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Abstract

We study the strategic impact of players’ higher order uncertainty over the observabil-

ity of actions in general two-player games. More specifically, we consider the space of all

belief hierarchies generated by the uncertainty over whether the game will be played as a

static game or with perfect information. Over this space, we characterize the correspon-

dence of a solution concept which represents the behavioral implications of Rationality

and Common Belief in Rationality (RCBR), where ‘rationality’ is understood as sequen-

tial whenever a player moves second. We show that such a correspondence is generically

single-valued, and that its structure supports a robust refinement of rationalizability,

which often has very sharp implications. For instance: (i) in a class of games which

includes both zero-sum games with a pure equilibrium and coordination games with a

unique efficient equilibrium, RCBR generically ensures efficient equilibrium outcomes; (ii)

in a class of games which also includes other well-known families of coordination games,

RCBR generically selects components of the Stackelberg profiles; (iii) if common knowl-

edge is maintained that player 2’s action is not observable (e.g., because 1 is commonly

known to move earlier, etc.), in a class of games which includes of all the above RCBR

generically selects the equilibrium of the static game most favorable to player 1.

Keywords: eductive coordination – extensive form uncertainty – first-mover advantage –

Krpes hypothesis – higher order beliefs – rationalizability – robustness – Stackelberg selections

1 Introduction

A large literature in game theory has studied the effects of perturbing common knowledge

assumptions on payoffs, from different perspectives (e.g., Rubinstein (1989), Carlsson and van

Damme (1993), Kaji and Morris (1997), Morris and Shin (1998), Weinstein and Yildiz (2007,

2011, 2012, 2016), etc.). In contrast, the assumption of common knowledge of the extensive
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form has hardly been challenged.1 Yet, uncertainty over the extensive form is key to many

strategic situations, and in many economic settings it need not match exactly the kind of

common knowledge assumptions which are implicit in standard models. The reliability of

such models therefore depends on whether the predictions they generate are robust to this

kind of model misspecification.

For instance, when we study firms interacting in a market, we often model the situation as

a static game (Cournot competition, simultaneous entry, technology adoption, etc.), or as a

dynamic one (e.g., Stackelberg, sequential entry, sequential technology adoption, etc.). But,

in the former case, this not only presumes that firms’ decisions are made without observing

other firms’ choices, but also that this is common knowledge among them. Yet, firms in reality

may often be concerned that their decisions could be leaked to their competitors. Or perhaps

consider that other firms may be worried about that, or that their competitors may think

the same about them, and so on. In other words, firms may face higher order uncertainty

over the observability of actions in ways which would be impossible to model with absolute

precision. It is then natural to ask which predictions we can make, using standard models

(and hence abstracting from the fine details of such belief hierarchies), which would remain

valid even if players’ beliefs over the observability of actions were misspecified in our model.

To address this question, we consider the space of all belief hierarchies generated by

players’ uncertainty over whether a two-player game will be played as a static game, i.e. with

no information about others’ moves, or sequentially, with perfect information. Over this

space, we characterize the correspondence of a solution concept – formally denoted by R –

which represents the behavioral implications of Rationality and Common Belief in Rationality

(RCBR), where the term ‘rationality’ is understood as sequential, whenever the game is

dynamic.2 For general two-player games, we show that R is generically single-valued, and

that it admits a robust and non-empty refinement which characterizes the regular predictions

of RCBR, i.e. those which do not depend on knife-edge, non-generic restrictions on the belief

hierarchies. We then explore the implications of these results in classes of games in which

the they are especially sharp or significant.

For example, we show that in a class of games which includes common interest games

(Aumann and Sorin (1989)), coordination games with a unique efficient equilibrium (e.g.,

stag-hunt, pure coordination, etc.), but also zero-sum games with a pure equilibrium, RCBR

generically selects the efficient equilibrium actions. Aside from the sharpness of the refinement

it supports for these games, this result shows that higher order uncertainty over the extensive

form may serve as a mechanism for equilibrium coordination based on purely introspective

reasoning. This is especially significant because the possibility that correct conjectures can

1Some papers have studied commonly known structures to represent players’ uncertainty over the extensive
form (most notably, Robson (1994), Reny and Robson (2004) and Kalai (2004), etc.), but none of these papers
has relaxed common knowledge assumptions in the sense that we do here, or in the works on payoff uncertainty
mentioned above. We discuss the related literature in Section 7.

2Under a genericity assumption on payoffs, the behavioral implications of RCBR in our setting are conve-
niently obtained applying iterated strict dominance to the interim normal form of the game with extensive
form uncertainty, preceded by one round of weak dominance only for those types who observe the opponent’s
action – the round of weak dominance serves to capture sequential rationality. R is thus a hybrid of Interim
Correlated Rationalizability (Dekel et al., 2007) and Dekel and Fudenberg’s (1990) S∞W procedure, and is
weaker than virtually any standard solution concept based on sequential rationality.
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be achieved on the basis of purely ‘eductive’ mechanisms (Binmore (1987-88)), in the ab-

sence of focal points and without any information on past interactions, is generally met with

skepticism.3 Our result shows that, in the presence of higher order uncertainty over the

observability of actions, equilibrium coordination emerges endogenously as the generic impli-

cation of standard assumptions of RCBR, without appealing to external, non-mathematical

properties of the game nor to notions of bounded rationality. For zero-sum games with a pure

equilibrium, this result also implies that, for a generic set of belief hierarchies, the maxmin

solution coincides with the unique implication of RCBR , thereby solving a tension between

RCBR and the maxmin logic which has long been discussed in the literature (e.g., von Neu-

mann and Morgenstern (1947, Ch.17), Luce and Raiffa (1957, Ch.4), Schelling (1960, Ch.7),

etc.). In a class of games which includes all of the above, as well as other well-known fami-

lies of coordination games (e.g., Harsanyi (1981) and Kalai and Samet’s (1984) ‘unanimity’

games), we find that for a generic set of belief hierarchies, RCBR implies that players choose

components of the Stackelberg profiles, regardless of the actual observability of actions.

We also characterize the robust predictions in environments with ‘one-sided’ uncertainty,

in the sense that we maintain common knowledge that one player’s action is not observable,

but there may be higher order uncertainty over the observability of the other player’s action.

Such one-sided uncertainty arises naturally in a number of settings, for instance when moves

are chosen at different points in time, with a commonly known order. But it is also relevant in

any situation in which players commonly agree that only one of them is committed to ignoring

the other’s action, or that only the actions of one player are effectively irreversible, etc. In

these settings, the analysis delivers particularly striking results: In a class of games which

encompasses as special cases all of those discussed above, we show that RCBR generically

selects the equilibrium of the static game which is most favorable to the earlier mover (or,

more generally, the player who is commonly known to not observe the opponent’s move).

Hence, a first-mover advantage is pervasive in these games: it arises for a generic set of

types, regardless of whether the action is actually observable, including for types who share

arbitrarily many (but finite) orders of mutual belief that the action is not observable.

This result has important strategic implications, in that it points at the impact that

mechanisms to establish common knowledge of one-sided uncertainty may have in the pres-

ence of higher order uncertainty over the observability of actions. As discussed, various kinds

of mechanisms may produce this kind of uncertainty, but perhaps the simplest and most

obvious to consider is the one associated to a commonly known order of moves: Within this

context, our result suggests that, by determining the direction of the one-sided uncertainty,

a commonly known timing of moves (plus irreversibility of choices) may determine the attri-

bution of the strategic advantage, independent of the actual observability of actions. A large

experimental literature has explored the impact of timing on individuals’ choices in a static

game, with findings that are often difficult to reconcile with the received game theoretic wis-

3The term ‘eductive’ was introduced by Binmore (1987-88), to refer to the rationalistic, reasoning-based
approach to the foundations of solution concepts. It was contrasted with the ‘evolutive approach’, in which
solution concepts are interpreted as the steady state of an underlying learning or evolutive process. Questions
of eductive stability have been pursued in economics both in partial and general equilibrium settings (see, e.g.,
Guesnerie (2005) and references therein).
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dom. For instance, asynchronous moves in the Battle of the Sexes systematically select the

Nash equilibrium most favorable to the first mover (see Camerer (2003), Ch.7, and references

therein), thereby confirming an earlier conjecture by Kreps (1990), who also pointed at the

difficulty of making sense of this intuitive idea in a classical game theoretic sense:

“From the perspective of game theory, the fact that player B moves first chronologically is

not supposed to matter. It has no effect on the strategies available to players nor to their

payoffs. [...] however, and my own casual experiences playing this game with students at

Stanford University suggest that in a surprising proportion of the time (over 70 percent),

players seem to understand that the player who ‘moves’ first obtains his or her preferred

equilibrium. [... ] And formal mathematical game theory has said little or nothing about

where these expectations come from, how and why they persist, or when and why we might

expect them to arise.” (Kreps, 1990, pp.100-101 (italics in the original)).

Our results achieve this goal, as they show that the behavior observed in these experiments

is the unique regular prediction consistent with RCBR, when one considers higher order

uncertainty over the observability of actions.4

The discussion above suggests that perturbing common knowledge assumptions on the

observability of actions has very different implications from those on payoffs. Weinstein and

Yildiz (2007,WY), in particular, show that when the space of payoff uncertainty is ‘rich’,

the only predictions which are robust to even small mispecifications of the belief hierarchies

are those which can be made based on rationalizability alone. But our general results also

have important similarities with WY’s. More specifically, similar to WY, we show that R is

everywhere upper hemicontinuous (u.h.c.) and is generically single-valued. But while WY’s

result also implies that no refinement of rationalizability is u.h.c., we show that there exists

a non-empty and u.h.c. refinement of R, which we call RP , with the property that whenever

it delivers multiple predictions, any such predictions is uniquely selected by both R and RP

for some arbitrarily close hierarchies of beliefs. Moreover, such nearby uniqueness result only

holds for the predictions included in RP . Hence, it turns out that not only is RP (i) the

strongest robust refinement consistent with RCBR; but it also (ii) coincides with the RCBR

predictions generically on the universal type space; and (iii) it characterizes, everywhere on

the universal type space, the predictions of RCBR which are regular in the sense of not

depending on knife-edge situations, associated to non-generic subsets of belief hierarchies.

Our structure theorem thus describes a very different correspondence from WY’s. In

both cases, multiplicity is only possible within non generic sets of belief hierarchies. But

while in WY, when multiplicity occurs, it cannot be robustly refined away, because any of

the rationalizable outcomes is uniquely selected in an open set of arbitrarily close types, in

our space of uncertainty there may be actions (specifically, those in R but not in RP ) which

are rationalizable only within non-generic sets of belief hierarchies. No analogous of this

4This is not to say that the logic of our results necessarily provides a behaviorally accurate model of
strategic thinking (see, e.g., Crawford et al. (2013) and references therein), but only that, once appended with
this kind of uncertainty, standard assumptions such as RCBR may provide an effective as if model of how
timing impacts individuals’ strategic reasoning.
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phenomenon can be found in WY’s space.5

The rest of the paper is organized as follows: Section 1.1 presents a leading example;

Section 2 introduces the model; Section 3 formalizes the notion of RCBR under extensive-

form uncertainty; Section 4 contains our main result, Theorem 1. In Section 5 we explore

some of Theorem 1’s implications for eductive coordination and robust refinements, as well

as variations with one-sided uncertainty. Section 6 presents the key steps of the proofs of our

main results, as well as some extensions. Section 6.2 may be of independent interest, in that

it contains a general result on the structure of rationalizability for static games with arbitrary

spaces of payoff uncertainty (with or without richness) and general information partitions.

Section 7 reviews the most closely related literature and concludes.

