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Abstract

Standard optimal Debt Management (DM) models prescribe a dominant role for long bonds
and advocate against issuing short bonds. They require very large positions in order to complete
markets and assume each period that governments repurchase all outstanding bonds and reissue
(r/r) new ones. These features of DM are inconsistent with US data. We introduce incomplete
markets via small transaction costs which serves to make optimal DM more closely resemble
the data : r/r are negligible, short bond issuance substantial and persistent and short and long
bonds positively co-vary. Intuitively long bonds help smooth taxes over states and short bonds
over time. Solving incomplete market models with multiple assets is challenging so a further
contribution of this paper is introducing a novel computational method to find global solutions.
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1 Introduction

What type of debt should a government issue? A sizeable literature (see inter alia Angeletos (2002)

and Barro (2003)) studies optimal debt management (DM) using the canonical framework of a

Ramsey planner under full commitment, stochastic government expenditure and distortionary taxes.

This literature concludes that governments should focus on issuing long bonds. Based on a negative

covariance between deficits and long bond prices, issuing long bonds ensures that the market value

of debt falls when there is an adverse fiscal shock allowing the government to effectively complete

markets and smooth taxes.

Buera and Nicolini (2004) point out that the optimal portfolios emerging from this approach

feature very large long term debt issuance, by several multiples of GDP, and governments investing

in short term bonds. Faraglia, Marcet and Scott (2010) show that introducing habits and capital

leads to bond positions which are even larger and more volatile and characterised by a negative

correlation between issuance of short and long bonds.

The above papers assume effectively complete markets but the importance of long bonds in

optimal DM can survive even when market completeness cannot be achieved. For instance, Lustig

et al. (2008) and Nosbusch (2008) rule out the ability of governments to invest in private assets and

find it is still optimal for governments to focus almost exclusively on long term debt.1,2

As we document in Section 2, US debt management is at odds with these recommendations.

Firstly the US government issues substantial amounts of short term debt with an average share of

debt under one year of 43%. This share is far from zero in all years, never falling below 24% in our

sample. Furthermore, the portfolio share of short bonds is relatively stable and highly persistent.

In addition, the government tends to increase the stock of both long and short bonds together in

response to a deficit shock.

Observed debt policy deviates from the optimal DM literature in yet another dimension. All

the papers mentioned so far assume that each period governments repurchase the whole stock of

previously issued bonds with this repurchase financed by freshly issued bonds. This can be described

as a repurchase/reissuance (r/r) operation.3 This assumption lends simplicity to the analysis as it

reduces the number of state variables. However assuming a full r/r is widely at odds with the data as

bonds are rarely repurchased before maturity, as documented for the US in Garbade and Rutherford

(2007), for OECD in Marchesi (2006) and Blommestein et al (2012) and for the UK in Ellison and

Scott (2017).

From the above studies one could draw the normative recommendation that governments should

issue a much larger share of long bonds and engage in r/r operations. However for the normative

1Lustig et al (2008) use a monetary model to demonstrate a further reason for long term debt: inflation is more
effective in lowering the debt burden when the deficit is high if long bonds have been issued.

2All of these papers assume that governments are creditworthy and can fully commit to their tax plans. A few
papers have moved away from these assumptions, of no default and full commitment. An older literature (Calvo (1988)
and Blanchard and Missale (1994)) considers moral hazard factors that lead governments to issue short term debt.
Broner, Lorenzoni and Schmulker (2013), Aguiar et al (2016) and Arellano and Ramanarayanan (2012), Acharya and
Rajan (2013), explain the interaction between debt management and default. He and Xiong (2012) study the interplay
between liquidity and credit risks in the corporate bond market but their findings can also be applied to government
finances. Finally, Debortoli, Nunes and Yared (2016) show that modifying the Angeletos (2002) model to allow for
lack of commitment leads to an increase in long term interest rates such that governments issue substantial amounts
of short term debt as well as long term debt.

3To be precise, in a model where only 10-period bonds are issued, an r/r involves replacing long bonds issued last
year that have now 9-years to maturity, by new 10-year bonds.
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insights of a Ramsey model to be useful it is crucial that they remain robust. If optimal policy changes

considerably by introducing plausible bond markets frictions then the above normative implications

would be mute. With this motivation we systematically compare the data with the recommendations

that emerge from optimal DM under various financial frictions. Thus our approach mixes both

normative and positive analysis to study what key ingredients are needed to build a useful theory of

debt management that provides insights into the trade-offs policymakers face.

The central issue we address is the following. Full buyback involves very large repurchases and

reissuances (r/r) which could be costly if there are transaction costs of any type. These costs may

outweigh the fiscal insurance benefits and render r/r undesirable, changing the nature of optimal

DM policy. Indeed, our discussions with Debt Management Offices (DMO) reveal considerable

nervousness about the possibility of operating large scale r/r operations, with concerns expressed

over market disruption, transaction costs and fears that large scale purchases and issuances would

adversely affect bond prices. Thus we consider two questions around r/r operations: a) if a DMO

does not buy back debt does this have a substantive impact on optimal DM? and b) why might a

DMO choose not to buy back debt each period?

In Section 2 we outline observed features of US debt management. We argue that due to a number

of financial frictions DMOs may be reluctant to perform r/r ’s. This leads us to consider an extreme

”no-buyback” assumption, where bonds are never repurchased before maturity. This version of the

model is new to the literature.

No buyback imposes a limitation on the bond payments: under buyback long bonds issued in

period t pay something in period t+1 and nothing afterwards, so the timing of payments is the same

for long and short bonds. The only difference is that the long bonds’ payoff, namely their price in

the secondary market, is stochastic. By contrast, under no buyback a long bond pays a large amount

at maturity date but nothing before. Since no buybacks impose additional restrictions on bonds it is

of interest to address the issue of whether markets can be effectively completed under no buyback.

We show the answer is ’yes’ if enough maturities are available and the total market value of

bonds is subject to a No-Ponzi Game condition. However, the government achieves this outcome

by purchasing increasingly large amounts of private bonds whilst making large bond issuances, the

quantity of each bond going to infinity. Therefore complete markets does not seem like a useful

benchmark for studying the effect of forbidding r/r as the resulting bond positions involve ever

larger transactions and ever larger transaction costs under incomplete markets.

In Section 3 we begin our analysis of a) by introducing two sources of market incompleteness: we

assume that the number of states of nature is much larger (a continuum) than the number of bonds,

and we introduce bond limits that prevent huge bond positions from arising. We then outline two

extreme models - the first model has r/r, every period the government buys back all outstanding

debt and then reissues an optimal portfolio and the second model assums the government only buys

back at the prespecified maturity date. The first model is motivated by the existing optimal DM

literature and the second by empirical evidence on DM practice presented in Section 2.

Analysing optimal DM under these two extremes allows us to focus on the effects of the different

timing of cash flows discussed above. Through specific analytical cases in Section 3 we show how no

buyback reduces the attractiveness of long bonds. Firstly under no buyback whilst long bonds still

provide fiscal insurance this effect is attenuated. Secondly under no buyback issuing N period bonds
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introduces N cycles into taxes through lumpy rollovers of debt. By contrast issuing short tem debt

helps smooth cash flows and promotes tax smoothing.

To gain a deeper and more robust understanding of the impact of no buyback on optimal DM we

perform calibrated simulations. Solving such models under incomplete markets is computationally

demanding. This is particularly true in our case as not only are we looking at multiple assets

but also the set of available assets does not span the state space. Further under no buyback it

is necessary to keep track of all outstanding bonds and for large maturities this leads to a rapidly

expanding state space. A significant contribution of this paper is therefore Section 4 where we outline

a computational method, based on the Parameterized Expectations Algorithmn (PEA) of den Haan

and Marcet (1990) to solve for optimal portfolios globally. We confront two difficulties: i) the size

of the state space is very large and ii) using a standard formulation of first order conditions the

optimal portfolio choice is indeterminate. We solve the first issue by introducing the Condensed

PEA and the second through the Forward States PEA. The Condensed PEA significantly reduces

the size of the state space, by forming an initial solution to the model using a small size vector of core

state variables, and subsequently finding a few linear combinations of remaining state variables that

summarize these variables efficiently. We also use this idea to introduce relevant non-linear terms

of higher order, as these are often necessary for a good approximation. Forward States circumvents

indeterminacy by approximating the integrand terms inside the expectations at t with a function of

t + 1 state variables. Furthermore, Forward States promotes a good approximation by embedding

features of the correct solution into the approximations. These numerical procedures are likely to be

useful in many other applications involving large portfolios and large state spaces.

In Section 5 we use this solution method to examine optimal DM when the government can

issue both short and long term debt. We consider four different market environments: buyback/no-

buyback combined with unrestricted/non-negative bond issuance (lending/no-lending). We find that

the introduction of a no buyback constraint has substantial implications for optimal debt management

- now the government should issue short term debt, in some cases even more than long term debt;

portfolio shares are much more stable and persistent and the stock of both short and long run bonds

positively co-move. Viewed in this light, Ramsey policy does not seem to urge governments to issue

much larger amounts of long debt than at present.

These findings lead us to consider our second substantive issue around DM. The full r/r as-

sumption in the buyback model enables the government to fully utilise the covariance of long bonds

with fiscal deficit shocks, thus it achieves fiscal insurance - why would an optimising government

avoid r/r operations? We turn to the analysis of this issue by explicitly introducing transaction

costs. In the first part of Section 6 we perform a shadow cost computation of transaction costs by

valuing the utility loss from buyback and no-buyback using Lagrange Multipliers from the extreme

(buyback/nobuyback) cases of Section 5. Based on a U.S calibration of transaction costs we show

that the no buyback solution leads to higher levels of welfare than the canonical r/r assumption.

We then solve for DM when repurchases are chosen optimally under transaction costs. We find that

the government hardly ever chooses to buy back debt before its maturity date, it only does on rare

occasions when fiscal surpluses are very large. Optimal DM involves issuing a portfolio of both short

and long bonds much more consistent with the basic facts in the data displayed in Section 2.

In Section 7 we turn to the robustness of our results. A relatively unexamined feature of observed
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DM is the fact that bonds pay a fixed semi annual coupon. The existence of coupons becomes more

important under no buyback, as coupons effectively mimic the cash flow of short bonds and so can

be thought of as a security design aimed at mitigating the no buyback restriction. We first show that

fixed coupons cannot complete the markets and then apply our simulation techniques to compare

the model with the data. We also explore the effects of introducing a third bond under no buyback.

We finally introduce a simple form of callable bonds. In all these cases we find very little influence

on our debt management implications - governments should still issue long term bonds to achieve

fiscal insurance but need to issue short term bonds to smooth cash flows and short and long bond

positions should be positively correlated. Intuitively long bonds help smooth taxes over states and

short bonds help smooth taxes over time. Finally we look at issues of accuracy of solutions and a

final section concludes.

