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Paula Jaramillo† Çaǧatay Kayı‡ Flip Klijn§

January 22, 2020

Abstract

We consider school choice problems (Abdulkadiroğlu and Sönmez, 2003) where stu-

dents are assigned to public schools through a centralized assignment mechanism. We

study the family of so-called rank-priority mechanisms, each of which is induced by

an order of rank-priority pairs. Following the corresponding order of pairs, at each

step a rank-priority mechanism considers a rank-priority pair and matches an available

student to an unfilled school if the student and the school rank and prioritize each

other in accordance with the rank-priority pair. The Boston or immediate acceptance

mechanism is a particular rank-priority mechanism. Our first main result is a charac-

terization of the subfamily of rank-priority mechanisms that Nash implement the set of

stable matchings (Theorem 1). We show that our characterization also holds for “sub-

implementation” and “sup-implementation” (Corollaries 3 and 4). Our second main

result is a strong impossibility result: under incomplete information, no rank-priority

mechanism implements the set of stable matchings (Theorem 2).
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1 Introduction

An important application of mechanism design is school choice (Abdulkadiroğlu and Sönmez,

2003). This paper analyzes so-called rank-priority mechanisms for the centralized assignment

of students to public schools based on the students’ rankings (preferences) over schools and

the schools’ priorities over students. Rank-priority mechanisms were first studied in Roth

(1991) in the context of the assignment of medical school graduates to consultants in the

UK.

A rank-priority mechanism is determined by an order of all rank-priority pairs. Here,

rank refers to the position that a student assigns to a school in his ranking, while priority

refers to the position that a school assigns to a student in its priority ordering. Given

a profile of rankings and priority orderings, a matching is determined step-wise by going

through the order of rank-priority pairs. More specifically, at each step a rank-priority pair

(r, f) is considered. If a school is ranked rth by some student and if the student has priority

f for the school, then the student is assigned to the school provided that the school still has

vacant seats (after which the student and the seat are removed from the market). A student

remains unassigned if he is not assigned to a school at any step. A well-known rank-priority

mechanism is the immediate acceptance or “Boston” mechanism which is widely used in

school choice.1 The immediate acceptance mechanism is lexicographic as it first considers

the student preferences and only then the school priorities.2

Roth (1991, Proposition 10) shows that no rank-priority mechanism is stable. Stability

is a central concept in the matching literature and puts together three desiderata: individual

rationality, non-wastefulness, and no justified envy.3 Roth (1991) also illustrates that under

rank-priority mechanisms agents have incentives to misrepresent their rankings.4 Assum-

ing complete information, Ergin and Sönmez (2006) study the strategic games induced by

“monotonic” rank-priority mechanisms. Here, monotonicity refers to the requirement that

for any distinct rank-priority pairs (r, f) and (r′, f ′), if r ≤ r′ and f ≤ f ′, then (r, f) is

considered before (r′, f ′). Ergin and Sönmez (2006, Proposition 4) show that monotonic

rank-priority mechanisms Nash implement the set of stable matchings. Since the immediate

acceptance mechanism is monotonic, it Nash implements the set of stable matchings (Ergin

and Sönmez, 2006, Proposition 1). While monotonicity may seem natural, the economic

appeal of a mechanism does not necessarily stem from its definition per se. Instead, the

potential interest of a mechanism is probably mostly determined by the properties of the

matchings that it induces. Therefore we investigate the following questions:

1See, for instance, Abdulkadiroğlu and Sönmez (2003), Basteck et al. (2015), Calsamiglia and Güell

(2018), and Kojima and Ünver (2014). We refer to Pathak (2011) and Abdulkadiroğlu (2013) for surveys on

mechanism design in school choice.
2It can be easily checked that the immediate acceptance mechanism is the rank-priority mechanism based

on the order (1, 1), (1, 2), · · · , (1, n), (2, 1), · · · , (2, n), · · · , (m, 1), · · · , (m,n), where m and n are the number

of schools and students, respectively.
3We refer to the next section for the formal definition.
4It is well-known that the immediate acceptance mechanism is not an exception.
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• are there non-monotonic rank-priority mechanisms that Nash implement the set of

stable matchings?

• are there non-monotonic rank-priority mechanisms that Nash implement a (potentially

interesting) subset5 or superset of the set of stable matchings?

• if so, can we identify these subfamilies of rank-priority mechanisms?

The assumption of complete information and the study of Nash equilibria is far from

unusual in the school choice literature.6 However, Ergin and Sönmez (2006, Section 8) also

consider an incomplete information environment where students do know the priorities and

the capacities of the schools but not the realizations of the other students’ types. They

show that the immediate acceptance mechanism may induce Bayesian Nash equilibria with

unstable matchings in their support.7 This result prompts us to ask the following questions:

• is there another monotonic or a non-monotonic rank-priority mechanism that guaran-

tees that all its Bayesian Nash equilibria have a support with stable matchings only?

• if so, can we identify the subfamily of such rank-priority mechanisms?

We answer all questions above. Regarding the complete information environment, we

characterize the family of rank-priority mechanisms that implement the set of stable match-

ings. Our necessary and sufficient condition is that the order of rank-priority pairs be

“quasi-monotonic.” Loosely speaking, an order satisfies quasi-monotonicity if each pri-

ority appears in the sequence only after the precedent priority has appeared with suffi-

ciently small ranks.8 One might suspect that by demanding only “sub-implementation”

or “sup-implementation” (rather than “full implementation”) one would obtain a larger

family of rank-priority mechanisms than the family of quasi-monotonic mechanisms. How-

ever, for any non-quasi-monotonic mechanism we exhibit a school choice problem such that

the set of equilibrium outcomes is non-empty, the set of stable matchings is a singleton,

and yet neither of the two sets is a subset of the other (Proposition 2). So, our result

also holds for “sub-implementation” and “sup-implementation”: a rank-priority mechanism

sub/sup-implements the set of stable matchings if and only if it is quasi-monotonic (Corol-

lary 3/Corollary 4).

Regarding the incomplete information environment, our second main result (Theorem 2)

is a strong impossibility result: all rank-priority mechanisms exhibit the same feature as

5The lattice structure of the set of stable matchings allows for potentially interesting subsets.
6See, e.g., Pathak and Sönmez (2008), Haeringer and Klijn (2009), and more recently, Bando (2014), Dur

and Morrill (2016), Dur et al. (2018,2019), and Dur (2019), among others.
7Ehlers (2008) also assumes incomplete information and studies a class of mechanisms that contains

the class of monotonic rank-priority mechanisms. He shows that each non-truncation strategy is first-order

stochastically dominated by a truncation strategy provided that students’ information satisfies a symmetry

property (Ehlers, 2008, Theorem 3.2).
8We refer to Section 3 for the formal definition and examples of quasi-monotonic rank-priority mecha-

nisms.
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the immediate acceptance mechanism. Therefore, one conclusion that can be drawn from

our results is that in terms of stability of equilibrium outcomes there is no rank-priority

mechanism that outperforms the immediate acceptance mechanism.

The remainder of the paper is organized as follows. In Section 2, we describe the school

choice problem and rank-priority mechanisms. In Sections 3 and 4, we present our results

for complete and incomplete information settings, respectively. Section 5 concludes.

2 Model

Let I = {i1, . . . , in} be the set of students and S = {s1, . . . , sm} be the set of schools. We

assume that n ≥ 2 and m ≥ 1. The sets I and S are kept fixed throughout.

Each student i ∈ I has a complete, transitive, and strict preference relation Pi over the

schools and “being unmatched” (e.g., attending a private school or being home-schooled),

which is denoted by ∅. For each pair s, s′ ∈ S ∪ {∅}, we write s Pi s
′ if i prefers s to s′, and

sRi s
′ if i finds s as desirable as s′, i.e., s Pi s

′ or s = s′. A school s ∈ S is acceptable (under

Pi) if s Pi ∅. Given that only acceptable schools will be relevant, we often write a preference

relation as a ranking (i.e., ordered list) of acceptable schools (and ∅ to indicate the end of the

list). Preference relation Pi can also be encoded through a function ri : S → {1, . . . ,m,∞}
by setting ri(s) ≡ k if s is the kth highest ranked acceptable school under Pi. (So, if ri(s) = 1

then s is student i’s most preferred acceptable school.) Otherwise, ri(s) ≡ ∞. We refer to

ri(s) as the rank of s in Pi. We will use Pi and ri interchangeably. Let P ≡ (Pi)i∈I be the

preference profile. For each i ∈ I, P−i ≡ (Pj)j 6=i.

Each school s ∈ S has a capacity qs ≥ 1 which is the (integer) number of seats it offers.

Let q = (qs1 , . . . , qsm) be the capacity vector. Each school s ∈ S has a complete, transitive,

and strict priority relation �s over the students and a “vacant seat” denoted by ∅. For

each pair i, i′ ∈ S ∪ {∅}, we write i �s i′ if i has a strictly higher priority than i′ for s, and

s �i s′ if i has a weakly higher priority than i′ for s, i.e., i �i i′ or i = i′. A student i ∈ I
is acceptable (under �s) if i �s ∅. Given that only acceptable students will be relevant, we

often write a priority relation as an ordered list of acceptable students. A priority relation

can also be encoded through a function fs : I → {1, . . . , n,∞} by setting fs(i) ≡ k if i is

the kth highest priority acceptable student for school s, and fs(i) ≡ ∞ otherwise. (So, a

small value of fs(·) indicates a high priority for school s. E.g., if fs(i) = 1 then i has the

highest priority for s.) We refer to fs(i) as the priority of i for s. We will use �s and fs
interchangeably. Let �≡ (�s)s∈S be the profile of priority relations.

A problem is a list (I, S, P,�, q) or, when no confusion is possible, P for short. Let P
be the class of all problems. A matching µ for problem P ∈ P is a function µ : I∪S → 2I∪S
such that (a) each student is assigned to one school or is unassigned,9 i.e., for each i ∈ I,

µ(i) ∈ S∪{∅}; (b) each school is assigned to a set of students that does not exceed its capacity,

i.e., for each s ∈ S, µ(s) ∈ 2I and |µ(s)| ≤ qs; and (c) assignments are “consistent,” i.e., for

9Note that ∅ ∈ 2I .
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each i ∈ I and s ∈ S, µ(i) = s if and only if i ∈ µ(s). We call µ(i) the match of student i

and if µ(i) = s ∈ S, we say that student i is assigned to school s. Let M(P ) denote the

set of matchings for problem P ∈P .

Next, we describe desirable properties of matchings. First, we are interested in a volun-

tary participation condition. A matching µ is individually rational for problem P if for

each i ∈ I and s ∈ S with µ(i) = s, s Pi ∅ and i �s ∅. Second, a matching is non-wasteful

if no student prefers a school with some empty seat to his match and the school finds the

student acceptable. Formally, a matching µ is non-wasteful for problem P if there is no

student i and a school s such that s Pi µ(i), |µ(s)| < qs, and i �s ∅. Finally, a student i is

said to have justified envy if there is a school s such that i prefers s to his match, and i has

higher priority at s than some student assigned to s. Formally, a student i has justified

envy at µ for problem P if there is a school s and a student j ∈ µ(s) such that s Pi µ(i)

and i �s j. A matching µ is stable for P if it is individually rational, non-wasteful, and

no student has justified envy for P . Let S(P ) denote the set of stable matchings for

problem P ∈P . From Gale and Shapley (1962) it follows that for each P ∈P , S(P ) 6= ∅.
A mechanism ϕ is a function that selects for each problem a matching, i.e., for each

P ∈ P , ϕ(P ) ∈M(P ). In this paper we focus on the family of rank-priority mechanisms

which are defined next. Let π : {1, . . . ,m}×{1, . . . , n} → {1, . . . ,m·n} be a bijection. Each

element (r, f) ∈ {1, . . . ,m} × {1, . . . , n} is interpreted as a rank-priority pair, i.e., r is a

rank and f is a priority. We often equivalently denote π by its induced order of rank-priority

pairs, i.e., (r1, f 1), (r2, f 2), . . . , (rm·n, fm·n) where for all k, π(rk, fk) = k. Thus, we will refer

to π as an order of rank-priority pairs. Then, the rank-priority mechanism ϕπ is

defined as follows. Let Q be a profile of students’ preferences. Set Ĩ ≡ I. For each s ∈ S,

set q̃s ≡ qs. Matching ϕπ(Q) is obtained in m·n steps:

Step k = 1, . . . ,m·n: As long as there are i ∈ Ĩ and s ∈ S such that

(c1) s has rank rk in Qi,

(c2) i has priority fk for s, and

(c3) s still has some empty seat, i.e., q̃s > 0,

assign student i to school s and set q̃s ≡ q̃s − 1 and Ĩ ≡ Ĩ\{i}.