1.1 Leading Example

We begin with a simple example to illustrate the basic elements of our model and some of

our results. Consider the following ‘augmented’ Battle of the Sexes:

4 2 0 0 0 0

0 0 2 4 0 0

0 0 0 0 1 1

L C R

U

M

D

The (pure) Nash equilibria are on the main diagonal. The equilibrium (D,R) is inefficient,

whereas (U,L) and (M,C) are both efficient, but the two players have conflicting preferences

over which equilibrium they would like to coordinate on. Clearly, if it’s common knowledge

that the game is static, everything is rationalizable (and, hence, consistent with RCBR).

Now, suppose that players commonly agree that player 1 chooses earlier than 2, but there

is uncertainty over whether his action will be observed by 2. We let ω0 denote the state

of the world in which actions are not observable, and let ω1 denote the case in which 1’s

action is observable. If the true state is ω1, and this is common knowledge, the only strategy

profile consistent with RCBR is the backward induction solution, which induces 1’s favorite

equilibrium outcome, (U,L). Imagine next a situation in which the game is actually static

(i.e., the true state is ω0), and both players know it, but 2 thinks that 1 thinks it common

belief that the state is ω1. Then, 2 expects 1 to choose U , and hence choosing L is 2’s only

best reply. Moreover, if 1 believes that 2’s beliefs are just as described, she also picks U as

the only action consistent with RCBR. But then, if 2 believes the above, his unique best

response is to indeed play L, and so on. Iterating this argument, one can see that 1 and 2

may share arbitrarily many levels of mutual belief that the game is static, and yet have (U,L)

as the only outcome consistent with RCBR. Thus, 1 de facto has a first-mover advantage, if

5The existence of an u.h.c. refinement of R could perhaps be expected since, as our proof shows, our exercise
can be mapped to one of payoff uncertianty, just without richness (Penta (2013), however, cautioned against too
hasty conclusions of this sort, providing sufficient conditions for WY’s unrefinability result without richness).
But the fact that both R and RP generically coincide and are single-valued is not a natural implication of the
lack of richness, which per se often implies open sets of types with multiple rationalizable actions.
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she is merely believed to have it at some arbitrarily high order of beliefs. Proposition 3 in

Section 5 implies that, if the only uncertainty concerns the observability of 1’s action, then

this selection occurs for a generic set of belief hierarchies in this game. In this sense, 1’s

first-mover advantage is pervasive, regardless of the actual observability of her action.

Clearly, if we considered symmetric uncertainty, and also included a state ω2 in which it

is 1 who observes 2’s action, a similar argument would uniquely select (M,C). Hence, with

two-sided uncertainty, no player would necessarily obtain a first-mover advantage, but it can

still be shown that no open set of belief hierarchies would select actions D and R. Proposition

2 in Section 5 shows that, for a class of games which includes this example, the predictions

consistent with RCBR generically select components of the Stackelberg profiles.

By the same logic, if payoffs were such that the Stackelberg outcomes coincided (which

would be the case, for instance, in stag-hunt, in pure coordination games, but also in zero-

sum games with pure equilibria), then the Stackelberg profile would be the only outcome

consistent with RCBR for a generic set of belief hierarchies, thereby implying equilibrium

coordination on the basis of RCBR alone. That is the logic of Proposition 1 in Section 5.

(Comparisons between our results and WY’s will be discussed in Sections 4 and 6)

2 Model

Consider a static two-player game G∗ = (Ai, u
∗
i )i=1,2, where for any i = 1, 2, Ai and u∗i :

A1×A2 → R denote, respectively, i’s set of actions and payoff function, all assumed common

knowledge, as let as usual A := A1×A2. Similar to the example in Section 1.1, we introduce

extensive-form uncertainty by letting Ω =
{
ω0, ω1, ω2

}
denote the set of states of the world:

state ω0 represents the state in which the game is actually static; ωi represents the state in

which the game has perfect information, with player i moving first. (Some extensions are

discussed in Section 6.4.) We maintain throughout the following assumption on G∗:

Assumption 1 For each i and for each aj ∈ Aj, ∃! a∗i (aj) s.t. arg maxai∈Ai u
∗
i (ai, aj) =

{a∗i (aj)} and for each A′i ⊆ Ai,
∣∣∣arg maxai∈A′i u

∗
i (ai, a

∗
j (ai))

∣∣∣ = 1.

This assumption, which is weaker than requiring that payoffs in G∗ are in generic position,

ensures that backward induction is well-defined in both dynamic games associated to states

ω1 and ω2, and for any subset of actions of the first mover. In the following, it will be useful

to denote by ai =
(
ai1, a

i
2

)
the backward induction, or Stackelberg, outcome in the game in

which ωi is common knowledge. We will also refer to aii as i’s Stackelberg action.

Information: As in Robson (1994), there are two possible pieces of ‘hard information’ for

a player: either he knows he plays knowing the other’s action (he is ‘second’, θ′′i ), or not

(denoted by θ′i). We let Θi = {θ′i, θ′′i } denote the set of information types, generated by the

information partition over Ω with cells θ′i =
{
ω0, ωi

}
and θ′′i =

{
ωj
}

. Hence, whereas the

true state of the world is never common knowledge (although it may be common belief), it is

always the case that it is distributed knowledge: θ = (θ′1, θ
′
2) if and only if ω = ω0; θ = (θ′′1 , θ

′
2)

if and only if ω = ω2; θ = (θ′1, θ
′′
2) if and only if ω = ω1. In short, letting θi (ω) denote the

cell of i’s information partition which contains ω, we have θi (ω)∩ θj (ω) = {ω} for all ω ∈ Ω.
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Beliefs: An information-based type space is a tuple T = (Ti, θ̂i, τi)i=1,2 where each Ti is

a compact and metrizable set of types, each map θ̂i : Ti → Θi assigns to each type his

information about the extensive form, and beliefs τi : Ti → ∆ (Tj × Ω) are continuous with

respect to the weak∗ topology and concentrated on opponent’s types whose information is

consistent with ti’s (i.e., τi (ti) [{(tj , ω) : ω ∈ θ̂i (ti) ∩ θ̂j (tj)}] = 1).

As usual, any type in a (consistent) type space induces a belief hierarchy over Ω.6 For

any type ti, and for any k ∈ N, we let π̂ki (ti) denote his k-th order beliefs. We let T ∗

denote the universal type space, in which types coincide with belief-hierarchies (i.e. ti =

(θ̂i (ti) , π̂i,1 (ti) , π̂i,2 (ti) , ...) for each ti ∈ T ∗i ), as usual endowed with the product topology.

Also, for any ω ∈ Ω, we let tCBi (ω) denote the type corresponding to common belief of ω.

Finally, we say that type ti is finite if it belongs to a finite belief-closed subset of T ∗.

Strategic Form: Players’ strategy sets depend on the state of the world:

Si(ω) =

{
A
Aj

i if ω = ωj and j 6= i,

Ai otherwise.

Note that i knows his own strategy set at every state of the world (that is, Si : Ω →
{Ai}∪{A

Aj

i } as a function is measurable with respect to the information partition Θi). With

a slight abuse of notation, we can thus write Si (ti) to refer to Si (ω) such that ω ∈ θ̂i (ti),

and we let Si :=
⋃
ω∈Ω Si(ω). For any ω ∈ Ω, let ui (·, ω) : S (ω)→ R be such that:

ui(si, sj , ω) =


u∗i (si, sj) if ω = ω0,

u∗i (si, sj(si)) if ω = ωi,

u∗i (si(sj), sj) if ω = ωj .

3 Rationality and Common Belief in Rationality

We are interested in the behavioral implications of players’ Rationality and Common Belief

in Rationality (RCBR) in this setting, where “rationality” is understood in the sense of

sequential rationality for types ti with information θ̂i(ti) = θ
′′
i . Under Assumption 1, these

ideas can be expressed in the interim strategic form, by letting types ti such that θ̂i (ti) =

θ′′i apply one round of deletion of weakly dominated strategies, followed by iterated strict

dominance for all types. Formally: fix a type space T = (Ti, θ̂i, τi)i=1,2; for any i, and ti, let

R0
i (ti) = Si (ti) and R0

j = {(sj , tj) : sj ∈ R0
j (tj)}. Then, in the first round, types who move

second delete all weakly dominated strategies (to capture the idea of sequential rationality);

all other types instead only delete strictly dominated strategies: For each ti ∈ Ti,

R1
i (ti) :=


s′i ∈ R0

i (ti) :

∃µ ∈ ∆
(
R0
j × Ω

)
s.t.: (i) margTj×Ωµi = τi(ti)

(ii) s′i ∈ arg max
si∈Si(ti)

∑
ω∈θ̂i(ti)

∑
sj∈Sj(ω) µi[(sj , ω)]ui(si, sj , ω))

(iii) if θi(ti) = θ′′i and µ[(sj , tj)] > 0,

then µ[(s′j , tj)] > 0, ∀s′j ∈ Sj (tj)


.

6The consistency requirement restricts such hierarchies to be consistent with the type’s information, but
the construction of the universal type space is standard from Brandenburger and Dekel (1993).
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For all subsequent rounds, all types perform iterated strict dominance: for all k = 2, 3, ...,

having defined Rk−1
j :=

{
(sj , tj) : sj ∈ Rk−1

j (tj)
}
, we let

Rki (ti) :=

s′i ∈ R0
i (ti) :

∃µ ∈ ∆
(
Rk−1
j × Ω

)
s.t.: (i) margTj×Ωµi = τi(ti)

(ii) s′i ∈ arg max
si∈Si(ti)

∑
ω∈θ̂i(ti)

∑
sj∈Sj(ω) µi[(sj , ω)]ui(si, sj , ω))

 ,

and let Ri (ti) :=
⋂
k≥0R

k
i (ti). This solution concept is a hybrid of Interim Correlated Ra-

tionalizability (ICR, Dekel, Fudenberg and Morris, 2007) and Dekel and Fudenberg’s (1990)

S∞W procedure. Arguments similar to Battigalli et al.’s (2011) can be used to show that

Ri (ti) characterizes the behavioral implications of RCBR, given ti’s beliefs. This solution

concept is best thought of as a form of extensive-form rationalizability, with the proviso that

types in our type spaces may be uncertain over the extensive form.7

Example 1 Consider a type space with types Ti =
{
t1i , t

0
i , t

2
i

}
for each i = 1, 2, where types t1i

and t2i correspond to common belief that the game is dynamic, respectively with player 1 and

player 2 as first mover. Type t0i instead knows that he is not second, and attaches probability

p to (t0j , ω
0) and (1− p) to (tij , ω

i). Hence, if p = 1, t0i represents common belief in the static

game; but for p ∈ (0, 1), t0i is uncertain whether he is part of a static game or the first-mover

in a dynamic game. Formally, the type space is such that ωx ∈ θ̂i (txi ) for each x = 0, 1, 2;

τi (txi ) [(txj , ω
x)] = 1 if x = 1, 2, whereas τi

(
t0i
)

[(t0j , ω
0)] = p and τi

(
t0i
)

[(tij , ω
i)] = 1− p.

Now consider the example in Section 1.1. Clearly, we have a1 = (U,L), a2 = (M,C), and

in the following we let a′ = (D,R). First note that Si
(
tii
)

= Si
(
t0i
)

= Ai and Sj(t
i
j) = AAi

j .

Since no action is dominated for tii, R
1
i

(
tii
)

= Ai, whereas the only non-weakly dominated

strategy for tij is its reaction function: R1
j (t

i
j) = {a∗j (·)}. Given this, the only undominated

action at the next round for tii is R2
i

(
tii
)

=
{
aii
}

, and hence the only outcome consistent with

R
(
ti
)

is ai = (aii, a
∗
j

(
ai
)
). If p = 1, it is also easy to check that Ri

(
t0i
)

= Ai, as in standard

(static) rationalizability (Bernheim (1984) and Pearce (1984)).

