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Abstract 

Can humans achieve rationality, as defined by the expected utility theory, by automating their 

decision making? We use millisecond-stamped transaction-level data from the Copenhagen Stock 

Exchange to estimate the disposition effect – the tendency to sell winning but not losing stocks – 

among algorithmic and human professional day-traders. We find that: (1) the disposition effect is 

substantial among humans but virtually zero among algorithms; (2) this difference is not fully 

explained by rational explanations and is, at least partially, attributed to prospect theory, realization 

utility and beliefs in mean-reversion; (3) the disposition effect harms trading performance, which 

further deems such behavior irrational. 
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1. Introduction 

Human efforts to raise productivity, marked by the technical progress (e.g. Rosenberg and Nathan, 

1982), has brought the world to the Fourth Industrial Revolution (Schwab, 2017). Today’s 

industries increasingly automate not only physical tasks but also decision making, which will 

likely contribute to the productivity and economic growth (Acemoglu and Restrepo, 2018), raising 

inequality (Berg et al., 2018) and the disruption of labor markets (Autor, 2015). In the long-run, 

technological changes may shape institutional frameworks, cultural norms, mental models of 

reality of individuals and their decision-making (North, 1994).1 Therefore, it is important to 

understand the advantages and disadvantages of decisions implemented by algorithms over on-

the-spot decisions made by humans. This understanding would help anticipate which industries 

are the most subject to change and how, and what type of behavior future generations may learn 

from their environments. Importantly, by comparing humans and machines, we may learn about 

humans’ decision making, which is crucial for economic theory, mostly centered around the 

rationality assumption (Hogarth and Reder, 1987; Hirshleifer, 2001; Thaler, 2016). 

An ideal setting for making this comparison is the stock market, where both professional human 

and algorithmic day-traders make frequent high-stake buy and sell decisions under uncertainty in 

an attempt to profit from short term price movements. In this paper we ask: do machines make 

more rational2 decisions than humans, and if so, does that help them perform better? We focus on 

one of the most extensively documented puzzles in behavioral finance – the disposition effect – 

the tendency to sell winning stocks too early and to hold losing stocks for too long (Shefrin and 

Statman, 1985). We use the millisecond-frequency transaction-level data from January 2016 to 

December 2017 provided by NASDAQ OMX Copenhagen Stock Exchange and track all trades 

executed by every trader. We observe if a trader was a human or an algorithm3, if it acted as a 

broker or traded on its proprietary account, if a trade provided or removed liquidity, the trade 

execution time, stock name, stock price and the traded number of shares. We focus our analysis 

on the most frequently trading human and algorithmic day-traders, which makes the two groups 

comparable in terms of their trading activity, namely, trading frequency, turnover, portfolio size, 

trading horizon and the selection of the most traded stocks. Our findings reveal a substantial 

disposition effect among professional human stock day-traders but virtually no disposition effect 

among algorithmic traders. The difference is not fully explained by rational motives such as private 

information, portfolio rebalancing, contract-induced incentives or transaction costs. Meanwhile, 

we find support for less rational explanations, namely, the prospect theory, realization utility and 

 
1 E.g. If people born in the future will be constantly exposed to automated decision making (e.g. self-driving cars), it 

seems plausible that such an environment might teach them to make more machine-like decisions. 
2 We call a behavior “rational” if it complies with the expected utility theory, axiomatized by von Neumann and 

Morgenstern (1947): a representative rational agent is risk averse and makes choices that maximize expected utility 

derived from wealth levels (see, e.g., Machina 1987) (For other definitions, measures and interpretations of rationality 

see e.g. Marschak, 1950; Simon, 1978; Apesteguia and Ballester, 2015; Nagel, 2016) 
3 NASDAQ OMX Copenhagen requires its members to register their trading accounts as “Personal” if the account is 

used for manual trading (user ID typically indicating the first few letters of traders’ first and last names), and as “Algo” 

(user ID starting with PTRxxx, AUTDxx or LPSxxx) if the account is used by algorithms with no human involvement, 

i.e. “a computer algorithm automatically determines individual parameters of orders such as whether to initiate the 

order, the timing, price or quantity of the order or how to manage the order after its submission”. (Nasdaq, 2018)  



beliefs in mean-reversion. We also find that the disposition effect harms the already poor 

performance of human traders, which further supports the irrational explanations. This suggests 

that human behavior systematically violates the expected utility theory, and implies that algorithms 

have an advantage of making more optimal trading decisions.  

It has been argued that algorithms make decision-making more cost-effective and less noisy, i.e. 

more consistent (Kahneman et al., 2016). In addition, there is evidence that trading algorithms 

benefit from their speed advantage (Brogaard et al., 2015; Budish et al., 2015; Baron et al., 2018) 

and better access to information (Chordia et al., 2018; Biais et al., 2015). Do algorithms also make 

more rational decisions? Interviews suggest that programmers attempt to curb emotions and 

behavioral biases when coding trading algorithms (Borch and Lange, 2017). This is consistent with 

the conventional wisdom among trading professionals who use discipline, e.g. stop-loss strategies 

(Henderson et al., 2018), to minimize costs from irrational behavior (Locke and Mann, 2005). 

However, algorithms may suffer from certain biases too, inherited either from developers or from 

biased training data (see e.g. Cowgill and Tucker, 2019). Thus, it is not clear whether programmers 

manage to achieve the claimed discipline. To our knowledge, this is the first paper to compare 

humans and algorithms in terms of trading behavior and performance, and to provide evidence that 

algorithms in fact do trade more rationally and more successfully. 

There has been an ongoing debate between rationalists and behavioralists on the “correct” way of 

economic modeling (see, e.g., Hogarth and Reder, 1987). The expected utility theory, axiomatized 

by von Neumann and Morgenstern (1947), characterized how a representative rational agent 

should make risky choices and became central to modern economic modeling. Kahneman and 

Tversky (1979) demonstrated that people systematically violate the rationality axioms and 

proposed an alternative descriptive theory of risky choice – the prospect theory. It predicts, in 

contrast to the expected utility theory, that people (1) assign different weights to probabilities of 

outcomes, (2) maximize utility drawn from gains and losses rather than from final wealth, (3) are 

risk-averse when facing gains and risk-seeking when facing losses, and (4) suffer from losses more 

than they enjoy adequate gains. This spurred the debate on rationality further (Thaler, 2016). 

The prospect theory paired with mental accounting (Thaler, 1985) have provided a long-standing 

preference-based explanation of the disposition effect (e.g. Shefrin and Statman, 1985; Odean, 

1998; Weber and Camerer, 1998; Henderson et al., 2018): if investors view every stock as a 

separate mental account, and are risk-seeking when facing losses but risk-averse when facing 

gains, they would prefer to continue gambling with losing investments and to sell winning 

investments in order to lock in gains. Another preference-based theory – realization utility 

(Barberis and Xiong, 2009, 2012; Ingersoll and Jin, 2013; Frydman et al., 2014) claims that utility, 

i.e. pleasure and pain, is drawn directly from the realization of gains and losses. Pleasure and pain 

can be explained by a number of elements: e.g. cognitive dissonance, i.e. psychological costs of 

admitting to mistakes (Chang et al., 2016), pride and regret (Shefrin and Statman, 1985; 

Strahilevitz et al. 2011; Frydman and Camerer, 2016), self-control problems, i.e. planner-doer 

conflict whereby a doer (but not a planner) experiences the urge to postpone regret and hasten 

pride of past decisions (Shefrin and Statman, 1985; Fischbacher et al., 2017), the salience of the 

stock purchase price (Frydman and Wang, 2019; Dierick et al., 2019; Frydman and Rangel, 2014) 



and affect, i.e. “hot” immediate reaction to recent events (Loewenstein, 2005). Since both 

preference-based explanations view outcomes, i.e. gains and losses, relative to a reference point, 

they contradict the rational agent of the expected utility theory.  

Beliefs offer alternative (rational and irrational) explanations of the disposition effect (see e.g. 

Ben-David and Hirshleifer, 2012). For example, investors may believe in mean-reversion and, 

thus, keep stocks when prices fall and sell stocks when prices rise. Similarly, investors may believe 

they have private information, which has not been incorporated into the stock price yet. If the stock 

price falls, investors may either rationally or due to overconfidence believe that it is just a 

temporary setback and continue to hold losing investments until the market incorporates that 

private information. If the stock price rises, investors may believe that the private information has 

been incorporated as expected, and thus sell the investments at a gain. An opposite effect, whereby 

a gain (loss) reinforces (hurts) confidence in the private information and urges to buy more (to 

sell) stock, is also possible (Ben-David and Hirshleifer, 2012). However, empirically, both belief-

based explanations found little support in the literature (Weber and Camerer, 1998; Odean, 1998; 

Kaustia, 2010). Moreover, even if they do drive the disposition effect, such beliefs have been 

shown to be irrational, due to past winners persistently outperforming past losers (Odean, 1998; 

Frazzini, 2006; Strahilevitz et al., 2011). 

The literature on the disposition effect also considers the following rational explanations. (1) 

Portfolio rebalancing (Odean, 1998; Kaustia, 2010): gains (losses) increase (decrease) the weight 

of certain stocks in a portfolio, and to restore the well-diversified balance investors may sell a part 

of the winning stocks (keep or buy more losing stocks). (2) Mechanics of limit orders (Linnainmaa, 

2010): if an investor sold a stock using a limit order, the counterparty must have crossed the bid-

ask spread and pushed the price up, which makes it more likely that the sold stock was a winner 

than a loser. (3) Earnings management or contract-induced incentives (Beatty and Harris, 1999): 

e.g. banks, enabled by accounting rules, were found to smooth their reported taxable earnings by 

strategically realizing gains and losses from securities. (4) Transaction costs (Odean, 1998): low-

priced stocks may have relatively higher transaction costs; thus, investors are reluctant to trade 

stocks after their prices decrease. (5) Tax considerations (Lakonishok and Smidt, 1986; Odean, 

1998): investors have incentives to realize losses in order to reduce taxable income and, in turn, 

tax payable, but this would generate the reverse disposition effect. 

All these rational and irrational theories potentially could explain why we observe a substantial 

disposition effect among human traders but virtually no disposition effect among algorithms. 

Firstly, human traders make on-the-spot decisions under stress while developers have time to 

“think slow” (Kahneman, 2011) and to calmly pass on their deliberate logic to algorithms, keeping 

in mind that their coded principles would be used for multiple buy and sell decisions in the future. 

