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Abstract

We study how changes in the steady-state real interest rate affect the optimal inflation target in a

New Keynesian DSGE model with trend inflation and a lower bound on the nominal interest rate. In

this setup, a drop in the steady-state real interest rate increases the probability of hitting that constraint.

This higher probability can be offset by an increase in the inflation target inducing a higher average

nominal interest rate. However, a higher inflation target also entails greater distortion costs induced by

steady-state inflation. We estimate the model on both U.S. and euro area data to quantify this trade-off.

We find that the relation between the steady-state real interest rate and the optimal inflation target is

downward sloping, but its slope is not necessarily one-for-one: increases in the optimal inflation rate are

generally lower than declines in the steady-state real interest rate. However, in the currently empirically

relevant region for the US as well as the euro area, the slope of the relation is close to -0.9. That latter

finding is robust to considering several alternative parameter values as well as parameter uncertainty.
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1 Introduction

A recent but sizable literature has pointed to a permanent –or, at least very persistent– decline in the

“natural” rate of interest in advanced economies (Del Negro et al., 2018, Holston et al., 2017, Laubach

and Williams, 2016). Various likely sources of that decline have been discussed, including a lower trend

growth rate of productivity (Gordon, 2015), demographic factors (Eggertsson et al., 2017) , or an enhanced

preference for safe assets (Caballero and Farhi, 2015, Summers, 2014).

A lower steady-state real interest rate matters for monetary policy. Given average inflation, a lower

steady-state real rate will cause the nominal interest rate to hit its zero lower bound (ZLB) more frequently,

hampering the ability of monetary policy to stabilize the economy, bringing about more frequent (and

potentially protracted) episodes of recessions and below-target inflation.

In the face of that risk, and in order to counteract it, several prominent economists have forcefully ar-

gued in favor of raising the inflation target (see, among others, Ball 2014, Blanchard et al. 2010, Williams

2016). Since a lower natural rate of interest is conducive to a higher ZLB incidence, one would expect

a higher inflation target to be desirable in that case. But the answer to the practical question of by how

much should the target be increased is not obvious. Indeed, the benefit of providing a better hedge against

hitting the ZLB, which is an infrequent event, comes at a cost of higher steady-state inflation which in-

duces permanent costs, as recently argued by Bernanke (2016) among others. The answer to this question

thus requires to assess how the tradeoff between the incidence of the ZLB and the welfare cost induced by

steady-state inflation is modified when the natural rate of interest decreases. While the decrease in the nat-

ural rate of interest has been emphasized in the recent literature, such assessment has received surprisingly

little attention.

The present paper contributes to this debate by asking two questions. First, to what extent does a lower

steady-state real interest rate (r?) call for a higher optimal inflation target (π?)? Second, does the source of

decline in r? matter? Our main contribution is to characterize how the optimal inflation target is related

to the steady-state real interest rate, using a structural, empirically estimated, macroeconomic model. Our

main findings can be summarized as follows: (i) The relation between r? and π? is downward sloping, but

not necessarily one-for-one; (ii) in the vicinity of the pre-crisis values for r?, the slope of the (r?, π?) locus is

close to −0.9 ; and (iii) for a plausible range of r? values the relation is largely robust to the underlying

source of variation in r?.

Our results are obtained from extensive simulations of a New Keynesian DSGE model estimated for

both the US and the euro area over a Great Moderation sample. The framework features: (i) price stickiness

and imperfect indexation of prices to non-zero trend inflation, (ii) wage stickiness and imperfect indexation

of wages to both inflation and technical progress, and (iii) a ZLB constraint on the nominal interest rate.

The first two features imply the presence of potentially substantial costs associated with non-zero wage or

price inflation. The third feature warrants a strictly positive inflation rate, in order to mitigate the incidence
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and adverse effects of the ZLB. To our knowledge, these three features have not been jointly taken into

account in previous analyses of optimal inflation. Our analysis focuses on the trade-off between the costs

attached to the probability of the hitting the ZLB constraint and the costs induced by a positive steady-state

inflation rate. In particular one restriction is that our analysis does not incorporate alternative instruments

that could be considered by policymakers facing to a change in r? – such as changing the central bank

reaction function, implementing non-conventional policies, or relying on active fiscal policies.

According to our simulations, the pre-crisis optimal inflation target obtained when the policymaker is

assumed to know the economy’s parameters with certainty (and taken to correspond to the mode of the

posterior distribution) is around 2% for the US and around 1.5% for the euro area (in annual terms). This

result is obtained in an environment with a relatively low probability of hitting the ZLB (6% for the US and

slightly less than 10% for the euro area), given the small shocks estimated on our Great Moderation sample.

Our simulations also show that, a 100 basis point drop of r? from its pre-crisis level (respectively 2.5% in

the US and 2.7% in the euro area) will almost double the probability of hitting the ZLB if the monetary

authority keeps its inflation target unchanged. The optimal reaction of the central bank is to increase the

inflation target by 99 basis points in the US and by 81 basis points in the euro area. Overall the slope of

the (r?, π?) relation close to -.9 in the vicinity of the pre-crisis parameter region. This optimal reaction

mitigates the increase in the probability of hitting the ZLB.

A further noticeable feature of our approach is that we perform a full-blown Bayesian estimation of the

model, using both US and euro area data. This allows us not only to assess the uncertainty surrounding π?,

but also to derive an optimal inflation target taking into account the parameter uncertainty facing the policy

maker, including uncertainty with regard to the determinants of the steady-state real interest rate. When

that parameter uncertainty is allowed for, the optimal inflation target values increase significantly: 2.40%

for the US and 2.20% for the euro area The reason why the optimal targets under parameter uncertainty are

higher has to do with the fact that the loss function is asymmetric so that choosing an inflation target that

is lower than the optimal one is more costly than choosing an inflation target that is above. That being said

it remains true that a Bayesian-theoretic optimal inflation target rises by about 90 basis points in response

to a downward shift of the distribution in r? of 100 basis points.

We also study the (r?, π?) relation obtained under a variety of alternative assumptions: a central bank

targeting the average realized inflation target instead of a objective inflation goal, a central bank con-

strained by an effective lower bound on the policy rate that can be below zero, a central bank uncertain

about the parameter values of the model but certain about its reaction function, a central bank with a lower

or a higher smoothing parameter in the interest-rate policy rule, structural shocks with higher variance,

and higher goods and labor market markups. Strikingly, in the empirically relevant region, the slope of the

(r?, π?) curve is much less affected than the level of this locus. It remains in nearly all cases in the same

ballpark as in the baseline scenario.

The remaining of the paper is organized as follows. Section 2 presents the New Keynesian model with a
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ZLB constraint that is used. Section 3 describes how the model is estimated and simulated, as well as how

the welfare-based optimal inflation target is computed. Section 4 is devoted to the analysis of the (r?, π?)

relation. Section 5 discusses this locus for a set of the alternative exercises. Finally Section 6 provides some

concluding remarks.

1.1 Related Literature

To our knowledge no paper has systematically investigated the (r?, π?) relation. Coibion et al. (2012) (and

its follow-up Dordal-i-Carreras et al. (2016)) and Kiley and Roberts (2017) are the papers most closely re-

lated to ours, as they study optimal inflation in quantitative set-ups that account for the ZLB. However,

their analyses hold for a constant steady-state natural rate of interest. Relative to both papers, a key differ-

ence is our focus on eliciting the relation between the steady-state real interest rate and optimal inflation.

Other differences are (i) our interest in the euro area, in addition to the US; (ii) we estimate, rather than

calibrate, the model, and (iii) we allow for wage rigidity in the form of infrequent, staggered, wage ad-

justments. A distinctive feature with respect to Kiley and Roberts (2017) is that we use a model-consistent,

micro-founded loss function to compute optimal inflation.

A series of papers assessed the probability of hitting the ZLB for a given inflation target (see, among

others, Chung et al. 2012, Coenen 2003, Coenen et al. 2004). Interestingly, our own assessment of this pre-

crisis ZLB incidence falls broadly in the ballpark of available estimates. A related recent contribution by

Gust et al. (2017) emphasizes that the ZLB was indeed a significant constraint on monetary policy that

exacerbated the recession and inhibited the recovery.1 Lindé et al. (2017) offer a discussion of alternative

methods to implement the ZLB at the estimation stage.

Other relevant references, albeit ones that put little or no emphasis on the ZLB, are the following. An

early literature focuses on sticky prices and monetary frictions. In such a context, as shown by Khan

et al. (2003) and Schmitt-Grohé and Uribe (2010), the optimal rate of inflation should be slightly negative.

Similarly, a negative optimal inflation would result from an environment with trend productivity growth

and prices and wages both sticky, as shown by Amano et al. (2009). In this kind of environment, moving

from a 2% to a 4% inflation target would be extremely costly, as suggested by Ascari et al. (2015). By

contrast, adding search and matching frictions to the setup, Carlsson and Westermark (2016) show that

optimal inflation can be positive. Bilbiie et al. (2014) find positive optimal inflation can be an outcome in

a sticky-price model with endogenous entry and product variety. Somewhat related, Adam and Weber

(2017) show that, even without any ZLB concern, optimal inflation might be positive in the context of a

model with heterogeneous firms and systematic firm-level productivity trends. Finally, using a perpetual

1Gust et al. (2017) rely on global solution methods while we resort to the lighter algorithms developed by Bodenstein et al.

(2009) and Guerrieri and Iacoviello (2015). Given the large set of inflation targets and real interest rates that we need to consider

(and given that these have to be considered for each and every parameter configuration in our simulations), a global solution

would be computationally prohibitive.
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youth model, Lepetit (2017) shows that optimal inflation can be positive in the presence of heterogeneous

discount factor, especially when the social planner is more patient than agents.

Among the recent papers with ZLB, Blanco (2016) studies optimal inflation in a state-dependent pricing

model, i.e. a “menu cost” model. In this setup, optimal inflation is typically positive. Two forces explain

the result. First, as in our analysis, positive inflation edges the economy against detrimental effects of ZLB.2

Second, as shown by Nakamura et al. (2016), the presence of state-dependent pricing limits considerably

the positive relationship between inflation and price dispersion, thus limiting the costs of inflation.

2 The Model

We use a relatively standard medium-scale New Keynesian model as a framework of reference. Crucially,

the model features elements that generate a cost to inflation: (1) nominal rigidities, in the form of staggered

price and wage setting; (2) less than perfect price (and wage) indexation to past or trend inflation; and (3)

trend productivity growth along, to which wages are imperfectly indexed.

As is well known, staggered price setting generates a positive relation between deviations from zero

inflation and price dispersion (with the resulting inefficient allocation of resources). Moreover, the lack

of indexation to trend magnifies these costs, as emphasized by Ascari and Sbordone (2014). Also, and

ceteris paribus, price inflation induces (nominal) wage inflation, which in turn triggers inefficient wage

dispersion in the presence of staggered wage setting. Imperfect indexation also magnifies the costs of

non-zero price (or wage) inflation as compared to a set-up where price and wages mechanically catch up

with trend inflation. Finally the lack of a systematic indexation of wages to productivity also induces an

inefficient wage dispersion.

At the same time, there are benefits associated to a positive inflation rate, as interest rates are subject to

a ZLB constraint. In particular, and given the steady-state real interest rate, the incidence of binding ZLB

episodes should decline with the average rate of inflation. Such episodes hamper the stabilization potential

of monetary policy.

Overall, the model we use, and the trade-off between costs and benefits of steady-state inflation, are

close to those considered by Coibion et al. (2012). However we assume Calvo-style sticky wages, in addi-

tion to sticky prices.3

2By contrast, see Burstein and Hellwig (2008) for a similar exercise without ZLB, which leads to negative optimal inflation rate.
3In their robustness analysis, Coibion et al. (2012) consider downward nominal wage rigidity, which entails different mecha-

nisms than with Calvo-style rigidities.
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2.1 Households

The economy is inhabited by a continuum of measure one of infinitely-lived, identical households. The

representative household is composed of a continuum of workers, each specialized in a particular labor

type indexed by h ∈ [0, 1]. The representative household’s objective is to maximize an intertemporal

welfare function

Et

∞

∑
s=0

βs
{

eζg,t+s log(Ct+s − ηCt+s−1)−
χ

1 + ν

∫ 1

0
Nt+s(h)1+νdh

}
, (1)

where β ≡ e−ρ is the discount factor (ρ being the discount rate), Et{·} is the expectation operator condi-

tional on information available at time t, Ct is consumption and Nt(h) is the supply of labor of type h. The

utility function features habit formation, with degree of habits η. The inverse Frisch elasticity of labor sup-

ply is ν and χ is a scale parameter in the labor disutility. The utility derived from consumption is subject to

a preference shock ζg,t.

The representative household maximizes (1) subject to the sequence of constraints

PtCt + eζq,t QtBt ≤
∫ 1

0
Wt(h)Nt(h)dh + Bt−1 − Tt + Dt (2)

where Pt is the aggregate price level, Wt(h) is the nominal wage rate associated with labor of type h, eζq,t Qt

is the price at t of a one-period nominal bond paying one unit of currency in the next period, where ζq,t is

a “risk-premium” shock, Bt is the quantity of such bonds acquired at t, Tt denotes lump-sum taxes, and Dt

stands for the dividends rebated to the households by monopolistic firms.

2.2 Firms and Price Setting

The final good is produced by perfectly competitive firms according to the Dixit-Stiglitz production func-

tion

Yt =

(∫ 1

0
Yt( f )(θp−1)/θp d f

)θp/(θp−1)

,

where Yt is the quantity of final good produced at t, Yt( f ) is the input of intermediate good f , and θp the

elasticity of substitution between any two intermediate goods. The zero-profit condition yields the relation

Pt =

(∫ 1

0
Pt( f )1−θp d f

)1/(1−θp)

.

Intermediate goods are produced by monopolistic firms, each specialized in a particular good f ∈ [0, 1].

Firm f has technology

Yt( f ) = ZtLt( f )1/φ

where Lt( f ) is the input of aggregate labor, 1/φ is the elasticity of production with respect to aggregate

labor, and Zt is an index of aggregate productivity. The latter evolves according to

Zt = Zt−1eµz+ζz,t
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where µz is the average growth rate of productivity. Thus, technology is characterized by a unit root in the

model.

Intermediate goods producers are subject to nominal rigidities à la Calvo. Formally, firms face a con-

stant probability αp of not being able to re-optimize prices. In the event that firm f is not drawn to re-

optimize at t, it re-scales its price according to the indexation rule

Pt( f ) = (Πt−1)
γp Pt−1( f )

where Πt ≡ Pt/Pt−1, Π is the associated steady-state value and 0 ≤ γp < 1. Thus, in case firm f is

not drawn to re-optimize, it mechanically re-scales its price by past inflation. Importantly, however, we

assume that the degree of indexation is less than perfect since γp < 1. One obvious drawback of the

Calvo set-up is that the probability of price change is assumed to be invariant, inter alia to the long run

inflation rate. Drawing from the logic of menu cost models, the Calvo parameter of price fixity could be

expected to decrease when trend inflation rises. However, in the range of values for trend inflation that we

will consider, available micro economic evidence, such as that summarized in Golosov and Lucas (2007),

suggests there is no significant correlation between the frequency of price change and trend inflation.

If drawn to re-optimize in period t, a firms chooses P?
t in order to maximize

Et

∞

∑
s=0

(βαp)
sΛt+s

{
(1 + τp,t+s)

Vp
t,t+sP?

t

Pt+s
Yt,t+s −

Wt+s

Pt+s

(
Yt,t+s

Zt+s

)φ
}

,

where Λt denotes the marginal utility of wealth, τp,t is a sales subsidy paid to firms and financed via a

lump-sum tax on households, and Yt,t+s is the demand function that a monopolist who last revised its

price at t faces at t + s; it obeys

Yt,t+s =

(
Vp

t,t+sP?
t

Pt+s

)−θp

Yt+s

where Vp
t,t+s reflects the compounded effects of price indexation to past inflation

Vp
t,t+s =

t+s−1

∏
j=t

(Πj))
γp .

We further assume that

1 + τp,t = (1 + τp)e−ζu,t ,

with ζu,t appearing in the system as a cost-push shock. Furthermore, we set τp so as to neutralize the

steady-state distortion induced by price markups.
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2.3 Aggregate Labor and Wage Setting

There is a continuum of perfectly competitive labor aggregating firms that mix the specialized labor types

according to the CES technology

Nt =

(∫ 1

0
Nt(h)(θw−1)/θw dh

)θw/(θw−1)

,

where Nt is the quantity of aggregate labor and Nt(h) is the input of labor of type h, and where θw denotes

the elasticity of substitution between any two labor types. Aggregate labor Nt is then used as an input in

the production of intermediate goods. Equilibrium in the labor market thus requires

Nt =
∫ 1

0
Lt( f )d f .

Here, it is important to notice the difference between Lt( f ), the demand for aggregate labor emanating

from firm f , and Nt(h), the supply of labor of type h by the representative household.

The zero-profit condition yields the relation

Wt =

(∫ 1

0
Wt(h)1−θw dh

)1/(1−θw)

,

where Wt is the nominal wage paid to aggregate labor while Wt(h) is the nominal wage paid to labor of

type h.

Mirroring prices, we assume that wages are subject to nominal rigidities, à la Calvo, in the manner of

Erceg et al. (2000). Formally, unions face a constant probability αw of not being able to re-optimize wages.

In the event that union h is not drawn to re-optimize at t, it re-scales its wage according to the indexation

rule

Wt(h) = eγzµz(Πt−1)
γwWt−1(h)

where, as before, wages are indexed to past inflation. However, we assume that the degree of indexation is

here too less than perfect by imposing 0 ≤ γw < 1. In addition, nominal wages are also indexed to average

productivity growth with indexation degree 0 ≤ γz < 1.

