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Abstract

This paper studies the one-to-one two-sided marriage model (Gale and Shapley, 1962).

If agents’ preferences exhibit mutually best, there is a unique stable matching that is

trivially rank-fair (i.e., in each matched pair the agents assign one another the same

rank). We study in how far this result is robust for matching markets that are “close”

to mutually best. Without a restriction on preference profiles, we find that natural

“distances” to mutually best neither bound the size of the core nor the rank-unfairness of

stable matchings. However, for matching markets that satisfy horizontal heterogeneity,

“local” distances to mutually best provide bounds for the size of the core and the rank-

unfairness of stable matchings.
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1 Introduction

We study the one-to-one two-sided marriage model (Gale and Shapley, 1962) with the same
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preferences over the agents on the other side of the market. We assume that being matched

is preferred to being unmatched (and consuming some outside option). Hence, each agent’s

preferences can be represented by a ranking of the agents on the other side of the market.

If the agents’ preferences satisfy vertical heterogeneity, i.e., there is a strict and objective

ranking of men by women and of women by men, then there is a unique stable matching

that is moreover rank-fair (within matched pairs). Stability is the central notion in matching

theory and refers to the absence of a blocking pair, i.e., a man and a woman that would

prefer being matched to one another rather than keeping their current mates. Rank-fairness

(Jaramillo et al., 2019) refers to the property that if a man ranks his mate kth, then she also

ranks him kth. This can be interpreted as a notion of fairness within a matched pair: no agent

can argue that his mate is treated more favorably.

The results in Holzman and Samet (2014) imply a generalization of the previous observa-

tion: rank-unfairness and the size or diameter of the set of stable matchings (i.e., the core) are

bounded by measures of the diversity of rankings (i.e., the distance to vertical heterogeneity).1

The size of the core is measured by means of the rank gap that exists between each agent’s

least preferred and most preferred mate among those that are obtained at stable matchings.

Rank-(un)fairness at a stable matching is measured by means of the differences in ranks that

matched agents assign to one another. Loosely speaking, if the preference profile is “close” to

vertical heterogeneity, then the core is “small” and stable matchings are “almost” rank-fair.

As schematically depicted in Figure 1, these findings in Holzman and Samet (2014) hold on

the entire domain of marriage problems.

Vert. Het.

Figure 1: Holzman and Samet (2014) approaching vertical heterogeneity.

The starting point of this paper is a natural horizontal counterpart of vertical hetero-

geneity: mutually best. A marriage problem satisfies mutually best if top ranked agents are

reciprocal, i.e., each man’s most preferred woman also prefers him most. For instance, mu-

tually best is satisfied if agents can be positioned along two concentric circles (one for each

1Jaramillo et al. (2019) prove similar results for a class of roommate problems that is not logically related

to the class of marriage problems studied in Holzman and Samet (2014).
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gender), and each agent prefers a possible mate to another if the former is closer by than

the latter (Burdett and Wright, 1998; Kiyotaki and Wright, 1989; Smith, 2002). Obviously, if

preferences are mutually best, there is a unique stable matching, which is moreover rank-fair.

Similarly to Holzman and Samet (2014), our goal is to investigate whether preference profiles

that are “almost” mutually best have a core that is “small” and stable matchings that are

“almost” rank-fair.

Before we summarize our results it is convenient to note that the domain of problems

that satisfy mutually best is the intersection of two domains that we explain next: horizontal

heterogeneity and the domain in Eeckhout (2000, Theorem 1). Horizontal heterogeneity is

the condition that all men most prefer different women and all women most prefer different

men.2 The condition in Eeckhout (2000, Theorem 1), which is sufficient but not necessary for

the uniqueness of stable matchings, requires preferences to be mutually best on recursively

defined subsets of agents.3 Following Clark (2006), we will refer to this condition as Eeckhout’s

sequential preference condition (SPC). This condition is satisfied in marriage problems with

vertical heterogeneity. For horizontal heterogeneity it is satisfied if and only if preferences

satisfy mutually best, which is the case if and only if there is a unique stable matching. The

Venn-diagram in Figure 2 summarizes the logical relations between the discussed domains.

Eeckhout’s SPC

Singleton Core

Vert. Het. Horiz. Het.

Mutually Best

Figure 2: Venn-diagram of domains of preference profiles.

Given a marriage problem, to quantify the extent to which the preference profile violates

mutually best (i.e., its “distance” from the domain of mutually best), we introduce two types

of measures. The first type of measure is a “local” distance which first computes for each

agent the rank with which his/her most preferred mate reciprocates and then aggregates by

2In Eeckhout (2000, Corollary 4) “horizontal heterogeneity” refers to our condition of mutually best. Our

domain of horizontal heterogeneity contains the domain with the same name in Eeckhout (2000) but also

contains profiles where all men prefer different women and all women prefer different men but where not all

most preferred mates form mutually best pairs.
3The condition requires that agents can be relabeled m1, . . . ,mn and w1, . . . , wn such that for each i, man

mi and woman wi are mutually best after removing agents m1, . . . ,mi−1 and w1, . . . , wi−1.
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using generalized means. The second type of measure is a “global” distance which is based

on the computation of a (well-defined) matching that is as close as possible to mutually best

by minimizing some generalized mean. We show that these matchings can be obtained in

polynomial time by applying the Hungarian algorithm (cf. Kuhn, 1955; Munkres, 1957) to an

associated cost-minimizing job assignment problem.

