17), where r is the corresponding real interest rate. Note also that zero

in�ation requires that actual and desired markups coincide, i.e. W = 1=M. Combined with (15), the

previous condition implies that output along the BGP is given by Y BGPt = �tY, which coincides with

the natural level of output, as derived above.

Evaluating (23) and (24) at a BGP yields

C = (1� �)
�
QB + 1

1� ���Y
�

(25)

where C and QB denote aggregate consumption and the aggregate bubble, both evaluated at the BGP and

normalized by productivity �t. Goods market clearing requires that C = Y thus implying the following

equation relating the bubble-output ratio qB � QB=Y and the discount factor � along a BGP:

1 = (1� �)
�
qB +

1

1� ���

�
(26)

or, equivalently,

qB =
(� � ���)

(1� �)(1� ���) (27)

Note that in deriving the previous condition I have not made use of the law of motion for rational

bubbles given by (21), so (27) should hold for any deviation from fundamental pricing, whether rational
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or not. On the other hand, (21) must be used in order to derive the BGP relation between qB and u, with

the latter denoting the corresponding (constant) ratio between the value of new bubbles and output:

u =

�
1� 1

��

�
qB (28)

Next I turn to a characterization of the model�s balanced growth paths, i.e. the solutions to (27) and

(28) satisfying qB � 0 and u � 0.

3.1 Bubbleless Balanced Growth Paths

Consider �rst a "bubbleless" BGP, i.e. qB = u = 0, which is always a solution to (27) and (28). Imposing

that condition implies

��� = �

or, equivalently,

r = (1 + �)(1 + g)� � 1 � r0

Note that the real interest rate along a bubbleless BGP �henceforth denoted by r0�is increasing in

both � and g. The reason is that an increase in either of those variables raises desired consumption by

increasing the expected stream of future income for currently active individuals, for any given level of

aggregate output. In order for the goods market to clear, an increase in the interest rate is called for.

When � = 1 (i.e., no retirement) the real interest rate along the bubbleless BGP is given (approxi-

mately) by the discount rate plus the growth rate, i.e. r0 ' �+ g, as in the standard representative agent

model (with log utility).

Note also that a change in the expected lifetime, as indexed by , does not have an independent e¤ect

on r0. The reason is that, when ��� = �, a change in  scales in the same proportion the present value of

consumption and that of income, leaving aggregate consumption unchanged and making an adjustment

in the real rate unnecessary.28

Finally, note for future reference that in the bubbleless BGP considered here the real interest rate r0

is lower than the growth rate g (i.e. �� > 1) if and only if � < �, a condition which is shown below to

be critical for the existence of bubbles.29

28The independence of the steady state real interest rate from  is a consequence of the log utility speci�cation assumed
here. That property is not critical from the viewpoint of the present paper, since there are other factors (the probability of
retirement, in particular), that can drive real interest rate to values consistent with the presence of bubbles.
29Note that the key role of retirement or, more generally, the anticipation of declining relative income in bringing about

an interest rate lower than the growth rate was a central theme in Blanchard (1985) in a deterministic OLG model though
that paper did not discuss the possible existence of bubbles. On the other hand, in the classical models of bubbles using an
OLG framework with two-period lives, the assumption of declining labor income, usually in the form of a lower endowment
or no labor supply for the old, plays a key role in lowering the real interest rate and hence in generating the conditions for
the existence of bubbles.
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3.2 Balanced Growth Paths with Bubbles

A BGP with a positive bubble corresponds to a solution to (27) and (28) satisfying qB > 0 and u � 0.

Thus, the existence of a BGP with a positive bubble, qB > 0, requires that

��� < �

or, equivalently, r > r0. On the other hand the non-negativity constraint on newly created bubbles u � 0

requires:

�� � 1

or, equivalently, r � g. The two previous conditions are satis�ed if and only if

� < � (29)

Note that the previous condition corresponds to the real interest rate being less than the growth rate

in the bubbleless BGP, as shown above.

One particular such bubbly BGP has no new bubbles introduced by new cohorts, i.e. u = 0. Note

that in that case �� = 1 or, equivalently, r = g. Thus, along that BGP any existing bubble will be

growing at the same rate as the economy, with the implied bubble size (relative to output) given by

qB = (���)
(1��)(1��) � qB.

The previous BGP is not the only bubbly BGP. If (29) is satis�ed, there exists a continuum of bubbly

BGPs indexed by r 2 (r0; g]. To see this, note that for any r 2 (r0; g] equations (27) and (28) determine

qB > 0 and u � 0 uniquely. It can be easily checked that qB is increasing in r, with limr!g qB = qB,

which establishes an upper bound to the size of the bubble-output ratio, given �,  and �. Note also that

@qB=@� < 0, i.e. the upper bound on the size of the bubble is decreasing in � over the range � 2 [0; �]

consistent with a bubbly BGP, and converges to zero as � ! �.

Finally, note that along a bubbly BGP with bubble creation (i.e. with u > 0), the size of any pre-

existing bubble will be shrinking over time relative to the size of the economy (since r < g), with newly

created bubbles �lling up the gap so that the size of the aggregate bubble remains unchanged (relative

to the size of the economy).

Summing up, one can distinguish two regions of the parameter space relevant for the possible existence

of bubbly BGPs:

(i) � � � � 1. In this case, the BGP is unique and bubbleless and associated with a real interest rate

given by r0 � g.
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(ii) 0 < � < �. In this case multiple BGPs coexist. One of them is bubbleless, with r = r0 < g.

In addition, there exists a continuum of bubbly BGPs, indexed by the real interest rate r 2 (r0; g], and

associated with a bubble size (relative to output) qB 2 (0; qB], given by (27).30

Figure 1 summarizes graphically the previous regions with their associated BGPs.31

3.3 A Brief Detour: Bubbly Equilibria and Transversality Conditions

Equilibria with bubbles on assets in positive net supply can be ruled out in an economy with an in�nitely-

lived representative consumer.32 In that economy, any asset in positive net supply must necessarily be

held by the representative consumer, implying

lim
T!1

Et f�t;t+TAt+T g � lim
T!1

Et
�
�t;t+TQ

B
t+T

	
On the other hand the (rational) bubble component of any asset must satisfy

lim
T!1

Et
�
�t;t+TQ

B
t+T

	
� QBt

where the inequality allows for the possibility of new bubbles introduced after period t. It follows that

limT!1 Et f�t;t+TAt+T g � QBt . But the consumer�s transversality condition requires that limT!1 Et f�t;t+TAt+T g =

0. Free disposal rules out negative bubbles so it must be the case that QBt = 0 for all t.

The previous reasoning cannot be applied to an overlapping generations economy like the one analyzed

in the present paper. The reason is that it is no longer true in such an economy that the positive net

supply of a bubbly asset must be held (asymptotically) by any individual agent, since it can always be

passed on to future cohorts (as it will, in equilibrium). In fact, it is easy to check that in the model above

the individual transversality condition is satis�ed along any BGP, bubbly or bubbleless. As shown in the

Appendix, for an individual born in period s � t it must be the case that along any BGP

lim
T!1

TEt
�
�t;t+TAt+T js

	
= 0

implying that the transversality condition is satis�ed along any admissible BGP, including bubbly ones. It

is straightforward to show that this will be the case along any equilibrium that remains in a neighborhood

of a BGP, of the kind analyzed below.
30Any assessment of whether the r � g condition is satis�ed or not in an actual economy is likely to be controversial, but

I think it is fair to say that there is no prima facie evidence against that condition, at least in the U.S. economy. See e.g.
Blanchard (AER 2019).
31Equations (??) and (28) can be used to derive an expression for u as a function of r 2 (r0; g). That function is equal

to zero for the extreme values of r�s domain, i.e. r0 and g and hump-shaped for values in between. Accordingly, each u is
associated with two possible values of r and, hence, q. It is thus not desirable to use u to index the multiple BGPs.
32See, e.g. Santos and Woodford (1997) for a general analysis of the conditions under which rational bubbles can be ruled

out in equilibrium.

17



4 Bubbles and Equilibrium Fluctuations

Having characterized the BGPs of the OLG-NK economy, in the present section I shift the focus to the

analysis of the equilibrium dynamics in a neighborhood of a given BGP. In particular, I am interested in

determining the conditions under which bubble-driven aggregate �uctuations may emerge in equilibrium,

as well as the role that monetary policy may play in ruling out or stabilizing those �uctuations.

As in the standard analysis of the NK model with an in�nitely-lived representative agent, I restrict

myself to equilibria that remain in a neighborhood of a BGP, and approximate the equilibrium dynamics

by means of the corresponding log-linearized equilibrium conditions.33 Through out I assume that the

condition for a bubbly BGP is satis�es, i.e. � � �. I leave the analysis of the global equilibrium dynamics

�including the possibility of switches between BGPs, the existence of a zero lower bound on interest rates,

and other nonlinearities�to future research. Secondly, in analyzing the model�s equilibrium I ignore the

existence of fundamental shocks, and focus instead on the possibility of bubble-driven �uctuations.34

I start by deriving the log-linearized equilibrium conditions around a BGP. The resulting represen-

tation of the equilibrium dynamics takes a very simple form, involving only a few easily interpretable

equations, as shown next.

Let bct � log(Ct=�tC) and byt � log(Yt=�tY) denote log deviation of aggregate consumption and output
from their value along a given BGP, the goods market clearing condition can be written as:

byt = bct (30)

On the other hand, log-linearization of the aggregate consumption function (23), combined with (30)

yields: byt = (1� �)(bqBt + bxt) (31)

where bqBt � qBt � qB with qBt � QBt =(�
tY) denoting the size of the aggregate bubble normalized by trend

output, and where bxt � xt � x, with xt � Xt=(�
tY) denoting aggregate fundamental wealth normalized

by trend output, x � 1
1���� being its value along the BGP.