If drawn to re-optimize in period t, a union chooses W?
t in order to maximize

Et

∞

∑
s=0

(βαw)
s

{
(1 + τw)Λt+s

Vw
t,t+sW

?
t

Pt+s
Nt,t+s −

χ

1 + ν
N1+v

t,t+s

}
where the demand function at t + s facing a union who last revised its wage at t obeys

Nt,t+s =

(
Vw

t,t+sW
?
t

Wt+s

)−θw

Nt+s

and where Vw
t,t+s reflects the compounded effects of wage indexation to past inflation and average produc-

tivity growth

Vw
t,t+s = eγzµz(t+s)

t+s−1

∏
j=t

(Πj))
γw .

Furthermore, we set τw so as to neutralize the steady-state distortion induced by wage markups.
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2.4 Monetary Policy and the ZLB

Monetary policy in "normal times" is assumed to be given by an inertial Taylor-like interest rate rule

ı̂t = ρi ı̂t−1 + (1− ρi)
(
aππ̂t + ay x̂t

)
+ ζR,t (3)

where it ≡ − log(Qt), with ı̂t denoting the associated deviation from steady state i.e, ı̂t ≡ it − i. Also,

πt ≡ log Πt, π̂t ≡ πt − π is the gap between inflation and its target, and x̂t ≡ log(Yt/Yn
t ) where Yn

t is the

natural level of output, defined as the level of output that would prevail in an economy with flexible prices

and wages and no cost-push shocks. Finally, ζR,t is a monetary policy shock.

Here, π should be interpreted as the central bank target for change in the price index. An annual

inflation target of 2% would thus imply π = 2/400 = 0.005 as the model will be parameterized and

estimated with quarterly data. Note that the inflation target thus defined may differ from average inflation.

Crucially for our purpose, the nominal interest rate it is subject to a ZLB constraint:

it ≥ 0

The steady-state level of the real interest rate is defined by r? ≡ i − π. Given logarithmic utility, it is

related to technology and preference parameters according to r? = ρ + µz. Combining these elements, it is

convenient to write the ZLB constraint in terms the deviation of the nominal interest rate

ı̂t ≥ −(µz + ρ + π) (4)

The rule effectively implemented is given by:

ı̂n
t = ρi ı̂n

t−1 + (1− ρi)
(
aππ̂t + ay x̂t

)
+ ζR,t (5)

ı̂t = max{ı̂n
t , −(µz + ρ + π)} (6)

An important feature is that - as in Coibion et al. (2012) and in a large share of the recent literature - the

lagged rate that matters is the lagged notional interest rate ı̂t, rather that the lagged actual rate.

Before proceeding, several remarks are in order. First, the inflation target, π, is not assumed to be

optimal. Note also that realized inflation might be on average below the target as a consequence of ZLB

episodes, i.e. E{πt} < π. In such instances of ZLB, monetary policy fails to deliver the appropriate degree

of accommodation, resulting in a more severe recession and lower inflation than in an economy in which

there would not be a ZLB constraint.4 Second, we assume the central bank policy is characterized by a

monetary policy rule rather than a Ramsey-type fully optimal policy of the type studied by e.g. Khan et al.

4For convenience, Table A.1 in the Appendix summarizes the various notions of optimal inflation and long-run or target

inflation considered in this paper.
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(2003) or Schmitt-Grohé and Uribe (2010). Such rules have been shown to be a good empirical characteriza-

tion of the behavior of central banks in the last decades. From an institutional point of view, the setting the

inflation objective (or a definition of price stability) appears to be done at a lower frequency than defining

the rule operating the interest rate on a day-to-day basis. Note also that two features in our set-up, the

inertia in the monetary policy rule, as well as the use of a lagged notionnal rate rather than lagged actual

rate, render the policy more persistent and thus closer to a Ramsey-like fully optimal interest rate rule. In

particular the dependence of the lagged notional rate ı̂n
t results in the nominal interest rate ı̂t being “lower

for longer” in the aftermath of ZLB episodes (as ı̂n
t will stay negative for a protracted period).

As equation (4) makes clear, µz, ρ, π have symmetric roles in the ZLB constraint. Put another way, for

given structural parameters and a given process for ı̂t, the probability of hitting the ZLB would remain

unchanged if productivity growth or the discount rate decline by one percent and the inflation target is

increased by a commensurate amount at the same time. Based on these observations, one may be tempted

to argue that in response to a permanent decline in µz or ρ, the optimal inflation target π∗ will change by

the same amount (with a negative sign).

The previous conjecture is, however, incorrect. The reasons for this are twofold. First, any change

in µz (or ρ) also translates into a change in the coefficients of the equilibrium dynamic system. It turns

out that this effect is non-negligible since, as we show later, after a one percentage point decline in r∗ the

inflation target has to be raised by more than one percent in order to keep the probability of hitting the

ZLB unchanged. Second, because there are welfare costs associated with increasing the inflation target, the

policy maker would also have to balance the benefits of keeping the incidence of ZLB episodes constant

with the additional costs in terms of extra price dispersion and inefficient resource allocation. These costs

can be substantial and more than compensate for the benefits of holding the probability of ZLB constant.

Assessing these forces is precisely this paper’s endeavor.

3 Estimation and simulations

3.1 Estimation without a lower bound on nominal interest rates

Estimation procedure Because the model has a stochastic trend, we first induce stationarity by dividing

trending variables by Zt. The resulting system is then log-linearized in the neighborhood of its determin-

istic steady state.5 We append to the system a set of equations describing the dynamics of the structural

shocks, namely

ζk,t = ρkζk,t−1 + σkεk,t, εk,t ∼ N(0, 1)

for k ∈ {R, g, u, q, z}.
5See the Technical Appendix for further details.
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Absent the ZLB constraint, the model can be solved and cast into the usual linear transition and obser-

vation equations:

st = T (θ)st−1 +R(θ)εt, xt =M(θ) +H(θ)st,

with st a vector collecting the model’s state variables, xt a vector of observable variables and εt a vector of

innovations to the shock processes εt = (εR,t, εg,t, εu,t, εq,t, εz,t)′. The solution coefficients are regrouped in

the conformable matrices T (θ), R(θ),M(θ), and H(θ) which depend on the vector of structural parame-

ters θ.

We estimate the model using data for a pre-crisis period over which the ZLB constraint is not binding.

This enables us to use the linear version of the model. The sample of observable variables is XT ≡ {xt}T
t=1

with

xt = [∆ log(GDPt), ∆ log(GDP Deflatort), ∆ log(Wagest), Short Term Interest Ratet]
′

where the short term nominal interest rate is the effective Fed Funds Rate for the US and the Euribor 3

months rate for the Euro-Area.We use a sample of quarterly data covering the period 1985Q2-2008Q3. This

choice is guided by two objectives. First, this sample strikes a balance between size and the concern of

having a homogeneous monetary policy regime over the period considered. In the US case, the sample

covers the Volcker and post-Volcker period, arguably one of relative homogeneity of monetary policy.

For the euro area, the sample starts approximately when the disinflation policies were simultaneously

conducted in the main euro area countries (see Fève et al. 2010) and then covers the single currency period.

Here too, this corresponds to a period of relative monetary policy homogeneity. Second, we use a sample

that coincides more or less with the so-called Great Moderation. Over the latter, as has been argued in

the literature, we expect smaller shocks to hit the economy. In principle, this will lead to a conservative

assessment of the effects of the more stringent ZLB constraint due to lower real interest rates. 6

The parameters φ, θp, and θw are calibrated prior to estimation. The parameter θp is set to 6, resulting in

a steady-state price markup of 20%. Similarly, the parameter θw is set to 3, resulting in a wage markup of

50%. These numbers fall into the arguably large ballpark of available values used in the literature. In the

robustness section, we investigate the sensitivity of our results to these parameters. The parameter φ is set

to 1/0.7. Given the assumed subsidy correcting the steady-state price markup distortion, this results in a

steady-state labor share of 70%.

We rely on a full-system Bayesian estimation approach to estimate the other model parameters. After

having cast the dynamic system in the state-space representation for the set of observable variables, we

use the Kalman filter to measure the likelihood of the observed variables. We then form the joint posterior

distribution of the structural parameters by combining the likelihood function p(XT|θ) with a joint density

characterizing some prior beliefs p(θ). The joint posterior distribution thus obeys

p(θ|XT) ∝ p(XT|θ)p(θ),
6The data are obtained from the Fred database for the US and from the “Area Wide Model” database of Fagan et al. (2001) and

Eurostat national accounts for the Euro Area. In both cases, the GDP is expressed in per capita terms.
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Table 1: Estimation Results - US

Parameter Prior Shape Prior Mean Priod std Post. Mean Post. std Low High

ρ Normal 0.20 0.05 0.19 0.05 0.11 0.27

µz Normal 0.44 0.05 0.43 0.04 0.36 0.50

π? Normal 0.61 0.05 0.62 0.05 0.54 0.69

αp Beta 0.66 0.05 0.67 0.03 0.61 0.73

αw Beta 0.66 0.05 0.50 0.05 0.43 0.58

γp Beta 0.50 0.15 0.20 0.07 0.08 0.32

γw Beta 0.50 0.15 0.44 0.16 0.21 0.68

γz Beta 0.50 0.15 0.50 0.18 0.26 0.75

η Beta 0.70 0.15 0.80 0.03 0.75 0.85

ν Gamma 1.00 0.20 0.73 0.15 0.47 0.97

aπ Gamma 2.00 0.15 2.13 0.15 1.89 2.38

ay Gamma 0.50 0.05 0.50 0.05 0.42 0.58

ρTR Beta 0.85 0.10 0.85 0.02 0.82 0.89

σz Inverse Gamma 0.25 1.00 1.06 0.22 0.74 1.38

σR Inverse Gamma 0.25 1.00 0.10 0.01 0.09 0.11

σq Inverse Gamma 0.25 1.00 0.39 0.11 0.16 0.61

σg Inverse Gamma 0.25 1.00 0.23 0.04 0.16 0.29

σu Inverse Gamma 0.25 1.00 0.24 0.05 0.06 0.46

ρR Beta 0.25 0.10 0.51 0.06 0.41 0.61

ρz Beta 0.25 0.10 0.27 0.13 0.09 0.45

ρg Beta 0.85 0.10 0.98 0.01 0.97 1.00

ρq Beta 0.85 0.10 0.88 0.04 0.80 0.95

ρu Beta 0.80 0.10 0.80 0.10 0.65 0.96

Note: ’std’ stands for Standard Deviation, ’Post.’ stands for Posterior, and ’Low’ and ’High’ denote the bounds of the 90%
probability interval for the posterior distribution.

Given the specification of the model, the joint posterior distribution cannot be recovered analytically

but may be computed numerically, using a Monte-Carlo Markov Chain (MCMC) sampling approach. More

specifically, we rely on the Metropolis-Hastings algorithm to obtain a random draw of size 1,000,000 from

the joint posterior distribution of the parameters.

Estimation results Tables 1 and 2 present the parameter’s postulated priors (type of distribution, mean,

and standard error) and estimation results, i.e., the posterior mean and standard deviation, together with

the bounds of the 90% probability interval for each parameter.

For the parameters π, µz and ρ, we impose Gaussian prior distributions. The parameters governing

the latter are chosen so that the model steady-state values match the mean values of inflation, real per

capita GDP growth, and the real interest rate in our US and euro area samples. Other than for these three

parameters, we use the same prior distributions for the structural parameters in both the US and the euro

area. Our choice of priors are standard. In particular, we use Beta distributions for parameters in [0, 1],

Gamma distributions for positive parameters, and Inverse Gamma distributions for the standard error of

the structural shocks.

The estimation results suggest several key differences between the US and the euro area.

First, reflecting the growth differential between the US and the euro area over the sample period, we

find a higher growth rate µz in the euro area than in the US. Moreover, it turns out that the real interest rate

is also higher on average in the euro area than in the US over the sample period. These two effects combine
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Table 2: Estimation Results - EA

Parameter Prior Shape Prior Mean Priod std Post. Mean Post. std Low High

ρ Normal 0.20 0.05 0.21 0.05 0.13 0.29

µz Normal 0.50 0.05 0.47 0.05 0.40 0.55

π? Normal 0.80 0.05 0.79 0.05 0.71 0.86

αp Beta 0.66 0.05 0.62 0.05 0.55 0.68

αw Beta 0.66 0.05 0.59 0.04 0.52 0.65

γp Beta 0.50 0.15 0.12 0.04 0.04 0.19

γw Beta 0.50 0.15 0.34 0.12 0.15 0.53

γz Beta 0.50 0.15 0.51 0.18 0.26 0.76

η Beta 0.70 0.15 0.74 0.04 0.69 0.80

ν Gamma 1.00 0.20 0.96 0.18 0.65 1.25

aπ Gamma 2.00 0.15 2.02 0.14 1.80 2.25

ay Gamma 0.50 0.05 0.50 0.05 0.42 0.58

ρTR Beta 0.85 0.10 0.87 0.02 0.84 0.90

σz Inverse Gamma 0.25 1.00 0.86 0.16 0.63 1.10

σR Inverse Gamma 0.25 1.00 0.11 0.01 0.10 0.12

σq Inverse Gamma 0.25 1.00 0.23 0.05 0.13 0.32

σg Inverse Gamma 0.25 1.00 0.21 0.04 0.15 0.27

σu Inverse Gamma 0.25 1.00 0.23 0.05 0.06 0.43

ρR Beta 0.25 0.10 0.39 0.07 0.27 0.50

ρz Beta 0.25 0.10 0.24 0.10 0.09 0.39

ρg Beta 0.85 0.10 1.00 0.01 0.99 1.00

ρq Beta 0.85 0.10 0.94 0.03 0.90 0.98

ρu Beta 0.80 0.10 0.79 0.10 0.64 0.96

Note: ’std’ stands for Standard Deviation, ’Post.’ stands for Posterior, and ’Low’ and ’High’ denote the bounds of the 90%
probability interval for the posterior distribution.

in such a way that both economies have similar discount rates. This difference in steady-state real interest

rates r? will play an important role later when we assess the level of the optimal inflation target. Second,

we find generically higher degrees of indexation to past inflation in the US than in the euro area. This will

translate into a higher tolerance for inflation in the US in our subsequent analysis of the optimal inflation

target. This is because a higher indexation helps to mitigate the distortions induced by a higher inflation

target. Everything else equal, we thus expect a higher optimal inflation target in the US than in the euro

area. Third, we obtain broadly similar parameters for the shocks processes. One exception, though, is the

so-called risk-premium shock. The unconditional variance of the US shock is somewhat higher than its

euro area counterpart.

For the US, most of our estimated parameters are in line with the calibration adopted by Coibion et al.

(2012), with important qualifications. First, we obtain a slightly higher degree of price rigidity than theirs

(0.67 versus 0.55). Second, our specification of monetary policy is different from theirs. In particular, they

allow for two lags of the nominal interest rate in the monetary policy rule while we only have one lag.

However, we can compare the overall degree of interest rate smoothing in the two setups. To this end,

abstracting from the other elements of the rule, we simply focus on the sum of autoregressive coefficients.

It amounts to 0.92 in their calibration while the degree of smoothing in our setup has a mean posterior value

of 0.85. While this might not seem to be a striking difference, it is useful to cast these figures in terms of

half-life of convergence in the context of autoregressive model of order 1. Our value implies twice as small

a half-life than theirs. Third, our monetary policy shock and our shocks to demand have approximately
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twice as small an unconditional standard deviation as theirs.

3.2 Computing the Optimal Inflation Target

Simulations with a ZLB constraint The model becomes non-linear when one allows the ZLB constraint

to bind. The solution method we implement follows the approach developed by Bodenstein et al. (2009)

and Guerrieri and Iacoviello (2015). The approach can be described as follows. There are two regimes: the

no-ZLB regime k = n and the ZLB regime k = e and the canonical representation of the system in each

regime is

Et{A(k)st+1 + B(k)st + C(k)st−1 +D(k)εt}+ f (k) = 0

where A(k), B(k), C(k), and D(k) are conformable matrices and f (k) is a vector of constants. In the no-ZLB

regime, the vector f (n) is filled with zeros. In the ZLB regime, the row of f (e) associated with it is equal to

µz + ρ + π. Similarly, the rows of the system matrices associated with it in the no-ZLB regime correspond

to the coefficients of the Taylor rule while in the ZLB regime, the coefficient associated with it is equal to 1

and all the other coefficients are set to zero.

In each period t, given an initial state vector st−1 and vector stochastic innovations εt, we simulate

the model under perfect foresight (i.e., assuming that no further shocks hit the economy) over the next N

periods, for N sufficiently large. In case this particular draw is not conducive to a ZLB episode, we find

st using the linear solution stated above. In contrast, if this draw leads to a ZLB episode, we postulate

integers Ne < N and Nx < N such that the ZLB is reached at time t + Ne and left at time t + Nx. In this

case, we solve the model by backward induction. We obtain the time varying solution

st+q = dt+q + Tt+qst+q−1 +Rt+qεt+q

where, for q ∈ {Ne, ..., Nx − 1}

Tt+q = −
(
A(e)Tt+q+1 + B(e)

)−1
C(e), Rt+q = −

(
A(e)Tt+q+1 + B(e)

)−1
D(e),

dt+q = −
(
A(e)Tt+q+1 + B(e)

)−1(
A(e)dt+q+1 + f (e)

)
and, for q ∈ {0, ..., Ne − 1}

Tt+q = −
(
A(n)Tt+q+1 + B(n)

)−1
C(n), Rt+q = −

(
A(n)Tt+q+1 + B(n)

)−1
D(n),

dt+q = −
(
A(n)Tt+q+1 + B(n)

)−1(
A(n)dt+q+1 + f (n)

)
,

using Tt+Nx = T , Rt+Nx = R, and dt+Nx set to a column filled with zeros as initial conditions of the

backward recursion.