By “thinking slow”, i.e. using System 2, they may avoid behavioral biases, heuristics and other 

cognitive features of System 1 such as attachments to reference points and loss aversion, which 

are at the heart of the prospect theory (Kahneman, 2011).  Secondly, at the moment of coding, 

developers are unlikely to feel any pleasure or pain from defining selling decisions, which makes 

algorithms less dependent on realization utility and other related elements such as cognitive 

dissonance, pride and regret, and salience of the purchase price. Also, by coding, algorithmic 



traders effectively pre-commit to their future buy and sell decisions and thus avoid self-control 

problems and “hot” reactions. Thirdly, algorithmic traders, equipped with better access to 

information (Chordia et al., 2018; Biais et al., 2015) and the ability to continuously analyze market 

data, may have different beliefs than humans in mean-reversion and private information. Fourthly, 

algorithmic traders may use fundamentally different trading strategies than human traders and thus 

might care less about the portfolio rebalancing. For instance, market making and cross-market 

arbitrage strategies, once carried out by humans, have been replaced by algorithms (Danish FSA, 

2016). Fifthly, if algorithms use relatively less limit orders than humans, this could, at least 

partially, explain the difference in the disposition effect. Sixthly, human traders may have different 

career concerns and compensation schemes than programmers of trading algorithmic, and 

depending on accounting rules, may have stronger incentives to report realized gains (losses) as 

large (small) as possible. Seventhly, market venues compete to attract algorithmic traders by 

offering favorable transaction costs (Danish FSA, 2016), which might make algorithms less 

sensitive to them. We argue that if there are other rational motives to realize gains and losses, that 

are equally relevant to both algorithms and humans, e.g. taxes, developers should take them into 

account when coding trading algorithms, and thus, they should not cause the observed difference 

in the disposition effect between humans and algorithms. 

Results. Our estimates of the substantial disposition effect among humans and the virtually zero 

disposition effect among algorithms remain similar when considering (1) only long daily positions, 

(2) only short daily positions, (3) only those positions that are short (long) from a daily perspective 

but long (short) from a two-year perspective, and (4) when considering only full but not partial 

closures of existing positions. Furthermore, we find that humans use relatively more market orders 

and less limit orders than algorithms. As argued in the “Results” section, these findings suggest 

that the aforementioned rational motives fail to explain the large difference in the disposition effect 

between humans and algorithms. Meanwhile, we find evidence supporting the less rational 

explanations, namely, the realization utility, the prospect theory and beliefs in mean-reversion. 

Specifically, we find that (1) humans but not algorithms trade more aggressively, i.e. use 

disproportionally more market orders, when realizing losses, as if they were nervous and trying to 

“get over it quickly”, (2) the disposition effect among humans but not among algorithms reacts to 

the exogenous factor – the weather, and (3) humans but not algorithms tend to open new long 

(short) positions after stock price drops (hikes). Finally, we find that if a human (algorithmic) 

trader had been forced to stop trading at any point of the day, 8 trading hours later, his frozen daily 

positions would have lost EUR 435 (gained EUR 259) on average. This superior performance of 

algorithmic traders cannot be attributed to the execution speed advantage and suggests that 

algorithms are better at predicting price movements over the next 8 trading hours. The 8-hour 

profits would have been significantly higher (lower) for both humans and algorithms, if they were 

forced to realize all their paper losses (gains) just before freezing their portfolios. The fact that 

humans persistently realize more gains than losses despite this behavior harming their performance 

further suggests the irrationality of the disposition effect (Odean, 1998). 

Literature and contribution. Our paper contributes to a few lines of research, including (1) 

algorithmic trading, (2) disposition effect, (3) weather effects on financial markets, (4) algorithmic 

bias and (5) the debate on the rationality assumption in economics. 



The literature on algorithmic trading so far has focused on studying algorithmic traders’ speed 

(Budish et al., 2015; Baron et al., 2018) and informational (Chordia et al., 2018; Biais et al., 2015) 

advantages, trading strategies (Hagströmer and Nordén, 2013; Menkveld, 2013; Malinova et al., 

2014; O’Hara, 2015), and impact on market quality (Hendershott et al., 2011), especially, liquidity 

(Hendershott and Riordan, 2013; Brogaard et al., 2015; Ait-Sahalia and Saglam, 2017; Brogaard 

et al., 2018;), volatility (Hasbrouck and Saar, 2013; Kirilenko et al., 2017), and price efficiency 

(Carrion, 2013; Brogaard et al., 2014; Chaboud et al., 2014; Brogaard et al., 2019; Conrad et al. 

2015; Weller, 2017). We contribute by demonstrating that rationality, or lack of behavioral biases, 

is another economically significant advantage of algorithmic traders. Algorithmic trading has been 

proliferating across financial markets (Kirilenko and Lo, 2013), which suggests that these markets 

on average have been becoming more rational. Furthermore, to our knowledge, this is the first 

paper to compare the behavior and performance between algorithmic and human traders. 

The literature on the disposition effect has documented the effect in different markets, e.g. stocks 

(Odean, 1998), stock options (Heath et al., 1999), futures of currencies and commodities (Locke 

and Mann, 2005), and real estate (Genesove and Mayer, 2001), and among different market 

participants, e.g. individual investors (Odean, 1998), institutional investors (Grinblatt and 

Keloharju, 2001), mutual funds (Cici, 2012) and professional futures’ day-traders (Locke and 

Mann, 2005). A long-standing explanation of the disposition effect has been the prospect theory 

(Shefrin and Statman, 1985; Odean, 1998; Weber and Camerer, 1998; Henderson 2012; Li and 

Yang, 2013; Henderson et al., 2018; Meng and Weng, 2018), however, more recently, a particular 

focus has been set on identifying other explanations theoretically (Barberis and Xiong, 2009; 

Barberis and Xiong, 2012; Ingersoll and Jin, 2013) and empirically (Kaustia 2010; Weber and 

Welfens, 2011; Ben-David and Hirshleifer, 2012; Frydman et al., 2014; Frydman and Rangel, 

2014; Chang et al., 2016; Frydman and Camerer, 2016; Fischbacher et al., 2017; Frydman et al., 

2017; Frydman and Wang, 2019; Dierick et al., 2019). Other papers examine the impact of the 

disposition effect on asset prices (Grinblatt and Han, 2005; Frazzini, 2006; An, 2015; Birru, 2015). 

We contribute by documenting, for the first time, the (lack of) disposition effect among algorithmic 

traders – an important group of traders that constituted roughly half of trading volume at Nasdaq 

Copenhagen in the beginning of our data sample period (Danish FSA, 2016). To the best of our 

knowledge, this is also the first paper to document the disposition effect among professional stock 

day-traders at the intraday horizon. Furthermore, we contribute by identifying irrational 

explanations of the disposition effect using novel strategies such as the exogenous effect of the 

weather and the use of liquidity absorbing orders. 

This paper also contributes to the behavioral finance literature studying how the weather affects 

financial markets. For instance, weather has been shown to affect stock returns (Hirshleifer and 

Shumway, 2003; Goetzmann et al., 2014), behavior of individual (Schmittmann et al., 2014) and 

institutional (Goetzmann et al., 2014) investors, and behavior and performance of loan-officers 

(Cortés et al., 2016). We contribute with evidence that weather affects the disposition effect. 

We also add to the literature on algorithmic bias and fairness (Cowgill and Tucker, 2019). For 

instance, algorithms have been shown to make biased and discriminatory decisions in lending 

(Bartlett et al., 2019), criminal sentencing (Dressel and Farid, 2018) and ad targeting (Datta et al., 



2015). We provide the first evidence that algorithms can make more rational decisions, as defined 

by von Neumann and Morgenstern (1947), and that this leads to a better performance. 

Finally, by providing novel evidence of subrational behavior of human traders, we contribute to 

the debate on the rationality assumption in economics (Hogarth and Reder, 1987; Hirshleifer, 

2001; Thaler, 2016). 

2. Data 

We use the millisecond-stamped transaction-level trade data from 9 am., i.e. the stock market’s 

opening time, January 1, 2016 to 5 pm, i.e. the stock market’s closing time, December 31, 2017 

provided by the NASDAQ OMX Copenhagen Stock Exchange. We observe the following 

information about every trade executed by every approved member of the stock exchange: (1) the 

execution date and time at millisecond precision, (2) the name of the traded stock, (3) the indicator 

of whether shares were bought or sold, (4) the share price of the traded stock, (5) the number of 

shares traded, (6) the indicator of whether a trade added or removed liquidity, (7) the indicator of 

whether a trade was executed on a trader’s own proprietary account or on behalf of the trader’s 

client (i.e. a trader acted as a broker) (8) the name of a trader’s institution, i.e. a member of the 

stock exchange, (9) the indicator of whether a trader’s account is used by a human or an algorithm, 

(10) the user account name (first three letters of a trader’s name and surname for humans and 

PTRxxx, AUTDxx or LPSxxx for algorithms), and (11) the name of a counterparty’s organization. 

Conveniently, very trade enters the dataset twice, treating each counterparty as a primary one. The 

name of an organization in combination with the user account name provides a unique trader’s id. 

While we do not know how exactly trading algorithms are coded, what strategies every of them 

follows and how complex they are, e.g. if they are self-learning and adjust depending on their 

trading experience, we do know that they are programmed to make the following decisions without 

human involvement: “whether to initiate the order, the timing, price or quantity of the order or 

how to manage the order after its submission” (Nasdaq, 2018). These are the requirements of the 

NASDAQ Copenhagen when issuing “Algo”-type accounts starting with PTRxxx, AUTDxx or 

LPSxxx to its members. For an overview of the algorithmic trading on the NASDAQ Copenhagen, 

refer to the report of the Danish Financial Supervisory Authority released in February 2016 – at 

the beginning of our sample period (Danish FSA, 2016). The report summarizes algorithms’ 

trading strategies, algorithms’ benefits and risks to the market, the recent trends in trading volume 

of algorithms and humans, regulations, etc. 

In total, our dataset contains 102,553,306 transactions. Since we cannot identify traders that access 

the stock market through the brokerage services provided by the exchange’s members, we focus 

only on the proprietary trades of the exchange members. This leaves us with 39,740,156 

transactions in 159 different stocks: 32,243,301 transactions executed by 91 algorithmic trading 

accounts from 33 member institutions and 7,496,855 transactions executed by 597 human trading 

accounts from 54 member institutions. The trading frequency across both human and algorithmic 

traders is very heterogenous (see Figure 1). In this paper, we focus on day-traders that trade with 

the highest frequency possible for three reasons. Firstly, to the best of our knowledge, this is the 

first paper to analyze the intraday disposition effect in the stock market. Secondly, most of the 



algorithms in our database trade frequently throughout the day. For instance, more than two thirds 

of algorithms (63 of 91) trade on average at least once in every 10 minutes (i.e. 48 times per day). 

Thirdly, we want to identify algorithms that are the least likely to be affected by the direct human 

intervention. For instance, a seldomly trading algorithm might be launched by a human only when 

a he desires to trade particular stocks, while continuously trading algorithms allow less time for a 

human to intervene.  