Log-linearization of (24) around a BGP yields the following approximate expression for fundamental

wealth, bxt, : bxt = 1X
k=0

(���)kEtfbyt+kg � ���

1� ���

1X
k=0

(���)kEtfbrt+kg
33See, e.g., Woodford (2003) and Galí (2015).
34As the analysis of the equilibrium dynamics below will make clear, in the absence of bubbles the economy�s behavior in

response to fundamental shocks would involve no signi�cant di¤erences relative to that of the standard NK model.
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with brt = bit�Etf�t+1g denoting the real interest rate, and bit � log[(1 + it)=(1 + r)] the nominal rate, all
expressed in deviations from their values along a zero in�ation BGP. Note that bxt can be conveniently
rewritten in recursive form as:

bxt = ��Etfbxt+1g+ byt � ��

1� ��brt
= �Etfbxt+1g+ 1� �

�
bqBt � �

1� ��brt (32)

where � � ���
� .

As shown above, if � � � the BGP is bubbleless and � = 1. On the other hand, if � < � then

� 2 [�=�; 1], with its size inversely related to the size of the bubble along the BGP (or, equivalently, to

the BGP real interest rate r).

Log-linearization of (21) around a BGP yields the equations describing �uctuations in the aggregate

bubble: bqBt = ��Etfbbt+1g � qBbrt (33)

bqBt = bbt + but (34)

where but � ut � u, with ut � Ut=(�
tY) denoting the size of the newly introduced bubble normalized by

trend output and u its value along the BGP. Note that (33) implies that the e¤ect of a given interest rate

change brt on bqBt is proportional to qB, its value along the relevant BGP. The reason for this is that bqBt
measures the bubble as as fraction of aggregate output; hence, a given percent change in the (absolute)

size of the bubble will translate into a larger change in bqBt the larger is the initial bubble-output ratio.35
Together with the New Keynesian Phillips curve derived above and given by

�t = ��Etf�t+1g+ �byt (35)

equations (31), (32), (33) and (34) provide a description of the non-policy block of the model�s equilibrium

in a neighborhood of a BGP, where the latter is de�ned by a pair (qB;�) satisfying the conditions derived

in the previous section.

Note that a particular case of the OLG-NK model above is given by the bubbleless economy, with

qB = 0, � = 1, and bqBt = but = 0 for all t. In that case, we can combine (31) and (32) to yield:
byt = Etfbyt+1g � brt (36)

35Accordingly, in a neighborhood of qB = 0 the change in bqBt is response to a (�rst-order) change in brt will be of second
order.
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which takes the same form as the so-called IS-equation in the standard NK model. Thus, we see that

the presence of �nite horizons by itself does not help overcome the so called "forward guidance puzzle"

uncovered by a number of authors in the context of an in�nitely-lived representative agent model.36

Furthermore, note that (36) and (35) (after setting � = 1) provide a description of the non-policy block

of the model which is isomorphic to that of a standard NK economy, albeit with a modi�ed discount

factor given by e� = �. Accordingly, all the qualitative properties of alternative monetary policy rules

found in that model will carry over to its OLG-NK extension considered here (e.g. the conditions for

equilibrium uniqueness).

Next I analyze the possibility of equilibrium bubble-driven �uctuations in the above economy. With

little loss of generality, and given the tight connection between in�ation and the output gap implied by

(35) much of the discussion below will focus on �uctuations in the latter variable, which simpli�es the

analysis considerably with little loss of generality. In order to build a better understanding of the role

played by di¤erent assumptions in making bubble-driven �uctuations possible, I will proceed in steps and

analyze the model�s equilibrium under some limiting assumptions. First, I study the equilibrium under

�exible prices, which provides a useful benchmark for the subsequent analysis. Secondly, I reintroduce

sticky prices and analyze the properties of the model in the absence of bubble �uctuations, in order to

isolate the impact of �nite lives and retirement on the model�s properties. Thirdly, I study the possibility

of bubble-driven �uctuations in the limiting case of a constant real interest rate. Finally, I endogenize the

interest rate by assuming alternative monetary policy rules, and study their implications on the possibility

and properties of bubble-driven �uctuations that remain in a small neighborhood of the BGP. In all the

cases considered, I take the BGP around which the economy �uctuates as exogenously given.

4.1 Bubble Fluctuations under Flexible Prices

As discussed above, in the equilibrium with �exible prices the output gap is closed at all times, with output

growing at a constant rate g, determined by the the (exogenous) path of productivity. Accordingly, it

follows from (31) that bxt = �bqBt for all t, i.e. changes in the size of the bubble crowd out fundamental
wealth one-for-one, leaving aggregate demand unchanged. The necessary adjustment of private wealth is

achieved through an appropriate change in the real interest rate. Combining the previous condition with

(32), we obtain bqBt = ��EtfbqBt+1g+ ��

1� ��brnt (37)

36See, e.g. Carlstrom et al. (2015), Del Negro et al. (2015) and McKay et al. (2016) for a discussion of the forward
guidance puzzle.
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Iterating (37) forward we obtain

bqBt = ��

1� ��

1X
k=0

(��)kEtfbrnt+kg
which makes clear that any variation in the size of the aggregate bubble must be met in equilibrium with

an appropriate change in current and/or expected future real interest rates in order to neutralize the

bubble�s impact on aggregate demand and leave the output gap unchanged.

Equations (33), (34) and (37) jointly describe the equilibrium behavior of the aggregate bubble and

the natural rate, brnt . Combining the three equations we can derive the following equilibrium condition

for the aggregate bubble: bqBt = 	EtfbqBt+1g ��Etfbut+1g (38)

where 	 � �
h
1 + (��� 1) 1��1���

i
> 0 and � � ���(1��)

1��� > 0.

Note that bqBt = but = 0 for all t is always a solution to (38) and hence a possible equilibrium, in which
the size of both the aggregate bubble and of newly created bubbles grow at a constant rate along the

BGP. But (38) may have other non-explosive solutions, associated with stationary bubble �uctuations.

In order to analyze that possibility I distinguish two generic cases, depending on whether 	 is smaller of

larger than one. Later I discuss the determinants of the size of 	.

If 	 < 1 the only stationary solution to (38) is the forward-stable one, given by37

bqBt = �� 1X
k=1

	k�1Etfbut+kg (39)

One particular class of solutions to (39) involves no predictable deviations of newly created bubbles

from their BGP value (i.e., Etfbut+kg = 0, for k = 1; 2; :::and all t). In that case the size of the aggregate
bubble remains constant (i.e. bqBt = 0 for all t), with any (unanticipated) change in but crowding out one-
for-one pre-existing bubbles (i.e., bbt = �but for all t), without the need of any change in the real interest
rate, as implied by (37).38 More generally, there are (in�nitely) many other solutions to (39) that involve

forecastable variations in the size of future new bubbles and, as a result, changes in the current aggregate

bubble as well. A property of those solutions is that expectations of larger newly created bubbles in the

future (i.e., Etfbut+kg > 0, for k = 1; 2; :::) are associated with a smaller size of the current bubble, as

implied by (39). That crowding out is needed in order to guarantee a non-explosive path for the aggregate

bubble, given the required change in the interest rate consistent with an unchanged output (see further

37 In the case of 	 = 1 I further assume
P1

k=1 Etfbut+kg < +1.
38Note that after a (temporary) shock to but all variables return to their BGP values after one period, with bbt+1 = 0, which

is consistent with bqBt = brt = 0 in (33).
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discussion below). This kind of bubble �uctuations, associated with anticipated deviations in the size

of newly created bubbles, were the focus of the analysis in Miao, Shen and Wang (2019) in the context

of a two-period OLG model, though their analysis was restricted to the case of newly created bubbles

following an exogenous AR(1) process.

When 	 > 1, on the other hand, any eventual stationary bubble �uctuations are described by the

backward-stable solution to (38), given by:

bqBt = 1

	
bqBt�1 + �	Et�1fbutg+ "t (40)

where "t � qBt � Et�1fqBt g = (bt � Et�1fbtg) + (ut � Et�1futg) is the bubble innovation, which in turn

is the sum of the unanticipated changes in pre-existing and newly created bubbles. Note that in this

case both types of innovations generate a persistent response of the aggregate bubble of the same sign.

Furthermore, and in contrast with the 	 � 1 case considered above, such persistent aggregate bubble

�uctuations may arise even if newly created bubbles are constant or display unpredictable variations. In

that case, (40) simpli�es to bqBt = 1

	
bqBt�1 + "t (41)

with the (natural) interest rate changing in proportion to the size of the aggregate bubble and given by

brnt = �1� ��

	

��
1� ��
��

� bqBt (42)

Changes in the aggregate bubble in this case are associated are the result of (self-ful�lling) waves of

optimism or pessimism among investors regarding the future size of existing bubbles. I interpret this type

of bubble �uctuations (rather than the one associated with (39)) as better capturing traditional accounts

of the driving forces behind speculative bubble episodes, which usually involve investors�willingness to

pay a "high" price for an asset on the basis of further anticipated increases in the price of the same asset

(as opposed to an anticipated decrease in the size of future newly created bubbles).