After step m ·n, the students in Ĩ remain unmatched. Let ϕπ(Q) denote the thus induced

matching. Note that at each step of the algorithm multiple students can be assigned, but at

most one to each school (because for any school only one student has a given priority). Let

F denote the family of rank-priority mechanisms.

Example 1. [A rank-priority mechanism]

Consider the school choice problem with I = {i1, . . . , i6}, S = {s1, . . . , s7}, q = (1, . . . , 1),

and preferences P and priorities � as given in Table 1. In each student’s column, higher

placed schools are more preferred. For instance, ri4(s1) = 5. In each school’s column, higher

placed students have higher priority. For instance, fs1(i4) = 2. Since all students and all
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Students Schools

Pi1 Pi2 Pi3 Pi4 Pi5 Pi6 �s1 �s2 �s3 �s4 �s5 �s6 �s7
s1 s2 s3 s4 s7 s7 i3 i1 i1 i2 i4 i5 i6
s7 s7 s2 s5 s6 s1 i4 i3 i3 i1 i2 i3 i2
s6 s6 s4 s6 s1 s2 i5 i4 i2 i4 i1 i2 i5
s5 s5 s5 s7 s2 s3 i2 i5 i4 i3 i3 i1 i1
s4 s4 s6 s1 s3 s4 i1 i2 i5 i5 i5 i4 i3
s3 s3 s7 s2 s4 s5 i6 i6 i6 i6 i6 i6 i4
s2 s1 s1 s3 s5 s6

Table 1: Preferences P and priorities � in Example 1.

schools are mutually acceptable, we have omitted ∅ from the preference relations and priority

relations. Consider any order of rank-priority pairs π such that

π : (7, 1), (6, 2), (6, 3), (6, 4), (5, 2), (5, 4), (7, 5), (6, 5), (5, 3), (1, 3), (4, 3), (3, 2), (1)

(2, 1), (4, 5), (1, 4), (1, 1), (2, 3), (2, 4), (3, 5), (5, 5), (1, 6), . . . .

To illustrate the algorithm above, we compute ϕπ(P ), going through the steps defined by

the sequence π:

• At step 1 = π(7, 1), rank-priority pair (7, 1) is considered, i.e., rank 7 in each student’s

preference relation together with priority 1 in each school’s priority relation. School s2

has rank 7 in the preference relation of student i1. In addition, student i1 has priority 1

for school s2. Moreover, school s2 has still an empty seat. Hence, conditions (c1), (c2),

and (c3) are satisfied for i1 and s2, and student i1 is assigned to school s2. Similarly,

student i3 is assigned to school s1.

• At step 2 = π(6, 2), no student-school pair satisfies conditions (c1), (c2), and (c3), and

hence no student is assigned.

• At step 3 = π(6, 3), student i2 is assigned to school s3.

• At steps 4 = π(6, 4), 5 = π(5, 2), and 6 = π(5, 4), no student-school pair satisfies

conditions (c1), (c2), and (c3), and hence no student is assigned.

• At step 7 = π(7, 5), student i5 is assigned to school s5.

• At steps 8 = π(6, 5) and 9 = π(5, 3), no student-school pair satisfies conditions (c1),

(c2), and (c3), and hence no student is assigned.

• At step 10 = π(1, 3), student i4 is assigned to school s4.

• At steps 11, . . . , 15, no student-school pair satisfies conditions (c1), (c2), and (c3), and

hence no student is assigned.

• Finally, at step 16 = π(1, 1), student i6 is assigned to school s7.
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Hence, at problem P , the mechanism ϕπ yields the “boxed” matching in Table 1:

ϕπ(P ) =

(
i1 i2 i3 i4 i5 i6 ∅
s2 s3 s1 s4 s5 s7 s6

)
,

which is not stable, since the unique stable matching is

µ =

(
i1 i2 i3 i4 i5 i6 ∅
s1 s2 s3 s4 s6 s7 s5

)
, (2)

i.e., the boldfaced matching in Table 1. �

The fact that the rank-priority mechanism in Example 1 yields an unstable matching is

not surprising: Roth (1991, Proposition 10) shows that for each rank-priority mechanism,

there is some problem such that the mechanism yields an unstable matching.

We assume that priorities are determined by laws and that capacities are commonly

known by the students.10 Hence, students are the only strategic agents. A strategy is a

preference relation. For each i ∈ I, let Pi denote the set of strategies. With slight abuse

of notation, let P ≡
∏

i∈I Pi. Given a rank-priority mechanism ϕπ, a game is a quadruple

Γ = (I, (Pi)i∈I , ϕπ, P ), or Γ = (ϕπ, P ) for short, where I is the set of players, Pi is the set

strategies of player i ∈ I, ϕπ is the outcome function, and the outcome is evaluated through

the (true) preference relations P of the students.

Example 2. [A rank-priority mechanism, Example 1 cont’d]

Consider again the school choice problem and the order of rank-priority pairs π (see (1))

from Example 1. At ϕπ(P ), student i1 is assigned to his least preferred school s2. Can

student i1 obtain a more preferred school by submitting a different strategy? Since student

i3 is assigned to school s1 at step 1, for any ranking P̃i1 for student i1,

ϕπi1(P̃i1 , P−i1) 6= s1.

So, student i1 cannot obtain his most preferred school s1. However, he can obtain another

school that is also preferred to s2. For instance, student i1 can obtain school s5 by submitting

the strategy P ′i1 ≡ ∗, ∗, ∗, ∗, ∗, s5, ∅, where ∗, ∗, ∗, ∗, ∗ are five different schools in S\{s5}. It

can be easily verified that at profile (P ′i1 , P−i1), student i1 is assigned to school s5 at step

3 = π(6, 3). Note that student i1 does not obtain the seat at school s5 by submitting the

strategy P ′′i1 ≡ s5, ∅, because at profile (P ′′i1 , P−i1), student i5 is assigned to school s5 at step

π(7, 5) < π(1, 3). �

Roth (1991, Proposition 5) already detects and formalizes the problem that Example 2

exhibits: rank-priority mechanisms are vulnerable to manipulation. For this reason, we will

10In many school choice applications, students are prioritized at each school using some exogenous criteria,

e.g., neighborhood or walk-zone priority (see Pathak, 2011 and Abdulkadiroğlu, 2013). Capacities are also

often determined by laws. In particular, capacities cannot be manipulated (cf. Sönmez, 1997).
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study the Nash equilibria of the games induced by rank-priority mechanisms. A strategy-

profile Q ∈ P is a (Nash) equilibrium of the game (ϕπ, P ) if for each student i and for

each Q′i ∈ Pi, ϕπi (Qi, Q−i)Ri ϕ
π
i (Q′i, Q−i). Let E(ϕπ, P ) denote the set of equilibria. Let

O(ϕπ, P ) denote the set of equilibrium outcomes, i.e.,

O(ϕπ, P ) = {µ ∈M(P ) : µ = ϕπ(Q) and Q ∈ E(ϕπ, P )}.

Mechanism ϕπ (Nash) implements the set of stable matchings if for each problem

P ∈P , O(ϕπ, P ) = S(P ). Ergin and Sönmez (2006, Theorem 4) show that if ϕπ is monotonic,

then it implements the set of stable matchings. A rank-priority mechanism ϕπ ∈ F is

monotonic (Ergin and Sönmez, 2006) if

[(r, f) 6= (r′, f ′), r ≤ r′, and f ≤ f ′] =⇒ π(r, f) < π(r′, f ′). (3)

Since (3) is in fact a condition on π, we will interchangeably refer to the monotonicity

of π and ϕπ. Let Fm denote the family of monotonic rank-priority mechanisms.

The immediate acceptance or Boston mechanism ϕπ
ia

(Abdulkadiroğlu and Sönmez,

2003) is a particular rank-priority mechanism where πia lexicographically orders pairs (r, f):

πia : (1, 1), (1, 2), · · · , (1, n), (2, 1), · · · , (2, n), · · · , (m, 1), · · · , (m,n). Note that the immedi-

ate acceptance mechanism is monotonic, i.e., ϕπ
ia ∈ Fm. In the next section we will see that

monotonicity is not necessary for the implementation of the set of stable matchings.

3 Characterization

In this section, we introduce a weaker monotonicity property and prove that it characterizes

the subfamily of rank-priority mechanisms that implement the set of stable matchings.

Let π be an order of rank-priority pairs. For any priority f ∈ {1, . . . , n}, we let π(f)

denote the first position in the order where priority f appears, i.e.,

π(f) ≡ min{ π(r, f) : r ∈ {1, . . .m}}.

Rank-priority mechanism ϕπ is quasi-monotonic if π(1) = 1 and for each priority f ∈
{2, . . . , n−1} and for each priority f ′∈{1, . . . , n−2}, f ′ < f , there is a rank rf ′ ∈ {1, . . . ,m}
such that

(i) π(rf ′ , f) < π(f + 1) and (ii) r′ < rf ′ =⇒ π(r′, f ′) > π(rf ′ , f). (4)

We provide some examples of rank-priority mechanisms to illustrate quasi-monotonicity

in Example 3. Since (4) is a condition on π, we will interchangeably refer to the quasi-

monotonicity of π and ϕπ. Note that quasi-monotonicity in fact only imposes restrictions

on the rank-priority pairs that appear in π before position π(n), i.e., the position in which

priority n appears for the first time. Let Fq denote the family of quasi-monotonic

rank-priority mechanisms. The following lemma shows that monotonicity implies quasi-

monotonicity.
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Lemma 1. Monotonic rank-priority mechanisms are quasi-monotonic, i.e., Fm ⊆ F q.

Proof. Let ϕπ be a monotonic rank-priority mechanism. First, π(1) = π(1, 1) = 1. Second,

let f ∈ {2, . . . , n− 1} and f ′ < f . Let rf ′ = 1. Then, by monotonicity,

π(rf ′ , f) = π(1, f) < π(1, f + 1) = π(f + 1),

which proves (i) in (4). Since there is no rank r′ < 1 = rf ′ , (ii) in (4) is vacuously satisfied.

Hence, ϕπ is quasi-monotonic.

We say that π (or equivalently, ϕπ) satisfies unit increments of priority (UIP) if

π(1) < π(2) < · · · < π(n).

LetFu denote the family of rank-priority mechanisms that satisfy UIP. The following

result is immediate.

Lemma 2. Quasi-monotonicity implies unit increments of priority, i.e., F q ⊆ Fu.

Proof. Follows immediately from π(1) = 1 and condition (i) in (4).

Before we state and prove our main result, we provide some examples of rank-priority

mechanisms to illustrate quasi-monotonicity.

Example 3. [Rank-priority mechanisms]

Consider the following orders of rank-priority pairs. A priority is in boldface whenever it

appears for the first time in the order.

πia ≡ π1 : (1,1), (1,2), · · · , (1,n), (2, 1), · · · , (2, n), · · · , (m, 1), · · · , (m,n).

π2 : (1,1), (2, 1), · · · , (m, 1), (1,2), · · · , (m, 2), · · · , (1,n), · · · , (m,n).

π3 : π3(r, f) < π3(r′, f ′) ⇐⇒ r·f < r′ ·f ′ or [r·f = r′ ·f ′ and r < r′].

π4 : π4(r, f) < π4(r′, f ′) ⇐⇒ r·f < r′ ·f ′ or [r·f = r′ ·f ′ and f < f ′].

π5 : (2,1), (3, 1), (3,2), (2, 2), (1, 1), (1,3), (2,4), · · · where n = 4.

π6 : (3,1), (2,2), (3,3), (1, 1), (2, 3), (2, 1), (2,4), · · · where n = 4.

π7 : (2,1), (3, 1), (3,2), (2, 2), (1, 2), (2,3), (1, 3), (1, 1), (2,4), · · · where n = 4.

π8 : (3,1), (3,2), (3,3), (3,4), · · · where n = 4.

π9 : (4,1), (3, 1), (3,2), (2, 2), (1, 1), (1,4), · · · .
π10 : (2,1), (3, 1), (3,2), (1, 1), (2, 2), (1,3), · · · .

For k = 1, . . . , 4, mechanism ϕπ
k

is monotonic. It is not difficult to check that for k = 5, . . . , 8,

mechanism ϕπ
k

is quasi-monotonic, but not monotonic.11 In the case of k = 5, condition

11So, Fq 6⊆ Fm.
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(4) is satisfied for priorities f = 2 and f ′ = 1 (with rank rf ′ = 2 but not rf ′ = 3), and for

priorities f = 3 and f ′ ∈ {1, 2} (with rf ′ = 1). In particular, in the case of k = 5 for a given

f , we can take the same rf ′ for all f ′ < f .