In order to identify day-traders, in the default setting, we consider only those human and 

algorithmic traders that on average execute at least 1 trade in every two minutes (at least 240 trades 

per day). However, our results are qualitatively similar if we use different thresholds, e.g. at least 

1 trade in every 10 minutes (48 trades per day) or at least 1 trade in every 1 minute (480 trades per 

day) (See Appendix A). Moreover, the most frequently trading human executes 1,523 trades per 

day on average, thus, in order to make the two groups of traders comparable, we exclude 

algorithmic traders that trade more frequently than 1,530 times per day on average. In the default 

setting, this leaves us with 11,097,306 transactions: 5,899,279 of them executed by 31 algorithmic 

traders from 14 member institutions and 5,198,027 trades executed by 34 human day-traders from 

13 member institutions. 

How comparable are these two groups of traders? For each trader-day, we estimate (1) total number 

of trades per day; (2) total turnover; (3) portfolio size, calculated as an average stock inventory 

(grossing both long and short stock positions) valued at 5-minute intervals throughout a day at 

original purchase (selling, for short positions) prices; and (4) trading horizon in days, calculated 

similarly to “Inventory days”: a ratio of average portfolio size over the total value of shares sold 

(repurchased, for short positions) throughout a day valued at purchase (selling, for short positions) 

prices. Also, for each trader-day, we identify (1) 10 most traded stocks in terms of total turnover, 

(2) the member institution type, e.g. international bank, local bank etc., and (3) the city of its 

headquarters. As shown in Table 1.A, humans and algorithms trade similarly. Humans on average 

execute 695 trades per day, while algorithms execute 68 trades more. This difference is not 

statistically significant. An average daily turnover of a human trader is EUR 5.7 m and is not 

statistically different from an average turnover of an algorithm (EUR 5.1 m). The difference 

between an average portfolio size of a human (EUR 1.4 m) and of an algorithm (EUR 1.1 m) is 

also not statistically significant. For both humans and algorithms, it would take almost 3 (2.7 for 

humans and 2.8 for algorithms) days on average to close their positions opened throughout a day. 

Finally, humans on average generate 90% and algorithms 86% of turnover by trading 10 favorite 

stocks of a day. This difference is not statistically significant. Table 1.B shows that humans and 

algorithms trade the same stocks. The table presents the list of the 10 most popular stocks for both 

humans and algorithms. It is based on the number of times that every stock enters an individual 

trader’s top 10 in terms of daily turnover. Most (22 of 34 for humans and 24 of 31 for algorithms) 

of the analyzed proprietary day-traders are employed by large international banks such as BNP 

Paribas, Barclays, Credit Suisse, Deutsche Bank, Goldman Sachs, Merrill Lynch, Citigroup, 

Societe Generale, Nordea, Danske Bank, SEB, HSBC and JP Morgan. The rest of traders work for 

small investment banks or local commercial banks. Algorithmic traders are located in London (20), 

Paris (7), Stockholm (2), Copenhagen (1) and Dublin (1), while human traders are based in London 

(8), Randers (7), Paris (6), Copenhagen (6), Stockholm (3), Silkeborg (2) and Aabenraa (2).  



3. Results  

In the default setting, we consider 31 algorithmic and 34 human day-traders that trade on their 

proprietary accounts, and make between 240 and 1530 trades per day on average.4 In line with 

Locke and Mann (2005), Coval and Shumway (2005), Baron et al. (2018), we assume that traders 

start with zero inventory every day5 and by trading build up their long and short positions 

throughout a day.6 Having a timeline of all trades in the market, and using a volume-weighted 

average purchase price (WAPP) as a reference purchase price7, we calculate total gain for every 

trader-stock position at every point in time. Total gain consists of cumulative realized gain and 

outstanding paper gain. Outstanding paper gain is calculated by multiplying the number of shares 

outstanding by the difference between the last observed stock price in the market and WAPP. 

Realized gain occurs when traders either fully or partially close their position, and is calculated by 

multiplying the number of shares sold (or repurchased, in case of short positions) by the difference 

between the selling (repurchasing) price and WAPP. Cumulative realized gain is calculated by 

accumulating realized gains throughout a day. Following Odean (1998), we measure the 

disposition effect at every point of time for every trader as the proportion of gains realized (PGR) 

minus the proportion of losses realized (PLR). PGR (PLR) equals trader’s cumulative realized 

gains above (below) zero summed up across all trader-stock positions divided by total gains above 

(below) zero summed up across all trader-stock positions.8  

Figure 2.A shows PGR and PLR at the end of every hour throughout the day, averaged across 

traders and days within both groups, i.e. humans and algorithms. The graph shows that by the end 

of the day, algorithms realize on average 32% of gains and 32% of losses, while humans realize 

35% of gains but only 20% of losses. Due to the assumption of zero starting inventory, these gains 

and losses can be interpreted as incrementally caused by actions taken throughout the day. Table 

2 Panel A shows that the average disposition spread, i.e. the average difference between PGR and 

PLR across all traders, days and hours, is 1 pp and not statistically significant from zero for 

algorithms, and 12 pp and statistically significant at 1% level for humans.9 Figure 2.B (2.C) and 

Table 2 Panel B (C) shows that when considering only long (short) positions, the disposition spread 

 
4 As argued in “Data” section, in this way we focus on the comparable algorithmic and human day-traders. Our results 

are robust to including algorithms that trade more frequently than 1,530 per day on average and to using other 

minimum thresholds instead of 240, e.g. 48 or 480 trades per day (i.e. at least 1 trade in every 10 or in every 1 minute, 

respectively). As a robustness check, in Appendix A, we present the main results from Table 2 but using these different 

thresholds.  
5 Our results are qualitatively similar if we assume zero starting inventory on the first day and accumulate inventories, 

gains and losses over the two-year sample period. 
6 Although in the default setting, we use both long and short positions, we show that our results hold for both long and 

short positions separately. 
7 The results are robust if we use first-in-first-out method to determine the reference purchase price (see Appendix B). 
8 Originally, Odean (1998) measures the disposition effect for long term investors who trade less frequently. Realized 

gains (losses) are counted daily as a number of different stocks sold at a gain (loss) and paper gains (losses) are counted 

daily as a number of different stocks held at a gain (loss) but not sold. To get closer to the original measure, we 

calculate for every trader hourly PGR (PLR) as a number of shares sold at a gain (loss) within a given hour divided 

by the total number of winning (losing) shares held in that hour, i.e. the shares sold at a gain (loss) within a given hour 

plus the winning (losing) shares remaining at the end of the hour. Our results are qualitatively similar when using this 

alternative measure of PGR and PLR. 
9 In order to account for autocorrelation within trader’s observations, standard errors are clustered at the trader level.  



is 1 pp (1 pp) and not statistically significant for algorithms and 15 pp (13 pp) and statistically 

significant at 1% level for humans. Finally, Figure 2.D and Table 2 Panel D shows that human 

day-traders do but algorithms do not realize significantly more gains than losses when considering 

long-term portfolios, i.e. when we assume zero starting inventory on the first trading day and 

accumulate inventories throughout the whole two-year sample period. The average disposition 

spread is 1 pp and not statistically significant for algorithms, and 13 pp and statistically significant 

at 1% level for humans. 

Rational explanations. Firstly, in order to examine if the “portfolio rebalancing” story drives our 

results, we re-run the main analysis using only those realizations of gains and losses that close the 

position entirely and not just partially. According to Odean (1998), “investors who are rebalancing 

will sell a portion, but not all, of their shares of winning stocks. A sale of the entire holding of a 

stock is most likely not motivated by the desire to rebalance”. After eliminating the partial 

realizations, which might be motivated by rebalancing, our results remain qualitatively similar to 

the default setting (see Figure 2.E and Table 2 Panel E). 

Secondly, it is plausible that accounting rules paired with career concerns or compensation 

schemes incentivize human traders to realize their gains and losses differently from algorithmic 

traders. For instance, banks have been shown to manage, e.g. smooth, their reported earnings by 

strategically realizing gains and losses from securities (see e.g. Dong and Zhang, 2017; Beatty and 

Harris, 1999; Ahmed and Takeda, 1995). To test this possibility, we consider those gains and losses 

that occur mentally, but are not reported in any way – i.e. missed opportunities to gain and lose. 

For instance, suppose a trader owns 100 shares and sells one. If the price goes up (down), the actual 

and reportable value of the portfolio increases (decreases), but the trader may consider the missed 

opportunity to earn (lose) money on the sold share as a loss (gain). The trader can “realize” this 

“loss” (“gain”) by repurchasing the sold share at the new higher (lower) price, but this “realization” 

would not be reflected in the actual profits. Our estimates of the disposition effect for both humans 

and algorithms are robust when considering only these mental “gains” and “losses” (See Figure 

2.F and Table 2 Panel F). This result is consistent with Strahilevitz et al. (2011) who study how 

regret affects the repurchase of stocks previously sold. Specifically, we calculate cumulative 

inventories of every trader-stock position over the two-year period, and use only those trader-

stock-days in which a long-term position, i.e. cumulative from day 1, remains long (short) 

throughout the whole given day, but the short-term position, i.e. cumulative from the beginning of 

the given day, is short (long). In this case, an upward (downward) price move brings gains (losses) 

from the long-term portfolio perspective, but losses (gains) from the narrower daily portfolio 

perspective. Thus a “daily” loss (gain) is not an actual loss (gain) that can be reported but a missed 

opportunity to gain (lose). 

Thirdly, it is plausible that after losing, compensation schemes incentivize human traders to take 

extra risks, and if investors believe that low-priced stocks are more volatile than high-priced stocks 

(e.g. Ohlson and Penman, 1985; Dubofsky, 1991), they might prefer to hold on to stocks that 

recently decreased in price and caused losses. Similarly, it is possible that a low stock price makes 

traders reluctant to trade due to relatively high transaction costs. However, these explanations are 

plausible only when considering long positions, since with short positions they predict a reverse 



disposition effect. As can be seen in Figures 2.B and 2.C and Table 2 Panels B and C, long and 

short positions exhibit very similar disposition effects. 

Fourthly, if human traders used relatively more limit orders than algorithms, especially when 

closing their positions to realize gains and losses, this could explain the difference of the 

disposition effect between the two groups (Linnainmaa, 2010). However, Figure 3.A shows that 

in fact humans use relatively less limit orders and more market (liquidity taking, aggressive) orders 

than algorithms when deepening positions and even more so when closing positions to realize 

gains and losses. 

Less rational explanations. Firstly, Figure 3.B and Table 3 show that humans trade particularly 

aggressively, i.e. use relatively more liquidity absorbing market orders, when realizing losses as 

compared to when realizing gains or when deepening positions (i.e. not realizing either gains or 

losses). Meanwhile, algorithms trade almost equally aggressively when realizing losses and when 

deepening positions. This suggests that human traders are more nervous when realizing their losses 

as predicted by realization utility theory. Since the realization of losses is a painful procedure, 

human traders might urge to “get over it” quickly, and, thus, use more liquidity taking market 

orders. Following the argumentation of Linnainmaa (2010), if one sells a stock to realize a gain or 

a loss using an aggressive market order, one has to cross the bid-ask spread and thus the stock is 

more likely to be sold at a loss and less likely at a gain. These simple mechanics explain why for 

algorithms in Figure 3.B the line representing the aggressive loss (gain) realization is slightly 

above (below) the line of non-realization. For humans, however, the loss realization line is far 

above other lines, which suggest there are other forces explaining why human traders use relatively 

more aggressive orders when realizing losses than when realizing gains or when not realizing 

either. 