If p ∈ (0, 1), t0i attaches probability p to playing a static game against type t0j , and

probability (1− p) to playing the dynamic game against type tij , which would observe i’s

action. Then, it is easy to check that, for i = 1, 2, R1
i (t

j
i ) = {a∗i (·)} and R1

i

(
t0i
)

= R1
i

(
tii
)

=

Ai. At the second round, types tii assign probability one to tij , who plays a∗j (·), and hence

play their Stackelberg action aii: R
2
i

(
tii
)

= Ri
(
tii
)

=
{
aii
}

, R1
i (t

j
i ) = Ri(t

j
i ) = {a∗i (·)}. Type

t0i thinks that, with probability (1− p), he faces tji (who plays a∗j (·)), otherwise he faces t0j ,

for whom R1
j (t

0
j ) = Aj , and so he will have to form conjectures µ ∈ ∆ (Aj) over that type’s

behavior. The resulting optimization problem for type t0i , with conjectures µ over t0j ’s action,

7In fact, when the extensive form is common knowledge, it can be shown that in environments with private
values, Penta’s (2012) interim sequential rationalizability (which is a version of extensive-form rationalizability)
is equivalent to applying Dekel and Fudenberg’s (1990) procedure to the interim normal form, and to Ben-
Porath’s (1997) solution concept in games with complete information. In two-stage games with complete and
perfect information with no relevant ties, all these concepts yield the backward induction solution.
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is therefore to choose a′i ∈ Ai that maximizes the following expected payoff:

EUi
(
a′i; p, µ

)
:=

p · ∑
aj∈Aj

µ[aj ] · u∗i (a′i, aj) + (1− p) · u∗i (a′i, a∗j (a′i))

 . (1)

Hence, R2
i

(
t0i
)

= {ai ∈ Ai : ∃µ ∈ ∆ (Aj) s.t. ai ∈ arg maxa′i∈Ai
EUi (a′i; p, µ)}, that is:

R2
i

(
t0i
)

= Ri
(
t0i
)

=


Ai if p ≥ 3/4,{
aii, a

i
j

}
if p ∈ [1/2, 3/4),{

aii
}

if p < 1/2.

�

The combination of static and dynamic best-responses illustrated in this example will play

a central role in our analysis, since the behavior of the Ri correspondence around the natural

benchmarks (i.e., the types which commonly believe ω0 and ωi) will in general depend on

its solutions for other belief hierarchies, including those in which players are uncertain over

whether the game is static or not. We present next two robustness properties of Ri:

Lemma 1 (Type space invariance) For any two type spaces T and T̃ , if ti ∈ Ti and

t̃i ∈ T̃i are such that (θ̂i (ti) , π̂i(ti)) = (θ̂i(t̃i), π̂i(t̃i)), then Ri(ti) = Ri(t̃i).

Lemma 1 ensures that the predictions of Ri only depend on a type’s information and

belief hierarchy, not on the particular type space used to represent it. It thus enables us to

study Ri as a correspondence on the universal type space, Ri : T ∗i ⇒ Si.
8

Lemma 2 (Upper-hemicontinuity) Ri : T ∗i ⇒ Si is an upper-hemicontinuous correspon-

dence: if tνi → ti and si ∈ Ri (tvi ) for all ν, then si ∈ Ri (ti).

This result shows that, similar to ICR and ISR on the universal type space generated by

a space of payoff uncertainty, Ri is u.h.c. on our universal type space. This is a robustness

property in that it ensures that anything that is ruled out by Ri for some type ti ∈ T ∗i , is

also ruled out for all types in a neighborhood of ti. This is an important property in the

above mentioned literature. For instance, WY’s unrefinability results (respectively, Penta’s

(2012)) can be summarized by saying that ICR (resp., ISR) is the strongest u.h.c. solution

concept among its refinements. As we will show shortly, however, whereas Ri is u.h.c., with

the extensive-form uncertainty we consider here it will not be the strongest u.h.c. solution

concept on T ∗i : a proper refinement of Ri is also u.h.c, and hence ‘robust’ in our space.

4 Robust Predictions: Characterization

In this section we characterize the strongest predictions consistent with RCBR that are robust

to higher order uncertainty over the observability of actions. We begin by constructing a set of

8This is a standard property for solution concepts with correlated conjectures, such as Dekel et al.’s (2006,
2007) interim correlated rationalizability (ICR) and Penta’s (2012) interim sequential rationalizability (ISR).
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actions, Bi ⊆ Ai, which consists of all actions that can be uniquely rationalized for some type

in the universal type space. The intuitive idea behind this construction is best understood

thinking about the example in Section 1.1. There, an ‘infection argument’ showed that

the uniqueness of the backward induction solution for types that commonly believe in ωi

propagates to types sharing n levels of mutual belief in ω0 through a chain of unique best

replies. This type of argument is standard in the literature, and it generally involves two

main ingredients: (i) the seeds of the infection, and (ii) a chain of strict best responses, which

spreads the infection to other types. In WY, for instance, best responses are the standard ones

that define rationality in static games, whereas a ‘richness condition’ ensures that any action

is dominant at some state, and hence the infection can start from many ‘seeds’, one for every

action of every player.9 Due to the nature of the uncertainty we consider, both elements will

differ from WY’s in our analysis: first, only the backward induction outcomes can serve as

seeds; second, best responses must account for the ‘hybrid’ problems illustrated in Example

1. The set Bi is defined recursively, based precisely on these two elements. Formally: for

each i, let Bi :=
⋃
k≥1 Bki , where B1

i := {aii} and for k ≥ 1,

Bk+1
i := Bki ∪

ai ∈ Ai :

∃µi ∈ ∆(Bkj ),∃p ∈ [0, 1] s.t.:

{ai} = argmax
a′i∈Ai

(
p ·

∑
aj∈Aj

µi[aj ] · u∗i (a′i, aj) + (1− p) · u∗i (a′i, a∗j (a′i))

)
 .

Since G∗ is finite, there exists m < ∞ such that Bmi = Bi for all i. If p = 1 in the

definition of Bk+1
i , then Bk+1

i contains the strict best replies in the static game to conjectures

concentrated on Bkj . The case p < 1 instead corresponds to a situation in which i attaches

probability (1− p) to player i observing his choice ai, and hence respond by chosing a∗j (ai).

Hence, as p varies between 0 and 1, Bk+1
i may also contain actions that are not a static best

response to conjectures concentrated in Bkj . The following example illustrates the point:

Example 2 Consider the following game, where x ∈ [0, 1]:

4 2 0 0 0 0

0 0 2 4 0 0

0 0 x 0 3 3

L C R

U

M

D

Then, a1 = (U,L) and a2 = (M,C), and hence B1
1 = {U}, B1

2 = {C}. Since M (respec-

tively L) is a unique best response to C (resp. U), it follows that M ∈ B2
1 (resp., L ∈ B2

2).

Moreover, it can be checked that no other actions are a best response for any p ∈ [0, 1], hence

B2
1 = {U,M}, B1

2 = {C,L}. At the third iteration, suppose that µ̂1 attaches probability one

9Similarly, the analysis of dynamic games in Penta (2012) can be thought of as allowing as many seeds as
possible (richness condition), but accounting for sequential best replies. Penta (2013) and Chen et al. (2014)
instead keep standard (static) rationality, but relax the richness assumption. The reasons why the current
analysis cannot be cast within any of the existing frameworks are explained at the end of this section.
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to C ∈ B2
2, and let p ∈ [0, 1]. Then, the expected payoffs from player 1’s actions are:

EU1

(
U ; p, µ̂1

)
= p · 0 + (1− p) 4 = 4− 4p

EU1

(
M ; p, µ̂1

)
= p · 2 + (1− p) 2 = 2

EU1

(
D; p, µ̂1

)
= p · x+ (1− p) 3 = 3− (3− x) p

If x = 1, D is the only maximizer when p ∈ (1/6, 1/2), and hence D ∈ B3
1 and Bi = Ai for

both i. If instead x = 0, then it is easy to check that B1 = {U,M} and B2 = {L,C}. �

We introduce next a solution concept, RPi : T ∗i ⇒ Ai, obtained by applying the same

iterated deletion procedure as Ri, but starting from the set B instead of A. Since, under the

maintained Assumption 1, it can be shown that a∗ (·) is the only strategy that is not weakly

dominated for all types that move second, it is convenient to initialize the procedure directly

from this point. Formally: for each i and ti, let

RP 0
i (ti) :=

{
Bi if θi(ti) = θ′i,

{a∗ (·)} otherwise.

For all the subsequent rounds, all types perform iterated strict dominance: Inductively,

for all k = 1, 2, ..., having defined RP k−1
j = {(tj , sj) : sj ∈ RP k−1

j (tj)}, we let

RP ki (ti) :=

s′i ∈ RP 0
i (ti) :

∃µ ∈ ∆
(
RP k−1

j × Ω
)

s.t.: (i) margTj×Ωµi = τi(ti)

(ii) s′i ∈ arg max
si∈Si(ti)

∑
ω∈θ̂i(ti)

∑
sj∈Sj(ω) µi[(sj , ω)]ui(si, sj , ω))

 ,

and RPi (ti) :=
⋂
k≥0RP

k
i (ti). Obviously, RPi and Ri coincide if B = A, but in general

RPi(ti) ⊆ Ri(ti) ∩ Bi for all ti s.t. θ̂i (ti) = θ′i, whereas RPi (ti) = Ri (ti) = {a∗ (·)} for all ti

s.t. θ̂i (ti) = θ′′i . Hence, RPi is a refinement of Ri.

The next theorem provides the main results of the paper, and formalizes the sense in which

RPi characterizes the strongest robust predictions consistent with RCBR under extensive-

form uncertainty, and that both RPi and Ri are generically unique and they coincide:

Theorem 1 (Robust Predictions) For any player i the following three properties hold:

(i) For any k ∈ N, if (θi(ti), π̂i,k (ti)) = (θi(t
′
i), π̂i,k (t′i)), then RP ki (ti) = RP ki (t′i).

(ii) RPi : T ∗i ⇒ Ai is non-empty valued and upper hemicontinuous.

(iii) For any finite type ti and any strategy si ∈ RPi(ti) there exists a sequence of finite types

(tνi )ν∈N in T ∗i with limit ti and such that Ri(t
ν
i ) = RPi(t

ν
i ) = {si} for any ν ∈ N.

The first part of Theorem 1 states that, for every k, RP ki only depends on the k lower

order beliefs. Part (ii) ensures that the predictions of RPi (·) are robust to higher-order

uncertainty on the extensive form: anything that is ruled out by RPi for a particular type ti

would still be ruled out for all types in a neighborhood of ti. The third part states that, for

any finite type ti, any strategy si ∈ RPi (ti) is uniquely selected by both Ri(·) and RPi (·)

11



for some finite type arbitrarily close to ti. This has a few important implications: (i) first,

RPi (·) is the strongest robust refinement of Ri, since no refinement of RPi (·) is u.h.c.; (ii)

second, Ri and RPi generically coincide on the universal type space, and deliver the same

unique prediction – hence, not only is RPi (·) a strongest u.h.c. refinement of Ri (·), but it

also characterizes the predictions of Ri which do not depend on the fine details of the infinite

belief hierarchies (what we call the ‘robust predictions’ of RCBR); (iii) finally, since RPi (·)
is u.h.c., the ‘nearby uniqueness’ result only holds for the strategies in RPi (ti), not for those

in Ri(ti)\RPi (ti). We summarize this discussion in the following corollary:

Corollary 1 (i) No proper refinement of RPi is upper hemicontinuous on T ∗i .

(ii) Ri coincides with RPi and is single-valued over an open and dense subset of T ∗i .

(iii) For any ti, if there exists a sequence (tνi )ν∈N in T ∗i with limit ti such that Ri(t
ν
i ) = {si}

for all ν ∈ N, then si ∈ RPi (ti)

Hence, while there is a clear formal similarity between Theorem 1 and the famous result

of WY, the implications are very different: higher order uncertainty over the observability

of actions supports a robust refinement of R. Clearly, in games in which B = A (e.g., in a

standard Battle of the Sexes), Ri
(
tCBi

(
ω0
))

= RPi
(
tCBi

(
ω0
))

, and hence the results have

the same implications, conceptually. But in some cases the difference can be especially sharp.