Our goal is to determine whether rank-unfairness and the size of the core are bounded

by the distance of the preference profile to the domain of mutually best. In other words, do

small distances to mutually best lead to almost rank-fair stable matchings and a small core?

In view of the Venn-diagram in Figure 2, it seems natural to study and “approach” mutually

best from three different domains: horizontal heterogeneity, Eeckhout’s SPC domain, and the

general domain (i.e., without any restrictions) – see Figure 3.

Eeckhout’s SPC

Horiz. Het.

Mutually Best

(a) From the domain of hori-

zontal heterogeneity.

Eeckhout’s SPC

Horiz. Het.

Mutually Best

(b) From the domain of Eeck-

hout’s sequential preference

condition.

Eeckhout’s SPC

Horiz. Het.

Mutually Best

(c) Without domain restric-

tions.

Figure 3: This paper: approaching mutually best from three different domains.

Our main findings are as follows.

(a) On the domain of horizontally heterogeneous problems: rank-unfairness of stable match-

ings and the size of the core are bounded in terms of local distances (Propositions 1

and 3) but not global distances (Propositions 2 and 4).

(b) On the domain of problems that satisfy Eeckhout’s sequential preference condition:

the size of the core is trivially bounded (as there is a unique stable matching) but

rank-unfairness of stable matchings is not bounded in terms of local or global distances

(Proposition 5).

(c) On the general domain: rank-unfairness of stable matchings and the size of the core are

not bounded in terms of local or global distances (Proposition 6 and Corollaries 2 and 3

to results in (a) and (b)).

The remainder of the paper is organized as follows. In Section 2, we describe the model

and define rank-fairness and the size of the core. In Section 3, we introduce restricted domains

of problems and local/global distances to mutually best. In Section 4, we state and prove our

findings. Section 5 concludes. The computation of global distances to mutually best based

on the Hungarian algorithm is explained and illustrated in the Appendix.
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2 The model

There are two finite disjoint sets of men M and women W of equal cardinality n ∈ N with

n ≥ 2. Each man m ∈M has a strict preference relation �m over W , and each woman w ∈ W
has a strict preference relation �w over M .4 For each m ∈ M , man m’s preferences can be

represented by a ranking, i.e., a bijection rm : W → {1, . . . , , n} such that for w,w′ ∈ W ,

rm(w) < rm(w′) if and only if w �m w′. The integer rm(w) is the rank of w in man m’s

ranking. Hence, more preferred agents have a smaller rank. Similarly, for each w ∈ W ,

woman w’s preferences can be represented by a ranking rw. Let r = (ri)i∈M∪W be the profile

of rankings. A (marriage) problem (Gale and Shapley, 1962) is given by (M,W, r), or r

for short.

A matching is a function µ : M ∪W →M ∪W such that for all m ∈M and all w ∈ W ,

µ(m) ∈ W , µ(w) ∈ M , and µ(m) = w ⇔ µ(w) = m. If µ(m) = w, we say that m and w are

matched to one another and that they are (each other’s) mates at µ. Let M denote the set

of matchings. For convenience we often denote a matching by its set of matched pairs.

A pair (m,w) blocks a matching µ if rm(w) < rm(µ(m)) and rw(m) < rw(µ(w)). A

matching µ is stable if no pair blocks it. It is well-known that the core C ≡ C(r) equals the

set of stable matchings. Gale and Shapley (1962) showed that each marriage problem has a

stable matching. In fact, they proved the existence of a man-optimal (and woman-pessimal)

stable matching µM such that for all m ∈M and all w ∈ W , rm(µM(m)) = minµ∈C rm(µ(m))

and rw(µM(w)) = maxµ∈C rw(µ(w)). Similarly, there exists a woman-optimal (and man-

pessimal) stable matching µW .

Holzman and Samet (2014) focused on averages and maxima to define their main concepts.

In order to carry out an analysis that goes beyond averages and maxima, we recall the

definition of a generalized mean. Let p > 0. For any multiset5 {x1, . . . , x`} that consists of

` ∈ N, ` ≥ 1 non-negative numbers x1, . . . , x` ∈ R+, we define its (p-)generalized mean by

Mp({x1, . . . , x`}) ≡
p

√√√√ 1

`

∑̀
k=1

xpk .

Note that M1 is the arithmetic mean. It is also known (see, e.g., Bullen, 2003) that

lim
p→∞

Mp({x1, . . . , x`}) = max{x1, . . . , x`} (1)

for any multiset {x1, . . . , x`} of non-negative numbers. For this reason it is convenient to

define the (∞-)generalized mean:

M∞({x1, . . . , x`}) ≡ max{x1, . . . , x`}.
4In particular, following Holzman and Samet (2014), it is assumed that all agents on the other side are

“acceptable,” i.e., each agent prefers to be matched to any agent from the other side rather than remaining

unmatched (and consuming some outside option).
5Unlike a set, a multiset allows for multiple instances for each of its elements.
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Rank-fairness. Following (Holzman and Samet, 2014), the rank gap of a pair (m,w) ∈
M ×W is given by |rm(w)− rw(m)|. To aggregate the rank gaps of all n pairs at a matching

we use generalized means. More specifically, for each p ∈ (0,∞], the (p-aggregated) rank

gap at matching µ for problem r is defined as the p-generalized mean of all rank gaps, i.e.,

Γp(µ) ≡Mp

 ⋃
(m,w)∈µ

{|rm(w)− rw(m)|}

 .