Next I show that the size of 	 and, hence, the properties of any eventual stationary bubble �uctuations

in the above equilibrium depend critically on qB, the size of the bubble-output ratio along the BGP. To

see this consider �rst the case of � � �, which implies qB = u = 0 and 	 = �� = �=� � 1. Thus, any

stationary bubble �uctuations should satisfy (39). But the non-negativity constraints on qBt and ut imply

that the only admissible solution is qBt = ut = 0 for all t, thus ruling out altogether bubble �uctuations

in that case.

Next, consider the case of � < �, which is consistent with a continuum of BGP bubble-output ratios.

Let me examine �rst the two limiting cases, qB = 0 and qB = qB. If qB = 0; then 	 = �=� > 1, so
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the condition for stationary bubble �uctuations given by (40) is satis�ed. On the other hand, if qB = qB

then 	 = �=� < 1, so that only bubble �uctuations of the type given by (39) may exist. It is easy to

check that 	 is continuous and di¤erentiable in qB, with d	=dqB < 0. It follows that there always exists

a threshold bubble-output ratio qB� such that 	 > 1 if qB < qB� and, conversely, 	 � 1 if qB � qB� . Thus,

under the assumption that � < �, the possibility of stationary bubble �uctuations always arises, with the

nature of those �uctuations depending critically on the size of qB.

To gain some intuition on the role of qB in determining the nature of any eventual stationary bubble

�uctuations, consider a perfect foresight path followed by the aggregate bubble starting from period t on,

as implied by (33): bqBt+1 = (��)�1bqBt + (��)�1qBbrt + but+1
for k = 0; 1; 2; :::and assuming limT!1 but+T = 0. Given the discussion above I focus on the case of � < �

which allows for a non-zero bubble ratio qB along the BGP. As discussed in the BGP analysis, r , and

hence, (��)�1 are increasing in qB, with limqB!qB �� = 1. Also, recall that the interest rate comoves

positively with the bubble, in a way consistent with a constant output gap in equilibrium. Thus, if qB

and r are "su¢ ciently small", the low inherent persistence of the bubble (measured by (��)�1), combined

with the limited impact on the bubble of the accompanying changes in the interest rate, are su¢ cient to

guarantee that limT!+1 bqBt+T = 0 given any initial value bqBt , thus allowing for stationary �uctuations.
By contrast, if qB and r are "su¢ ciently large," the high inherent persistence of the bubble, combined

with its strong sensitivity to interest rate changes, imply that bqBt = brt = 0 is the only non-explosive

solution if but+k = 0, for k = 1; 2; ::: On the other hand, "news" at time t of, say, an increase in the size
of a future new bubble (e.g. but+k > 0, for some k > 0) requires an immediate fall in bqBt (determined by
(39)) to guarantee convergence back to the BGP once the anticipated larger new bubble is realized.

The assumption of �exible prices maintained throughout the present section has two extreme (and

arguably unrealistic) implications. Firstly, and as noted above, when combined with the absence of

"fundamental" shocks it leads to a constant output gap, even in the presence of bubble �uctuations.

Secondly, it implies that real variables are determined in equilibrium independently of monetary policy.39

In the remainder of the paper I reintroduce sticky prices and analyze the equilibrium of the resulting OLG-

NK model, with a focus on the interaction between monetary policy and bubble and output �uctuations.

39Though not the focus of my analysis, it is clear that monetary policy may still have an impact on nominal variables
undel �exible prices. Given the path of brnt , one can combine the Fisherian equation bit = brnt +�t with a suitable interest rate
rule to determine the equilibrium path of in�ation and other nominal variables. See, e.g., chapter 2 in Galí (2015) for an
analysis of the determination of nominal variables in a model with �exible prices and a real rate independent of monetary
policy, like the present one.
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4.2 Bubble-Driven Fluctuations in the Equilibrium with Sticky Prices

Next I turn to the analysis of the OLG-NK economy with sticky prices. Once the assumption of �exible

prices is relaxed, output is no longer being determined by supply side factors, and will be a¤ected by the

impact of bubble �uctuations on aggregate demand. In addition, monetary policy is no longer neutral.

Accordingly, and in order to close the model, equations (31) through (35) �the equilibrium conditions

describing the behavior of the private sector�must be complemented with a monetary policy rule. In

order to keep things as simple as possible, henceforth I assume the following interest rate rule:

bit = Etf�t+1g+ �ybyt + �qbqBt (43)

where bit � log[(1 + it)=(1 + r)].
Note that the previous rule combines the usual stabilization motive (parameterized by �y � 0) with

a possible desire to "lean against the bubble," (LAB, for short), parameterized by �q � 0. Throughout I

assume the central bank takes as given the BGP around which the economy �uctuates (and, hence, r and

qB).40 Given the simple relation between in�ation and the output gap implied by (35), the assumption

of a rule like (43), which can be written in terms of the real rate and involves no "direct" response to

in�ation, makes it possible to solve for the model�s real variables without any reference to (35), thus

simplifying the analysis considerably and allowing me to obtain some analytical results.41

Equations (31), (32), (33), (34), and (43) describe the equilibrium behavior of byt, brt, bxt, bqBt , bbt, andbut in a neighborhood of a given BGP. A quick glance at those equations makes clear that an outcome

with all of them equal to zero for all t always constitutes a solution to that system of equations. In other

words, the perfect foresight BGP itself is always an equilibrium. This should not be surprising, given that

fundamental shocks have been deliberately assumed away. The question of interest, however, is whether

that outcome is the only possible equilibrium and, more precisely, whether other equilibria exist involving

aggregate �uctuations that are bubble-driven.

In order to isolate such bubble-driven �uctuations, however, I also need to rule out equilibria involv-

ing expectations-driven �uctuations unrelated to the existence of bubble �uctuations, i.e. conventional

sunspot �uctuations. With that objective in mind, next I analyze the conditions for a unique equilibrium

in the OLG-NK model without bubble �uctuations.
40The assumption of policy invariance of r and qB is not an obvious one in the present model where a multiplicity of real

interest rates and bubble-output ratios may be consistent with a BGP if certain conditions are met. This may be viewed as
a shortcoming of the present approach that should deserve attention in future research.
41Note that the "divine coincidence" property implies that stabillizing the output gap is equivalent to stabilizing in�ation,

and viceversa.
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4.2.1 A Brief Detour: Equilibrium in the Absence of Bubble Fluctuations

Consider the economy described by (31), (32), (33), (34) and (43) on which we impose the assumption of

no bubble �uctuations, i.e. bqBt = but = 0 for all t. A particular case of such an environment corresponds
to the OLG-NK model without bubbles, i.e. with qB = 0 as well as qBt = ut = 0, for all t. Combining

(31), (32) and (43) after imposing bqBt = but = 0 for all t, we obtain the di¤erence equation
byt = � Etfbyt+1g

where � � �(1���)
1���+�(1��)�y

, with � 2 [�=�; 1]. Thus, in the absence of bubble �uctuations, there is

unique stationary equilibrium given by byt = 0 for all t, if and only if � � 1 or, equivalently,
�y � �

(1� �)(1� ��)
�(1� �) � �0y

Note that in the case of a bubbleless BGP (and, hence, in the absence of bubbles altogether), � = 1

and �0y = 0, so the previous condition takes the simple form �y � 0. The standard NK model is a

particular case of bubbleless BGP, so �y � 0 is the relevant condition for that model.42 On the other

hand, in the case of a bubbly BGP (i.e. qB > 0), �0y < 0 and, hence, the condition for a unique equilibrium

is relaxed somewhat, allowing for (slightly) negative values for �y.

Most importantly for the analysis herein, it follows from the previous �nding and the maintained

assumption of no fundamental shocks, that any stationary �uctuations in output in the OLG-NK model

when �y � �0y must be bubble-driven.

Next I turn to the analysis of such bubble-driven �uctuations, under the maintained assumption

that �y � �0y (which rules out stationary sunspot �uctuations unrelated to variations in the size of the

aggregate bubble). For simplicity, henceforth I restrict the analysis to �uctuations in which the size of

newly created bubbles is unforecastable (i.e., Etfbut+kg = 0 for k = 1; 2; ::: and all t). There are several
reasons for doing so. Firstly, allowing for unrestricted expectations on the size of future new bubbles

generates an embarrassment of riches in terms of possible outcomes, making any rigorous discussion long

and tedious.43 Secondly, and as discussed above in the context of the �exible price version of the model, the

assumption of unforecastable new bubbles narrows the range of possible outcomes by ruling out stationary

42Note that in the standard NK model with an in�nitely-lived representative agent, � = 1 and  = 1, thus implying
� � 1

1+�y
. Accordingly, �y � 0 is necessary and su¢ cient for a unique solution. It can be easily checked that given the

assumed rule the previous condition implies an (eventual) increase in the nominal rate of more than on-for-one in response
to a change in in�ation, i.e. the familiar Taylor principle.
43Miao and Wang (2019) assume an AR(1) process for futg thus restricting somewhat the range of possible equilibria. A

similar assumption is often made in the context of business cycle models, albeit applied to an exogenous driving process But
given that futg is an endogenous variable, it is not clear how one should interpret such a parametric assumption.
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equilibria in which anticipated future newly created bubbles crowd out the current aggregate bubble,

generating a negative comovement between the two. That mechanism, while theoretically possible, seems

at odds with anything observed in reality. I focus instead on bubble �uctuations that result from revisions

in expectations about the future value of current bubbles (new or pre-existing), which in turn lead to

adjustments on the value of those bubbles. Those �uctuations capture better, in my opinion, actual

speculative bubble episodes, with mood swings leading investors to pay a higher (lower) price for an asset

purely on the basis of expectations of further increases (decreases) in the price of the same asset, despite

the absence of any news regarding its fundamental payo¤s or the size of future new bubbles on di¤erent

assets.