In the case of k = 6, condition (4) is satisfied for priorities f = 2 and f ′ = 1 (with rank

rf ′ = 2), for priorities f = 3 and f ′ = 1 (with rank rf ′ = 3 but not rf ′ = 2), and for priorities

f = 3 and f ′ = 2 (with rank rf ′ = 2 but not rf ′ = 3).

In the case of k = 7, condition (4) is satisfied for priorities f = 2 and f ′ = 1 (with rank

rf ′ ∈ {1, 2} but not rf ′ = 3), for priorities f = 3 and f ′ = 1 (with rank rf ′ ∈ {1, 2}), and for

priorities f = 3 and f ′ = 2 (with rank rf ′ = 1 but not rf ′ = 2).

Finally, mechanisms ϕπ
9

and ϕπ
10

are not quasi-monotonic. For ϕπ
9
, condition (i) in (4)

is not satisfied for f = 3 since π(3) > π(4). For ϕπ
10

, condition (ii) in (4) is not satisfied for

f = 2 and f ′ = 1.12 To see this, note first that the only candidates for rf ′ are r1 = 2 and

r1 = 3. However, if r1 = 2 then (r′, f ′) = (1, 1) violates (ii), and if r1 = 3 then (r′, f ′) = (2, 1)

violates (ii). �

Our main result shows that quasi-monotonicity is a necessary and sufficient condition for

the Nash implementation of the set of stable matchings.

Theorem 1. [Implementation: characterization]

A rank-priority mechanism ϕπ ∈ F Nash implements the set of stable matchings if and only

if it is quasi-monotonic, i.e., ϕπ ∈ F q.

Theorem 1 immediately follows from Propositions 1 and 2, which are stated and proved

below. We first provide an example that gives insights into how a quasi-monotonic rank-

priority mechanism can implement the set of stable matchings (which is formalized in Propo-

sition 1).

Example 4. [A rank-priority mechanism, Example 1 cont’d]

Consider again the school choice problem from Example 1. We show that the order of rank-

priority pairs π in (1) is quasi-monotonic. More specifically, for each f ∈ {2, 3, 4, 5} and

each f ′ ∈ {1, 2, 3, 4} with f ′ < f , we specify in Table 2 all ranks rf ′ such that condition (4)

is satisfied.

From Theorem 1 (or more specifically, Proposition 1), it follows that there exists an

equilibrium of the game induced by ϕπ that yields the (unique) stable matching µ (given in

(2)). A slightly naive approach to find such an equilibrium is to consider the strategy-profile

Q̃ where each student i only lists the school µ(i), see Table 3. Obviously, ϕ(Q̃) = µ. But

Q̃ is not an equilibrium: Q̃′i5 ≡ s6, s1, s7, ∅ is a profitable deviation for student i5 because

ϕi5(Q̃′i5 , Q̃−i5) = s7 Pi5 s6 = ϕi5(Q̃).

12It is easy to complete π10 so that ϕπ
10

satisfies UIP. So, Fu 6⊆ Fq.
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f = f ′ = rf ′ ∈
2 1 {6}
3 1 {6}

2 {6}
4 1 {5,6}

2 {5,6}
3 {5,6}

5 1 {6,7}
2 {3}
3 {6}
4 {4}

Table 2: Verification of quasi-monotonicity of π in (1).

Q̃i1 Q̃i2 Q̃i3 Q̃i4 Q̃i5 Q̃i6

s1 s2 s3 s4 s6 s7

∅ ∅ ∅ ∅ ∅ ∅

Table 3: Strategy-profile Q̃ in Example 4.

To find an equilibrium, we instead construct a strategy-profile Q∗ such that for each

i ∈ I,

(q1) ranking Q∗i lists school µ(i) in the last rank, say r∗i ;

(q2) π(r∗i , fµ(i)(i)) < π(fµ(i)(i) + 1);

(q3) student i is not assigned to a school until step π(r∗i , fµ(i)(i)), independently of Q∗−j.

Since µ is a (feasible) matching, it follows from (q1) and (q3) that for each i ∈ I, at step

π(r∗i , fµ(i)(i)) student i is assigned to school µ(i), i.e., ϕπ(Q∗) = µ. Condition (q2) guarantees

that Q∗ is a Nash equilibrium.13 Lemma 3, which is stated after the example, shows that

it is always possible to find a rank r∗i and a ranking Q∗i that satisfy (q1), (q2), and (q3).

Remark 3, which appears at the end of the Appendix, discusses a construction of Q∗i using

computationally efficient algorithms from graph theory. Below, we take a slightly different,

direct approach to illustrate some of the aspects of the construction.

Consider student i1 and school µ(i1) = s1. Since fµ(i1)(i1) = fs1(i1) = 5, the possible

candidates for r∗i1 that satisfy (q2) are 3, 4, 5, 6, 7. Does r∗i1 = 3 allow some Q∗i1 to satisfy

(q3)? To answer this question, we have to check whether it is possible to put some school

s 6= s1 at rank 1 and some other school s′ 6= s, s1 at rank 2 such that student i1 is not

assigned to either of schools s and s′ until step π(r∗i1 , fµ(i1)(i1)) = π(3, 5), independently of

the other students’ rankings. One easily verifies that at rank 1,

13This can be seen in the proof of Proposition 1.
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• we cannot put s ∈ {s2, s3} because π(1, 1) < π(3, 5) (otherwise i1 could potentially be

assigned to s at step π(1, 1));

• we cannot put s = s5 because π(1, 3) < π(3, 5);

• we cannot put s ∈ {s6, s7} because π(1, 4) < π(3, 5).

Therefore, the only possible school that we can put at rank 1 is school s4. But at rank 2,

• we cannot put s′ ∈ {s2, s3} because π(2, 1) < π(3, 5);

• we cannot put s′ = s5 because π(2, 3) < π(3, 5);

• we cannot put s′ ∈ {s6, s7} because π(2, 4) < π(3, 5).

In other words, the only possible school that we can put at rank 2 is again school s4. But

since each school can be put at (no more than) one rank, there is no Q∗i1 that satisfies (q3).

So, r∗i1 6= 3.14 Next, we consider the next candidate: does r∗i1 = 4 allow some Q∗i1 to satisfy

(q3)? Proceeding in a similar way as above, one easily verifies that

• at rank 1 we can put any of s2, s3, s4, s6, s7 (but not s5 because π(1, 3) < π(4, 5));

• at rank 2 we can put any of s4, s5, s6, s7 (but not s2 nor s3 because π(2, 1) < π(4, 5));

• at rank 3 we can put any of s2, s3, s5, s6, s7 (but not s4 because π(3, 2) < π(4, 5)).

Therefore, r∗i1 ≡ 4 and Q∗i1 ≡ s4, s5, s6, s1, ∅ satisfy conditions (q1), (q2), and (q3).

Next, consider student i2 and school µ(i2) = s2. Since fµ(i2)(i2) = fs2(i2) = 5, the possible

candidates for r∗i2 that satisfy (q2) are 3, 4, 5, 6, 7 (as in the case of r∗i1). However, it can be

easily verified that this time rank 3 can be used, i.e., r∗i2 ≡ 3 together with (for instance)

Q∗i1 ≡ s5, s7, s2, ∅ satisfies conditions (q1), (q2), and (q3). Continuing this procedure for the

other students as well, we obtain a strategy-profile that satisfies (q1), (q2), and (q3). One

such profile is Q∗ depicted in Table 4.

Q∗i1 Q∗i2 Q∗i3 Q∗i4 Q∗i5 Q∗i6
s4 s5 s1 s1 s1 s1

s2 s7 s2 s2 s2 s2

s5 s2 s4 s3 s3 s3

s1 ∅ s5 s5 s4 s4

∅ s6 s6 s5 s5

s3 s4 s7 s6

∅ ∅ s6 s7

∅ ∅

Table 4: Equilibrium Q∗ in Example 4.

14In particular, this shows that even if r∗i satisfies (q2) it need not allow for a Q∗i that satisfies (q3).
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As mentioned earlier, due to (q1) and (q3), ϕπ(Q∗) = µ. It is easy to see that Q∗ is an

equilibrium. Suppose it is not an equilibrium. Since only student i5 does not get his most

preferred school at µ, there is a strategy Q′i5 such that

ϕi5(Q′i5 , Q
∗
−i5)Pi5 ϕi5(Q∗) = s6.

Then, ϕi5(Q′i5 , Q
∗
i5

) = s7. However, student i6 is assigned to school s7 at step 1 = π(7, 1),

independently of the other students’ strategies. Hence, ϕi5(Q′i5 , Q
∗
i5

) 6= s7. So, Q∗ is an

equilibrium. �

The following lemma formalizes the observations from Example 4 and will be key in the

proof of Proposition 1. We use the convention that π(n+ 1) ≡ ∞.

Lemma 3. Let ϕπ be quasi-monotonic. Let i be a student and s be a school. Suppose

f ≡ fs(i) <∞. Then there is a rank r∗ ≡ r∗(i, s) with π(r∗, f) < π(f + 1) and a strategy

Q∗i ≡ · · · , s︸︷︷︸
at rank r∗

, ∅

such that if the rank-priority algorithm of ϕπ is applied to Q = (Q∗i , Q−i), where Q−i is any

strategy-profile of the other students, then student i remains unassigned until the end of step

π(r∗, f)− 1 (and hence is assigned to school s at step π(r∗, f) if at that point the school still

has an empty seat).

The proof of Lemma 3 is relegated to the Appendix.

Remark 1. Lemma 3 is key in the proof of Nash implementation (Proposition 1) for two

reasons. First, for any stable matching it allows us to find an equilibrium that induces this

matching. Second, for any profile that yields an unstable matching it allows us to find a

profitable deviation. Even though the statement of the lemma only deals with the existence

of a particular strategy, in Remark 3 (in the Appendix) we briefly discuss how such a strategy

can be constructed in polynomial time. �

Remark 2. Without the requirement π(r∗, f) < π(f + 1), Lemma 3 would be trivial (take

r∗ = 1). For the same reason we could dispense with the lemma if we were to prove Nash

implementation for monotonic rank-priority mechanisms.15 Put differently, the strategies

that are needed and used in Proposition 1 (see Remark 1) for monotonic rank-priority

mechanisms can simply consist of a single school. �

We can now state and prove the propositions that imply Theorem 1.

Proposition 1. [Quasi-monotonic mechanisms: implementation]

If a rank-priority mechanism is quasi-monotonic, then it Nash implements the set of stable

matchings.
15This follows from the fact that for any monotonic π we have that for each priority f ∈ {1, . . . , n − 1},

π(1, f) < π(f + 1).
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Proof. Let ϕπ be quasi-monotonic. We show that ϕπ implements the set of stable matchings,

i.e., for each problem P ∈P , O(ϕπ, P ) = S(P ). Let P ∈P .

We first prove the inclusion S(P ) ⊆ O(ϕπ, P ). Let µ ∈ S(P ). For each i ∈ I with

µ(i) 6= ∅, let f(i) ≡ fµ(i)(i) <∞. For each i ∈ I, consider a strategy

Q∗i ≡


∅ if µ(i) = ∅;
· · · , µ(i)︸︷︷︸

at rank r∗(i,µ(i))

, ∅ if µ(i) 6= ∅,

as defined in Lemma 3.

Obviously, for each i ∈ I with µ(i) = ∅, ϕπi (Q∗) = ∅ = µ(i). Now let i ∈ I with µ(i) 6= ∅.
Since for each s ∈ S, |µ(s)| ≤ qs, it follows from Lemma 3 that each student i ∈ I with

µ(i) 6= ∅ is assigned to µ(i) at step π(r∗(i, µ(i)), f(i)). Hence, ϕπ(Q∗) = µ.

Next, we show that Q∗ is an equilibrium. Suppose that some student i ∈ I has a deviation

Q′i such that ϕπi (Q′) = s Pi µ(i) where Q′ ≡ (Q′i, Q
∗
−i) and s ∈ S (otherwise, µ would not be

individually rational, contradicting µ ∈ S(P )). Then, fs(i) ≤ n and under Q′, student i is

assigned to school s ∈ S at a step π(r, fs(i)) ≥ π(fs(i)) for some r ∈ {1, . . . ,m}.
Since µ ∈ S(P ) and s Pi µ(i), (a) |µ(s)| = qs and (b) for each j ∈ µ(s), f(j) =

fs(j) < fs(i) (so, in particular, f(j) 6= n). In view of (a), let j ∈ µ(s) such that ϕπj (Q′) 6=
s. Since f(j) 6= n, it follows from the definition of r∗(j, µ(j)) that π(r∗(j, µ(j)), f(j)) <

π(f(j) + 1). From (b), f(j) + 1 ≤ fs(i). Hence from UIP, π(f(j) + 1) ≤ π(fs(i)). Hence,

π(r∗(j, µ(j)), f(j)) < π(fs(i)). So, π(r∗(r, µ(j)), f(j)) < π(r, fs(i)). Then, since under Q′

student i is assigned to school s at step π(r, fs(i)), there is still an empty seat at s at step

π(r∗(j, µ(j)), f(j)). Since Q′j = Q∗j , it follows from Lemma 3 that under Q′ student j is

assigned to s, which contradicts ϕπj (Q′) 6= s. Hence, there is no profitable deviation for any

student. So, Q ∈ E(ϕπ, P ). Hence, µ ∈ O(ϕπ, P ). So, S(P ) ⊆ O(ϕπ, P ).