For p = 1 and p =∞, the p-aggregated rank gap boils down to the average rank gap and the

maximum rank gap, respectively. A matching µ is rank-fair (see also Jaramillo et al., 2019)

if for some p ∈ (0,∞], Γp(µ) = 0 or, equivalently, for all p ∈ (0,∞], Γp(µ) = 0.

Size of the core. Following Holzman and Samet (2014), to measure the size of the core,

we consider for each agent i ∈M∪W the range of different ranks obtained at stable matchings

which, by side-optimality of µM and µW , equals |ri(µM(i))− ri(µW (i))|. To aggregate over all

2n agents we use again generalized means. Specifically, for p ∈ (0,∞], the (p-)size/diameter

of the core of problem r is defined by

Dp(C(r)) ≡Mp

( ⋃
i∈M∪W

{|ri(µM(i))− ri(µW (i))|}

)
.

The size of the core is nil if for some p ∈ (0,∞], Dp(C(r)) = 0 or, equivalently, for all

p ∈ (0,∞], Dp(C(r)) = 0.

3 Domains and distances

3.1 Restricted domains of problems

A marriage problem (M,W, r) satisfies horizontal heterogeneity if all women most prefer

different men and all men most prefer different women, i.e., for all m,m′ ∈M and all w,w′ ∈
W , [rw(m) = rw′(m) = 1 implies w = w′] and [rm(w) = rm′(w) = 1 implies m = m′].

For given sets of men M and women W , we denote the class of problems r that satisfy

horizontal heterogeneity byH(M,W ). For marriage problems with horizontal heterogeneity,

matching each woman to her most preferred man yields the woman-optimal stable matching,

and similarly, matching each man to his most preferred woman yields the man-optimal stable

matching.

A marriage problem (M,W, r) satisfies Eeckhout’s sequential preference condition if

there is an ordering ofM , say w.l.o.g.m1, . . .mn, and an ordering ofW , say w.l.o.g. w1, . . . , wn,

such that for all k, l = 1, . . . , n with l > k, rwk
(mk) < rwk

(ml) and rmk
(wk) < rmk

(wl). For

given sets of men M and women W , we denote the class of problems r that satisfy Eeckhout’s

sequential preference condition by E(M,W ). Eeckhout (2000, Theorem 1) showed that this

condition implies a singleton core, i.e., for each r ∈ E(M,W ), |C(r)| = 1.
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Finally, let MB(M,W ) denote the class of problems with mutually best mates, i.e.,

for each m ∈ M there is w ∈ W with rm(w) = rw(m) = 1. If preferences are mutually

best, the unique stable matching is rank-fair. Note MB(M,W ) = H(M,W ) ∩ E(M,W ). It

is easy to see that the domains H(M,W ) and E(M,W ) are logically unrelated. Finally, for

r ∈ H(M,W ) we have |C(r)| = 1 if and only if r ∈ E(M,W ). To see this, note that |C(r)| = 1

if and only if the two side-optimal stable matchings coincide (and then constitute the unique

stable matching), which for r ∈ H(M,W ) occurs if and only if the top preferences of the two

sides are reciprocal, i.e., the problem satisfies mutually best.

3.2 Distances to mutually best

We consider two natural types of “distances.” The first type is that of local distances, i.e.,

measures that consider the distance from mutually best separately for each agent.

Local distances. Let r be a marriage problem. For each i ∈ M ∪W , let t(i) denote i’s

most preferred agent, i.e., ri(t(i)) = 1. Hence, rt(i)(i) is the rank that i’s favorite agent assigns

to i. For any p ∈ (0,∞], the local (p-)distance from mutually best at r is

∆l
p(r) ≡Mp

( ⋃
i∈M∪W

{
rt(i)(i)− 1

})
.

Note that for p = 1 and p = ∞, ∆l
p(r) yields the average and the maximum of the numbers

{rt(i)(i) − 1}i∈M∪W , respectively. Moreover, for any r ∈ MB(M,W ) and any p ∈ (0,∞],

∆l
p(r) = 0.

The distances have a “local” flavor as they compute for each agent the rank with which

his/her most preferred mate reciprocates – in particular, it does not require the function

i 7→ t(i) to constitute a well-defined matching. Note also that the computation of local

distances is easy as it only requires finding for each agent i the rank of i according to the

ranking of agent t(i).

Example 1. [Local distances.]

Consider problem r in Table 1. Here, each column represents the ranking of an agent. For

instance, the 3rd entry of the 2nd column of the table on the left hand side shows that rm2(w4) =

3. The bold-faced entries depict agents i in the ranking of t(i). By looking at the bold-faced

entries, we obtain ∆l
1(r) = 1

8
(0 + 2 + 3 + 0 + 0 + 2 + 0 + 3) = 5

4
and ∆l

∞(r) = rm1(w1)− 1 =

4− 1 = 3. For other values of p ∈ (0,∞], ∆l
p(r) can be calculated similarly. �

In order to measure the extent to which a problem fails to satisfy mutually best from a

global point of view, we consider how close we can get to the most preferred mates for all

agents simultaneously by a well-defined matching.

7



m1 m2 m3 m4

w4 w2 w3 w4

w2 w3 w4 w2

w3 w4 w1 w3

w1 w1 w2 w1

w1 w2 w3 w4

m1 m2 m1 m1

m3 m3 m2 m2

m2 m4 m3 m3

m4 m1 m4 m4

Table 1: Problem r in Example 1. Bold-faced entries indicate how most preferred agents reciprocate.