Note, however, that the assumption of newly created bubbles still plays two important roles even

if one assumes their variations to be unforecastable. Firstly, their presence in a BGP (i.e. u > 0)

implies that r < g and qB < qB, which opens the door to stationary bubble-driven �uctuations that

would not otherwise be possible, as I show below. Secondly, newly created bubbles make it possible to

rekindle an aggregate bubble after the collapse of the latter (see the stochastic bubble example below as

an illustration).

4.2.2 The Special Case of a Constant Real Interest Rate

In order to build some intuition on the mechanisms through which aggregate bubble �uctuations are

transmitted to the real economy and the role of monetary policy in shaping those �uctuations, I start

by analyzing the special case in which the central bank is assumed to maintain a constant real interest

rate, regardless of the path of output and/or the aggregate bubble.44 As discussed above, I assume newly

created bubbles are unforecastable (i.e. Etfbut+kg = 0, for k = 1; 2,... , and for all t). Under the previous
assumptions, the equilibrium dynamics can be summarized by the following two equations:

byt = �Etfbyt+1g+ (1� �)(1� �)
�

bqBt (44)

bqBt = ��EtfbqBt+1g (45)

which can be derived by combining (31), (32), (33) and (34) under the assumption that brt = 0 for all t.
Note that an outcome involving no �uctuations (i.e. byt = bqBt = 0, for all t) always constitutes an

equilibrium. That outcome is also the only stationary equilibrium if � � � for in that case �� � 1,

which is inconsistent with stationary �uctuations in the aggregate bubble. The same is true if � < � and

44Woodford (2011) makes an identical assumption as a preliminary step in his analysis of the size of government spending
multipliers.

26



qB = qB. On the other hand, under the assumption that � < � and qB < qB we have �� > 1, so the

bubble may display stationary �uctuations consistent with (45) and described by the AR(1) process

bqBt = (��)�1bqBt�1 + "t
where "t � bbt � Et�1fbbtg+ but, a martingale-di¤erence process, is the innovation in the aggregate bubble
(the "bubble shock", for short). Note that the persistence of the bubble, measured by (��)�1, lies

between �
� and 1, so it is likely to be very high for any plausible calibration. Equilibrium output can then

be solved for using (44): byt = 
bqBt
where 
 � (1��)(1��)

(���) > 0 can be interpreted as the bubble multiplier under a constant interest rate.

Equivalently, byt = (��)�1byt +
"t
There are several channels at work in determining that impact of the bubble on output. Firstly, there

is a direct e¤ect of a larger bubble on consumption, of size 1 � �, as implied by (31). Secondly, there

is a static multiplier channel, of size (1��)2
� , associated with the higher consumption induced by the

contemporaneous increase in output, as implied by combining (31) and (32), while keeping future output

constant. And, �nally, a dynamic multiplier channel, of size �(1��)
2

�(���) , resulting from the higher consump-

tion induced by the anticipation of higher future output, with the latter being in turn a consequence of

the persistent response of the bubble.

Given the natural upper bound of unity for �, a lower bound on the (constant interest rate) bubble

multiplier 
 is (1�)(1��)
(1��) which has an order of magnitude of 0:01, a relatively small value, for any

reasonable values for  and �. On the other hand the size of that multiplier becomes unbounded as

(� � �) ! 0. As one approaches that limiting case, and due to the high persistence of the bubble,

any initial increase in output resulting from a bubble shock generates an expected discounted value of

future income equal to (1 � �)�1byt, and thus an "e¤ective" marginal propensity to consume out of
current income of unity, leading to an in�nite feedback e¤ect. Thus, we see that the range of possible

values for the bubble multiplier under the constant interest rate assumption considered here is very wide,

potentially including very large values. This is the case even though the marginal propensity to consume

out of wealth (1� �) �which determines only the direct, partial equilibrium e¤ect�is likely to be small.

Of course, with an endogenous real rate, the assumed monetary policy rule becomes an important

factor in determining the e¤ective bubble multiplier. Next I relax the assumption of a constant interest

rate and analyze the equilibrium dynamics for the general case.
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4.2.3 Bubble-driven Fluctuations with an Endogenous Interest Rate

Next I study the possibility of bubble-driven �uctuations when the real interest rate varies endogenously,

according to policy rule (43). It is useful to consider the cases of �uctuations around a bubbleless BGP

(qB = 0) and a bubbly BGP 0 < qB � qB separately. Again, I maintain the assumption of constant or

unpredictable newly created bubbles.

Fluctuations Near a Bubbleless BGP The particular case of bubble-driven �uctuations near the

bubbleless BGP (qB = u = 0) is of special interest for at least two reasons. Firstly, the equilibrium

dynamics are simpli�ed by the fact that, to a �rst-order approximation, there is no impact of monetary

policy on the bubble ratio itself. On the other hand, bubble �uctuations may still a¤ect aggregate demand

and output through their impact on monetary policy if �q > 0. Secondly, this case may be viewed as

a reasonable representation of recurrent episodes of a rise and subsequent collapse of aggregate bubbles

similar to those that are apparent in actual economies, with the no bubble state being a "natural" resting

point.45

Near the bubbleless BGP the bubble evolves "autonomously" according to the process:

qBt =
�

�
EtfqBt+1g (46)

where qBt � 0 and ut � 0, for all t.46 The assumption qB = 0 made here implies that interest rate

changes do not a¤ect (up to a �rst order approximation) the expected evolution of the bubble-output

ratio qBt . If � � � the only stationary solution to (46) is qBt = 0 for all t, thus ruling out stationary

bubble �uctuations and, assuming �y � 0, output �uctuations as well.47 By contrast, if � < �, other

stationary solutions to (46) exist, of the form:

qBt =
�

�
qBt�1 + "t (47)

where "t � bt�Et�1fbtg+ut�Efutg is the aggregate bubble innovation, a martingale di¤erence process.

Note that the aggregate bubble will remain "small" (thus justifying the approximation around qB = 0)

as long as Efutg & 0.48 On the other hand, we can combine (31), (32), and (43) to obtain the following

equilibrium condition for the output gap:

byt = 1

1 + �y
Etfbyt+1g+ 1

1 + �y

�
1� �
�

� �q
�
qBt �

1� �
1 + �y

EtfqBt+1g (48)

45The dotcom bubble of the late 1990s and the housing bubbles of the 2000s are an example of such episodes.
46 In order to derive (46) have made use of (33) and the fact that ��� = � when qB = 0.
47Recall from the analysis above that �y � 0 is a su¢ cient condition to rule out stationary output �uctuations in the

absence of bubble �uctuations.
48 It is easy to check that limT!1 EtfqBt+T g = �Efutg

��� , which can be arbitrarily small as the unconditional mean Efutg
approaches zero.
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Finally, one can combine (46) and (48) to derive an expression for the output gap as a function of the

aggregate bubble:

byt = �(1� �)(1� �)
�

� �q
� 

1

1� �
� + �y

!
qBt (49)

Under the assumption that �q �
(1��)(1��)

� �i.e. a not too aggressive "lean-against-the-bubble"

policy (LAB policy, henceforth)�the output gap comoves positively with the aggregate bubble, arguably

the more realistic case. Even though in that environment the central bank has no in�uence on the

bubble itself, it has two options in order to stabilize the impact of bubble �uctuations on aggregate

demand and output. First, it can choose a value of �q close to
(1��)(1��)

� , which can be interpreted

as a "surgical" LAB policy. In that case, the strength of the response is calibrated so that the interest

rate matches exactly the natural rate, which from (42) can be shown to be given by brnt = (1��)(1��)
� qBt

under the present assumptions. Note, however, that changes in �q have a non-monotonic impact on the

response of output to bubble �uctuations. In particular, if �q >
(1��)(1��)

� , the strong interest rate

response to variations in the size of the aggregate bubble will more than o¤set the impact of the latter

on the economy, reversing its sign, and generating a negative comovement between the aggregate bubble

and the output gap resulting from the central bank�s "overreaction." Alternatively, and perhaps more

robustly, the central bank may "neglect" bubble developments and focus on stabilizing the output gap

(or, equivalently, in�ation, given (35)), by choosing an arbitrarily large �y coe¢ cient.

The previous environment allows for the possibility of recurrent booms and busts driven by a "sto-

chastic bubble" of the kind proposed in Blanchard (1979), which evolves according to the process:

qBt =

� �
�� q

B
t�1 + ut with probability �

ut with probability 1� � (50)

where futg is a white noise process with positive support and unconditional mean Efutg & 0. It is easy

to check that the previous process satis�es (46) as well as the non-negativity condition. The economy�s

equilibrium, described by (49) and (50), will display recurrent output booms, driven by rapid bubble

growth, followed by eventual (though unpredictable) collapses, before being rekindled again by new

bubbles.49

Fluctuations Around a Bubbly BGP Next I consider the possibility of bubble-driven �uctuations

around a BGP with a positive bubble, i.e. with qB 2 (0; qB] and r 2 (r0; g]. Accordingly, I maintain

the assumption that � < �, which is necessary for such a bubbly BGP to exist. A key di¤erence here

49The statement assumes �q 2
h
0; (1��)(1���)

�

i
. See discussion above.
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relative to the case of �uctuations near a bubbleless BGP analyzed above is that the evolution of the

bubble-output ratio qBt is a¤ected (to a �rst order) by the real interest rate, as implied by (33). This

complicates the analysis somewhat, but some progress can be made in understanding the key elements

at play by looking at some special cases.