Secondly, we test if the gap between PGR and PLR is sensitive to the weather. Table 4 Panel A 

shows that human traders exhibit a larger disposition spread during sunny hours than on cloudy 

hours, while algorithms show no reaction to the weather (Table 4 Panel B). This result can be 

explained by the prospect theory. During sunny hours, human traders might be more distracted 

from work and thus rely more on System 1, which is subject to cognitive features such as 

attachments to reference points and loss aversion (Kahneman, 2011). These results, however, 

should be treated with caution, as they lack economical significance and are not very robust to 

different fixed effects and error clustering. 

Thirdly, if traders believed in mean-reversion they would expect a stock price to increase after 

seeing it dropping and to decrease after seeing it rising, even if currently they have no position in 

that stock (Ben-David and Hirshleifer, 2012). We consider only those trades which open, but do 

not increase or decrease the existing, long or short daily trader-stock positions, assuming that every 

day starts with zero inventory. Figure 4 shows that humans, but not machines, tend to open their 

daily positions by selling recent (previous 60 minutes) winners and buying recent losers. This 

suggests that humans but not algorithms tend to believe in mean-reversion, which may contribute 

to the disposition effect. In fact, algorithms tend to do the opposite – to buy recent winners and to 

sell recent losers, which suggest that they prefer trend following strategies. 



Performance. Our evidence suggests that rational explanations such as portfolio rebalancing, 

contract-induced incentives, transaction costs and limit order mechanism cannot fully explain the 

large difference in disposition effect between humans and algorithms. Meanwhile, we find 

evidence that less rational explanations such as the prospect theory, the realization utility theory 

and beliefs in mean-reversion contribute to the difference. Independently on whether preferences 

or beliefs drive the disposition effect, if such behavior helps traders perform better, it would be 

justified and rational (Odean, 1998). However, if traders continue to exhibit disposition effect 

despite persistent evidence that it hurts their performance, this behavior would be irrational 

(Odean, 1998). In order to estimate the harm/benefit of the disposition effect we do the following 

exercise for the same groups of traders as before: 31 algorithmic and 34 human day-traders. 

As before, we assume zero starting inventories every day and construct portfolios for every trader 

considering trades that they executed throughout the day. At the end of every trading hour we 

freeze portfolios’ compositions (we call them the “Actual portfolios”) and use stock prices 

prevailing 8 trading hours later to calculate how much profits every trader would have made over 

those next 8 trading hours had they not executed any more trades. Then, for every trader, at every 

moment of the freeze, we construct a hypothetical “Realization portfolio”, which is formed by 

trades that would be necessary in order to realize all existing paper losses. Assuming constant 

compositions of “Realization portfolios” we calculate profits over the same next 8 trading hours. 

Adding up the “Actual portfolio” and the “Realization portfolio” gives us a “Combined portfolio” 

– a hypothetical portfolio that a trader would be holding at the moment of the freeze had he just 

realized all paper losses. 

Figure 5.A shows profits earned within the next 8 trading hours by the “Actual”, “Realization” and 

“Combined” portfolios frozen at various times of the day averaged across traders and days. Figure 

5.A and Table 5 suggests that human traders on average would persistently make losses (on 

average 404 euros) over the next 8 trading hours if they stopped trading at any point of the day. 

Yet, on average they would earn more than that (421 euros) and break-even over the same 8 trading 

hours if they realized all their losses. The best time to realize all losses appears to be at around 1 

pm since the “Realization portfolio” would have earned 596 euros on average over the next 8 

trading hours. Realization of losses would allow human traders to avoid persistent losses since the 

“Combination portfolio” would earn on average 63 euros over the 8-hour period. Figure 5.B and 

Table 5 Panel B shows that algorithms are better at choosing stocks than humans as their “Actual 

portfolio” on average earns positive (even though not statistically significant) profits of 134 euros 

over the 8 hours10. However, they would benefit from realizing more losses too as their “Combined 

portfolio” would earn 271 euros on average. Interestingly, these findings suggest that algorithms 

can predict better than humans, which stocks will be profitable during the next 8 trading hours. 

This difference in performance cannot be explained by algorithms’ execution speed advantage, 

which is only in the matter of milliseconds. 

Results are different in magnitude but similar qualitatively when instead of 8-hour horizon we use 

1,2,4,16 and 24 hours: the “Realization portfolio” always generates gains and helps both humans 

 
10 When including algorithms that trade more frequently than 1,530 times per day on average, algorithms’ “Actual 

portfolio” earns 260 euros on average - a positive profit statistically significant at 10%. 



to offset their loses and algorithms to increase their gains. We see a similar picture (Figure 5.C for 

humans and 5.D for algorithms) when looking at returns, i.e. when we divide portfolio profits by 

the initial portfolio values at the time of freezing. As shown in Table 5, both profits and returns of 

“Realization portfolio” are positive and statistically different from zero. 

Using the same logic, we form “Realization portfolios” with trades that would realize all gains 

instead of losses (Table 6 and Figure 6.A for humans and 6.B for algorithms). In this case the 

“Realization portfolio” incurs negative profits – on average -173 euros for human and -283 euros 

for algorithms in the next 8 hours. This leads to “Combined portfolio” performance being worse 

than “Actual portfolio” performance on average. The same applies when analyzing returns instead 

of profits (Figure 6.C for humans and 6.D for algorithms). All in all, this evidence suggests that 

both realization of gains and non-realization of losses are detrimental to the trading performance, 

which suggests the disposition effect to be irrational behavior. In addition, since algorithms’ 

average performance over the intraday horizon is always better than humans’, independently on 

what time the portfolios are frozen, this serves as evidence that algorithms, either due to 

informational advantage or due to rationality, are better at picking stocks for day trading and would 

outperform humans even without their execution speed advantage.  

4. Conclusion 

In this paper we ask: do machines make more rational decisions, as defined by the expected utility 

theory, than humans, and if so, does that help them perform better? We use two years of 

transaction-level millisecond-stamped trade data from the NASDAQ OMX Copenhagen Stock 

Exchange to compare the disposition effect between two groups of proprietary day-traders, namely 

algorithms and humans. In order to ensure the comparability between the two groups in terms of 

trading frequency, turnover, portfolio size, trading horizon and favorite stocks, and in order to 

minimize the likelihood that a human could directly impact trading decisions of algorithms, we 

focus our analysis on traders that trade the most frequently, namely the 31 algorithms and 34 

humans that on average execute between 240 and 1530 trades per day. We also show that our 

results are qualitatively similar when changing the lower bound from 240 to 48 and 480 trades per 

day.  

We find a substantial disposition effect among humans but virtually no disposition effect among 

algorithms. This difference cannot be fully explained by the popular rational explanations, such as 

private information, portfolio rebalancing, contract-induced incentives or transaction costs. 

However, we find evidence that it is at least partially explained by less rational explanations such 

as the prospect theory, realization utility and beliefs in mean-reversion. The evidence of the 

irrationality of the disposition effect is reinforced by our finding that the realization of gains and 

the non-realization of losses systematically hurt future performance of both humans and 

algorithms. Finally, we find that algorithms have a better ability than humans to predict the stock 

price movements in the next 1,2,4,16 and 24 hours, which suggests that algorithms would 

outperform humans even without their advantage of execution speed. 

These results suggest that professional human day-traders do not behave fully rationally as defined 

by the expected utility theory, even though rationality would be profitable. Our findings also 



suggest that rationality can be achieved by automating the decision-making process. For example, 

by “thinking slow” (using System 2) programmers can avoid behavioral biases and heuristics. 

Also, while programming their decisions, which may or may not be executed in the future, 

depending on future situations, programmers can minimize their pleasure and pain derived from 

these decisions. Furthermore, by pre-committing to the future decisions, programmers can avoid 

self-control problems and “hot” reactions.  

This grants an additional advantage to algorithms, which have already been shown before to make 

faster, better-informed, less noisy and more cost-effective decisions. In turn, this advantage may 

widen the scope of industries that could benefit from and be changed by the automation of 

decision-making. In the long run, future generations, surrounded by more rational decision making 

executed by machines, might learn to behave in a more rational manner as well. Whether this is 

something worth striving for is a matter of ethics and depends on what machines are programmed 

to optimize, e.g. shareholders’ profits, consumers’ happiness, well-being of the society as whole 

etc. 
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FIGURE 1 

Number of traders and total turnover ordered by traders’ average trading frequency 
Figure 1 shows the distribution of 91 algorithmic and 597 human traders ordered by their average trading frequency per day 

(blue columns, lhs). For example, a large part of both algorithmic (28) and human (427) traders trade relatively seldomly – less 

than 48 times per day (i.e. less than 1 trade in every 10 minutes) on average. The orange line (rhs) shows the aggregate turnover 

in euros generated by traders in each trading frequency category throughout the two-year sample period. 

 

  



FIGURE 2.A 

Realization of gains and losses throughout a day – default setting 
Figure 2.A shows the proportion of gains realized (PGR) and the proportion of losses realized (PLR) at the start of every hour 

of a day, averaged across trading days and across traders in the two groups, i.e. humans and algorithms. The graph considers 31 

algorithmic and 34 human proprietary traders that on average execute between 240 and 1,530 trades per day. Individual PGR 

and PLR for every trader are calculated as follows. Traders are assumed to start every day with zero inventory (at 9 am) and by 

trading to build their long and short positions in stocks throughout a day. For every trader-stock position at every point of time 

we calculate total gain, which consist of cumulative realized gain and outstanding paper gain. Outstanding paper gain is 

calculated by multiplying remaining inventory by the difference between the last observed stock price and the volume-weighted 

average purchase price (WAPP). Realized gain is calculated by multiplying the number of shares sold (or repurchased, in case 

of short positions) by the difference between the selling (repurchasing) price and WAPP. Cumulative realized gain is calculated 

by accumulating realized gains throughout a day. At any point of time, a trader’s PGR (PLR) equals cumulative realized gains 

above (below) zero summed up across trader-stock positions divided by total gains above (below) zero summed up across 

trader-stock positions. 