Example 3 Consider the following game:

4 2 0 0 0 0

6 0 2 4 0 0

0 0 0 0 3 3

L C R

U

M

D

If players commonly believe in ω0, the rationalizable set for this game is R(tCB(ω0)) =

{M,D}×{C,R}. The Stackelberg profiles are a1 = (U,L) and a2 = (M,C), and it is easy to

check that B = {U,M} × {L,C}, and hence RP (tCB(ω0)) = R(tCB(ω0))∩B = {(M,C)}. �

The result that Ri and RPi generically coincide (part (i) of Corollary 1) is particularly

relevant from a conceptual viewpoint: Suppose that, for purely epistemic considerations (or

other a priori reasons), we had decided to only care about the predictions generated by

RCBR, except that we do not want to rely on the fine details of the infinite belief hierarchies,

and hence discard the actions which are only rationalizable for non-generic sets of types.

Then, part (i) of Corollary 1 implies that whereas RCBR may deliver less sharp predictions

than RP (·) for non-generic types (such as tCB
(
ω0
)

in the example, where RCBR only rules

out U and L), it would still be unique and coincide with RPi (·) generically on the universal

type space. In this sense, RPi (·) characterizes the ‘regular predictions’ of RCBR. Formally:

Definition 1 Action ai is a regular prediction of RCBR for type ti if ai ∈ Ri(ti) and for

any neighborhood N (ti) of ti, there exists an open set U ⊂ N (ti): ai ∈ Ri(t′i) for all t′i ∈ U .

12



Corollary 2 Action ai is a regular prediction of RCBR for ti if and only if ai ∈ RPi(ti).10

The key steps of the proof of Theorem 1, which we discuss in Section 6, consist of re-

casting the problem of uncertainty over the information structure, as one of payoff uncertainty

of an auxiliary static game (Section 6.1). This way, we can obtain the main result using tech-

niques which are closer to the literature on payoff uncertainty, and hence easier to compare

and possibly extend to other directions (see Section 6.4).11 The auxiliary game, however,

does not satisfy WY’ nor Penta’s (2012) richness conditions, and it must account for players’

information partition over the space of uncertainty. Thus, none of the existing results can

be directly applied to the auxiliary game. Our Lemma 4 overcomes this difficulty, by gen-

eralizing the analysis in Penta (2013) – which studied the ICR correspondence with payoff

uncertainty without richness and without information types – to static games with arbitrary

payoff uncertainty (with or without richness) and general information partitions. Hence,

while we developed it as a step towards the proof of Theorems 1, this Lemma has intrisic

interests in that it generalizes existing results on static games with payoff uncertainty.

5 Applications

In Example 3, not only are the robust predictions particularly sharp, but they also imply

that, for a generic set of types with information θ′i, equilibrium coordination arises as the only

behavior consistent RCBR, i.e. without imposing correctness of beliefs. In Section 5.1 we

consider classes of games in which the robust predictions take this especially strong form, and

so for a generic set of types equilibrium coordination arises purely from individual reasoning.

Section 5.2 explores other classes of games, in which Theorem 1 also has strong implications,

which may or may not lead to eductive coordination. In Section 5.3 we present results for

environments with one-sided uncertainty.

5.1 ‘Eductive’ Coordination via Extensive Form Uncertainty

Understanding the mechanisms by which individuals achieve coordination of behavior and

expectations is one of the long-lasting questions in game theory. When individuals interact

repeatedly over time, learning theories or evolutionary arguments have been provided to

sustain coordination (see, e.g., Fudenberg and Levine (1998), Samuelson (1998) and references

therein). But when interactions are one-shot or isolated, or when players have no information

about past interaction, their choices can only be guided by their individual reasoning, and

whether equilibrium coordination can be achieved is far from understood.

That a purely eductive approach, based only on internal inferences, may result in equilib-

rium coordination is generally met with skepticism. As a result, the dominant approach has

developed Schelling’s (1960) idea of focal points (e.g., Sugden (1995), Iriberri and Crawford

(2007), etc.), which shifts the discussion on the mechanisms that bring about coordination to

10We note that the open sets U in Definition 1 are not required to include ti. If they did, regularity would
be equivalent to lower hemicontinuity, which neither Ri nor RPi satisfy.

11An earlier draft of this work contained a more involved proof which dealt directly with extensive form
uncertainty. We thank an anonymous referee for the suggestion to pursue this proof strategy.
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external, non mathematical properties of the game.12 The next result shows that there is an

interesting class of games for which higher order uncertainty over the extensive form provides

a purely eductive mechanism for equilibrium coordination, based on classical game theoretic

assumptions (namely, RCBR), without appealing to any external theory of focal points:13

Proposition 1 (Generic Coordination) For any G∗ which satisfies Assumption 1 and in

which the two Stackelberg actions coincide (a1 = a2 ≡ ā), there exists an open and dense

subset T ′ ⊆ T ∗ such that, for all t ∈ T ′, ā is the only outcome induced by R (t).

Note that, since by definition aij is a best response to aii, the condition a1 = a2 ≡ ā

implies that ā is a Nash equilibrium. Hence, Proposition 1 implies that RCBR generically

yields an equilibrium outcome. In this sense, higher order uncertainty on the extensive form

provides a channel through which equilibrium coordination is justified from a purely eductive

viewpoint. While the result follows immediately from Theorem 1, and from the observation

that B = {ā} if a1 = a2 ≡ ā, the interest of this proposition is due to the fact that important

and seemingly disparate classes of games (which include, for instance, archetypal models of

both common interest and pure conflict situations) satisfy the condition a1 = a2:

Remark 1 If G∗ satisfies Assumption 1, then the condition a1 = a2 ≡ ā holds if G∗ belongs

to any of the following classes of games:

1. Coordination games with a unique Pareto efficient equilibrium, ā.

2. Common interest games (cf. Aumann and Sorin (1989)).14

3. Zero-sum games with a pure Nash equilibrium, ā.

Proposition 1 is also interesting from the viewpoint of equilibrium refinements. For in-

stance, in common interest games, efficient coordination is a particularly intuitive prediction.

Yet, supporting it without involving refinements directly based on efficiency has required

in the past surprisingly complex arguments, and in any case always relying on the observ-

ability of the opponent’s actions.15 In contrast, our efficient coordination result holds for a

generic subset of the universal type space, regardless of whether players’ actions are actually

observable, and as the only outcome consistent with RCBR for those types.

For zero-sum games, this result bridges a gap between RCBR and the maxmin solution

which has long been discussed in the literature. To illustrate the point, we adapt arguments

12In the words of Schelling (1960, p.108): “it is not being argued that players do respond to the non-
mathematical properties of the game but that they ought to take them into account [...].”

13Alaoui and Penta (2019) provide an alternative mechanism for eductive coordination, based on the en-
dogenous level-k model of Alaoui and Penta (2016).

14Formally, a coordination game is a game in which every profile in which players choose the same or
corresponding (pure) strategies is a strict Nash-equilibrium (that is, there exists an ordering of players’ actions,
{ai (1) , ..., ai (n∗)} = Ai, such that all profiles of the form (ai (n) , aj (n)) are Nash equilibria). A common
interest game is a coordination game which also satisfies u∗1 (a) = u∗2 (a) for all a ∈ A

15Aumann and Sorin (1989), for instance, support the efficient equilibrium in this very special class of games
as the only equilibrium outcome of a repeated game in which one player is uncertain about his opponents’
type, and types may have bounded memory. For the same class of games, Lagunoff and Matsui (1997)
support the efficient outcome considering a repeated game setting with perfect monitoring in which players
choose simultanesouly in the first period, and they alternate after that.
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from Luce and Raiffa (1957) to the following example:16

Example 4 Consider the following game, in which ε > 0:

1M −1M −ε ε −2ε 2ε

ε −ε 0 0 ε −ε

−2ε 2ε −ε ε 2ε −2ε

L C R

U

M

D

First note that: (i) everything is rationalizable in this game; (ii) (M,C) is the maxmin

solution; and (iii) B = {(M,C)}. In Luce and Raiffa’s words, choice M has two properties for

player 1: “(i) It maximizes player 1’s security level; (ii) it is the best counterchoice against

[C]. Certaintly (ii) is not a very convincing argument if player 1 has any reason to think that

player 2 will not choose [C]. Also, (i) implies a very pessimistic point of view; to be sure,

M yields at least [0], but it also yields at most [ε].” (ibid., p.62). If 1 had any uncertainty

that 2 might be playing L in this game, it would be unreasonable to assume he would not

play U for sufficiently small ε. But then it might be unreasonable to rule out R, and hence

D, and ultimately L, reinforcing the rationale for U . “[...] So it goes, for nothing prevents us

from continuing this sort of ‘I-think-that-he-thinks-that-I-think-that-he-thinks...’ reasoning

to the point where all strategy choices appear to be equally reasonable” (ibid., p.62). �

Hence, the strategic uncertainty associated with RCBR, reflected in the fact that all

actions are rationalizable in the example, clashes with the sharpness of the maxmin criterion.

On the other hand, the latter is grounded on a simple, if extreme, decision theoretic principle.

A classical argument to reconcile the two views is to note that the maxmin action ensures

expected utility maximization in the eventuality that one’s action is leaked to the opponent

(see, e.g. Von Neumann and Morgenstern, 1947).17 The logic behind our result is reminiscent

of that argument. We point out, however, that whereas the standard ‘fear of leaks’ argument

can be thought of as a first-order beliefs effect, Proposition 1 implies that the maxmin action

is the only regular prediction of RCBR everywhere on T ∗, including for types which share

arbitrarily many (but finite) orders of mutual belief that leaks have zero probability.

The role of the a1 = a2 ≡ ā condition in Proposition 1 is to ensure that B = {ā}, which in

turn implies that RPi is single-valued also at the static common-belief type tCBi
(
ω0
)
, yielding

the eductive coordination result. As shown by Example 3, however, eductive coordination is

16Luce and Raiffa’s original argument refers to a game that violates Assumption 1, but it applies unchanged
to our example, which satisfies Assumption 1.

17Robson (1994) and Reny and Robson (2004) have formalized these arguments explicitly, but within a
common prior model with uncertainty over the monitoring structure and using equilibrium as solution concept.
Nonetheless, many of our insights – including the reconciliation between expected utility and maxmin criterion
in zero-sum games – are reminiscent of theirs. But the logic of the results are very different. As we discuss
shortly, besides being based on a non-equilibrium concept, our results do not require any first-order uncertainty
over the observability of actions. In contrast, and consistent with the classical view, the common prior models
in Robson (1994) and Reny and Robson (2004) also introduce uncertainty at the first order of beliefs.
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possible even if a1 6= a2: all is needed is for RP to uniquely select a Nash equilibrium, which

can be ensured for instance if the game is such that, as in Example 3, B∩Ri
(
tCBi

(
ω0
))

= {ā}
for some Nash equilibrium ā. Various restrictions on payoffs could yield this property. We

focused on the a1 = a2 condition because of its special significance, as discussed.

5.2 Stackelberg Selections

The next result follows from Theorem 1, for a class of games which includes the example in

Section 1.1, as well as Harsanyi (1981) and Kalai and Samet’s (1984) unanimity games:18

Proposition 2 If G∗ satisfies Assumption 1, both players are indifferent over non-Nash

equilibrium profiles, and they strictly prefer any Nash-equilibrium to any non-Nash equilibrium

profile, then there is an open and dense set T ′i ⊆ T ∗i such that, for any ti ∈ T ′i , Ri (ti) =

RPi (ti) ∈ {{aii}, {a
j
i}} if θ̂i (ti) = θ′i and Ri (ti) = {a∗ (·)} if θ̂i (ti) = θ′′i .