Consider �rst the case of no direct output stabilization motive (i.e. �y = 0) while allowing for an

active LAB policy (i.e. �q � 0). In that case we can combine equations (33) and (43) to obtain the

following simple equilibrium equation for the aggregate bubble, in deviations from its value at the BGP:

bqBt = ��

1 + qB�q
EtfbqBt+1g (51)

The stationary solution to (51) is unique and given by bqBt = 0 for all t if and only if
�q >

��� 1
qB

� ��q

If the previous condition is satis�ed, it follows from (31) and (32) that byt = 0 for all t. In words: if
qB > 0 the central bank can always rule out bubble �uctuations (and the associated output �uctuations)

by committing to a su¢ ciently aggressive LAB policy. How strong that response must be is given by the

threshold ��q � 0 which in turn depends crucially on qB since the latter determines the impact of interest

changes on the size of the bubble-output ratio.50 As qB ! qB, we have �� ! 1 and, hence, ��q ! 0.

Thus, if the size of the bubble-output ratio along the BGP is "large" (i.e. close to its upper bound) a

rule that commits to responding even weakly to �uctuations in bqBt were they to arise, will su¢ ce to rule
out such �uctuations. At the other extreme, as qB ! 0 (and �� ! �

� > 1) we have ��q ! +1, i.e. no

systematic policy response to the bubble, no matter how aggressive, will be e¤ective at ruling out bubble

�uctuations. More generally, note that the threshold ��q is decreasing in q
B, i.e. the required policy

response is larger the smaller is the bubble-output ratio along the BGP. See Figure 2.

On the other hand, if 0 � �q < ��q , there exist equilibria with stationary bubble �uctuations satisfying

the stationary AR(1) process

bqBt =
 
1 + qB�q
��

! bqBt�1 + "t
where "t � bt�Et�1fbtg+but. Under the assumption that the bubble innovation process f"tg is independent
of monetary policy, a (local) increase in �q will result in an increase in the volatility of the aggregate

bubble. That property is a consequence of the equilibrium requirement that the anticipated return on the

50 Intuitively, a given change in the interest rate has a one-for-one e¤ect on the anticipated percent change in the size of
the bubble. How large that change is relative to output (i.e. how much if a¤ects bqBt ) depend on the initial size of the bubble
relative to output.
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bubble equals the interest rate. The endogenous rise in the latter called for by the LAB policy will thus

"amplify" the impact over time on the size of the bubble of an initial bubble shock. This is consistent

with the �ndings emphasized in Galí (2014) in the context of a two-period OLG model.51

More generally, if �y � 0, one can combine (31), (32), and (43) to obtain, after some algebra, the

following representation of the joint equilibrium dynamics for the output gap and the aggregate bubble:

� bytbqBt
�
=

�
A11 A12
A21 A22

� �
Etfbyt+1g
EtfbqBt+1g

�
(52)

where A11 � ��, A12 � �
h

���
1+qB�q

� �(1� �)
i
, A21 � ���qB�y

1+qB�q
and A22 �

���A12qB�y
1+qB�q

, with � �
1+qB�q

1+�y+q
B�q

and � � 1��
� � �

�
1��
1���

�
�q.

Note that, as in all the cases considered above, the perfect foresight BGP is always a solution to

(52), corresponding to [byt; bqBt ] = [0; 0] for all t. That solution is the only stationary if and only if both
eigenvalues of matrix A lie within the unit circle (see, e.g., Blanchard and Kahn (1980)). Otherwise,

other solutions to (52) exist that involve stationary �uctuations in the aggregate bubble and the output

gap, as shown formally in Appendix 3.

The necessary and su¢ cient conditions for both eigenvalues of a 2� 2 matrix A to lie within the unit

circle are given by (a) jdet(A)j < 1 and (b) jtr(A)j < 1+det(A).52 Whether these conditions are satis�ed

or not in the case at hand depends in a nontrivial way on the interaction between di¤erent parameters,

but some progress can be made in understanding the key factors by looking at some special cases.

Consider �rst the role of �q, the bubble coe¢ cient in the policy rule. As shown in the Appendix, for

any qB > 0 and �nite �y � 0, lim�q!+1 det(A) = 0 and lim�q!+1 tr(A) = � < 1. Given the continuity

of det(A) and tr(A) with respect to �q, it must be the case that the conditions for a unique solution

are satis�ed given a su¢ ciently large (but �nite) �q, independently of �y. This result generalizes to an

arbitrary �y coe¢ cient the �nding obtained above for �y = 0, and provides a theoretical justi�cation for

a su¢ ciently aggressive LAB policy as a way to rule out bubble-driven �uctuations.

Next I study the role of �y, the output coe¢ cient in the policy rule. The desire to focus on a

conventional stabilization motive may be motivated by the imperfect observability of the bubble and,

51 In the context of the two-period OLG model, Miao and Wang (2018) show that the �nding in Galí (2014) regarding
the impact of �q on the bubble volatility can be overturned if �uctuations in newly created bubbles are predictable and the
equilibrium is unique. In that case, the aggregate bubble evolves according to

bqBt = � 1X
k=1

�
��

1 + qB�q

�k
Etfbut+kg

whose variance is decreasing in �q for any given arbitrary expectations Etfbut+kg.
52See La Salle (1976).
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hence, the risk that a LAB policy may generate unwarranted (and, hence, destabilizing) movements in

interest rates. Can bubble-driven �uctuations be ruled out by a suitable choice of �y, without the need

of a systematic response to the bubble itself? Under �q = 0, the conditions for a unique solution to (52)

corresponding to (a) and (b) above can be written, respectively, as:

�y > ���� 1 � f(qB) (53)

and

(qB � qB� )(�y � h(qB)) > 0 (54)

where h(qB) � (���1)(1��)
1�	 > 0 and, as above, 	 � �

h
1 + (��� 1) 1��1���

i
is decreasing in qB, with qB�

de�ned as the (unique) qB value for which 	 = 1. See Appendix 4 for a derivation.

As shown in the Appendix , h(qB) < f(qB) for all qB 2 [0; qB� ], so there is no �y value which satis�es

(53) and (54) simultaneously for that range of qB values. Thus, if the size of the bubble-output ratio

along the BGP is smaller than qB� , bubble-driven �uctuations cannot be ruled out by means of an output

gap-focused stabilization policy. On the other hand, h(qB) > f(qB) for all qB 2 (qB� ; qB]. Thus, over

that range, the choice of �y > h(qB) guarantees that (53) and (54) are both met, thus implying a unique

solution to (52) and the absence of bubble-driven �uctuations. As shown in the Appendix, h(qB) is

decreasing in qB, with limqB� !qB� + h(q
B) = +1 and h(qB) = 0. Thus, the strength of the required output

response in order to rule out bubble-driven �uctuations is decreasing in qB, for qB > qB� , becoming

unbounded above as qB� ! qB� +. See Figure 3 for a graphical illustration of the previous �ndings.

The previous �ndings are related to the one obtained in the analysis of the �exible price economy, given

that the equilibrium converges to its �exible price counterpart as �y ! +1 and �q ! 0. Thus, under that

con�guration of policy coe¢ cients, bubble-driven �uctuations may emerge if and only if qB 2 (qB� ; qB],

as in the �exible price equilibrium.

A Numerical Example While the previous model is clearly too stylized to be taken seriously quan-

titatively, it may be useful to get a sense of the ease with which bubble-driven �uctuations may emerge

or be ruled out. With that purpose in mind, next I examine a simple numerical version of the OLG-NK

model.

I start by assuming plausible settings for the di¤erent exogenous parameters (�, , � and �), taking

the time unit to be a quarter. I set � = 1:004, consistent with an average (annual) per capita GDP

growth of 1:6 percent observed over the 1960-2016 sample period. To calibrate  I use the expected

lifetime at age 16, which is 63:2 years in the U.S., and thus set  = 1� 1
4�(62:3) ' 0:996. I use the average
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employment ratio (relative to population aged 16 and over), which is (roughly) 0:6 on average over the

period 1960-2016 as a proxy for �. Conditional on the previous settings for � and  one can derive

� ' 0:997. As discussed above, � > � is required for the existence of a bubbly equilibrium. In contrast

with the representative agent model, the OLG-NK model does not point to any empirical counterpart

for �, though unity seems a "natural" upper bound for that parameter. For the sake of illustration I set

� = 0:998, which is consistent with an (annual) real interest rate along a bubbleless BGP of 1:2 percent

(i.e., r0 = 0:003).

Under the previous calibration, a continuum of bubbly BGPs exist, with the upper bound on the

bubble-output ratio given by qB ' 23:6, i.e. a bubble of size roughly 6 times annual output, and with

an associated range of (annual) interest rates between 1:2 and 1:6 percent.53 The threshold value qB�

which delimitates the regions with and without equilibria with bubble-driven �uctuations under �exible

prices is given by qB� ' 12:2, roughly three times annual output. According to the analysis above, if the

actual bubble-output ratio along the BGP were smaller than the previous threshold, a monetary policy

that focused exclusively on output gap stabilization (i.e. without a LAB component) would not be able

to rule out bubble �uctuations, though the central bank can always reduce the impact of the bubble

on aggregate demand and output as much as needed, by increasing �y. In the limit, as �y ! +1, the

output gap would be fully stabilized and any �uctuations in the aggregate bubble would be described

by the AR(1) process (41), with an autoregressive coe¢ cient 	�1 < 1 bounded below by a value close

to 0:999, the value of 	�1 corresponding to qB = 0. Thus, any eventual aggregate bubble would display

very high persistence in that case.