 

 

 

 

 

 

 

 

FIGURE 2.B 

Realization of gains and losses throughout a day – only long positions 
Figure 2.B shows the proportion of gains realized (PGR) and the proportion of losses realized (PLR) at the start of every hour 

of a day, averaged across trading days and across traders in the two groups, i.e. humans and algorithms. The graph considers 31 

algorithmic and 34 human proprietary traders that on average execute between 240 and 1,530 trades per day. Individual PGR 

and PLR for every trader are calculated as follows. Traders are assumed to start every day with zero inventory (at 9 am) and by 

trading to build their long and short positions in stocks throughout a day. In this chart we only consider long positions. For 

every trader-stock position at every point of time we calculate total gain, which consist of cumulative realized gain and 

outstanding paper gain. Outstanding paper gain is calculated by multiplying remaining inventory by the difference between the 

last observed stock price and the volume-weighted average purchase price (WAPP). Realized gain is calculated by multiplying 

the number of shares sold by the difference between the selling price and WAPP. Cumulative realized gain is calculated by 

accumulating realized gains throughout a day. At any point of time, a trader’s PGR (PLR) equals cumulative realized gains 

above (below) zero summed up across trader-stock positions divided by total gains above (below) zero summed up across 

trader-stock positions. 

 

 

 

 

 

 

  



FIGURE 2.C 

Realization of gains and losses throughout a day – only short positions 
Figure 2.C shows the proportion of gains realized (PGR) and the proportion of losses realized (PLR) at the start of every hour 

of a day, averaged across trading days and across traders in the two groups, i.e. humans and algorithms. The graph considers 31 

algorithmic and 34 human proprietary traders that on average execute between 240 and 1,530 trades per day. Individual PGR 

and PLR for every trader are calculated as follows. Traders are assumed to start every day with zero inventory (at 9 am) and by 

trading to build their long and short positions in stocks throughout a day. In this chart we only consider short positions. For 

every trader-stock position at every point of time we calculate total gain, which consist of cumulative realized gain and 

outstanding paper gain. Outstanding paper gain is calculated by multiplying remaining inventory by the difference between the 

last observed stock price and the volume-weighted average purchase price (WAPP). Realized gain is calculated by multiplying 

the number of shares repurchased by the difference between the repurchase price and WAPP. Cumulative realized gain is 

calculated by accumulating realized gains throughout a day. At any point of time, a trader’s PGR (PLR) equals cumulative 

realized gains above (below) zero summed up across trader-stock positions divided by total gains above (below) zero summed 

up across trader-stock positions. 

 

 

 

 

 

 

 

  

FIGURE 2.D 

Realization of gains and losses throughout the two years sample period 
Figure 2.D shows the proportion of gains realized (PGR) and the proportion of losses realized (PLR) at the end of every quarter, 

averaged across traders in the two groups, i.e. humans and algorithms. The graph considers 31 algorithmic and 34 human 

proprietary traders that on average execute between 240 and 1,530 trades per day. Individual PGR and PLR for every trader are 

calculated as follows. Traders are assumed to start with zero inventory on the first trading day and to build their long and short 

positions in stocks by trading throughout the two years. For every trader-stock position at every point of time we calculate total 

gain, which consist of cumulative realized gain and outstanding paper gain. Outstanding paper gain is calculated by multiplying 

remaining inventory by the difference between the last observed stock price and the volume-weighted average purchase price 

(WAPP). Realized gain is calculated by multiplying the number of shares repurchased by the difference between the repurchase 

price and WAPP. Cumulative realized gain is calculated by accumulating realized gains throughout the two years. At any point 

of time, a trader’s PGR (PLR) equals cumulative realized gains above (below) zero summed up across trader-stock positions 

divided by total gains above (below) zero summed up across trader-stock positions. 

 

 

 

 

 

 

 



FIGURE 2.E 

Realization of gains and losses throughout a day – without partial realizations 
Figure 2.E shows the proportion of gains realized (PGR) and the proportion of losses realized (PLR) at the start of every hour 

of a day, averaged across trading days and across traders in the two groups, i.e. humans and algorithms. The graph considers 31 

algorithmic and 34 human proprietary traders that on average execute between 240 and 1,530 trades per day. Individual PGR 

and PLR for every trader are calculated as follows. Traders are assumed to start every day with zero inventory (at 9 am) and by 

trading to build their long and short positions in stocks throughout a day. For every trader-stock position at every point of time 

we calculate total gain, which consist of cumulative realized gain and outstanding paper gain. Outstanding paper gain is 

calculated by multiplying remaining inventory by the difference between the last observed stock price and the volume-weighted 

average purchase price (WAPP). Realized gain is calculated by multiplying the number of shares sold (or repurchased, in case 

of short positions) by the difference between the selling (repurchasing) price and WAPP. In this chart we consider only those 

sales (repurchases), which completely closed trader-stock positions. Cumulative realized gain is calculated by accumulating 

realized gains throughout a day. At any point of time, a trader’s PGR (PLR) equals cumulative realized gains above (below) 

zero summed up across trader-stock positions divided by total gains above (below) zero summed up across trader-stock 

positions. 

 

 

 

 

 

 

 

FIGURE 2.F 

Realization of gains and losses throughout a day – mental “gains” and “losses” 
Figure 2.F shows the proportion of gains realized (PGR) and the proportion of losses realized (PLR) at the start of every hour 

of a day, averaged across trading days and across traders in the two groups, i.e. humans and algorithms. The graph considers 31 

algorithmic and 34 human proprietary traders that on average execute between 240 and 1,530 trades per day. Individual PGR 

and PLR for every trader are calculated as follows. Traders are assumed to start every day with zero inventory (at 9 am) and by 

trading to build their long and short positions in stocks throughout a day. We call these positions “daily” positions. For every 

trader-stock position at every point of time we calculate total gain, which consist of cumulative realized gain and outstanding 

paper gain. Outstanding paper gain is calculated by multiplying remaining inventory by the difference between the last observed 

stock price and the volume-weighted average purchase price (WAPP). Realized gain is calculated by multiplying the number of 

shares sold (or repurchased, in case of short positions) by the difference between the selling (repurchasing) price and WAPP. 

Cumulative realized gain is calculated by accumulating realized gains throughout a day. At any point of time, a trader’s PGR 

(PLR) equals cumulative realized gains above (below) zero summed up across trader-stock positions divided by total gains 

above (below) zero summed up across trader-stock positions. We also calculate “overall” trader-stock positions assuming 

zero inventory at 9 am of day 1, and accumulating inventories throughout the two years. In this chart we only consider 

those trader-stock positions, which are either long throughout the whole day from the “overall” perspective and short 

from the “daily” perspective or short throughout the whole day from the “overall” perspective and long from the “daily” 

perspective. Thus, “daily” losses (gains) are not actual losses (gains) but missed opportunities to gain (lose) “overall”.  

 

 

 

 

 



FIGURE 3.A 

Aggressiveness of trades – realization and non-realization trades 
Figure 3.A shows the average ratio of trader’s hourly turnover that was executed with market orders over the sum of hourly 

turnover executed using both market and limit orders. The ratio is averaged across trading days and across traders in the two 

groups, i.e. humans and algorithms. We consider separately (1) trades that opened or deepened existing positions, i.e. non-

realization trades, and (2) trades that closed (partially or fully) existing positions, i.e. realization trades. The graph considers 31 

algorithmic and 34 human proprietary traders that on average execute between 240 and 1,530 trades per day. 

 

 

 

 

 

 

 

 

  

FIGURE 3.B 

Aggressiveness of trades – loss realization, gain realization and non-realization trades 
Figure 3.B shows the average ratio of trader’s hourly turnover that was executed with market orders over the sum of hourly 

turnover executed using both market and limit orders. The ratio is averaged across trading days and across traders in the two 

groups, i.e. humans and algorithms. We consider separately (1) trades that opened or deepened existing positions, i.e. non-

realization trades, (2) trades that closed (partially or fully) existing positions at a loss, i.e. trades realizing losses and (3) trades 

that closed (partially or fully) existing positions at a gain, i.e. trades realizing gains. The graph considers 31 algorithmic and 34 

human proprietary traders that on average execute between 240 and 1,530 trades per day. 

 

 

 

 

 

 

 

  

  



FIGURE 4 

Opening daily positions by buying and selling recent winners and losers 
Figure 4 shows the average number of times per day that traders opened their daily positions (assuming zero starting inventory 

every day) by buying and selling recent winners, i.e. stocks that increased in price during the previous 60 minutes, and recent 

losers, i.e. stocks that decreased in price during the previous 60 minutes. The black lines are 95% confidence intervals. The 

graph shows that human traders tend to open their positions by selling recent winners and buying recent losers, which is in line 

with the beliefs in mean-reversion. Algorithms tend to do the opposite – open their positions by buying recent winners and 

selling recent losers, which is in line with trend following. However, the result for algorithms is not statistically significant, as 

all the confidence intervals overlap. 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 5.A 

Gains of frozen portfolios of human traders over the next 8 hours – case of loss realization 
Figure 5.A shows average profits in euros earned over the next 8 hours by three types of portfolios frozen at different times of 

the day. The average is calculated across human traders and trading days. Dashed lines of corresponding colors represent 

confidence intervals. Individual trader’s “Actual portfolio” is constructed by assuming zero starting inventory every day and 

executing actual trades up to the moment of the freeze. The composition of the “Actual portfolio” is frozen at every hour of a 

trading day. Individual trader’s “Realization portfolio” is a hypothetical portfolio constructed by executing trades necessary to 

realize all existing paper losses at the moment of the freeze. Individual trader’s “Combined portfolio” is a combination of both 

“Actual portfolio” and the “Realization portfolio”, thus, it is a hypothetical portfolio that a trader would hold at the moment of 

the freeze had he just realized all paper losses. The gain of every portfolio is calculated by comparing stock prices at the moment 

of the freeze and eight trading hours later, holding the portfolios’ compositions constant. The graph considers 31 algorithmic 

and 34 human proprietary traders that on average execute between 240 and 1,530 trades per day. 

 

 

 

 

 

 

 



FIGURE 5.B 

Gains of frozen portfolios of algorithmic traders over the next 8 hours – case of loss realization 
Figure 5.B shows average profits in euros earned over the next 8 hours by three types of portfolios frozen at different times of 

the day. The average is calculated across algorithmic traders and trading days. Dashed lines of corresponding colors represent 

confidence intervals. Individual trader’s “Actual portfolio” is constructed by assuming zero starting inventory every day and 

executing actual trades up to the moment of the freeze. The composition of the “Actual portfolio” is frozen at every hour of a 

trading day. Individual trader’s “Realization portfolio” is a hypothetical portfolio constructed by executing trades necessary to 

realize all existing paper losses at the moment of the freeze. Individual trader’s “Combined portfolio” is a combination of both 

“Actual portfolio” and the “Realization portfolio”, thus, it is a hypothetical portfolio that a trader would hold at the moment of 

the freeze had he just realized all paper losses. The gain of every portfolio is calculated by comparing stock prices at the moment 

of the freeze and eight trading hours later, holding the portfolios’ compositions constant. The graph considers 31 algorithmic 

and 34 human proprietary traders that on average execute between 240 and 1,530 trades per day. 

 

 

 

 

 

 

 

 

 

FIGURE 5.C 

Returns of frozen portfolios of human traders over the next 8 hours – case of loss realization 
Figure 5.C shows average returns earned over the next 8 hours by three types of portfolios frozen at different times of the day. 