Finally, we prove the inclusion O(ϕπ, P ) ⊆ S(P ). Let Q ∈ E(ϕπ, P ) and µ = ϕπ(Q).

Suppose µ /∈ S(P ). Since µ = ϕπ(Q), for each i ∈ I and s ∈ S with µ(i) = s, i �s ∅.
Therefore, we can distinguish between the following two cases.

Case 1: There is i∗ ∈ I with ∅Pi∗ µ(i∗).

Let student i∗ report Q′i∗ = ∅. Then, for Q′ ≡ (Q′i∗ , Q−i∗), ϕ
π
i∗(Q

′) = ∅. Hence, Q′i∗ is a

profitable deviation.

Case 2a: There are i∗ ∈ I and s∗ ∈ S with s∗ Pi∗ µ(i∗), |µ(s∗)| < qs∗ , and i∗ �s∗ ∅.
(Note that i∗ �s∗ ∅ is equivalent to fs∗(i

∗) <∞.)

Case 2b: There are i∗, j∗ ∈ I and s∗ ∈ S with s∗ Pi∗ µ(i∗), j∗ ∈ µ(s∗), and i∗ �s∗ j∗.
(Note that i∗ �s∗ j∗ is equivalent to fs∗(i

∗) < fs∗(j
∗). Moreover, j �s∗ ∅, or, equivalently,

fs∗(j
∗) <∞.)

Let f ∗ ≡ fs∗(i
∗) <∞. Take r∗ ≡ r∗(i∗, s∗) as defined in Lemma 3. Let k∗ ≡ π(r∗, f ∗) and

Q∗i∗ ≡ · · · , s∗︸︷︷︸
at rank r∗

, ∅,
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as defined in Lemma 3. Using the following claim we will prove that Q∗i∗ is a profitable

deviation for student i∗.

Claim. Consider the rank-priority algorithm of ϕπ for Q and Q∗ ≡ (Q∗i∗ , Q−i∗). Then, at

the beginning of each step k, 1 ≤ k ≤ k∗,

(1.) For each student i with i 6= i∗, if i is already assigned under Q, then he is also already

assigned under Q∗.

(2.) For each school s, there are at least as many unassigned seats under Q∗ as under Q.

Proof of Claim. We prove the Claim by induction. Since the rank-priority algorithm starts

with each student unassigned, the Claim holds for k = 1. Suppose the Claim holds for some

step k, 1 ≤ k < k∗. Let (r, f) ≡ π−1(k). We will show that it also holds for step k + 1.

(1.) Let i, i 6= i∗, be a student who is already assigned at the beginning of step k + 1 under

Q. If i got assigned to a school at some step l with l < k under Q, then, by part 1 of the

induction assumption, he is already assigned at step l < k + 1 under Q∗.

Now assume that i got assigned to a school, say s̄, at step k under Q. Hence, student i

has priority f for school s̄ and student i’s strategy Qi lists s̄ at rank r. We will prove that i

is assigned to a school by the end of step k under Q∗. School s̄ has at least one empty seat

at the beginning of step k under Q. From part 2 of the induction assumption it follows that

school s̄ has at least one empty seat at the beginning of step k under Q∗ as well. Suppose i is

still unassigned at the beginning of step k under Q∗. Note that the rank-priority algorithm

for Q∗ considers at step k (student, school)–pairs such that the student has priority f for

the school and the student lists the school at rank r in Q∗. Since i 6= i∗, Q∗i = Qi, and hence

student i is assigned to s̄ at step k under Q∗. Hence, i is assigned to a school by the end of

step k under Q∗.

(2.) Let s ∈ S. From part 2 of the induction assumption it follows that it is sufficient to

show that if at step k under Q∗ a student gets assigned to s, then at step k under Q the

student also gets assigned to s or there are no seats left at s.

Let i be a student who gets assigned to s at step k under Q∗. Hence, student i has priority

f for school s and student i’s strategy Q∗i lists s at rank r. Recall k < k∗ = π(r∗, f ∗). From

Lemma 3 it follows that under Q∗ student i∗ is not assigned until step π(r∗, f ∗). Hence,

i 6= i∗. By assumption, i is still unassigned at the beginning of step k under Q∗. Then, from

part 1 of the induction assumption it follows that i is still unassigned at the beginning of

step k under Q as well. Then, since i 6= i∗, Qi = Q∗i , and hence student i is assigned to s at

step k under Q if at that point s still has an empty seat. 2

We complete the proof by showing that Q∗i∗ is a profitable deviation in both Case 2a

and Case 2b. We first show that in both cases school s∗ has at least one empty seat at the

beginning of step π(r∗, f ∗) under Q.

In Case 2a, school s∗ has at least one empty seat after applying the rank-priority

algorithm to Q. Hence, school s∗ has at least one empty seat at the beginning of step

π(r∗, f ∗) under Q.
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In Case 2b, student j∗ is assigned to school s∗ at a step π(r′, fs∗(j
∗)) (where r′ ∈

{1, . . . ,m}) under Q. Hence, school s∗ has at least one empty seat at the beginning of

step π(r′, fs∗(j
∗)) under Q. From UIP and f ∗ = fs∗(i

∗) < fs∗(j
∗), π(f ∗ + 1) ≤ π(fs∗(j

∗)).

From the definition of r∗ ≡ r∗(i∗, s∗) (Lemma 3), π(r∗, f ∗) < π(f ∗ + 1). Hence, π(r∗, f ∗) <

π(fs∗(j
∗)). In particular, π(r∗, f ∗) < π(r′, fs∗(j

∗)). Hence, school s∗ has at least one empty

seat at the beginning of step π(r∗, f ∗) under Q.

By part 2 of the Claim, school s∗ has at least one empty seat at the beginning of step

k∗ = π(r∗, f ∗) under Q∗ as well. Hence, by Lemma 3, i∗ is assigned to s∗ at step π(r∗, f ∗)

under Q∗. So, ϕπi∗(Q
∗) = s∗. Hence, Q∗i∗ is a profitable deviation, which contradicts Q ∈

E(ϕπ, P ). Hence, µ ∈ S(P ). So, O(ϕπ, P ) ⊆ S(P ).

Since any monotonic rank-priority mechanism is quasi-monotonic (Lemma 1) and the

immediate acceptance mechanism is a monotonic rank-priority mechanism, we immediately

obtain the following two corollaries to Proposition 1.

Corollary 1. [Ergin and Sönmez, 2006, Theorem 4]

Each monotonic rank-priority mechanism Nash implements the set of stable matchings.

Corollary 2. [Ergin and Sönmez, 2006, Theorem 1]

The immediate acceptance mechanism Nash implements the set of stable matchings.

In Section 5 we also show that Proposition 1 and its proof imply Theorem 5.2 in Dur et al.

(2018): any mechanism in the class considered by Dur et al. (2018) Nash implements the set

of stable matchings.

Next, we show that non-quasi-monotonic mechanisms do not Nash implement the set of

stable matchings. In fact, we prove a stronger result: for any non-quasi-monotonic mecha-

nism we construct a school choice problem for which (a) the unique stable matching cannot

be obtained as an equilibrium outcome and (b) some equilibrium outcome is not stable.

Propositions 1 and 2 prove Theorem 1.

Proposition 2. [Non-quasi-monotonic mechanisms: no implementation]

Let π violate quasi-monotonicity. Then, there is a problem P with O(ϕπ, P ) 6= ∅, |S(P )| = 1,

S(P ) 6⊆ O(ϕπ, P ), and O(ϕπ, P ) 6⊆ S(P ). In particular, ϕπ does not Nash implement the

set of stable matchings.

Proof. It is convenient to first introduce some more notation. For any priority f ∈ {1, . . . , n},
we let r(f) denote the rank such that (r(f), f) is the first pair in π in which priority f appears.

In other words, r(f) ∈ {1, . . . ,m} is such that for each r ∈ {1, . . . ,m}, π(f) = π(r(f), f) ≤
π(r, f).

In view of Lemma 2 it is sufficient to distinguish between the following two cases.

Case 1: ϕπ violates UIP, i.e., ϕπ 6∈ Fu.
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Then, there is a smallest priority f ∈ {1, . . . , n−1} such that for some priority f̄ with f̄ > f ,

π(f̄) < π(f). Thus, π takes the following form:

π : · · · , · · · , · · · , · · · , · · ·︸ ︷︷ ︸
only priorities 1,2,...,f−1

(respecting UIP here)

, · · · , (r(f̄), f̄)︸ ︷︷ ︸
first time

priority f̄ appears

, · · · , (r(f), f)︸ ︷︷ ︸
first time

priority f appears

, · · · . (5)

Consider the school choice problem (P,�, q) where preferences over schools P and prior-

ities over students � are given by the columns16 in Table 5. Each school s ∈ S has capacity

qs = f . One easily verifies that S(P ) = {µ} where the unique stable matching µ is such that

for each k = 1, . . . , f , µ(ik) = s1 and for each k = f + 1, . . . , n, µ(ik) = ∅.

Students’ preferences Schools’ priorities

P{i1,i2,...,if ,if̄} P{if+1,if+2,...,in}\{if̄} �S
s1 ∅ i1
∅ i2

...

in

Table 5: School choice problem in Case 1.

We first show S(P ) 6⊆ O(ϕπ, P ). Suppose there is an equilibrium Q ∈ E(ϕπ, P ) such that

ϕπ(Q) = µ. Since µ(if ) = s1 and student if has priority f for school s1, it follows from (5)

that student if is assigned to school s1 after step π(r(f̄), f̄) under Q. Hence, school s1 has

at least 1 empty seat at the beginning of step π(r(f̄), f̄) under Q.

Consider any strategy of the form

Q′if̄ ≡ · · · , s1︸︷︷︸
at rank r(f̄)

, ∅,

for student if̄ . Let Q′ ≡ (Q′if̄ , Q−if̄ ). Since student if̄ has priority f̄ for all schools, if̄ is not

assigned to any school before step π(r(f̄), f̄) under Q′. Since school s1 has at least 1 empty

seat at the beginning of step π(r(f̄), f̄) under Q, it follows that school s1 has at least 1 empty

seat at the beginning of step π(r(f̄), f̄) under Q′ as well. Hence, student if̄ is assigned to

school s1 at step π(r(f̄), f̄) under Q′. But then, since ϕπif̄ (Q) = µ(if̄ ) = ∅, Q′if̄ is a profitable

deviation for student if̄ at Q, contradicting Q ∈ E(ϕπ, P ). Hence, µ ∈ S(P )\O(ϕπ, P ). So,

S(P ) 6⊆ O(ϕπ, P ).

Next, we show O(ϕπ, P ) 6⊆ S(P ). Consider strategy-profile Q in Table 6. Each student

ik with k ∈ {1, 2, . . . , f −1, f̄} submits a list where school s1 appears at rank r(k). All other

students submit the empty list.

16So, each student in {i1, i2, . . . , if , if̄} only finds s1 acceptable, all other students find all schools unac-

ceptable, and all schools s ∈ S have the same priority relation i1 �s i2 �s . . . �s in.
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Students’ strategies

Qik , k ∈ {1, 2, . . . , f − 1, f̄} Qik , k ∈ {f, f + 1, . . . , n}\{f̄}
... ∅
...

r(k)→ s1

...

Table 6: Strategy-profile in Case 1.

Let µ′ ≡ ϕπ(Q). From (5) and the fact that each student ik with k ∈ {1, 2, . . . , f − 1, f̄}
has priority k for all schools, it follows that for each k ∈ {1, 2, . . . , f − 1, f̄}, student ik is

assigned a seat at school s1 at step π(r(k), k) under Q. Thus, for each k = 1, 2, . . . , f − 1, f̄ ,

µ′(ik) = s1 and for each k = f, f + 1, . . . , n with k 6= f̄ , µ′(ik) = ∅. Since µ′ 6= µ, µ′ is not

stable, i.e., µ′ 6∈ S(P ).

