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Abstract. We develop a simple, tractable and sound stochastic framework for the

joint treatment of risk and time preferences, in order to facilitate the estimation of

risk and time attitudes. In so doing we: (i) study deterministic models of risk and

time preferences paying special attention to their comparative statics, (ii) embed

the deterministic models and their comparative statics within the random utility

framework, and (iii) show how to estimate them, illustrating this exercise on several

experimental datasets.

Keywords: Risk preferences; Time Preferences; Comparative Statics; Stochastic

Choice; Random Utility Models; Discrete Choice.
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1. Introduction

Economic situations jointly involving risk and time pervade most spheres of everyday

live. The main aim of this paper is to develop a simple, tractable and sound stochastic

framework for the treatment of risk and time preferences that will enable the proper

estimation of risk and time attitudes. This involves three broad steps. In step 1, we

analyze several deterministic models of risk and time preferences, establish their formal

relationships, and characterize their comparative statics. In step 2, we embed these

deterministic models within the random utility framework, show that the comparative

statics of the deterministic models extend immediately to this stochastic setting, and

discuss how to estimate them. In step 3, we implement our stochastic framework
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to estimate risk and time preferences using datasets from a diverse set of influential

experimental papers.

We use two general settings that have had a widespread impact. In the first setting,

the individual expresses preferences over dated lotteries, where a dated lottery is one

in which the player is awarded the prize at a given period of time.1 This setting in-

cludes the particular case in which risk and time are treated separately, in the sense

that individuals are faced with menus involving only lotteries awarded in the present,

and menus comprising only delayed but certain payouts.2 The second setting involves

convex budgets, where the individual decides the proportions for distributing an en-

dowment between an earlier stock and a later stock, in a situation that can ultimately

be defined as a pair of lotteries that will be paid out at two different times.3 Together,

these two settings cover the vast majority of the experimental literature on risk and

time preferences.

We start the study of the deterministic models of risk and time preferences with the

so-called discounted expected utility (DEU), which is overwhelmingly used in practice.

This model directly combines the expected utility treatment of risk with the exponen-

tially discounted utility treatment of time, and hence is a natural starting point for the

standard treatment of risk and time preferences.4 We devote Section 3 to the study of

DEU, and in particular to deriving its risk and time comparative statics. Our reasons

for this are twofold. Firstly, risk and time comparative statics are not immediate in

a context where both risk and time considerations are at stake. Secondly, one of the

fundamental aims of this paper is to develop a setting that stochastically respects the

deterministic comparative statics. Ultimately, this enables a proper interpretation of

the model in a stochastic setting, and thus provides a sound framework for econometric

purposes. We first show that DEU captures the idea of more risk aversion, i.e. a greater

1For papers using this setting see Ahlbrecht and Weber (1997), Coble and Lusk (2010), Baucells

and Heukamp (2012) and Cheung (2015).
2See Andersen et al. (2008), Burks et al. (2009), Dohmen et al. (2010), Tanaka et al. (2010),

Abdellaoui et al. (2013), Benjamin et al. (2013), or Falk et al. (2018).
3This setting was proposed by Andreoni and Sprenger (2012b). See also Cheung (2015), Miao and

Zhong (2015), Epper and Fehr-Duda (2015), and Kim et al. (2018).
4See Phelps (1962) for an early application of the model, and Fishburn (1970) for an axiomatic

treatment of DEU in the context of lotteries over sequences of monetary payoffs. In Appendix A

we provide an axiomatization of DEU and other models, in the context of dated lotteries, as a way

of establishing the formal relationships between the models. We believe that this result may be of

independent interest to some readers.
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preference for present degenerate lotteries over other present lotteries through the cur-

vature of the monetary utility function, exactly as in expected utility. Similarly, DEU

captures the idea of more delay aversion, i.e. a greater preference for present degen-

erate lotteries over future degenerate lotteries, through the curvature of a normalized

monetary utility function, exactly as in exponentially discounted utility.5 These results

are not surprising, since they basically involve canceling one of the two preference di-

mensions in order to study the other. We then extend the simple classical comparisons

just described to more general pairs of objects simultaneously involving risk and time

considerations. We argue that the best approach, in this case, is to control for the time

(alternatively, risk) attitudes, since this allows us to offer more general comparative

statics on the risk (alternatively, time) dimension.

The simplicity of DEU comes with some well-known limitations. In particular, the

model uses the same monetary utility function to evaluate both risky payoffs and

dated certain payoffs. In Section 4, we introduce two classes of models that allow

for different evaluations of money in risk and time preferences, while keeping to the

standard treatment of risk preferences by means of expected utility, and that of time

preferences by means of exponential discounting. The models are non-recursive, and

directly applicable to a wide range of static settings.6 The first model, which we call

the present value of the certainty equivalent (PVCE), reduces, first, the risk dimension

by computing the certainty equivalent of the lotteries, and then the time dimension

by computing the present value of the (sequence of) certainty equivalents. The second

model, which we call the certainty equivalent of the present value (CEPV), reverses

the order by first reducing the time dimension by computing the present values of the

(sequences of) monetary payoffs involved in the lotteries, and then the risk dimension

5This later result is often overlooked in the literature. We emphasize that impatience is not

characterized by the discount parameter, but by its joint consideration with the curvature of the

Bernouilli function.
6Kreps and Porteus (1978) and Selden (1978) introduced recursive expected utility, allowing for the

separation of risk and time preferences. Later, Epstein and Zin (1989) and Chew and Epstein (1990)

further developed the recursive setting, introduced parametric versions and allowed for behavioral

considerations. Our models are non-recursive versions of these. Halevy (2008), Baucells and Heukamp

(2012), Cheung (2015), Miao and Zhong (2015), Andreoni et al. (2017), Epper and Fehr-Duda (2019),

Lanier et al. (2019) and DeJarnette et al. (2019) also study novel extensions separating risk and time

preferences in various non-recursive contexts. Remarkably, DeJarnette et al. (2019) characterize, in

a different setting involving monetary prizes awarded at uncertain future dates, a generalization of

DEU that is essentially equivalent to our second model.
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by computing the certainty equivalent of the lottery formed by these present values.

In both models, the certainty equivalents are computed using expected utility with a

Bernouilli function, and the present values are obtained using exponential discounting

with a discount parameter and another monetary utility function.7 We derive the

comparative statics for risk and time, which follow the logic of the DEU model. Clearly,

DEU belongs to the intersection of PVCE and CEPV which are, generally speaking,

two different models.

In the second part of the paper, Section 5, we embed the above-mentioned deter-

ministic models into the stochastic framework of random utility models. Given a class

of utility functions, e.g. the DEU class, a random utility model is the simplex over the

class of utilities, and a particular instance of the random utility model corresponds

to a particular probability distribution over the class of utilities. Crucially, we show

that all the comparative statics of the deterministic models extend immediately to the

random utility model built upon them. This means that we obtain sound risk and

time stochastic comparative statics, enabling a proper understanding of risk and time

attitudes with stochastic data. To place this result in perspective, let us recall that

Apesteguia and Ballester (2018) show that most of the standard stochastic frameworks

used in the independent study of risk and time preferences, based on additive iid ran-

dom utility models, have counterintuitive properties.8 They show that the additive iid

random utility models may generically predict higher choice probabilities for a risky

lottery over a degenerate one in individuals with more risk aversion in the baseline,

deterministic, utility. This makes it impossible to interpret the additive iid random

utility model in terms of stochastic risk aversion. Apesteguia and Ballester (2018)

also show that the random utility model respects the notion of more risk aversion in

expected utility and of more delay aversion in exponential discounting, while leaving

unanswered the question of how to treat risk and time preferences jointly. To the best

of our knowledge, this is the first paper to lay down the theoretical properties of a

stochastic model of risk and time preferences in terms of their stochastic comparative

statics.

Section 5 continues with some relevant results regarding the estimation of random

utility models. In actual practice, the estimation of stochastic models is typically

7Appendix B extends the analysis to account for non-standard behavioral considerations.
8Additive iid random utility models add an error term to the utility valuation, thereby adopting

a cardinal approach.
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facilitated by the use of particular probability distributions or assumptions over the

relevant parameters. We show that these simplifications, if not carefully designed, can

bring undesirable consequences. We illustrate with the case of DEU and a homogeneous

Bernoulli function, under the assumption of independent probability distributions for

the discount parameter and the curvature of the Bernoulli function. In this case, we

show that, for sufficiently risk-averse individuals, the prediction is that any earlier

lottery is almost sure to be chosen over any later one. This is of course nonsense

since the earlier lottery may involve very low payoffs, while the later one may involve

arbitrarily large payoffs. We show that the correct approach requires us to account for

the dependence of these two parameters, as shown in our study of deterministic more

risk and more delay aversion of Section 3.

In the third part of the paper, we illustrate our approach using three different, well-

known experimental datasets, which represent the diversity of experimental elicitation

methods in common use. We structurally estimate risk and time preferences using

the stochastic models studied in Section 5, under the assumption that the monetary

functions are homogeneous. We start with the dataset of Andersen et al. (2008),

which exemplifies the often used approach in which risk and time attitudes are elicited

separately. That is, their experiment involves choices from menus composed of present

lotteries, and menus composed of dated certain payoffs. A practical lesson to be learnt

from this exercise is that, with this type of data, the separate estimation of risk and

time preferences is equivalent to their joint estimation. Furthermore, as we show in

Section 4, since the homogeneous versions of DEU, PVCE and CEPV are equivalent

in this setting, we simply use DEU in our estimation. We start by analyzing the

dataset at the aggregate level, pooling all the individual choices, thereby adopting a

representative agent approach. Then, given the richness of the dataset, we estimate

preferences for each of the 253 individuals in the sample.

We then use the dataset of Coble and Lusk (2010) to study a general dated lottery

setting, where some of the objects of choice simultaneously involve risk and time con-

siderations. The experimental design of Coble and Lusk (2010) involves choices from

pairs of equally-dated lotteries, pairs of dated degenerate lotteries, and pairs of dated

lotteries where both the risk and the time dimensions are active. This allows us to

empirically test the external validity of experimental designs, which, like the previous

one, use separate elicitations of risk and time, as opposed to those that incorporate

both dimensions at once. Our results suggest that the separate elicitation of risk and
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time preferences is a valid methodology since the overall estimates are remarkably sim-

ilar in both scenarios. Another exercise enabled by the dataset of Coble and Lusk is to

study the internal correlation of risk and time preferences. We use the pooled dataset

and allow dependence between risk and time preferences using a Gaussian copula to

model and estimate the correlation between the marginal probability distribution of

each behavioral trait. We obtain analogous estimates to those obtained when assum-

ing independence between risk and time preferences, and a positive, albeit statistically

insignificant, correlation coefficient between risk and delay aversion.

Finally, we draw on Andreoni and Sprenger (2012b) to illustrate the applicability of

our stochastic framework to settings involving convex budgets. An interesting feature

of this type of setting is that it allows the separate identification of DEU, PVCE and

CEPV, and accordingly, we empirically estimate the three models. We first, obtain that

the simple DEU model already captures the idiosyncratic choice patterns remarkably

well. That is, we observe that DEU accounts for the large fraction of corner choices,

while at the same time rationalizing the interior choices. This is a remarkable result

from our stochastic framework, especially in light of the discussion in the literature on

the nature of the data generated by convex budgets, and the difficulty of explaining

them. Our results show that the use of a valid stochastic methodology allows us to

smoothly account for the heterogeneity of observed behavior in convex budget settings.

We then show that the more flexible PVCE and CEPV models naturally improve on

DEU, with CEPV getting closer to the data.

To conclude, this paper provides a stochastic framework for the estimation of risk

and time preferences, contributing to the latest active methodological literature on

preference estimations (see, e.g., DellaVigna, 2018; Barseghyan et al. 2018). In so

doing, it contributes to the also very active literature on deterministic models of risk

and time preferences (see the papers cited in footnote 6). Finally, this paper provides

a novel analysis of risk and time preferences, using a diversity of existing experimental

datasets, and thus contributes to the empirical estimation of risk and time preferences

(see the papers cited in footnotes 1, 2, and 3).