The result follows from the observation that, in games which satisfy the conditions in the

proposition, ai and aj are Nash equilibria and Bi = {aii, a
j
i}. This, together with the fact

that RPi = Ri generically on T ∗ (Corollary 1), implies the result. Note that the statement of

Proposition 2 does not only refer to the neighborhood of the benchmark static types tCBi (ω0),

but to the generic predictions of RCBR. Thus, for instance, whereas inefficient equilibrium

actions are consistent with RCBR when ω0 is common belief, generically they are not:

Corollary 3 In any game which satisfies the conditions in Proposition 2, actions associated

to inefficient Nash equilibria are generically ruled out by RCBR.

5.3 One-sided Uncertainty and Pervasiness of First-Mover Advantage

In this section we consider the implications of maintaining common knowledge that one of

the two player’s actions is not observable, so that the higher order uncertainty only refers to

the observability of one of the players’ actions. Such one-sided uncertainty is relevant, for

instance, if players’ choices are irreversible and made with a commonly known order, so that

the earlier mover cannot observe the later mover’s action; or if players commonly agree that

only one of them has successfully committed to ignoring the other player’s choice, or that

only the actions of one player are effectively irreversible; etc.

Formally, let player 1 denote the player who is commonly known to not observe the

opponent’s action, and consider the smaller space of uncertainty Ω† =
{
ω0, ω1

}
(only player

2 knows that state), and let T †i denote the universal type space generated by Ω†. For each i,

define the subset of actions B†i :=
⋃
k≥1 Bki , where B†,11 := {a1

1}, B
†,1
2 := ∅ and for each k ≥ 1:

B†,k+1
1 := B†,k1 ∪


a1 ∈ A1 : ∃µ ∈ ∆(B†,k2 ),∃p ∈ [0, 1] s.t.

{a1} = arg max
a′1∈A1

(
p ·
∑

a2∈A2
µ[a2] · u∗1(a′1, a2) + (1− p) · u∗1(a′1, a

∗
2(a′2))

)


18Formally, a unanimity game is a coordination game (cf. footnote 14) such that, ∀i, u∗i (a′) = u∗i (a′′) for
all non-Nash equilibrium profiles a′, a′′.
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B†,k+1
2 := B†,k2 ∪

{
a2 ∈ A2 : ∃µ ∈ ∆(B†,k1 ): {a2} = arg max

a′2∈A2

∑
a1∈A1

µ[a1] · u∗2(a′2, a1)

}

Note that B†i is basically the same as the set Bi defined in Section 2, except that only a1
1

is taken as a ‘seed’, not a2
2. For each i, we define correspondence RP †i , which is obtained

replacing the sets Bi with B†i in the definition of RPi (ti), for each ti ∈ T †i . The next result,

analogous to Theorem 1, implies that on this space of uncertainty RP †i is both the strongest

u.h.c. refinement of Ri and it characterizes its regular predictions:

Theorem 2 (Asymmetric Perturbations) For any player i, RP †i is non-empty valued

and upper hemicontinuous on T †i . Moreover, for any finite type ti ∈ T ei and any strategy

si ∈ RP †i (ti), there exists a sequence of finite types (tνi )ν∈N in T †i with limit ti and such that

Ri(t
ν
i ) = RP †i (tνi ) = {si} for all ν ∈ N.

The following corollary states properties of RP †i analogous to those of Corollaries 1-2:

Corollary 4 For any player i, the following holds:

(i) No proper refinement of RP †i is upper hemicontinuous on T †i .

(ii) Ri coincides with RP †i and is single-valued over an open and dense set of types T ′i ⊆ T
†
i .

(iii) For any ti ∈ T †i , if there exists a sequence (tνi )ν∈N in T †i with limit ti s.t. Ri(t
ν
i ) = {si}

for all ν ∈ N, then si ∈ RP †i (ti).

(iv) For any ti ∈ T †i , ai is a regular prediction of RCBR for type ti if and only if ai ∈ RP †i (ti).

This result has especially strong implications in games in which a1 is also a Nash equilib-

rium, which is a larger class of games than those considered in Propositions 1 and 2:

Proposition 3 (Pervasiveness of First-Mover Advantage) If G∗ satisfies Assumption

1 and a1 is one of its Nash-equilibria, then there is an open and dense subset of types T ′i ⊆ T
†
i

such that, for all ti ∈ T ′i , Ri (ti) =
{
a1
i

}
if θ̂i (ti) = θ′i, and Ri (ti) = {a∗ (·)} if θ̂i (ti) = θ′′i .

Hence, in this class of games, the presence of a state in which 1 has a first-mover advantage,

implies that 1 has a de facto first-mover advantage generically on T †i . In this sense, we say

that a first-mover advantage is pervasive, and it arises (generically) independent of the actual

observability of 1’s actions, also for types who share arbitrarily many (but finite) orders of

mutual beliefs that 1’s action is not observable.19

The result has important strategic implications, in that it points at the impact that mech-

anisms to establish common knowledge of one-sided uncertainty may have in the presence

of this kind of higher order uncertainty. Various kinds of mechanisms may produce such

one-sided uncertainty: for instance, a commonly known order of (irreversible) moves; envi-

ronments with simultaneous choices with (at most) one-sided reversibility; one-sided ability

19The message of Proposition 3 may appear to be in sharp contrast with Bagwell (1995), who argued that
the first-mover advantage is rather fragile. Aside from the use of a common prior model, the most important
difference is that the information at states (ωi)i=1,2 violates Bagwell’s identical support assumptions on the
distributions of signals under different actions. Also, Bagwell (1995) considers games which do not fall within
the scope of Proposition 3. For such games, the first-mover advantage may not be ‘pervasive’, but it would
still be uniquely selected in an open neighborhood of tCB

(
ω1

)
, and hence locally robust in our model.
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to commit to not observing others’ actions, etc. All these mechanisms are formally equivalent,

since they all entail a space with one-sided uncertainty Ω†. The commonly known timing of

moves, however, is perhaps the simplest and most obvious to consider. Within this context,

the result suggests that – by determining the direction of the one-sided uncertainty – tim-

ing of moves (plus irreversibility) may determine the attribution of the strategic advantage,

independent of the actual observability of actions.

The notion that timing and commitment has strategic importance, beyond actual observ-

ability, has been discussed by Kreps (1990), and the idea has received strong support by the

experimental literature, which has shown for instance that asynchronous play in the Battle

of the Sexes drastically affects subjects’ behavior, in that it induces coordination on the ear-

lier mover’s Stackelberg profile, even when his action is not observable (see, e.g., Camerer

(2003) and references therein). This is in line with the Kreps hypothesis (Kreps (1990),

pp.100-101), but clearly at odds with the received game theoretic wisdom. To the best of our

knowledge, Proposition 3 is the first result to make sense of this solid experimental evidence,

without appealing to behavioral theories or notions of bounded rationality, while maintaining

non-observability of actions and without extending the game under consideration.20

Finally, note that the result in Proposition 3 implies that, with one-sided uncertainty,

higher order uncertainty over the observability of actions yields eductive coordination even

in games which do not satisfy the condition of Proposition 1.

6 Proof of the Main Results

In this section we explain the key ideas in the proofs of the main results (particularly of parts

(iii) in Theorems 1 and 2), as we skecthed at the end of Section 4: the auxiliary game is

introduced in Section 6.1; the main lemma on general payoff uncertainty is Section 6.2; its

application to Theorems 1 and 2 is in Section 6.3. Section 6.4 discusses possible extensions.

6.1 The Auxiliary Game

Starting from our baseline game G∗ = (Ai, u
∗
i )i=1,2, we define the auxiliary game as a static

game with payoff uncertainty Ĝ = (Ω, (Âi, ûi)i=1,2), where Âi = Ai∪{âi} and, letting M ∈ R
is such that M > maxi∈I maxa∈A |u∗i (a) |, ûi : Â1 × Â2 × Ω→ R is such that:

ûi (a, ω) =



u∗i (a) if a ∈ A,

−M if ai = âi and ω 6= ωj ,

2M if ai = âi and ω = ωj ,

u∗i (ai, a
∗
j (ai)) if aj = âj , ai ∈ Ai and ω = ωi,

M if aj = âj , ai ∈ Ai and ω 6= ωi.

Note that, by construction, the ‘extra’ action âi is strictly dominant at ωj and dominated at

states ω 6= ωj . The rest of the actions yield the same payoffs as inG∗ at states ω 6= ωi when the

20Amershi, Sadanand and Sadanand (1992) developed solution concepts that assign a specific role to timing
as a coordinating device, and hence they appeal to ‘external’ considerations. Hammond (2008) obtains the
Stackelberg outcome as a refinement of the static game appended with a one-sided cheap talk stage.
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opponent chooses a standard action aj ∈ Aj , and M if he chooses âj . Information partitions

over Ω are the same as in Section 2, with associated universal type space T ∗ (T † denotes

the universal type space associated to the space with one-sided uncertainty Ω† of Section

5.3). For any ti ∈ T ∗i (resp., T †i ), we let ICRi(ti) and ICRk
i (ti) denote, respectively, the set

of interim correlated rationalizable actions (Dekel et al., 2007) and the set of actions which

survived the k-th round of deletion in the auxiliary game Ĝ for type ti. Ri (ti) denotes the

solution concept defined in Section 3 for the underlying game with extensive form uncertainty.

Lemma 3 For any ti ∈ T ∗i (resp., T †i ) , and for any k ≥ 1: if θ̂i (ti) = θ′i, then Rki (ti) =

ICRk
i (ti); if θ̂i (ti) = θ′′i , then Rki (ti) = {a∗i (·)} and ICRk

i (ti) = {âi}.

This lemma clarifies that the Ri correspondence for the game with extensive-form uncer-

tainty, can be equivalently characterized by the ICRi correspondence for the auxiliary game,

provided that one identifies the dummy action âi with what would be i’s sequential best

response in state ωj . This lemma also implies Lemmas 1 and 2.

6.2 General Payoff Uncertainty with Information Partitions

Let Ĝ = (Ω, (Θi, Âi, ûi)i=1,2) be an arbitrary finite two-person normal-form game with in-

complete information, where Ω is an arbitrary set of payoff states, and (Θi)i=1,2 is a profile

of information partitions over Ω. For any information-based type space (Ti, θ̂i, τi)i=1,2 where

τi : Ti → ∆(Tj × Ω) is s.t. τi(ti)[{(tj , ω) ∈ Tj × Ω : ω ∈ θ̂i(ti) ∩ θ̂j(tj)}] = 1, and for any ti,

we let ICRi(ti) the set ICR actions for type ti. We define the set Ci (θi) of actions which can

be ‘infected’ for an information type, through a chain of unique best responses which traces

back to states ω at which some action is strictly dominant, and are also consistent with each

type’s information. Formally, let C0
i (θi) denote the set of actions in Âi which are uniquely

rationalizable for some ti with information θi (e.g., it includes any action which is strictly

dominant for some ω ∈ θi), and then, define recursively, for every k ≥ 1,

Cki (θi) := Ck−1
i (θi) ∪


ai ∈ Âi :

∃µi ∈ ∆(Âj × Ω) :

(i) µi[(aj , ω)] > 0⇒ ω ∈ θi and aj ∈ Ck−1
j (θj(ω)),

(ii) argmax
a′i∈Âi

∑
aj∈Âj

∑
ω∈Ω

µi[aj ] · ûi(a′i, aj , ω) = {ai}


.