On the other hand, the monetary authority could eliminate bubble-�uctuations and the resulting

output gap �uctuations altogether by setting �q > ��q , i.e. by pursuing a su¢ ciently aggressive LAB

policy, even if �y = 0. As discussed above, the size of the threshold ��q depends critically on q
B, the

size of the bubble-output along the underlying BGP. Thus, in the numerical example considered here, if

qB = 4 we have ��q = 0:0002, so that the commitment to even a tiny response to the bubble would be

enough to rule out �uctuations. The corresponding thresholds for qB = 0:4, qB = 0:04, and qB = 0:004

are, respectively, ��q = 0:00021, �
�
q = 0:024 and �

�
q = 0:24 illustrating the strong nonlinearity in �

�
q as a

function of qB, but also making it clear that a relatively weak LAB policy would be enough to rule out

bubble-driven �uctuations (unless qB ! 0).

53Note that the average (annual) real interest rate on 3-month U.S. Treasury bills over the period 1960-2016 has been
roughly 1:4 percent (i.e. 0:35 percent quarterly), which lies within that interval.
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5 Bubbles and Welfare: Some Considerations

The analysis of the OLG-NK model found in the previous sections, including the discussion of alternative

policies, has focused on the conditions under which bubbles may exist along a BGP or the possibility

of bubble-driven �uctuations. In this section I make some considerations regarding the impact of any

eventual bubbles on welfare. Following the structure of the analysis above, I start with a discussion of

the connection between bubbles and welfare along a deterministic BGP, before turning to the potential

impact of bubble-driven �uctuations on welfare.

5.1 Bubbles and Welfare: BGP Analysis

In the present section I determine the expected lifetime utility at birth of an individual in the OLG-NK

economy when the latter is moving along a deterministic BGP, and study how that utility varies across

BGPs when a multiplicity of the latter exists, indexed by the size of the bubble-output ratio qB (or,

equivalently, by the interest rate). For the remainder of the paper I maintain the assumption that � < �,

which is necessary for the existence of bubbles in equilibrium.

Let Cj denote the consumption along a BGP of an individual of age j, normalized by productivity.

Thus we can write the period t consumption of an individual from cohort s � t as Ctjs = Ct�s�t. The

expected lifetime utility at birth of an individual from cohort s is thus given by

U �
1X
t=s

(�)t�s logCtjs

=
1X
j=0

(�)j log Cj +�s (55)

where �s �
�

�
(1��)2 +

s
1��

�
log � captures the impact of technical progress on lifetime utility across

cohorts, but is independent of the size of the bubble.

Given a discount factor � � 1
1+r (which depends on q

B), the individual consumption Euler equation

evaluated at a BGP implies

Cj =
�
�

��

�j
C0 (56)

for j = 1; 2; 3; ::: Using results from section 1 of the Appendix, one can write an expression for C0 as a

function of lifetime wealth:

C0 = (1� �)
�

u

1�  +
�
1

�

��
1

1� ���

��
Y

=
1

1� 

�
1� �

��

�
�M� 1

' (57)
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where the second equality can be derived, after some algebra, using (27) and (28) to substitute for u,

as well as the de�nition of Y. Combining (55), (56) and (57), one can write lifetime utility, up to a

multiplicative scalar and an exogenous additive term as

U � log
�
1� �

��

�
� �

1� � log � (58)

Di¤erentiating U with respect to � and rearranging terms yields

dU
d�

= � �

(1� �)�

�
��� 1
��� �

�
� 0

where the inequality holds for all �� 2 [1; �� ], i.e. across all BGPs, while
dU
d� = 0 if and only if �� = 1,

which corresponds to the BGP with qB = qB, u = 0 and r = g. Given the inverse relation between qB

and �, it follows that lifetime utility across BGPs is increasing in the bubble-output ratio, and attains a

maximum when the latter takes its largest admissible value, qB. In addition, it follows that the bubbleless

BGP is associated with the lowest lifetime utility. Note that for BGPs with qB < qB the interest rate

is less than the growth rate of the economy; at the margin this allows for an increase in lifetime utility

through a reallocation of resources from the young to the old, which is what a bubble attains. Thus,

and relative to other BGPs, the utility-maximizing BGP is associated with a relatively higher (lower)

consumption for older (younger) cohorts.

5.2 Bubble-driven Fluctuations and Welfare

Along a BGP, aggregate output and consumption evolve independently of the size of the bubble ratio,

with the latter a¤ecting lifetime utility only through the distribution of consumption across cohorts. By

focusing on BGPs the analysis in the previous subsection has abstracted from the possibility of �uctuations

in the aggregate bubble and the resulting �uctuations in output and consumption discussed in section 4.

What are the welfare implications of such bubble-driven �uctuations? For the sake of argument,

consider �rst an environment in which lump-sum transfers are available and used by the �scal authority

to equate consumption across individuals (including the newly born), thus allowing us to abstract from

distributional issues. Under our assumptions, the level of aggregate output and consumption along any

BGP, given by Y BGPt = �t�M� 1
' , lies below the e¢ cient level, Y �t = �t�, due to the monopolistic

distortion in the goods market. Thus, and taking Y BGPt as a starting point, any increase (decrease) in

aggregate output and consumption resulting from a growing (shrinking) bubble has a �rst-order positive

(negative) e¤ect on utility. Furthermore, recurrent one-sided �uctuations in the bubble �and hence

on output and consumption� of the sort generated by the Blanchard-type stochastic bubble analyzed
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in section 4 would also dominate from a welfare point of view the underlying BGP, despite the likely

volatility. On the other hand, recurrent symmetric bubble-driven �uctuations around a given BGP

would lead to an unambiguous (second order) welfare loss due to the curvature of the utility function,

with the average utility loss per period given by �1
2varfbytg.

In the absence of redistribution through lump-sum taxes, any welfare analysis should also take into ac-

count the distributional impact of bubble �uctuations. Such distributional e¤ects are present even though

complete �nancial markets have been assumed. The reason is that such markets are open only to cohorts

that are currently alive, which e¤ectively prevents the sharing of risks realized at any point in time (in

particular, unexpected variations in existing or newly created bubbles) between newly born, incumbent,

and future cohorts. Next I discuss the key elements underlying the impact of bubble �uctuations on the

three types of consumers.

Let bctjs � log Ctjs
Ct�s�t denote the log deviation of Ctjs from its value along the BGP. Consider �rst the

impact of a positive bubble shock in period t (i.e. "t > 0) on the consumption path (relative to the BGP)

of a newly born consumer (s = t):

dbct+kjt
d"t

=
dbctjt
d"t

+

k�1X
j=0

dbrt+j
d"t

=
(1� �)��
��� �

�
dbut
d"t

+ (1� �)dbxt
d"t

�
+

k�1X
j=0

dbrt+j
d"t

where the �rst equality follows from the consumer�s Euler equation and the second equality makes use of

the following result derived in the Appendix:

bctjt = (1� �)��
��� � [but + (1� �)bxt] (59)

The e¤ect of the bubble shock on the consumption path of an incumbent consumer (s < t), is given

by:

dbct+kjs
d"t

=
dbctj�
d"t

+
k�1X
j=0

dbrt+j
d"t

=
(1� �)��

�

"
dbbt
d"t

+ �
dbxt
d"t

#
+

k�1X
j=0

dbrt+j
d"t

for all s < t, where bctj� � log
Ctj�
C��t , with Ctj� �

1


�
Ct � (1� )Ctjt

�
denoting the average consumption

among period t "incumbent" consumers. The �rst equality exploits the fact that under the maintained

assumption of complete markets, the consumption of all incumbent individuals will change in the same
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proportion in response to the shock (see (4)). Thus,
dbctjs
d"t

=
dbctj�
d"t

for all s < t. The second equality makes

use of the following expression derived in the Appendix:

bctj� = (1� �)��
�

hbbt + �bxti
Finally, the impact of the bubble shock on the consumption path of individuals born in the future

(s > t) is given by:

dbcs+kjs
d"t

=
dbcsjs
d"t

+
k�1X
j=0

dbrs+j
d"t

=
(1� �)��(1� �)

��� �
dbxs
d"t

+
k�1X
j=0

dbrs+j
d"t

for all s > t, where I have used (59) to derive the second equality.

Thus, under the weak assumption that dbrt+kd"t
� 0 for k = 0; 1; 2:; :, a su¢ cient condition for a positive

bubble shock to raise the consumption path (and hence welfare) of individuals currently alive, both

newly born and incumbent (s � t), is given by dbxt
d"t

> 0, i.e. the positive bubble shock should cause an

immediate increase in "fundamental" wealth. If, in addition, the latter e¤ect is persistent, i.e. dbxt+kd"t
> 0

for k = 0; 1; 2; 3; :: then a positive bubble shock will also raise the welfare of future cohorts. Note, on

the other hand, that the exact distribution of the consumption (and welfare) gains resulting from a

bubble expansion between the newly born and incumbent cohorts will depend on the extent to which

the bubble shock takes the form of an innovation in the pre-existing bubble ( d
bbt
d"t

> 0) �in which case

incumbent cohorts will draw a relatively larger bene�t�or in newly created bubbles (dbutd"t
> 0) �which

bene�t relatively more the newly born cohort.54

Under what conditions will fundamental wealth increase in response to a rising bubble? As shown in

the Appendix, fundamental wealth bxt is related to the aggregate bubble through the di¤erence equation:
bxt = �Etfbxt+1g+ ��1� �

��
�
(1� �)�y + �q

1� ��

� bqBt
where � � �

1+�
�
1��
1���

�
�y
2 [0; 1]. Thus, any bubble shock that leads to a persistent increase in the

aggregate bubble will raise current and future fundamental wealth (i.e. dbxt+kd"t
> 0) as long as the following

condition is satis�ed:

(1� �)�y + �q <
(1� �)(1� ��)

��

i.e., to the extent that the induced monetary policy response is not too strong.