2 US Government Debt Management

This Section documents stylised facts about the U.S Treasury’s management of marketable govern-

ment debt4 held by the public over the period 1955-2015. We use these facts as guidance for the

interpretation and robustness of the optimal policy recommendations arising from Ramsey models

and to uncover the ingredients that are important for the analysis of DM.

The full details of our data and calculations are contained in Appendix A. We use data from the

CRSP about gross government debt issued. As a reference, we classify as ”short” debt payments

due in less than one year and as ”long” debt payments due in over a year. Most of our stylised facts

are quoted based on converting bonds into a zero coupon form (e.g coupon payments are treated as

a separate bond with a maturity date set to when the coupon is paid) so when we refer to “short“

or “long“ term bonds we are referring to redemption and coupon payments that are due in either

before or after one year.

Figure 1 shows the share of the market value of short bonds as a proportion of the total market

value of U.S government debt (St) and reveals :

Fact 1 Portfolio shares of long and short maturities are both substantial.

On average St is 43% and ranges between 24% and 57%.

Fact 2 Portfolio shares are never close to zero or negative.

Fact 3 Portfolio shares are highly stable over time, with a low standard deviation and high serial

correlation.

The first order serial correlation of St is 0.94 and its standard deviation 0.078.

[ Figure 1 About Here ]

4Our focus is on the Treasury’s DM practice, hence we leave aside the Federal Reserve balance sheet from our
statistics. The QE bond purchases by the Fed during the financial crisis were a component of ”non-conventional”
monetary policy. They were viewed as part of the transmission of monetary policy rather than optimal debt manage-
ment. As such they relate to mechanisms that lie outside the models of the DM literature surveyed in the introduction
and outside the scope of this paper. As in the rest of the literature our focus is on the interaction between DM and
fiscal policy only. Hence we do not take into account QE bond purchases in our empirical analysis. We could avoid
the issue of how to treat QE purchases by using data only up to 2008. The DM moments in the first column of Table
4 change slightly for this subsample, but they are still in full agreement with our description of Facts 1-7.
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The underlying data also shows:

Fact 4 Short debt is positively correlated with long term debt.

The correlation between St and the same ratio for long debt is 0.86.5 In other words, the govern-

ment issues both short and long debt in response to a deficit shock.

All of these facts are in sharp contrast to the optimal DM recommendations from available

Ramsey models with effectively complete markets. These usually produce very large issuance of

long bonds, large short (negative) positions on short bonds, and, in models with time-varying bond

positions such as Faraglia, Marcet and Scott (2010), considerable volatility and a negative correlation

between short and long issuance. Facts 1-2 are also unlike the models with non-negativity constraints

on bond issuances, as in Nosbusch (2008) and Lustig et al. (2008), where St = 0 frequently.

Our focus is on models of incomplete markets and in this environment the timing of cash flows

matters. This is what motivates our remaining stylised facts which focus on the timing of cash flows

by the Treasury - specifically around when they buy back bonds from investors.

Figure 2 shows the total issuance of government debt (long and short) each period over the total

stock of debt held and illustrates the following.6

[ Figure 2 About Here ]

Fact 5 The ratio of total (gross) bond issuance over the stock of outstanding debt is never close to

100%.

More specifically, this ratio is never larger than 60%. This is in sharp contrast to the available

optimal DM literature where the assumption of full r/r each period causes the above ratio to fluctuate

around 100%.7

To better understand government behaviour around buying back debt before maturity we examine

the dates at which the US Treasury has bought back bonds over our sample period. Consider first

the case of non-callable bonds. As shown in Table 1, for the whole sample 99.8% of all long maturity

government debt is redeemed either at maturity or within a year of its stated maturity date (and

98.86% one quarter before maturity). As mentioned in the introduction, this practice is not confined

to the US but is standard practice across the OECD. This leads us to state

[ Table 1 About Here ]

Fact 6 Non-callable long bonds are effectively redeemed only at their maturity date and not before.

We have found that the extent to which governments rarely buy back debt before maturity is not

widely known. This seems to be based on an awareness of the buybacks that occurred in the 1920s

and between 2000-2001 as well as with the previously widespread use of callable bonds. However our

dataset does extend as far back as the 1920s so this period is included in our analysis. Further whilst

5In calculating this correlation we divide by GDP to remove non-stationarity. The high correlation remains under
alternative detrending techniques. For example, using a linear trend we obtain a correlation of 0.84 and with a linear
quadratic trend the correlation is 0.79. We conclude that the high correlation of fluctuations in long and short debt
is robust to detrending.

6See the Appendix A for details on how the series displayed in Figure 2 was constructed.
7Assuming that on average the primary deficit is in balance and that there is no nominal GDP growth.
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the government did repurchase outstanding long bonds before maturity this was due to large and

persistent budget surpluses and was done to avoid running down issues of short maturity bills8. In

other words, this is an example of a true repurchase and not a r/r.

Closer examination of the case of callable bonds is also not supportive of the buyback assumption.

Callable bonds are long maturity government debt which embed an option for the government to

redeem the principal (at par) prior to maturity. The period prior to maturity containing the dates

when the bond can be redeemed (or recalled) is dubbed the ”call window”. As shown in Figure 3

in 1955 around 50% of long bonds outstanding were callable although this declined to around 10%

by the early 70s before rising once again. The last column of Table 2 shows the fraction of every

issuance of callable bonds which has been redeemed prior to the maturity date. Aside from a few

cases in the late 50s/early 60s it is typical for all callable debt to be bought back before maturity,

i.e. for the government to exercise the option to redeem it before the bond matures.

[ Figure 3 About Here ]

[ Table 2 About Here ]

Given the magnitude of callable bonds in the first half of our sample and that they were nearly

always redeemed before maturity it may seem that the ”buyback” assumption may be relevant after

all. However closer inspection shows this not to be the case.

Firstly, in nearly every case the callable bonds were bought back within the call window and often

at the first date in the call window. Table 3 counts the call windows for all callable bonds issued by

the US during this time period. The first row shows that there were three five-year callable bonds

issued and they all had a call window which started two years from their maturity date, i.e. once

the bonds had been outstanding for three years. It shows that all ten-year callable bonds could be

recalled only two years prior to maturity at the earliest, and so on. Furthermore, Figure 4 shows the

year callable bonds were redeemed within the call window, for different call windows. We see that

around 80% of debt is repurchased at the first opportunity in the call window across maturities, and

the remaining debt is repurchased within a year of the stated original redemption date.

[ Table 3 About Here ]

[ Figure 4 About Here ]

Whilst debt managers exercise call options, they do not buyback callable bonds before the callable

window starts, and since call windows are close to maturity it means that most callable long bonds

are recalled close to their maturity date. Further, an important feature of the buyback of callable

bonds is that it is made at par and not the prevailing market price for bonds which is an important

distinction from the usual r/r assumption.

Therefore we have

Fact 7 Most callable bonds in the US are redeemed at their first call date. For long bonds the first

call date is most commonly close to the redemption date.

8Garbade and Rutherford (2007) document the details of the 2000-2001 buyback.
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Facts 5-7 suggest that bonds issued by the Treasury tend to stay in private hands until maturity.

Only callable bonds, which are a declining fraction of long debt, were redeemed before maturity but

even in this case they were redeemed close to maturity and at par, not market value.

In a section aimed at summarising the practical operation of debt management it is worth con-

sidering what market features might explain the near nonexistence of r/r ’s in practice. In seeking

an answer to this question we have held various informal discussions with debt management officers.

In short, their answers are that DMO’s are mainly worried about issuing cheaply, and for this they

need to promote bond market stability. This response is broadly consistent with models such as

Greenwood and Vayanos (2010), Gorton, Levellen and Metrick (2012), Guibaud et al (2013), Green-

wood et al (2015) and Quinn and Roberds (2017) which emphasise investors being attracted to liquid

and safe assets where bonds function as money or investors having a strong preference for particular

habitats. In this environment large repurchases or sales are costly to manage and may disrupt the

market9. Only in a debt reduction environment might buybacks be needed in order to maintain a

desirable mix of maturities. However even this is not strictly speaking an r/r operation but a ”pure

repurchase” without reissuance.

In general we can think of three different reasons why r/r may be costly and all three we capture

under the term “transaction costs”. The first are simply the resources required to run the govern-

ment’s debt management office e.g buildings, personnel, equipment. It seems these are fixed costs

the Treasury would have to pay anyway to run its issuance operations and so are unlikely to influence

whether buyback or no buyback is optimal. The second category is due to the existence of bid-ask

spreads (as documented by Amihud and Mendelson (1991) and Engle et al (2012)). A bid-ask spread

will make full scale r/r every period more expensive by creating a wedge between the buying and

selling price. The third category of transaction costs arise from price pressures and the belief that the

supply and demand curves for government bonds are not perfectly elastic so issuing or purchasing

more of specific bonds will influence the market price10. Lou, Yan and Zhang (2013), Breedon and

Turner (2016) and Song and Zhu (2016) all derive estimates of how bond prices are influenced by

large scale purchases or issues of government debt. As with bid-ask spreads, the existence of these

”auction effects” will add additional costs to r/r which may make buyback suboptimal. In Section

6 we calibrate these costs and see if they can explain why governments do not perform r/r opera-

tions. For now we simply advance that DMOs tend to offer these facts as a reason for the absence

of buybacks documented by Facts 5-7.

9In a related paper, Faraglia, Marcet, Oikonomou and Scott (2017) outline a three period model where the gov-
ernment has superior information than investors around future public finances. This informational asymmetry, in a
similar spirit to Myers and Majluf (1984), generates the result that the government chooses not to buy back previously
issued debt before maturity. Doing so triggers a bond market shut down as investors believe that the government is
trying to reschedule its debt ahead of poor public finances.

10A particular concern of debt managers are “auction failures”. Given the size of government debt there are frequent
issues of new debt and an orderly market requires these to be sold at or near prevailing market prices. Large scale
issues which go unsold or create market volatility are perceived as very damaging. This fear naturally produces a
conservatism in issuance and a reluctance to do r/r as that would increase the number and scale of auctions and
increase the probability of an auction failure.
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3 The Model

In this section we compare the extreme assumption of full r/r with the opposite extreme where

the government lets bonds stay in the hands of private investors until their redemption date. In

Section 6.3 we will examine a model with transaction costs where each period the government can

choose how much to repurchase. If we found that the case of buyback produces similar portfolio

recommendations as no buyback then pursuing the modelling of transaction costs and the complexity

of partial buybacks would be an unnecessary distraction. The extreme cases discussed in this section

are useful for simplicity and to provide useful intuition for the transaction cost case.