We show that Q ∈ E(ϕπ, P ). First, no student ik with k ∈ {1, 2, . . . , n}\{f} has a

profitable deviation (since each of them gets his most preferred match). Second, student if
cannot obtain a seat at his only acceptable school s1 by means of some deviation Q′if . To see

this, let Q′ ≡ (Q′if , Q−if ). Since student if has priority f for all schools, if is not assigned to

any school before step π(r(f), f) under Q′. Since π(r(f), f) > π(r(f̄), f̄) and school s1 has

no more empty seats after step π(r(f̄), f̄) under Q, school s1 has no more empty seats after

step π(r(f̄), f̄) under Q′ either. So, student if does not obtain a seat at school s1 under Q′.

Hence, Q ∈ E(ϕπ, P ). Hence, µ′ ∈ O(ϕπ, P )\S(P ). So, O(ϕπ, P ) 6⊆ S(P ).

Case 2: ϕπ violates quasi-monotonicity but satisfies UIP, i.e., ϕπ ∈ Fu\F q.
Since ϕπ satisfies UIP, it follows that

for each f̄ ∈ {1, . . . , n− 1}, π(r(f̄), f̄) < π(r(f̄ + 1), f̄ + 1). (6)

But then in view of (4), let f ∈ {2, . . . , n − 1} and f ′ ∈ {1, . . . , n − 2}, f ′ < f , be two

priorities such that for each rank r̃ ∈ {1, . . . ,m} with π(r̃, f) < π(f + 1),

there is a rank r̃′ < r̃ with π(r̃′, f ′) < π(r̃, f). (7)

It follows from (6) that there exists a rank r ∈ {1, . . . ,m} with π(r, f) < π(f + 1). From

(7), there is a rank r′ < r. The existence of two different ranks implies that there are at

least two different schools, i.e., m ≥ 2.

Consider a school choice problem (P,�, q) where preferences over schools P and priorities

over students � are given by the columns in Table 7. All students are acceptable for all

schools. School s1 has capacity qs1 = 1. Each school s 6= s1 has capacity qs = n. One easily

verifies that S(P ) = {µ} where the unique stable matching µ is such that µ(i1) = s1 and for

each i 6= i1, µ(i) = ∅.
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Students’ preferences Schools’ priorities

Pi1 Pi2 PI\{i1,i2} �s1 �S\{s1}
s1 s1 ∅ ...

...

∅ ∅ f ′ →
... i1
...

...

f → i1
...

f + 1→ i2 i2
...

...

Table 7: School choice problem in Case 2.

We first show S(P ) 6⊆ O(ϕπ, P ). Suppose there is an equilibrium Q ∈ E(ϕπ, P ) such that

ϕπ(Q) = µ. Then, under Q, student i1 is assigned to school s1 at some step π(r̄, f) where

r̄ ∈ {1, . . . ,m}. Then, Qi1 lists school s1 at rank r̄. Moreover, π(r̄, f) < π(r(f + 1), f + 1).

To see this, we can use arguments similar to those in Case 1. We include the arguments for

the sake of completeness. Suppose that π(r̄, f) > π(r(f + 1), f + 1). Then, from ϕπ(Q) = µ

it follows that no student is assigned to s1 before or at step π(r(f + 1), f + 1) under Q.

Consider any strategy of the form

Q′i2 ≡ · · · , s1︸︷︷︸
at rank r(f+1)

, ∅,

for student i2. Let Q′ ≡ (Q′i2 , Q−i2). Since student i2 has priority f + 1 for all schools,

i2 is not assigned to any school before step π(r(f + 1), f + 1) under Q′. Since no student

is assigned to s1 before or at step π(r(f + 1), f + 1) under Q, it follows that no student

is assigned to s1 before or at step π(r(f + 1), f + 1) under Q′ either. Hence, student i2 is

assigned to school s1 at step π(r(f + 1), f + 1) under Q′. Hence, Q′i2 is a profitable deviation

for student i2, contradicting Q ∈ E(ϕπ, P ). So, π(r̄, f) < π(r(f + 1), f + 1) = π(f + 1).

Since π(r̄, f) < π(f + 1), (7) implies that there is a rank r̄′ < r̄ such that π(r̄′, f ′) <

π(r̄, f). Since Qi1 lists at least r̄ schools, it lists some school, say s̄′, at rank r̄′. Obviously,

s̄′ 6= s1. Since i1 has priority f ′ for school s̄′ and qs̄′ = n, it follows that student i1 is assigned

to some school before or at step π(r̄′, f ′) under Q. Since π(r̄′, f ′) < π(r̄, f), this contradicts

the fact that student i1 is assigned to school s1 at step π(r̄, f) under Q. So, Q 6∈ E(ϕπ, P ).

Hence, µ ∈ S(P )\O(ϕπ, P ). So, S(P ) 6⊆ O(ϕπ, P ).

Next, we show O(ϕπ, P ) 6⊆ S(P ). Consider strategy-profile Q in Table 8. Student i2
submits a list where school s1 appears at rank r(f+1). All other students submit the empty

list.

Let µ′ ≡ ϕπ(Q). Obviously, for each i 6= i2, µ′(i) = ∅ and µ′(i2) = s1. Since µ′ 6= µ, µ′ is

not stable, i.e., µ′ 6∈ S(P ). We show that Q ∈ E(ϕπ, P ). First, none of the students i2, . . . , in
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Students’ strategies

Qi1 Qi2 QI\{i1,i2}

∅ ... ∅
...

r(f + 1)→ s1

...

Table 8: Strategy-profile in Case 2.

has a profitable deviation (since each of them gets his most preferred match). Second,

consider student i1. The only possible improvement would be to get the seat at school s1.

Suppose Q′i1 is such that ϕπi1(Q′) = s1 where Q′ ≡ (Q′i1 , Q−i1). Then, i1 is assigned to s1

before step π(r(f + 1), f + 1) under Q′. (Otherwise i2 would again grab the unique seat at

s1.) Since i1 has priority f for s1, i1 is assigned to s1 at some step π(r̄, f) < π(r(f+1), f+1)

where r̄ ∈ {1, . . . ,m}. In particular, the list Q′i1 consists of at least r̄ schools and school s1

appears at rank r̄. It follows from (7) that there exists a rank r̄′ ∈ {1, . . . ,m} with r̄′ < r̄

such that π(r̄′, f ′) < π(r̄, f). Since Q′i1 lists a school (different from s1), say s′, at rank

r̄′ < r̄, and since student i1 has priority f ′ for s′ and qs′ = n, it follows that before or at

step π(r̄′, f ′) student i1 is assigned to a school, which contradicts the fact that student i1 is

assigned to a school at step π(r̄, f). Hence, i1 does not have a profitable deviation. Hence,

Q ∈ E(ϕπ, P ). Hence, µ′ ∈ O(ϕπ, P )\S(P ). So, O(ϕπ, P ) 6⊆ S(P ).

Mechanism ϕπ (Nash) sub-implements the set of stable matchings if for each

problem P ∈ P , O(ϕπ, P ) ⊆ S(P ). Similarly, mechanism ϕπ (Nash) sup-implements

the set of stable matchings if for each problem P ∈ P , S(P ) ⊆ O(ϕπ, P ). Clearly, a

mechanism implements the set of stable matchings if and only if it both sub-implements and

sup-implements the set of stable matchings. As corollaries to Propositions 1 and 2 we obtain

the following two results.

Corollary 3. [Sub-implementation: characterization]

A rank-priority mechanism ϕπ ∈ F sub-implements the set of stable matchings if and only

if it is quasi-monotonic, i.e., ϕπ ∈ F q.

Corollary 4. [Sup-implementation: characterization]

A rank-priority mechanism ϕπ ∈ F sup-implements the set of stable matchings if and only

if it is quasi-monotonic, i.e., ϕπ ∈ F q.

4 Incomplete information

In the analysis of Section 3 we rely on the concept of Nash equilibrium. In particular,

we assume complete information about preferences. A natural question is whether our
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result still holds when this assumption is relaxed. Ergin and Sönmez (2006, Section 8)

consider an incomplete information environment where students do know the priorities and

the capacities of the schools but not the realizations of the other students’ types. They show

that the immediate acceptance mechanism may induce a Bayesian Nash equilibrium with

unstable matchings in its support. In this section, we prove a strong impossibility result: all

rank-priority mechanisms exhibit the same feature.

As before, let I = {i1, . . . , in} and S = {s1, . . . , sm} denote the fixed set of students and

schools, respectively. Furthermore, let �= (�s)s∈S be the profile of priority relations and

q = (qs1 , . . . , qsm) be the capacity vector. Each student i ∈ I is now endowed with a von

Neumann-Morgenstern utility function (or type) ui : S ∪ {∅} → R. We assume that

for all s, s′ ∈ S∪{∅} with s 6= s′, ui(s) 6= ui(s
′). Let Ui be the set of possible utility functions

for student i. (For i 6= j, it is possible that Ui 6= Uj.) In our incomplete information setting,

all students know the probability distribution Pi over Ui where, without loss of generality,

for each ui ∈ Ui, Pi(ui) > 0 and
∑

ui∈Ui Pi(ui) = 1, but only student i knows its realization.

Let ũi denote the random variable that determines student i’s utility function. We assume

that the collection (ũi)i∈I is independent. A problem of incomplete information is a

list (I, S, (Ui)i∈I, (Pi)i∈I,�, q).

As before, we assume that students are the only strategic agents. For each i ∈ I, let Pi
be the set of all complete, transitive, and strict preference relations over S∪{∅}. A strategy

of student i is a function σi : Ui → Pi. Let Σi denote the set of student i’s strategies and let

Σ ≡
∏

i∈I Σi. Given a rank-priority mechanism ϕπ, Γ = (I, (Ui)i∈I, (Pi)i∈I, (Σi)i∈I, ϕ
π)

is a Bayesian game.

A strategy-profile σ = (σi1 , ..., σin) ∈ Σ is a (Bayesian Nash) equilibrium of Γ if for

each student i ∈ I, σi assigns an optimal action to each ui ∈ Ui, i.e., maximizes student i’s

expected payoff given the other students’ strategies. Formally, for each i ∈ I, each ui ∈ Ui,
and each P ′i ∈ Pi,

E
[
ui[ ϕ

π
i (σi(ui), (σj(ũj))j 6=i) ]

]
≥ E

[
ui[ ϕ

π
i (P ′i , (σj(ũj))j 6=i) ]

]
, (8)

where the expected payoff is computed with respect to the vector of random variables

(σj(ũj))j 6=i. Let E(Γ) denote the set of equilibria. The support of a strategy-profile

σ ∈ Σ is the set of matchings that can be obtained with strictly positive probability, i.e.,{
µ : there is (ui)i∈I ∈

∏
i∈I

Ui s.t. ϕπ
(
σi1(ui1), . . . , σin(uin)

)
= µ

}
.

Next, we show that for each rank-priority mechanism, there is a problem of incomplete

information with a Bayesian Nash equilibrium such that its support contains an unstable

matching.

Theorem 2. [Incomplete information: impossibility of “stable support”]

Let m ≥ 3 and n ≥ 4. For each rank-priority mechanism ϕπ, there is a problem of incomplete
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information with a Bayesian Nash equilibrium such that its support contains an unstable

matching, i.e., for each ϕπ ∈ F , there is σ ∈ E(Γ) such that for some (ui)i∈I ∈
∏

i∈I Ui,

ϕπ
(
σi1(ui1), . . . , σin(uin)

)
/∈ S(Pui1 , . . . , Puin ),

where for each i ∈ I, Pui is the preference relation over S∪{∅} such that for all s, s′ ∈ S∪{∅},
s Pui s

′ if ui(s) > ui(s
′).

Proof. Let ϕπ violate quasi-monotonicity. Then, the statement follows immediately from

Proposition 2. Let ϕπ be quasi-monotonic. Assume there are n = 4 students and m =

3 schools.17 Let (I, S, (Ui)i∈I , (Pi)i∈I ,�, q) be any school choice problem18 of incomplete

information with I = {1, 2, 3, 4}, S = {a, b, c}, U1 = {u1}, U2 = {u2}, U3 = {u3}, U4 =

{u∅4, ua4}, P1(u1) = 1, P2(u2) = 1, P3(u3) = 1, and P4(u∅4) = P4(ua4) = 1
2
. The utility functions

u1, u2, u3, u
a
4, and u∅4 are given by the columns in Table 9. The only condition (apart from

the partial specification of u1) that we impose on the utility functions is that the induced

preferences are those described by the corresponding columns19 in Table 10. The profile of

priority relations � is also described in Table 10. Finally, school a has capacity 2 and schools

b and c each have capacity 1.

Students

u1 u2 u3 u∅4 ua4

a 3 ∗ ∗ ∗ ∗
b 2 ∗ ∗ ∗ ∗
c ∗ ∗ ∗ ∗ ∗
∅ 0 ∗ ∗ ∗ ∗

Table 9: The utility functions in Theorem 2.