Finally, set Ci(θi) :=
⋃
k≥0 Cki (θi). (The finiteness of Âi ensures that the union stabilizes

after finitely many iterations.) We next define a refinement of ICR for which we will we

show it is possible to perform the nearby selection result a la WY: For each type ti let

ICRCi (ti) :=
⋂
k≥0 ICRC,ki (ti), where ICRC,0i (ti) := Ci(θ̂i(ti)) and then, for every k ≥ 0,

ICRC,k+1
i (ti) :=


ai ∈ Âi :

∃µi ∈ ∆(Âj × Tj × Ω) : (i) margTj×Ωµi = τi(ti)

(ii) µi

[{
(aj , tj) ∈ Âj × Tj : aj ∈ ICRC,kj (tj)

}
× Ω

]
= 1

(iii) ai ∈ argmax
a′i∈Âi

∑
aj∈Âj

∑
ω∈Ω

µi[(aj , tj)] · ûi(ai, aj , ω)


.
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Lemma 4 For any finite type ti and any strategy ai ∈ ICRCi (ti) there exists a sequence of

finite types (tνi )ν∈N with limit ti and such that ICRCi (tνi ) = ICRi(t
ν
i ) = {ai} for any ν ∈ N.

This lemma generalizes the main result in Penta (2013) to settings with general infor-

mation structures. (Penta’s (2013) result obtains for the special case in which each Θi is

the trivial partition.) In the next subsections, we will apply it to the specific auxiliary game

introduced above, for which it turns out that not only ICR coincides with R (Lemma 3), but

also that ICRCi coincides, respectively, with the RP and RP † correspondences when the set

of states is Ω and Ω†, respectively. Part (iii) of Theorems 1 and 2 then follow.

6.3 Proof of Part (iii) in Theorems 1 and 2

Applying the definitions of Cki and ICRC,ki to the auxiliary game, Lemma 10 in the appendix

shows that, for each i, Ci(θ
′
i) = Bi and Ci(θ

′′
i ) = {âi}. Similarly, for the Ω† space, we obtain

Ci(θ
′
i) = B†i and C2(θ

′′
2 ) = {â2}. Given this, we obtain the following results:

Lemma 5 For every type ti ∈ T ∗i and k ≥ 0, if θ̂i (ti) = θ′i then RP ki (ti) = ICRC,ki (ti) and if

θ̂i(ti) = θ′′i , then RP ki (ti) = {a∗i } and ICRC,ki (ti) = {âi}.

Lemma 6 For every type ti ∈ T †i and k ≥ 0, if θ̂i (ti) = θ′i then RP †i (ti) = ICRC,ki (ti) and if

θ̂i(ti) = θ′′i , then RP †i (ti) = {a∗i } and ICRC,ki (ti) = {âi}.

Part (iii) of Theorem 1 (resp., Theorem 2) follows directly from the combination of

Lemmas 3, 4 and 5 (resp., 6).

6.4 Payoff Uncertainty and Other Extensions: Discussion

Thanks to the generality of Lemma 4, our proof strategy can also be adapted to also in-

clude payoff uncertainty. In practice, this would boil down to a larger set of states Ω, and

information partitions to represent the joint information players may have over payoffs and

extensive form. Depending on the situation, this would require alternative and more complex

versions of the auxiliary game Ĝ, which would crucially depend not only on the extra payoff

states, but also on the details of the information structures, which may affect the backward

induction solution at different payoff states.21

The logic of the lemma, however, remains unchanged, and hence it clarifies that all such

questions can easily be addressed via a simple plug-in exercise, through the ‘seeds’ with

which the definition of the Ci(θi) sets are initialized. As long as the added payoff states

satisfy a slight strengthening of Assumption 1, the result would still go through, with the

only difference that the sets C may grow larger (though not necessarily), and hence entail

21For instance, if one introduced extra payoff states and modelled payoff structures such that players only
know whether they move second or not, but with no information on payoffs, then the auxiliary game would be
such that for every payoff state ω̂ which is added, there would be a corresponding ficititious action âω̂

i which
in the auxiliary game plays the role of the sequential best response at payoff state ω̂; at the opposite extreme,
if the information partitions were such that players payoff uncertainty only affects the state of the world in
which the game is static, then no substantial variation would be needed to the auxiliary game in Section 6.1,
beyond the obvious specification of the effects of payoff states on the payoffs of the static game; etc.
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weaker strongest robust predictions. For example, if one added a richness condition a la

WY, then trivially Ci(θi) = Âi, and hence the strongest robust predictions around types

tCBi (ω0) would be the same as in WY. Richness, however, often entails an unnecessarily

demanding robustness requirement, and the plausibility of considering payoff states which

induce new ‘seeds’ (and, hence, might affect the robust predictions) necessarily depends on

the specific application. For instance, suppose that the matrix of the game in Section 1.1 does

not represent players’ payoffs, but monetary payments, according to some commonly known

‘rules of the game’ g : A→ R×R. The actual payoffs would thus depend on players’ Bernoulli

utility functions vi : R → R, with ui (a) = vi (gi (a)). In such a setting, it certainly make

sense to consider uncertainty over utility functions vi. But in most economic applications it

would still be meaningful to maintain common knowledge that such vi are increasing. Even

if we took the space of payoff uncertainty to include all possible profiles of such functions, the

sets C (and, hence, the robust predictions) would still not be affected, because the backward

induction outcomes in such a game are uniquely pinned down by ordinal preferences, and no

action in that game can be made strictly dominant without violating monotonicity of the vi,

or also relaxing common knowledge of the outcome function g.22

The discussion above also applies to extensions of the model with richer possibilities

of extensive-form uncertainty. For instance, besides having states in which players observe

others’ actions perfectly or not at all, one may consider states in which the second mover has

partial information about the earlier mover’s action. This situation too would boil down to a

larger set of states Ω and, depending on the payoff structure and the nature of the monitoring

technology at the added states, may require different specifications of the auxiliary game.

But once again, the logic of Lemma 4 still applies, and as long as the added states satisfy

a strengthening of Assumption 1, the main result goes through unchanged, with the only

difference that the sets C may grow larger (though not necessarily).

In short, our proof can easily be adapted to also accommodate richer specifications of

extensive-form as well as payoff uncertainty. What kind of payoff uncertainty is sensible

to consider, if at all, can only be evaluated on a case by case basis. Given the nature

of the perturbations which are considered relevant, whether they will impact the C sets

and hence reduce the bite of the robust predictions, and whether this would also deliver a

generic uniqueness result, will depend on the nature of the perturbations, on the informational

assumptions, and on the overall structure of the game’s payoffs. In this sense, our analysis

may serve as a template to address different questions of extensive form uncertainty, with or

without payoff uncertainty of various degrees.

7 Related Literature and Concluding Remarks

In this paper we studied the implications of perturbing common knowledge assumptions on

the observability of actions. The closest papers to our work are those which study per-

turbations of common knowledge assumptions on payoffs, following the seminal paper by

22We note that this observation applies to any game which satisfies the conditions of Propositions 1, 2, or
3. Relaxing common knowledge of the rules of the game may be sensible in some settings, but less in others.
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Weinstein and Yildiz (2007, WY). WY characterize the correspondence of ICR on the uni-

veral type space generated by a space of payoff uncertainty which satisfies a richness condition

for static games. The analysis has been extended to dynamic games, which require different

richness conditions, by Weinstein and Yildiz (2011, 2016), Chen (2012) and Penta (2012).

The latter paper also allows for information information partitions with a product structure.

Penta (2013) relaxes the richness condition in static games, and studies sufficient conditions

for WY’s selection without richness; Chen et al. (2014) provide a full characterization. Aside

from the shift from payoff to extensive form uncertainty, the present paper is the first to

study the impact of higher order uncertainty with information types without richness. Our

key Lemma 4, in particular, generalizes the main result in Penta (2013) to static games with

general payoff uncertainty and general information partitions.

A few papers have studied models in which players are uncertain over the observability

of actions. Robson (1994), in particular, introduced a refinement for two-player nonzero-sum

games (“informationally robust equilibrium”) using exactly the same space of uncertainty

and information partition as in our model. On a similar vein, Reny and Robson (2004)

model a situation in which player’s types may be uncertain of whether their action will be

observed by the opponent, and study the behavior of equilibria in these settings as the distri-

bution approaches the static benchmark. Both these papers adopt an equilibrium approach

in a standard common prior setting. Kalai (2004) introduced a notion of ‘extensive robust

equilibrium’ to denote a profile of choices which remains an equilibrium in a large set of

extensive forms, and then shows that as the game becomes large, all equilibria become ap-

proximately extensively robust. Like the previous papers, Kalai assumes that there is no

higher-order uncertainty over observability among players; only the analyst faces such un-

certainty. Zuazo-Garin (2017) introduces incomplete information about the information sets

over a game-tree and studies sufficient conditions for the backward induction outcome. None

of these papers, however, relax common knowledge assumptions in the sense that we do here,

or in the literature on payoff uncertainty we discussed in the previous paragraph.

Our main results show that higher order uncertainty over the observability of actions

supports a robust refinement of rationalizability, with several implications in important classes

of games, such as: (i) eductive coordination in games in which inverting the order of moves

does not affect the Stackelberg profiles; (ii) maxmin selection in zero-sum games with pure

equilibria; (iii) Stackelberg selections in a class of coordination games. In environments in

which only player 1’s actions may be observable, but not player 2’s (for instance, because 1 is

commonly known to move earlier, or to be the only one whose choices are irreversible, etc.),

we showed that, in a class of games which generalizes all the above, RCBR generically selects

the equilibrium of the static game which is most favorable to player 1. When such one-sided

uncertainty stems from a commonly known order of moves, this result also provides a rational

basis for the Kreps hypothesis (Kreps, 1990), which maintains that timing and commitment

may have strategic importance beyond actual observability of actions – an idea which has

found extensive experimental support (see Camerer (2003) and references therein), but which

has been difficult to reconcile with standard game theoretic analysis. Here it emerges as the

only behavior consistent with RCBR for a generic set of types.
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The breadth of these results suggests that further exploring the problem of extensive-

form uncertainty may prove to be a fertile direction for future research. In Section 6.4 we

discussed how our proof strategy can be adapted to extend the analysis to environments

with payoff uncertainty, and to richer extensive form uncertainties, in which actions may be

observed with various degrees of precision. The logic of Lemma 4 suggests that it may also

be fruitfully applied to games with more than two players. The most obvious challenge in

doing this is represented by the richness of the extensive forms that a larger set of players

would entail, and the difficulty of devising an auxiliary game which captures such complexity.

From a more applied perspective, it would be interesting to further explore the implications

of Theorems 1 and 2 to classes of games not covered by Propositions 1-3 above.

More broadly, different notions of extensive-form robustness can be developed, mimicking

the several notions of robustness which have been developed by the literature on payoff

uncertainty. For instance, while in this paper we pursued a ‘local’ notion of robustness

(similar to WY for payoff uncertainty, and Oury and Tercieux (2012) in mechanism design),

other recent work (e.g., Peters (2015), Doval and Ely (2016), Makris and Renou (2018)) have

sought to characterize the range of possible equilibrium behaviors which could be generated

across a large class of extensive forms which are consistent with some minimal information

about the game, thereby pursuing a more ‘global’ approach to extensive-form robustness

(in this sense, closer to the works of Bergemann and Morris (2013, 2016) in games with

payoff uncertanty, and Bergemann and Morris (2005, 2009) and Penta (2015) in mechanism

design).23 Similarly, intermediate notions of robustness with payoff uncertainty, which have

been put forward in the mechanism design literature (e.g., Ollar and Penta (2017, 2019)),

may suggest further directions of research on extensive-form robustness.

In conclusion, the problem of extensive-form robustness is very broad. Future work may

study different classes of games, richer spaces of uncertainty, different notions of robustness

(local, global, intermediate as well as alternative topologies), an so on. We provided one of the

first attempts at a systematic understanding of this question, but the modeling possibilities

are very rich, and suggest many promising directions for future research.

Appendix

A Proof of Theorems 1 and 2

A.1 Proof of Part (i)

We begin with Theorem 1, and proceed by induction on k. The claim holds trivially k = 0.