Global distances. Similarly to local distances, we consider global distances based on gen-

eralized means. Formally, the global (p-)distance from mutually best at r, is

∆g
p(r) ≡ min

µ∈M
Mp

( ⋃
i∈M∪W

{ri(µ(i))− 1}

)
.

Note that for p = 1 and p =∞, ∆g
p(r) yields the minimum over all matchings of the average

and the maximum of the numbers {ri(µ(i)) − 1}i∈M∪W , respectively. Moreover, for any

r ∈MB(M,W ) and any p ∈ (0,∞], ∆g
p(r) = 0.

Finding the minimizer in ∆g
p(r) for a given p ∈ (0,∞) is equivalent to solving the following

(job) assignment problem. Let (M,W, r) be a marriage problem with |M | = |W | = n. Let

M = {m1, . . . ,mn} and W = {w1, . . . , wn}. Consider the n × n matrix C where for all

k, l = 1, . . . , n,

ckl = (rmk
(wl)− 1)p + (rwl

(mk)− 1)p (2)

is interpreted as the cost for “worker” mk to carry out “job” wl. The objective is to find a

feasible assignment of jobs to workers that minimizes total costs:

min
n∑
k=1

n∑
l=1

cklxkl (3)

s.t.
n∑
l=1

xkl = 1 for all k = 1, . . . , n;

n∑
k=1

xkl = 1 for all l = 1, . . . , n;

xkl ≥ 0 for all k, l = 1, . . . , n.

There is always an optimal solution to the program in (3) in integer values, which can be

found in polynomial time, e.g., by using the Hungarian algorithm (cf. Kuhn, 1955; Munkres,

1957). An integer solution x to (3) corresponds to a minimizer µ− in the computation of

∆g
p(r) by taking µ−(mk) = wl if and only if xkl = 1. As an example, for p = 1 and problem r

in Table 1, one of the minimizers is µ− = {m1w1,m2w2,m3w3,m4w4}, which yields ∆g
1(r) =

1
8

∑
i∈M∪W

(ri(µ
−(i))− 1) = 1. The computation of ∆g

∞(r) is slightly more cumbersome but can
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still be done in polynomial time. More specifically, the computation consists of applying at

most n− 1 times the Hungarian algorithm to “perturbed” rankings to see whether all agents

can be matched to a mate that is ranked at most (n − 1)st, at most (n − 2)nd, etc. In the

Appendix, we provide a detailed discussion of computations of ∆g
p(r) for p ∈ (0,∞] using the

Hungarian algorithm.

Example 2. [Local and global distances are logically unrelated.]

The local and global p-distances are logically unrelated, i.e., for any p ∈ (0,∞], there is a

problem for which ∆g
p is strictly larger than ∆l

p and there is also a problem for which ∆g
p is

weakly smaller than ∆l
p.

To establish the first statement, consider problem r′ exhibited in Table 2. Let p ∈ (0,∞).

Looking at the bold-faced entries, one immediately verifies that ∆l
p(r
′) = p

√
1
8
(1p + 1p). Next,

by simple but cumbersome checking of cases, one verifies that at any feasible matching (stable

or not), at least one agent is matched to his/her second-ranked mate (or worse) and at least

one other agent is matched to his/her third-ranked mate (or worse). Hence,

∆g
p(r
′) = min

µ∈M
Mp

( ⋃
i∈M∪W

{r′i(µ(i))− 1}

)
≥ p

√
1

8
((2− 1)p + (3− 1)p).

Therefore, ∆g
p(r
′) > ∆l

p(r
′). Moreover, from the above and (1), ∆g

∞(r′) ≥ 2 > 1 = ∆l
∞(r′) as

well.

m1 m2 m3 m4

w1 w2 w3 w3

w4 w3 w1 w2

w3 w1 w2 w1

w2 w4 w4 w4

w1 w2 w3 w4

m1 m2 m3 m1

m2 m3 m4 m2

m3 m4 m1 m3

m4 m1 m2 m4

Table 2: Problem r′ in Example 2.

The second statement follows from the next lemma. �

Lemma 1. Let (M,W, r) be a marriage problem where all men most prefer different women

or all women most prefer different men. Then, for any p ∈ (0,∞], ∆g
p(r) ≤ ∆l

p(r).

Proof. Assume, without loss of generality, that all men most prefer different women. Then,

assigning each man m to his most preferred woman t(m) yields (the well-defined matching)

µM . Let p ∈ (0,∞). We have

∆g
p(r) = min

µ∈M
p
√

1

2n

∑
i∈M∪W

(ri(µ(i))− 1)p

9



≤ p
√

1

2n

∑
i∈M∪W

(ri(µM(i))− 1)p

= p
√

1

2n
[
∑
m∈M

(1− 1)p +
∑
m∈M

(rt(m)(m)− 1)p]

≤ p
√

1

2n

∑
i∈M∪W

(rt(i)(i)− 1)p = ∆l
p(r).

Moreover, from the above and (1), ∆g
∞(r) ≤ ∆l

∞(r) as well.

Corollary 1. [Local and global distances on domain of horizontal heterogeneity.]

Let p ∈ (0,∞]. For any marriage problem (M,W, r) with r ∈ H(M,W ), ∆g
p(r) ≤ ∆l

p(r).

In contrast, no clear-cut relation between ∆g
p and ∆l

p exists on the domain of Eeckhout’s

sequential preference condition. On the one hand, for r′ ∈ E(M,W )\H(M,W ) in Example 2

we have already seen that for any p ∈ (0,∞], ∆g
p(r
′) > ∆l

p(r
′).