The average is calculated across human traders and trading days. Dashed lines of corresponding colors represent confidence 

intervals. Individual trader’s “Actual portfolio” is constructed by assuming zero starting inventory every day and executing 

actual trades up to the moment of the freeze. The composition of the “Actual portfolio” is frozen at every hour of a trading day. 

Individual trader’s “Realization portfolio” is a hypothetical portfolio constructed by executing trades necessary to realize all 

existing paper losses at the moment of the freeze. Individual trader’s “Combined portfolio” is a combination of both “Actual 

portfolio” and the “Realization portfolio”, thus, it is a hypothetical portfolio that a trader would hold at the moment of the freeze 

had he just realized all paper losses. The return of every portfolio is calculated by subtracting the portfolio value at stock prices 

prevailing at the time of the freeze from the portfolio value at stock prices prevailing 8 trading hours later (holding the portfolios’ 

compositions constant), and dividing the difference by the former portfolio value. The graph considers 31 algorithmic and 34 

human proprietary traders that on average execute between 240 and 1,530 trades per day. 

 

 

 

 

 

 

 



 

FIGURE 5.D 

Returns of frozen portfolios of algorithmic traders over the next 8 hours – case of loss realization 
Figure 5.D shows average returns earned over the next 8 hours by three types of portfolios frozen at different times of the day. 

The average is calculated across algorithmic traders and trading days. Dashed lines of corresponding colors represent confidence 

intervals. Individual trader’s “Actual portfolio” is constructed by assuming zero starting inventory every day and executing 

actual trades up to the moment of the freeze. The composition of the “Actual portfolio” is frozen at every hour of a trading day. 

Individual trader’s “Realization portfolio” is a hypothetical portfolio constructed by executing trades necessary to realize all 

existing paper losses at the moment of the freeze. Individual trader’s “Combined portfolio” is a combination of both “Actual 

portfolio” and the “Realization portfolio”, thus, it is a hypothetical portfolio that a trader would hold at the moment of the freeze 

had he just realized all paper losses. The return of every portfolio is calculated by subtracting the portfolio value at stock prices 

prevailing at the time of the freeze from the portfolio value at stock prices prevailing 8 trading hours later (holding the portfolios’ 

compositions constant), and dividing the difference by the former portfolio value. The graph considers 31 algorithmic and 34 

human proprietary traders that on average execute between 240 and 1,530 trades per day. 

 

 

 

 

 

 

 

 

FIGURE 6.A 

Gains of frozen portfolios of human traders over the next 8 hours – case of gain realization 
Figure 6.A shows average profits in euros earned over the next 8 hours by three types of portfolios frozen at different times of 

the day. The average is calculated across human traders and trading days. Dashed lines of corresponding colors represent 

confidence intervals. Individual trader’s “Actual portfolio” is constructed by assuming zero starting inventory every day and 

executing actual trades up to the moment of the freeze. The composition of the “Actual portfolio” is frozen at every hour of a 

trading day. Individual trader’s “Realization portfolio” is a hypothetical portfolio constructed by executing trades necessary to 

realize all existing paper gains at the moment of the freeze. Individual trader’s “Combined portfolio” is a combination of both 

“Actual portfolio” and the “Realization portfolio”, thus, it is a hypothetical portfolio that a trader would hold at the moment of 

the freeze had he just realized all paper gains. The gain of every portfolio is calculated by comparing stock prices at the moment 

of the freeze and eight trading hours later, holding the portfolios’ compositions constant. The graph considers 31 algorithmic 

and 34 human proprietary traders that on average execute between 240 and 1,530 trades per day. 

 

 

 

 

 

 

 



 

FIGURE 6.B 

Gains of frozen portfolios of algorithmic traders over the next 8 hours – case of gain realization 
Figure 6.B shows average profits in euros earned over the next 8 hours by three types of portfolios frozen at different times of 

the day. The average is calculated across algorithmic traders and trading days. Dashed lines of corresponding colors represent 

confidence intervals. Individual trader’s “Actual portfolio” is constructed by assuming zero starting inventory every day and 

executing actual trades up to the moment of the freeze. The composition of the “Actual portfolio” is frozen at every hour of a 

trading day. Individual trader’s “Realization portfolio” is a hypothetical portfolio constructed by executing trades necessary to 

realize all existing paper gains at the moment of the freeze. Individual trader’s “Combined portfolio” is a combination of both 

“Actual portfolio” and the “Realization portfolio”, thus, it is a hypothetical portfolio that a trader would hold at the moment of 

the freeze had he just realized all paper gains. The gain of every portfolio is calculated by comparing stock prices at the moment 

of the freeze and eight trading hours later, holding the portfolios’ compositions constant. The graph considers 31 algorithmic 

and 34 human proprietary traders that on average execute between 240 and 1,530 trades per day. 

 

 

 

 

 

 

 

 

FIGURE 6.C 

Returns of frozen portfolios of human traders over the next 8 hours – case of gain realization 
Figure 6.C shows average returns earned over the next 8 hours by three types of portfolios frozen at different times of the day. 

The average is calculated across human traders and trading days. Dashed lines of corresponding colors represent confidence 

intervals. Individual trader’s “Actual portfolio” is constructed by assuming zero starting inventory every day and executing 

actual trades up to the moment of the freeze. The composition of the “Actual portfolio” is frozen at every hour of a trading day. 

Individual trader’s “Realization portfolio” is a hypothetical portfolio constructed by executing trades necessary to realize all 

existing paper gains at the moment of the freeze. Individual trader’s “Combined portfolio” is a combination of both “Actual 

portfolio” and the “Realization portfolio”, thus, it is a hypothetical portfolio that a trader would hold at the moment of the freeze 

had he just realized all paper gains. The return of every portfolio is calculated by subtracting the portfolio value at stock prices 

prevailing at the time of the freeze from the portfolio value at stock prices prevailing 8 trading hours later (holding the portfolios’ 

compositions constant), and dividing the difference by the former portfolio value. The graph considers 31 algorithmic and 34 

human proprietary traders that on average execute between 240 and 1,530 trades per day. 

 

 

 

 

 

 

 



 

FIGURE 6.D 

Returns of frozen portfolios of algorithmic traders over the next 8 hours – case of gain realization 
Figure 6.D shows average returns earned over the next 8 hours by three types of portfolios frozen at different times of the day. 

The average is calculated across algorithmic traders and trading days. Dashed lines of corresponding colors represent confidence 

intervals. Individual trader’s “Actual portfolio” is constructed by assuming zero starting inventory every day and executing 

actual trades up to the moment of the freeze. The composition of the “Actual portfolio” is frozen at every hour of a trading day. 

Individual trader’s “Realization portfolio” is a hypothetical portfolio constructed by executing trades necessary to realize all 

existing paper gains at the moment of the freeze. Individual trader’s “Combined portfolio” is a combination of both “Actual 

portfolio” and the “Realization portfolio”, thus, it is a hypothetical portfolio that a trader would hold at the moment of the freeze 

had he just realized all paper gains. The return of every portfolio is calculated by subtracting the portfolio value at stock prices 

prevailing at the time of the freeze from the portfolio value at stock prices prevailing 8 trading hours later (holding the portfolios’ 

compositions constant), and dividing the difference by the former portfolio value. The graph considers 31 algorithmic and 34 

human proprietary traders that on average execute between 240 and 1,530 trades per day. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



TABLE 1.A 

Comparison of trading activity between algorithms and humans 
Table 1.A shows the results of regressing trader-day level observations of five different variables on a constant and a dummy 

Algorithm, which is equal to one if a trader is an algorithm and zero if it is a human. We consider 31 algorithmic and 34 human 

proprietary traders that on average execute between 240 and 1530 trades per day. The four dependent variables are calculated 

as follows: (1) “N of trades” is a total number of trades that a trader executed in a given day; (2) “Turnover” is a total turnover 

in euros traded by a trader in a given day; (3) “Portfolio size”, measured in euros, is calculated by assuming that every trader 

starts every day with zero inventory and builds long and short stock positions by trading throughout the day. Every 5 minutes, 

i.e. 96 times per day, we calculate values of every short and long trader-stock position by multiplying the outstanding number 

of shares by the original purchase (selling, for short positions) price, and sum up gross values of all positions to arrive at 96 

daily observations for each trader. “Portfolio size” is an average across the 96 daily observations. (4) “Inventory days”, measured 

in days, is calculated by dividing “Portfolio size” by the total value of shares sold (repurchased, for short positions) during a 

given day valued at purchase (selling, for short positions) prices. (5) “Turnover top10” is a ratio of daily turnover in the most 

traded 10 stocks throughout the day over the total daily turnover. The table suggests that the differences between humans and 

algorithms are not statistically significant in any of these four categories. 

 

 

 

 

 

 

 

 

TABLE 1.B 

Comparison of trading activity between algorithms and humans 
Table 1.B presents the list of the 10 most popular stocks for both humans and algorithms. It is based on the number of times 

that every stock enters an individual trader’s top 10 in terms of daily turnover. 

  

N of trades Turnover Portfolio size Inventory days Turnover top10

Algorithm 67.9 -598,733 -346,552 0.1 -0.040

(0.566) (0.616) (0.102) (0.948) (0.148)

Constant 694.5*** 5,710,481*** 1,416,845*** 2.7*** 0.902***

(0.000) (0.000) (0.000) (0.000) (0.000)

Observations 121,720 121,720 121,720 112,832 121,552

P-values in parentheses. Standard errors are clustered at trader's level

*** p<0.01, ** p<0.05, * p<0.1

Dependent variable: 

Number of times that a stock 

is among trader's top 10 in 

terms of daily turnover

Stock name 

Number of times that a stock 

is among trader's top 10 in 

terms of daily turnover

Stock name 

5159 NOVO B 6072 NOVO B

4794 VWS 5099 VWS

4588 GEN 4725 DANSKE

4582 PNDORA 4374 PNDORA

4421 DANSKE 4327 GEN

3627 MAERSK B 4076 MAERSK B

2832 DSV 3904 DSV

2736 CARL B 3617 CARL B

2545 COLO B 3414 COLO B

2419 NZYM B 3242 NZYM B

Humans Algorithms



TABLE 2 

Realization of gains and losses 
Table 2 shows the results of regressing hourly (end of hour) trader-level observations of the spread between the proportion of 

gains realized (PGR) and the proportion of losses realized (PLR) on a constant and a dummy Algorithm, which is equal to one 

if a trader is an algorithm and zero if it is a human. When regressing the spread on a constant only, we split the sample into two 

groups – humans and algorithms. Standard errors are clustered at a trader level. We consider 31 algorithmic and 34 human 

proprietary traders that on average execute between 240 and 1,530 trades per day. Individual PGR and PLR for every trader at 

the end of every hour are calculated as follows. In Panels A, B, C, E and F traders are assumed to start every day with zero 

inventory and by trading to build their long and short positions in stocks throughout a day. In Panel D, traders are assumed to 

start the first trading day with zero inventory and to accumulate inventory throughout the full two-year sample period. For every 

trader-stock position at every point of time we calculate total gain, which consist of cumulative realized gain and outstanding 

paper gain. Outstanding paper gain is calculated by multiplying remaining inventory by the difference between the last observed 

stock price and the volume-weighted average purchase price (WAPP). Realized gain is calculated by multiplying the number of 

shares sold (or repurchased, in case of short positions) by the difference between the selling (repurchasing) price and WAPP. 