We then check that given the obtained solution, the system hits the ZLB at t + Ne and leaves the ZLB at

t + Nx. Otherwise, we shift Ne and/or Nx forward or backward by one period and start all over again until
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convergence. Once convergence has been reached, we use the resulting matrices to compute st and repeat

the process for all the simulation periods.

Our approach is thus similar to the one used by Coibion et al. (2012) in their study of the optimal

inflation target in a New Keynesian setup.7 A shortcoming of this approach is that the agents in the model

are not assumed to expect that the ZLB has some probability to bind again in the future, after the exit from

(possible) current ZLB episode. This may bias estimates , as explained by in Gust et al. (2017), even when as

in our case estimation is performed on a pre-ZLB period. The scope of this concern is however dampened

by the fact that in the pre crisis environment there is evidence that even experts severely underestimated

the probability of the ZLB occuring, see Chung et al. (2012).

A welfare-based optimal inflation target A second-order approximation of the household expected util-

ity derived from the structural model is used to quantify welfare, in a similar manner as in Woodford

(2003).8 Let W (π; θ) denote this welfare criterion. This notation emphasizes that welfare depends on the

inflation target π together with the rest of the structural parameters θ. Two cases are considered concern-

ing the latter. In the baseline case the structural parameters θ are fixed at reference values and taken to be

known with certainty by the policy maker. In an alternative exercise, the policy maker maximizes welfare

while recognizing the uncertainty associated with the model’s parameters.

The optimal inflation target associated with a given vector of parameters θ, π?(θ) is approximated

via numerical simulations of the model allowing for an occasionally binding ZLB constraint, using the

algorithm outlined above. 9 The optimal inflation rate associated to a particular vector of parameters θ is

then obtained as the one maximizing the welfare function, that is:

π?(θ) ≡ arg max
π

W (π; θ).

Accounting for Parameter Uncertainty The location of the loss function W (π; θ) evidently depends on

the parameter of the economy. As a result of estimation uncertainty around of θ, π?(θ) will be subject to

uncertainty. Further, a policy maker may wish take into account uncertainty surrounding θ when defining

its optimal target. A relevant feature of the welfare functions in our set-up is that in general they will be

markedly asymmetric: adopting an inflation target 1 percentage point below the optimal value generates

welfare losses larger than setting it 1 percentage point above. As a result, the certainty-equivalence does

7In practice we combine the implementation of the Bodenstein et al. (2009) algorithm developed by Coibion et al. (2012) with

the solution algorithm and the parser from Dynare. Our implementation is in the spirit of Guerrieri and Iacoviello (2015), resulting

in a less user-friendly yet faster suite of programs.
8See the Technical Appendix for details.
9More precisely, a sample of size T = 100000 of innovations {εt}T

t=1 is drawn from a Gaussian distribution (we also allow for a

burn in sample of 200 points that we later discard). We use these shocks to simulate the model for given parameter vector θ. The

welfare function W (π; θ) is approximated by replacing expectations with sample averages. The procedure is repeated for each of

K = 51 inflation targets on the grid {π(k)}K
k=1 ranging from π = 0.5/4% to π = 5/4% (expressed in quarterly rates). Importantly,

we use the exact same sequence of shocks {εt}T
t=1 in each and every simulation over the inflation grid.
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not hold. A policy maker maximizing expected welfare while recognizing the uncertainty, will choose a an

inflation target differing from that corresponding to the case where θ is set to its expected value, and taken

to be known with certainty, as in our baseline analysis.

Formally, the estimated posterior distribution of parameters p(θ|XT) can be exploited to quantify the

impact of parameter uncertainty on the optimal inflation target and to compute a “Bayesian-theoretic opti-

mal inflation target”. We define the latter as the inflation target π?? which maximizes the expected welfare

not only over the realizations of shocks but also over the realizations of parameters10

π?? ≡ arg max
π

∫
θ
W (π; θ)p(θ|XT)dθ.

We interpret the spread between the optimal inflation target at the posterior mean θ̄ and the optimal

Bayesian inflation target as a measure of how uncertainty about the parameter value affects optimal in-

flation. Given the nature of asymmetry in the welfare function, the spread will turn out to be positive: a

bayesian policy maker will tend to choose a higher inflation target than a policymaker taking θ to be known

and equal to its expectation. A larger inflation target indeed acts as a buffer to hedge against particularly

detrimental parameter values (either because they lead to more frequent ZLB episodes or because they

lead to particularly acute inflation distortions). We define

Spr(θ) ≡ π?? − π?(θ)

and assess below Spr(θ̄).

3.3 Pre-crisis Optimal inflation Targets and Probability of a ZLB Episode

Figures 1a and 1b display the welfare function for the US and the euro area – expressed as losses relative

to the maximum social welfare – associated with three natural benchmarks for the parameter vector θ:

the posterior mean (dark blue line), the median (light blue line), and the mode (lighter blue line). For

convenience, the peak of each welfare function is identified with a dot of the same color. Also, to facilitate

interpretations, the inflation targets are expressed in annualized percentage rates.

As Figure 1a illustrates, the US optimal inflation target is close to 2% and varies between 1.85% and

2.21% depending on which indicator of central tendency (mean, mode, or median) is selected. This range

10This Bayesian inflation target is recovered from simulating the model under a ZLB constraint using the exact same sequence

of shocks {εt}T
t=1 with T = 100000 as in the previous subsection (together with the same burn-in sample) and combining it with

N draws of parameters {θj}N
j=1 from the estimated posterior distribution p(θ|XT), with N = 500. As in the previous section,

the social welfare function W (π; θ) is evaluated for each draw of θ over a grid inflation targets {π(k)}K
k=1. The Bayesian welfare

criterion is then computed as the average welfare across parameter draws. Here, we start with the same inflation grid as before

and then run several passes. In the first pass, we identify the inflation target maximizing the Bayesian welfare criterion. We then

set a finer grid of K = 51 inflation targets around this value. We repeat this process several times with successively finer grids

of inflation targets until the identified optimal inflation target proves insensitive to the grid. In this particular exercise, some

parameter draws for θ lead to convergence failure in the algorithm implementing the ZLB. These draws are discarded.
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Figure 1: Examples of loss functions
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Note: Blue: parameters set at the posterior mean; light blue: parameters set at the posterior median; Lighter blue: parameters set
at the posterior mode. π? ≡ log(Π?). In all cases, the welfare functions are normalized so as to peak at 0.

of values is consistent with the ones of Coibion et al. (2012) even though in the present paper it is derived

from an estimated model over a much shorter sample.11 Importantly, while the larger shocks in Coibion

et al. (2012) ceteris paribus induce larger inflation targets, the high degree of interest rate smoothing in

their analysis works in the other direction (as documented below in the last section) . In the euro area, as

figure 1b reports, the optimal inflation target is close to 1.5% and varies between 1.31% and 1.58% across

indicators of central tendency. Altogether, these numbers seem roughly consistent with the quantitative

inflation targets adopted by the Fed and the ECB, respectively.

To complement on these illustrative results, figures 2a and 2b display the probability of reaching the

ZLB as a function of the annualized inflation target (again, with the parameter vector θ evaluated at the

posterior mean, median, and mode). For convenience, the circles in each curve mark the corresponding

optimal inflation target.

According to the simulation exercise, π?? = 2.40% for the US and π?? = 2.20% for the euro area.

In both cases, these robust optimal inflation targets are larger than the values obtained with θ sets at its

central tendency. As expected, a Bayesian policy maker chooses a higher inflation target to hedge against

particularly harmful states of the world (i.e., parameter draws) where the frequency of hitting the ZLB is

high. Noticeably, this inflation buffer is substantially higher in the euro area where Spr(θ̄) = 0.62%, while

in the US, Spr(θ̄) = 0.19%. This occurs in spite of the optimal inflation target being lower in the euro area

than in the US when evaluated at the posterior mean of the parameter vector θ̄.12

11Coibion et al. (2012) calibrate their model on a post-WWII, pre-Great Recession US sample. By contrast, we use a Great

Moderation sample.
12Figures C.1a and C.1b in Appendix show the posterior distribution of π?(θ). It is broadly symmetric in the US and shows
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Figure 2: Probability of ZLB
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(b) EA
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Note: Blue: parameters set at the posterior mean; light blue: parameters set at the posterior median; Lighter blue: parameters set
at the posterior mode. π? ≡ log(Π?).

The probability of hitting the ZLB associated to these positive optimal inflation targets is relatively low.

The probabilities of reaching the ZLB is about 6% for the US and about 10% for the euro area. This result,

as anticipated above, is the mere reflection of our choice of a Great Moderation sample. At the same time,

our model is able to predict a fairly spread out distribution of ZLB episodes durations, with a significant

fraction of ZLB episodes lasting more than say five years (see figures in the appendix). Given the existence

of a single ZLB episode in the recent history, we do not attempt here to take a stand on what is a relevant

distribution of ZLB episodes (see Dordal-i-Carreras et al. (2016) for some investigation in that direction).

4 The Optimal Inflation Target and the Steady State Real Interest Rate

The focus of this section is to investigate how the monetary authority should adjust its optimal inflation

target π? in response to changes in the steady-state real interest rate, r?.13 Intuitively, with a lower r? the

ZLB is bound to bind more often, so one would expect a higher inflation target should be desirable in

that case. But the answer to the practical question of by how much should the target be increased is not

obvious. Indeed, the benefit of providing a better hedge against hitting the ZLB, which is an infrequent

event, comes at a cost of higher steady-state inflation which induces permanent costs, as argued by, e.g.,

substantial asymmetry in the euro area.
13 Note our exercise here is different from assessing what would be the optimal response to a time-varying steady state – a

specification consistent with econometric work like that of Holston et al. (2017). Our exercise is arguably consistent with “secular

stagnation” understood as a permanently lower real rate of interest – while doing without having to assume a unit root process

in the real rate of interest.
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Bernanke (2016).

To start with, we compute the relation linking the optimal inflation target to the steady-state real in-

terest rate, based on simulations of the model and ignoring parameter uncertainty. We show that the link

between π? and r? depends to some extent on the reason underlying a variation in r?, i.e. a change in the

discount rate ρ or a change in growth rate of technology µz. In our set-up the first scenario roughly cap-

tures the “taste for safe asset” and “ageing population” rationale for secular stagnation, while the second

one captures the “decline in technological progress” rationale . We also investigate the role of parameter

uncertainty and, in particular, uncertainty about r?, in the determination of the Bayesian-theoretic opti-

mal inflation target. Finally, we investigate how the relation between the optimal inflation target and the

steady-state real interest rate depends on various features of the monetary policy framework, as well as on

the size of shock or on the price and wage mark-ups.

4.1 The baseline (r?, π?) relation

To characterize the link between r? and π?, the following simulation exercise is conducted. The structural

parameter vector θ is fixed at its posterior mean, θ̄, with the exception of µz and ρ. These two parameters

are varied – each in turn, keeping the other parameter, µz or ρ, fixed at its baseline posterior mean value.

For both µz and ρ, we consider values on a grid ranging from 0.4% to 10% in annualized percentage terms.

The model is then simulated for each possible values of µz or ρ and various values of inflation targets π

using the procedure as before.14 The optimal value π? associated to each value of r? is obtained as the one

maximizing the welfare criterion W (π; θ).15

We finally obtain two curves. The first one links the optimal inflation target π? to the steady-state real

interest rate r? for various growth rate of technology µz: π?(r?(µz)), where the notation r?(µz) highlights

that the steady-state real interest rate varies as µz varies. The second one links the optimal inflation target

π? to the steady-state real interest rate r? for various discount rates ρ: π?(r?(ρ)). Here, the notation r?(ρ)

highlights that the steady-state real interest rate varies as ρ varies.16

Figures 3a and 3b depict the (r?, π?) relations thus obtained for the US and the euro area, respectively.

The blue dots correspond to the case when the real steady-state interest rate r? varies with µz. The red dots

correspond to the case when the real steady-state interest rate r? varies with ρ. For convenience, both the

real interest rate and the associated optimal inflation target are expressed in annualized percentage rates.

The dashed grey lines indicate the benchmark result corresponding to the optimal inflation target at the

14In particular, we use the same sequence of shocks {εt}T
t=1 as used in the computation implemented in the baseline exercises

of Section 3.2. Here again, we start from the same grid of inflation targets for all the possible values of µz or ρ. Then, for each

value of µz or ρ, we refine the inflation grid over successive passes until the optimal inflation target associated with a particular

value of µz or ρ proves insensitive to the grid.
15To illustrate the construction of this figure, see Appendix ??. There, we show how two particular points of this curve are

derived from the welfare criteria.
16Figures E.1a, E.1b, E.2a, and E.2b report similar results at the posterior mode and at the posterior median.
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Figure 3: (r?, π?) locus (at the posterior mean)

(a) US

Annualized steady-state real interest rate
0 1 2 3 4 5 6 7 8 9 10 11 12

O
p
ti
m

al
in
.
at

io
n

ta
rg

et
(a

n
n
u
al

iz
ed

)

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4
r?(7z)
r?(;)

(b) EA

Annualized steady-state real interest rate
0 1 2 3 4 5 6 7 8 9 10 11 12

O
p
ti
m

al
in
.
at

io
n

ta
rg

et
(a

n
n
u
al

iz
ed

)

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4
r?(7z)
r?(;)

Note: the blue dots correspond to the (r?, π?) locus when r? varies with µz; the red dots correspond to the (r?, π?) locus when r?

varies with ρ

posterior mean of the structural parameter distribution. These results are complemented with Figures 4a

and 4b that show the relation between r? and the probability of hitting the ZLB, evaluated at the optimal

inflation target, for the US and the euro area, respectively. As with Figures 3a, blue dots correspond to the

case when r? varies with µz, while red dots correspond to the case when it varies with ρ.17

As expected the relations in Figures 3a and 3b are decreasing. However, the slope varies with the value

of r?. For both the US and the euro area, the slope is relatively large in absolute value – although smaller

than one – for moderate values of r? (say below 4 percent). The slope declines in absolute value as r?

increases: Lowering the inflation target to compensate for an increase in r? becomes less and less desirable.

This reflects the fact that, as r? increases, the probability of hitting the ZLB becomes smaller and smaller.

For very large r? values, the probability becomes almost zero, as Figures 4a and 4b show.

At some point, the optimal inflation target becomes insensitive to changes in r? when the latter originate

from changes in the discount rate ρ. In this case, the inflation target stabilizes at a slightly negative value,

in order to lower the nominal wage inflation rate required to support positive productivity growth, given

the imperfect indexation of nominal wages to productivity. At the steady state, the real wage must grow

at a rate of µz. It is optimal to obtain this steady-state growth as the result of a moderate nominal wage

increase and a moderate price decrease, rather than the result of a zero price inflation and a consequently

larger nominal wage inflation. 18

17Figures F.1a and F.1b in Appendix show the relation between r? and the nominal interest rate when the inflation target is set

at its optimal value.
18For very large r?, as a rough approximation, we can ignore the effects of shocks and assume that the ZLB is a zero-mass

event. Assuming also a negligible difference between steady-state and efficient outputs and letting λp and λw denote the weights
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Figure 4: Relation between probability of ZLB at optimal inflation and r? (at the posterior mean)
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Note: the blue dots correspond to the (r?, π?) locus when r? varies with µz; the red dots correspond to the (r?, π?) locus when r?

varies with ρ

The previous tension is even more apparent when r? varies with µz since, in this case, the effects of

imperfect indexation of wages to productivity are magnified given that a higher µz calls for a higher growth

in the real wage, which is optimally attained through greater price deflation, as well as a higher wage

inflation. Notice however that even in this case, the optimal inflation target becomes little sensitive to

changes in r? for very large values of r?, typically above 6%, both in the US and the euro area.

For low values of r∗, on the other hand, the slope of the curve is steeper. In particular, in the empirically

relevant region, the relation is not far from one-to-one. More precisely, it shows that, starting from the

posterior mean estimate of θ, a 100 basis points decline in r? should lead to a +99 basis points increase in

π? in the US and to a +81 basis points increase in the euro area. Importantly, this increase in the optimal

inflation target is the same no matter the underlying factor causing the change in r?: a drop in potential

growth, µz, or a decrease in the discount factor, ρ. At the same time, the probability of ZLB evaluated at the

optimal inflation rate also increases when the real rate decreases. In the US case, at some point, the speed

at which this probability increases slows down, reflecting that the social planner would choose to increase

the inflation target to almost compensate for the higher incidence of ZLB episodes. By contrast, in the euro

area, the incidence of ZLB seems to increase substantially after a decline in the real interest rate, even at

low values of the latter.

To gain insight into this striking difference, Figures 5a and 5b show how the probability of ZLB changes

attached to price dispersion and wage dispersion, respectively, in the approximated welfare function, the optimal inflation obeys

π? ≈ −λw(1− γz)(1− γw)/[λp(1− γp)2 + λw(1− γw)2]µz. Given the low values of λw resulting from our estimation, it is not

surprising that π? is negative but close to zero. See Amano et al. (2009) for a similar point in the context of a model abstracting

from ZLB issues.
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Figure 5: Relation between probability of ZLB and r? (at the posterior mean)
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Note: The blue dots correspond to the relation linking r? and the probability of ZLB, holding the optimal inflation target π? at the
baseline value. The red dots correspond the same relation when the optimal inflation target π? is set at the value consistent with
a steady-state real interest rate one percentage point lower.

as a function of r?, holding the inflation target constant. We first set the inflation target at its optimal

baseline value (i.e., the value computed at the posterior mean, 2.21 for the US and 1.58 for the euro area).

This is reported below as the blue dots. Similarly, we also compute an analog relation assuming this time

that the inflation target is held constant at the optimal value consistent with a steady-state real interest rate

one percentage point lower (thus, inflation is set to 3.20 for the US and 2.39 for the euro area). Here again,

the other parameters are set at their posterior mean. This corresponds to the red dots in the figure.