On the other hand, for profile r ∈ E(M,W )\H(M,W ) in Table 3 we claim that for any

p ∈ (0,∞], ∆g
p(r) ≤ ∆l

p(r).

m1 m2 m3

w1 w1 w2

w3 w2 w1

w2 w3 w3

w1 w2 w3

m1 m1 m2

m3 m2 m1

m2 m3 m3

Table 3: Problem r with ∆g
p(r) ≤ ∆l

p(r) for all p ∈ (0,∞].

To see this, let p ∈ (0,∞). Since µ∗ = {m1w1,m2w2,m3w3} is a feasible matching,

∆g
p(r) = min

µ∈M
Mp

( ⋃
i∈M∪W

{ri(µ(i))− 1}

)

≤ Mp

( ⋃
i∈M∪W

{ri(µ∗(i))− 1}

)

=
p

√
1

6
(0p + 1p + 2p + 0p + 1p + 2p)

≤ p

√
1

6
(0p + 2p + 2p + 0p + 2p + 2p) = ∆l

p(r).

Moreover, from the above and (1), ∆g
∞(r) ≤ ∆l

∞(r) as well.
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4 Bounds on rank-unfairness and size of core

4.1 Approaching mutually best on the domain of horizontal het-

erogeneity

Consider a marriage problem (M,W, r) that satisfies horizontal heterogeneity, i.e., r ∈
H(M,W ). If the problem satisfies mutually best, then there is a unique and rank-fair stable

matching. Below we explore what happens with the size of the core and the rank-fairness

of the stable matchings if the problem does not satisfy mutually best. The first question we

tackle is whether rank-unfairness can be bounded in terms of the distance to mutually best.

It turns out that the answer depends on whether the local or global distance to mutually best

is used.

Proposition 1. [Rank-unfairness bounded by local distances to mutually best.]

For any marriage problem (M,W, r) with r ∈ H(M,W ), for any µ ∈ C(r), and for any

p ∈ (0,∞), Γp(µ) ≤ p
√

2 ∆l
p(r) and Γ∞(µ) ≤ ∆l

∞(r).

Proof. Let µ ∈ C(r). Let p ∈ (0,∞). Then,

Γp(µ) = p
√

1

n

∑
(m,w)∈µ

|rm(w)− rw(m)|p

≤ p
√

1

n

∑
(m,w)∈µ

max{(rm(µW (m))− 1)p, (rw(µM(w))− 1)p}

≤ p
√

1

n

∑
(m,w)∈µ

(rm(µW (m))− 1)p +
1

n

∑
(m,w)∈µ

(rw(µM(w))− 1)p

= p
√

1

n

∑
i∈M∪W

(rt(i)(i)− 1)p

=
p√
2 ∆l

p(r),

where the second equality follows from r ∈ H(M,W ). Hence, for any p ∈ (0,∞), Γp(µ) ≤
p
√

2 ∆l
p(r). Then, from (1) it follows that Γ∞(µ) ≤ ∆l

∞(r).

Proposition 1 says that on the domain of problems that satisfy horizontal heterogeneity,

if for a given problem either of the local distances to mutually best is small, then no stable

matching can be very rank-unfair.

However, as the following result shows, rank-unfairness cannot be bounded in terms of the

global distances to mutually best.
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Proposition 2. [Rank-unfairness cannot be bounded by global distances to mutu-

ally best.]

For any α > 0, there is a marriage problem (M,W, r) with r ∈ H(M,W ) and µ ∈ C(r) such

that for any p ∈ (0,∞], Γp(µ) > α∆g
p(r).

Proof. Let n ≥ 3 be an integer such that n− 1 > α. Let p ∈ (0,∞). Consider the marriage

problem (M,W, r) exhibited in Table 4.

m1 m2 m3 . . . mn

w1 w2 w3 . . . wn

w2 w3 w4 . . . w1

...
...

...
...

...

wn w1 w2 . . . wn−1

w1 w2 w3 . . . wn

m2 m3 m4 . . . m1

mn m1 m2 . . . mn−1
...

...
...

...
...

m1 m2 m3 . . . mn

Table 4: Problem r exhibits “mutually second-best” (boxed matching).

Note that r ∈ H(M,W ). At any of the two side-optimal stable matchings µ, the rank gap

is n− 1, i.e., Γp(µ) = n− 1.

Let µ∗ be the matching where each agent is matched to his/her second most preferred

mate. We have

∆g
p(r) = min

µ∈M
Mp

( ⋃
i∈M∪W

{ri(µ(i))− 1}

)

≤ Mp

( ⋃
i∈M∪W

{ri(µ∗(i))− 1}

)

=
p

√
1

2n
(1p + · · ·+ 1p)

= 1.

So, ∆g
p(r) ≤ 1. Hence, Γp(µ) > α∆g

p(r).

Moreover, from the above and (1), Γ∞(µ) = n− 1 > α ≥ α∆g
∞(r) as well.

Next, we turn to the size of the core.

Proposition 3. [Size of core bounded by local distance to mutually best.]

For any marriage problem (M,W, r) with r ∈ H(M,W ) and any p ∈ (0,∞], Dp(C(r)) =

∆l
p(r).

Proof. Note that for any m ∈M ,

|rm(µM(m))− rm(µW (m))| = rm(µW (m))− 1 = rt(µW (m))(µW (m))− 1.