2. Framework

The set of monetary payoffs is X = R+. A lottery is a finite collection of payoffs and

the probabilities with which they are awarded, i.e., a vector l = [p1, . . . , pN ;x1, . . . , xN ]

with pn ≥ 0,
∑

n pn = 1 and xn ∈ X. A degenerate lottery is a lottery composed
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by a unique payoff received with certainty, i.e., a lottery of the form [1;x]. A basic

lottery is a lottery containing at most one strictly positive payoff, i.e., a lottery of the

form [p, 1 − p;x, 0] with x > 0. We denote by L,D and B the space of all lotteries,

all degenerate lotteries and all basic lotteries, respectively. Time can take any positive

real value, i.e. T = R+. The literature has primarily used two different settings in the

study of risk and time preferences.

2.1. Dated Lotteries. A setting that has been intensively studied in the joint treat-

ment of risk and time preferences involves individuals facing menus made up of alter-

natives (l, t) ∈ L×T , that represent the situation in which lottery l ∈ L is awarded at

time t ∈ T .9 We call these alternatives dated lotteries. The general case is analyzed

in Coble and Lusk (2010) and Cheung (2015). Andersen et al. (2008), Burks et al.

(2009), Dohmen et al. (2010), Tanaka et al. (2010), Benjamin et al. (2013), or Falk et

al. (2018) elicit risk and time attitudes separately, such that individuals face menus

made up exclusively either of present lotteries, i.e., elements in L × {0}, or, alterna-

tively, dated degenerate lotteries, i.e., elements in D×T . Ahlbrecht and Weber (1997)

and Baucells and Heukamp (2012) study the case of dated basic lotteries, i.e., elements

in B × T .

2.2. Convex Budgets. An alternative setting, in increasing use since it was pioneered

by Andreoni and Sprenger (2012b), involves individuals facing convex budget menus.

Here, two independent, dated, basic lotteries ([p, 1 − p;x, 0], t) and ([q, 1 − q; y, 0], s),

with t < s, are presented to the individual, who chooses a budget share α ∈ [0, 1] to

be invested in the first dated lottery, leaving 1−α to be invested in the second lottery.

Accordingly, if α is chosen, the individual receives the sequence of dated basic lotteries,

([p, 1− p;αx, 0], t) and ([q, 1− q; (1− α)y, 0], s).10

3. Discounted Expected Utility

The most commonly used representation for the joint analysis of risk and time pref-

erences is the discounted expected utility (DEU) model. Formally, denote by U the set

of all continuous and strictly increasing functions u : R+ → R+ such that u(0) = 0.

DEU requires us to consider a monetary utility function u ∈ U and a discount factor

9These menus are typically binary, thereby allowing preferences and choices to be treated as

equivalents.
10It is typically understood that, if both prizes are awarded, individuals perceive them as being

consumed at the times they are awarded.
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δ ∈ (0, 1), to arrive at the following evaluation of the dated lottery (l, t) or the share

α:11

DEUδ,u(l, t) = δt
N∑
n=1

pnu(xn)

DEUδ,u(α) = δtpu(αx) + δsqu((1− α)y).

In many applications, monetary utility functions are parameterized. The most com-

mon family of monetary utility functions assumes homogeneity, adopting the well-

known homegeneous functional uh(x) = x1−h

1−h , with h < 1.12 When homogeneous

monetary utility functions are being considered, we refer to DEU as DEU-H. This

particular model will be extensively used throughout the paper.

3.1. More Risk Aversion and More Delay Aversion. We start by briefly recalling

the standard notions of more risk aversion and more delay aversion within the contexts

of expected utility and exponentially discounted utility, respectively, and continue by

formalizing these notions in the context of DEU.

In expected utility, individual 1 is said to be more risk averse than individual 2

if, whenever individual 2 prefers a degenerate lottery to a non-degenerate lottery, so

does individual 1; which is simply equivalent to saying that the utility function of

individual 1 is more concave than that of individual 2. Importantly, the notion of more

risk aversion allows for comparative static exercises far beyond the simple comparisons

used in the definition.13

In exponentially discounted utility, more delay aversion is defined by evaluating

the preference for present payoffs over delayed payoffs, or, equivalently, based on the

combined consideration of the discount parameter and the curvature of the monetary

11It is obvious that we could equivalently present DEU in the form of expected discounted utility,

i.e.,
∑
n pn[δtu(xn)] or p[δtu(αx)] + q[δsu((1− α)y)].

12In the context of risk preferences, this family is typically called CRRA. Notice how the assumption

h < 1 is fundamental to guarantee that uh ∈ U .
13For example, when lotteries are related by mean preserving spreads, whenever the lottery with

the least spread is preferred by an individual, it is also preferred by a more risk-averse individual.

Similarly, in the familiar case of Holt and Laury (2002) with pairs of lotteries [p, 1 − p;x1, x4] and

[p, 1−p;x2, x3] such that x1 < x2 < x3 < x4, whenever the latter lottery is preferred by an individual,

it is also preferred by a more risk-averse individual. Notably, an implicit definition of the notion

of riskier lotteries emerges from this analysis. We can say that one lottery is riskier than another

if, whenever the latter is preferred by one individual, it is also preferred by every more risk-averse

individual.
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utility function. Crucially, it is very important to stress that the discount parameter

alone is uninformative about delay aversion; a fact that is often overlooked in empirical

applications. Let us illustrate this with a simple example. Consider two exponentially

discounted utilities built upon discount parameters .97 and .95, and monetary utility

functions
√
x and x, respectively. From the comparison of the discount parameters,

one may be tempted to claim that the second individual is more delay averse than

the first. This would be incorrect. To see this, notice that the present values of $1

paid at t = 1 are .94 and .95 for the first and second individuals, respectively. This

shows that there are present payoffs, e.g. $.945, that the first individual prefers over

the $1 paid at t = 1, while the second prefers to wait, suggesting that it is in fact

the first individual who is the more delay averse. Correct analysis requires to build

a normalized utility function combining the discount factor and the monetary utility

function, as formalized below for the case of DEU. Individual 1 is said to be more

delay averse than individual 2 if, whenever individual 2 prefers a present payoff over

a delayed one, so does individual 1; which is equivalent to saying that the normalized

utility function of individual 1 is more concave than that of individual 2. As in the case

of more risk aversion, the notion of more delay aversion allows for comparative statics

exercises in many other scenarios beyond the simple one used in the definition.14

Based on the above discussion, we can now formalize the basic notions of more risk

aversion and more delay aversion in the context of DEU.15

Proposition 1.

(1) More risk aversion: u1 is a concave transformation of u2 if and only if, for

every l ∈ L and every x ∈ X, DEUδ2,u2([1;x], 0) ≥ DEUδ2,u2(l, 0) implies

DEUδ1,u1([1;x], 0) ≥ DEUδ1,u1(l, 0).

(2) More delay aversion: Fix θ ∈ (0, 1). u
log θ
log δ1
1 is a concave transformation of

u
log θ
log δ2
2 if and only if, for every x, y ∈ X and every s ∈ T , DEUδ2,u2([1;x], 0) ≥
DEUδ2,u2([1; y], s) implies DEUδ1,u1([1;x], 0) ≥ DEUδ1,u1([1; y], s).

The first part of Proposition 1 closes down the time component by considering only

present lotteries, and then compares a pair formed by a riskless degenerate lottery and

another lottery, possibly involving risk. Since this is merely a reflection of expected

14For example, settings where payoffs or streams of payoffs can be clearly ordered in terms of delay.

See Benôıt and Ok (2007) for a general treatment of the notion of more delay aversion.
15All the proofs are contained in Appendix A.
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utility, the classical notion of more risk aversion is immediately reproduced and, natu-

rally, it will also be informative about many other comparisons involving lotteries that

can be ordered in terms of riskiness.

The second part of Proposition 1 considers only degenerate lotteries, thereby closing

down the risk component, and compares a present payoff with another payoff, possibly

in the future. Since DEU reduces to exponentially discounted utility when degenerate

lotteries are at stake, the result uses the normalization discussed in Fishburn and

Rubinstein (1982). For subsequent analysis, let us briefly stress the nature of this

normalization. When DEU evaluates a unique payoff at a given moment in time, it can

be shown that DEUδ,u is equivalent to DEUθ,ū, where θ ∈ (0, 1) can be freely chosen,

and ū = u
log θ
log δ . We can then use a common discount factor θ for both individuals and

state that ([1;x], t) is preferred to ([1; y], s) by individual i if, and only if, θtūi(x) ≥
θsūi(y) or, equivalently, if, and only if, ūi(x)

ūi(y)
≥ θs−t. Since more concavity of ūi is

indeed equivalent to larger ratios ūi(x)
ūi(y)

, the result follows immediately.16 Again, since

this is merely a reflection of exponentially discounted utility, the notion of more delay

aversion in DEU is informative about many other comparisons beyond the simple one

used in the definition.

Obviously, the analysis of the parametric family DEU-H is more direct. More risk

aversion simply requires us to compare the curvature of power functions x1−h1
1−h1 and

x1−h2
1−h2 , which reduces to the comparison of the parameters h1 and h2. Hence, individual

1 is more risk averse than individual 2 if, and only if, 1−h1 ≤ 1−h2, i.e., if, and only if,

h1 ≥ h2. More delay aversion requires us to compare the curvature of the normalized

(power) functions (x
1−h1

1−h1 )
log θ
log δ1 and (x

1−h2
1−h2 )

log θ
log δ2 . That is, we need to evaluate whether

(1 − h1) log θ
log δ1

≤ (1 − h2) log θ
log δ2

, which holds if, and only if, δ̂1 ≡ δ
1

1−h1
1 ≤ δ

1
1−h2
2 ≡ δ̂2.

The following argument may help in the interpretation of this comparison. Since

every monetary utility in the homogeneous family is a power transformation of the

linear utility function, we can represent the choice behavior of individual i over dated

degenerate lotteries by using the alternative DEU-H composed of the corrected discount

factor δ̂i and the linear monetary utility function. It is then evident that individual 1

is more delay averse than individual 2 if, and only if, δ̂1 ≤ δ̂2.

16We can illustrate this analysis using our previous example. Normalize both discount factors by

using, for example, that of the second individual. That is, set θ = .95. Then, the first normalized

utility function becomes x
log .95
2 log .97 = x.84, which is a concave transformation of the second (normalized)

utility function, x. Thus, the first individual is more delay averse than the second.
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3.2. Comparative Statics with Dated Lotteries. When risk and time features are

considered separately, as is the case in a variety of influential papers (see Section 2.1),

the separate consideration of the notions of more risk aversion and more delay aver-

sion allows us to perform comparative statics exercises, as shown above. When dated

lotteries have both risk and time features, however, this same logic can be exploited

only in very restrictive scenarios. The following result, which is an immediate corollary

to Proposition 1, shows that, whenever the dated lotteries are awarded at the same

period of time the choice is uniquely governed by the notion of more risk aversion.17

Similarly, whenever dated basic lotteries with the same probability of winning are being

considered choice is uniquely governed by the notion of more delay aversion. Formally,

Corollary 1.

(1) Consider two DEU individuals such that the first is more risk averse than the

second. If l′ is riskier than l and the second individual prefers (l, t) to (l′, t), so

does the first.

(2) Consider two DEU individuals such that the first is more delay averse than

the second. If t < s and the second individual prefers ([p, 1 − p, x, 0], t) to

([p, 1− p; y, 0], s), so does the first.

The first part of Corollary 1 follows directly from Proposition 1 by using the sta-

tionarity of DEU. The second part of Corollary 1 uses the normalization on ui(0)

which makes that basic lotteries with the same probability of occurrence are compared

independently of that probability, and hence we can directly apply Proposition 1.

Naturally, due to the interplay between the risk and time considerations, one should

not expect to obtain unambiguous comparative statics using either more risk aversion

or more delay aversion separately. The correct approach requires us to control for one

of the behavioral components, and then establish comparative statics for the other.

The next result illustrates this.

Proposition 2.

(1) Consider two DEU individuals such that both are equally delay averse but the

first is more risk averse than the second. Then, for every l ∈ L, every x ∈ X

17In Coble and Lusk (2010), for instance, the subjects face a number of choice problems in which

they have to compare two lotteries that award prizes at the same time, but not in the present.

Corollary 1 essentially states that these problems uniquely concern risk preferences.
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and every pair t1, t2 ∈ T , if the second individual prefers ([1;x], t1) to (l, t2), so

does the first.

(2) Consider two DEU individuals such that both are equally risk averse but the

first is more delay averse than the second. Then, for every l, l′ ∈ L, and every

t, s ∈ T with t < s, if the second individual prefers (l, t) to (l′, s), so does the

first.