Consider first the blue line. At the level of the real interest rate prevailing before the permanent decline,

assuming that the Central Bank sets its target to the associated optimal level, the probability of reaching

the ZLB would be slightly below 6% in the US and close to 9% in the euro area. Imagine now that the real

interest rates experiences a decline of 100 basis points. Keeping the inflation target at the same level as

prior to the shock, the probability of reaching the ZLB would now climb up to approximately 11% in the

US and 16% in the euro area. However, the change in the optimal inflation target brings the probability of

reaching the ZLB back to approximately 6% in the US and 11% in the euro area. In the euro area, the social

planner is willing to tolerate a smaller inflation target than the one that would fully neutralize the effects of

the natural rate decline on the probability of hitting the ZLB. By way of contrast, the social planner in the

US would almost neutralize this effect. In this sense, the US economy has a greater tolerance for steady-

state inflation than the euro area. This is in part a consequence of the different estimates for the degree of

indexation of prices to past inflation found at the estimation stage.

Finally we investigate whether the trade-off analyzed above translates into meaninglful welfare costs,

measured in terms of foregone per-period consumption. Results are reported in Appendix D. It turns out
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Figure 6: Posterior distributions of r? and counterfactual r?
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that for the US, under sufficiently low r? values, agents faced with a 1 pp decline in the real steady-state

interest rates would require up to a 1.5% increase in consuption to be as well-off under the former optimal

inflation target (i.e. 2.21%) as under the optimal target associated with the lower real interest rate (3.20% in

this case). In the euro area, the results are less marked.

4.2 Accounting for Parameter Uncertainty

Next we investigate the impact of parameter uncertainty on the relation between the optimal inflation

target and the steady-state real interest rate. Specifically, we want to determine how the Bayesian-theoretic

optimal inflation target π?? reacts to a downward shift in the distribution of the steady-state real interest

rate r?.

Assessing how such a change affects π?? for every value of r? is not possible due to the computational

cost involved. Such a reaction is thus investigated for a particular scenario: it is assumed that the economy

starts from the posterior distribution of parameters p(θ|XT) and that, everything else being constant, the

mean of r? decreases by 100 basis points. Such a 1 percentage point decline is chosen mainly for illustrative

purposes. Yet, it is of a comparable order of magnitude, although relatively smaller in absolute value,

as recent estimates of the drop of the natural rate after the crisis such as Laubach and Williams (2016)

and Holston et al. (2017). The counterfactual exercise considered can therefore be seen as a relatively

conservative characterization of the shift in steady-state real interest rate. Figures 6a and 6b depict the

counterfactual shift in the distribution of r? that is considered for, respectively, the US and the euro area.

The Bayesian-theoretic optimal inflation target corresponding to the counterfactual lower distribution
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Figure 7: Eθ(W (π, θ)) in baseline and counterfactual
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Note:: Blue curve: Eθ(W (π, θ)); Red curve: Eθ(W (π, θ)) with lower r?

of r? is obtained from a simulation exercise that relies on the same procedure as before.19 Given a draw in

the posterior of parameter vector θ, the value of the steady-state real interest rate is computed using the

expression implied by the postulated structural model r?(θ) = ρ(θ) + µz(θ). From this particular draw,

a counterfactual lower steady-state real interest rate, r?(θ∆), is obtained by shifting the long-run growth

component of the model µz downwards by 1 percentage point (in annualised terms). The welfare function

W (π; θ∆) is then evaluated. Since there are no other changes than this shift in the mean value of µz in the

distribution of the structural parameters, we can characterize the counterfactual distribution p(θ∆|XT) as

a simple transformation of the estimated posterior p(θ|XT). The counterfactual Bayesian-theoretic optimal

inflation target is then obtained as

π??
∆ ≡ arg max

π

∫
θ∆

W (π; θ∆)p(θ∆|XT)dθ∆.

Figures 7a and 7b illustrate the counterfactual change in optimal inflation target obtained when the

steady-state real interest rate declines by 100 basis points and its new value stays uncertain. For the US,

the simulation exercise returns a value of π??
∆ = 3.30% i.e. 90 basis points higher than the optimal value

under uncertainty obtained with the posterior distribution of parameters obtained on a pre-crisis sample

π??
∆ = 2.40%. For the euro area, π??

∆ = 3.10%, also 90 basis points higher than the optimal value π??
∆ =

2.20% obtained with the baseline posterior distribution of parameters.20

Thus, we see that a monetary authority that is concerned about the uncertainty surrounding the param-

eters driving the costs and benefits of the inflation target raises the optimal inflation target but does not
19Again, we use the same sequence of shocks and the same parameter draws as in section 3.2.
20Figures G.1a and G.1b in Appendix show how the posterior distribution of π? is shifted after the permanent decline in the

mean of r?.
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alter the reaction of this optimal inflation target following a drop in r?: in both cases, a 100 basis points de-

crease in the steady-state real interest rate calls for a roughly 90 basis point increase in the optimal inflation

target in the vicinity of pre-crisis parameter estimates.

4.3 Further Experiments

In the present section we carry out a number of additional exercises related to the optimal adjustment of the

inflation target in response to a change in the steady-state real interest rate. The first four exercises examine

the implications of four alternative assumptions regarding monetary policy. The fifth exercise looks at the

case of large shocks, while the sixth consider alternative calibrations for the price and wage mark-up.

Average vs Target Inflation As emphasized in recent works (see, notably, Hills et al. 2016, Kiley and

Roberts 2017), when the probability of hitting the ZLB is non-negligible, realized inflation is on average

significantly lower than the inflation rate that the central bank targets in the interest rate rule (and which

would correspond to steady-state inflation in the absence of shocks). This results from the fact that anytime

the ZLB is binding (which happens recurrently) the central bank effectively loses its ability to stabilize

inflation around the target. Knowing this, it may be relevant to assess the central banks outcomes in terms

of the effective average realized inflation. In this section, we investigate whether measuring inflation target

in this alternative way matter.

To this end, the analysis of the (r?, π?) relation of section 4.1 is complemented here with the analysis

of the relation between r? and the average realized inflation rate E{πt} obtained when simulating the

model for various values of r? and the associated optimal inflation target π?. In the interest of brevity, the

calculations are undertaken assuming that changes in average productivity growth µz is the only source of

variation in the natural interest rate.

Figures 8a and 8b illustrate the difference between the (r?, π?) curve (blue dots) and the (r?, E{πt})
curve (red dots) for the US and the euro area. The overall shape of the curve is unchanged. Unsurprisingly,

both curves are identical when r? is high enough. In this case, the ZLB is (almost) not binding and average

realized inflation does not differ much from π?. A spread between the two emerges for very low values of

r?. There, for low values of the natural rate, the ZLB incidence is higher and, as a result, average realized

inflation becomes indeed lower than the optimal inflation target. However, that spread remains limited,

less than 10 basis points. The reason is that the implied optimal inflation target is sufficiently high to

prevent the ZLB from binding too frequently, thus limiting the extent to which average realized inflation

and π? can differ.

Unreported simulation results show that the gap between π? and average realized inflation becomes

more substantial when the inflation target is below its optimal value. For instance, mean inflation is

roughly zero when the central bank adopts a 1% inflation target in an economy where the optimal inflation
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Figure 8: Average realized inflation and optimal inflation
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target is π? = 2%.

A Negative Effective Lower Bound The recent experience of many advanced economies (including the

euro area) points to an effective lower bound (ELB) for the nominal interest rate below zero. For instance,

the ECB’s deposit facility rate, which gears the overnight money market rate because of excess liquidity,

was set at a negative value of −10 basis points in June 2014 and has been further lowered down to −40

basis points in March 2016.

We use the estimated euro-area model to evaluate the implications of a negative ELB. More precisely,

we set the lower bound on the nominal rate it so that

it ≥ e

and we set e to −40 basis points (in annual terms) instead of zero. Results are presented in Figure 9. As

expected, the (r?, π?) locus is shifted downwards, though by somewhat less than 40 basis points. Impor-

tantly, its slope remains identical to the baseline case: a 100 basis points downward shift in the distribution

of r? calls for a 90 basis points increase in π?.

A Known Reaction Function Here we study the consequences of the (plausible) assumption that the

central bank actually knows the coefficients of its interest rate rule with certainty. More specifically we

repeat the same simulation exercise as in subsection 4.2 but with parameters aπ, ay and ρi in the reaction

function 3 taken to be known with certainty. In practice we fix these three parameters at their posterior

mean, instead of sampling them from their posterior distribution. This is arguably the relevant approach
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Figure 9: Optimal inflation with negative ELB – EA
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from the point of view of the policymaker.21 Note, however, that all the other parameters are subject to

uncertainty from the stand-point of the central bank.

Figures 10a and 10b present, respectively for the US and the euro area, the Bayesian-theoretic optimal

inflation targets obtained when simulating the model at the initial posteriors and after a -100 basis points

level shift in the posterior distribution of the long-run growth rate µz and, hence, the steady-state real

rate r?. According to these simulations, the inflation target should initially be π?? = 2.24% in the US and

π?? = 2.36% in the euro area. After the counterfactual change in the distribution of r? considered, π??

should be increased to 3.16% in the US and to 3.28% in the euro area, again in the ballpark of a 90 basis

points increase in π? to compensate for the higher probability to hit the ZLB induced by a 100 basis points

downward shift in the distribution of r?.

What if interest rate smoothing is larger (or lower)? Our analysis is conditional on a specific reaction

function of the central bank, described in our setup by the set of parameters απ, αy and ρTR. Among these

parameters, the smoothing parameter, ρTR, has a key influence on the probability of being in a ZLB regime.

A higher smoothing has two effects in our model. The first effect is -through standard monetary policy

rule inertia- to reduce the speed at which interest rates are raised when the economy exits the lower bound

regime since the current rate inherits the past values of the effective nominal rate. The second effect comes

from the fact that the smoothing applies to the notional rate in
t that would prevail absent the lower bound

constraint (see equation 5) while the effective nominal interest rate is the maximum of zero and the notional

rate (see equation 6). Thus the interest rate inherits the past negative values of the notional nominal rate.

21In practice, long-run inflation targets are seldom reconsidered while the rotation in monetary policy committees happens at a

higher frequency. From this viewpoint, our baseline assumption of uncertainty on all the monetary policy rule parameters is not

necessarily unwarranted.
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Figure 10: Eθ(W (π, θ))
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Note:: Blue curve: Eθ(W (π, θ)); Red curve: Eθ(W (π, θ)) with lower r?. In each case, ρTR, aπ , and ay are frozen at their posterior
mean values.

So, a higher smoothing results in maintaining the effective interest rate at zero for an extended period of

time beyond that implied by the macroeconomic shocks that initially brought the economy at the zero lower

bound constraint. Such a monetary policy strategy introduces history-dependence whereby, in the instance

of a ZLB episode, the central bank is committed to keep rates lower for longer. As this reaction function is

known to the agents in the model, this commitment to future accommodation, through generating higher

expected inflation and output, helps exiting the trap (or even not entering it).

Through both effects, a large higher degree of smoothing thus reinforces the history-dependence of

monetary policy, and tends to shorten the length of ZLB episodes and the probability of hitting the ZLB

constraint. Everything else equal, one should therefore expect a lower optimal inflation rate for higher

values of the smoothing parameters. This property of the model is illustrated in Figures 11a and 11b which

depict the (r?, π?) relation for respectively the US and the euro-area under three possible values of the

smoothing parameter ρTR. The values used under our baseline scenario, i.e. posterior mean estimates,

are .85 for the US and .87 for the euro area. We also consider two alternative setups: A higher value of

ρTR = .95 which is close to the persistence of the central bank reaction function in Coibion et al. (2012),

and a lower value of ρTR = .8. These two values are arguably an upper bound of the existing empirical

uncertainty on the degree of smoothing, as they stand outside the 90 % probability interval of our posterior

parameter estimates.

The effect of a higher interest rate smoothing is to shift downward the (r?, π?) curve except for high

values of r? for which the probability of hitting the ZLB is close to zero and the optimal inflation target

is slightly negative. Under this strategy, the pre-crisis optimal inflation rate would be close to 0.5% in the
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Figure 11: (r?, π?) relation with alternative ρTR
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Note: the blues dots correspond to the baseline scenario wherein all the structural parameters are set at their posterior mean θ̄.
The red dots correspond to the counterfactual simulation with ρTR set to 0.8. The green dots correspond to the counterfactual
simulation with ρTR set to 0.95.

US and in the euro area.22 Conversely, a lower interest rate smoothing shifts the (r?, π?) curve upward,

even for relatively high values of r? – because the probability of being in a ZLB regime increases under this

strategy. With a lower ρTR, the pre-crisis optimal inflation rate would be close to 3.5% in the US and 4% in

the euro area.

As for the slope of the (r?, π?) curve, in the empirically relevant region, it is much less affected than

the level of this locus. It is however more affected in this exercise, than in other robustness experiments

considered above. A very large smoothing parameter, due to its effect outlined above on the probability

of ZLB, somewhat alleviates the extend to which an increase in the inflation target is needed. The slope is

indeed close to −.7 for the US and −.6 for the euro area in that case. For a strategy associated with a low

smoothing parameter, the slope is close to −1 for both the EA and the US, so closer to the benchmark case

but in induced a somewhat curve steeper. For large values of r?, the degree of smoothing is irrelevant.

What if shocks are larger? As argued before, the model is estimated using data from the Great Modera-

tion period. One may legitimately argue that the decline in the real interest rate resulting from the secular

stagnation has come hand in hand with larger shocks, as the Great Recession suggests. To address this con-

cern, we simulate the model assuming that demand shocks have a standard error 30 percent larger than

estimated.
22This is not inconsistent with the result in Coibion et al. (2012) who report an optimal inflation target of 1.5% under their

baseline calibration on US post WWII data. Indeed, the variance of their underlying shocks is higher than in our baseline which

is based on a Great-Moderation estimates. As discussed above, a higher variance of shocks induces more frequent ZLB episodes,

hence calls for a higher optimal inflation target.
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Figure 12: (r?, π?) relation with larger demand shocks
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Note: the blues dots correspond to the baseline scenario wherein all the structural parameters are set at their posterior mean θ̄.
The red dots correspond to the counterfactual simulation with σq and σg set to twice their baseline value.

We conduct this exercise assuming that changes in average productivity growth µz are the only driver

of changes in the natural rate. Apart from σq and σg, which are re-scaled, all the other parameters are

frozen at their posterior mean. Given this setup, the optimal inflation target is 3.7% in the US and 2.7%

in the euro area, as opposed to 2.21% and 1.58% in the baseline, respectively. Also, under the alternative

shock configuration, the probability of hitting the ZLB is 5.3% in the US and 10.1% in the euro, as opposed

to 5.5% and 9.4% in the baseline, respectively.

Figures 12a and 12b report the (r?, π?) relation under larger demand shocks (red dots) and compares the

outcome with what obtained in the baseline (blues dots).23 Interestingly, the (r?, π?) locus has essentially

the same slope in the low r? region. Here again, we find a slope close to -0.9. However, the curve is

somewhat steeper in the high r? region and shifted up, compared to the baseline scenario. This reflects that

under larger demand shocks, even at very high levels of the natural rate, a drop in the latter is conducive

to more frequent ZLB episodes. The social planner is then willing to increase the inflation target at a higher

pace than in the baseline scenario and generically sets the inflation target at higher levels to hedge the

economy against ZLB episodes.

What if mark-ups are lower (or larger)? The optimal level of inflation in our set-up depends on the

elasticities of substitution between any two intermediate goods, θp and between any two labor types θw.

In our calibration, the baseline value for the elasticity of substitution θp is 6, leading to a price mark-up

23We obtain this figure using the same procedure as outlined before. Here again, we run several passes with successively refined

inflation grids.
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Figure 13: (r?, π?) relation with alternative θp
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Note: the blues dots correspond to the baseline scenario wherein all the structural parameters are set at their posterior mean
θ̄. The red dots correspond to the counterfactual simulation with θp set to 10. The green dots correspond to the counterfactual
simulation with θp set to 3.

of 20%. While this value is in line with common “textbook” parameterizations (see Galí, 2015), and is close

to the baseline value obtained in Hall (2018) and in Christiano et al. (2005). However, there is considerable

uncertainty in the empirical literature about the level of mark-ups. For example, some estimates in Basu

and Fernald (1997) and Traina (2015) point to possibly much smaller values, while Autor et al. (2017) and

De Loecker and Eeckhout (2017) suggest substantially larger figures. To investigate the robustness of our

results, we re-do our main simulation exercise, this time setting θp to a value as large as 10 or as low as θp

set to 3. These values approximately cover the range of available empirical estimates.

Similarly, for wage mark-up, there is arguably scarcer evidence, and in any case considerable uncer-

tainty around our baseline parameterization, given by θw set to 3. Here again, so as to cover a broad range

of plausible estimates, we run alternatives exercises, setting in turn θw to 8 and θw to 1.5. Results are re-

ported in Figures 13a and 13b in the case of robustness with respect to the price markup, and in Figures

14a and 14b with respect to the wage markup.

The main takeaway from these figures is that our key result is by and large preserved. That is, in the

empirically relevant region (for levels of r? lower than, say, 4 percent), the slope of the π?− r? curve is only

very mildly affected when changing the elasticity of substitution of goods or labor types, be it in the US or

in the euro area. A close examination reveals, in the low r? region, the way the π? − r? curves moves when

changing either θw or θp is not similar for the US and the euro area. This result turns out to depend on the

degree of indexation (see Appendix for further illustration), but does not bear quantitative consequences.