Each ∗ can be arbitrarily chosen provided

that each column induces the preferences in

the corresponding column of Table 10.

Students Schools

P1 P2 P3 P ∅4 P a
4 �a �b �c

a a a ∅ a 2 1 2

b ∅ b ∅ 4 3 4

∅ c 1 2 1

∅ 3 4 3

Table 10: Induced preferences and the pri-

orities in Theorem 2.

Let (r(f), f) be the first pair in π in which priority f appears. Let (r2(4), 4) and (r3(4), 4)

be the pair in π in which priority 4 appears for the second and third time, respectively. Note

that since m = 3, {r(4), r2(4), r3(4)} = {1, 2, 3}. Also observe that since ϕπ satisfies UIP,

before step π(r(2), 2) only pairs with priority 1 are considered. In particular, π(r(1), 1) = 1.

We will use these facts in the remainder of the proof.

Consider any strategy-profile σ = (σ1, σ2, σ3, σ4) such that

17A proof for the case with m > 3 or n > 4 can easily be obtained by introducing unacceptable schools.
18For the sake of clarity, we let integers and letters denote students and schools, respectively.
19Note that we simplify notation by writing P1,P2,P3,P ∅4 , and P a4 instead of Pu1

,Pu2
,Pu3

,Pu∅
4
, and Pua

4
.
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1 2 3 4

µ∅ b a a ∅
µa b a c a

Table 11: The support of σ in Theorem 2.

• at σ1(u1), b has rank r(1),

• at σ2(u2), a has rank r(1),

• at σ3(u3),

case I: if r(2) 6= r(4), r2(4), then b has rank r(2), a has rank r(4), and c has rank r2(4),

case II: if r(2) = r(4), then b has rank r(2), a has rank r2(4), and c has rank r3(4),

case III: if r(2) = r2(4), then b has rank r(2), a has rank r(4), and c has rank r3(4), and

• σ4(u∅4) = P ∅4 and at σ4(ua4), a has rank r(2).

We compute the support of σ. Since π(r(1), 1) = 1, at step 1, student 1 is assigned to

school b and student 2 is assigned to school a (independently of the realization of student 4’s

utility function (u∅4 or ua4)). Students 3 and 4 are not assigned to a school at step 1, because

students 3 and 4 do not have priority 1 for any school. To determine the assignment of the

latter two students, we consider the two possible realizations of student 4’s utility function

separately.

First, consider realization u∅4. In this case, student 4 obviously remains unassigned. As a

consequence, student 3 is assigned to school a at step π(r(4), 4) or π(r2(4), 4). To see this,

note that after step 1, only schools a and c have an empty seat. Moreover, student 3 has

priority 4 for both schools a and c. In case I, since π(r(4), 4) < π(r2(4), 4), student 3 is

assigned to school a at step π(r(4), 4). In case II, since π(r2(4), 4) < π(r3(4), 4), student 3

is assigned to school a at step π(r2(4), 4). In case III, since π(r(4), 4) < π(r3(4), 4), student

3 is assigned to school a at step π(r(4), 4). So, under realization u∅4, the resulting outcome

is matching µ∅ as depicted in Table 11.

Second, consider realization ua4. Recall that before step π(r(2), 2) only pairs with priority

1 are considered. Since student 2 is the only student with priority 1 for school a and since

he has been assigned a seat at school a at step 1, at the beginning of step π(r(2), 2) school

a has still one empty seat. Moreover, since student 4 does not have priority 1 for any

school, student 4 is not assigned to any school before step π(r(2), 2). But then (by definition

of σ4(ua4)) student 4 is assigned to school a at step π(r(2), 2). Consequently, student 3 is

assigned to school c at step π(r2(4), 4) or π(r3(4), 4). So, under realization ua4, the resulting

outcome is matching µa as depicted in Table 11.

Next, we show that σ is an equilibrium by checking that none of the four students has a

profitable deviation, i.e., inequality (8) is satisfied for each student i ∈ I.

Since student 2 gets his most preferred match, student 2 does not have a profitable

23



deviation. Since student 4 gets his most preferred match, either being unassigned or school

a under each realization of his utility function, student 4 does not have a profitable deviation.

Consider student i = 1. Since U1 = {u1}, we only have to check inequality (8) for ui = u1.

It follows immediately from Table 11 that

E
[
u1[ ϕπ1 (σ1(u1), (σj(ũj))j 6=1) ]

]
= 2. (9)

Suppose there is P ′1 ∈ P1 such that

E
[
u1[ ϕπ1 (P ′1, (σj(ũj))j 6=1) ]

]
> E

[
u1[ ϕπ1 (σ1(u1), (σj(ũj))j 6=1) ]

]
. (10)

Since P4(u∅4) = P4(ua4) = 1
2
,

E
[
u1[ ϕπ1 (P ′1, (σj(ũj))j 6=1) ]

]
=

1

2
u1

(
ϕπ1 (P ′1, σ2(u2), σ3(u3), σ4(u∅4))

)
+

1

2
u1

(
ϕπ1 (P ′1, σ2(u2), σ3(u3), σ4(ua4))

)
. (11)

Consider the rank-priority algorithm for π at (P ′1, σ2(u2), σ3(u3), σ4(ua4)). Since student 1

has priority 3 for school a and since before step π(r(2), 2) only pairs with priority 1 are

considered, student 1 cannot be assigned to school a before or at step π(r(2), 2). How-

ever, by the end of step π(r(2), 2), school a does no longer have empty seats: student 2 is

assigned to a at step π(r(1), 1) and student 4 is assigned to a at step π(r(2), 2). Hence,

ϕπ1 (P ′1, σ2(u2), σ3(u3), σ4(ua4))) 6= a.

From ϕπ1 (P ′1, σ2(u2), σ3(u3), σ4(ua4))) 6= a, (9), (10), (11), and the specification of u1 in

Table 9 it follows that P ′1 is a ranking that includes a as an acceptable school and

ϕπ1 (P ′1, σ2(u2), σ3(u3), σ4(u∅4)) = a. (12)

Then, together with the fact that before step π(r(2), 2) only pairs with priority 1 are consid-

ered, we have that for each r ∈ {1, 2, 3} and each f ∈ {1, 2, 3, 4} with π(r, f) < π(r(2), 2),

f = 1 and at P ′1 school b does not have rank r (otherwise, student 1 would be assigned to

school b at (P ′1, σ2(u2), σ3(u3), σ4(u∅4)), which contradicts (12)).20

Turning back to the rank-priority algorithm for π at (P ′1, σ2(u2), σ3(u3), σ4(ua4)), we al-

ready found that student 1 does not obtain a seat at school a (and that by the end of step

π(r(2), 2) the two seats at school a have been taken by students 2 and 4). But now we can

also conclude that student 1 is not assigned a seat at school b. To see this, recall first that for

each r ∈ {1, 2, 3} and each f ∈ {1, 2, 3, 4} with π(r, f) < π(r(2), 2), f = 1 and at P ′1 school b

does not have rank r. So, student 1 is not assigned to school b before step π(r(2), 2). And at

step π(r(2), 2), student 3 is assigned to the unique seat at school b. So, after step π(r(2), 2)

schools a and b do no longer have empty seats. Hence, ϕπ1 (P ′1, σ2(u2), σ3(u3), σ4(ua4)) ∈ {∅, c}.
Hence, from the specification of u1 in Table 9,

u1

(
ϕπ1 (P ′1, σ2(u2), σ3(u3), σ4(ua4))

)
≤ 0. (13)

20In fact, at P ′1, school b may not even be acceptable.
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Substituting (12) and (13) in (11) yields a contradiction with (9) and (10). We conclude that

there is no P ′1 ∈ P1 that satisfies (10), i.e., student 1 does not have a profitable deviation.

Finally, consider student i = 3. Since U3 = {u3}, we only have to check inequality (8)

for ui = u3. Since P4(u∅4) = P4(ua4) = 1
2
, it follows immediately from Table 11 that

E
[
u3[ ϕπ3 (σ3(u3), (σj(ũj))j 6=3) ]

]
=

1

2
u3(a) +

1

2
u3(c). (14)

Suppose there is P ′3 ∈ P3 such that

E
[
u3[ ϕπ3 (P ′3, (σj(ũj))j 6=3) ]

]
> E

[
u3[ ϕπ3 (σ3(u3), (σj(ũj))j 6=3) ]

]
. (15)

Note that

E
[
u3[ ϕπ3 (P ′3, (σj(ũj))j 6=3) ]

]
=

1

2
u3

(
ϕπ3 (σ1(u1), σ2(u2), P ′3, σ4(u∅4))

)
+

1

2
u3

(
ϕπ3 (σ1(u1), σ2(u2), P ′3, σ4(ua4))

)
(16)

Equations (14), (15), and (16) yield

u3

(
ϕπ3 (σ1(u1), σ2(u2), P ′3, σ4(u∅4))

)
+ u3

(
ϕπ3 (σ1(u1), σ2(u2), P ′3, σ4(ua4))

)
>

u3(a) + u3(c). (17)

Since at both (σ1(u1), σ2(u2), P ′3, σ4(u∅4)) and (σ1(u1), σ2(u2), P ′3, σ4(ua4)), student 1 is assigned

to the unique seat at b at step 1 = π(r(1), 1), student 3 cannot be assigned to school b, i.e.,

ϕπ3 (σ1(u1), σ2(u2), P ′3, σ4(u∅4)) 6= b and (18)

ϕπ3 (σ1(u1), σ2(u2), P ′3, σ4(ua4)) 6= b. (19)

Then, from (17), (18), (19), and the conditions imposed on u3 by Table 10, it follows that

ϕπ3 (σ1(u1), σ2(u2), P ′3, σ4(u∅4)) = ϕπ3 (σ1(u1), σ2(u2), P ′3, σ4(ua4)) = a. (20)

Now consider the rank-priority algorithm for π at (σ1(u1), σ2(u2), P ′3, σ4(ua4)). Recall

that before step π(r(2), 2) only pairs with priority 1 are considered. At step π(r(1), 1), stu-

dent 1 is assigned to b and student 2 is assigned to a; no further assignments take place

until step π(r(2), 2); and at step π(r(2), 2), student 4 is assigned to school a. Hence,

ϕπ3 (σ1(u1), σ2(u2), P ′3, σ4(ua4)) 6= a, which contradicts (20). We conclude that there is no

P ′3 ∈ P3 that satisfies (15), i.e., student 3 does not have a profitable deviation. Hence, σ is

an equilibrium.

Finally, to complete the proof, notice that the support of σ contains the unstable matching

µ∅ (see Table 11): at µ∅, student 1 has justified envy with respect to student 3 and school a.
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Notice that to tackle any rank-priority mechanism ϕπ ∈ F q in the proof of Theorem 2,

we only use the fact that ϕπ ∈ Fu. Moreover, for all rank-priority mechanisms in F q we

use the same problem of incomplete information and the same strategy-profile to prove the

statement. Therefore we obtain the following corollary.

Corollary 5.

Let m ≥ 3 and n ≥ 4. There is a problem of incomplete information and a strategy-profile σ

such that for each rank-priority mechanism ϕπ ∈ Fu, σ is a Bayesian Nash equilibrium with

an unstable matching in its support.

5 Concluding remarks

Our analysis shows that in terms of the induced equilibrium outcomes the family of quasi-

monotonic rank-priority mechanisms is equivalent to the immediate acceptance mechanism

in the complete information framework (Theorem 1). Any mechanism that violates quasi-

monotonicity may induce unstable equilibrium outcomes (Proposition 2). In the incomplete

information framework that we studied, all rank-priority mechanisms suffer from the same

problem as the immediate acceptance mechanism: there are equilibria whose support con-

tains unstable matchings (Theorem 2). Therefore, one conclusion that can be drawn from

our study is that in terms of the stability of equilibrium outcomes there is no rank-priority

mechanism that outperforms the immediate acceptance mechanism.

Our “negative” results (Proposition 2 and Theorem 2) do not hinge on the fact that

a student can be unacceptable for some school: one easily verifies that in the problems

exhibited in the proofs of Proposition 2 and Theorem 2, all students are acceptable for

all schools. It is an open question what happens in an environment where all schools are

acceptable for all students and students have to submit strategies that contain all schools.