Next, suppose it also holds for k ≥ 0, and fix player i and types ti ∈ Ti and t′i ∈ T ′i
s.t. (θ̂i(ti), π̂i,k+1(ti)) = (θ̂i(t

′
i), π̂i,k+1(t′i)). It suffices to show only one inclusion. Pick si ∈

RP k+1
i (ti) and conjecture µi which justifies the inclusion of si in RP k+1

i (ti). Define measure

νi ∈ ∆(Sj×Tj×Ω) as follows: νi[E] = τi(ti)[ProjTj×Ω(E)] for any measurable E ⊆ Sj×Tj×Ω.

23Similar to the paper by Kalai (2004) discussed above, in Peters (2015), Doval and Ely (2016) and Makris
and Renou (2018) the extensive form is common knowledge among the players, only unknown to the analyst.
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Clearly, µi is absolutely continuous w.r.t. νi, and hence we can pick the corresponding Radon-

Nykodym derivative, denoted by fi. Define µ′i ∈ ∆(Sj × T ′j × Ω) s.t. µ′i[E] :=
∫
E fidν

′
i for

any measurable E ⊆ Sj ×T ′j ×Ω, where ν ′i[E] := τi(t
′
i)[ProjT ′j×Ω(E)]. Clearly, µ′i justifies the

inclusion of si in RP k+1
i (t′i). For Theorem 2, take types ti and t′i that induce types in T †i ,

and repeat the argument substituting RP for RP † and Ω for Ω†.

A.2 Proof of Part (ii)

We complete the proof for Theorem 1 (as above, for Theorem 2 simply substitute RP for

RP † and Ω for Ω†). Upper-hemicontinuity and nonemptiness are obviously true for types

with information θ′′i . For types with information θ′i, we proceed by induction on k. The

initial case (k = 0) is trivially true; for the inductive step, suppose that k ≥ 0 is such that

the claims hold, and show that this implies that it holds for k+ 1. For u.h.c., fix player i and

take convergent sequence of types (tνi )ν∈N with limit ti and strategy si ∈
⋂
ν∈NRP

k+1
i (tνi ).

For each ν ∈ N take conjecture µνi that justifies the inclusion of si in RP k+1
i (tνi ). We

know from compactness of ∆(Sj × Tj ×Ω) that there exists some convergent subsequence of

(µνi )ν∈N, (µνmi )m∈N, whose limit we denote by µi. Continuity of marginalization guarantees

that µi is consistent with ti, and by u.h.c. of best responses ai is a best response to µi

for type ti. Under the induction hypothesis, RP kj is u.h.c., and hence RP kj is closed. It

follows that µi[RP
k
j × Ω] ≥ limsupm→∞µ

νm
i [RP kj × Ω] = 1. This way, we conclude that

si ∈ RP k+1
i (ti), and thus, that RP k+1

i is u.h.c. For nonemptiness of RP k+1
i (ti) notice that

we know that RP kj is nonempty-valued and hence there exist conjectures µi for ti concentrated

on RP kj . Set then p := µi[Sj × Tj × {ω0}] and ηi[aj ] = µi[Tj × {(aj , ω0)}] for all aj ∈ Aj .
Obviously, ηi ∈ ∆(Bj). Hence, if the ‘hybrid’ best response to p and µi is unique, then it is

in Bi and hence also in RP k+1
i (ti). Otherwise, consider sequence of types (tνi )ν∈N such that

τi(t
ν
i ) = (1 − 1/ν) · τi(ti) + (1/ν) · tii, where tii is the type consistent with common belief in

ωi. Obviously, (τνi )ν∈N approaches ti. Moreover, pν and ηνi are defined from tνi analogously

as p and ηi are for type ti, and hence (using Assumption 1) for ν large enough the ‘hybrid’

best response is unique. Hence there exist ν̄ and ai such that si ∈
⋂
ν≥ν̄ RP

k+1
i (tνi ) and thus

si ∈ RP k+1
i (ti) from u.h.c. of RP k+1

i .

A.3 Proof of Lemma 4

The proof of the Lemma exploits the following auxiliary solution concept: For each type ti

let W Ci (ti) :=
⋂
k≥0W

C,k
i (ti), where W C,0i (ti) := Ci(θ̂i(ti)) and then, for every k ≥ 0,

W C,k+1
i (ti) :=


ai ∈ Âi :

∃µi ∈ ∆(Âj × Tj × Ω) such that:

(i) margTj×Ωµi = τi(ti)

(ii) (aj , tj , ω) ∈ supp µi =⇒ aj ∈W C,kj (tj)

(iii) argmax
a′i∈Âi

∑
aj∈Âj

∑
ω∈Ω

µi[Tj × {(aj , ω)}] · ûi(ai, aj , ω) = {ai}


.
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Lemma 7 For every k ≥ 0, every player i, every state ω and every action ai ∈ Cki (θi(ω))

there exists some finite type tai,ωi ∈ T ∗i with information θi(ω) such that ICRk+1
i (tai,ωi ) = {ai}.

Proof. We proceed by induction on k. The initial step (k = 0) holds by definition. For the

inductive step, let k ≥ 0 be such that the claim holds; we verify that it also holds for k + 1.

Fix player i and state ω. If Ck+1(θi(ω)) is empty then the claim holds trivially. Otherwise, fix

action ai ∈ Ck+1
i (θi(ω)) and conjecture µi which justifies the inclusion of ai in Ck+1

i (θi(ω)).

We know from the inductive hypothesis that ∀(aj , ω) ∈ supp µi, there exists some finite type

t
aj ,ω
j with information θj(ω) and for which ICRk+1

j (t
aj ,ω
j ) = {aj}. Define tai,ωi as the type

with information θi and beliefs τi[E] := µi

[{
(aj , ω) ∈ Âj × Ω : (t

aj ,ω
j , ω) ∈ E

}]
for every

measurable E ⊆ Tj . Obviously, tai,ωi is well-defined and finite. Pick now arbitrary conjecture

µ′i ∈ C
k+1
i (tai,ωi ), and notice that for every (aj , ω

′) ∈ supp µi we have that:

µ′i
[
Tj × {(aj , ω′)}

]
= µ′i

[{
t
aj ,ω

′′

j : ω′ ∈ θj(ω′′) ∩ θi(ω)
}
× {(aj , ω′)}

]
= µ′i

[{
t
aj ,ω

′′

j : ω′ ∈ θj(ω′′) ∩ θi(ω)
}
× Âj × {ω′}

]
= τi

[{
t
aj ,ω

′′

j : ω′ ∈ θj(ω′′) ∩ θi(ω)
}
× {ω′}

]
= µi[(aj , ω

′)]

Clearly, it follows that ICRk+2
i (taii ) = {ai}.

Lemma 8 For every i, every finite type ti ∈ T ∗i and every ai ∈ ICRCi (ti) there exists a

sequence of finite types (tνi )ν∈N in T ∗i converging to ti such that si ∈W Ci (tνi ) for every ν ∈ N.

Proof. Fix arbitrary finite type space (Ti, θ̂i, τi)i=1,2. Then, for every ν ∈ N define type

space (T νi , θ̂
ν
i , τ

ν
i )i=1,2 by setting for each player i:

� Set of types T νi := {ν} ×
{

(ai, ti), (ai, t
ai
i ) : ti ∈ Ti and ai ∈ ICRAi (ti)

}
, where taii is

constructed as in Lemma 7. Obviously, T νi is a finite set.

� Information-map θ̂νi : T νi → Θi given by (ν, ai, ti) 7→ θ̂i(ti).

� Finally, in order to define belief-maps, for state ω and action ai ∈ Ci(θi(ω)) let µai,ωi

denote a conjecture over Âj × Ω that justifies the inclusion of ai in Ci(θi(ω)). Then,

define player i’s belief-map τνi : T νi → ∆(T νj × Ω) as follows:

(ν, ai, ti) 7→ τνi (ν, ai, ti)[(ν, aj , tj , ω
′)] :=


(
1− 1

ν

)
τi(ti) [tj ] if tj ∈ Tj ,(

1
ν

)
1
{t

aj,ω
′

j }
(tj) · µai,ωi [(aj , ω

′)] otherwise,

for every (ν, aj , tj , ω
′) ∈ T νj × Ω such that (tj , ω

′) is in the support of µai,ωi , and t
aj ,ω

′

j

is constructed as in Lemma 7. The finiteness of the set of types guarantees that these

belief-maps are well-defined and continuous, and that every type in T νi and T νj is finite.

We claim that the following hold: (i) ∀ti ∈ Ti, each ((ν, ai, ti))ν∈N converges to ti; (ii)

∀ti ∈ Ti and ∀ai ∈ ICRCi (ti), ai ∈ W Ci (ν, ai, ti) for every ν ∈ N. To prove the claim of the

25



lemma, fix player i and pick arbitrary finite type t̄i ∈ T ∗i and action ā ∈ ICRCi (t̄i). Since

t̄i is finite we know that there exists some finite type space (Ti, θ̂i, τi)i=1,2 where Ti includes

some type t̂i that induces t̄i. Consider the sequence of finite type spaces ((T νi , θ̂
ν
i , τ

ν
i )i=1,2)ν∈N

constructed above. Byf type-space invariance, ai ∈ ICRCi (t̂i) and by the construction above

we know that ∀ν ∈ N there exists some type tνi ∈ T νi such that āi ∈ W Ci (tνi ). Let (t̄νi )ν∈N

the sequence in the universal type space induced by (tνi )ν∈N. Again, because of type-space

invariance we know that āi ∈W Ci (t̄νi ) for every ν ∈ N.24 Finally, since we know that (tνi )ν∈N

converges to t̂i we also know that (t̄νi )ν∈N converges to t̄i and hence, the proof is complete.

For the following lemma let m ∈ N be such that Ci(θi) = Cmi (θi) for every player i and

information type θi. Then, we have that:

Lemma 9 For every k ≥ 1, every player i, every finite type ti ∈ T ∗i and every action

ai ∈W C,ki (ti) there exists some finite type tki ∈ T ∗i such that: θ̂i(t
k
i ) = θ̂i(ti), π

k
i (tki ) = πki (ti),

and ICRm+k+2
i (tki ) = {ai}.

Proof. We proceed by induction on k: Initial step (k = 1). Set ` = 1. Fix player i, finite type

t̄i, action āi ∈W C,`i (t̄i) and conjecture µ̄i that justifies the inclusion of āi in W C,`i (t̄i). Then,

we know by Lemma 7 that ∀(aj , tj) ∈ supp(margÂj×Tj µ̄i), there exists a finite type t`−1
j (aj , tj)

with the same information as tj and s.t. ICRm+`
j (t`−1

j (aj , tj)) = {aj}. Then, let type t`i have

information θ̂i(t̄i) and beliefs τ `i [E] := µ̄i

[{
(aj , tj , ω) ∈ Âj × Tj × Ω : (t`−1

j (aj , tj), ω) ∈ E
}]

,

for every measurable E ⊆ Tj . Obviously, t`i is well-defined and finite, and has the same `th-

order beliefs as t̄i—and thus, as t̂i. Finally, pick arbitrary conjecture µi inducing t`i and puts

probability 1 on the graph of ICRm+`
j and notice that for every (aj , ω) we have that:

µi[Tj×{(aj , ω)}] =

=µi

[{
t`−1
j (a′j , t

′
j)) : (a′j , t

′
j) ∈ Âj × Tj , aj ∈ ICRm+`

j (t`−1
j (a′j , t

′
j))
}
× {(aj , ω)}

]
=µi

[
Âj ×

{
t`−1
j (a′j , t

′
j) : (a′j , t

′
j) ∈ Âj × Tj , ICRm+`

j (t`−1
j (a′j , t

′
j)) = {aj}

}
× {ω}

]
=τ `i

[{
t`−1
j (a′j , t

′
j) : (a′j , t

′
j) ∈ Âj × Tj , ICRm+`

j (t`−1
j (a′j , t

′
j)) = {aj}

}
× {ω}

]
=µ̄i

[{
(a′j , t

′
j) ∈ Âj × Tj : ICRm+`

j (t`−1
j (a′j , t

′
j)) = {aj}

}
× {ω}

]
=µ̄i[Tj × {(aj , ω)}].