The first part of Proposition 2 analyzes the case in which two DEU individuals share

the same level of delay aversion but one has a higher level of risk aversion. The analysis

relies on the fact that equality of delay aversion between the two individuals requires

that (δ2, u2) = (δk1 , u
k
1) for some k > 0. Under these conditions, if individual 1 is more

risk averse then it must be that k ≥ 1, and hence u2 must be a convex transformation

of u1 and δ2 ≤ δ1. We show in the proof that these properties lead to the claimed

comparative statics. The second part of Proposition 2 analyzes the case in which two

DEU individuals share the same level of risk aversion but one has a higher level of

delay aversion. Equality of risk aversion requires that the monetary utilities must be

equal, and more delay aversion then comes with a smaller discount factor. It then

follows directly that more delay aversion unequivocally generates a higher preference

for earlier lotteries.

For the case of DEU-H, the relations between (δ1, h1) and (δ2, h2) that must be

considered are straightforward. Part 1 analyzes the case of δ̂1 = δ
1

1−h1
1 = δ

1
1−h2
2 = δ̂2

and h1 ≥ h2, while part 2 analyzes the case of h1 = h2 and δ1 ≤ δ2.

3.3. Comparative Statics in Convex Budgets. We now discuss the convex budget

problem.18 Denote by αi the share that equates the discounted expected utilities of

individual i in both periods, i.e., δtipui(αix) = δsi qui((1 − αi)y), and by α∗i the share

that maximizes her discounted expected utility.

Proposition 3.

(1) If individual i is a risk lover, then α∗i ∈ {0, 1}. Moreover, if individual 2 is

a risk lover and α∗2 = 1, then if individual 1 is a risk lover and is more delay

averse than individual 2 then α∗1 = 1.

(2) If individual i is (strictly) risk averse, then α∗i ∈ (0, 1). Moreover:

18To simplify the exposition, we assume that u is differentiable and that limx→0 u
′(x) = +∞, as is

typically the case in standard parameterizations.
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(a) If both individuals have the same level of risk aversion, and individual 1 is

more delay averse than individual 2 then α∗1 ≥ α∗2.

(b) If both individuals have the same level of delay aversion, and individual 1 is

more risk averse than individual 2 then α∗1 ≤ α∗2 (resp. α∗1 ≥ α∗2) whenever

α∗1 ≥ α1 (resp. α∗1 ≤ α1).

The first part of Proposition 3 shows that risk lovers, i.e. those with convex monetary

utility functions, allocate their whole share either to the earlier lottery or to the later

one.19 For illustrative purposes, consider the case of a risk neutral individual. One unit

of money invested in the earlier period brings a marginal utility return of δtp units,

while one invested in the later period brings a marginal utility return of δsq units.

Thus, the choice problem of a risk lover reduces to the evaluation of two dated basic

lotteries, ([p, 1− p;x, 0], t) and ([q, 1− q; y, 0], s); and then we can directly apply Part

2 of Corollary 1, with delay aversion governing this choice. In other words, if any risk

lover selects the earlier basic lottery ([p, 1−p;x, 0], t), so does any other risk lover with

more delay aversion.

With risk-averse individuals, the solution will be interior and the interplay between

risk and time becomes relevant. The first-order condition of the optimization problem

is u′(αx)
u′((1−α)y)

= δsqy
δtpx

.20 With fixed risk aversion, more delay aversion is equivalent to a

smaller value of δ, which reduces the right hand side of the first-order condition and

leads to a higher share α∗. That is, the same level of risk aversion together with a

higher level of delay aversion unequivocally generates the choice of a higher share α∗.

If, instead, we fix delay aversion and consider higher levels of risk aversion, the function

on the left hand side, which is decreasing in α, can be seen to rotate clockwise, with

rotation point at α. This produces less extreme solutions, depending on whether the

solution happens to be to the right or to the left of α. If the solution of an individual is

to the right (respectively, left) of α, the solution of a more risk-averse individual will be

smaller (respectively, larger) than that of the first individual. That is, the same level

of delay aversion together with a higher level of risk aversion unequivocally generates

the choice of a share α∗ closer to α.

19Convexity is only required in the relevant range [0, y].
20Notice that the solution depends on the ratio p

q , an observation made and tested in Andreoni

and Sprenger (2012b).
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Now consider DEU-H. Proposition 3 implies that, whenever h ≤ 0, the solution is

corner and, otherwise, it is interior. With a fixed level of risk aversion, more delay aver-

sion implies a stronger preference for the earlier payoffs. To study the effects of more

risk aversion, we can rewrite the first-order condition as ( (1−α)y
αx

)h = δsqy
δtpx

= (δ
1

1−h )s(1−h)qy

(δ
1

1−h )t(1−h)px
,

or equivalently, (1−α)y
αx

= [ δ̂
s(1−h)qy

δ̂t(1−h)px
]
1
h , where δ̂ = δ

1
1−h is the normalized discounting fac-

tor, which we keep constant in order to fix delay aversion. Under these conditions,

the derivative of the right hand side with respect to h is positive (respectively, neg-

ative) whenever δ̂tpx ≤ δ̂sqy (respectively, whenever δ̂tpx ≥ δ̂sqy). That is, when a

risk-neutral individual with exactly the same level of delay aversion prefers the later

prize (and would thus invest nothing in the earlier period), more risk aversion increases

investment in the earlier period. Similarly, when the risk-neutral individual prefers the

earlier prize (and would thus invest everything on it), more risk aversion reduces in-

vestment in the earlier period. In both cases, more risk aversion results in a more

balanced allocation of money across time.

4. Other Deterministic Utility Models

It is well-known that DEU does not permit a different treatment of money for the

risk-evaluation of uncertain payoffs and the time-evaluation of certain payoffs. To vi-

sualize this, consider the case of dated lotteries in L×{0}, involving only risk consider-

ations. These are evaluated as DEUδ,u(l, 0) =
∑N

n=1 pnu(xn), using an expected utility

functional based on u. Now, consider the case of dated degenerate lotteries in D × T ,

involving only time considerations. These are evaluated as DEUδ,u([1;x], t) = δtu(x),

which is but an exponentially discounted utility using δ and the same utility func-

tion u. We now introduce two utility representations that allow money to be treated

in a different way for risk than for time. Importantly, in so doing, we maintain the

standard expected utility treatment of lotteries and exponentially discounted utility of

intertemporal payoffs.21

The first of these representations, which we call present value of the certainty equiv-

alent (PVCE), starts by eliminating the risk component by means of a certainty equiv-

alent using expected utility. Once the problem has been reduced to the analysis of

degenerate certainty equivalents at some future time, the time component is elimi-

nated by transforming that future hypothetical payoff into its equivalent present value,

21In Appendix B, we discuss how to extend these concepts to incorporate behavioral considerations.
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under exponentially discounted utility. Formally,

PV CEδ,w,v(l, t) = w−1[δtw(v−1[
N∑
n=1

pnv(xn)])]

PV CEδ,w,v(α) = w−1[δtw(v−1[pv(αx)]) + δsw(v−1[qv((1− α)y)])].

Notice that v−1[·] represents a certainty-equivalent mapping, obtained throughout the

use of expected utility with Bernoulli utility function v ∈ U . Similarly, w−1[·] repre-

sents a present equivalent value, obtained under exponential discounting with discount

parameter δ and monetary utility w ∈ U .22 Given the assumptions on U , every lot-

tery has a unique certainty equivalent and every dated payoff has a unique present

equivalent value.

The second representation, which we call certainty equivalent of the present values

(CEPV), reverses the order of analysis. It first eliminates the time component by trans-

forming each of the possible sequences of payoffs into its equivalent present value, using

exponentially discounted utility. Once the problem has been reduced to the evaluation

of a hypothetical present lottery, the risk component is eliminated by transforming this

lottery into its certainty equivalent, throughout expected utility. Formally,23

CEPVδ,w,v(l, t) = v−1[
N∑
n=1

pnv(w−1[δtw(xn)])]

CEPVδ,w,v(α) = v−1[pqv(w−1[δtw(αx) + δsw((1− α)y)]) + p(1− q)v(w−1[δtw(αx)])+

+(1− p)qv(w−1[δsw((1− α)y)])].

The DEU representation is a proper restriction of both the PVCE and the CEPV

representations in which the individual uses the same monetary utility to evaluate

both intertemporal and risk trade-offs, i.e., v = w. Indeed, we can show that, in

environments involving dated basic lotteries, the intersection of PVCE and CEPV is

exactly DEU.24 That is, DEU is the only model in which the order of the individual’s

risk and temporal decision-making processes is inconsequential.

22Since w ∈ U , w−1 is strictly increasing and hence, PVCE can be equivalently represented dis-

pensing with w−1.
23Analogously to PVCE, since v−1 is strictly increasing, CEPV can be equivalently represented

dispensing with v−1. Note in addition that by writing φ = v ◦ w−1, the CEPV representation is

basically the generalized DEU model of DeJarnette et al. (2018) in the context of dated lotteries.
24Notice that both domains studied in the paper involve the evaluation of dated basic lotteries.
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Proposition 4. Let B × T . The set of preferences admitting a DEU representation

coincides with the set of preferences admitting both a PVCE and a CEPV representa-

tion.

The intuition for Proposition 4 goes as follows. Notice that PVCE can be written as

δtg(pv(x)), where g = w ◦v−1. Consider one present and one future degenerate lottery,

([1;x], 0) and ([1; y], t), such that the individual is indifferent between the two. If the

preferences admit a CEPV representation, the dated basic lotteries ([p, 1 − p;x, 0], 0)

and ([p, 1−p; y, 0], t) must also be indifferent. Since this holds for every p, one can select

the exact value which, whenever multiplied by the utility of payoff y, reduces utility

by as much as the discount δt does, thereby showing that g must be homogeneous.

Homogeneity of g allows us to write PVCE as g(δ̂tpv(x)), which is but a monotone

transformation of DEU.

We now briefly turn to the study of more risk aversion and more delay aversion in

the two utility representations presented here. By reasoning similar to that applied

in Proposition 1 we can argue that, in these models, risk aversion is connected to the

curvature of the utility function v, while delay aversion is naturally connected to the

curvature of the normalized utility function formed by the intertemporal substitutabil-

ity function w and the discount parameter δ. We omit the proof of this immediate

corollary.

Corollary 2.

(1) More risk aversion: v1 is a concave transformation of v2 if, and only if, for every

l ∈ L and every x ∈ X, PV CEδ2,w2,v2([1;x], 0) ≥ PV CEδ2,w2,v2(l, 0) (resp.

CEPVδ2,w2,v2([1;x], 0) ≥ CEPVδ2,w2,v2(l, 0)) implies PV CEδ1,w1,v1([1;x], 0) ≥
PV CEδ1,w1,v1(l, 0) (resp. CEPVδ1,w1,v1([1;x], 0) ≥ CEPVδ1,w1,v1(l, 0)).

(2) More delay aversion: Fix θ ∈ (0, 1). w
log θ
log δ1
1 is a concave transformation of w

log θ
log δ2
2

if, and only if, for every x, y ∈ X and every s ∈ T , PV CEδ2,w2,v2([1;x], 0) ≥
PV CEδ2,w2,v2([1; y], s) (resp. CEPVδ2,w2,v2([1;x], 0) ≥ CEPVδ2,w2,v2([1; y], s))

implies PV CEδ1,w1,v1([1;x], 0) ≥ PV CEδ1,w1,v1([1; y], s) (resp.

CEPVδ1,w1,v1([1;x], 0) ≥ CEPVδ1,w1,v1([1; y], s)).

Since the comparative statics results obtained under DEU can be analogously ex-

tended to the case of PVCE and CEPV, we omit the basic details here. Given their

relevance for the empirical section, we briefly comment on some of the implications in
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the case of convex budgets. Firstly, as in Proposition 3, the convexity of the mone-

tary utility functions is related to corner solutions. In the case of PVCE, for instance,

it can be shown that corner solutions require the convexity of w.25 Secondly, since

the first-order condition for PVCE can be written as v′(αx)g′(pv(αx))
v′((1−α)y)g′(qv((1−α)y))

= δsqy
δtpx

, with

g = w ◦ v−1, more balanced interior solutions are the result of either more risk aversion

or more intertemporal substitutability. Importantly, we can see the relative effect of

each of these components through the changes in p and q, which affect only g. To

illustrate, notice that the first-order condition of the homogeneous version of PVCE,

PVCE-H is ( (1−α)y
αx

)η = δsy
δtx

( q
p
)
1−η
1−r and thus, variation in prize probabilities enables

identification of the parameters.26

Thirdly, notice also that PVCE-H is in agreement with DEU-H that the solution

depends entirely on the ratio p
q
. Interestingly, the alternative representation CEPV-H

is sensitive to the probabilities beyond the ratio, as the first order condition is simply

( (1−α)y
αx

)η = δsy
δtx

pqAα+(p(1−q))
pqAα+(q(1−p)) , where Aα = [δt(αx)1−η + δs((1− α)y)1−η]

η−r
1−η . Notice how

the right hand side is now dependent on α, except for the case in which η = r, i.e., for

DEU-H.