Even though we have restricted our attention to the family of rank-priority mechanisms,

we can easily obtain Nash implementation of the set of stable matchings for a class of

mechanisms that are not rank-priority mechanisms. More specifically, let ϕ be a mechanism

that consists of the following two phases. In the first phase, students are matched to schools

according to some quasi-monotonic mechanism ϕπ, but only considering the rank-priority

pairs that appear in π up to and including step π(n). At the end of step π(n), the second

phase starts: unmatched students are matched to vacant seats in any way that guarantees

individual rationality and non-wastefulness. Then, since quasi-monotonicity only imposes

restrictions on the rank-priority pairs that appear in π before position π(n), it is easy to see

that the proof of Proposition 1 yields the Nash implementation of the set of stable matchings

for ϕ. In particular, we obtain Nash implementation for the immediate acceptance with skips

(or adaptive Boston) mechanism (Alcalde, 1996; Miralles, 2008; Dur, 2019; Harless, 2019).

More generally, Dur et al. (2018, Definition 3.4) consider the class of so-called first-choice

mechanisms, which are the mechanisms that (1) maximize the number of students matched to

their reported first choices and (2) yield a matching in which no student forms a blocking pair
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with his first choice. They show that the set of students that receive their first choice under

each of these mechanisms always coincides with the set of students that receive their first

choice under the immediate acceptance mechanism (Dur et al., 2018, Lemma 4.3). Hence,

any mechanism in their class can be expressed as a “two-phase” mechanism (as described in

the previous paragraph) where the first phase consists of the first n = πia(n) rank-priority

steps of the immediate acceptance mechanism. Thus, we obtain Theorem 5.2 in Dur et al.

(2018): any mechanism in the class considered by Dur et al. (2018) Nash implements the set

of stable matchings.

Corollary 6. All first-choice mechanisms (Dur et al., 2018, Definition 3.4) Nash implement

the set of stable matchings. In particular, the immediate acceptance with skips mechanism

Nash implements the set of stable matchings.

A Proof of Lemma 3

To keep the notation of the variables relatively simple in its proof we first state Lemma 3

with a slightly different notation. Also recall that we use the convention that π(n+ 1) ≡ ∞.

Lemma 3. Let ϕπ be quasi-monotonic. Let i∗ be a student and s∗ be a school. Suppose

f ∗ ≡ fs∗(i
∗) < ∞. Then there is a rank r∗ ≡ r∗(i∗, s∗) with π(r∗, f ∗) < π(f ∗ + 1) and a

strategy

Q∗i∗ ≡ · · · , s∗︸︷︷︸
at rank r∗

, ∅

such that if the rank-priority algorithm of ϕπ is applied to Q = (Q∗i , Q−i), where Q−i is any

strategy-profile of the other students, then student i remains unassigned until the end of step

π(r∗, f ∗) − 1 (and hence is assigned to school s∗ at step π(r∗, f ∗) if at that point the school

still has an empty seat).

Proof. If f ∗ = n, then by taking r∗ = 1 the statement follows. In the remainder of the

proof we will suppose that f ∗ < n. We first introduce some useful sets to reformulate the

statement.

Let R be the set of ranks that accompany f ∗ before f ∗+ 1 appears for the first time, i.e.,

R ≡ {r ∈ {1, . . . ,m} | π(r, f ∗) < π(f ∗ + 1)}.

From Lemma 2 it follows that R 6= ∅.
For each candidate rank r̄ ∈ R, we define the set of “dangerous” schools for each rank

r < r̄. These are the schools that i∗ cannot report at rank r when he reports school s∗ at

rank r̄, because i∗ might be assigned to one of these schools instead of s∗. Formally, for each

r̄ ∈ R and each r < r̄, the set of dangerous schools is21

D(r̄, r) ≡ {s ∈ S\{s∗} | there is f ≤ f ∗ with (i) fs(i
∗) = f and (ii) π(r, f) < π(r̄, f ∗)}.

21Since r 6= r̄, (ii) is equivalent to π(r, f) ≤ π(r̄, f∗).
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Note that if for a school s ∈ S\{s∗}, fs(i∗) ≥ f ∗ + 1, then s is not dangerous because either

fs(i
∗) = ∞ or fs(i

∗) < ∞ and π(fs(i
∗)) ≥ π(f ∗ + 1) > π(r̄, f ∗), where the first inequality

follows from UIP and the second inequality from r̄ ∈ R.

For each candidate rank r̄ ∈ R, the set of “safe” schools for each rank r < r̄ is S(r̄, r) ≡
S\(D(r̄, r) ∪ {s∗}), i.e.,22

S(r̄, r) = {s ∈ S\{s∗} | for each f ≤ f ∗, (i) fs(i
∗) 6= f or (ii) π(r, f) ≥ π(r̄, f ∗)}.

In the remainder of the proof we will show that there exists r∗ ∈ R for which we can

find for each rank r ∈ {1, . . . , r∗ − 1} some school sr ∈ S(r∗, r) such that for all distinct

r, r′ ∈ {1, . . . , r∗− 1}, sr 6= sr′ . Then, the existence of the required r∗ and strategy as in (A)

follows. It follows from Hall’s (1935) marriage theorem that the existence problem above is

equivalent to the existence of r∗ ∈ R that satisfies the following r∗− 1 associated “feasibility

conditions (fc)”:

(fc.1) For each r1 < r∗, |S(r∗, r1)| ≥ 1.

(fc.2) For all distinct r1, r2 < r∗, |S(r∗, r1) ∪ S(r∗, r2)| ≥ 2.

(fc.3) For all distinct r1, r2, r3 < r∗, |S(r∗, r1) ∪ S(r∗, r2) ∪ S(r∗, r3)| ≥ 3.
...

(fc.r∗−1) |S(r∗, 1) ∪ S(r∗, 2) ∪ · · ·S(r∗, r∗ − 2) ∪ S(r∗, r∗ − 1)| ≥ r∗ − 1.

Define

F ≡ {f ∈ {1, . . . , f ∗} | there is s ∈ S\{s∗} such that fs(i
∗) = f}.

We can assume that F 6= ∅. (If F = ∅, let r∗ ∈ R. Then, for each r < r∗, |S(r∗, r)| =

|S\{s∗}| = m− 1. Hence, all r∗ − 1 feasibility conditions are satisfied.)

To prove that there is r∗ ∈ R such that r∗ satisfies all r∗ − 1 feasibility conditions, we

focus on a subset of R and prove that there is a rank r∗ in that subset that satisfies all r∗−1

feasibility conditions. For each r̄ ∈ R, let

F (r̄) ≡ {f ∈ F | for each r < r̄, π(r, f) > π(r̄, f ∗)}.

Let

R̂ ≡ {r̂ ∈ R | for each r ∈ R with r < r̂, F (r̂)\F (r) 6= ∅}
so that we can define, for each f ∈ F ,

R̂(f) ≡ {r̂ ∈ R̂ | f ∈ F (r̂)} = {r̂ ∈ R̂ | for each r < r̂, π(r, f) > π(r̂, f ∗)}.

Next, we show that for each f ∈ F , R̂(f) 6= ∅. Let f ∈ F . From Condition (4)(ii)23 it follows

that there exists a smallest r̂ ∈ R such that for each r < r̂, π(r, f) > π(r̂, f ∗). Suppose

r̂ /∈ R̂. Then, there is r ∈ R with r < r̂ such that F (r̂)\F (r) = ∅. But then, since f ∈ F (r̂),

f ∈ F (r), which, together with r < r̂, contradicts the definition of r̂. Hence,

for each f ∈ F, R̂(f) 6= ∅. (21)
22Since r 6= r̄, (ii) is equivalent to π(r, f) > π(r̄, f∗).
23In case f = f∗, take r̄ ∈ R with π(r̄, f) = π(f).
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Claim 1. For any r, r̄ ∈
⋃
f∈F R̂(f) with r < r̄,

(i) π(r̄, f ∗) < π(r, f ∗) and

(ii) for each r < r, S(r, r) ⊆ S(r̄, r).

Proof. We first prove statement (i). Since r̄ ∈
⋃
f∈F R̂(f) ⊆ R̂ and r ∈

⋃
f∈F R̂(f) ⊆ R̂ ⊆ R,

there exists f ′ ∈ F (r̄) with f ′ /∈ F (r). So, there is f ′ ∈ F\F (r) with r̄ ∈ R̂(f ′).

Since f ′ ∈ F\F (r) and r ∈ R̂, r /∈ R̂(f ′). Then, there is r1 < r such that π(r1, f
′) <

π(r, f ∗). Since r̄ ∈ R̂(f ′), we have that for each r < r̄, π(r̄, f ∗) < π(r, f ′). In particular

(since r1 < r < r̄), π(r̄, f ∗) < π(r1, f
′). Then, π(r̄, f ∗) < π(r, f ∗).

To prove statement (ii), let r < r. Let s ∈ S(r, r). Suppose fs(i
∗) ∈ F . Then,

π(r, fs(i
∗)) > π(r, f ∗), which together with statement (i) gives π(r, fs(i

∗)) > π(r̄, f ∗). Hence,

s ∈ S(r̄, r). Now suppose fs(i
∗) /∈ F . If fs(i

∗) =∞, then obviously s ∈ S(r̄, r). So suppose

fs(i
∗) < ∞. Since r̄ ∈ R, π(r̄, f ∗) < π(f ∗ + 1). Since fs(i

∗) /∈ F , fs(i
∗) > f ∗. Then,

from UIP, π(f ∗ + 1) ≤ π(fs(i
∗)). Hence, π(r̄, f ∗) < π(r, fs(i

∗)). So, s ∈ S(r̄, r). Hence,

S(r, r) ⊆ S(r̄, r).

We will prove by contradiction that some r ∈
⋃
f∈F R̂(f) satisfies all r − 1 associated

feasibility conditions.24 So,

Assume that each r ∈
⋃
f∈F

R̂(f) violates at least one of its r−1 feasibility conditions. (22)

Let ⋃
f∈F

R̂(f) = {r1, . . . , rL} where r1 < r2 < · · · < rL ≤ m.

For each r ∈
⋃
f∈F R̂(f), let

S(r) = {s ∈ S\{s∗} | [fs(i
∗) ≤ f ∗ and r ∈ R̂(fs(i

∗))] or fs(i
∗) > f ∗}.

Claim 2. For each l ∈ {1, . . . , L}, |
⋃
r∈{r1,...,rl} S(r)| ≤ rl − 2.

Proof. Note that for each l ∈ {1, . . . , L}, the set
⋃
r∈{r1,...,rl} S(r) can be written as the union

of mutually exclusive sets,

S(rl) ∪ [S(rl−1)\S(rl)] ∪ [S(rl−2)\(S(rl) ∪ S(rl−1))] ∪ . . . ∪ [S(r1)\(S(rl) ∪ . . . ∪ S(r2))].

We will show by induction that for each l ∈ {1, . . . , L},

|S(rl)|+|S(rl−1)\S(rl)|+|S(rl−2)\(S(rl)∪S(rl−1))|+· · ·+|S(r1)\(S(rl)∪. . .∪S(r2))| ≤ rl−2.

(23)

We first prove (23) for l = 1, i.e., |S(r1)| ≤ r1 − 2. Suppose |S(r1)| > r1 − 2. Let

s ∈ S(r1). Case 1: fs(i
∗) = ∞. Then, obviously, for each r < r1, s ∈ S(r1, r). Case 2.a:

24From F 6= ∅ and (21) it follows that
⋃
f∈F R̂(f) 6= ∅.

29



[ fs(i
∗) ≤ f ∗ and r1 ∈ R̂(fs(i

∗)) ]. Then, for each r < r1, π(r, fs(i
∗)) > π(r1, f

∗). Case 2.b:

f ∗ < fs(i
∗) < ∞. Then, for each r < r1, π(r, fs(i

∗)) ≥ π(f ∗ + 1) > π(r1, f
∗), where the

first inequality follows from UIP and the second inequality from r1 ∈ R. Hence, for each

s ∈ S(r1) in Cases 2.a and 2.b and each r < r1, π(r, fs(i
∗)) > π(r1, f

∗), and thus s ∈ S(r1, r).

Putting together Cases 1, 2.a, and 2.b, we have that for each r < r1, S(r1) ⊆ S(r1, r). Then,

since |S(r1)| > r1 − 2, we have the following inequalities:

(fc.1) For each r′1 < r1, we have |S(r1, r
′
1)| > r1 − 2 ≥ 1.

(fc.2) For all distinct r′1, r
′
2 < r1, we have |S(r1, r

′
1) ∪ S(r1, r

′
2)| > r1 − 2 ≥ 2.

...

(fc.r1 − 1) |S(r1, 1) ∪ S(r1, 2) ∪ . . . ∪ S(r1, r1 − 1)| > r1 − 2 ≥ r1 − 1.

In other words, r1 ∈
⋃
f∈F R̂(f) satisfies all r1 − 1 associated feasibility conditions, which

contradicts assumption (22). Hence, |S(r1)| ≤ r1 − 2.