Another noticeable result of this robustness exercise is that, by contrast, in the region with high steady-

state real interest rates (say r? larger than 5 percent) the value of optimal inflation target, and the slope of
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Figure 14: (r?, π?) relation with alternative θw
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Note: the blues dots correspond to the baseline scenario wherein all the structural parameters are set at their posterior mean θ̄. The
red dots correspond to the counterfactual simulation with θw set to 8. The green dots correspond to the counterfactual simulation
with θw set to 1.5.

the curve of interest, are sensitive to the value of θp or θw. To see why, first notice that, in this region, the

ZLB is essentially irrelevant so the standard welfare cost of inflation set-up applies. With less substitution

across goods, a given level of price dispersion induced by inflation leads to smaller output dispersion (as is

clear for instance in the polar case of complementary goods that leads to no output dispersion across firms

at all). The effect of θp on output dispersion is apparent from the formulas in our appendix, or in textbook

derivations of output dispersion e.g. chapter 3 in Galí (2015). Thus, with a low substitution (i.e. a low

θp), the welfare loss due to inflation (or deflation) is smaller. Therefore a lower θp allows for an inflation

target farther away from zero, insofar as there are motives for a non-zero steady-state inflation. Such a

mechanism explains why in Figure 13a and 13b optimal inflation is more negative with lower substitution.

Interestingly, when we consider robustness with respect to parameter θw, the ranking of the correspond-

ing curves is reversed. That is, a larger θw induces a larger inflation target in absolute value. The reason

is that, with a larger sustitution across labor types, a given nominal wage growth generates dispersion

of quantities across types of labor that turns out to be particularly costly. In that case, it is optimal that

the burden of adjustement of real wages to growth is borne not by nominal wages, but rather on nominal

prices (thus leading to a more pronounced deflation).24

24 This can be illustrated again in the approximated welfare function, and ignoring the effects of shocks. Then the optimal

inflation obeys π? ≈ −(λw(1− γz)(1− γw)/[λp(1− γp)2 + λw(1− γw)2])µz. Inflation target is a decreasing function of λw, thus

of θw.
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5 Summary and conclusion

In this paper, we have assessed how changes in the steady-state natural interest rate translate into changes

in the optimal inflation target in a model subject to the ZLB. Our main finding is that, starting from pre-

crisis values, a 1% decline in the natural rate should be accommodated by an increase in the optimal infla-

tion target of about 0.9%. For convenience, Table 3 recaps our results. Overall, across the different concepts

of optimal inflation considered in this paper, the level of optimal inflation does vary. However it is a very

robust finding that the slope of the (r?, π?) relation is close to -0.9 in the vicinity of the pre-crisis value of

steady-state real interest rates both in the US and in the euro-area.

Table 3: Effect of a decline in r? under alternative notions of optimal inflation

US EA

Baseline Lower r? Baseline Lower r?

Mean of π? 2.00 3.00 1.79 2.60

Median of π? 1.96 2.90 1.47 2.28

π? at post. mean 2.21 3.20 1.58 2.39

π? at post. median 2.12 3.11 1.49 2.30

π?? 2.40 3.30 2.20 3.10

π??, frozen MP 2.24 3.16 2.36 3.28

π? at post. mean, ELB -40 bp — — 1.31 2.08

Average realized inflation at post. mean 2.20 3.19 1.56 2.36

Average realized inflation at post. mean, ELB -40 bp — — 1.24 1.97

Note: all figures are in annualized percentage rate.

In our analysis, we considered adjusting the inflation target as the only option at the policymaker’s dis-

posal. This is not to say that this is the only option in their choice set. As a matter of fact, recent discussions

revolving around monetary policy in the new normal have suggested that the various non-conventional

measures used in the aftermath of the Great Recession could feature permanently in policy toolbox. In par-

ticular, unconventional monetary policies could represent useful second-best instruments when the ZLB

is reached, as advocated by Reifschneider (2016). An alternative would consist in a change of monetary

policy strategies, e.g., adopting a price-level targeting strategy as recently advocated by Williams (2016).

Beyond monetary policy measures, fiscal policies could also play a significant role, as emphasized by Cor-

reia et al. (2013). As a result, the ZLB might be less stringent a constraint in a practical policy context than

in our analysis.25 However, the efficacy and the costs of these policies should also be part of the analysis.

The complete comparison of these policy trade-offs goes beyond the scope of the present paper.

25See Debortoli et al. (2018) for empirical evidence in favor of this hypothesis.
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We have discussed the impact of higher inflation target, abstracting from the transition to a higher

inflation target. In the current lowflation environment, increasing the inflation target in reaction to a drop

in the steady-state value of the real interest rate might be challenging: because of more frequent ZLB

episodes, the realizations of inflation might be on average below the initial inflation target for some time

and increasing the inflation target therefore would raise some credibility issues.

Finally, our analysis has also abstracted from forces identified in the literature as warranting a small,

positive inflation target, irrespective of ZLB issues, as emphasized in Bernanke et al. (1999). The first is

grounded on measurement issues, following the finding from the 1996 Boskin report that the consumer

price index did probably over estimate inflation in the US by over 1 percentage point in the early nineties.

The second argument is rooted in downward nominal rigidities. In an economy where there are such

downward rigidities (e.g. in nominal wages) a positive inflation rate can help "grease the wheel" of the

labor market by facilitating relative price adjustments. Symmetrically, we also abstracted from forces call-

ing for lower inflation targets. The most obvious is the so-called Friedman (1969) rule, according to which

average inflation should equal to minus the steady state real interest rate, hence be negative, in order to

minimize loss of resources or utility and the distortionary wedge between cash and credit goods (e.g. con-

sumption and leisure) induced by a non-zero nominal interest rate. Presumably, all those were taken into

account when deciding the current inflation targets. We conjecture that adding these elements to our setup

would leave our main conclusions unchanged. A complete assessment is left for future research.
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A Various long-run and optimal inflation rates considered

Table A.1: Various Notions of Long-run and optimal Inflation in the model

π Any inflation target, used to define the “inflation gap” that enters the Taylor rule

E(πt) Average realized inflation, might differ from π due to ZLB

π?(θ) Inflation target that minimizes the loss function given a structural parameters θ

π?(θ̄) π? assuming parameters at post. mean

π?(median(θ)) π? assuming parameters at post. median

π̄? average of π?(θ) over the posterior distribution of θ, i.e.,
∫

θ π?(θ)p(θ|XT)dθ

Median(π?) Median of π?(θ) over the posterior distribution

π?? Inflation target that minimizes the average loss function over the posterior distribution of θ

B The distribution of ZLB spells duration

Figure B.1: Distribution of ZLB spells duration at the posterior mean
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C The distribution of optimal inflation targets

Figure C.1: Posterior Distribution of π? - EA - Benchmark
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D The welfare cost of inflation

Following a standard approach when assessing alternative policies, we complement our characterization

of optimal inflation by providing measures of consumption-equivalent welfare gains/losses of choosing a

suboptimal inflation target.

Let W (π) denote welfare under the inflation target π. It is defined as

W (π) = E0

∞

∑
t=0

βt
[

eζg,t log(Ĉt(π)− ηĈt−1(π)e−ζz,t)− χ

1 + ν

∫ 1

0
Nt(π, h)1+νdh

]
+ Ψ0(µz, ζz).

Importantly, the welfare function is stated in terms of detrended consumption. The term Ψ0 captures the

part of welfare that depends exclusively on µz and ζz,t and is not affected by changes in the inflation target.

Let us now consider a deterministic economy in which labor supply is held constant at the undistorted

steady-state level Nn and in which agents consume the constant level of detrended consumption Ĉ(π). We

seek to find the Ĉ(π) such that this deterministic economy enjoys the same level of welfare as above. Thus

W (π) = E0

∞

∑
t=0

βt
[

log
(
(1− η)Ĉ(π)

)
− χ

1 + ν
N1+ν

n

]
+ Ψ0(µz, 0).

Direct manipulations thus yield

W (π) =
1

1− β

[
log
(
(1− η)Ĉ(π)

)
− χ

1 + ν
N1+ν

n

]
+ Ψ0(µz, 0)
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Consider now an economy with π = π? and another one with π = π̃ 6= π?. Imagine that in the latter,

consumer are compensated in consumption units in such a way that they are as well off with π̃ as with π?.

Let 1 + ϕ(π) denote this percentage increase in consumption. Thus ϕ(π) is such that

W (π?) = E0

∞

∑
t=0

βt
[

log
(
(1 + ϕ)(1− η)Ĉ(π)

)
− χ

1 + ν
N1+ν

n

]
+ Ψ0(µz, 0)

=
log(1 + ϕ(π))

1− β
+W (π)

It then follows that

ϕ(π) = exp{(1− β)[W (π?)−W (π)]} − 1.

In practice, welfare is approximated to second order.

We compute ϕ(π), both in for the US and the euro area, under two alternative steady-state interest rate

scenarios. In the first scenario, we set r? to the baseline estimated value, corresponding to the posterior

mean of µz + ρ. In the second scenario, we consider a downward shift in µz by one percentage point (in

annual terms), resulting in a lower steady-state real rate. The results are reported in Figures D.1a and D.1b.

The blue lines show ϕ(π) in the first scenario and the red lines show ϕ(π) under a lower real interest rate.

For ease of interpretation, the dashed, vertical lines indicate the optimal values of inflation under the two

alternative interest rate scenarios.

Figure D.1: Welfare cost of inflation at the posterior mean
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Annualized inflation target
1.5 2 2.5 3 3.5 4 4.5 5

W
el

fa
re

 c
os

t o
f 

al
te

rn
at

iv
e 

in
fl

at
io

n 
ta

rg
et

s
(a

s 
a 

pe
rc

en
ta

ge
 o

f 
st

ea
dy

-s
ta

te
 c

on
su

m
pt

io
n)

0

0.5

1

1.5

2

2.5

3

4:?(73) = 2:21 4:?(73) = 3:20

Real steady-state interest rate = 2.48 pct
Real steady-state interest rate = 1.48 pct

(b) EA
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Note: The figure reports the welfare cost of inflation stated as a percentage of steady-state consumption in the optimal setting.

Figures D.1a and D.1b suggest that in the baseline scenario, the welfare cost of raising or lowering the

inflation target by one percentage point is relatively mild. However, this conclusion is not robust to a lower

real interest rate. As the red line shows, with a one percentage rate lower r?, the welfare cost of inflation is
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assymmetric. It would be much costlier to lower the inflation target than to raise it in the neighborhood of

the optimal target. In particular, keeping the inflation target unchaged when faced with a one-percentage

point decline in r? give rise to a 1.5% consumption loss in the US.

E Further illustration of the (r?, π?) relation

E.1 When µz varies

Figure E.1: (r?, π?) locus when µz varies
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Note: Blue: parameters set at the posterior mean; light blue: parameters set at the posterior median; Lighter blue: parameters set
at the posterior mode. Memo: r? = ρ + µz. Range for µz: 0.4% to 10% (annualized) .

E.2 When ρ varies

Figure E.2: (r?, π?) locus when ρ varies
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F Nominal and Real Interest Rates

Figure F.1: (r?, i?) locus (at the posterior mean)
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G Distribution of π? following a downward shift of the distribution of r?

Figure G.1: Counterfactual - US
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H Additional results on the impact of θp and θw on the (r?, π?) locus

Here we illustrate why depending on the configuration, a larger θp may lead to a larger optimal inflation

target (in the US, see figure 14a) or to a lower one (in the EA, see figure 14b ).

Figure H.1: (r?, π?) relation with alternative θp and γp

(a) High γp
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(b) Low γp
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Note: the blues dots correspond to the baseline scenario wherein all the structural parameters are set at their posterior mean
θ̄. The red dots correspond to the counterfactual simulation with θp set to 10. The green dots correspond to the counterfactual
simulation with θp set to 3.

It turns out that there is a subtle interation between θp and the degree of indexation to past inflation γp

affecting the shape of the (r?, π?) locus. To document this, we ran additional simulations: (i) low indexation

and low θp, (ii) low indexation, high θp, (iii) high indexation, low θp, and (iv) high indexation and high θp.

To make as clar a point as possible, in the low indexation case, we set γp = 0 and in the high indexation

case, we set γp = 0.8. Both are simulated in the case of the euro area.

To begin with, we consider the case of no indexation. See Figure H.1b. With less substitution (say

complementary in the polar case), a given “cyclical” price dispersion induced by inflation, leads to smaller

output dispersion. This is apparent from the formulas in our appendix, or textbook e.g. chapter 3 in Galí

(2015). Thus with low subsitution there is smaller welfare loss to inflation. From this, a lower θp would call

for an inflation target farther away from zero. This is what happens in figure H.1b.

Now with a large indexation the detrimental effect of inflation on price dispersion is mitigated. In that

case, the policymaker is more willing to set an inflation target farther away from zero (see Figure H.1b). In

particular, in the region with low r? the difference between the low and high θp is no more material.
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I Model Solution

I.1 Households

I.1.1 First Order Conditions

The associated lagrangian of program (1) under constraint (2) is

Lt = Et

∞

∑
s=0

βs
{

eζc,t+s log(Ct+s − η̂Ct+s−1)−
χ

1 + ν

∫ 1

0
eζh,t+s(Nt+s(h))1+νdh

− Λt+s

Pt+s

[
Pt+sCt+s + Qt+sBt+se−ζq,t+s + Pt+staxt+s −

∫ 1

0
Wt+s(h)Nt+s(h)dh− Bt+s−1 − Pt+sdivt+s

]}
,

The associated first order condition with respect to bonds is

∂Lt

∂Bt
= 0⇔ ΛtQte−ζq,t = βEt

{
Λt+1

Πt+1

}
, (I.1)

and the first-order condition with respect to consumption is

∂Lt

∂Ct
= 0⇔ eζc,t

Ct − η̂Ct−1
− βη̂Et

{
eζc,t+1

Ct+1 − ηCt

}
= Λt. (I.2)

where Πt ≡ Pt/Pt−1 represents the (gross) inflation rate, and

We induce stationarity by normalizing trending variables by the level of technical progress. To this end,

we use the subscript z to refer to a normalized variable. For example, we define

Cz,t ≡
Ct

Zt
, Λz,t ≡ ΛtZt,

where it is recalled that

Zt = ezt

with

zt = µz + zt−1 + ζz,t.

We then rewrite the first order condition in terms of the normalized variables. Equation (I.2) thus

rewrites
eζc,t

Cz,t − ηCz,t−1e−ζz,t
− βηEt

{
e−ζz,t+1

eζc,t+1

Cz,t+1 − ηCz,te−ζz,t+1

}
= Λz,t, (I.3)

Similarly, equation (I.1) rewrites

Λz,tQte−ζq,t = βe−µz Et

{
e−ζz,t+1

Λz,t+1

Πt+1

}
, (I.4)

where we defined

η ≡ η̂e−µz .
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Let us define it ≡ − log(Qt) and for any generic variable Xt

xt ≡ log(Xt), x̂t ≡ xt − x

where x is the steady-state value of x. Using these definitions, log-linearizing equation (I.3) yields

ĝt + βηEt{ĉt+1} − (1 + βη2)ĉt + ηĉt−1 − η(ζz,t − βEt {ζz,t+1}) = ϕ−1λ̂t (I.5)

where we defined

ϕ−1 ≡ (1− βη)(1− η),

ĝt = (1− η)(ζc,t − βηEt{ζc,t+1}).

Similarly, log-linearizing equation (I.4) yields

λ̂t = ı̂t + Et{λ̂t+1 − π̂t+1 − ζz,t+1}+ ζq,t. (I.6)

I.2 Firms

Expressing the demand function in normalized terms yields

Yz,t( f ) =
(

Pt( f )
Pt

)−θp

Yz,t,

In the case of a firm not drawn to re-optimize, this equation specializes to (in log-linear terms)

ŷt,t+s( f )− ŷt+s = θp(π̂t,t+s − δ̂
p
t,t+s − p̂?t ( f )). (I.7)

I.2.1 Cost Minimization

The real cost of producing Yt( f ) units of good of f is

Wt

Pt
Lt( f ) =

Wt

Pt

(
Yt( f )

Zt

)φ

(I.8)

The associated real marginal cost is thus

St( f ) = φ
Wt

PtZt

(
Yt( f )

Zt

)φ−1

(I.9)

It is useful at this stage to restate the production function in log-linearized terms:

ŷz,t( f ) =
1
φ

n̂t( f ) (I.10)
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I.2.2 Price Setting of Intermediate Goods: Optimization

Firm f chooses P?
t ( f ) in order to maximize

Et

∞

∑
s=0

(βαp)
sΛt+s

{
(1 + τp,t+s)

Vp
t,t+sP?

t ( f )
Pt+s

Y?
t,t+s( f )− S (Yt,t+s( f ))

}
, (I.11)

subject to the demand function

Y?
t,t+s( f ) =

(
Vp

t,t+sP?
t ( f )

Pt+s

)−θp

Yt+s.

and the cost schedule (I.8), where Λt is the representative household’s marginal utility of wealth, and Et{·}
is the expectation operator conditional on information available as of time t. That Λt appears in the above

maximization program reflects the fact that the representative household is the ultimate owner of firm f .

The associated first-order condition is

Et

∞

∑
s=0

(βαp)
sΛt+s


(

Vp
t,TP?

t ( f )
Pt+s

)1−θp

Yt+s −
µp

1 + τp
eζu,t+s

Wt+s

Pt+s
φ

(Vp
t,t+sP?

t ( f )
Pt+s

)−θp
Yt+s

Zt+s

φ = 0,

where

µp ≡
θp

θp − 1
.

This rewrites (
P?

t ( f )
Pt

)1+θp(φ−1)

=
µp

1 + τp

Kp,t

Fp,t

where

Kp,t = Et

∞

∑
s=0

(βαp)
sΛz,t+seζu,t+s

Wz,t+s

Pt+s
φ

( Vp
t,t+s

Πt,t+s

)−θp

Yz,t+s

φ

and

Fp,t = Et

∞

∑
s=0

(βαp)
sΛz,T

(
Vp

t,t+s

Πt,t+s

)1−θp

Yz,t+s,

where Πt,t+s ≡ Pt+s/Pt.