For both the case of buyback and no buyback we examine the Ramsey policy equilibrium with

perfect commitment and two bonds.11 Essentially it can be seen as adding a long bond to the model

of Aiyagari et al. (2002). We also follow the literature and consider the existence of a non-negativity

constraint on bond issuance.

We assume a single representative household whose preferences over consumption, ct, and leisure,

xt, are given by E0

∑∞
t=0 β

t [u(ct) + v(xt)] , where u and v are strictly increasing and strictly concave

functions, they satisfy Inada conditions to avoid corners for c, x, and 0 < β < 1 is the discount factor.

The economy produces a single good that cannot be stored. The household is endowed with T

units of time that it allocates between leisure and labour. Technology for every period t is given by:

(1) ct + gt = T − xt

where gt represents government expenditure which is assumed to be stochastic and exogenous and

is the only source of uncertainty in the model. The representative firm maximizes profits. Both the

household and the firm take prices and taxes as given.

The government engages in the following activities to finance spending: First, it levies distor-

tionary taxes τt on labor income and second, it issues debt. Bond issuance of the government at

period t is a vector bt = (bSt , b
N
t ) where N denotes the long and S the short bond. Both are real,

zero-coupon, riskless bonds: the short (long) bond promises to pay one unit of consumption in S

(N) periods with certainty, we take the integer S ≥ 1 to be much lower than the integer N . Let pit

be the price of a bond of maturity i = 1, . . . , N with p0
t = 1.

In the standard case with buyback the period-t government budget constraint can be written as:

(2)
∑

i={S,N}

bitp
i
t =

∑
i={S,N}

bit−1p
i−1
t + gt − τt(T − xt)

The left side of this equation is the value of the bond portfolio issued this period. The first term

on the right side is the market value of debt outstanding and gt − τt(T − xt) is the primary deficit.

Notice that with this constraint the government is assumed to perform a full repurchase/reissuance

operation (r/r) every period.

In the case where government debt is held to maturity i.e no buyback, then the government’s

11Our benchmark model is purposefully simplistic allowing the government to issue debt in short and long bonds
and in Section 7 we will also consider a third asset. Though government portfolios are indeed more complex in reality,
the work of Piazzesi and Schneider (2010) shows that parsimonious portfolios, with a few zero coupon bonds, can span
payoffs of more complex portfolios.
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budget constraint becomes:

(3)
∑

i∈{S,N}

bitp
i
t =

∑
i∈{S,N}

bit−i + gt − τt(T − xt).

The left hand side of (3) once more corresponds to the market value of new debt issued in period

t but the first term on the right hand side now measures not the total value of debt outstanding

but instead the total value of debt maturing that period. Even though the government issues only

ever issues two kinds of bonds, at any point in time there are N kinds of bonds outstanding, namely

(b1
t + bNt−N+1, b

N
t−N+2..., b

N
t ). Even though non-maturing bonds do not show up in the government’s or

consumer’s budget constraint at t they may nonetheless affect the actions of agents since they influ-

ence the income that will be available in the future. The maturity of previously issued bonds declines

each period - long bonds issued today will eventually become short bonds as they approach their

redemption date. This provides a mechanical channel whereby for a given proportion of long/short

bonds issued, the overall portfolio shows a greater reliance on short bonds than under the case of

full buyback.

Under market incompleteness it is standard to allow for ad-hoc limits that constrain bit (see

Aiyagari et al. (2002))12

(4)
M i

βi
≤ bit ≤

M i

βi

for some |M i| ,
∣∣M i

∣∣ < ∞. In the case where M i < 0 the government can purchase private bonds,

this is ruled out when M i = 0 (as in Lustig et al. (2008) and Nosbusch (2008)). We shall refer

to the latter as the “No Lending“ case. The upper bound M i plays several roles. It is a simple

way of introducing transaction costs for large issuances, with an infinite cost of issuing more than

M i/β
i and zero cost of issuing below this bound in a given period. Under this interpretation it is

reasonable to calibrate M i so that it gives a level of average debt roughly as in the data. In section

6 we will introduce a more involved transaction costs function that matches better actual costs of

issuing bonds, and we will allow for r/r. Another practical reason for using this bound is that it

helps to stabilize the simulations, as noted by Maliar and Maliar (2003). Notice that in (4) we scale

both the upper and lower bounds of maturity i by the steady state price of debt for that maturity

pi = βi (see formula for prices in section 3.1). We will keep this convention across all economies

considered with different types of bonds. This facilitates the interpretation of the M ’s as they are in

units of the (steady state) market value of debt issued each period for each type of bonds available.

In the case of no buyback we have to modify these constraints as the amount of debt outstanding

per period is no longer given by debt issued that period. Then, given the issuances between t

and t − N + 1, the market value of debt in N bonds still outstanding using steady state prices is:∑N
j=1 β

jbNt−N+j. Therefore we normalize the debt constraints for i = {S,N} as

(5)
M i∑i
j=1 β

j
≤ bit ≤

M i∑i
j=1 β

j
.

12As in Aiyagari et al. (2002) we assume for simplicity that the debt limits that the government faces are tighter
than the consumer’s debt limits, thus the consumer is always at the margin.
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Note that, for the same M ’s, this puts the same limits as for the case of buyback on the steady state

value of debt in each bond and, therefore, the same limits for the total market value of debt.

3.1 Ramsey Problem

As is standard in the Ramsey policy literature we assume the government chooses tax and bond

policies knowing the implied equilibrium quantities and seeking to maximize household utility. We

first summarize the competitive equilibrium in a few equations.

The consumer budget constraint is analogous to (2) or (3). In a standard manner we derive from

the maximization problem of the consumer the equilibrium bond prices condition pit = βiEt(
uc,t+i
uc,t

),

where uc,t ≡ u′(ct) and equilibrium condition for taxes τt = 1 − vx,t
uc,t

. Substituting these conditions

and using the budget constraint under buyback we obtain the implementability conditions

(6)
∑

i∈{S,N}

bitEt
(
βiuc,t+i

)
=

∑
i∈{S,N}

bit−1Et
(
βi−1uc,t+i−1

)
+ gtuc,t − (uc,t − vx,t)(gt + ct)

for all t a.s. As argued in Aiyagari et al. (2002) it is not possible to simplify further under incomplete

markets, (6) has to be imposed for all t. For the no buyback case we get

(7)
∑

i∈{S,N}

bitEt
(
βiuc,t+i

)
=

∑
i∈{S,N}

bit−iuc,t + gtuc,t − (uc,t − vx,t)(gt + ct).

Using standard arguments we have that
{
ct, b

S
t , b

N
t

}
is a competitive equilibrium if and only if it

satisfies the implementability constraint (6) (or (7)) and debt limits (4) (or (5)) almost surely for all

t. The Ramsey equilibrium solves a planner’s problem choosing sequences
{
ct, b

S
t , b

N
t

}
to maximize

the household’s utility subject to (6) (or (7)) and (4) (or (5)) a.s. for all t. The Lagrangean for the

planner’s problem under buyback is :

(8) L = E0

∑
t

βt

u(ct) + v(T − ct − gt) + λt[
∑

i∈{S,N}

bitβ
iuc,t+i −

∑
i∈{S,N}

bit−1β
i−1uc,t+i−1

− gtuc,t + (uc,t − vx,t)(gt + ct)] +
∑

i∈{S,N}

ξiU,t(
M i

βi
− bit) +

∑
i∈{S,N}

ξiL,t(b
i
t −

M i

βi
)

 .

Here ξiL,t and ξiU,t denote the multipliers on the lower and upper bounds respectively and λt is the

multiplier of (6).

Under no buyback the corresponding Lagrangean is

(9) L = E0

∑
t

βt

u(ct) + v(T − ct − gt) + λt[
∑

i∈{S,N}

bitβ
iuc,t+i −

∑
i∈{S,N}

bit−iuc,t

− gtuc,t + (uc,t − vx,t)(gt + ct)] +
∑

i∈{S,N}

ξiU,t(
M i∑i
j=1 β

j
− bit) +

∑
i∈{S,N}

ξiL,t(b
i
t −

M i∑i
j=1 β

j
)
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3.2 Optimality Conditions under Buyback

In the case of buyback the first order conditions are:

uc,t − vx,t + λt [ucc,tct + uc,t + vxx,t(ct + gt)− vx,t] +

+ucc,t
∑

i∈{S,N}

(λt−i − λt−i+1)bit−i = 0(10)

βiEt (uc,t+iλt − uc,t+iλt+1) + ξiL,t − ξiU,t = 0 for i = S,N.(11)

Equation (10) represents the first order optimaliy condition of consumption and (11) of bit. For the

case of loose debt limits we have ξiL,t = ξiU,t = 0. Then, using the arguments of Aiyagari et al. (2002)

we see that (11) states that λt = Etuc,t+iλt+1/Et(uc,t+i) which evolves as a risk-adjusted random

walk with two risk measures, namely uc,t+i/Et(uc,t+i) for i = S,N .

Extending the argument in Marcet and Marimon (2012) the optimal solution has a recursive

formulation where the optimal tax schedule may be written as:

τt = τ(Xt) for(12)

Xt = (gt, λt−1, λt−2, . . . ., λt−N , b
S
t−1, . . . , b

S
t−S, b

N
t−1, . . . , b

N
t−N)(13)

for a time-invariant function τ(·) as long as we constrain λ−1 = . . . = λ−N = 0.

The reason that N lags of λ and b are needed as state variables is because they contain the

relevant information from the past needed to implement the full commitment solution. Faraglia et

al. (2016) explain in detail the nature of the promises made under full commitment, they show

optimal policy involves ”interest rate twisting”: if gt is high the government can partly offset this

adverse shock by promising lower taxes at t + N, as this increases ct+N , lowering the cost of long

bonds currently issued pNt and it lowers the increase in τt needed to maintain solvency. This promise

is implemented mechanically in a recursive form by the term
∑

i∈{S,N}(λt+N−i − λt+N−i+1)bit+N−i,

which appears in the optimality condition (10) at t+N to implement the tax cut that was promised

when the high gt was observed. Once we realise that λt−S, λt−S+1, λt−N , λt−N+1 enter (10) at t it is

clear that all the λ’s and bN ’s between t− 1 and t−N matter for the decision at t, since all the tax

cuts previously promised influence the total discounted tax revenue that the government can raise

between t and t + N. Initial λ’s are set to zero because in full commitment Ramsey solutions no

promises from the past that are relevant at t = 0.

This is why the state space for this solution is so large, the dimension of Xt is 2N + S + 1. In

the very simple model below, when we take S = 1 and N = 10, this amounts to 22 state variables.

Solving this model is computationally demanding because of the magnitude of the state space and in

the next section we outline a new computational method which offers an efficient solution procedure.