54The gains for future cohorts are independent of the nature of the bubble shock.
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The previous discussion has focused on the consequences of a positive bubble shock. The linearity of

the equilibrium dynamics implies identical e¤ects of negative bubble shocks, but with the sign reversed.

Accordingly, recurrent symmetric bubble-driven �uctuations around a BGP would only have a negative

impact on (ex-ante) expected lifetime utility due to the concavity of the utility function. That property

would provide the main rationale for the kind of policies that rule out bubble �uctuations, as analyzed

in the previous section. Ex-post, however, cohorts that are endowed with a su¢ ciently large bubble at

birth may end up better o¤ than in the underlying deterministic BGP, despite the likely �uctuations in

consumption over their lifetime.

6 Concluding Comments

The NK model remains the workhorse framework in macroeconomics, even though it is unsuitable �in its

standard formulation�to accommodate the existence of asset price bubbles and, as a result, to address

questions such as the conditions under which bubble-driven �uctuations may emerge or the interaction

between aggregate bubbles and monetary policy. That shortcoming, however, is not tied to any essential

ingredient of the model (e.g. nominal rigidities), but to the convenient (albeit unrealistic) assumption

of an in�nitely-lived representative consumer. In the present paper I have developed an extension of the

basic NK model featuring overlapping generations, �nite lives and (stochastic) transitions to inactivity.

That extension (which I referred to as OLG-NK, for short) allows, under certain conditions, for the

existence of rational expectations equilibria with asset price bubbles. In particular, plausible calibrations

of the model�s parameters are consistent with the existence of a continuum of bubbly balanced growth

paths, as well as a bubbleless one (which always exists). When combined with sticky prices, �uctuations in

the size of the aggregate bubble unrelated to changes in fundamentals, have been shown to be a potential

source of �uctuations in aggregate demand and output.

The analysis of the properties of the OLG-NK model yields several insights.

Firstly, when one abstracts from the possibility of bubbly equilibria, the introduction of an overlapping

generations structure does not change any of the qualitative properties of the standard NK model. In

fact, the resulting equilibrium conditions describing the dynamics of in�ation and the output gap are

identical to those of a the standard model with a "modi�ed" discount factor that accounts for e¤ectively

shorter horizons. In particular, the presence of �nite horizons by itself does not help overcome the so

called "forward guidance puzzle" uncovered by a number of authors in the context of an in�nitely-lived

representative agent model.

Secondly, a "leaning against the bubble" (LAB) interest rate policy, if precisely calibrated, may
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succeed in insulating output and in�ation from aggregate bubble �uctuations. Furthermore, if aggressive

enough, the LAB policy may be able to rule out bubble �uctuations themselves. The strength of the

required systematic policy response to the bubble, however, increases in an unbounded way as the average

size of the bubble-output ratio approaches zero. On the other hand, a LAB policy which does not

succeed in eliminating bubble �uctuations may end up increasing the volatility and persistence of bubble

�uctuations, as in Galí (2014).

Thirdly, a policy that targets the output gap (or in�ation) while ignoring the bubble will generally

succeed at stabilizing those macro variables. If the average size of the bubble-output ratio lies above

a certain threshold, a su¢ ciently aggressive output-based stabilization policy may rule out �uctuations

in the bubble as well. On the other hand, If the average size of the bubble-output ratio lies below the

same threshold, such a policy will not be able to eliminate bubble �uctuations, and their consequent

randomization in distribution of resources across generations, even if they succeed in stabilizing output

and in�ation.

Finally, and in relation to the impact of bubbles on welfare, I have shown that expected lifetime utility

along a deterministic balanced growth path (BGP) is increasing in the associated bubble-output ratio.

Secondly, an increase (decrease) in the size of the aggregate bubble raises (lowers) the expected lifetime

utility of all cohorts, as long as monetary policy doesn�t "overreact" to it. However, and to the extent

that consumers are risk averse, recurrent symmetric bubble-driven �uctuations will be welfare-reducing,

and will thus justify policies that eliminate them.

Four additional remarks, pointing to possible future research avenues are in order. Firstly, the analysis

of the equilibrium dynamics above has assumed "rationality" of asset price bubbles. That assumption

underlies the equilibrium conditions that individual and aggregate bubbles must satisfy, i.e. (??) and

(21), respectively, and the implied log-linear approximation (33). However, the remaining equilibrium

conditions, including the modi�ed dynamic IS equations, are still valid even if the process followed by

the aggregate bubble were to deviate from that of a rational bubble. That observation opens the door to

analyses of the macroeconomic e¤ects and policy implications of alternative speci�cations of the aggregate

asset price misalignments.

Secondly, the analysis above suggests that, in the absence of other frictions, bubble �uctuations by

themselves do not generate a tradeo¤ between output gap and in�ation stabilization. In other words,

the "divine coincidence" property holds. As a result, a literal interpretation of the model is likely to

favor strict in�ation targeting policies. It should be clear, however, that the model could be easily

extended to incorporate some of the sources of policy tradeo¤s (e.g. staggered wage setting, shocks to
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desired markups, etc) already found in the literature without altering the a¤ecting the basic links between

aggregate bubbles and economic activity.

Thirdly, the analysis in the present paper has been conducted using a framework which, like the

textbook NK model, abstracts from endogenous capital accumulation. In the classical analysis of Tirole

(1985) and others, however, where capital accumulation features prominently, a bubble expansion crowds

out investment, and through that channel leads to a subsequent decline in output. Note, however, that

this would not necessarily be the case if capital accumulation were to be introduced in the OLG-NK model

above since, in contrast with a Tirole-type model of bubbles, employment is endogenous and responsive

to changes in aggregate demand (so that output can rise in response to a bubble expansion). As a result,

an expansion in consumption does not mechanically imply a fall in investment. The latter�s response

will depend on the expected returns to investment (which may increase if aggregate demand increases

persistently) and on the response of monetary policy (which is likely to reduce investment). Furthermore,

and to the extent that �rms�borrowing to �nance investment is subject to collateral constraints, changes in

the size of the aggregate bubble may a¤ect the value of collateral and, through that channel, investment,

potentially o¤setting other crowding out channels. In that environment, a bubble may also distort

the relative allocation of resources between consumption and investment, in addition to their levels,

generating a tradeo¤ for monetary policy that cannot be captured in a model without investment and

�nancial frictions. All these considerations seem to call for an analysis of the potential role of investment

in the transmission of bubble �uctuations to economic activity in an economy with nominal rigidities.

Fourthly, balanced growth paths characterized by a larger bubble-output ratio are associated with

a higher real interest rate. Thus, the presence of a bubble along a BGP should make it less likely for

the zero lower bound on the nominal interest rate to become binding, ceteris paribus and conditional

on the bubble not bursting. Similarly, the bursting of the bubble would bring along a reduction in the

natural rate of interest that could pull the interest rate toward the zero lower bound. The analysis of the

interaction of bubble dynamics with the zero lower bound seems an additional avenue worth exploring in

future research.55

Note, �nally, that the analysis of the equilibrium dynamics above has assumed that the central bank

takes as given the BGP on which the economy settles and, hence, its associated real interest rate r and

bubble-output ratio qB, both of which are parameters of the policy rule. But while the assumption of

exogeneity of r is a natural one in a context in which that variable is uniquely pinned down (e.g. the

standard NK model), it is not obviously so in an economy like the one decribed by the OLG-NK model,

55Bonchi (2017) and Billi et al. (2020) represent an early e¤ort in that direction.
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in which a multiplicity of real interest rates and bubble-output ratios may, under certain conditions, be

consistent with a perfect foresight BGP. In future research I plan to explore the implications of relaxing

the assumption of a policy invariant BGP, i.e. of allowing the central bank to play a role in determining

the BGP where the economy settles.
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TECHNICAL APPENDIX

1. Derivation of consumption functions

The intertemporal budget constraint as of period t for an individual born in period s and still active

in period t � s can be derived by iterating (3) forward from t onwards to yield:

1X
k=0

kEtf�t;t+kCt+kjsg = Aatjs +
1

�

1X
k=0

(�)kEtf�t;t+kWt+kNt+kg (60)

For retired individuals born in period s, the corresponding constraint is:

1X
k=0

kEtf�t;t+kCt+kjsg = Artjs (61)

Combining (4) with (60) and (61), we obtain the corresponding consumption functions

Catjs = (1� �)
"
Aatjs +

1

�

1X
k=0

(�)kEtf�t;t+kWt+kNt+kg
#

Crtjs = (1� �)A
r
tjs

In particular, for a newly born consumer:

Ctjt = (1� �)
"

Ut
1�  +

1

�

1X
k=0

(�)kEtf�t;t+k(Wt+kNt+k +Dt+k)g
#

= (1� �)
"

Ut
1�  +

1

�

1X
k=0

(�)kEtf�t;t+kYt+kg
#

= (1� �)
�
Ut
1�  +

1

�
Xt

�
(62)

Aggregating across all individuals and cohorts, and imposing asset market clearing we obtain the

aggregate consumption function:

Ct = (1� �)
"
QFt +Q

B
t +

1X
k=0

(�)kEtf�t;t+kWt+kNt+kg
#

= (1� �)
"
QBt +

1X
k=0

(�)kEtf�t;t+kYt+kg
#

= (1� �)
�
QBt +Xt

�
Also note that one can evaluate (62) at a BGP, to obtain the collowing expression for the consumption

of a newly born individual, normalized by productivity, which is used in the section on welfare in the
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main text:

C0 = (1� �)
�

u

1�  +
�
1

�

��
1

1� ���

��
Y

=
1� �
1� 

��
1� 1

��

�
(� � ���)

(1� �)(1� ���) +
1� �
1� ���

�
Y

=
1

(1� )(1� ���)

��
1� 1

��

�
(� � ���) + (1� �)(1� �)

�
Y

=
1

1� 

�
1� �

��

�
Y (63)

where the second equality makes use of (27) and (28) to substitute for u.