Clearly, it follows that ICRm+`+1
i (t`i) = {āi}.

Induction step. Suppose that k ≥ 1 is such that the claim holds. Then, to verify that it also

does for k + 1 simply repeat, verbatim, the steps of the initial step by replacing index ` = 1

by ` = k+ 1 and noticing that the existence of types t`−1
j ( · ) is not due to Lemma 7, but due

to the induction hypothesis, instead.

Proof of Lemma 4: Fix finite type ti ∈ T ∗i and action ai ∈ ICRCi (ti). Then, we know from

Lemma 8 that there exists a sequence of finite types (t̂νi )ν∈N in T ∗i converging to ti such that

24The proofs that ICRCi and W Ci are type-space invariant is analogous to that of Part (i) of Theorem 1:
simply substitute RP k

i for ICRC,ki in one case, and for W C,kj in the other.
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ai ∈W Ci (t̂νi ) for every ν ∈ N. It follows from Lemma 9 that ∀ν ∈ N there exists a sequence of

finite types (tν,ki )k∈N in T ∗i converging to t̂νi such that ICRi(t
ν,k
i ) = {ai} for all k ∈ N. Thus,

if for each ν ∈ N we set tνi = tν,ki , (tνi )ν∈N is a sequence of finite types in T ∗i converging to ti

such that ICRi(t
ν
i ) = {ai} for every ν ∈ N.

A.4 Proof of Part (iii)

Proof of Lemma 3. The claim is obvious for types with information θ′′i : for these types

a∗i is weakly dominant in (G∗,Ω) and Ri removes all weakly dominated strategies (of types

with information θ′′i ) in the first round, and âi is strictly dominant in Ĝ and ICRi removes all

strictly dominated actions in the first round. Thus, we only need to complete the proof for

types with information θ′i. We proceed by induction. The initial case (k = 0) is trivially true,

so we can focus on the inductive step. Suppose that k ≥ 0 is such that the claim holds; we ver-

ify next that so does it for k+1. To see it fix type ti ∈ T ∗i with information θ′i and define map

βi : Mi(ti)→ Ni(ti) where Mi(ti) :=
{
µi ∈ Ci(ti) : µi[{(a∗j , ωi)} × Tj ] = µi[Sj × {ωi} × Tj ]

}
,

Ni(ti) :=
{
µi ∈ ∆(Âj × Tj × Ω) : margTj×Ωµi = τi(ti)

}
, by setting:

βi(µi)[E] = µi [{(aj , tj , ω) ∈ Aj × Tj × Ω : (aj , tj , ω) ∈ E}]

+ µi [{(aj , tj , ω) ∈ {a∗i } × Tj × Ω : (âj , tj,ω) ∈ E}]

for all µi ∈Mi(ti). βi is a well-defined bijection that satisfies: (i) ai is a best response to µi in

(G∗,Ω) if and only it is a best response to βi(µi) in Ĝ; (ii) µi puts probability 1 on the graph

of Rkj if and only if βi(µi) puts probability 1 on the graph of ICRk
j . Hence, µi justifies the

inclusion of strategy si = ai in Rk+1
i (ti) if and only if conjecture βi(µi) justifies the inclusion

of action ai in ICRk+1
i (ti). The result for the T †i space follows from the same logic.

Lemma 10 For every player i: (i) with space of uncertainty Ω, Ci(θ
′
i) = Bi and Ci(θ

′′
i ) =

{âi}; (ii) with space of uncertainty Ω†, Ci(θ
′
i) = B†i and C2(θ

′′
2 ) = {â2}.

Proof. We complete the proof for part (i) (for part (ii), it suffices to substitute B and C for

B† and C†, respectively). That Cki (θ′′i ) = {âi} for all k ≥ 0 is immediate. For information

types θ′i we show first that Bki ⊆ Cki (θ′i) for every k ≥ 0. For the initial case (k = 0) simply

notice that for ti that has common belief in ωi, ICR2
i (ti) = {aii} and hence aii ∈ C0

i (θ′i).

Suppose now that, by induction, k ≥ 0 is such that the claim holds, and pick ai ∈ Bk+1
i ,

p ∈ [0, 1], and µi ∈ ∆(Bkj ) s.t. ai maximizes the expected payoff induced by p and µi. Set

ηi[(aj , ω)] :=

{
p · µi[aj ] if ω 6= ωi and aj ∈ Aj ,
1− p if ω = ωi and aj = âj ,

for every (aj , ω) ∈ Âj × Ω. Obviously, ηi satisfies conditions (i) and (ii) w.r.t. ai in the

definition of Ck+1
i (θ′i). Finally, we show that Cki (θ′i) ⊆ Bi for every k ≥ 0. For the initial case

(k = 0) pick ai ∈ C0
i (θ′i) and type ti such that ICRi(ti) = {ai}. Then, we know from Lemma

3 and nonemptiness of RPi that RPi(ti) = {ai}. Thus, it follows that ai ∈ Bi. Now, we know

from Lemma 4 that C0
i (θ′i) = Ci(θ′i) and hence, the proof is complete.
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Proof of Lemma 5. The proof is analogous to that of Lemma 3, by induction. For the

initial step take Lemma 10 into account, and for the inductive step, notice that because of

the induction hypothesis, map βi, as defined in the proof of the Lemma 3, µi puts probability

1 on the graph of RP kj if and only if βi(µi) puts probability 1 on the graph of ICRC,kj .

Proof of Lemma 6. Again, the proof is analogous to that of Lemma 3, by induction. For

the initial step, take Lemma 10 into account and for the inductive step, by the induction

hypothesis, map βi, as defined in the proof of the Lemma 3, µi puts probability 1 on the

graph of RP †,kj if and only if βi(µi) puts probability 1 on the graph of ICRC
†,k
j .

Proof of Part (iii): For Theorem 1 fix player i, finite type ti ∈ T ∗i and strategy si ∈ RPi(ti).
If θ̂i(ti) = θ′′i then the claim is trivially true. If θ̂i(ti) = θ′i, we know that si = ai for some

action ai ∈ Ai and thus, it follows from Lemma 5 that ai ∈ ICRCi (ti). By Lemma 4, there

exists a sequence of finite types (tνi )ν∈N converging to ti such that ICRi(t
ν
i ) = {ai} for every

ν ∈ N. By applying Lemma 3 we conclude that, indeed, Ri(t
ν
i ) = {si} for every ν ∈ N. For

Theorem 2, simply repeat the argument substituting T ∗i , C, ICR and Ri with T †i , C†, ICR†

and R†i , respectively, and applying lemma 6 instead of lemma 5.

B Other Results

Proof of Corollary 2. Let Fi : T ∗i ⇒ Ai be s.t. Fi(ti) denotes the set of actions ai ∈ Ri(ti)
s.t. for any neighborhood N ∈ N (ti) of ti, there exists an open subset U ⊂ N (ti) s.t. ai ∈
Ri(t

′
i) ∀t′i ∈ U . Notice first that Fi is u.h.c.. To see this, proceed by contradiction and

suppose that (tνi )ν∈N converges to ti, ai ∈ Fi(tνi ) for every ν ∈ N and ai /∈ Fi(ti). By, u.h.c.

of Ri we have ai ∈ Ri(ti). Then there exists N ∈ N (ti) s.t. ∀V ⊆ N there is some t′i ∈ V
s.t. ai /∈ Ri(t′i). But this is a contradiction: N ∈ N (tni ) for large enough ν and ai ∈ Fi(tνi ).

To see that Fi(ti) ⊆ RPi(ti), pick an arbitrary ai ∈ Fi(ti) and N ∈ N (ti). By Theorem

1, there exists an open and dense X ⊆ T ∗i in which Ri and RPi coincide. Then, there exists

some open U ⊆ N s.t. ai ∈ Ri(t′i) = RPi(t
′
i) for every t′i ∈ U ∩X ⊆ N . Hence, ∀N ∈ N (ti)

there exists tNi s.t. ai ∈ RPi(tNi ). Since RPi is u.h.c., we have ai ∈ RPi(ti).
For the other inclusion, pick ai ∈ RPi(ti). If ti is finite pick sequence (tνi )ν∈N converging to

ti s.t. RPi(t
ν
i ) = {ai} ∀ν ∈ N. Obviously, ai ∈ Ri(ti). In addition, u.h.c. of RPi implies that

∀ν ∈ N there exists some open Uν ∈ N (tνi ) s.t. RPi(t
′
i) = {ai} ∀t′νi . Since ∀N ∈ N there exists

some ν ∈ N s.t. tν ∈ N , there also exists some U ⊆ N , U = Uν ∩N , s.t. ai ∈ RPi(t′i) ⊆ Ri(t′i)
∀t′i ∈ U . That is, ai ∈ Fi(ti). Finally, the u.h.c. of Fi implies that the inclusion is also true

for nonfinite types.

Proof of Proposition 1. Fix player i. We know from Theorem 1 that there exists some

dense subset Ťi ⊆ T ∗i such that |Ri(ti)| = 1 and Ri(ti) = RPi(ti) for any ti ∈ Ťi. Since

aii = aji = a∗i , it follows from Assumption 1 that aji = aij , and hence, that Bi = {a∗i }, which

in turn implies Ri(ti) = RPi(ti) = {a∗i } for any ti ∈ Ťi. Ri’s u.h.c. then implies that

T ′i := {ti ∈ T ∗i : Ri(ti) = {a∗i }} is open, and clearly, we have Ťi ⊆ T ′i . Thus, T ′i is an open

and dense subset of T ∗i and such that Ri(ti) = {a∗i } for every ti ∈ T ∗i .

Proof of Proposition 2. Under the assumptions of the proposition, w.l.o.g. let u∗i (a) = 0
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for any non-Nash profile a. Then, note that for any i, p ∈ [0, 1] and ai 6= aii, a
j
i , we have:

p · u∗i (aii, a
j
j) + (1− p) · u∗i (ai) > p · u∗i (ai, a

j
j) + (1− p) · u∗i (ai, a∗j (ai)),

because u∗i (a
i) > u∗i (ai, a

∗
j (ai)) for any ai 6= aii by definition, and u∗i (a

i
i, a

j
j) ≥ u∗i (ai, a

j
j) = 0

for any ai 6= aji . Hence, aii dominates all ai 6= aji , a
i
i for any p, and it is better than aij for high

p, and worse than aji for low p. It follows that B2
i = {aii, a

j
i}. But then, at the next round,

for any p, q ∈ [0, 1] and any ai 6= aii, a
j
i we have:

pq · u∗i (aii, a
j
j) + p(1− q) · u∗i (ai) + (1− p) · u∗i (ai)

> pq · u∗i (ai, a
j
j) + p(1− q) · u∗i (ai) + (1− p) · u∗i (ai, a∗j (ai)).

By the same argument as before only aii and aji can be a unique best-reply for some p and q.

It follows that Bi = {aii, a
j
i} ⊆ Ri and RPi ⊆ {aii, a

j
i}. The result follows from Theorem 1.

Proof of Proposition 3. Fix player i. By Theorem 2, there exists some dense subset

Ťi ⊆ T †i s.t. |Ri(ti)| = 1 and Ri(ti) = RP †i (ti) ∀ti ∈ Ťi. Since a1 is a Nash equilibrium, by

Assumption 1 B†1 = {a1
1} and B†2 = {a1

2}. The rest of the proof is the same as in the proof of

Proposition 1, replacing B with A and RP with RP †.
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