Notice that

Kp,t = φΛz,teζu,t
Wz,t

Pt
(Yz,t)

φ + βαpEt

(
(Πt))γp

Πt+1

)−φθp

Kp,t+1,

and

Fp,t = Λz,tYz,t + βαpEt

(
(Πt)γp

Πt+1

)1−θp

Fp,t+1.

With a slight abuse of notation, we obtain the steady-state relation(
P?

P

)1+θp(φ−1)

=
µp

1 + τp
φ

Wz

P
Yφ−1

z
1− βαp(Π)(1−γp)(θp−1)

1− βαp(Π)φθp(1−γp)
.

Log-linearizing yields

[1 + θp(φ− 1)](p?t − pt) = k̂p,t − f̂p,t
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k̂p,t = (1−ωK,p)[λ̂z,t + ω̂t + φŷz,t + ζu,t] + ωK,pEt{k̂p,t+1 + φθp(π̂t+1 − γpπ̂t)},

and

f̂p,t = (1−ωF,p)(λ̂z,t + ŷz,t) + ωF,pEt{ f̂p,t+1 + (θp − 1)(π̂t+1 − γpπ̂t)}.

where we defined the de-trended real wage

ωt ≡ wz,t − pt

ωK,p ≡ βαp(Π)(1−γp)φθp

and

ωF,p ≡ βαp(Π)(1−γp)(θp−1)

Finally, notice that

P1−θp
t =

∫ 1

0
Pt( f )1−θp d f

= (1− αp)(P?
t )

1−θp + αp

∫ 1

0
[(Πt−1))

γp Pt−1( f )]1−θp d f

Thus

1 = (1− αp)

(
P?

t
Pt

)1−θp

+ αp

[
(Πt−1)

γp

Πt

]1−θp

The steady-state relation is (
P?

P

)1−θp

=
1− αp(Π)(1−γp)(θp−1)

1− αp

Log-linearizing this yields

p̂?t =
ωF,p

β−ωF,p
(π̂t − γpπ̂t−1).

I.3 Unions

I.3.1 Wage Setting

Union h sets W?
t (h) so as to maximize

Et

∞

∑
s=0

(βαw)
s
{
(1 + τw)

Λt+s

Pt+s
eγzµzsVw

t,t+sW
?
t (h)Nt,t+s(h)−

χ

1 + ν
eζh,t+s(Nt,t+s(h))1+ν

}
,

where

Nt,t+s(h) =
(

eγzµzsVw
t,t+sW

?
t (h)

Wt+s

)−θw

Nt+s
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The associated first-order condition is

Et

∞

∑
s=0

(βαw)
s

{
ΛT

Wt+s

Pt+s
ht+s

(
eγzµzsVw

t,T

Πw
t,t+s

W?
t (h)

Wt+s

)1−θw

− µw

1 + τw
χeζh,t+s

(
eγzµzsVw

t,t+s

Πw
t,t+s

W?
t (h)

Wt+s

)−(1+ν)θw

N1+ν
t+s

}
= 0

where Πw
t,t+s = Wt+s/Wt.

Rearranging yields (
W?

t (h)
Wt

)1+θwν

=
µw

1 + τw

Kw,t

Fw,t
.

where

Kw,t = Et

∞

∑
s=0

(βαw)
s

χeζh,t+s

(
eγzµzsVw

t,t+s

Πw
t,t+s

)−(1+ν)θw

N1+ν
t+s


and

Fw,t = Et

∞

∑
s=0

(βαw)
s

Λt+s
Wt+s

Pt+s
Nt+s

(
eγzµzsVw

t,t+s

Πw
t,t+s

)1−θw
 ,

where Πw
t,t+s ≡Wt+s/Wt.

Notice that

Kw,t = χeζh,t N1+ν
t + βαwEt

{(
eγzµz

(Πt)γw

Πw,t+1

)−(1+ν)θw

Kw,t+1

}
and

Fw,t = Λz,t
Wz,t

Pt
Nt + βαwEt

{(
eγzµz

(Πt)γw

Πw,t+1

)1−θw

Fw,t+1

}
.

The associated steady-state relations are(
W?

W

)1+θwν

=
µw

1 + τw

Kw

Fw
,

Kw =
χN1+ν

1− βαw[e(1−γz)µz(Π)1−γw ](1+ν)θw

Fw =
Λ Wz

P H
1− βαw[e(1−γz)µz(Π)1−γw ]θw−1

.

Log-linearizing the above equations finally yields

(1 + θwν)(w?
t − wt) = k̂w,t − f̂w,t.

k̂w,t = (1−ωK,w)[(1 + ν)n̂t + ζh,t] + ωK,wEt{k̂w,t+1 + (1 + ν)θw(π̂w,t+1 − γwπ̂t)}
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f̂w,t = (1−ωF,w)(λ̂z,t + ω̂t + n̂t) + ωF,wEt{ f̂w,t+1 + (θw − 1)(π̂w,t+1 − γwπ̂t)},

where we defined

ωK,w = βαw[e(1−γz)µz(Π)(1−γw)](1+ν)θw

ωF,w = βαw[e(1−γz)µz(Π)(1−γw)]θw−1

To complete this section, notice that

1 = (1− αw)

(
W?

t
Wt

)1−θw

+ αw

(
eγzµz

[Πt−1]
γw

Πw,t

)1−θw

and

w?
t − wt =

ωF,w

β−ωF,w
(π̂w,t − γwπ̂t−1).

I.4 Market Clearing

The clearing on the labor market implies

Nt =

(
Yt

Zt

)φ ∫ 1

0

(
Pt( f )

Pt

)−φθp

d f .

Let us define

Ξp,t =

( ∫ 1

0

(
Pt( f )

Pt

)−φθp

d f

)−1/(φθp)

,

so that

Nt = (Yz,tΞ
−θp
p,t )φ.

Hence, expressed in log-linear terms, this equation reads

n̂t = φ(ŷz,t − θp ξ̂p,t).

Notice that

Ξ−φθp
p,t = (1− αp)

(
P?

t
Pt

)−φθp

+ αp

(
[Πt−1]

γp

Πt

)−φθp

Ξ−φθp
p,t−1.

The associated steady-state relation is

Ξ−φθp
p =

(1− αp)

1− αp(Π)(1−γp)φθp

(
P?

P

)−φθp

.

Log-linearizing the price dispersion yields

ξ̂p,t = (1−ωΞ)(p?t − pt) + ωΞ[ξ̂p,t−1 − (π̂t − γpπ̂t−1)]

where we defined

ωΞ = αp(Π)(1−γp)φθp .
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I.5 Natural Rate of Output

The natural rate of output is the level of production that would prevail in an economy without nominal

rigidities, i.e. αp = αw = 0 and without cost-push shocks (i.e., ζu,t = 0). Under such circumstances, the

dynamic system simplifies to

ŵn
z,t + (φ− 1)ŷn

z,t = 0,

νn̂n
t + ζh,t = λ̂n

z,t + ŵn
z,t,

n̂n
t = φŷn

z,t,

ĝt + βηEt{ŷn
z,t+1} − (1 + βη2)ŷn

z,t + ηŷn
z,t−1 − η(ζz,t − βEt{ζz,t+1}) = ϕ−1λ̂n

z,t,

where the superscript n stands for natural.

Combining these equations yields

[ϕ(1 + βη2) + ω]ŷn
z,t − ϕβηEt{ŷn

z,t+1} − ϕηŷn
z,t−1 = ϕĝt − ζh,t − ϕηζ∗z,t

where we defined

ω ≡ νφ + φ− 1,

and

ζ∗z,t = ζz,t − βEt{ζz,t+1}

I.6 Working Out the Steady State

The steady state is defined by the following set of equations

1− βη

(1− η)C
= Λz,

e−i = βe−µz Π−1,

(
P?

P

)1+θp(φ−1)

=
µp

1 + τp

Kp

Fp
,

Kp =
φΛz

Wz
P Yφ

z

1− βαp(Π)φθp(1−γp)
,
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Fp =
ΛzYz

1− βαp(Π)(1−γp)(θp−1)
,

(
P?

P

)1−θp

=
1− αp(Π)(1−γp)(θp−1)

1− αp
,

(
W?

W

)1+θwν

=
µw

1 + τw

Kw

Fw
,

Kw =
χN1+ν

1− βαw[e(1−γz)µz(Π)1−γw ](1+ν)θw
,

Fw =
Λz

Wz
P H

1− βαw[e(1−γz)µz(Π)1−γw ]θw−1
,

(
W?

W

)1−θw

=
1− αw[e(1−γz)µz(Π)(1−γw)]θw−1

1− αw
,

Πw = Πeµz

We can solve for i and Πw using

Πw = Πeµz

1 = βe−µz eiΠ−1,

Standard manipulations yield

1−ωK,p

1−ωF,p

(
β(1− αp)

β−ωF,p

) 1+θp(φ−1)
θp−1

=
µp

1 + τp
φ

Wz

P
Yφ−1

z ,

where we used

ωK,p = βαp(Π)(1−γp)φθp

ωF,p = βαp(Π)(1−γp)(θp−1)

Similar manipulations yield

1−ωK,w

1−ωF,w

(
β(1− αw)

β−ωF,w

) 1+θwν
θw−1

=
µw

1 + τw

χNν

Λz
Wz
P

,

where we used

ωK,w = βαw[e(1−γz)µz(Π)(1−γw)](1+ν)θw
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ωF,w = βαw[e(1−γz)µz(Π)(1−γw)]θw−1

Combining these conditions yields

1−ωK,w

1−ωF,w

(
β(1− αw)

β−ωF,w

) 1+θwν
θw−1 1−ωK,p

1−ωF,p

(
β(1− αp)

β−ωF,p

) 1+θp(φ−1)
θp−1

=
µw

1 + τw

µp

1 + τp

1− η

1− βη
φχNνYφ

z

Now, recall that

(YzΞ−θp
p )φ = N

Then, using

Ξ−φθp
p =

1− αp

1−ωΞ

(
P?

P

)−φθp

,

and (
P?

P

)−φθp

=

(
β(1− αp)

β−ωF,p

)−φ
θp

θp−1

we end up with

NνYφ
z =

 1− αp

1−ωΞ

(
β(1− αp)

β−ωF,p

)−φ
θp

θp−1

ν

Y(1+ν)φ
z ,

so that

Ω =
µw

1 + τw

µp

1 + τp

1− η

1− βη
φχY(1+ν)φ

z ,

where

Ω =
1−ωK,w

1−ωF,w

(
β(1− αw)

β−ωF,w

) 1+θwν
θw−1 1−ωK,p

1−ωF,p

(
β(1− αp)

β−ωF,p

) 1+θp [(1+ν)φ−1]
θp−1

(
1−ωΞ

1− αp

)ν

We defined the natural rate of output as the level of production that would prevail in an economy

without nominal rigidities, i.e. αp = αw = 0. Under such circumstances, the steady-state value of the

(normalized) natural rate of output yn obeys

1 =
µw

1 + τw

µp

1 + τp

1− η

1− βη
φχ(Yn

z )
φ(1+ν).

It follows that the steady-state distortion due to sticky prices and wages (and less than perfect indexa-

tion) is (
Yz

Yn
z

)φ(1+ν)

= Ω.

J Welfare

Let us define for any generic variable Xt

Xt − X
X

= x̂t +
1
2

x̂2
t +O(||ζ||3)
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Xt − Xn

Xn = x̃t +
1
2

x̃2
t +O(||ζ||3)

Below, we repeatedly use the following two lemmas:

Lemma 1. Let g(·) be a twice differentiable function and let X be a stationary random variable. Then

E{g(X)} = g(E{X}) + 1
2

g′′(E{X})V{X}+O(||X||3).

Lemma 2. Let g(·) be a twice differentiable function and let x be a stationary random variable. Then

V{g(X)} = [g′(E{X})]2V{X}+O(||X||3).

In the rest of this section, we take a second-order approximation of welfare, where we consider the

inflation rate as an expansion parameter. It follows that we consider the welfare effects of non-zero trend

inflation only up to second order.

J.1 Second-Order Approximation of Utility

Consider first the utility derived from consumption. For the sake of notational simplicity, define

U(Cz,t − ηCz,t−1e−ζz,t) = log(Cz,t − ηCz,t−1e−ζz,t)

We thus obtain

eζc,tU(Cz,t − ηCz,t−1e−ζz,t) =
1

1− η

[(
Cz,t − Cn

z
Cn

z

)
− η

(
Cz,t−1 − Cn

z
Cn

z

)

− 1
2

1
(1− η)

(
Cz,t − Cn

z
Cn

z

)2

+
η

(1− η)

(
Cz,t − Cn

z
Cn

z

)(
Cz,t−1 − Cn

z
Cn

z

)
− 1

2
η2

(1− η)

(
Cz,t−1 − Cn

z
Cn

z

)2

+ ζc,t

(
Cz,t − Cn

z
Cn

z

)
− ηζc,t

(
Cz,t−1 − Cn

z
Cn

z

)
− η

(1− η)
ζz,t

(
Cz,t − Cn

z
Cn

z

)
+

η

(1− η)
ζz,t

(
Cz,t−1 − Cn

z
Cn

z

)]
+ t.i.p +O(||ζ||3),

where t.i.p stands for terms independent of policy.

Then, using
Cz,t − Cn

z
Cn

z
= c̃z,t +

1
2

c̃2
z,t +O(||ζ||3)

we obtain

eζc,tU(Cz,t − ηCz,t−1e−ζz,t) =
1

1− η

[
c̃z,t − ηc̃z,t−1 +

1
2
(c̃2

z,t − ηc̃2
z,t−1)

− 1
2

1
1− η

c̃2
z,t +

η

1− η
c̃z,t c̃z,t−1 −

1
2

η2 1
1− η

c̃2
z,t−1

+ ζc,t(c̃z,t − ηc̃z,t−1)−
η

1− η
ζz,t(c̃z,t − c̃z,t−1)

]
+ t.i.p +O(||ζ||3),
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Using

ϕ−1 = (1− βη)(1− η)

we obtain

eζc,tU(Cz,t − ηCz,t−1e−ζz,t) =
1

1− η

[
ỹz,t − ηỹz,t−1 +

1
2
(ỹ2

z,t − ηỹ2
z,t−1)

− 1
2
(1− βη)ϕỹ2

z,t + η(1− βη)ϕỹz,tỹz,t−1 −
1
2

η2(1− βη)ϕỹ2
z,t−1

+ ζc,t(ỹz,t − ηỹz,t−1)− η(1− βη)ϕζz,t(ỹz,t − ỹz,t−1)

]
+ t.i.p +O(||ζ||3),

where we imposed the equilibrium condition on the goods market.

Similarly, taking a second-order approximation of labor disutility in the neighborhood of the natural

steady-state Nn yields

χ

1 + ν
eζh,t(Nt(h))1+ν = χ(Nn)1+ν

(
Nt(h)− Nn

Nn

)
+

1
2

χν(Nn)1+ν

(
Nt(h)− Nn

Nn

)2

+ χ(Nn)1+ν

(
Nt(h)− Nn

Nn

)
ζh,t + t.i.p +O(||ζ||3).

Now, using
Nt(h)− Nn

Nn = ñt(h) +
1
2

ñt(h)2 +O(||ζ||3)

we get

χ

1 + ν
eζh,t(Nt(h))1+ν = χ(Nn)1+ν

[
ñt(h) +

1
2
(1 + ν)ñt(h)2 + ñt(h)ζh,t

]
+ t.i.p +O(||ζ||3).

Integrating over the set of labor types, one gets∫ 1

0

χ

1 + ν
eζh,t(Nt(h))1+νdh = χ(Nn)1+ν

[
Eh{ñt(h)}+

1
2
(1+ ν)Eh{ñt(h)2}+Eh{ñt(h)}ζh,t

]
+ t.i.p+O(||ζ||3).

Now, since

Vh{ñt(h)} = Eh{ñt(h)2} −Eh{ñt(h)}2

the above relation rewrites

∫ 1

0

χ

1 + ν
eζh,t(Nt(h))1+νdh = χ(Nn)1+ν

[
Eh{ñt(h)}+

1
2
(1 + ν)(Vh{ñt(h)}+ Eh{ñt(h)}2)

+ Eh{ñt(h)}ζh,t

]
+ t.i.p +O(||ζ||3).

We need to express Eh{ñt(h)} and Vh{ñt(h)} in terms of the aggregate variables. To this end, we first

establish a series of results, on which we draw later on.
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J.2 Aggregate Labor and Aggregate Output

Notice that
θw − 1

θw
ñt = log

(∫ 1

0

(
Nt(h)

Nn

)(θw−1)/θw

dh

)
.

Then, applying lemma 1, one obtains

ñt = Eh{ñt(h)}+
1
2

θw

θw − 1
Eh

{(
Nt(h)

Nn

) θw−1
θw

}−2

Vh

{(
Nt(h)

Nn

) θw−1
θw

}
+O(||ζ||3).

Then, notice that

Vh

{(
Nt(h)

Nn

) θw−1
θw

}
= Vh

{
exp

[
(1− θ−1

w ) log
(

Nt(h)
Nn

)]}
so that, by applying lemma 2, one obtains

Vh

{(
Nt(h)

Nn

) θw−1
θw

}
= (1− θ−1

w )2 exp
(
(1− θ−1

w )Eh{ñt(h)}
)2

Vh{ñt(h)}+O(||ζ||3).