4.1. An Equivalence Result with Dated Lotteries. Under the assumption of ho-

mogeneity, it is immediate to see that, in the setting of convex budgets, DEU-H is a

strict subset of both PVCE-H and CEPV-H. That is, in convex budget settings, there

are preferences that can be represented by PVCE-H (or alternatively by CEPV-H) but

cannot be represented by DEU-H. Thus, convex budget settings allow us to evaluate the

empirical content of these models. This is not the case in the setting of dated lotteries,

however. Here, the assumption of homogeneity implies that PVCE-H is equivalent to

CEPV-H, which in turn is equivalent to DEU-H.

Proposition 5. Let L× T . The set of preferences admitting a DEU-H representation

coincides with the set of preferences admitting a PVCE-H representation, which in turn

coincides with the set of preferences admitting a CEPV-H representation.

25The case of CEPV is more complex, as it requires analyzing the convexity of both v and w.
26The homogeneous versions PVCE-H and CEPV-H use the monetary functions vr(x) = x1−r

1−r and

wη(x) = x1−η

1−η , with r, η < 1, to capture risk aversion and intertemporal substitutability, respectively.

Note that we denote the curvature of the Bernoulli function in DEU-H by h and in PVCE-H (and

CEPV-H) by r, to emphasize that they represent different attitudes. Ultimately, the objective func-

tions can be simplified to PV CEδ,η,r(α) = δtp
1−η
1−r (αx)1−η+δsq

1−η
1−r ((1−α)y)1−η and CEPVδ,η,r(α) =

pq[δt(αx)1−η + δs((1− α)y)1−η]
1−r
1−η + p(1− q)δ

t(1−r)
1−η (αx)1−r + (1− p)qδ

s(1−r)
1−η ((1− α)y)1−r.
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Our proof of Proposition 5 proceeds in a number of steps axiomatically characterizing

the utility representations discussed in the paper, within the framework of preferences

over dated lotteries. We believe that these results are of independent interest. The

properties used in the characterizations are versions of the classical properties used

in the independent treatments of risk and time preferences. The equivalence of all

the models when using homogeneous utility functions relies on an additional property,

which we call Payoff-Scale Invariance (PSI). PSI is an adaptation of a property of

commodity bundles due to Lancaster (1963), which implies that the indifference of

two dated degenerate lotteries is preserved when the payoffs are multiplied by the

same constant. We show that PSI induces the homogeneity of the monetary utilities

involved, and forces the PVCE-H, CEPV-H and DEU-H representations to coincide.

5. Random utility models

In this section we discuss the structure of random utility models, and their imple-

mentation for the treatment of risk and time preferences. A random utility model

can be defined as the simplex over a set of considered utilities Ψ. An instance of the

random utility model corresponds to a particular probability distribution f over Ψ,

capturing the prevalence of each of the considered utilities.27 At the choice stage, one

of the utilities is realized according to this probability distribution, and maximized,

thereby generating random choices.

We now discuss in length two important properties of random utility models: their

stochastic comparative statics and the potential implications of restricting the set of

allowable probability distributions.

5.1. Stochastic Comparative Statics. Crucially for our purposes, one virtue of

random utility models is that the comparative statics exercises performed on a deter-

ministic model Ψ extend immediately to the random utility model built upon Ψ. This

is so because random utility models are probability distributions over the space of con-

sidered utility functions. Hence, it is direct to extend the results based on degenerate

distributions over the set of utilities (the deterministic case) to probability distribu-

tions over the set of utilities (the random utility model). We now use this feature to

establish the stochastic counterparts of the notions of more risk aversion and more

delay aversion for DEU.

27In the results that follow, we assume that f is measurable in the corresponding sets. This

assumption is easily met in the parametric versions used in our data analysis, as discussed later.
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In the deterministic setting, we say that DEUδ1,u1 is more risk averse than DEUδ2,u2

whenever: (i) the former has a greater preference than the latter for degenerate lotter-

ies, (ii) which is equivalent to u1 being a concave transformation of u2. Part (i) of this

statement can be easily rewritten in stochastic terms based on the mass of preferences

for which a degenerate lottery is better than another lottery or, alternatively, on the

probability of choice of a degenerate lottery against another lottery. For expositional

purposes, we adopt the second approach and denote by ρf ((l, t), (l
′, s)) the probabil-

ity of choice of (l, t) against (l′, s), when the probability distribution f over DEU is

considered. In order to write Part (ii) in stochastic terms, we only need to consider

the following equivalent formulation: for every utility function u ∈ U such that u2 is

more concave than u, u1 is also more concave than u. Then, we can simply denote by

MCT f (u) (respectively, M̃CT f (u)) the mass, according to f , of DEU utilities with a

monetary utility (respectively, a normalized utility) more concave than u, and the next

result can be read as an immediate extension of Proposition 1. Given its simplicity,

we omit the proof of Proposition 6. We also omit the corresponding results for PVCE

and CEPV, which merely reproduce Corollary 2 analogously to Proposition 6.

Proposition 6. Consider two instances, f1 and f2, of the random utility model built

upon DEU.

(1) Stochastic more risk aversion: MCT f1(u) ≥MCT f2(u) for every u ∈ U if, and

only if, ρf1(([1;x], 0), (l, 0)) ≥ ρf2(([1;x], 0), (l, 0)) for every l ∈ L and every

x ∈ X.

(2) Stochastic more delay aversion: Fix θ ∈ (0, 1). M̃CT f1(u) ≥ M̃CT f2(u) for

every u ∈ U if, and only if, ρf1(([1;x], 0), ([1; y], s)) ≥ ρf2(([1;x], 0), ([1; y], s))

for every x, y ∈ X and 0 < s ∈ T .

In words: the probability of choosing a present payoff against a present lottery is

larger for the distribution which has stochastically more concave monetary utilities.

Accordingly, we call this a stochastically more risk-averse distribution. By now, of

course, the intuition is immediate. More concave utility functions lead to greater pref-

erence for present payoffs over present lotteries, and hence a distribution f1 with more

weight on the more concave utility functions than another distribution f2 leads to a

larger choice probability for present payoffs. The reverse implication is also immedi-

ate. Also, the probability of choosing a present payoff over a future payoff is larger for

the distribution that has stochastically more concave normalized utilities. Hence, we
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call this a stochastically more delay-averse distribution. The intuition for the result is

analogous to the one above. Notice that the stochastic notions of more risk and more

delay aversion reduce to the corresponding deterministic notions when the probability

distributions on DEU are degenerate.

Parametric families, as in the DEU-H model, enable even simpler analysis. Denote

by F the bivariate CDF corresponding to the stochastic instance f on DEU-H. Denote

by F̄ the marginal CDF for the monetary utility curvature. Following Proposition 1,

delay aversion can be written in terms of the normalized curvature h̃ = (1 − h) log θ
log δ

.

Accordingly, denote by F̃ the induced marginal CDF over this normalized curvature.

Alternatively, as discussed in Section 3.1, we can also write delay aversion in terms

of the corrected discount factor δ̂ = δ
1

1−h . Denote by F̂ the induced marginal CDF

over this corrected discount factor.28 The following result is an immediate corollary of

Proposition 1.

Corollary 3. Consider two instances, f1 and f2, of the random utility model built upon

DEU-H.

(1) f1 is stochastically more risk averse than f2 if, and only if, F̄1 first-order stochas-

tically dominates F̄2.

(2) f1 is stochastically more delay averse than f2 if, and only if, F̃1 first-order

stochastically dominates F̃2, if, and only if, F̂1 is first-order stochastically dom-

inated by F̂2.

Corollary 3 establishes simple and intuitive results for stochastic more risk aver-

sion and more delay aversion under DEU-H, based on standard first-order stochastic

dominance relations. That is, stochastically more risk-averse individuals will have

probability distributions over h biased towards higher values of risk aversion. Sim-

ilarly, stochastically more delay-averse individuals will have CDFs over normalized

curvatures biased towards higher values or, equivalently, CDFs over corrected discount

factors biased towards lower values.

Proposition 1 and Corollary 3 are crucial positive results. They enable reliable

estimations and interpretations of the preference parameters of interest.

5.2. Distributional Assumptions. In applications, the analyst typically simplifies

the treatment of random models by restricting the set of probability distributions

governing the preference parameters. For instance, the distribution f over DEU-H

28Technically, we assume the existence and continuity of all relevant distributions.
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may be assumed to belong to a well-known family; or the marginal distributions of the

parameters involved could be assumed to be independent. Clearly, this practice reduces

the set of admissible instances of the model and, consequently, the set of behaviors it is

able to explain. Importantly, this restriction has no relevant implications for stochastic

comparative statics. However, as we are about to discuss, distributional assumptions

may have important undesirable consequences.

We illustrate using DEU-H, and by showing that the assumption of independence of

the parameters h and δ leads to problematic conclusions. In particular, we show that,

whenever risk aversion is sufficiently high, an earlier dated lottery is preferred almost

surely to a later dated lottery, no matter how low the earlier payoffs or how high the

later payoffs may be. Similarly, in a convex budget setting, the shares chosen will in

no way depend on the magnitude of payoffs x and y. That is, whenever risk aversion

is sufficiently high, when it comes to the choice of endowment share, it is irrelevant

whether the later payoff y is similar or markedly higher than the earlier payoff x.

Formally, denoting by ρf (α) the distribution over shares induced by f , we have:

Proposition 7. Consider an instance f of the random utility model built upon DEU-H

satisfying distributional independence for h and δ. Then:

(1) For any (l, t), (l′, s) with l 6= [1; 0] and t < s, limh→1 ρf ((l, t), (l
′, s)) = 1.

(2) limh→1 ρf (α) is independent of x and y.

The intuition of Proposition 7 is as follows. An earlier lottery is chosen under

DEU-H if, and only if, the ratio of expected utilities between the later and the earlier

lotteries is not high enough to compensate the discounting δs−t. Under DEU-H, when h

approaches 1, the ratio of expected utilities for every pair of lotteries such that l 6= [1; 0]

converges to 1. Under distributional independence, the discounting δs−t is independent

of h and hence, the mass of utilities for which the earlier lottery is chosen goes to 1.

Similarly, in the risk aversion region, the choice of endowment share depends on the

term ( y
x
)
1−h
h (δs−t q

p
)

1
h . When h approaches 1, this converges to a constant depending

neither on x nor on y.

The predictions described in Proposition 7 are of course nonsense. In practical

terms, suppose that an individual is highly risk averse and moderately delay averse.

An estimation exercise using DEU-H with distributional independence would severely

compromise the correct estimation of risk aversion, because, in this case, high lev-

els of risk aversion would predict an extreme preference for the present, which would
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contradict the behavior described by the data. A similar problem will appear in prac-

tice in convex budget settings. Therefore, the results of the estimation would not be

representative of the actual behavior of the individual.

The correct approach for avoiding problems of this nature is suggested in our previ-

ous discussion in Section 3.1 on more risk aversion and more delay aversion for DEU-H.

To properly account for delay aversion, we need to pay attention to the normalized cur-

vature of the monetary utility function ū, or, equivalently, to the corrected discount

factor δ̂. Hence, one may assume distributional independence of the parameters gov-

erning the notions of more risk aversion and more delay aversion, but clearly not of

the parameters h and δ. We illustrate this methodology in our empirical section.

6. Estimation of Risk and Time Preferences

In this section we implement the framework developed in the previous sections,

using the experimental datasets of Andersen et al. (2008), Coble and Lusk (2010)

and Andreoni and Sprenger (2012b). Andersen et al. (2008) allows us to study the

case where risk and time preferences are independently elicited using dated lotteries.