12



Therefore,

{|rm(µM(m))− rm(µW (m))|}m∈M and {rt(w)(w)− 1}w∈W

are identical multisets. Similarly,

{|rw(µW (w))− rw(µM(w))|}w∈W and {rt(m)(m)− 1}m∈M

are identical multisets. Hence,

Dp(C(r)) = Mp

( ⋃
i∈M∪W

{|ri(µM(i))− ri(µW (i))|}

)
= Mp

( ⋃
i∈M∪W

{
rt(i)(i)− 1

})
= ∆l

p(r)

follows.

As the following result shows, it is not possible to replace local distance by global distance

in Proposition 3: the size of the core cannot be bounded in terms of the global distance to

mutually best.

Proposition 4. [Size of the core cannot be bounded by global distances to mutually

best.]

For any α > 0, there is a marriage problem (M,W, r) with r ∈ H(M,W ) such that for any

p ∈ (0,∞], Dp(C(r)) > α∆g
p(r).

Proof. Let n ≥ 3 be an integer such that n− 1 > α. Let p ∈ (0,∞]. For profile r ∈ H(M,W )

in Table 4 we already know from the proof of Proposition 2 that ∆g
p(r) ≤ 1. Since Dp(C(r)) =

n− 1 > α, the statement follows.

4.2 Approaching mutually best on the domain of Eeckhout’s se-

quential preference condition

For any problem that satisfies Eeckhout’s sequential preference condition, there is a unique

stable matching so that the diameter of the core is nil and hence trivially bounded.

The following result shows that on the domain of Eeckhout’s sequential preference condi-

tion rank-unfairness cannot be bounded in terms of distances to mutually best.

Proposition 5. [Rank-unfairness cannot be bounded by distances to mutually

best.]

For any α > 0, there is a marriage problem (M,W, r) with r ∈ E(M,W ) such that for any

µ ∈ C(r) and any p ∈ (0,∞], Γp(µ) > α∆l
p(r), α∆g

p(r).

Proof. Consider problem (M,W, r) depicted in Table 5 where n > max{α+2, 3}. It is easy to

see that r ∈ E(M,W ). For the unique stable matching µ ∈ C(r), which is depicted in boxes,

we have Γp(µ) = p

√
1
n
(n− 2)p for all p ∈ (0,∞).

13



m1 m2 m3 m4 m5 . . . mn

w1 w1 w3 w4 w5 . . . wn

w2 w2

...
...

...
...

...

...
...

w1 w2 w3 w4 w5 . . . wn

m1 m1 m3 m4 m5 . . . mn

m2

...
...

...
...

...
...

... m2

Table 5: Problem r ∈ E(M,W ) in Proposition 5.

From the bold-faced entries it follows that for any p ∈ (0,∞), ∆l
p(r) = p

√
1
2n

(1p + 1p) =
1

n1/p . Similarly, from the encircled matching it follows that for any p ∈ (0,∞), ∆g
p(r) ≤ 1

n1/p .

Hence,

Γp(µ) =
n− 2

n1/p
> α

1

n1/p
≥ α∆l

p(r), α∆g
p(r) for all p ∈ (0,∞). (4)

From (1) and (4) one obtains

Γ∞(µ) = n− 2 > α ≥ α∆l
∞(r), α∆g

∞(r).

4.3 Approaching mutually best without domain restrictions

As indicated by Proposition 5, rank-unfairness cannot be bounded by distances to mutually

best for marriage problems on the domain of Eeckhout’s sequential preference condition. This

directly implies the following first negative result on the general domain.

Corollary 2. [Rank-unfairness cannot be bounded by distances to mutually best.]

For any α > 0, there is a marriage problem (M,W, r) such that for any µ ∈ C(r) and any

p ∈ (0,∞], Γp(µ) > α∆l
p(r), α∆g

p(r).

Similarly, as Proposition 4 demonstrates that the size of the core is not bounded by global

distances to mutually best on the domain of horizontal heterogeneity, we get the second

negative result on the general domain.

Corollary 3. [Size of the core cannot be bounded by global distances to mutually

best.]

For any α > 0, there is a marriage problem (M,W, r) such that for any p ∈ (0,∞], Dp(C(r)) >
α∆g

p(r).

Given Corollaries 2 and 3, the only remaining question for approaching mutually best

from the general domain is: can the size of the core be bounded in terms of local distances

to mutually best? Our last result, below, answers also this question in the negative.
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Proposition 6. [Size of the core cannot be bounded by local distances to mutually

best.]

For any α > 0 and any p ∈ (0,∞], there is a marriage problem (M,W, r) such that Dp(C(r)) >
α∆l

p(r).

Proof. Let p ∈ (0,∞). Let n > 4 be an integer such that

p√
[6 + 2p + (n− 1)p] > α

p√
[5 + 3× 2p].

Consider problem (M,W, r) depicted in Table 6. The man-optimal stable matching µM is

depicted in boxes, while the woman-optimal stable matching µW is depicted in circles. From

m1 m2 m3 m4 m5 . . . mn

w2 w2 w3 w4 w5 . . . wn

w1 w1 w4 w3

...
...

...

... w4 w2

...

...
...

w1 w2 w3 w4 w5 . . . wn

m1 m3 m4 m2 m5 . . . mn

m3 m1 m3 m4

...
...

...

m4 m2

...
...

...
...

m2

Table 6: Problem r in Proposition 6.

these two stable matchings and the bold-faced entries it follows that

Dp(C(r)) =
p
√

1

2n
[6 + 2p + (n− 1)p] and ∆l

p(r) =
p
√

1

2n
[5 + 3× 2p] , (5)

respectively. Hence, Dp(C(r)) > α∆l
p(r).