Similarly

Eh

{(
Nt(h)

Nn

) θw−1
θw

}
= Eh

{
exp

[
(1− θ−1

w )ñt(h)
]}

so that, by applying lemma 1 once more, one obtains

Eh

{(
Nt(h)

Nn

) θw−1
θw

}
= exp

[
(1− θ−1

w )Eh{ñt(h)}
] (

1 +
1
2
(1− θ−1

w )2Vh{ñt(h)}
)
+O(||ξ||3).

Then combining the previous results

ñt = Eh{ñt(h)}+
1
2

1
1− θ−1

w

(1− θ−1
w )2Vh{ñt(h)}(

1 + 1
2 (1− θ−1

w )2Vh{ñt(h)}
)2 +O(||ζ||3).

It is convenient to define

∆h,t ≡ Vh{ñt(h)}

so that finally

ñt = Eh{ñt(h)}+ Q0,h +
1− θ−1

w
2

Q1,h(∆h,t − ∆n) +O(||ζ||3).

where we defined

Q0,h =
1−θ−1

w
2 ∆n[

1 + 1
2 (1− θ−1

w )2∆n

]2

and

Q1,h =
1− 1

2 (1− θ−1
w )2∆n[

1 + 1
2 (1− θ−1

w )2∆n

]3
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Applying the same logic on output and defining

∆y,t ≡ V f {ỹt( f )}

one gets

ỹz,t = E f {ỹz,t( f )}+ Q0,y +
1− θ−1

p

2
Q1,y(∆y,t − ∆y) +O(||ζ||3).

where we defined

Q0,y =

1−θ−1
p

2 ∆y[
1 + 1

2 (1− θ−1
p )2∆y

]2

and

Q1,y =
1− 1

2 (1− θ−1
p )2∆y[

1 + 1
2 (1− θ−1

p )2∆y

]3

Then recall from (??) and from the equilibrium on the market for aggregate labor that

Nt =
∫ 1

0
Lt( f )d f =

∫ 1

0
Yz,t( f )φd f

which implies
Nt

Nn =
∫ 1

0

(
Yz,t( f )

Yn
z

)φ

d f

where we used Nn = (Yn
z )

φ.

This relation rewrites

ñt = log

(∫ 1

0

(
Yz,t( f )

Yn
z

)φ

d f

)
This expression is of the form

ñt = log

(
E f

{(
Yz,t( f )

Yn
z

)φ
})

.

Using lemmas 1 and 2, we obtain the following three approximations

ñt = E f {φ(ỹz,t( f )− zt)}+
1
2

V f

{(
Yz,t( f )

Yn
z

)φ
}

(
E f

{(
Yz,t( f )

Yn
z

)φ
})2 +O(||ζ||3),

V f

{(
Yz,t( f )

Yn
z

)φ
}

= φ2 [exp [φE{ỹz,t( f )}]]2 V f {ỹz,t( f )}+O(||ζ||3),

E f

{(
yz,t( f )

yn
z

)φ
}

= exp [φE{ỹz,t( f )}]
(

1 +
1
2

φ2V f {ỹz,t( f )}
)
+O(||ζ||3).

Combining these expressions as before yields

ñt = φE f {ỹz,t( f )}+ 1
2

φ2 V f {ỹz,t( f )}(
1 + 1

2 φ2V f {ỹz,t( f )}
)2 +O(||ζ||3).
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We finally obtain

ñt = φE f {ỹz,t( f )}+ P0,y +
1
2

φ2P1,y(∆y,t − ∆y) +O(||ζ||3),

where we used

V f {ỹz,t( f )}(
1 + 1

2 φ2V f {ỹz,t( f )}
)2 =

∆y(
1 + 1

2 φ2∆y
)2 +

1− 1
2 φ2∆y(

1 + 1
2 φ2∆y

)3 (∆y,t − ∆y) +O(||ζ||3)

and defined

P0,y =
1
2 φ2∆y(

1 + 1
2 φ2∆y

)2

and

P1,y =
1− 1

2 φ2∆y(
1 + 1

2 φ2∆y
)3

J.3 Aggregate Price and Wage Levels

The aggregate price index is

P1−θp
t =

(∫ 1

0
Pt( f )1−θp d f

)
and the aggregate wage index is

W1−θw
t =

(∫ 1

0
Wt(h)1−θw dh

)
.

From lemma 1 and the definitions of Pt and Wt, we obtain

pt = E f {pt( f )}+ 1
2

1
1− θp

V f {Pt( f )1−θp}
E f {Pt( f )1−θp}2

+O(||ζ||3),

and

wt = Eh{wt(h)}+
1
2

1
1− θw

Vh{Wt(h)1−θw}
Eh{Wt(h)1−θw}2 +O(||ζ||3).

Then, from lemma 2, we obtain

V f {Pt( f )1−θp} = V f {exp[(1− θp)pt( f )]}

= (1− θp)
2 exp[(1− θp) p̄t]

2∆p,t +O(||ζ||3),

and

Vh{Wt(h)1−θw} = Vh{exp[(1− θw)wt(h)]}

= (1− θw)
2 exp[(1− θw)w̄t]

2∆w,t +O(||ζ||3),

where we defined

p̄t = E f {pt( f )}, w̄t = Eh{wt(h)},
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∆p,t = V f {pt( f )}, ∆w,t = Vh{wt(h)}.

Applying lemma 1 once again, we obtain

E f {Pt( f )1−θp} = E f {exp[(1− θp)pt( f )]}

= exp[(1− θp) p̄t]

(
1 +

1
2
(1− θp)

2∆p,t

)
and

Eh{Wt(h)1−θw} = Eh{exp[(1− θw)wt(h)]}

= exp[(1− θw)w̄t]

(
1 +

1
2
(1− θw)

2∆w,t

)
Combining these relations, we obtain

pt = p̄t +
1
2

(1− θp)∆p,t[
1 + 1

2 (1− θp)2∆p,t
]2 +O(||ζ||3),

and

wt = w̄t +
1
2

(1− θw)∆w,t[
1 + 1

2 (1− θw)2∆w,t
]2 +O(||ζ||3).

Thus

pt = p̄t + Q0,p +
1− θp

2
Q1,p(∆p,t − ∆p) +O(||ζ||3),

and

wt = w̄t + Q0,w +
1− θw

2
Q1,w(∆w,t − ∆w) +O(||ζ||3).

where we defined

Q0,p =

1−θp
2 ∆p[

1 + 1
2 (1− θp)2∆p

]2 , Q0,w =
1−θw

2 ∆w[
1 + 1

2 (1− θw)2∆w
]2

and

Q1,p =
1− 1

2 (1− θp)2∆p[
1 + 1

2 (1− θp)2∆p
]3 , Q1,w =

1− 1
2 (1− θw)2∆w[

1 + 1
2 (1− θw)2∆w

]3

Remark that the constant terms in the second-order approximation of the log-price index can be rewrit-

ten as

Q0,p −
1− θp

2
Q1,p∆p =

1
2

(1− θp)3∆2
p[

1 + 1
2 (1− θp)2∆p

]3 .

Finally, using the demand functions, one obtains

ỹz,t( f ) = −θp[pt( f )− pt] + ỹz,t,

ñt(h) = −θw[wt(h)− wt] + ñt,
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from which we deduce that

∆y,t = θ2
p∆p,t

and

∆h,t = θ2
w∆w,t.

J.4 Price and Wage Dispersions

We now derive the law of motion of price dispersion. Notice that

∆p,t = V f {pt( f )− p̄t−1}

Immediate manipulations of the definition of the cross-sectional mean of log-prices yield

p̄t − p̄t−1 = αpγpπt−1 + (1− αp)[p?t − p̄t−1]. (J.1)

Then, the classic variance formula yields

∆p,t = E f {[pt( f )− p̄t−1]
2} − [E f {pt( f )− p̄t−1}]2

Using this, we obtain

∆p,t = αpE f {[pt−1( f )− p̄t−1 + γpπt−1]
2}+ (1− αp)[p?t − p̄t−1]

2 − [ p̄t − p̄t−1]
2

Notice that

(1− αp)[p?t − p̄t−1]
2 − [ p̄t − p̄t−1]

2

= (1− αp)

[
1

1− αp
( p̄t − p̄t−1)−

αp

1− αp
γpπt)

]2

− [ p̄t − p̄t−1]
2

=
αp

1− αp
[ p̄t − p̄t−1 − γpπt]

2 − αp[γpπt]
2

Using this in the above equation yields

∆p,t = αpE f {[pt−1( f )− p̄t−1 + γpπt]
2} − αp[γpπt]

2 +
αp

1− αp
[ p̄t − p̄t−1 − γpπt]

2

Now, notice also that

αpE f {[pt−1( f )− p̄t−1]
2} = αpE f {[pt−1( f )− p̄t−1 + γpπt]

2} − αp[γpπt]
2

It then follows that

∆p,t = αpE f {[pt−1( f )− p̄t−1]
2}+

αp

1− αp
[ p̄t − p̄t−1 − γpπt]

2
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Hence

∆p,t = αp∆p,t−1 +
αp

1− αp
[ p̄t − p̄t−1 − γpπt]

2

Using

pt = p̄t + Q0,p +
1− θp

2
Q1,p(∆p,t − ∆p) +O(||ζ||3),

we obtain

p̄t − p̄t−1 = πt −
1− θp

2
Q1,p(∆p,t − ∆p,t−1) +O(||ζ||3).

Hence

∆p,t = αp∆p,t−1 +
αp

1− αp

[
πt −

1− θp

2
Q1,p(∆p,t − ∆p,t−1)− γpπt−1

]2

+O(||ζ||3).

The steady-state value of ∆p is thus

∆p =
(1− γp)2αp

(1− αp)2 π2

We obtain finally

∆p,t = αp∆p,t−1 +
αp

1− αp

[
(1− γp)π + π̂t − γpπ̂t−1 −

1− θp

2
Q1,p(∆p,t − ∆p,t−1)

]2
+O(||ζ||3).

Unless π is itself treated as an expansion variable in the above approximation, we cannot claim that

∆p,t is second-order.

We now derive the law of motion of wage dispersion. Following similar steps as for price dispersion,

notice that

∆w,t = Vh{wt(h)− w̄t−1}

Immediate manipulations of the definition of the cross-sectional mean of log-wages yield

w̄t − w̄t−1 = αw(γzµz + γwπt−1) + (1− αw)[w?
t − w̄t−1]. (J.2)

Then, the classic variance formula yields

∆w,t = Eh{[wt(h)− w̄t−1]
2} − [Eh{wt(h)− w̄t−1}]2

Using this, we obtain

∆w,t = αwEh{[wt−1(h)− w̄t−1 + γzµz + γwπt−1]
2}+ (1− αw)[w?

t − w̄t−1]
2 − [w̄t − w̄t−1]

2

Notice that

w?
t − w̄t−1 =

1
1− αw

(w̄t − w̄t−1)−
αw

1− αw
[γzµz + γwπt]
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so that

(1− αw)[w?
t − w̄t−1]

2 − [w̄t − w̄t−1]
2

= (1− αw)
[ 1

1− αw
(w̄t − w̄t−1)−

αw

1− αw
[γzµz + γwπt]

]2
− [w̄t − w̄t−1]

2

=
αw

1− αw

[
w̄t − w̄t−1 − [γzµz + γwπt]

]2
− αw[γzµz + γwπt]

2

Using this in the above equation yields

∆w,t = αwEh{[wt−1(h)− w̄t−1 + γzµz + γwπt]
2}

− αw[γw log(1 + πt)]
2 +

αw

1− αw

[
w̄t − w̄t−1 − [γzµz + γwπt]

]2

Now, notice also that

αwEh{[wt−1(h)− w̄t−1]
2} = αwEh{[wt−1(h)− w̄t−1 + γzµz + γwπt]

2} − αw[γzµz + γwπt]
2

It then follows that

∆w,t = αwEh{[wt−1(h)− w̄t−1]
2}+ αw

1− αw

[
w̄t − w̄t−1 − [γzµz + γpπt]

]2

Hence

∆w,t = αw∆w,t−1 +
αw

1− αw

[
w̄t − w̄t−1 − [γzµz + γwπt]

]2

which, in turn, implies

∆w,t = αw∆w,t−1 +
αw

1− αpw
[w̄t − w̄t−1 − γzµz − γwπt−1]

2 .

Using

wt = w̄t + Q0,w +
1− θw

2
Q1,w(∆w,t − ∆w) +O(||ζ||3),

we obtain

w̄t − w̄t−1 = πw,t −
1− θw

2
Q1,w(∆w,t − ∆w,t−1) +O(||ζ||3).

Hence

∆w,t = αw∆w,t−1 +
αw

1− αw

[
πw,t −

1− θw

2
Q1,w(∆w,t − ∆w,t−1)

− γzµz − γwπt−1

]2

+O(||ζ||3).

The steady-state value of ∆w is thus

∆w =
αw

(1− αw)2 [(1− γz)µz + (1− γw)π]2
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We obtain finally

∆w,t = αw∆w,t−1 +
αw

1− αw

[
(1− γz)µz + (1− γw)π + π̂w,t − γwπ̂t−1

− 1− θw

2
Q1,w(∆w,t − ∆w,t−1)

]2
+O(||ζ||3).

Here, treating π as an expansion parameter will not suffice to ensure that wage dispersion ∆w,t is second

order because an additional constant term linked to average productivity shows up in the above equations.

Henceforth, we will assume that µz is an expansion parameter.

Then, if we treat π as an expansion variable, precisely because the steady-state value of ∆p is of second-

order, many of the expressions previously derived considerably simplify. In particular, we now obtain

pt = p̄t +
1− θp

2
∆p,t +O(||ζ, π||3),

wt = w̄t +
1− θw

2
∆w,t +O(||ζ, π||3), ).

Now, because ∆y and ∆n are proportional to ∆p and ∆w, respectively, and because ∆p and ∆w are both

proportional to π2, we also obtain

ñt = Eh{ñt(h)}+
1− θ−1

w
2

∆h,t +O(||ζ, π||3),

ñt = φ(E f {ỹz,t( f )} − zt) +
1
2

φ2∆y,t +O(||ζ, π||3),

ỹt = E f {ỹt( f )}+
1− θ−1

p

2
∆y,t +O(||ζ, π||3), ).

Thus, for sufficiently small inflation rates, we obtain formulas resembling those derived in Woodford

(2003).

Finally, price and wage dispersions rewrite

∆p,t = αp∆p,t−1 +
αp

1− αp

[
(1− γp)π + π̂t − γpπ̂t−1

]2
+O(||ζ, π||3), ).

∆w,t = αw∆w,t−1 +
αw

1− αw

[
(1− γz)µz + (1− γw)π + π̂w,t − γwπ̂t−1

]2
+O(||ζ, π||3), ).

J.5 Combining the Results

Combining the previous results, we obtain∫ 1

0

χ

1 + ν
eζh,t(Nt(h))1+νdh = χ(Nn)1+ν

[
ñt +

1
2
(1 + ν)ñ2

t + ñtζh,t

+
1
2
(1 + νθw)θw∆w,t

]
+ t.i.p +O(||ζ, π||3), ).
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In turn, we have

ñt = φỹt +
1
2

φ[(φ− 1)θp + 1]θp∆p,t +O(||ζ, π||3),

so that

∫ 1

0

χ

1 + ν
eζh,t(Nt(h))1+νdh = φχ(Nn)1+ν

[
(ỹt − zt) +

1
2
(1 + ν)φỹ2

t + ỹtζh,t

+
1
2
[(φ− 1)θp + 1]θp∆p,t +

1
2
(1 + νθw)φ

−1θw∆w,t

]
+ t.i.p +O(||ζ, π||3), ).

Then, using

(1−Φ)
1− βη

1− η
= φχ(Nn)1+ν,

where we defined

1−Φ ≡ 1 + τw

µw

1 + τp

µp
,

we obtain

E0

∞

∑
t=0

βt
{∫ 1

0

χ

1 + ν
eζh,t(Nt(h))1+νdh

}
=

(1−Φ)
1− βη

1− η
E0

∞

∑
t=0

βt
[
ỹt +

1
2
(1 + ν)φỹ2

t + ỹtζh,t

+
1
2
[(φ− 1)θp + 1]θp∆p,t +

1
2
(1 + νθw)φ

−1θw∆w,t

]
+ t.i.p +O(||ζ, π||3), ).

Assuming the distortions are themselves negligible, this simplifies further to

E0

∞

∑
t=0

βt
{∫ 1

0

χ

1 + ν
eζh,t(Nt(h))1+νdh

}
=

1− βη

1− η
E0

∞

∑
t=0

βt
[
(1−Φ)ỹt +

1
2
(1 + ν)φỹ2

t + ỹtζh,t

+
1
2
[(φ− 1)θp + 1]θp∆p,t +

1
2
(1 + νθw)φ

−1θw∆w,t

]
+ t.i.p +O(||ζ, π||3), ).

We now deal with the first term in the utility function. To that end, notice that

∞

∑
t=0

βtat−1 = a−1 + β
∞

∑
t=0

βt−1at−1 = a−1 + β
∞

∑
t=0

βtat.