We study the general case of dated lotteries, which includes non-degenerate lotteries

awarded at different time periods, using the dataset of Coble and Lusk (2010). Finally,

Andreoni and Sprenger (2012b) enables the analysis of the convex budget setting.29

6.1. Dated Lotteries: Risk and Time Preferences Independently Elicited.

The literature has often designed experiments in which individuals must choose, sepa-

rately, from sets of present lotteries and from sets of dated degenerate lotteries. The

separate elicitation of risk and time preferences allows us to illustrate an important

advantage of random utility models; namely, that the analyst can jointly estimate risk

and delay aversion under DEU using the entire dataset or, alternatively, can sepa-

rately estimate risk and time attitudes, under expected utility and discounted utility

respectively, using the relevant sub-samples of the dataset.30

To illustrate this type of estimation exercise, we use the influential dataset of An-

dersen et al. (2008). They designed 100 menus, which we index by m, each involving

either a pair of present lotteries or a pair of degenerate dated lotteries. A group of

29Other influential datasets are Tanaka et al. (2010), Dohmen et al. (2010), Cheung (2015) and

Miao and Zhong (2015). We can provide the corresponding estimation results upon request.
30Notice that the inference of the associated distribution of discount rates δ obviously requires us

to use the results of both estimations.
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253 individuals, which we index by i, made choices from these menus. This provided a

collection of 23,108 observations, i.e. pairs of menus and corresponding choices, which

we denote by O.31

Our estimations use homogeneous monetary functions and, given Proposition 5,

DEU-H. The first estimation adopts a representative agent approach, assuming that the

stochasticity of every individual in the population is governed by the same distribution

over DEU-H, denoted by f . In accordance with the discussion in Section 5.2, we assume

distributional independence between risk aversion and delay aversion, i.e., f will be the

product of two independent probability distributions, f̄ and f̂ , defined, respectively, on

the risk aversion parameter and the corrected discount factor.32 For the risk aversion

parameter, we assume that f̄ is a truncated normal distribution in the interval (−∞, 1)

with parameters µh and σ2
h.

33 For the delay aversion parameter, which we measure in

months, we assume that f̂ is a beta distribution with parameters aδ̂ and bδ̂.

Now, let an individual i confront menu m = {1, 2, . . . , Tm}. The probability of choos-

ing alternative τ , denoted by ρimτ (f), corresponds to the measure of all parameters for

which the associated DEU-H utility ranks τ as the best alternative within menu m.

Denoting by 1 the usual indicator function and by j a generic alternative in the menu,

this is

ρimτ (f) =

∫
h

∫
δ̂

1

(
τ = max

j∈{1,2,...,Tm}
DEUδ,h(j)

)
f̄(h)f̂(δ̂)dhdδ̂.

Denote by yimτ the indicator variable, which takes the value 1 when individual i chooses

alternative τ from menu m. The log-likelihood function is

logL (f |O) =
1

|O|

I∑
i=1

M∑
m=1

Tm∑
τ=1

yimτ log (ρimτ (f)) .34

31Not every individual faced all menus, but each was required to make between 84 and 100 choices.

The Online Appendix contains further details of all of the three experimental datasets used in this

section.
32Notice that, for any realization of the risk-aversion coefficient h and the corrected discount factor

δ̂, we can back out the implied discount factor as δ = δ̂1−h, and use it for the relevant computations.
33In practice, we simplify the computational analysis by considering the subinterval [−h, 1) instead

of (−∞, 1), where h is chosen small enough not to bound the estimation. See Appendix C for details.
34In order to allow for positive choice probabilities of dominated lotteries, we introduce a fixed small

tremble, such that, with very large probability 1− ν, the individual chooses according to ρimτ (f) and

with a very small probability ν, the individual uniformly randomizes. In the Online Appendix, we

report the results of a version of the baseline estimation of each model, using all three datasets studied

in this section, where we estimate ν as an additional parameter. In general, we find that estimating
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Consistent estimation of (µh, σ
2
h, aδ̂, bδ̂) can be achieved via maximization of the log-

likelihood, and this estimator summarizes all the information about the estimated dis-

tributions of both risk and time attitudes. Robust standard errors for these estimates

are computed using the delta method and clustered at the individual level. The com-

putation of integrals is facilitated by means of a Quasi-Monte Carlo method, which can

be easily implemented in most statistical packages, and which delivers log-likelihood

functions with smooth parameters that can be quickly maximized using gradient-based

methods.35

Table 1 shows the estimated risk and time preferences, including medians, standard

deviations and the corresponding standard errors. Columns 2 and 3 show the results

when we estimate risk and delay aversion separately, while column 4 shows the results

from the joint estimation of the distributions. As expected, the results are identical

in both cases. Figure 1 shows the estimated PDFs of the risk and delay aversion

parameters, f̄ and f̂ , and the one implied for δ.36 We observe high levels of risk

aversion, with the mode of the distribution at the upper bound of 1, suggesting that a

sizable portion of the generated data may show risk-aversion levels above 1.37

The dataset is rich enough to perform individual estimations. Consequently, we

now assume that the governing distributions, denoted by fi, are individual-specific

and we use the sub-sample of the corresponding individual observations.38 Column

5 of Table 1 reports the median value of the median individual estimations of the

parameters. Figure 2 shows a scatter-plot with the estimated individual median of risk

and corrected discount factor for each of the 253 subjects in the sample, and Figure 3

plots the ordered individual estimates against the CDFs of the pooled estimations. This

the tremble probability improves the fit of the models by allowing them to explain the observed

positive probability of making dominated choices. However, the estimated distributions of risk and

time preferences do not change substantially from that obtained by fixing ν as we do here.
35In Appendix C, we discuss the numerical evaluation of the log-likelihood function. The Matlab

code for implementing these methods is provided via the authors’ websites.
36The figure plots the normal kernel estimates of the PDF of δ = δ̂1−h using the draws from the

distributions of δ̂ and h. The results are consistent with the theoretical discussion, in that the high

levels of risk aversion push up the discount factors considerably.
37In the Online Appendix we show how to extend the model to allow for higher levels of risk

aversion, and report the resulting estimates under this extension. We obtain a similar median risk

aversion, but capture the upper part of the distribution more closely.
38In this case, the asymptotic properties of the maximum likelihood estimator hold as the number

of menus grows large.
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exercise illustrates a series of points. In the first place, notice that there is substantial

heterogeneity of preference across the population.39 The distributions of median-traits

in the population are far from degenerate and, indeed, closely reproduce those of the

representative agent. In particular, and in consonance with our previous observation,

it is apparent that there is a number of individuals for which the bound of 1 on the

risk aversion level is binding. Next, notice that not all heterogeneity is due to the

existence of different individual preferences, since, as reported in column 5 of Table 1,

the median of the estimated individual standard deviations is clearly non-null. Thirdly,

the correlation between the risk-aversion coefficients and the corrected discount factors

is slightly positive (0.050), i.e. there is slightly negative correlation between risk and

delay aversion, but it is not significant at conventional levels (p-value = 0.425).40

6.2. Dated Lotteries: General Case. A different strand of the literature elicits

risk and time preferences over general menus of dated lotteries. Using the techniques

discussed in the previous section, we illustrate with the study by Coble and Lusk

(2010), which reports on an experiment involving 47 subjects each choosing from 94

menus involving either: (i) pairs of same-dated lotteries, (ii) pairs of dated degenerate

lotteries, or (iii) pairs of non-degenerate lotteries awarded at different time periods.

For the sake of comparison, we first run an estimation exercise equivalent to that in

the previous section. That is, we use only the subset of the data basically involving only

risk or only time considerations, parts (i) and (ii) above.41 Columns 2 and 3 of Table 2

report that, in this substantially different population of subjects, we find a relatively

small decrease in the median levels of risk aversion and of the corrected discount factor.

We can now use part (iii) of the dataset to evaluate whether behavior is substantially

affected when both risk and time considerations are active. This joint estimation of risk

39The variability across estimates may also reflect sampling/estimation variability. Accordingly,

the observed heterogeneity can be interpreted as an upper bound of the underlying preference hetero-

geneity.
40This dataset also contains information on individual characteristics. In the Online Appendix, we

show how to incorporate this sort of information in the estimations by modeling the parameters of

the distribution as a linear function of the observable characteristics. We can assume, for example,

that µh = γ0 + γlxl, where xl is either a dummy or a real variable and then estimate parameters γ0

and γl. In a recent paper, Jagelka (2019), using a version of the DEU-H model, implements a similar

methodology to study the influence of personality traits on risk and time preferences.
41As discussed in Corollary 1, the time component does not play a role in the comparison of

same-dated lotteries.
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and time preferences is reported in column 4. Interestingly, the conclusions reached

using (i) and (ii) vary little with respect to those obtained using (iii). This supports the

view that the large body of literature using independent elicitations of risk and time

preferences is obtaining a picture that is close to the one with dated lotteries involving

the dimensions of both risk and time. Column 5 reports the estimation results with the

pooled data, and Figure 4 plots the PDFs of the parameters using this pooled dataset.

We next perform individual estimations. Column 6 of Table 2 reports the median

and standard deviation of the individual estimates; Figure 5 shows a scatter-plot with

the estimated individual medians of risk and corrected discount factors for each of

the 47 sample subjects, and Figure 3 plots the ordered individual estimates against

the CDFs of the pooled estimations. Again, this analysis suggests great interpersonal

heterogeneity, with a slightly negative correlation between individual risk parameters

and corrected discount factors, and the presence of some intra-personal variability of

preferences.

Interestingly, the richness of this dataset allows us to explore further the idea of

correlation between risk and time, since we can now capture both intra-personal and

interpersonal correlation. Since risk and time parameters are jointly responsible for

choices in part (iii), we can now run a version of the pooled estimation without the

independence assumption. In essence, we now express the joint distribution of h and

δ̂ in terms of their marginal distributions (which follow the same parametric forms

used in the independent case) and a Gaussian copula allowing for correlation between

the two.42 Column 7 in Table 2 shows the results of this exercise. We observe that

the estimated correlation coefficient is negative but, due to the high variation, not

statistically different from zero. Furthermore, the estimated moments of the marginal

distributions are close to those obtained assuming independent distributions, thereby

showing that allowing for the correlation of risk and time preferences has very little

effect on the estimates in this dataset.

6.3. Convex Budgets. We now analyze the setting of convex budgets. We use the

original dataset of Andreoni and Sprenger (2012b), which involves 80 subjects, each

making 84 decisions from convex budget menus, for a total of 6,720 observations.

Let us start by commenting on some features of the empirical strategy. One is

that the experimental implementation uses discretized versions of the continuous share

42See Fan and Patton (2014) for an introduction to the use of Copulas in econometrics.
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problem, with α ∈ { 0
100
, 1

100
, . . . , 100

100
}. Moreover, since the vast majority of partici-

pants tend to choose multiples of 10, for practical reasons we discretize the choice of

α to 11 equidistant possible shares. The DEU-H specification of ρimτ (f) described

in Section 6.1 and its associated log-likelihood immediately extend to this setting. A

second important property of convex budgets is that DEU-H, PVCE-H and CEPV-

H are not equivalent in general, and the high variability of menus in the experiment

allows us to estimate all three models. For PVCE-H and CEPV-H, and, in analogy

with the estimation procedure for DEU-H, we assume that the joint probability dis-

tribution f is characterized by three independent probability distributions f̄ , f̃ and

f̂ , defined, respectively, on the curvature of the Bernoulli function r, the curvature of

the intertemporal utility function η, and the corrected discount factor δ̂ = δ
1

1−η . The

computation of ρimτ (f) now involves a triple integral but is conceptually equivalent.

We then use truncated normal distributions for f̄ and f̃ , and a beta distribution for f̂ ,

and therefore, in the baseline model we estimate (µr, σ
2
r , µη, σ

2
η, aδ̂, bδ̂).

Table 3 reports the results for the three models. The baseline estimations are re-

ported in columns (i), (iv) and (vii); while, in columns (ii), (v) and (viii), we report

the results when allowing for correlation between the distributions of the parameters

using a Gaussian copula. Finally, columns (iii), (vi) and (ix) report on the estimations

at the individual level, providing the median and standard deviation of the medians

estimated for each individual. Figure 7 plots the estimated PDFs of the preference

parameters for all three models. Figure 8 plots the observed and predicted choice

probabilities across the different experimental parameters; and Figure 9 shows scatter-

plots with the estimated individual median parameters for each of the 80 subjects and

for all three models. All the figures use the baseline estimated parameters reported in

Table 3.