Now let j ∈ {2, . . . , L − 1}. Suppose that for each l ∈ {1, . . . , j − 1}, (23) holds. We

will complete the proof of the claim by showing in three steps that (23) also holds for l = j.

Suppose that

|S(rj)|+|S(rj−1)\S(rj)|+|S(rj−2)\(S(rj)∪S(rj−1))|+· · ·+|S(r1)\(S(rj)∪. . .∪S(r2))| > rj−2.

(24)

Step 1. We show that the following relations hold:

(R.rj) for each r ∈ {1, . . . , rj − 1}, S(rj) ⊆ S(rj, r),

(R.rj−1) for each r ∈ {1, . . . , rj−1 − 1}, S(rj) ∪ [S(rj−1)\S(rj)] ⊆ S(rj, r),

(R.rj−2) for each r ∈ {1, . . . , rj−2 − 1}, S(rj) ∪ [S(rj−1)\S(rj)] ∪ [S(rj−2)\(S(rj) ∪ S(rj−1))] ⊆
S(rj, r),

...

(R.r1) for each r ∈ {1, . . . , r1−1}, S(rj)∪ [S(rj−1)\S(rj)]∪ [S(rj−2)\(S(rj)∪S(rj−1))]∪ . . .∪
[S(r1)\(S(rj) ∪ S(rj−1) ∪ . . . ∪ S(r2))] ⊆ S(rj, r).

To prove relations (R.rj), let s ∈ S(rj). Case 1: fs(i
∗) = ∞. Then, obviously for

each r < rj, s ∈ S(rj, r). Case 2.a: [ fs(i
∗) ≤ f ∗ and rj ∈ R̂(fs(i

∗)) ]. Then, for each

r < rj, π(r, fs(i
∗)) > π(rj, f

∗). Case 2.b: f ∗ < fs(i
∗) < ∞. Then, for each r < rj,

π(r, fs(i
∗)) ≥ π(f ∗ + 1) > π(rj, f

∗), where the first inequality follows from UIP and the

second inequality from rj ∈ R. Hence, for each s ∈ S(rj) in Cases 2.a and 2.b, we have that

for each r < rj, π(r, fs(i
∗)) > π(rj, f

∗), and thus s ∈ S(rj, r). This proves relations (R.rj).

Given relations (R.rj), to prove relations (R.rj−1), it is sufficient to prove that for each r ∈
{1, . . . , rj−1− 1}, S(rj−1)\S(rj) ⊆ S(rj, r). Let r ∈ {1, . . . , rj−1− 1} and s ∈ S(rj−1)\S(rj).

By arguments similar to the ones in the previous paragraph, s ∈ S(rj−1, r). From Claim 1(ii)

it follows that S(rj−1, r) ⊆ S(rj, r). Hence, s ∈ S(rj, r). This proves relations (R.rj−1).

Given relations (R.rj) and (R.rj−1), to prove relations (R.rj−2), it is sufficient to prove

that for each r ∈ {1, . . . , rj−2−1}, S(rj−2)\(S(rj)∪S(rj−1) ⊆ S(rj, r). Let r ∈ {1, . . . , rj−2−
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1} and s ∈ S(rj−2)\(S(rj) ∪ S(rj−1). By arguments similar to the ones in the previous

paragraphs, s ∈ S(rj−2, r). From Claim 1(ii) it follows that S(rj−2, r) ⊆ S(rj, r). Hence,

s ∈ S(rj, r). This proves relations (R.rj−2). Using the same arguments, we continue the

proof until relations (R.r1). This completes the proof of relations (R.rj), (R.rj−1), . . . , (R.r1).

Step 2. We show that the following inequalities hold:

(I.r1) for each r ∈ {1, . . . , r1 − 1}, |S(rj, r)| ≥ rj − 1,

(I.r2) for each r ∈ {r1, . . . , r2 − 1}, |S(rj, r)| ≥ rj − r1,

(I.r3) for each r ∈ {r2, . . . , r3 − 1}, |S(rj, r)| ≥ rj − r2,
...

(I.rj) for each r ∈ {rj−1, . . . , rj − 1}, |S(rj, r)| ≥ rj − rj−1.

To prove inequalities (I.r1), let r ∈ {1, . . . , r1 − 1}. From relations (R.r1) and (24),

|S(rj, r)| ≥ |S(rj)| + |S(rj−1)\S(rj)| + |S(rj−2)\(S(rj) ∪ S(rj−1))| + · · · + |S(r1)\(S(rj) ∪
S(rj−1) ∪ . . . ∪ S(r2))| > rj − 2, which proves inequalities (I.r1).

To prove inequalities (I.r2), let r ∈ {r1, . . . , r2 − 1}. Then,

|S(rj, r)| ≥ |S(rj)|+ |S(rj−1)\S(rj)|+ |S(rj−2)\(S(rj) ∪ S(rj−1))|+ · · · (25)

· · ·+ |S(r2)\(S(rj) ∪ S(rj−1) ∪ . . . ∪ S(r3))|
> rj − 2− |S(r1)\(S(rj) ∪ S(rj−1) ∪ . . . ∪ S(r2))| (26)

≥ rj − 2− |S(r1)|
≥ rj − 2− (r1 − 2) = rj − r1, (27)

where (25) follows from relations (R.r2), (26) from (24), and (27) from (23) for the base case

l = 1. This proves inequalities (I.r2).

To prove inequalities (I.r3), let r ∈ {r2, . . . , r3 − 1}. Then,

|S(rj, r)| ≥ |S(rj)|+ |S(rj−1)\S(rj)|+ |S(rj−2)\(S(rj) ∪ S(rj−1))|+ · · · (28)

· · ·+ |S(r3)\(S(rj) ∪ S(rj−1) ∪ . . . ∪ S(r4))|
> rj − 2− |S(r1)\(S(rj) ∪ S(rj−1) ∪ . . . ∪ S(r2))| (29)

− |S(r2)\(S(rj) ∪ S(rj−1) ∪ . . . ∪ S(r3))|
≥ rj − 2− |S(r1)\S(r2)| − |S(r2)|
≥ rj − 2− (r2 − 2) = rj − r2, (30)

where (28) follows from relations (R.r3), (29) from (24), and (30) from (23) for l = 2 ≤ j−1.

This proves inequalities (I.r3).

Similar arguments can be used to prove inequalities (I.r4), . . . , (I.rj). This completes the

proof of inequalities (I.r1), (I.r2), . . . , (I.rj).

Step 3. Finally, we prove that rj satisfies all feasibility conditions (which contradicts (22),

and hence shows that (24) is false, thus completing the proof of Claim 2).
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We consider the first rj − 1 feasibility conditions for rj. First, we consider the kth

feasibility conditions with k ∈ {rj−r1+1, . . . , rj−1} and distinct r1, . . . , rk ∈ {1, . . . , rj−1}.
Since k ∈ {rj − r1 + 1, . . . , rj − 1}, there is at least one rank r ∈ {r1, . . . , rk} with r ∈
{1, . . . , r1−1}. By inequalities (I.r1), for each r ∈ {1, . . . , r1−1}, |S(rj, r)| ≥ rj−1. Hence,

|S(rj, r
1) ∪ S(rj, r

2) ∪ . . . ∪ S(rj, r
k)| ≥ rj − 1 ≥ k. Therefore, for each k ∈ {rj − r1 +

1, . . . , rj − 1}, the kth feasibility condition is satisfied.

Second, we consider the kth feasibility conditions with k ∈ {rj − r2 + 1, . . . , rj − r1}
and distinct r1, . . . , rk ∈ {1, . . . , rj − 1}. Since k ∈ {rj − r2 + 1, . . . , rj − r1}, there is at

least one rank r ∈ {r1, . . . , rk} with r ∈ {1, . . . , r2 − 1}. If there is r ∈ {r1, . . . , rk} with

r ∈ {1, . . . , r1 − 1}, then by inequalities (I.r1) for such r, |S(rj, r)| ≥ rj − 1 and hence,

|S(rj, r
1) ∪ S(rj, r

2) ∪ . . . ∪ S(rj, r
k)| ≥ rj − 1 ≥ k.

If there is r ∈ {r1, . . . , rk} with r ∈ {r1, . . . , r2−1}, then by inequalities (I.r2) for such r,

|S(rj, r)| ≥ rj− r1 and hence, |S(rj, r
1)∪S(rj, r

2)∪ . . .∪S(rj, r
k)| ≥ rj− r1 ≥ k. Therefore,

for each k ∈ {rj − r2 + 1, . . . , rj − r1}, the kth feasibility condition is satisfied.

Third, we consider the kth feasibility conditions with k ∈ {rj − r3 + 1, . . . , rj − r2}
and distinct r1, . . . , rk ∈ {1, . . . , rj − 1}. Since k ∈ {rj − r3 + 1, . . . , rj − r2}, there is at

least one rank r ∈ {r1, . . . , rk} with r ∈ {1, . . . , r3 − 1}. If there is r ∈ {r1, . . . , rk} with

r ∈ {1, . . . , r1 − 1}, then by inequalities (I.r1) for such r, |S(rj, r))| ≥ rj − 1 and hence,

|S(rj, r
1) ∪ S(rj, r

2) ∪ . . . ∪ S(rj, r
k)| ≥ rj − 1 ≥ k.

If there is r ∈ {r1, . . . , rk} with r ∈ {r1, . . . , r2 − 1}, then by inequalities (I.r2) for such

r, |S(rj, r)| ≥ rj − r1 and hence, |S(rj, r
1) ∪ S(rj, r

2) ∪ . . . ∪ S(rj, r
k)| ≥ rj − r1 ≥ k.

If there is r ∈ {r1, . . . , rk} such that r ∈ {r2, . . . , r3 − 1}, then by inequalities (I.r3) for

such r, |S(rj, r)| ≥ rj − r2 and hence, |S(rj, r
1) ∪ S(rj, r

2) ∪ . . . ∪ S(rj, r
k)| ≥ rj − r2 ≥ k.

Therefore, for each k ∈ {rj − r3 + 1, . . . , rj − r2}, the kth feasibility condition is satisfied.

Similar arguments can be used up to the kth feasibility condition where k ∈ {rj − rj +

1, . . . , rj−rj−1} = {1, . . . , rj−rj−1}. Hence, rj satisfies the kth feasibility condition for each

k ∈ {1, . . . rj−rj−1}∪ . . .∪{rj−r2 +1, . . . , rj−r1}∪{rj−r1 +1, . . . , rj−1} = {1, . . . , rj−1}.

Therefore, rj satisfies all rj − 1 associated feasibility conditions, which contradicts (22), and

hence shows that (24) is false, thus completing the proof of Claim 2.

From Claim 2, |
⋃
r∈{r1,...,rL} S(r)| ≤ rL − 2. Then, since

⋃
r∈{r1,...,rL} S(r) ⊆ S\{s∗} and

|S\{s∗}| = m− 1 ≥ rL − 1, let s ∈ S\{s∗} with s /∈
⋃
r∈{r1,...,rL} S(r). By definition of S(r),

for each r ∈ {r1, . . . , rL}, fs(i∗) ≤ f ∗ (which implies that fs(i
∗) ∈ F ) and r 6∈ R̂(fs(i

∗)). But

then, since

R̂(fs(i
∗)) ⊆

⋃
f∈F

R̂(f) = {r1, . . . , rL},

R̂(fs(i
∗)) = ∅, which is a contradiction to (21). Therefore, there is a rank r ∈

⋃
f∈F R̂(f)

that satisfies all its r − 1 associated feasibility conditions, which completes the proof of the

lemma.
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Remark 3. Even though Lemma 3 only states the existence of a particular strategy, it can

be constructed in polynomial time as follows.

In view of the first part of the proof of Lemma 3, a rank r∗ with π(r∗, f ∗)< π(f ∗+1)

is suitable if there are r∗ − 1 different schools, say s1, . . . , sr∗−1, such that for each r =

1, . . . , r∗ − 1, school sr is safe for rank r, i.e., s ∈ S(r∗, r). It is easy to see that the sets of

safe schools S(r∗, r) can be computed in polynomial time. Then, in graph-theoretic terms,

the suitability of r∗ boils down to the existence of a matching of size r∗ − 1 in the bipartite

graph G(r∗) = (V,E) where

• V = {1, . . . , r∗ − 1} ∪
⋃
r=1,...,r∗−1 S(r∗, r) and

• E = {(r, s) : s ∈ S(r∗, r)}.

Hence, we only have to find some r∗ with π(r∗, f ∗) < π(f ∗+1) such that its graph G(r∗)

has a (maximum cardinality) matching of size r∗ − 1, which gives us the required strategy.

The Hopcroft-Karp (1973) / Karzanov (1973) algorithm can be used to find a maximum

cardinality matching in polynomial time. �

References
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