3.3 Optimality Conditions under No Buyback

The model in section 3.2 under buyback is analogous to others in the literature whereas the focus

of the paper is on the implications of assuming no buyback. In this case the first order optimality

conditions for consumption and bonds are

12



uc,t − vx,t + λt [ucc,tct + uc,t + vxx,t(ct + gt)− vx,t] +

+ucc,t
∑

i∈{S,N}

(λt−i − λt)bit−i = 0(14)

βiEt(uc,t+iλt − uc,t+iλt+i) + ξiL,t − ξiU,t = 0 for i = S,N(15)

Now we have that off corners λt = Etuc,t+Sλt+S/Et(uc,t+S) and λt = Etuc,t+Nλt+N/Et(uc,t+N). The

only difference between the martingale result here and the one under buyback is that we now have

λt+i instead of λt+1. Therefore under no buyback λt shows more complex dynamics displaying (risk-

adjusted) cycles of periodicity S and N. As we discuss in detail below this is because under no

buyback a shock to the budget constraint today impacts on the budget constraint S and N periods

ahead, as the bonds issued to absorb today’s shock will only affect budget constraints in those terms.

Long bonds under no buyback provide less possibilities for fiscal insurance because the available

bonds do not allow smoothing of shocks across all periods, but in cycles of S and N periods.

Although the first order conditions are different the state vector is the same as under buyback so

the optimal allocation satisfies (12)-(13).

3.4 Effectively Complete vs. ”Truly” Incomplete Markets

We now study a case where, in our model with riskless bonds, the complete market allocation is

reached. This serves to highlight available results in the literature on DM, to show how they are

related to our formulation and to set up the notation that will be used throughout the paper.

Throughout the paper we use the following notation. Let gt = (g0, g1, ..., gt). Denote the primary

government surplus as st = τ t(T −xt)− gt for equilibrium taxes τt = 1− vx,t
uc,t

and feasible allocations.

For a given allocation {ct} denote expected present discounted value of surpluses as

(16) zt(g
t−1, gt) ≡ Et

∞∑
i=0

βi
uc,t+i
uc,t

st+i.

3.4.1 Buyback

As noted by Angeletos (2002) and Buera and Nicolini (2004) (ABN hereafter), optimal DM in the

framework of section 3.2 implements the complete market allocations if the bounds M are sufficiently

large in absolute value and the government issues only long bonds. Let us now prove the ABN result

using the optimality conditions derived above. For more details on the derivations in this subsection,

see Online Appendix A.1.

Assume gt is a Markov process taking only two possible values (gH , gL), one-period bonds S = 1

and (without loss of generality) g0 = gH . Denote by
{
cCMt

}
the complete market allocation. As is

well known, cCMt = cH , cL contingent on gt, for values cH , cL constant through time for t ≥ N .

We guess and verify that constant λt = ∆ and ξij,t = 0 satisfy all the first order conditions. First,

it is obvious that λt = ∆ and ξij,t = 0 satisfies the martingale condition (11). As pointed out by

Aiyagari et al. (2002), in this case consumption solving (10) is the same as
{
cCMt

}
. If we can find

bond holdings
{
b1
t , b

N
t

}
satisfying bond limits and budget constraints for this consumption allocation

13



and the corresponding equilibrium prices and taxes, we will have proved markets are effectively

complete.

To find such
{
b1
t , b

N
t

}
, substitute equilibrium conditions in the budget constraint to give

(17) b1
t−1 + pN−1

t bNt−1 = zt ∀t, a.s.

The variables z and pN−1 that correspond to
{
cCMt

}
can only take two values (zH , zL) and (pN−1

H , pN−1
L )

for t ≥ N. Therefore (17) defines two equations for i = H,L that can be used to show that the port-

folio

b1
t = BBB

N ≡ zH − zL

pN−1
H − pN−1

L

(18)

bNt = BBB
1 ≡ zH − pN−1

H BBB
N for all t ≥ N(19)

satisfies (17) for all periods. Hence this portfolio supports
{
cCMt

}
, markets are effectively complete

in the optimum. As noted by ABN, the key properties of the solution are: i) the issuance of each

security is constant over time and, ii) since zH < zL and pN−1
H < pN−1

L it is clear from the above

equations that BBB
N > 0 and BBB

N < 0 i.e. issue long and invest short.13

A constant issuance effectively completes markets because long bond prices and the primary

deficit are perfectly negatively correlated: a high g brings about a high deficit and a lower price of

long bonds, hence bNt > 0 means that debt servicing goes down with a higher deficit, and in this

way the left side of (17) can equal the right side a.s. Roughly speaking, the level of b’s are chosen

to match total debt, while the difference BBB
N − BBB

1 generates a variability of the value of debt

matching the variability in z.

The intuition about why λt is constant is straightforward: under complete markets higher (dis-

counted) income at t > 0 provides the same marginal increase in utility as a higher income in period

t = 0, since all that matters for the solution is total discounted wealth at t = 0. Therefore under

complete markets λt is non-stochastic. As long as the corresponding allocations are also feasible

under incomplete markets (as shown by the above derivations) then λt is constant under incomplete

markets as well.

3.4.2 No buyback

As mentioned previously, no buyback has been mostly ignored in the academic literature on optimal

policy in macro and bond portfolios in finance. There is a common presumption that no buyback

is an unnecessary complication that only serves to multiply the number of state variables and is

presumably irrelevant under complete markets. In this section we first show that in the no buyback

model of Section 3.3 markets can be effectively complete, supporting the presumption of nobuyback

is irrelevant. But then we show that the portfolios needed for this purpose would have ever larger

transaction costs. Some details are left to Online Appendix A.2.

Assume g and S as in Section 3.4.1. As with buyback, constant λt and ξij,t = 0 satisfy the

martingale condition (15) and give rise to complete markets allocations. We now check if it is

possible to find bonds
{
b1
t , b

N
t

}
satisfying bond limits and budget constraints for this allocation.

13Strictly speaking some more assumptions are needed, see Online Appendix A.1.
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Now there are N kinds of bonds outstanding at the beginning of period t, each bond with

i = 0, ..., N − 1 periods left to maturity and held in the amounts (b1
t−1 + bNt−N , b

N
t−N+1, ..., b

N
t−1, ).

Adding and subtracting the value of outstanding bonds held by the government
∑N−1

i=1 pN−it bNt−i to

both sides of (3) and using that in equilibrium pit = Et(p
i−j
t+jp

j
t) we substitute forward to see that,

analogous to (17), the equilibrium value of all bonds outstanding has to equal the discounted sum of

surpluses:

(20)
N∑
j=1

pN−jt bNt−j + b1
t−1 = zt ∀t a.s.

Steady State To find the steady state of bond issuances compatible with complete markets, set

bNt = Bss,NBB
N and b1

t = Bss,NBB
1 for all t and all gt, and zt = zH , zL in (20) to find

Bss,NBB
N =

zH − zL∑N−1
j=1

(
pjH − p

j
L

)(21)

Bss,NBB
1 = zH −

N−1∑
j=0

pjHB
ss,NBB
N .(22)

As with buyback, Bss,NBB
N > 0, Bss,NBB

1 < 0 generically.

Since
∣∣∣∑N−1

i=0 pi,H − pi,L
∣∣∣ > ∣∣pN−1,H − pN−1,L

∣∣ the amount of bonds issued each period is lower

under no buyback. Clearly, a given amount total debt involves issuing less each period if bonds are

not repurchased. Therefore transaction costs (if there are any) of issuing bonds will be lower with

no buyback.

Stability of the steady state Clearly, convergence to steady state was very quick in the model

under buyback: in section 3.4.1 bonds go from their initial condition b1
−1, b

N
−1 to the steady state

BBB
1 , BBB

N in N periods. This is because first order conditions are time-invariant for t ≥ N (see

Online Appendix A.1).

Let us now examine convergence to a steady state under no buyback. Equations (18), (20) at gH

and gL and simple algebra show that if
{
cCMt

}
is implemented the ”true” dynamics of bN satisfy

(23) bNt = BBB
N +

N−2∑
i=1

piH − piL
pN−1
L − pN−1

H

bNt−i

for all t ≥ N , given initial bonds bN−j, j = 1, ..., N − 2.

Therefore, to effectively complete markets bNt should satisfy a deterministic linear difference equa-

tion of order N − 2. It is trivial to check that convergence to steady state will generically fail. For

example, in the case N = 3, and using the approximation pij ' βiKj for all i and j = H,L, (23)

gives the approximation

(24) bNt ' BBB
N − 1

β
bNt−1.

Therefore, except for very special initial conditions, bNt does not converge to Bss,NBB
N . To effec-

tively complete markets bNt has to oscillate between positive and negative values and
∣∣bNt ∣∣ → ∞
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geometrically at a rate β−1 > 1. Therefore we have the following

Result Optimal DM achieves the complete markets solution under no buyback if constraints (5)

are replaced by bounds on total value of debt: M ≤
∑N

j=1 p
N−j
i bNt−j + b1

t−1 ≤ M, for M,−M
sufficiently large. Under bond limits such as (5) and N > 2 markets cannot be generically completed.

Obviously, gross issuance satisfying (24) would be infeasible even with minor transaction costs of

the type considered in Section 6. Therefore, under no buyback we obtain a result analogous to ABN,

but the implementation of the optimal solution would be even extremely costly in the presence of

transaction costs.

3.4.3 ”Truly” Incomplete markets

In the case where g takes a continuum of possible values the complete markets allocation
{
cCMt

}
cannot be implemented. To see this, for a given gt−1, denote by f(·) ≡ zt(g

t−1, ·) the discounted sum

corresponding to
{
cCMt

}
in the right side of (17). Thus, f is a pre-specified function of a continuum

of values gt. Similarly, bond prices corresponding to
{
cCMt

}
h(·) ≡ pN−1

t (gt−1, ·) give a different

pre-specified function h of gt. It would be a coincidence if there were constants K1, K2 such that

K1 + K2h = f for all values of g. Therefore one cannot find bond values
(
b1
t−1, b

N
t−1

)
for which (17)

holds for all values of gt,
{
cCMt

}
cannot be implemented and markets are truly incomplete.14

Deficits and long bond prices are still conditionally perfectly negatively correlated, as they are

both a function of gt only, but the dependence of the value of bonds on g is not sufficient to offset

the variability in zt that is needed to effectively complete markets. As emphasized in Aiyagari et al.

(2002) and Angeletos (2002) (20) becomes an active constraint, restricting allocations that can be

chosen today as a function of past bonds.

Therefore, markets can not be effectively complete with two bonds and a continuous g, both with

buyback and no buyback. A constant multiplier λt and ξ = 0 may not arise, therefore the martingale

conditions stated after (11) or (15) have to hold stochastically. Intuitively,15 what happens is that the

marginal utility from an additional unit of income depends on the wealth at t namely
(
b1
t−1, b

N
t−1

)
and

under incomplete markets wealth is uncertain as it depends on the whole realisation gt−1, causing λt

to be random.