Here, we would like to stress the following findings. The first is that the simple

model DEU-H already appears to perform remarkably well. Figure 8 shows that the

estimated DEU-H distribution is able to capture the two main empirical regularities

in the dataset; namely, a large task-dependent fraction of corner choices, followed by

a task-dependent distribution of interior choices. This is due to the fact that DEU-H

allows for preference heterogeneity, and, as we know from Proposition 3, interior choices

are predicted for risk-averse attitudes while corner choices are predicted for risk-seeking

attitudes. The estimation of a positive but close-to-zero median risk-aversion coefficient
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is the reason why approximately half of the predicted choices are made using negative

risk-aversion coefficients leading to corner choices.

Second, a simple inspection of Figure 8 suggests that PVCE-H and CEPV-H models,

by being more flexible, bring us even closer to the idiosyncratic nature of the data, being

this confirmed by the log-likelihood values.43 In particular, given the separation of

the risk and intertemporal substitution parameters, corner and non-corner choices are

now less influenced by risk aversion, and the models may potentially provide different

estimates of risk aversion. It proves to be the case that the PVCE-H estimates low levels

of risk aversion while CEPV-H yields higher levels, more in line with the experimental

results on dated lotteries.

Third, as already mentioned in Sections 3 and 4, DEU-H and PVCE-H impose the

same predictions across tasks with the same ratio of probabilities. However, Figure 8

clearly shows that this is not observed in the data. For instance, people seem to choose

corner solutions more often when both lotteries are degenerate than they do when both

outcomes are realized with equally low probability. Since these models must predict

the same choices in both scenarios, an intermediate prediction is observed. CEPV-H

has no such restriction and fits the data better across these tasks .

The fourth finding worth noting is that the corrected discount factor estimates are

rather stable across both models and estimations, indicating a level of patience some-

where in between those observed in the previous two datasets that involved dated

lotteries.

Finally, Figure 9 shows scatter plots of the individually-estimated parameters. Across

individuals, there seems to be a negative correlation between risk and the corrected

discount factor. The relationship between the intertemporal substitution and corrected

discount factor appears to be negative in both models, while that between risk aver-

sion and intertemporal substitution appears to be model dependent. Interestingly, the

correlations obtained in the copula estimates of columns (ii), (v) and (viii) do not

necessarily coincide with the individual correlations at the qualitative level. This is

a further indication of the important role of heterogeneity both between and within

subjects. Notice, however, the small magnitude of the correlations, and the fact that

43The CEPV-H model outperforms the PVCE-H model in this dataset based on different measures

of in-sample fit. In the Online Appendix, we show that CEPV-H also outperforms PVCE-H, based K-

fold cross-validation exercise. PVCE-H in turn markedly outperforms DEU-H. These results support

the use of CEPV-H over PVCE-H based on in-sample fit and out-sample forecasting performance.
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the majority are not statistically significant. Among the individual estimates, the only

exception is the correlation between risk aversion and the corrected discount factor in

DEU-H, which is approximately −0.345 (p-value=0.002). At a 5% confidence level, we

cannot reject the null of zero correlation across individual estimates for the PVCE-H

and CEPV-H models.

7. Final Remarks

In this paper, we have developed a sound framework for the analysis of risk and time

preferences. We have studied several deterministic models of risk and time that can

be used as a basis for estimation exercises; established their risk and time comparative

statics; brought them into the framework of random utility models; and empirically

illustrated their potential using several experimental datasets. Our framework offers a

unique tractable tool for gaining a deeper understanding of risk and time preferences,

a cornerstone of economics.

As examples of practical lessons to be learnt with our framework, consider the re-

sults obtained with the experimental dataset of Andreoni and Sprenger (2012b). The

choice data appears challenging at first; as it has a significant fraction of corner choices,

located at both ends of the choice range, and a significant fraction of interior choices.

Previous attempts in the literature have had difficulty in accounting for such heteroge-

neous choice data. However, our stochastic implementation of what can be considered

the simplest possible model of risk and time preferences, the discounted expected util-

ity model, already allows us to account for the observed choice patterns remarkably

well. The reason for this is that our framework is built upon the consideration of het-

erogeneous preferences, some of which predict corner choices and others interior ones.

As can naturally be expected, the more flexible models studied in the paper capture

some other features of the data even better.

Appendix A. Proofs of the Results in the Main Text

Proof of Proposition 1: When t = 0, DEU reduces to expected utility and hence,

the first part follows immediately from standard results. When lotteries are degener-

ate, DEU reduces to exponentially discounted utility and we can use the normalization

of Fishburn and Rubinstein (1982) to prove the result. Since this normalization plays

a key role in this paper, we now discuss its details. When the space D × T of dated

degenerate lotteries is considered, DEUδ,u is equivalent to DEUθ,ū, where θ is any value
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in (0, 1) and ū = u
log θ
log δ . To see this, notice that DEUδ,u([1;x], t) ≥ DEUδ,u([1; y], s) if

and only if δtu(x) ≥ δsu(y). For any θ ∈ (0, 1), since log θ
log δ

> 0, the above inequality is

equivalent to (δtu(x))
log θ
log δ ≥ (δsu(y))

log θ
log δ or, alternatively, θtū(x) ≥ θsū(y). This shows

that the normalized model represents the same preferences. Now consider the pair of

degenerate lotteries ([1;x]; 0) and ([1; y], s) with 0 < s. We start with the ‘only if’ part.

Clearly, if x ≥ y, both individuals prefer the present payoff, and the claim follows. Let,

then, x < y, and suppose that the second individual expresses a preference for the

present payoff, i.e., ū2(x) ≥ θsū2(y), or equivalently, ū2(x)
ū2(y)

≥ θs. Then, it must be that

0 < x. Suppose that ū1 is more concave than ū2. Without loss of generality, we can

re-scale one of the two normalized utility functions to set ū1(x) = ū2(x) and then,

more concavity of ū1 implies ū1(y) ≤ ū2(y), or equivalently, ū1(x)
ū1(y)

≥ ū2(x)
ū2(y)

≥ θs, leading

the first individual also to prefer the present payoff, as desired. We prove the converse

by way of contradiction. Assume the existence of two payoffs x∗ < y∗ and γ ∈ (0, 1)

such that ū1(x∗)
ū1(y∗)

> γ > ū2(x∗)
ū2(y∗)

. Trivially, we can find t∗ ∈ T such that γ = θt
∗
. Thus,

selecting the dated lotteries ([1;x∗], 0) and ([1; y∗], t∗), we obtain a contradiction. �

Proof of Corollary 1: Under exponential discounting the DEU comparison of two

lotteries awarded at the same time t is simply equivalent to the DEU comparison of the

same two lotteries awarded in the present. We can then apply the first part of Propo-

sition 1 and the definition of riskier lotteries in footnote 13 to conclude the proof of the

first statement. For the second part, simply notice that basic lotteries ([p, 1−p;x, 0], t)

and ([p, 1−p; y, 0], s) are evaluated by DEU in the same way as the degenerate lotteries

([1;x], t) and ([1; y], s), and we can then apply the same argument of the second part

of Proposition 1 to conclude the proof. �

Proof of Proposition 2: Denote by CEu(l) the certainty equivalent of lottery l

using expected utility with monetary utility u. Given any pair of dated lotteries

(l1 ≡ [p1, . . . , pN ;x1, . . . , xN ], t1) and (l2 ≡ [q1, . . . , qM ; y1, . . . , yM ], t2), it is evident

that δt1
∑

n pnu(xn) ≥ δt2
∑

m qmu(ym) is equivalent to
∑
n pnu(xn)∑
m qmu(ym)

≥ δt2−t1 and thus,

equivalent to u(CEu(l1))
u(CEu(l2))

≥ δt2−t1 . We now prove the first part. Suppose that DEUδ1,u1

is equally delay averse and more risk averse than DEUδ2,u2 . From Proposition 1,
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this means that, for every x, ū1(x) = [u1(x)]
log θ
log δ1 = [u2(x)]

log θ
log δ2 = ū2(x).44 Taking

logarithms, this is equivalent to log u1(x)
log δ1

= log u2(x)
log δ2

for every x. That is, the ratio
log u2(x)
log u1(x)

is equal to the constant log δ2
log δ1

= k > 0, and hence: (i) δ2 = δk1 and (ii)

u2 = uk1. Since the first individual is more risk averse than the second it must be

that k ≥ 1. We can then rewrite the preference of the second individual for (l1, t1)

as
[u1(CEu2 (l1))]k

[u1(CEu2 (l2))]k
≥ δ

k(t2−t1)
1 , which is equivalent to

u1(CEu2 (l1))

u1(CEu2 (l2))
≥ δt2−t11 . Whenever

l1 = [1;x], we have CEu2(l1) = CEu1(l1). As u1 is more concave than u2, we also have

CEu2(l2) ≥ CEu1(l2). Hence,
u1(CEu1 (l1))

u1(CEu1 (l2))
≥ δt2−t11 and the first individual also prefers

the (degenerate) dated lottery (l1, t1).

For the second part, notice that, if the two individuals are equally risk averse, their

monetary utility functions must have the same curvature. If the first individual is more

delay averse than the second, the normalized utility function of the first individual must

have greater curvature. With fixed risk aversion, it is immediate to see that the first

individual must have a lower discount factor. Hence, if t1 < t2 and the second indi-

vidual prefers (l1, t1) over (l2, t2), we have
∑
n pnu2(xn)∑
m qmu2(ym)

=
∑
n pnu1(xn)∑
m qmu1(ym)

≥ δt2−t12 ≥ δt2−t11 ,

and the first individual also prefers the earlier lottery, as desired. �

Proof of Proposition 3: For the first part, let ui be convex. Then, δtipui(αx) +

δsi qui((1−α)y) ≤ αδtipui(x)+(1−α)δtipui(0)+(1−α)δsi qui(y)+αδsi qui(0) = αδtipui(x)+

(1− α)δsi qui(y) ≤ max{δtipui(x), δsi qui(y)} and hence, the solution must be corner. As

the problem has been reduced to the DEU comparison of the two basic dated lotteries

([p, 1− p;x, 0], t) and ([q, 1− q; y, 0], s), we can directly use Part 2 of Corollary 1, and

the result follows immediately.

For the second part, let ui be strictly concave. Given the differentiability assumption,

the first-order condition of the optimization problem is
u′i(αx)

u′i((1−α)y)
=

δsi qy

δtipx
, with the

left hand side strictly decreasing in α. The strict concavity of ui guarantees that

the solution is interior. We now start by fixing risk aversion, i.e. u1 = u2. In this

case, we know that individual 1 is more delay averse than individual 2 if and only if

δ1 ≤ δ2. This implies that
δs1qy

δt1px
≤ δs2qy

δt2px
, and hence, given the strict concavity of ui and

u′1(αx)

u′1((1−α)y)
=

u′2(αx)

u′2((1−α)y)
, it must be that α∗1 ≥ α∗2.

44More formally, ū1(x) = aū2(x) with a > 0. The constant a is inessential to our arguments, and

hence we normalize to a = 1 without loss of generality. Similar conventions will be adopted in the

following proofs.
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We now fix delay aversion. As discussed in Proposition 2, this implies that δ2 = δk1

and u2 = uk1. Next, suppose that the first individual is more risk averse than the

second, i.e., k ≥ 1. The first order condition of the second individual can be written as

( u1(αx)
u1((1−α)y)

)k−1 u′1(αx)

u′1((1−α)y)
=

δks1 qy

δkt1 px
=

δs1qy

δt1px

δ
(k−1)s
1

δ
(k−1)t
1

, or equivalently
( δt1u1(αx)

δs1u1((1−α)y)

)k−1 u′1(αx)

u′1((1−α)y)
=

δs1qy

δt1px
. Clearly, considering the constant α1 defined in the text, g(α) =

( δt1u1(αx)

δs1u1((1−α)y)

)k−1 ≤
1 if and only if α ≤ α1. Let f(α) =

u′1(αx)

u′1((1−α)y)
, which we know is strictly decreasing in

α. Then, for values of α below (respectively, above) α1 the function h(α) = f(α)g(α)

on the left hand side of the first-order condition falls below (respectively, is above)

f(α). Since the right hand side is a constant, the result follows immediately. �

Proof of Proposition 4: Since PVCE and CEPV are extensions of DEU, it is evident

that DEU belongs to the intersection of both classes. Now suppose that some behavior

over basic lotteries belongs to the intersection of both PVCE and CEPV. Consider the

PVCE representation of this behavior, and rewrite it as δtg(pv(x)), where g = w ◦ v−1.

We now prove that the function g must be homogeneous.