Finally, using (1) and (5) or directly the definitions of D∞(C(r)) and ∆l
∞(r), we find that

for (M,W, r) depicted in Table 6 with n > max{4, 2α + 1}, D∞(C(r)) > α∆l
∞(r).

5 Conclusion

For the analysis of matching problems, it is arguably not only crucial to consider the existence

of stable matchings but also the corresponding conflict within matched pairs (as measured

by the rank-(un)fairness of a stable matching) and across market sides (as measured by the

diameter of the core).

While Holzman and Samet (2014) demonstrate that preference profiles that are close

to vertical heterogeneity (i.e., agents of each market side almost agree on the ranking of the

other market side) yield a small core and stable matchings that are almost rank-fair, our study

15



indicates that a generalization of these findings beyond the case of vertical heterogeneity is

not straightforward.

Rather than considering vertical heterogeneity, we start out with a horizontal counterpart:

profiles that exhibit mutually best (i.e., for each man, his most preferred woman also considers

him her best mate). As in the case of vertical heterogeneity, mutually best implies that there

is a unique and rank-fair stable matching. But in contrast to vertical heterogeneity, the fact

that a profile almost satisfies mutually best does not necessarily mean that it has a small

core nor that its stable matchings are almost rank-fair. Only if the profile satisfies horizontal

heterogeneity, results similar to those of Holzman and Samet (2014) can be established for

local distances (Propositions 1 and 3 being the (horizontal) counterparts of Theorems 1, 2,

3, and 4 in Holzman and Samet, 2014). However, as is shown in Propositions 2 and 4, these

results cannot be extended to global distances. Finally, we notice that, qualitatively, none of

our (positive and negative) results depend on the particular generalized mean that is used to

measure distances, rank-unfairness, and the size of the core.

Appendix: Computation of global distances

In the Appendix, we discuss the computation of the global distances ∆g
p(·) through an appli-

cation of the Hungarian algorithm (cf. Kuhn, 1955; Munkres, 1957). We provide a detailed

description for p = 1 and p = ∞. For any other value p ∈ (0,∞) the computation is similar

to that for p = 1, the only difference being the definition of the matrix C.

Computation of global 1-distance from mutually best

Let (M,W, r) be a marriage problem with |M | = |W | = n. Let M = {m1, . . . ,mn} and

W = {w1, . . . , wn}. We first construct the n × n matrix C where for all k, l = 1, . . . , n,

ckl = rmk
(wl) + rwl

(mk). (In general, for any p ∈ (0,∞), the matrix C is defined by (2). For

the sake of convenience we simplified the matrix C for p = 1 by not subtracting 1 from each

rank.)

Example 3. [Matrix C for problem r in Table 1.]

Using problem r in Table 1, straightforward calculations yield

C =


5 6 4 2

7 2 4 5

5 6 4 5

8 5 7 5

 .

�
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Next, we apply the Hungarian algorithm to matrix C. The algorithm consists of five steps.

Steps 1 and 2 are executed only once, while Steps 3 and 4 are repeated until we move to Step

5 which outputs a matching that is a minimizer for ∆g
1(r).

Hungarian algorithm:

Input: Non-negative matrix C.

Step 1: For each row in the matrix C, find the smallest element and subtract it from each

element in that row. Let C1 denote the resulting matrix.

Step 2: For each column, find the smallest element in C1 and subtract it from each element

in that column. Let C2 denote the resulting matrix. Set q ≡ 0.

Step 3: Cover all zeros in C2+q using a minimum number of horizontal and vertical lines. If

n lines are required, go to Step 5. Otherwise, go to Step 4.

Step 4: Find a smallest element in C2+q , say c2+qkl , that is not covered by the minimal cover

of Step 3. Subtract c2+qkl from all uncovered elements and add c2+qkl to all elements that are

covered twice. Let C2+q+1 denote the resulting matrix. Set q ≡ q + 1 and go to Step 3.

Step 5 (Output): A well-defined matching µ− such that for all k, l = 1, . . . , n, µ−(mk) = wl

implies c2+qkl = 0.6

Matching µ− induces an integer solution x to (3) by taking xkl = 1 if and only if µ−(mk) = wl.

Hence, µ− is a minimizer for ∆g
1(r).

Example 4. [Applying the Hungarian algorithm to obtain ∆g
1(r) for problem r in

Table 1.]

We apply the Hungarian algorithm to matrix C in Example 3. In Step 1, we subtract the

row minima from C:

C =


5 6 4 2

7 2 4 5

5 6 4 5

8 5 7 5

 =⇒ row minima


2

2

4

5

 =⇒ C1 =


3 4 2 0

5 0 2 3

1 2 0 1

3 0 2 0

 .

In Step 2, we subtract the column minima from C1:

C1 =


3 4 2 0

5 0 2 3

1 2 0 1

3 0 2 0

 =⇒ column minima
(

1 0 0 0
)

=⇒ C2 =


2 4 2 0

4 0 2 3

0 2 0 1

2 0 2 0

 .

6As, in Step 5, C2+q requires n lines to cover its zeros, existence of at least one such matching µ− is

guaranteed.
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In Step 3, we cover all zeros in C2 using a minimum number of horizontal and vertical lines:

C2 =


2 4 2 0

4 0 2 3

0 2 0 1

2 0 2 0

 =⇒ only 3 < n lines are required.