The presence of bond limits (4) and (5) introduces a further reason that prevents complete

markets from arising with these limits playing the role of a transaction cost function as explained

below equation (4). Under buyback the bond limit is likely to be binding for calibrated bounds M ,

but under no buyback it is binding for any value of M as stated in the Result at the end of section

3.4.2. Hence, the bond limits are more constraining under no buyback, and the optimal allocation is

likely to be even further away from complete markets.

An additional effect comes from the fact that now there are bonds of many maturities outstanding.

As pointed out by ABN, issuing long bonds helps with tax smoothing, since both long bond prices

and z go down with a high realisation of g. But because of no buyback all outstanding bonds issued

over the past N periods now influence the dynamics of the value of total debt outstanding, and

14This explanation echoes the argument in Aiyagari et al. (2002), although their one-bond case is simpler to
demonstrate.

15See the last paragraph of section 3.4.1 about the intuition for a constant λ under complete markets.
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fluctuations in z cannot be absorbed as they were with buyback due to previously issued outstanding

long bonds. In effect, under no buyback, long bonds become short bonds reducing their ability to

provide fiscal insurance.

3.4.4 N cycles

Long bonds under no buyback introduce an additional problem - they add N cycles to taxes and so

contribute to tax volatility rather than tax smoothing. To illustrate this point consider the following

special case :

i) no short bonds can be issued or purchased, that is MS = MS = 0;

ii) gt is deterministic and higher in the first period: g0 > g1 = g2 = . . . ;

iii) debt limits on the long bond are not binding

iv) bN−i = b for i = 1, . . . , N ;

Equation (15) for bNt gives:

(25) λt = λt+N for all t = 0, 1, . . . .

Furthermore λ1 = λ2 = . . . = λN−1
16.

Putting all this together implies that λ has a simple N − period cycle.

λtN = λ0 for t = 1, 2, . . .

λtN+i = λ for i = 1, . . . , N − 1, and t = 0, 1, 2, ... .

Equation (14) implies that this cycle also arises for consumption and taxes.

The evolution of taxes in this example is shown in Figure 5 assuming bN−i = 0 for i = 1, . . . , N .

The dashed line represents taxes when the government issues just a three year bond (N = 3), the

crossed line for a ten year bond (N = 10) and the solid line for when just a one year bond is issued.

Clearly taxes are more volatile under no buyback if only a long bond is issued. The higher tax needed

in period t = 0 because of high g0 reverberates every N periods, even if there are no further high

values of g. This in turn causes a large increase in taxes in future periods at intervals of N periods

ahead, while the high g0 has no effect on taxes in the intervening periods. Obviously the longer the

maturity of long bonds the greater the volatility in taxes at longer frequencies.

To understand the reason for this result notice that through forward iteration on the budget

constraint (3) we can express bonds today as follows

(26)
∑

j=0,N,2N,...

βj
uc,t+j
uc,t

(τt+j(T − xt+j)− gt+j) = bNt−N for all t.

To emphasize, notice the summation index is over j = 0, N, 2N, . . . This shows that if only one long

bond is issued taxes can only be compensated at t + N, t + 2N, . . . and intervening periods become

disconnected. Given the large value of g0 in assumption ii) above there is a rise in taxes and issuance

of debt in t = 0. But the new debt issued at t = 0 has to be redeemed in N years at which point taxes

have to increase to pay the accumulated interest and further debt has to be issued. It is pointless to

16To prove this notice that (25) and (14) imply ci = ci+Nt for i = 1, 2, . . . , N − 1 and all t = 1, 2, . . . Together with
(26) this implies uc,i(τi(T − xi)− g) = uc,ib(1− βN ), therefore ci = c and λi = λ, for i = 1, 2, . . . , N − 1.

17



increase taxes in intervening periods when spending is back at the steady state value. More precisely,

it is not possible to reduce τ0 by increasing, for example, τ1 or τ2. The additional tax revenue at

t = 2 cannot be utilized to reduce the debt accumulated at t = 0 if only long bonds are issued under

no buy back and short bonds are not available or at a limit. An increase in τ2 would only reduce

τ2+N and therefore induce even more volatility in the intervening periods.

[Figure 5 About Here]

This example is chosen to illustrate a stark result but the finding is robust. This is an implication

of the fact that λt+1 is replaced by λt+i in going from (11) to (15), generating an N -period cycle in

λ. One key result of this paper is that debt management can offset this N -period lumpiness through

issuing short term debt. Short debt helps offset tax volatility by distributing debt payments in

between these N−period cycles. Short bonds under no buyback have additional smoothing properties

over long bonds in general.

The above discussion suggests that assuming no buyback will influence optimal DM as it makes

long bonds less effective at providing fiscal insurance, induces N cycles in taxes and provides a tax

smoothing role for short bonds. What isn’t of course clear from this section is whether these channels

are quantitatively significant and for that we need to turn to simulations. However, as mentioned

above, solving Ramsey models under incomplete markets with multiple bonds is a computationally

challenging task and even more so under the assumption of no buyback. In the next section we

introduce two new computational methods that help significantly to produce numerical solutions of

this model.

4 The Solution Method

In solving our model we apply the widely used Parameterized Expectations Algorithm (PEA) of den

Haan and Marcet (1990). Solving our model requires introducing two modifications to PEA. The

first modification is necessary because the state vector Xt in our model may be very large requiring

a method to reduce the state space.17 The second modification is required because using PEA in the

standard way yields a system of equations that is indeterminate. We refer to the first modification

as Condensed PEA and to the second as the Forward States PEA. Whilst our focus is on a problem

of government debt management these computational methods have much wider applicability.18 In

order to set up the notation and to clarify the discussion we first give a description of PEA.

17Sometimes, in order to reduce the dimensionality of the state space, the literature has assumed bonds consist of
geometrically decaying coupons. One justification for this simplification is that the decay may capture a given portfolio
with decaying weights on higher bond maturities outstanding. Since the objective of this paper is to aim precisely
at explaining portfolio choices taking as fixed the weights of the bond portfolio seems self defeating. Furthermore,
Faraglia, Marcet, Oikonomou and Scott (2016) show, in the context of models of optimal fiscal policy, that this
approach is at best a weak approximation whilst Hilscher, Raviv, and Reis (2014) show that actual portfolio of bonds
outstanding is not geometrically decaying but hyperbolic.

18To conserve space we mention here only the principles of these methods. In the Online Appendix B we describe
the technical aspects of their implementation. Faraglia, Marcet, Oikonomou and Scott (2014) provide a detailed
description of how to solve many optimal fiscal policy problems with this extended PEA.
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4.1 The Conventional PEA Approach

We first describe how a standard application of PEA would proceed in this model. For the sake of

simplicity we focus on solving the model under buyback described in Section 3.2 when debt limits

are not binding. Given the vector Xt our aim is to solve the system of equations (6), (10) and (11) to

obtain the current value of consumption ct, the bond quantities bit, i = S,N , and the multiplier λt.

Parameterized expectations requires approximating the terms Et(uc,t+i) and Et(uc,t+iλt+i) with func-

tions of the state vector Xt, in other words :

(27) Et(uc,t+i) = Φi(Xt,γ
i) and Et(λt+1uc,t+i) = Ψi(Xt, δ

i) i = S,N

where Φi and Ψi belong to a class of functions such that Φi(·,γi) and Ψi(·, δi) can approximate the

conditional expectations arbitrarily well. We will take Φi and Ψi to be polynomials of a given order

so γi and δi will be coefficients on the variables in Xt as well as their squares, cubes, cross-products

and so on, depending on the order of the approximating polynomial of Φi and Ψi that is used.19

The system (6), (10) and (11) has four equations that we hope will give a solution for the four

variables (ct, b
S
t , b

N
t , λt) given the parameterized expectations. In Section 4.3 we discuss how to set

up this system so that (ct, b
S
t , b

N
t , λt) can be conveniently solved for.

PEA then iterates to find parameter values γi,f and δi,f that satisfy the following fixed point prop-

erty: the series for
{
ct, b

S
t , b

N
t , λt

}
generated by (γi,f ,δi,f ) is such that Φi(Xt,γ

i,f ) and Ψi(Xt, δ
i,f )

are the best predictors of the objects inside the conditional expectations (27) among any other γi, δi.

4.2 The Condensed PEA

Despite the simplicity of our model the state vector is very large. For the case where the government

issues one- and ten-year bonds (i.e S = 1, N = 10) the state vector Xt has 22 elements. Allowing

the government to issue all maturities between 1 and 10 increases the length of Xt to 67, as every

maturity m adds m lags of bond quantities to the state vector. Since debt limits play a role in our

model perturbation methods are not appropriate as they cannot approximate well the solution both

near and away from the debt limits, so we strive to approximate the non-linear solution globally.

In this situation a state vector of such dimension is difficult to handle even for our relatively basic

model.

However, there are reasons to believe that, for most models, the dimensions of the state vector

can be effectively reduced. With so many state variables our numerical methodology has a tendency

towards close collinearity in the elements of Xt. Furthermore, in models with incomplete markets

both λ and b have near unit roots.20 This means that the regressions used to compute parameters γ

and δ are nearly undefined and in plain PEA this often leads the algorithm to either circle indefinitely

or even diverge.

However this multicollinearity is in a way encouraging: it suggests that in the optimal solution

many elements of Xt influence the conditional expectation only slightly. Therefore it is likely that

19For the sake of clarity we represent the approximating functions using ordinary polynomials though it should
be noted that the technique may be applied to orthogonal polynomials (such as Chebyshev, Hermite and Legendre
families). We utilize polynomials that are additively separable in the state variables as this allows us to calculate the
coefficients with linear methods.

20See Aiyagari et al. (2002).
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the “relevant” information in Xt can be condensed in a few state variables to obtain a good approx-

imation. After all, we know some models where this is exactly right. For example, under complete

markets all past bond issuances can be ”condensed” in total wealth, which is the only relevant state

variable. In our case we may expect this to be approximately true.

Furthermore, in PEA we only need that the variable ”condensing” Xt have good properties

in predicting the objects inside the conditional expectation of the equilibrium conditions. In the

solutions we compute each of the elements of Xt determine the simulation through their role in the

budget constraints and other optimality conditions - only the role of Xt in the conditional expectations

is condensed.

Intuitively, the dimensionality of Xt can be reduced for two reasons: first because many elements

of Xt may be perfectly correlated with the rest of the states, and second because they may be (nearly)

irrelevant in predicting the objects they should predict along the optimal solution.21

More specifically, in solving the buyback model we approximate the expectation

(28) Et(uc,t+i)

which appears in the implementability constraint (6) and the first order condition (11).22 We par-

tition Xt into two parts: a subset of n state variables {Xcore
t } ⊂ {Xt} , where n is small and an

omitted subset of state variables {Xout
t } = {Xt} − {Xcore

t }. Although in our later application the

approximating function Φi(·,γi) includes higher order terms in the solution we study below for the

sake of the exposition we illustrate assuming Φi(·,γi) is linear.