First, consider any v0 ∈ R++ in the range of possible utility values associated to v,

i.e., there exists a payoff x0 such that v(x0) = v0. Consider 0 < p < 1 and, when-

ever it exists, the monetary outcome x1 such that v(x1) = v0
p

. Then, take the value

t1 ∈ T such that w(x0) = g(v0) = δt1g(v0
p

) = δt1w(x1). That is, t1 is the value that

makes the dated degenerate lotteries ([1;x0], 0) and ([1;x1], t1) indifferent. Hence, the

present value of x1 awarded at t1 must be x0. Clearly, the present value of 0 (awarded

at t1) is 0 and since the choice behavior admits a CEPV representation, it must also

be that ([p, 1 − p;x0, 0], 0) and ([p, 1 − p;x1, 0], t1) provide the same utility. Hence, it

must be that w(v−1[pv(x0)]) = g(pv0) = δt1g(pv0
p

) = δt1w(v−1[pv(x1)]). This is simply

g(pv0) = δt1g(v0) or δ−t1g(pv0) = g(1
p
[pv0]). By repeated use of this reasoning, we can

obtain, for every positive integer ι, δ−ιtg(pv0) = g( 1
pι

[pv0]), which proves that the func-

tion g is homogeneous of degree t log δ
log p

on the sequence of utility points (pv0, v0,
v0
p
, . . . ).

By taking v0 as close to zero as desired and p as close to 1 as desired, the continuity

of the functions involved guarantees that g must be homogeneous on the positive or-

thant. Now, the homogeneity of g, with homogeneity of degree ξ, allows us to rewrite

the PVCE representation as δtg(pv(x)) = g((δt)
1
ξ pv(x)) = g(δ̄tpv(x)). Hence, prefer-

ences can be represented by a monotone transformation of DEU and the claim follows.�
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Proof of Proposition 5: In a series of claims, the proof characterizes the models

described in the main text, ultimately showing the stated result. Consider a preference

% over L × T . Here is a list of possible properties for such a preference.

Regularity (REG). % satisfies the following conditions:

(1) Rationality (RAT). % is complete and transitive.

(2) Continuity (CON). % is continuous.

(3) Risk-Monotonicity (R-MON). If l strictly first-order stochastically dominates

(FOSD) l′, then (l, 0) � (l′, 0).

(4) Time-Monotonicity (T-MON). If t < s, then ([1; 0], t) ∼ ([1; 0], s) and for every

l 6= [1; 0], (l, t) � (l, s).

Separability (SEP). (l, t) % (l′, t) if and only if (l, s) % (l′, s).

First-Time-Then-Risk (FTTR). If ([1;xn], t) ∼ ([1; yn], 0) for every n ∈ {1, . . . , N},
then for every {pn}Nn=1 with pn ≥ 0 and

∑N
n=1 pn = 1, ([p1, . . . , pN ;x1 . . . , xN ], t) ∼

([p1, . . . , pN ; y1 . . . , yN ], 0).

Stationarity (STAT). If ([1;x], t) ∼ ([1; y], s) then, for every γ such that t+γ, s+γ ≥
0, ([1; x], t+ γ) ∼ ([1; y], s+ γ).

Independence (IND). (l, 0) % (l′, 0) if and only if (λl + (1 − λ)l
′′
, 0) % (λl′ + (1 −

λ)l
′′
, 0) for every l

′′
, λ ∈ (0, 1).

Payoff-Scale Invariance (PSI). For every κ > 0, ([1;x], t) ∼ ([1; y], s) implies that

[1;κx], t) ∼ ([1;κy], s).

Claim 1. % satisfies REG and SEP if and only if there exists a continuous mapping

CE : L → X, with CE([1;x]) = x and CE(l) > CE(l′) whenever l strictly FOSDs l′,

and a continuous mapping PV : X × T → X, with PV (x, 0) = x, strictly increasing

in X and strictly decreasing in T when x > 0, such that % is represented by (l, t) %

(l′, s)⇔ PV (CE(l), t) ≥ PV (CE(l′), s).

Proof of Claim 1: Since the proof of necessity is immediate, we only prove suf-

ficiency. We first show that every lottery admits a unique certainty equivalent when

evaluated in the present. That is, there exists a mapping CE : L → X with the

properties stated in the claim, such that (l, 0) ∼ ([1;CE(l)], 0). We set CE([1;x]) = x,

which defines a certainty equivalent for every degenerate lottery. If l is not degenerate,

R-MON guarantees that (l, 0) is strictly better (respectively, strictly worse) than the
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dated lottery giving the worst (respectively, the best) payoff of lottery l, with probabil-

ity one, in the present. Hence, RAT and CON guarantee the existence of the certainty

equivalent CE(l) in the present. Furthermore, RAT, CON and R-MON guarantee that

the constructed mapping satisfies all the properties defining a certainty equivalent map-

ping. Next, we construct a present equivalent mapping PV : X × T → X as follows.

For a given amount of money x and a given time t, consider the induced dated degen-

erate lottery ([1;x], t). We claim that we can find a degenerate lottery awarded at time

0 that is indifferent to it, and hence, the corresponding payoff is the required present

value. That is, PV (x, t) is such that ([1; x], t) ∼ ([1;PV (x, t)], 0). Whenever t = 0 or

x = 0, the claim can be proved by direct application of T-MON. Whenever both x and

t are strictly positive, notice that ([1;x], 0) � ([1;x], t) � ([1; 0], t) ∼ ([1; 0], 0). That

is, the degenerate lotteries giving x and 0 in the present are strictly better and strictly

worse, respectively, than the dated lottery giving the degenerate payoff x at t. RAT

and CON guarantee the existence of a monetary value PV (x, t) awarded at time 0 and

indifferent to ([1;x], t). Again, it is evident that RAT, CON and T-MON guarantee

that the mapping PV satisfies all the properties required for a present value mapping.

Now consider two dated lotteries (l, t) and (l′, s). Since (l, 0) ∼ ([1;CE(l)], 0)

and (l′, 0) ∼ ([1;CE(l′)], 0), SEP guarantees that (l, t) ∼ ([1;CE(l)], t) and (l′, s) ∼
([1;CE(l′)], s). Hence, (l, t) % (l′, s) if and only if ([1;CE(l)], t) % ([1;CE(l′)], s) if

and only if ([1;PV (CE(l), t)], 0) % ([1;PV (CE(l′), s)], 0) if and only if PV (CE(l), t) ≥
PV (CE(l′), s), as desired. �

Claim 2. % satisfies REG and FTTR if and only if there exists a continuous

mapping CE : L → X, with CE([1;x]) = x and CE(l) > CE(l′) whenever l

strictly FOSDs l′, and a continuous mapping PV : X × T → X, with PV (x, 0) =

x, strictly increasing in X and strictly decreasing in T when x > 0, such that %

can be represented by (l, t) % (l′, s) ⇔ CE([p1, . . . , pN ;PV (x1, t), . . . , PV (xN , t)])

≥ CE([q1, . . . , qM ;PV (y1, t), . . . , PV (yM , t)]).

Proof of Claim 2: Since the proof of necessity is immediate, we only prove suf-

ficiency. That REG implies the existence of certainty equivalents and present values

has been proved in Claim 1. Assume FTTR. Consider two dated lotteries (l, t) and

(l′, s), with l = [p1, . . . , pN ;x1, . . . xN ] and l′ = [q1, . . . , qM ; y1, . . . yM ]. Since, for ev-

ery n we have that ([1; xn], t) ∼ ([1;PV (xn, t)], 0), the direct application of FTTR

leads to (l, t) ∼ ([p1, . . . , pN ;PV (x1, t), . . . , PV (xN , t)], 0). Similarly, it must also be

that (l′, s) ∼ ([q1, . . . , qM ;PV (y1, s), . . . , PV (yM , s)], 0). Now, the lottery constructed
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by bringing payments of l to the present must be indifferent to one awarding its cer-

tainty equivalent. That is, we must have ([p1, . . . , pN ;PV (x1, t), . . . , PV (xN , t)], 0) ∼
([1;CE(p1, . . . , pN ;PV (x1, t), . . . , PV (xN , t))], 0). A similar reasoning can be applied

to the dated lottery (l′, s), leading to ([q1, . . . , qM ;PV (y1, s), . . . , PV (yM , s)], 0) ∼
([1;CE(q1, . . . , qM ;PV (y1, s), . . . , PV (yM , s))], 0). Using REG, we can link (l, t) %

(l′, s) to the comparison of certainty equivalents CE(p1, . . . , pN ;PV (x1, t), . . . , PV (xN , t))

≥ CE(q1, . . . , qM ;PV (y1, s), . . . , PV (yM , s)), as desired. �

Claim 3. % satisfies REG, SEP, STAT and IND if and only if % can be represented

by PVCE.

Proof of Claim 3: Since the proof of necessity is immediate, we only prove

sufficiency. We start with the representation described in Claim 1. Consider the set

L × {0}. Here, our axioms imply those used in the standard treatment of expected

utility and, hence, it is immediate to see that there exists a continuous and strictly

increasing mapping v : X → R+ with v(0) = 0 such that a certainty equivalent

function is constructed from expected utility with Bernoulli utility function v. For

the time dimension, we use the results of Fishburn and Rubinstein (1982). Thus,

let %′ be the preference on X × T induced by the restriction of % to the set of all

dated degenerate lotteries, i.e. (x, t) %′ (y, s) if and only if ([1;x], t) % ([1; y], s). Our

axioms imply the axioms of Fishburn and Rubinstein’s Theorem 2, and hence there

exists δ ∈ (0, 1) and a continuous and strictly increasing mapping w : X → R+ with

w(0) = 0 such that (x, t) %′ (y, s) if and only if δtw(x) ≥ δsw(y). Since w−1 is a

strictly monotone transformation of w, it is evident that (x, t) %′ (y, s) if and only if

w−1[δtw(x)] ≥ w−1[δsw(y)]. It then follows that % admits a PVCE representation. �

Claim 4. % satisfies REG, FTTR, STAT and IND if and only if% can be represented

by CEPV.

Proof of Claim 4: It follows from Claim 2, using the same analysis as in the

proof of Claim 3. �

Claim 5. % satisfies REG, SEP, FTTR, STAT and IND if and only if % can be

represented by DEU.

Proof of Claim 5: The proof of necessity is immediate. For sufficiency, it is

enough to see that Proposition 4 extends immediately to L × T and hence, the result

follows from Claims 3 and 4. �
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Claim 6. % satisfies REG, SEP, FTTR, STAT, IND and PSI if and only if % can

be represented by DEU-H or equivalently, by PVCE-H and by CEPV-H.

Proof of Claim 6: The proof of necessity is immediate. For sufficiency, consider

any DEU representation of %. We now show that, whenever preferences satisfy PSI, the

function u in this representation must be homogeneous, and hence we have in fact DEU-

H. First, consider any x ∈ X and real number κ > 1. From the strict monotonicity of

u, we know that there exists tκ ∈ R++ such that u(x) = δtκu(κx). PSI allows us to

use this argument repeatedly to obtain ([1;κι−1x], 0) ∼ ([1;κιx], tκ) for every positive

integer ι ≥ 1. That is, u(κι−1x) = δtκu(κιx), or equivalently u(κιx) = δ−tκu(κι−1x)

for every ι ≥ 1, which means that u is a homogeneous function of degree −tκ log δ
log κ

on

the sequence of points {x, κx, κ2x, . . . }. By making x as close to 0 as desired and κ as

close to 1 as desired and using continuity, homogeneity must hold for the entire positive

orthant, as desired. The equivalence with PVCE-H and CEPV-H follows directly from

the defining properties and the fact that PVCE and CEPV contain DEU. �

The characterization result in Claim 6 concludes the proof. �

Proof of Proposition 7: For the first part, consider an instance f of the random util-

ity model built upon DEU-H, where h and δ are independently distributed, and a pair of

dated lotteries (l ≡ [p1, . . . , pN ;x1, . . . , xN ], t) and (l′ ≡ [q1, . . . , qM ; y1, . . . , yM ], s), with

l 6= [1; 0] and t < s. We know that, for DEU-H, (l, t) is preferred to (l′, s) if and only if

δt
∑

n pn
x1−hn

1−h > δs
∑

m qm
y1−hm

1−h . Since l 6= [1; 0], this is equivalent to 1 > δs−t
∑
m qmy

1−h
m∑

n pnxn
1−h .