2. Transversality condition in a Bubbly BGP

The consumption function for an active individual born in period s is:

Cat+T js = (1� �)
�
Aat+T js +

Wt+TN=�

1� ���

�
In particular:

Catjs = (1� �)
�
Aatjs +

WtN=�

1� ���

�
In addition, Ct+T js = (�=�)TCtjs thus implying

Aat+T js = (�=�)
T

�
Aatjs + (1� (��=�)

T )
WtN=�

1� ���

�
On the other hand, for a retired individual

Crtjs = (1� �)A
r
tjs

Using the fact that Crtjs = Catjs we have:

Artjs = Aatjs +
WtN=�

1� ���

The transversality condition for an active individual takes the form:

lim
T!1

(�)TEtfAt+T jsg = lim
T!1

(�)T [�TAat+T js + (1� �
T )Art+T js]

= lim
T!1

(�)T [Aat+T js + (1� �
T )�T

WtN=�

1� ��� ]

= lim
T!1

(�)T
�
Aatjs + (1� (��=�)

T )
WtN=�

1� ���

�
+ lim
T!1

(��)T (1� �T ) WtN=�

1� ���

=
WtN=�

1� ��� lim
T!1

[(�)T � (��)T + (��)T � (���)T ]

= 0
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where the maintained assumption ��� < 1 has been used.

3. Bubble-driven Fluctuations: A Simple Representation

Let the equilibrium be described by the system of di¤erence equations

xt = AEtfxt+1g (64)

where xt � [byt; bqBt ]0. Let A have q � 2 eigenvalues with modulus less than one. If q = 2 the stationary

solution to (??) is unique and given by xt = [0; 0] for all t (see, e.g. Blanchard and Kahn (1980)). Here

I focus on the case of q < 2.

Consider the transformation xt = Qvt where QJQ
�1 = A where J is the canonical Jordan matrix

and Q � [q(1);q(2)] is the matrix of generalized eigenvectors, corresponding to the two eigenvalues. Thus,

vt = JEtfvt+1g (65)

Consider the case where A has eigenvalues j�1j < 1 and j�2j > 1. In that case, J =
�
�1 0
0 �2

�
. The

stationary solutions to (65) take the form v1;t = 0 and

v2;t = ��12 v2;t�1 + �t

for all t, where �t is a (univariate) martingale-di¤erence process. Accordingly, xt = q
(2)vst is the sunspot

solution, or alternatively, xt = ��12 xt�1 + q
(2)�t. Conditional on f�tg that solution is unique up to

normalization of q(2).

Next consider the case where A has eigenvalues j�1j > 1 and j�2j > 1. If both eigenvalues are

real J =
�
�1 0
0 �2

�
and q(k) corresponds to the eigenvector associated with eigenvalue k; for k = 1; 2.

Otherwise, if �1 = a + bi and �2 = a � bi are complex conjugates, J =
�
a �b
b a

�
and q(1) and q(2)

are, respectively, the imaginary and real components of the eigenvector associated with the complex

eigenvalues. In either case, (65) has a stable solution:

vt = J
�1vt�1 + �t

where �t is a (bivariate) martingale-di¤erence process. Accordingly, and using xt = Qvt andQJQ
�1 = A,

we have

xt = A
�1xt�1 + �t

where �t = Q�t.
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4. Conditions for Existence of Bubble-driven Fluctuations: The General Case

It is easy to show, after some algebra, that:

det(A) =
���

1 + �y + q
B�q

> 0

tr(A) = �� +
��

1 + qB�q

�
1�

�y
1 + �y + q

B�q

�
1� �
1� ��

��
+��

�
�y

1 + �y + q
B�q

��
1� �
1� ��

��
1 +

��

1 + qB�q

�q
1� ��

�
> 0

Note that, for any qB > 0, lim�q!+1 det(A) = 0 and lim�q!+1 tr(A) = � < 1, thus establishing

that a su¢ ciently aggressive LAB policy would rule out the possibility of bubble-driven �uctuations.

Next, consider the case of �q = 0. In that case we can write:

det(A) =
���

1 + �y
> 0

tr(A) =
�

1 + �y
+ ��

�
1�

�y
1 + �y

�
1� �
1� ��

��
+ ��

�
�y

1 + �y

��
1� �
1� ��

�
=

�

1 + �y
+	+

1

1 + �y

�
1� �
1� ��

�
(��� ��) > 0

where, as in the main text, 	 � �
h
1 + (��� 1) 1��1���

i
� 0 which is independent of �y.

Accordingly, uniqueness condition jdet(A)j < 1 can be written as:

�y > ���� 1 � f(qB) (66)

given qB 2 [0; qB]. On the other hand, condition tr(A) < 1 + det(A) can be written as

	� 1 <
1

1 + �y

�
�(��� 1)�

�
1� �
1� ��

�
(��� ��)

�
=

1

1 + �y

�
�(��� 1)

�
1� �
1� ��

�
+�(��� 1)�(1� �)

1� �� �
�
1� �
1� ��

�
(��� ��)

�
=

1

1 + �y
[	� 1� (��� 1)(1� �)] (67)

Equivalently, and letting

h(qB) � (��� 1)(1� �)
1�	 > 0

(67) can be written more compactly as

(qB � qB� )(�y � h(qB)) > 0 (68)
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given qB 2 [0; qB].

Next I analyze the conditions on �y that guarantee that (66) and (68) are jointly satis�ed for any

given qB 2 [0; qB]. As a preliminary step, it is useful to examine the properties of f(qB) and h(qB).

Note that f(qB) is continuous in qB, with f 0(qB) < 0, f(0) = �
��1 > 0 and f(q

B) = �
��1 < 0. Further-

more, using the fact that 1 = �
h
1 + (��� 1) 1��1���

i
at qB� , one can show f(qB� ) =

(���1)�(1��)
1���+(���1)(1��) >

0. For future reference, de�ne qB0 such that f(q
B
0 ) = 0, and note that q

B
� < qB0 < qB.

On the other hand, h(qB) is continuous in qB except at qB = qB� , with (q
B � qB� )h0(qB) � 0 for qB 2

[0; qB� )[ (qB� ; qB]. Furthermore, h(0) = h(qB) = 0, limqB� !qB� � h(q
B) = �1 and limqB� !qB� + h(q

B) = +1.

The previous properties imply that f(qB) > h(qB) for all qB 2 [0; qB� ), so that (66) and (68) cannot be

satis�ed simultaneously. Accordingly, equilibria with bubble-driven �uctuations will exist if qB 2 [0; qB� ],

independently of the size of the output oe¢ cient �y.

On the other hand we have h(qB) > f(qB) for qB 2 (qB� ; qB]. For qB > qB0 this is clear since f(q
B) < 0

and h(qB) � 0 over that range. Furthermore, h(qB0 ) > f(qB0 ) = 0. Finally, it is easy to proof that h(q
B) >

f(qB) for any qB 2 (qB� ; qB0 ) as well. Suppose h(qB) � f(qB). Then (��� 1)(1��) � (���� 1)(1�	),

where each term in brackets is strictly positive over the range (qB� ; q
B
0 ). But this is inconsistent with

the fact that over the same range (1 � 	) < (1 � �) and (��� � 1) < (�� � 1). So we must have

h(qB) > f(qB) over the range (qB� ; q
B
0 ) as well.

5. Bubble-driven Fluctuations and Welfare: Some Derivations

As shown in section 1 of the present Appendix, onsumption of a newly born individual is given by

Ctjt = (1� �)
�

1

1� Ut +
1

�
Xt

�
Log-linearizing the previous expression around the BGP, and using the fact that C0Y = 1

1�

�
1� �

��

�
as shown in (63), yields: bctjt = (1� �)��

��� � [but + (1� �)bxt]
where bctjt � log Ctjt

C0�t .

The average consumption of "incumbent" individuals, Ctj�, is given by:

Ctj� � 1



�
Ct � (1� )Ctjt

�
= (1� �)

�
1


Bt + �Xt

�
Log-linearizing the previous expressions around the BGP yields:

bctj� = (1� �)��
�

hbbt + �bxti
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where bctj� � log Ctj�
C��t and where use has been made of the fact that

C�
Y = �

�� :

Next I analyze the dynamics of fundamental wealth, bxt. From (32) we have

bxt = �Etfbxt+1g+ 1� �
�

bqBt � �

1� ��brt
which can be combined with (31) and (43) to obtain the following expression:

bxt = � Etfbxt+1g+ ��1� �
��

�
(1� �)�y + �q

1� ��

� bqBt
where � � �

1+�
�
1��
1���

�
�y
2 [0; 1]
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Figure 1. Balanced Growth Paths 

 

 



 

 

Figure 2.  Bubble Fluctuations and LAB Policies 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

Figure 3.  Bubble Fluctuations and Output Stabilization Policies 

 

 

 

 

 

 

 

 