The idea is to first solve the model including only Xcore
t as state variables and find a fixed point

γi,f,core when only Xcore
t is included in Φi. We subsequently define the prediction error:

(29) φt+i ≡ uc,t+i − Φi(Xcore
t ,γi,f,core).

If this is a good approximation then Et(uc,t+i) ' Φi(Xcore
t ,γi,f,core) and the error φt+i would be

linearly unpredictable with Xout
t . In this case we would claim the solution with core variables is a

good approximation. But if Xout
t is correlated with φt+i it means that some elements of Xout

t help

predict uc,t+i above the prediction provided by Xcore
t . We then find the linear combination Xout

t that

has the highest predictive power for φt+i, say Xout′
t · α, we add this linear combination (only one

more variable) to the set of state variables in Φi, solve the model again with (Xcore
t ,Xout′

t ·α) as state

variables, find a new fixed point γi,f,1 with one more element, check if Xout
t can predict the new error

φt+i and possibly add new linear combinations of Xout
t . Once we find that Xout

t does not have any

linear predictive power for the prediction errors we claim that we have found a sufficient summary

of the whole state vector Xt.

We now provide a more formal definition of Condensed PEA. Given a selection for core variables

Step 1 Parameterize the expectation as

(30) Et(uc,t+i) = Φi(Xcore
t ,γi,core).

21Reiter (2009) addresses a related issue in solving dynamic models with heterogeneous agents. He applies techniques
used in control theory to reduce the dimensionality of the agents’ distribution of wealth.

22Of course, the remaining conditional expectations that appear in the equilibrium conditions must be handled with
this procedure as well.
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Since we consider for now linear Φi (with a constant term) we have γi,core ∈ Rn+1. Find γi,f,core

that satisfies the usual PEA fixed point i.e where the series generated by Φi(Xcore
t ,γi,f,core)

predicts uc,t+i better than with any other γi,core.

The next step orthogonalizes the information in Xout
t . This will be helpful to give good initial

conditions for the next iteration and to arrive at a well conditioned fixed point problem in Step

4.

Step 2 Using a simulation of T periods, for a large23 T , run a regression of each element of Xout
t

on the core variables. That is, letting Xout
j,t be the j−th element, we now run the regression

Xout
j,t = (1,Xcore′

t ) · ωj1 + v1
j,t

ω1
j ∈ Rn+1 for j = 1, 2, . . . , 2N + S + 1− n and calculate the residuals

(31) Xres,1
j,t = Xout

j,t − (1,Xcore′
t ) · ω1

j .

It is clear that Xres,1 adds the same information to Xcore as Xout does, but Xres,1 has the

advantage of being orthogonal to Xcore.

Step 3 Find the first linear combination α1 ∈ R2N+S+1−n through the following OLS regression:

(32) α1 = arg min
α

T∑
t=1

(
uc,t+i − (1,Xcore′

t ) · γi,f,core −Xres,1′
t ·α

)2
.

If introducing Xres,1′
t · α does not reduce significantly the sum of squared residuals relative

to the solution with only Xcore we claim the core solution is sufficiently accurate and stop.

Otherwise there is evidence that more state variables should be added to the solution and we

go to the next step.

Step 4 Apply PEA adding Xres,1′
t ·α1 as a state variable, i.e. parameterizing the conditional expec-

tation as

Et(uc,t+i) = Φi(Xcore
t ,Xres,1′

t α1,γi)

where γi ∈ Rn+2. Find a fixed point γi,f for this parameterized expectation. Because γi,f,core

is a fixed point and since Xcore
t and Xres,1

t are orthogonal and the linear combination α1 has

high predictive power, in order to find the fixed point γi,f it makes sense to start iterations

with the initial conditions

γi

(n+2)×1

=

(
γi,f,core

1

)
.

Go to Step 2 with
(
Xcore
t ,Xres,1′

t α1
)

in the place of Xcore
t , check if a new linear combination

reduces squared residuals, etc.

A couple of remarks are in order. First, note that the Condensed PEA proposed in this section

is designed to deal with a very large number of state variables. Our focus is on debt management

23This definition assumes we are interested in the steady state distribution. This step could be modified in the usual
way (i.e. running the model with many short samples) to take into account transitions. See, for example, Faraglia,
Marcet, Oikonomou and Scott (2014) for a detailed description.
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and more broadly portfolio models but the method should be useful in many other applications with

high-dimensional states including models with many sectors or heterogeneous agents. Second, note

that in the presence of many state variables the literature has often solved dynamic economic models

by adding state variables one by one in some “order” until the next variable does not materially

influence the solution. For example, if many lags are needed the typical approach is to add the first

lag, then the second lag, and so on. If at some step the solution changes very little it is claimed that

the solution is sufficiently accurate. But it is easy to find reasons why this argument may fail. For

instance, maybe the variables further down the list are more relevant, as is the case in our model

since a simple inspection of (10) suggests that the N -th lags of both bN and λ play a special role in

the solution. Also, it can be that a linear combination of the remaining variables makes a difference

but these variables do not make a difference one by one. The condensed PEA gives a chance to all

state variables to make a difference in the solution in only one step and it will pick up the relevance

of combinations of state variables (for example, capturing that under complete markets only total

wealth matters).

4.3 Forward States PEA

As we discussed above a key step in PEA relies on solving for equilibrium variables using given

functions ΨN(·, δN) and ΦN(·,γN ). In particular, off corners the system of four equations (6), (10)

and (11) should deliver a solution for the four variables (ct, b
S
t , b

N
t , λt). However, because of the

multiplicity of assets the system (6), (10) and (11) is not well determined. Note that the two Euler

equations imply

(33) λt =
ΨS(Xt, δ

S)

ΦS(Xt,γS)
and λt =

ΨN(Xt, δ
N)

ΦN(Xt,γN)
.

Since the vector Xt contains only predetermined variables, (33) gives us two equations to solve for the

variable λt, so this multiplier is overdetermined while the values for bond holdings are indeterminate.24

Note that this is not a fundamental indeterminacy in the model, it is only an indeterminacy of the

particular way PEA solves this problem. We overcome this through the following modification.

4.3.1 Solution through Forward States (FS)

Our proposal is to formulate conditional expectations as functions of current values of state vari-

ables. We accomplish this using the following two steps. First, instead of approximating (27) we

approximate

Et(uc,t+i−1) = Φi(Xt,γ
i) and Et(λtuc,t+i−1) = Ψi(Xt, δ

i) i = S,N ,

24Marcet and Singleton (1999) and den Haan (1995) (MSDH) already identified this problem in related models.
Applying their procedure to the current model is done as follows: replace Et(uc,t+1) by Et(uc,t+1H(ζ, b1t ))/H(ζ, b1t )
whereH is some function with fixed parameters ζ , invertible in bit, andH > 0. Then parameterize Et(uc,t+iH(ζ, bit)) =

Φ
S

(Xt,γ
S) . The multiplier can be recovered with the second equation in (33) and bond holdings from H(ζ, b1t ) =

ΦS(Xt,γ
1)

ΨS(Xt,δ1)
λt . When we used this approach for the current model the algorithm diverges or circles indefinitely. We

discuss in the last footnote of this section the reason why FS may work better.
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where the only difference with the parameterization in (27) is that we have substracted -1 from

the subindeces of the variables inside the conditional expectation. Second, we invoke the law of

iterated expectations to write, for example, Et(uc,t+i) = Et(Φ
i(Xt+1,γ

i)) in order to approximate

(11). Similarly, Et(Ψ
i(Xt+1, δ

i)) approximates Et(uc,t+iλt+1). Substituting these expressions in the

system of first order conditions we get that (33) becomes

λt =
Et(Ψ

i(Xt+1, δ
i))

Et(Φi(Xt+1,γi))
for i = S,N(34) ∑

i∈{S,N}

bitβ
iEt(Φ

i(Xt+1,γ
i)) =

∑
i∈{S,N}

bit−1β
i−1Φi(Xt,γ

i) + gtuc,t − (uc,t − vx,t)(gt + ct)(35)

Now current b’s do enter the right side of (34), therefore these equations plus (10) determine(
ct, b

S
t , b

N
t , λt

)
given Ψi(·, δi) and Φi(·,γi) and the first order conditions with respect to bit hold.25 In

the Online Appendix B we describe further the details of applying this procedure in the model at

hand.26

5 Optimal Debt Management

Having outlined our solution method we now turn to examine numerically optimal DM under four

different market scenarios: full buyback and no buyback, each combined with loose lending con-

straints (i.e. large |M i| ,
∣∣M i

∣∣) and no-lending (M i = 0). The no lending constraint M i = 0 follows a

number of DM papers (e.g Lustig et al. (2008) and Nosbusch (2008)) and is clearly consistent with

the stylised facts of Section 2. A number of candidate possible explanations spring to mind such as

the uninsurable risk involved in holding private assets and controversies over exactly which private

assets the government should buy.27

To calibrate all four models we follow Marcet and Scott (2009). We choose β=0.95, set utility

u(ct) + v(xt) = log(ct) + η (xt)1−γ

1−γ and use a time endowment T=100. We choose a value of γ = 2 and

target a value for η so that on average the household’s leisure is 30% of the time endowment; with

taxes that balance the budget at the deterministic steady state, this gives η =12.857. Finally, our

25In particular we compute

EtΦ
i(Xt+1,γ

i) =

∫
Φi(g′, λt, . . . , b

N
t−N+1,γ

i)fg′|gtdg
′

analytically, we give the formula in the Online Appendix B.1. This expression shows how this term depends on
bNt , b

S
t in addition to predetermined variables.

26In a previous footnote we mentioned that the approach of MSDH did not work in practice for the current paper,
while FS works in the very many versions of the model that we have tried. We do not have a theorem that FS
works better than MSDH in general, but we can offer two reasons why it may behave better: first the function H in
MSDH is arbitrary, it has to be such that its realized value correlates significantly with marginal utility, it has to be
well-approximated by PEA. It is difficult to know beforehand which function H has such properties. FS avoids such
an arbitrary choice. Second, our approximation to Et(uc,t+i) under FS depends at most on lags t − N + 1, it does
not depend on lags dated t−N. Obviously, the true solution also has this property. We contend that in this way FS
imposes more closely features of the true solution in the numerical approximation and this lends more stability to the
algorithm.

27Of course the Fed and Treasury have purchased private assets during the financial crisis. This seems not to do
with debt management but more tackling financial market disruptions that we, as does the rest of the literature,
abstract from. Introducing self-fulfilling debt crises, as in Conesa and Kehoe (2017), in our model would justify that
in periods when a debt crisis may occur the government purchases its own bonds while in other periods bond issuance
is governed by the mechanisms we describe in the paper.
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parameterization of the stochastic process for spending shocks is :

(36) gt = (1− ρg)g + ρg gt−1 + εt.