Since the result is trivial for l′ = [1; 0], assume that l′ 6= [1; 0]. Having fixed δ, the

right hand side converges to δs−t whenever h converges to 1. Hence, the independence

assumption guarantees that the proportion of choices for which the inequality holds

must converge to 1 whenever h approaches 1, thus proving the result.

For the second part, notice that the first order condition of DEU-H can be rewritten

as (1−α)
α

= ( δ
sq
δtp

)
1
h ( y

x
)
1−h
h . Having fixed δ, the right hand side converges to δs−t q

p
when-

ever h converges to 1. α∗ = δtp
δtp+δsq

solves the first-order condition corresponding to the

limit value δs−t q
p
. The independence assumption then guarantees that as h converges

to 1, the mass of choices belonging to a neighborhood of α∗ approaches 1. Since this

result does not depend on x and y, the result has been proved. �
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Appendix B. Behavioral Models.

Here we outline how to introduce behavioral considerations in the treatment of

risk and time preferences, using the dated lottery setting for illustrative purposes.

In essence, Claims 1 and 2 in the proof of Proposition 5 axiomatically characterize

generalized versions of PVCE and CEPV based on generalized time-invariant certainty

equivalent mappings, not necessarily based on expected utility, and generalized present

value equivalent mappings, not necessarily based on exponential discounting. The com-

parative statics in these generalized representations are straightforward, with more risk

aversion captured directly by lower values of the certainty equivalent function, and

more delay aversion captured by lower values of the present value function. Behav-

ioral considerations can thus be incorporated into this framework through the use of

non-standard mappings, as we now illustrate with a simple parametric specification.

In order to save on notation, we assume two-payoff lotteries. In the treatment of

risk, we adopt the influential disappointment aversion model of Gul (1991) which, in

this setting with two-payoff lotteries, is a special case of the rank-dependent utility of

Quiggin (1982). For the treatment of time, we adopt the well-known β − δ model of

Laibson (1997), exemplifying with the generalized PVCE representation, and adopting

a homogeneous monetary function. Let ([p, 1−p;x1, x2], t) denote a dated binary lottery

with x1 ≥ x2. The certainty equivalent of Gul’s model requires us to evaluate the binary

lottery as [γ(p)x1−r
1 + (1 − γ(p))x1−r

2 ]
1

1−r , with weighting function γ(p) = p
1+(1−p)ζ ,

ζ ∈ (−1,∞), where ζ = 0 reduces the model to expected utility, ζ > 0 reflects

disappointment aversion and ζ < 0 elation seeking. In the β − δ model, future payoffs

are discounted by means of the standard exponential formula multiplied by a parameter

β ∈ (0, 1], representing present-bias. Hence, the present value equivalent of a monetary

payoff x awarded at time t > 0 is [βδtx1−η]
1

1−η .45 Then the behavioral version of the

PVCE model reduces to Uβ,δ,η,ζ,r([p, 1−p;x1, x2], t) = βδt[γ(p)x1−r
1 +(1−γ(p))x1−r

2 ]
1−η
1−r

whenever t > 0, and Uβ,δ,η,ζ,r([p, 1 − p;x1, x2], 0) = [γ(p)x1−r
1 + (1 − γ(p))x1−r

2 ]
1−η
1−r

otherwise.

45Formally, since the present value function of the standard β − δ model is discontinuous, one can

use a continuous decreasing piece-wise linear function β(t) taking value 1 when t = 0 and value β for

any time above a given tε. The β − δ model is the limit of these models when ε goes to zero. Notice

also that this assumption is ineffective in practice, since we can always assume that tε is lower than

the time involved in any future lotteries in an experimental dataset. The exponential discounting

model simply assumes β = 1.
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The comparative statics in terms of risk follow immediately when noting that the

certainty equivalent of a lottery decreases whenever either r or ζ increases. Similarly,

the present value of a future payoff decreases whenever either δ̂ or β decreases.

Appendix C. Computational Considerations

In practice, the implementation of the maximum likelihood estimator may be com-

plicated by the computation of probabilities ρimτ , since these are given by multiple

integrals with no closed-form solution. Numerical evaluation of these integrals using

quadrature methods can be very slow and fall prey to the curse of dimensionality.

Monte-Carlo integration, by directly drawing from the distributions of the parame-

ters, avoids the curse of dimensionality but can still be slow for the problem at hand.

Ultimately, this method may lead to log-likelihood functions that are not smooth in

the estimated parameters, preventing the use of traditional gradient-based methods to

maximize the log-likelihood and compute standard errors. As an alternative, we use

Quasi Monte-Carlo methods to evaluate ρimτ .
46

Formally, and for the case of DEU-H, we generate K Halton draws {hk, δ̂k}Kk=1 on

the domain of the parameters h and δ̂. Notice that these are not draws from the

distributions of h and δ̂, but quasi-random low-discrepancy sequences dependent upon

these distributions. To simplify computation, we assume sufficiently large compact

supports, characterized by the intervals [h, h] and [δ̂, δ̂], and formally work with the

associated truncated distributions over these intervals. Using these draws, we can

approximate ρimτ as follows

ρimτ (f) ≈V
K

K∑
k=1

I∑
i=1

M∑
m=1

1

(
τ = max

j∈{1,2,...,Tm}
DEUδk,hk(j)

)
f̄(hk)f̂(δ̂k),

where hk and δ̂k are the k-th draw of the parameters, δk is derived from the former as

usual, and V =
∫
h

∫
δ̂

dhdδ̂ = (h− h)(δ̂ − δ̂) is a normalization constant.

The advantages of this approach are based on the fact that, once the domain of the

parameters is specified and the points on the domain of the parameters are drawn,

the indicator function is independent of f̄ and f̂ . The indicator function can thus

be computed at first, stored, and then used in every step of the maximization of

the log-likelihood function, thereby dramatically speeding up the estimation. This is

46See Chapter 9.3 in Train (2003) for a textbook introduction.



39

especially useful when additional parameters are included, as in the cases of PVCE-H

and CEPV-H.47
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Table 1. Estimated Risk and Time Preferences: Andersen et al. (2008)

Dataset Risk Only Time Only Joint by Individual

Median h
0.620

[0.023]

0.620

[0.023]

0.718

(0.377)

Std. Dev. h
0.512

[0.023]

0.512

[0.023]

0.517

(0.284)

Median δ̂
0.983

[0.001]

0.983

[0.001]

0.980

(0.007)

Std. Dev. δ̂
0.016

[0.001]

0.016

[0.001]

0.085

(0.051)

# Obs. 7928 15180 23108 23108

Log-Likelihood −2.128 −0.543 −1.087 −0.991

NOTES.- The above table reports the maximum-likelihood estimates of the median and the standard

deviation of the distributions of risk and time preferences under the DEU-H representation, using data

from Andersen et al. (2008). The second column shows the results obtained using the subsample of

menus eliciting risk aversion only. The third column shows the results obtained using the subsample

of menus eliciting delay aversion only. The fourth column shows the results of the joint estimation of

risk aversion and delay aversion using the pooled menu sample. Standard errors, shown in brackets,

are computed using the delta method and clustered at the individual level. The last column shows

the median and standard deviation (in parentheses) of the distribution of individual estimates of the

respective parameter. In all cases, the coefficient of risk aversion h is assumed to follow a normal

distribution truncated at 1, while the corrected discount factor δ̂ follows a beta distribution.
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Figure 1. PDFs of Estimated Risk and Time Preferences: Andersen et al. (2008)

h δ̂

δ

NOTES.- PDFs of the estimated distributions reported in Table 1. The PDF of the discount factor δ = δ̂1−h is

estimated from the distributions of risk and delay aversion using a normal kernel.
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Figure 2. Individual Estimates: Andersen et al. (2008)
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NOTES.- Each point represents the median of the estimated distributions of the coefficient of risk

aversion h and the corrected discount factor δ̂ for the subsample of choice data for a particular individual,

following the estimation procedure reported in Table 1.
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Figure 3. CDFs of Estimated Risk and Time Preferences and Histograms of Individ-

ual Estimates: Andersen et al. (2008)

h δ̂

δ

NOTES.- CDFs of the pooled estimation and histograms of the empirical distributions of the individual estimates.
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Table 2. Estimated Risk and Time Preferences: Coble and Lusk (2010)

Dataset
Using Risk

Tasks Only

Using

Discount

Tasks Only

Using Joint

Tasks Only
All Tasks

All Tasks -

Correlated

Preferences

Pooled

Individual

Estimates

Median h
0.503

[0.072]
−

0.485

[0.109]

0.464

[0.076]

0.490

[0.074]

0.238

(0.012)

Std. Dev. h
0.569

[0.084]
−

0.413

[0.061]

0.582

[0.085]

0.554

[0.079]

0.530

(0.278)

Median δ̂ −
0.903

[0.012]

0.939

[0.017]

0.915

[0.010]

0.913

[0.010]

0.918

(0.054)

Std. Dev. δ̂ −
0.089

[0.017]

0.130

[0.034]

0.085

[0.013]

0.082

[0.013]

0.236

(0.031)

Corr(h,δ̂) − − − −
−0.453

[0.254]

0.023

# Obs. 1880 1128 1410 4418 4418 47

Log-

Likelihood
−0.878 −0.436 −0.362 −0.606 −0.604 −0.406

NOTES.- The above table reports the maximum-likelihood estimates of the median and the standard deviation of the distri-

butions of risk and time preferences under the DEU-H representation, using data from Coble and Lusk (2010). The second

column shows the results obtained using the subsample of menus eliciting risk aversion only. The third column shows the results

obtained using the subsample of menus eliciting delay aversion only. The fourth column shows the results using menus with

pairs of non-degenerate lotteries awarded at different time periods. The fifth column shows the results of the joint estimation of

risk aversion and delay aversion, using the pooled menu sample. The sixth column shows the estimates obtained when allowing

correlation between parameters using a Gaussian copula. Standard errors, shown in brackets, are computed using the delta

method and clustered at the individual level. The last column shows the median and standard deviation (in parentheses) of

the distribution of individual estimates of the respective parameter. In all cases, the coefficient of risk aversion h is assumed

to follow a normal distribution truncated at 1, while the corrected discount factor δ̂ follows a beta distribution.
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Figure 4. PDFs of Estimated Risk and Time Preferences: Coble and Lusk (2010)

h δ̂

δ

NOTES.- PDFs of the estimated distributions reported in Table 2. The PDF of the discount factor δ = δ̂1−h is

estimated from the distributions of risk and delay aversion using a normal kernel.
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Figure 5. Individual Estimates: Coble and Lusk (2010)
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NOTES.- Each point represents the median of the estimated distributions of the coefficient of risk

aversion h and the corrected discount factor δ̂ for the subsample of choice data for a particular individual,

following the estimation procedure reported in Table 2.
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Figure 6. CDFs of Estimated Risk and Time Preferences and Histograms of Individ-

ual Estimates: Coble and Lusk (2010)

h δ̂

δ

NOTES.- CDFs of the pooled estimation and histograms of the empirical distributions of the individual estimates.
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Figure 7. PDFs of Estimated Risk and Time Preferences: Andreoni and Sprenger

(2012b)

h/r δ̂

η δ

NOTES.- PDFs of the estimated distributions reported in Table 3. The PDF of the discount factor δ = δ̂1−η is estimated

non-parametrically from the distributions of intertemporal substitution and the corrected discount factor using a normal

kernel.
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Figure 8. Observed and Predicted Distributions of Choices in Andreoni and Sprenger

(2012b)

DEU-H PVCE-H CEPV-H

Risk Condition 1:

(p, q) = (1, 1)

Risk Condition 2:

(p, q) = (1, 0.8)

Risk Condition 3:

(p, q) = (0.8, 1)

Risk Condition 4:

(p, q) = (0.5, 0.5)

Risk Condition 5:

(p, q) = (0.5, 0.4)

Risk Condition 6:

(p, q) = (0.4, 0.5)

NOTES.- Observed frequencies and predicted probabilities of choosing share α (×100) under each risk condition

considered in Andreoni and Sprenger (2012b). The observed distributions show the relative frequency of each allocation

in the data, grouped to the closest multiple of 10. The predicted distributions are computed based on the estimated

parameters of the respective representation, as shown in Table 3.
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Figure 9. Individual Estimates: Andreoni and Sprenger (2012b)
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NOTES.- Each point represents a combination of the medians of the estimated distributions of the coefficients of risk

aversion h/r, the corrected discount factor δ̂, and the curvature of intertemporal substitution η for the subsample of

choice data for a particular individual, following the estimation procedure reported in Table 3.
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