Using this trick, we obtain

E0

∞

∑
t=0

βteζc,t log(Cz,t − ηCz,t−1e−ζz,t) =
1− βη

1− η
E0

∞

∑
t=0

βt

[
ỹz,t −

1
2
[ϕ(1 + βη2)− 1]ỹ2

z,t + ηϕỹz,tỹz,t−1

+ ϕĝtỹz,t − ηϕζ∗z,tỹz,t

]
+ t.i.p +O(||ζ||3),
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where we defined

ϕ−1 ≡ (1− βη)(1− η),

ĝt = (1− η)(ζc,t − βηEt{ζc,t+1}),

so that

(1− βη)ϕĝt ≡ (ζc,t − βηEt{ζc,t+1}).

and

ζ∗z,t = ζz,t − βEt{ζz,t+1}

Combining terms, we obtain

U0 =
1− βη

1− η
E0

∞

∑
t=0

βt

[
Φỹz,t −

1
2
[ϕ(1 + βη2) + ω]ỹ2

z,t + ηϕỹz,tỹz,t−1

+ (ϕĝt − ζh,t − ϕηζ∗z,t)ỹz,t

− 1
2
[(φ− 1)θp + 1]θp∆p,t −

1
2
(1 + νθw)φ

−1θw∆w,t

]
+ t.i.p +O(||ζ||3),

where, as defined earlier

ω = (1 + ν)φ− 1

Now, recall that

[ϕ(1 + βη2) + ω]ŷn
z,t − ϕβηEt

{
ŷn

z,t+1
}
− ϕηŷn

z,t−1 = ϕĝt − ζh,t − ϕηζ∗z,t

Using this above yields

U0 =
1− βη

1− η
E0

∞

∑
t=0

βt

[
Φỹz,t −

1
2
[ϕ(1 + βη2) + ω]ỹ2

z,t + ηϕỹz,tỹz,t−1

+ [ϕ(1 + βη2) + ω]ŷn
z,tỹz,t − ϕβηŷn

z,t+1ỹz,t − ϕηŷn
z,t−1ỹz,t

− 1
2
[(φ− 1)θp + 1]θp∆p,t −

1
2
(1 + νθw)φ

−1θw∆w,t

]
+ t.i.p +O(||ζ||3),

U0 =
1− βη

1− η
E0

∞

∑
t=0

βt

[
Φỹt −

1
2
[ϕ(1 + βη2) + ω]ỹ2

t + ηϕỹtỹt−1

+ [ω + ϕ(1 + βη2)]ŷn
t ỹt − ϕβηŷn

t+1ỹt − ϕηŷn
t−1ỹt

− 1
2
[(φ− 1)θp + 1]θp∆p,t −

1
2
(1 + νθw)φ

−1θw∆w,t

]
+ t.i.p +O(||ξ, π||3)
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To simplify this expression, we seek constant terms δ0, δ and x? such that

E0

∞

∑
t=0

βt

{
− 1

2
δ0[(ỹt − ŷn

t )− δ(ỹt−1 − ŷn
t−1)− x?]2

}

= E0

∞

∑
t=0

βt

[
Φỹt −

1
2
[ϕ(1 + βη2) + ω]ỹ2

t + ηϕỹtỹt−1

+ [ω + ϕ(1 + βη2)]ỹtŷn
t − ϕβηỹtŷn

t+1 − ϕηỹtŷn
t−1

]
+ t.i.p

Developing yields

− δ0

2

[
(ỹt − ŷn

t )− δ(ỹt−1 − ŷn
t−1)− x∗

]2

= −1
2

δ0ỹ2
t + δ0ỹtŷn

t + δ0δỹtỹt−1 − δ0δỹtŷn
t−1 − δ0δỹt−1ŷn

t

− 1
2

δ0δ2ỹ2
t−1 + δ0δ2ỹt−1ŷn

t−1 + δ0(ỹt − δỹt−1)x̂∗ + t.i.p

Thus

E0

∞

∑
t=0

βt

{
− δ0

2
[(ỹt − ŷn

t )− δ(ỹt−1 − ŷn
t−1)− x∗]2

}

= E0

∞

∑
t=0

βt

{
δ0(1− βδ)x̂∗ỹt −

1
2

δ0(1 + βδ2)ỹ2
t + δ0δỹtỹt−1

+ δ0(1 + βδ2)ỹtŷn
t − δ0δỹtŷn

t−1 − δ0δβỹtŷn
t+1

}
+ t.i.p

Identifying term by term, we obtain

δ0(1− βδ)x∗ = Φ

δ0(1 + βδ2) = [ω + ϕ(1 + βη2)]

δ0δ = ηϕ

Combining these relations, we obtain

ηδ2 − ω + ϕ)(1 + βη2)

βϕ
δ + ηβ−1 = 0,

or equivalently

P(κ) = β−1κ2 − χκ + η2 = 0,

where

κ =
η

δ
,
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χ =
ω + ϕ(1 + βη2)

βϕ
> 0.

Notice that

P(0) = η2 > 0,

P(1) = − ω

βϕ
< 0

so that the two roots of P(κ) = 0 obey

0 < κ1 < 1 < κ2.

In the sequel, we focus on the larger root and define

κ = κ2 =
β

2

(
χ +

√
χ2 − 4η2β−1

)
> 1.

Since δ = η/κ, we have

0 ≤ δ ≤ η < 1.

Thus, given the obtained value for κ, we can deduce δ from which we can compute δ0.

We thus obtain

U0 = −1− βη

1− η
E0

∞

∑
t=0

βt

{
δ0

2
[(ỹt − ŷn

t )− δ(ỹt−1 − ŷn
t−1)− x∗]2

+
1
2
[(φ− 1)θp + 1]θp∆p,t +

1
2
(1 + νθw)φ

−1θw∆w,t

}
+ t.i.p +O(||ζ, π||3), )

The last step consists in expressing price and wage dispersions in terms of squared price and wage

inflations.

Recall that

∆p,t = αp∆p,t−1 +
αp

1− αp

[
(1− γp)π + π̂t − γpπ̂t−1

]2
+O(||ζ, π||3), ).

Iterating backward on this formula yields

∆p,t =
αp

1− αp

t

∑
s=0

αt−s
p [(1− γp)π + π̂s − γpπ̂s−1]

2 + t.i.p +O(||ζ, π||3), ).

It follows that
∞

∑
t=0

βt∆p,t =
αp

(1− αp)(1− βαp)

∞

∑
t=0

βt[(1− γp)π + π̂t − γpπ̂t−1]
2 + t.i.p +O(||ζ, π||3), ).

and by the same line of reasoning

∞

∑
t=0

βt∆w,t =
αw

(1− αw)(1− βαw)

∞

∑
t=0

βt[(1− γz)µz + (1− γw)π + π̂w,t − γwπ̂t−1]
2 + t.i.p +O(||ζ, π||3), ).
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Thus, defining

λy ≡ δ0

λp ≡
αpθp[(φ− 1)θp + 1]
(1− αp)(1− βαp)

λw ≡
αwφ−1θw(1 + νθw)

(1− αw)(1− βαw)

The second order approximations to welfare rewrites

U0 = −1
2

1− βη

1− η
E0

∞

∑
t=0

βt
{

λy[xt − δxt−1 + (1− δ)x̄− x∗]2

+ λp[(1− γp)π + π̂t − γpπ̂t−1]
2

+ λw[(1− γz)µz + (1− γw)π + π̂w,t − γwπ̂t−1]
2
}
+ t.i.p +O(||ζ, π||3),

where we defined

xt ≡ ŷt − ŷn
t

x̄ ≡ log
(

Yz

Yn
z

)
.

64



References

ADAM, K. AND H. WEBER (2017): “Optimal trend inflation,” Discussion Papers 25/2017, Deutsche Bun-

desbank, Research Centre.

AMANO, R., K. MORAN, S. MURCHISON, AND A. RENNISON (2009): “Trend Inflation, Wage and Price

Rigidities, and Productivity Growth,” Journal of Monetary Economics, 56, 353–364.

ASCARI, G., L. PHANEUF, AND E. SIMS (2015): “On the Welfare and Cyclical Implications of Moderate

Trend Inflation,” Working Paper 21392, National Bureau of Economic Research.

ASCARI, G. AND A. M. SBORDONE (2014): “The Macroeconomics of Trend Inflation,” Journal of Economic

Literature, 52, 679–739.

AUTOR, D., D. DORN, L. F. KATZ, C. PATTERSON, AND J. V. REENEN (2017): “The Fall of the Labor Share

and the Rise of Superstar Firms,” Working Paper 23396, NBER.

BALL, L. M. (2014): “The Case for a Long-Run Inflation Target of Four Percent,” IMF Working Papers

14/92, International Monetary Fund.

BASU, S. AND J. G. FERNALD (1997): “Returns to Scale in U.S. Production: Estimates and Implications,”

Journal of Political Economy, 105, 249–283.

BERNANKE, B. (2016): “Modifying the Fed’s Policy Framework: Does a Higher Inflation Target Beat Neg-

ative Interest Rates?” Blog post, September 13.

BERNANKE, B. S., T. LAUBACH, F. MISHKIN, AND A. POSEN (1999): Inflation Targeting. Lessons form the

international experience, Economics Books, Princeton University Press.

BILBIIE, F. O., I. FUJIWARA, AND F. GHIRONI (2014): “Optimal Monetary Policy with Endogenous Entry

and Product Variety,” Journal of Monetary Economics, 64, 1–20.

BLANCHARD, O., G. DELL’ARICCIA, AND P. MAURO (2010): “Rethinking Macroeconomic Policy,” Journal

of Money, Credit and Banking, 42, 199–215.

BLANCO, A. (2016): “Optimal Inflation Target in an Economy with Menu Costs and Zero Lower Bound,”

mimeo, University of Michigan.

BODENSTEIN, M., C. J. ERCEG, AND L. GUERRIERI (2009): “The Effects of Foreign Shocks when Inter-

est Rates are at Zero,” International Finance Discussion Papers 983, Board of Governors of the Federal

Reserve System (U.S.).

BURSTEIN, A. AND C. HELLWIG (2008): “Welfare Costs of Inflation in a Menu Cost Model,” American

Economic Review, 98, 438–43.

65



CABALLERO, R. AND E. FARHI (2015): “The Safety Trap,” Working paper, Harvard University Open-

Scholar.

CARLSSON, M. AND A. WESTERMARK (2016): “Labor Market Frictions and Optimal Steady-State Infla-

tion,” Journal of Monetary Economics, 78, 67–79.

CHRISTIANO, L. J., M. EICHENBAUM, AND C. L. EVANS (2005): “Nominal Rigidities and the Dynamic

Effects of a Shock to Monetary Policy,” Journal of Political Economy, 113, 1–45.

CHUNG, H., J.-P. LAFORTE, D. REIFSCHNEIDER, AND J. C. WILLIAMS (2012): “Have We Underestimated

the Likelihood and Severity of Zero Lower Bound Events?” Journal of Money, Credit and Banking, 44,

47–82.

COENEN, G. (2003): “Zero Lower Bound: Is it a Problem in the Euro Area?” Working Paper Series 269,

European Central Bank.

COENEN, G., A. ORPHANIDES, AND V. WIELAND (2004): “Price Stability and Monetary Policy Effective-

ness when Nominal Interest Rates are Bounded at Zero,” The B.E. Journal of Macroeconomics, 4, 1–25.

COIBION, O., Y. GORODNICHENKO, AND J. WIELAND (2012): “The Optimal Inflation Rate in New Key-

nesian Models: Should Central Banks Raise Their Inflation Targets in Light of the Zero Lower Bound?”

Review of Economic Studies, 79, 1371–1406.

CORREIA, I., E. FARHI, J. P. NICOLINI, AND P. TELES (2013): “Unconventional Fiscal Policy at the Zero

Bound,” American Economic Review, 103, 1172–1211.

DE LOECKER, J. AND J. EECKHOUT (2017): “The Rise of Market Power and the Macroeconomic Implica-

tions,” Working Papers 23687, NBER.

DEBORTOLI, D., J. GALÍ, AND L. GAMBETTI (2018): “On the Empirical (Ir)Relevance of the Zero Lower

Bound Constraint,” Working Papers 1013, Barcelona GSE.

DEL NEGRO, M., D. GIANNONE, M. P. GIANNONI, AND A. TAMBALOTTI (2018): “Global Trends in Interest

Rates,” Working Papers 25039, National Bureau of Economic Research.

DORDAL-I-CARRERAS, M., O. COIBION, Y. GORODNICHENKO, AND J. WIELAND (2016): “Infrequent but

Long-Lived Zero-Bound Episodes and the Optimal Rate of Inflation,” Working Papers 22510, National

Bureau of Economic Research.

EGGERTSSON, G. B., N. R. MEHROTRA, AND J. A. ROBBINS (2017): “A Model of Secular Stagnation:

Theory and Quantitative Evaluation,” Working Papers 23093, National Bureau of Economic Research.

ERCEG, C. J., D. W. HENDERSON, AND A. T. LEVIN (2000): “Optimal Monetary Policy with Staggered

Wage and Price Contracts,” Journal of Monetary Economics, 46, 281–313.

66



FAGAN, G., J. HENRY, AND R. MESTRE (2001): “An Area-Wide Model (AWM) for the Euro Area,” Working

Paper Series 0042, European Central Bank.

FÈVE, P., J. MATHERON, AND J.-G. SAHUC (2010): “Disinflation Shocks in the Eurozone: A DSGE Perspec-

tive,” Journal of Money, Credit and Banking, 42, 289–323.

FRIEDMAN, M. (1969): The Optimum Quantity of Money and Other Essays, Chicago, IL: Aldine Press, chap.

The Optimum Quantity of Money.

GALÍ, J. (2015): Monetary Policy, Inflation, and the Business Cycle. An Introduction to the New Keynesian Frame-

work, Princeton, NJ: Princeton University Press, chap. 5, second ed.

GOLOSOV, M. AND R. E. J. LUCAS (2007): “Menu Costs and Phillips Curves,” Journal of Political Economy,

115, 171–199.

GORDON, R. J. (2015): “Secular Stagnation: A Supply-Side View,” American Economic Review, 105.

GUERRIERI, L. AND M. IACOVIELLO (2015): “OccBin: A Toolkit for Solving Dynamic Models with Occa-

sionally Binding Constraints Easily,” Journal of Monetary Economics, 70, 22–38.

GUST, C., E. HERBST, D. LÓPEZ-SALIDO, AND M. E. SMITH (2017): “The Empirical Implications of the

Interest-Rate Lower Bound,” American Economic Review, 107, 1971–2006.

HALL, R. E. (2018): “New Evidence on the Markup of prices over Marginal Costs and the Role of Mega-

Firms in the US Economy,” Working Paper 24574, NBER.

HILLS, T. S., T. NAKATA, AND S. SCHMIDT (2016): “The Risky Steady State and the Interest Rate Lower

Bound,” Finance and Economics Discussion Series 2016-9, Board of Governors of the Federal Reserve

System.

HOLSTON, K., T. LAUBACH, AND J. C. WILLIAMS (2017): “Measuring the Natural Rate of Interest: Inter-

national Trends and Determinants,” Journal of International Economics, 108, 59–75.

KHAN, A., R. G. KING, AND A. L. WOLMAN (2003): “Optimal Monetary Policy,” Review of Economic

Studies, 70, 825–860.

KILEY, M. T. AND J. M. ROBERTS (2017): “Monetary Policy in a Low Interest Rate World,” Finance and

Economics Discussion Series 2017-080, Board of Governors of the Federal Reserve System (U.S.).

LAUBACH, T. AND J. C. WILLIAMS (2016): “Measuring the Natural Rate of Interest Redux,” Finance and

Economics Discussion Series 2016-11, Board of Governors of the Federal Reserve System (U.S.).

LEPETIT, A. (2017): “The Optimal Inflation Rate with Discount Factor Heterogeneity,” Working Papers

hal-01527816, HAL.

67



LINDÉ, J., J. MAIH, AND R. WOUTERS (2017): “Estimation of Operational Macromodels at the Zero Lower

Bound,” Mimeo.

NAKAMURA, E., J. STEINSSON, P. SUN, AND D. VILLAR (2016): “The Elusive Costs of Inflation: Price

Dispersion during the U.S. Great Inflation,” Working papers, NBER.

REIFSCHNEIDER, D. L. (2016): “Gauging the Ability of the FOMC to Respond to Future Recessions,” Fi-

nance and Economics Discussion Series 2016-068, Board of Governors of the Federal Reserve System

(U.S.).

SCHMITT-GROHÉ, S. AND M. URIBE (2010): “The Optimal Rate of Inflation,” in Handbook of Monetary

Economics, ed. by B. M. Friedman and M. Woodford, Elsevier, vol. 3 of Handbook of Monetary Economics,

chap. 13, 653–722.

SUMMERS, L. (2014): “U.S. Economic Prospects: Secular Stagnation, Hysteresis, and the Zero Lower

Bound,” Business Economics, 49, 65–73.

TRAINA, J. (2015): “Is Aggregate Market power Increasing? Production Trends Using Financial State-

ments,” Working Paper 17, Chicago Booth, Stigler Center for the Study of the Economy and the State.

WILLIAMS, J. C. (2016): “Monetary Policy in a Low R-star World,” FRBSF Economic Letter.

WOODFORD, M. (2003): Interest and Prices, Princeton, NJ: Princeton University Press.

68


	Introduction
	Related Literature

	The Model
	Households
	Firms and Price Setting
	Aggregate Labor and Wage Setting
	Monetary Policy and the ZLB

	Estimation and simulations
	Estimation without a lower bound on nominal interest rates
	Computing the Optimal Inflation Target
	Pre-crisis Optimal inflation Targets and Probability of a ZLB Episode

	The Optimal Inflation Target and the Steady State Real Interest Rate
	The baseline (r,) relation
	Accounting for Parameter Uncertainty
	Further Experiments

	Summary and conclusion
	Various long-run and optimal inflation rates considered
	The distribution of ZLB spells duration 
	The distribution of optimal inflation targets
	The welfare cost of inflation
	Further illustration of the (r,) relation
	When z varies
	When  varies

	Nominal and Real Interest Rates
	Distribution of  following a downward shift of the distribution of r
	Additional results on the impact of p and w on the (r,) locus
	Model Solution
	Households
	First Order Conditions

	Firms
	Cost Minimization
	Price Setting of Intermediate Goods: Optimization

	Unions
	Wage Setting

	Market Clearing
	Natural Rate of Output
	Working Out the Steady State

	Welfare
	Second-Order Approximation of Utility
	Aggregate Labor and Aggregate Output
	Aggregate Price and Wage Levels
	Price and Wage Dispersions
	Combining the Results