We set ρg=0.95, σ2
ε =1.44. We further truncate the value of spending so that it always lies within

an interval of 15% to 35% of steady state GDP. g is chosen so that the ratio of spending to output

is 25% in the deterministic steady state.

We consider two maturities S = 1 and N = 10, in other words we focus on the case where the

government issues a one and a ten year bond. As discussed previously, the bounds M i and M i are in

units of steady state market value of debt and we set the upper bounds M i equal to 100% of GDP.

This implies that the government can issue debt equal to a maximum of 200% GDP if both bonds

are at their upper bound.28

In Table 4 we show the key moments to summarize Facts 1 to 4, namely, the serial correlation,

standard deviation and the mean of the share of short bonds over total debt (denoted St) and the

correlation of the market value of short debt with long debt normalized by output. We show results

for each of the four cases considered and for comparison purposes we also show U.S data in the first

line.

5.1 Buyback

Consider first the case of buyback with lending i.e. loose borrowing constraints. We summarize the

output of this model in Figure 6 and the second row of Table 4. In Figure 6 we show a simulated part

of the optimal portfolio plotting the market value of short and long bonds for a typical realization

of the shocks in gt.
29

[ Figure 6 About Here ]

[ Table 4 About Here ]

The simulations show clearly that several of the predictions for DM of the complete market models

of ABN carry over to the case of incomplete markets. In periods when long bonds are away from the

upper bound the government ”issues long and saves short”, so that on average the market value of

short bonds in the sample equals -22.9 and the value of long debt is 45.8.

As is standard under incomplete markets, total debt varies through time as it performs the role

of a buffer smoothing out shocks.30 This causes total debt to have very high serial correlation and

28In our simulations the government never hits this upper bound for total debt. In our simulations the overall debt
level is rarely as high as 120-130% of GDP. Under buyback and when lending is permitted, long term bonds may hit
their upper bound constraint and short bonds their lower bound.

29The moments displayed in Table 4 are constructed from simulating the model 1000 times over 60 years. For each
sample we feed to the model the initial conditions for the debt to GDP ratio and the share of short maturity debt we
find in the data (see Online Appendix B.2 for further details). The sample shown in Figure 6 starts from zero total
debt to make it comparable to the benchmark of ABN. We show 350 periods to make the figure readable.

30See for example Aiyagari et al (2002). When markets are incomplete the government in the long run accumulates
savings for precautionary reasons, so that it can fund future adverse shocks without having to raise taxes. Aiyagari et
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a positive comovement with the primary deficit. Marcet and Scott (2009) emphasised that the

data shows clearly this behavior, making incomplete markets much more empirically plausible than

complete markets. All the models considered in this paper confirm this finding and in the interest

of space we do not discuss this empirical implication any further.

In contrast to the complete markets case the optimal portfolio is time varying,31 as is clear from

Figure 6 and from the large variance of the share of short bonds (see Table 4). This is due to total

debt varying over time and the decision of which bond to issue depending on the level of total debt.

Perhaps more surprising is the fact that, as shown in Figure 6, there are many periods where

bond positions bNt and bSt move in opposite directions. One may have expected a positive correlation

because, as explained in Section 3.4.1, the hedging properties of the optimal portfolio are created by

the difference between the amounts of long- and short-term debt. To the extent that the volatility

of government spending is the same in high- or low- debt periods we would expect the difference

between short and long term debt to not change much over time, implying a positive correlation of

both bond maturities.

The intuition in the last paragraph certainly works for partial equilibrium models, when the

volatility of the deficit and interest rates is exogenous to the total debt. But in our model higher

debt means higher taxes which alters equilibrium allocations for each g and, therefore, it alters

interest rates. The variability of deficits and interest rates change in different ways if taxes go up

causing the difference between long and short bonds to vary over time.

More precisely, consider the complete market model of Section 3.4.1. The numerator and the

denominator that determine BBB
N in (18) will change in different proportions in response to a higher

τ depending on the wage elasticity of leisure. It turns out that for the calibrated model optimal

long bonds BBB
N increase more than proportionally across economies with different initial debt bg−1.

Formally
∂BBBN
∂bg−1

> 1. Now, if
∂BBBN
∂bg−1

> 1 it must be the case that short bonds decrease with initial debt

in order for the budget constraint to hold, therefore
∂BBB1

∂bg−1
< 0. Putting all this together we see that,

given our calibration, across complete market economies with different initial debt, BBB
1 and BBB

N

move in opposite directions.32 We describe this issue more carefully in Appendix B.

To the extent that the government tries to replicate complete markets allocations and total debt

fluctuates over time we expect bNt to increase, and bSt to decrease with higher total debt, providing

a force for a negative correlation of bNt and bSt .

In our simulations of Figure 6 we see that in periods when bond limits are loose (and therefore the

government has more freedom to behave close to complete markets) bNt , b
S
t tend to move in oppposite

directions as described in the previous paragraph. On the other hand, in periods when bond limits

are tight there is no room to implement these portfolios and bNt , b
S
t tend to move in the same direction.

al (2002) show one example where it can be proved analytically that government savings go to a very large number,
so that the government can implement the first best in the long run. It is a common feature of optimal dynamic
contracts that if the planner can implement the first best in the long run a martingale convergence theorem leads the
economy to this first best as time goes by. Albanesi and Armenter (2012) give a set of sufficient conditions for this to
arise. In our model the government cannot implement the first best even in the long run because of the lower bound
on debt, but savings tend to be large amount, the average market value of total debt to GDP ratio in the sample that
we use to solve the model is roughly -50 percent.

31In ABN the value of the shares of short bonds are not exactly constant but their variance is near zero since the
position is constant and the price has very high serial correlation.

32A similar phenomenon was found in the economy with endogenous capital and complete markets of Faraglia,
Marcet and Scott (2010). Figure 2 in that paper shows that a negative correlation of long and short position emerges.
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These two forces turn out to cancel out in the long run and this is why we see a correlation of bNt , b
S
t

over time close to zero as reported in Table 4.

In summary: the general insights of standard Ramsey models carry over to incomplete markets

to some extent - on average bNt > bSt , debt positions are large, away from debt limits bNt , b
S
t have a

negative correlation but there is now an additional variability of total debt and DM positions over

time due to behavior around the bounds.

Now consider no-lending, where M i = 0. A typical simulation is displayed in Figure 7 based on

the same sequence of spending shocks as Figure 6. The solid line represents one year debt and the

dashed line ten year debt.

[ Figure 7 About Here ]

Figure 7 shows that it is still optimal to issue mostly long term debt under buyback and no

lending. Short bonds are often close to their lower limit and indeed in some periods we have b1
t = 0.

The third row of Table 4 shows the key moments for the model. The average share of short bonds

is at a low 12%, with b1
t = 0 in 13.1% of the periods and it is less than 10% more than half of the

time. Recall that in the data the lowest share short bonds was 24%.

The intuition for this result is that since it is now impossible to build the ”issue long, save short”

portfolio that provides fiscal insurance, the government gets as close as possible to this portfolio by

setting short bonds close to zero.33 For high levels of total debt we see the government issuing both

short and long debt so that overall there is a weakly positive correlation between them. There is

no longer scope for increasing long bonds by more than one-to-one when debt increases. This is

because there is no possibility of compensating this higher long bond issuance with negative short

bond issuance. Therefore the force for a negative correlation of long and short bonds is suppressed

and the correlation is now positive.

Our conclusion is that in this case fiscal insurance concerns still dominate, leading the govern-

ment to prefer to issue mostly long bonds. The average share of short debt is relatively minor and

concentrated in times when total government debt is high. The selected DM moments of this model

in the third line of Table 4 are still far from the data.

5.2 No Buyback

As we mentioned in the introduction our paper has both normative and positive aspects: we sys-

tematically compare our models with the data and to the extent that large differences arise one may

conclude that actual policy should change. As the optimal buyback no-lending policy is at odds with

the data (i.e the first and third lines in Table 4 are very different) several normative recommendations

emerge: governments should issue a much larger proportion of long bonds to achieve fiscal insurance;

short bonds should be issued only when debt is already very large; the government should repurchase

previously issued bonds.

But the buyback assumption was introduced in the literature for convenience not because it

describes actual bond markets. Motivated by empirical observations of Facts 5-7 it is of interest

to introduce no buyback in the model. If we should find that introducing no buyback helps match

33This intuition was already mentioned in Nosbusch (2008) and Lustig et al. (2008).
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the first line of Table 4 and if we can justify that no buyback is closer to the data then the above

normative recommendations would be mute.

We now describe the optimal portfolio under no buyback. Later we discuss why no buyback may

arise. Notice that in this model at any point in time there are bonds of all maturities between 1 and

10 outstanding in the market, so that ten-year bonds issued nine years ago are now short bonds. We

take this properly into account in the statistics we compute below.

The typical realizations with loose debt limits are displayed in Figure 8 and with no lending in

Figure 9. Under lending the most striking difference with buyback is the strong positive correlation

between issued short and long term debt. The usual incomplete market result that governments

should accumulate assets still holds in this case. However, under no buyback the government funds

a larger deficit by issuing both short and long run debt at the same time. As explained in Section

3.4.4, the reason is that under no buyback issuing only long term debt is less effective at providing

fiscal insurance and adds volatility in taxes through N cycles. The implication is that short bonds

are a valuable asset in mitigating these cycles. The result is a much stronger co-movement of short

and long bond issuance.

[ Figures 8 and 9 About Here ]

When we add to no buyback the No-Lending constraint the tendency for short and long debt to

co-move is strengthened further but now short term debt plays a much more substantial role (with

an average portfolio share of 48%). Under no lending the share of short term debt is also less volatile

and more persistent than under buyback.

The fourth and fifth rows in Table 4 confirm that under no buyback the moments of the data

are matched quite closely. Since we are engaged in comparing statistics in the model and the data

it is of interest to make this comparison systematic by using standard inference. Table 5 shows

t-statistics for the null hypothesis that the various statistics reported from our simulations are equal

to those for US data in our sample period. The t-statistics are simply the difference of the model

and data moment divided by the standard deviation of the moment.34 The standard deviations of

the moments are shown in the first row of Table 5 . The t-statistics are shown in rows 2 to 7 of the

Table.

Our aim in calculating t-statistics is not to see if our model can explain the data. Our modelling of

both the economy and the bond market are extremely simple and easy to falsify. Instead the purpose

of Table 5 is to provide some form of statistical gauge to our previous observation that buyback is very

far from the data while no buyback is much closer. Table 5 suggests that once allowance is made for

no buyback and no lending the discrepancy between Ramsey recommendations and observed practice

is very small, in fact the government should issue more short term debt. Therefore, if no buyback

is an optimal strategy for debt managers then the policy recommendations arising from buyback

(namely, as we mentioned earlier, to issue much more long bonds, to repurchase often previously

issued bonds) are, indeed, mute.