In Step 4, we find a smallest element in C2 that is not covered by the minimal cover of Step 3,

subtract it from all uncovered elements, and add it to all elements that are covered twice:

C2 =


2 4 2 0

4 0 2 3

0 2 0 1

2 0 2 0

 =⇒ smallest uncovered element is 2 =⇒ C3 =


0 4 0 0

2 0 0 3

0 4 0 3

0 0 0 0

 .

We return to Step 3 and cover all zeros in C3 using a minimum number of horizontal and

vertical lines:

C3 =


0 4 0 0

2 0 0 3

0 4 0 3

0 0 0 0

 =⇒ 4 = n lines are required.

Since n = 4 lines are required to cover all zeros in C3, we go to Step 5. Looking at the five

patterns of gray cells in C3 below
0 4 0 0

2 0 0 3

0 4 0 3

0 0 0 0




0 4 0 0

2 0 0 3

0 4 0 3

0 0 0 0




0 4 0 0

2 0 0 3

0 4 0 3

0 0 0 0




0 4 0 0

2 0 0 3

0 4 0 3

0 0 0 0




0 4 0 0

2 0 0 3

0 4 0 3

0 0 0 0


one easily verifies that there are (exactly) five matchings µ− such that for all k, l =

1, . . . , n, µ−(mk) = wl implies c3kl = 0. These matchings are {m1w1,m2w2,m3w3,m4w4},
{m1w3,m2w2,m3w1,m4w4}, {m1w4,m2w2,m3w1,m4w3}, {m1w4,m2w3,m3w1,m4w2}, and

{m1w4,m2w2,m3w3,m4w1}. The five matchings are the (only) minimizers in the compu-

tation of ∆g
1(r). Using for instance the first of these matchings,

∆g
1(r) =

1

2n

n∑
k=1

(rmk
(wk)− 1 + rwk

(mk)− 1) =
1

8
(3 + 0 + 0 + 0 + 0 + 2 + 0 + 3) = 1.

�

Computation of global ∞-distance from mutually best

The integer ∆g
∞(r) can be computed by applying at most n−1 times the Hungarian algorithm.

To see this, observe first that the rank agent i’s most preferred agent, t(i), assigns to i in
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any matching is at most n. The following algorithm now checks whether there is a matching

where for each i, t(i) assigns at most a rank of (n− 1), (n− 2), etc.

Computation of global ∞-distance:

Input: A marriage problem (M,W, r) where M = {m1, . . . ,mn} and W = {w1, . . . , wn}. Let

f be an integer such that f > n3.7

Step k = 1, ..., n: Let r̄ = n − k. If r̄ = 0, then ∆g
∞(r) = 1 and stop. Otherwise, construct

the following “perturbed” rankings and their associated cost matrix. For each m ∈ M , let

r̃m : W → N be the function defined by

r̃m(w) =

{
rm(w) if rm(w) ≤ r̄;

f if rm(w) > r̄.

Similarly, for each w ∈ W , let r̃w : M → N be the function defined by

r̃w(m) =

{
rw(m) if rw(m) ≤ r̄;

f if rw(m) > r̄.

Construct the n × n matrix C̃ where for all k, l = 1, . . . , n, c̃kl = r̃mk
(wl) + r̃wl

(mk). Apply

the Hungarian algorithm to C̃ and let µ− be the resulting output. If
∑

i∈M∪W
r̃i(µ

−(i)) ≥ f ,

then ∆g
∞(r) = r̄ + 1 (= n− k + 1) and stop. Otherwise, set k ≡ k + 1 and go to Step k.

To see that the algorithm indeed computes ∆g
∞(r), note first that for each k = 1, . . . , n−1

and for each matching µ such that for each agent i, ri(µ(i)) ∈ {1, . . . , n − k}, we have that∑
i∈M∪W

ri(µ(i)) ≤
∑

i∈M∪W
(n− k) ≤ n2(n− 1) < f . Then, since the Hungarian algorithm finds

µ− that minimizes
∑

i∈M∪W
r̃i(µ

−(i)) and r and r̃ coincide for each agent’s (n− k) first ranked

mates, the inequality
∑

i∈M∪W
r̃i(µ

−(i)) ≥ f holds at the end of Step k if and only if there is no

matching µ such that for each agent i, ri(µ(i)) ∈ {1, . . . , n− k}.

Example 5. [Computation of ∆g
∞(r) for problem r in Table 1.]

Note that for problems r with a “small” number of agents, ∆g
∞(r) can often be quickly

calculated without recurring to the Hungarian algorithm. However, below we illustrate the

algorithm described above by applying it to problem r in Table 1.

Let f = 100 > n3. In Step 1, the perturbed cost matrix is

C̃ =


101 102 4 2

103 2 4 5

5 102 4 5

200 5 103 101

 .

7The bound n3 is clearly not the smallest bound for which the algorithm works. However, our goal is only

to show that for sufficiently large values of f the algorithm works.
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Applying the Hungarian algorithm to C̃ yields the unique matching µ− = {m1w4,m2w3,

m3w1,m4w2}. Since
∑

i∈M∪W
r̃i(µ

−(i)) = 16 < 100 = f , we go to Step 2.

In Step 2, the perturbed matrix is

C̃ =


101 102 101 2

200 2 4 102

102 102 101 102

200 102 200 101

 .

Applying the Hungarian algorithm to C̃ yields again the same minimizer µ− = {m1w4,m2w3,

m3w1,m4w2}. Since this time
∑

i∈M∪W
r̃i(µ

−(i)) = 210 ≥ 100 = f , we conclude that ∆g
∞(r) =

n− 2 + 1 = 3. �
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