Cumulative realized gain is calculated by accumulating realized gains over time. At any point of time, a trader’s PGR (PLR) 

equals cumulative realized gains above (below) zero summed up across trader-stock positions divided by total gains above 

(below) zero summed up across trader-stock positions. The dependent variable is the difference between PGR and PLR. Panels 

A and D consider both long and short trader-stock positions, while Panels B and C consider only long and short positions, 

respectively. Panel E is similar to Panel A, but considers only those realizations of gains and losses that fully closed positions, 

i.e. it ignores those stock sales (or repurchases, in case of short positions) which realized only part of a gain or a loss. Panel F 

considers only those trader-stock positions, which are either long throughout the whole day from the 2-year perspective and 

short from the daily perspective or short throughout the whole day from the 2-year perspective and long from the daily 

perspective. 

 

 

 

 

 

 

Subsample: Algorithms Humans Both Algorithms Humans Both Algorithms Humans Both

Algorithm -0.112*** -0.145*** -0.118***

(0.002) (0.001) (0.004)

Constant 0.009 0.121*** 0.121*** 0.009 0.154*** 0.154*** 0.011 0.129*** 0.129***

(0.620) (0.000) (0.000) (0.694) (0.000) (0.000) (0.630) (0.000) (0.000)

Observations 57,982 54,674 112,656 51,803 47,912 99,715 51,921 48,981 100,902

Subsample: Algorithms Humans Both Algorithms Humans Both Algorithms Humans Both

Algorithm -0.118** -0.087*** -0.140***

(0.030) (0.004) (0.001)

Constant 0.011 0.129*** 0.129*** 0.007 0.093*** 0.093*** 0.003 0.143*** 0.143***

(0.762) (0.003) (0.002) (0.658) (0.001) (0.000) (0.883) (0.000) (0.000)

Observations 95,990 107,225 203,215 57,982 54,673 112,655 51,747 48,090 99,837

P-values in parentheses. Standard errors are clustered at trader's level

*** p<0.01, ** p<0.05, * p<0.1

Panel D: all 2-year positions Panel E: only full realizations Panel F: only "mental" gain and loss

Dependent variable: PGR-PLR spread

Panel A: all daily positions Panel B: long daily positions Panel C: short daily positions



TABLE 3 

Aggressiveness of trades when realizing losses 
Table 3 shows the results of regressing hourly calculated trader-level %ALRT-%ANRT spread on a constant and a dummy 

Algorithm, which is equal to one if a trader is an algorithm and zero if it is a human. When regressing the spread on a constant 

only, we split the sample into two groups – humans and algorithms. Standard errors are clustered at a trader level. We consider 

31 algorithmic and 34 human proprietary traders that on average execute between 240 and 1,530 trades per day. %ALRT 

(proportion of aggressive loss realization turnover) is equal to a trader’s hourly turnover that was executed when realizing losses 

(i.e. partially or fully closing losing positions) using market orders divided by the hourly turnover executed when realizing losses 

using both market and limit orders. %ANRT (proportion of aggressive non-realization turnover) is equal to a trader’s hourly 

turnover that was executed when opening new or deepening existing positions using market orders divided by the hourly 

turnover executed when opening new or deepening existing positions using both market and limit orders. The table shows that 

algorithms trade virtually equally aggressively when realizing losses and when opening or deepening positions, while humans 

are more likely to use market orders when realizing losses than when opening or deepening positions.  

 

 

 

 

 

 

  

Subsample: Algorithms Humans Both

Algorithm -0.059***

(0.005)

Constant -0.002 0.057*** 0.057***

(0.826) (0.004) (0.003)

Observations 40,530 28,110 68,640

P-values in parentheses. Standard errors are clustered at trader's level

*** p<0.01, ** p<0.05, * p<0.1

 %ALRT-%ANRT spread  

Dependent variable: 



TABLE 4 

Disposition effect sensitivity to the weather 
Table 4 shows the results of regressing hourly (end of hour) trader-level observations of the spread between the proportion of 

gains realized (PGR) and the proportion of losses realized (PLR) on weather variables. The PGR-PLR spread is defined as in 

Table 1. In these regressions we consider only those observations where PGR-PLR spread is positive, i.e. we test if the 

disposition effect is sensitive to the weather provided that there is a disposition effect. The hourly trader-specific (depending on 

the city in which a trader is located) variable of interest is “sunshine duration” (minutes of sunshine during a given hour), and 

“sunshine dummy” which is equal to 1 if a variable is larger than its monthly average and zero otherwise. We also use three 

other similarly constructed weather dummy variables as controls: (1) temperature (in Celsius at the beginning of a given hour), 

(2) precipitation (milliliters of water per square meter of surface), and (4) air pressure (average hectopascal at sea level during 

a given hour). We use other weather controls in columns 3-6. In columns 1-3 we control for trader fixed effects and time (i.e. 

date-hour) fixed effects. In columns (4-6) we control for time fixed effects and trader x hour fixed effects in order to account 

for the possibility that the time of the day may be correlated with both the weather and traders’ tiredness of some traders. Robust 

standard errors are unclustered in columns 1-4, clustered at a trader’s level in column 5 and clustered at trader x date level in 

column 6. Panel A (B) considers 34 human (31 algorithmic) proprietary traders that on average execute between 240 and 1530 

trades per day. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(1) (2) (3) (4) (5) (6)

sunshine dummy 0.793** 0.919** 1.016*** 1.016* 1.016*

(0.038) (0.019) (0.009) (0.078) (0.053)

sunshine duration (minutes) 0.015**

(0.044)

Constant 31.844*** 31.849*** 31.368*** 31.453*** 31.453*** 31.453***

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Temperature, precipitation and pressure controls Yes Yes Yes Yes

Trader fixed effects Yes Yes Yes

Time fixed effects Yes Yes Yes Yes Yes Yes

Trader x hour fixed effects Yes Yes Yes

Observations 32,022 32,022 32,022 32,018 32,018 32,018

Adjusted R-squared 0.190 0.190 0.190 0.195 0.194 0.195

(7) (8) (9) (10) (11) (12)

sunshine dummy 0.274 0.299 0.125 0.125 0.125

(0.676) (0.656) (0.852) (0.882) (0.886)

sunshine duration (minutes) 0.005

(0.661)

Constant 21.903*** 21.914*** 22.757*** 22.961*** 22.961*** 22.961***

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Temperature, precipitation and pressure controls Yes Yes Yes Yes

Trader fixed effects Yes Yes Yes

Time fixed effects Yes Yes Yes Yes Yes Yes

Trader x hour fixed effects Yes Yes Yes

Observations 26,466 26,466 26,466 26,465 26,465 26,465

Adjusted R-squared 0.162 0.162 0.162 0.172 0.172 0.172

*** p<0.01, ** p<0.05, * p<0.1

Panel B: Algorithms

P-values in parentheses. Robust standard errors are unclustered in columns 1-4, clustered at trader's level in column 5 and 

clustered at trader x hour leve in column 6

Dependent variable: PGR-PLR spread (percentage points)

Panel A: Humans



TABLE 5 

Average profits and returns of frozen portfolios over the 8-hour period – case of loss realization 
Table 5 shows the results of regressing (only on a constant) hourly trader-level observations of profits (Panels A and B) and 

returns (Panels C and D) over the following 8-hour period earned by frozen “Realization” (column 1), “Actual” (column 2) or 

“Combined” (column 3) portfolios. Panels A and D consider human traders and Panels B and E consider algorithms. Standard 

errors are clustered at a trader level. We consider 31 algorithmic and 34 human proprietary traders that on average execute 

between 240 and 1,530 trades per day. The frozen “Realization”, “Actual” and “Combined” portfolios are constructed in the 

following way. Individual trader’s “Actual portfolio” is constructed by assuming zero starting inventory every day and executing 

actual trades up to the moment of the freeze. The composition of the “Actual portfolio” is frozen at the end of every hour of a 

trading day. Individual trader’s “Realization portfolio” is a hypothetical portfolio constructed by executing trades necessary to 

realize all existing paper losses at the moment of the freeze. Individual trader’s “Combined portfolio” is a combination of both 

“Actual portfolio” and the “Realization portfolio”, thus, it is a hypothetical portfolio that a trader would hold at the moment of 

the freeze had he just realized all paper losses. The gain of every portfolio is calculated by comparing stock prices at the moment 

of the freeze and eight trading hours later, holding the portfolios’ compositions constant. The return of every portfolio is 

calculated by subtracting the portfolio value at stock prices prevailing at the time of the freeze from the portfolio value at stock 

prices prevailing 8 trading hours later (holding the portfolios’ compositions constant), and dividing the difference by the former 

portfolio value. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Portfolio type "Realization" "Actual" "Combined" "Realization" "Actual" "Combined"

Constant 420.577*** -403.512** 63.228 168.819*** 133.729 271.410**

(0.000) (0.026) (0.522) (0.003) (0.401) (0.018)

Observations 52,381 52,381 52,381 54,124 54,124 54,124

Portfolio type "Realization" "Actual" "Combined" "Realization" "Actual" "Combined"

Constant 0.141*** -0.090** 0.042 0.092** 0.042 0.123***

(0.000) (0.030) (0.158) (0.028) (0.513) (0.004)

Observations 48,656 50,381 49,565 51,039 52,608 51,885

P-values in parentheses. Standard errors are clustered at trader's level

*** p<0.01, ** p<0.05, * p<0.1

Panel D: humans' return Panel E: algorithms' return

Panel A: humans' profit Panel B: algorithms' profit

Dependent variable: Portfolio profit over the 8-hour period (EUR)

Dependent variable: Portfolio return over the 8-hour period (%)



TABLE 6 

Average profits and returns of frozen portfolios over the 8-hour period – case of gain realization 
Table 6 shows the results of regressing (only on a constant) hourly trader-level observations of profits (Panels A and B) and 

returns (Panels C and D) over the following 8-hour period earned by frozen “Realization” (column 1), “Actual” (column 2) or 

“Combined” (column 3) portfolios. Panels A and D consider human traders and Panels B and E consider algorithms. Standard 

errors are clustered at a trader level. We consider 31 algorithmic and 34 human proprietary traders that on average execute 

between 240 and 1,530 trades per day. The frozen “Realization”, “Actual” and “Combined” portfolios are constructed in the 

following way. Individual trader’s “Actual portfolio” is constructed by assuming zero starting inventory every day and executing 

actual trades up to the moment of the freeze. The composition of the “Actual portfolio” is frozen at the end of every hour of a 

trading day. Individual trader’s “Realization portfolio” is a hypothetical portfolio constructed by executing trades necessary to 

realize all existing paper gains at the moment of the freeze. Individual trader’s “Combined portfolio” is a combination of both 

“Actual portfolio” and the “Realization portfolio”, thus, it is a hypothetical portfolio that a trader would hold at the moment of 

the freeze had he just realized all paper gains. The gain of every portfolio is calculated by comparing stock prices at the moment 

of the freeze and eight trading hours later, holding the portfolios’ compositions constant. The return of every portfolio is 

calculated by subtracting the portfolio value at stock prices prevailing at the time of the freeze from the portfolio value at stock 

prices prevailing 8 trading hours later (holding the portfolios’ compositions constant), and dividing the difference by the former 

portfolio value. 

  

 

 

 

 

 

 

 

 

 

 

  

Portfolio type "Realization" "Actual" "Combined" "Realization" "Actual" "Combined"

Constant -173.020** -403.512** -518.472*** -283.064*** 133.729 -162.156**

(0.012) (0.026) (0.000) (0.008) (0.401) (0.018)

Observations 52,381 52,381 52,381 54,124 54,124 54,124

Portfolio type "Realization" "Actual" "Combined" "Realization" "Actual" "Combined"

Constant -0.063*** -0.090** -0.150*** -0.120*** 0.042 -0.071

(0.005) (0.030) (0.000) (0.003) (0.513) (0.105)

Observations 48,890 50,381 49,576 51,299 52,608 51,697

P-values in parentheses. Standard errors are clustered at trader's level

*** p<0.01, ** p<0.05, * p<0.1

Panel D: humans' return Panel E: algorithms' return

Panel A: humans' profit Panel B: algorithms' profit

Dependent variable: Portfolio profit over the 8-hour period (EUR)

Dependent variable: Portfolio return over the 8-hour period (%)



Appendix A 

TABLE 2 (Trading frequencies 48-1530) 

Realization of gains and losses 
Table 2 (Trading frequencies 48-1530) shows the results of Table 2 but using a different subsample – those 63 algorithmic and 

170 human traders that on average executed between 48 and 1,530 trades per day throughout our two-year sample period. 

 

This table shows the results of regressing hourly (end of hour) trader-level observations of the spread between the proportion of 

gains realized (PGR) and the proportion of losses realized (PLR) on a constant and a dummy Algorithm, which is equal to one 

if a trader is an algorithm and zero if it is a human. When regressing the spread on a constant only, we split the sample into two 

groups – humans and algorithms. Standard errors are clustered at a trader level. We consider 63 algorithmic and 170 human 

proprietary traders that on average execute between 48 and 1,530 trades per day. Individual PGR and PLR for every trader at 

the end of every hour are calculated as follows. In Panels A, B, C, E and F traders are assumed to start every day with zero 

inventory and by trading to build their long and short positions in stocks throughout a day. In Panel D, traders are assumed to 

start the first trading day with zero inventory and to accumulate inventory throughout the full two-year sample period. For every 

trader-stock position at every point of time we calculate total gain, which consist of cumulative realized gain and outstanding 

paper gain. Outstanding paper gain is calculated by multiplying remaining inventory by the difference between the last observed 

stock price and the volume-weighted average purchase price (WAPP). Realized gain is calculated by multiplying the number of 

shares sold (or repurchased, in case of short positions) by the difference between the selling (repurchasing) price and WAPP. 

Cumulative realized gain is calculated by accumulating realized gains over time. At any point of time, a trader’s PGR (PLR) 

equals cumulative realized gains above (below) zero summed up across trader-stock positions divided by total gains above 

(below) zero summed up across trader-stock positions. The dependent variable is the difference between PGR and PLR. Panels 

A and D consider both long and short trader-stock positions, while Panels B and C consider only long and short positions, 

respectively. Panel E is similar to Panel A, but considers only those realizations of gains and losses that fully closed positions, 

i.e. it ignores those stock sales (or repurchases, in case of short positions) which realized only part of a gain or a loss. Panel F 

considers only those trader-stock positions, which are either long throughout the whole day from the 2-year perspective and 

short from the daily perspective or short throughout the whole day from the 2-year perspective and long from the daily 

perspective. 

 

 

 

 

Subsample: Algorithms Humans Both Algorithms Humans Both Algorithms Humans Both

Algorithm -0.053** -0.082*** -0.067**

(0.022) (0.008) (0.020)

Constant 0.019 0.072*** 0.072*** 0.021 0.103*** 0.103*** 0.022 0.088*** 0.088***

(0.241) (0.000) (0.000) (0.325) (0.000) (0.000) (0.291) (0.000) (0.000)

Observations 75,959 113,123 189,082 64,021 85,808 149,829 63,651 85,871 149,522

Subsample: Algorithms Humans Both Algorithms Humans Both Algorithms Humans Both

Algorithm -0.039 -0.041** -0.081**

(0.286) (0.035) (0.010)

Constant 0.008 0.048** 0.048** 0.015 0.056*** 0.056*** 0.017 0.098*** 0.098***

(0.788) (0.024) (0.023) (0.276) (0.000) (0.000) (0.431) (0.000) (0.000)

Observations 143,214 472,388 615,602 75,939 113,129 189,068 63,171 83,326 146,497

P-values in parentheses. Standard errors are clustered at trader's level

*** p<0.01, ** p<0.05, * p<0.1

Panel D: all 2-year positions Panel E: only full realizations Panel F: only "mental" gain and loss

Dependent variable: PGR-PLR spread

Panel A: all daily positions Panel B: long daily positions Panel C: short daily positions



TABLE 2 (Trading frequencies 480-1530) 

Realization of gains and losses 
Table 2 (Trading frequencies 480-1530) shows the results of Table 2 but using a different subsample – those 21 algorithmic and 

13 human traders that on average executed between 480 and 1,530 trades per day throughout our two-year sample period. 

 

This table shows the results of regressing hourly (end of hour) trader-level observations of the spread between the proportion of 

gains realized (PGR) and the proportion of losses realized (PLR) on a constant and a dummy Algorithm, which is equal to one 

if a trader is an algorithm and zero if it is a human. When regressing the spread on a constant only, we split the sample into two 

groups – humans and algorithms. Standard errors are clustered at a trader level. We consider 21 algorithmic and 13 human 

proprietary traders that on average execute between 480 and 1,530 trades per day. Individual PGR and PLR for every trader at 

the end of every hour are calculated as follows. In Panels A, B, C, E and F traders are assumed to start every day with zero 

inventory and by trading to build their long and short positions in stocks throughout a day. In Panel D, traders are assumed to 

start the first trading day with zero inventory and to accumulate inventory throughout the full two-year sample period. For every 

trader-stock position at every point of time we calculate total gain, which consist of cumulative realized gain and outstanding 

paper gain. Outstanding paper gain is calculated by multiplying remaining inventory by the difference between the last observed 

stock price and the volume-weighted average purchase price (WAPP). Realized gain is calculated by multiplying the number of 

shares sold (or repurchased, in case of short positions) by the difference between the selling (repurchasing) price and WAPP. 

Cumulative realized gain is calculated by accumulating realized gains over time. At any point of time, a trader’s PGR (PLR) 

equals cumulative realized gains above (below) zero summed up across trader-stock positions divided by total gains above 

(below) zero summed up across trader-stock positions. The dependent variable is the difference between PGR and PLR. Panels 

A and D consider both long and short trader-stock positions, while Panels B and C consider only long and short positions, 

respectively. Panel E is similar to Panel A, but considers only those realizations of gains and losses that fully closed positions, 

i.e. it ignores those stock sales (or repurchases, in case of short positions) which realized only part of a gain or a loss. Panel F 

considers only those trader-stock positions, which are either long throughout the whole day from the 2-year perspective and 

short from the daily perspective or short throughout the whole day from the 2-year perspective and long from the daily 

perspective. 

 

  

Subsample: Algorithms Humans Both Algorithms Humans Both Algorithms Humans Both

Algorithm -0.111** -0.138** -0.117**

(0.020) (0.018) (0.020)

Constant -0.010 0.101** 0.101** -0.014 0.124** 0.124** -0.013 0.105** 0.105**

(0.536) (0.038) (0.024) (0.524) (0.034) (0.021) (0.541) (0.035) (0.022)

Observations 47,077 30,657 77,734 44,212 27,781 71,993 44,157 28,308 72,465

Subsample: Algorithms Humans Both Algorithms Humans Both Algorithms Humans Both

Algorithm -0.166** -0.092** -0.138**

(0.040) (0.025) (0.015)

Constant -0.028 0.138* 0.138** -0.010 0.082** 0.082** -0.014 0.124** 0.124**

(0.472) (0.067) (0.050) (0.448) (0.049) (0.034) (0.519) (0.030) (0.017)

Observations 65,949 50,373 116,322 47,078 30,654 77,732 44,343 27,952 72,295

P-values in parentheses. Standard errors are clustered at trader's level

*** p<0.01, ** p<0.05, * p<0.1

Panel D: all 2-year positions Panel E: only full realizations Panel F: only "mental" gain and loss

Dependent variable: PGR-PLR spread

Panel A: all daily positions Panel B: long daily positions Panel C: short daily positions



Appendix B 

FIGURE 2.A (FIFO method) 

Realization of gains and losses throughout a day – default setting 
Figure 2.A (FIFO method) shows the same result as Figure 2.A but using a first-in-first-out (FIFO) method instead of weighted 

average purchase price (WAPP) in order to determine the reference purchase (selling, in case of short positions) stock price. 

 

The figure shows the proportion of gains realized (PGR) and the proportion of losses realized (PLR) at the start of every hour 

of a day, averaged across trading days and across traders in the two groups, i.e. humans and algorithms. The graph considers 31 

algorithmic and 34 human proprietary traders that on average execute between 240 and 1,530 trades per day. Individual PGR 

and PLR for every trader are calculated as follows. Traders are assumed to start every day with zero inventory (at 9 am) and by 

trading to build their long and short positions in stocks throughout a day. For every trader-stock position at every point of time 

we calculate total gain, which consist of cumulative realized gain and outstanding paper gain. Outstanding paper gain is 

calculated by multiplying remaining inventory by the difference between the last observed stock price and the original purchase 

(selling, in case of short positions) price of each stock using the first-in-first-out (FIFO) method. Realized gain is calculated by 

multiplying the number of shares sold (or repurchased, in case of short positions) by the difference between the selling 

(repurchasing) price and the original purchase (selling, in case of short positions) price of each stock using the first-in-first-out 

(FIFO) method. Cumulative realized gain is calculated by accumulating realized gains throughout a day. At any point of time, 

a trader’s PGR (PLR) equals cumulative realized gains above (below) zero summed up across trader-stock positions divided by 

total gains above (below) zero summed up across trader-stock positions. 

 

 

 

 

 

 

 