34We estimate the standard deviation of each moment considered in Table 4 from the data. For this purpose we

use the fact that, for a mean zero stationary and ergodic process xt we have
∑T xt√

T
→ N(0, Sw) in distribution. We

estimate Sw =
∑

j=−∞,∞E(xtxt−j) using the Newey-West statistic. The asymptotic standard deviation of functions
of moments (such as correlations) are found with the delta method.

27



5.2.1 In-sample model fit

An approach that is often used to visualize the goodness of fit of a dynamic model is to check if

a variable determined by the model compares well with the data. For this purpose one plugs in

the observed values for the state variables into the model’s law of motion and then compares the

resulting value of the endogenous variable with the data. In our case we would like to compare the

short share St determined by the model with the data. For this purpose we should solve out the

short bond issuance using the law of motion

St = S(Xt)

where S(·) is the time-invariant policy function determining the share implied by the model solution.

One difficulty in our case is that Xt contains non observables, namely, the lagged λ’s. Therefore we

replace S(·) by an approximate law of motion that is a function only of observables. These observables

are selected with an eye to using variables that are stationary, so that their data counterpart is a

reasonable value to be plugged into the model’s law of motion. For this purpose we use model

simulations to regress St on its first and second lags, two lags of the market value of total debt

over GDP, the current value and first lag of the spending over GDP series. We also include higher

order terms of these variables to produce a ’good fit’ to the model’s policy function. This was

done separately for the buyback and no buyback models, since the DM policies differ across these

two models. The regression is performed with all the periods and realizations used in constructing

the moments reported in Table 4.35 Second, we feed the ’data state variables’ to each model’s

approximate policy function to obtain the graphs shown in Figure 10. The data line for St is the

same as in Figure 1, but because of the inclusion of two lags in the regressions the sample starts in

1957 in Figure 10.

As can be seen the fit of the model under no buyback tracks the short share quite well both in

terms of its level as well as its movements in response to government spending shocks.36 Given the

extreme simplicity of the model economy the fit of the no buyback model is surprisingly good. The

fit of the model under buyback is much poorer. The correlation between the series produced by the

buyback model and the data series equals 0.4. The analogous correlation between the no buyback

model and the data equals 0.88.

[ Figures 10 About Here ]

6 Optimal Bond Repurchases and Transaction Costs

The previous sections considered optimal DM when the government was constrained to either repur-

chasing as much as possible (buyback) or not to repurchase at all (no-buyback). Both are extreme

restrictions on government behaviour. As we have shown optimal DM differs substantially between

35To capture better the part of the state space that is active for the CRSP sample, we only use in the regression
observations with market value to GDP ratio between 20 percent and 70 percent.

36The fit is not perfect - there is an obvious ’lag’ in the data relative to the model. We attribute this to the fact that
spending does not respond contemporaneously to higher output in the US (see for example the considerable literature
on identifying spending shocks in SVARs).
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them and no buyback fares much better in reproducing observed stylized DM observations. The

question then is: which set of assumptions is most plausible for the study of DM?

Viewed from the perspective of the buyback model cancelling the access to r/r ’s may appear self-

limiting. Indeed, for the calibrated model of the previous section the consumer utility is slightly higher

in the optimal buyback allocation than no-buyback, so one could claim that the no-buyback model

is in fact incompatible with an optimizing government.37 Furthermore, although rare, some bond

repurchases are observed in the data, as discussed after Fact 6 in Section 2. Perhaps governments

should engage in the repurchases more often, as they do in the buyback model of Section 5.1.

However, as discussed at the end of Section 2, many features of actual government bond markets

make r/r costly. The standard debt management literature assumes governments can issue and

repurchase debt at the same market price but the existence of transaction costs means that in

practice this is not the case. So an alternative view is that no buyback as in section 5.2 is the

relevant exercise, as transaction costs make the huge r/r in the buyback model too costly.

A way to settle this issue is to model transaction costs as in the data and to allow the government

to choose optimally how much to repurchase. We have motivated the upper bound M as an extreme

transaction costs function, where bond issues above M become suddenly very costly. In that setup the

government never actually pays a transaction cost. However the empirical literature on transaction

costs of bond issuances suggests a smoother transaction cost function than these bond limits imply

and so we can imagine the government choosing to pay transaction costs sometimes as part of optimal

DM.”

A priori it is not obvious what optimal DM may look like assuming smaller and smoother trans-

action costs. In practice such costs are very small expressed as a percentage of the total bond issue.

This suggests transaction costs would have little effect however it is also the case that the welfare

gains from r/r are also quite small (see previous footnote) so that even small transaction costs might

change DM substantially. The intuition for why the gains from r/r are small gain can be found from

Aiyagari et al (2002, page 1248) who report small gains between the full complete market outcome

and the optimal incomplete market policy under buyback. Given we have shown that under no

buyback the government can use short bonds to get close to the complete market outcome as well

then we are comparing two incomplete market economies which are close to complete markets and

so we should expect relatively small welfare differences between them.

Of course depending on the level of transaction costs the optimal behaviour may be an inter-

mediate position with the government sometimes buying back some of the debt. In that case, the

observed pattern that repurchases occur in periods of total debt reduction (see discussion after Fact

6) provide another challenge for the model.

It is to these issues that we now turn. In this section we perform three exercises. The first is to

use various studies of the US government debt market to calibrate a reduced form function capturing

the various transaction costs discussed at the end of Section 2. The second is to use these estimates

of transaction costs and perform a shadow cost analysis of the two extreme cases of full buyback and

37More precisely, the consumption-equivalent increase in utility ω satisfying

E0

∞∑
t=0

βt
[
u
(
(1 + ω) cNBB

t

)
+ v

(
xNBB
t

)]
= E0

∞∑
t=0

βt
[
u
(
cBB
t

)
+ v

(
xBB
t

)]
turns out to be ω = 0.00416 .
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no-buyback and see whether the fiscal insurance benefits of buyback outweigh the transaction costs

involved in r/r. Finally we move away from the two extreme cases and allow for the government to

choose each period how much debt to repurchase or leave outstanding.

6.1 Calibrating Transaction Costs

At the end of Section 2 we outlined a number of factors that will lead r/r operations to be costly.

These factors will be reflected in bid-ask spreads and auction effects, whereby the more of a specific

bond the government wishes to issue or purchase the more the price shifts against the government.

It is beyond the scope of this paper to introduce explicit microfoundations for these effects. Instead

our interest is in establishing whether concern over these costs should substantially influence optimal

policy. To do so we extend our model to allow for a reduced form transactions cost function. We

denote issuance costs by T i(bit) and the cost of repurchasing a bond that was issued at t − 1 by

T R(Rt). Assuming these costs are ad valorem e.g the bid-ask spreads are a percentage of price, gives

total transaction costs at t as

T ott =
∑

i∈{S,N}

pit b
i
t T i(bit) + pN−1

t Rt T R(Rt).

Based on our discussion in Section 2 we specify the following functions for transaction costs:

T i(bit) = αi0+αi1b
i
t for i = S,N and T R(Rt) = αR0 +αR1 Rt.

38 The bid-ask spread margin is independent

of the scale of purchases and so will be reflected in the intercept terms α0 whilst the auction effects

pin down the slope effects. The fact that the costs are linear in issuance/repurchases means that the

term T i(bit) which appears in the total costs is linear quadratic. Assuming a linear quadratic function

is a standard specification in the literature on transaction costs and captures the notion, common in

our conversations with debt managers, that price pressures increase the larger the transaction.39

As usual in the transaction cost literature we assume that these costs are in terms of hours worked

so that feasibility now requires40

ct + gt + T ott = T − xt

Amihud and Mendelson (1991) calculate that bid aks spreads and brokerage fees amount to

0.0381 percent of the price for bonds and 0.0099 percent for Treasury bills. This gives us estimates

of α1
0 = 0.000099 and αN0 = αR0 = 0.000381 (given the face value of a bond is 1 in our model and

bid-ask spreads are symmetrical on buyers and sellers). To calibrate the slope terms α1 we use the

estimates of Lou, Yan and Zhang (2013) such that yields are affected by 3 basis points on average

due to auction effects on issuance/repurchases.41 Their estimate is common across all maturities.

The fact the impact is calibrated in terms of yearly yields and the costs T above are paid only

at issuance means that we need to translate the 3 bps estimate into issuance costs T . The effect

38If bit would be allowed to be negative this function would present a kink at bit = 0, giving rise to non-smooth
solutions that would be hard to compute. Since we impose bit ≥ 0 in this subsection there is no kink, solutions are
smooth, and all costs considered are indeed positive if we take T i ≥ 0.

39Support for this is also to be found in Breedon and Turner (2016) Table A2.1.
40Not all transaction costs require resources to be deducted from the resource constraint. Our findings in this section

remain if no such deduction is made.
41Lou et al actually give a range of 2-3 bps. These estimates are broadly similar to Breedon and Turner (2016)

Table 2 and substantially less than many estimates of the impact of QE on yields.
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of issuance/purchase is larger on longer maturity bonds (the impact on bond prices is proportional

to the impact on yield multiplied by the duration of the bond). This calibration means that the

steady state yields of bonds, after taking into account auction effects, is 1/β+ 0.0003− 1, i.e auction

effects increase the cost of issuing bonds across all maturities by 3 basis points on average. The

annualized yield plus auction costs implied by the above transaction cost function is
(

1
pi(1−αi1bi)

)1/i

−1,

where pi and bi are averages. Equating these expressions and rearranging gives an estimate of

αi1b
i = 1 − (1 + 0.0003β)−i. For i = 10, 9,1 this gives average auction costs (αi1b

i) of 0.0028, 0.0026

and 0.000284 respectively. To calibrate the slope terms we need to divide these average auction

effects through by the average issuance in our simulations. Since the no-buyback model of Section

5.2 matches the data reasonably well we use average issuances in that model to arrive at the following

estimates for the slope coefficients : α1
1 = 0.000021, α10

1 = 0.001 and αR1 = 0.000926.42

6.2 A Shadow Cost Calculation

As mentioned before, for the calibration used here, the utility of the optimal allocation is indeed

higher under buyback. But since the buyback strategy involves many more purchases and sales it

is not clear if the benefit of fiscal insurance under buyback will dominate if transaction costs exist.

We now make an approximate ”shadow” calculation of the loss in utility due to transaction costs.43

This calculation has the virtue of being independent of the precise way that we model repurchases.

Since the transaction costs are small and they indicate a larger government expenditure, the lagrange

multipliers of each solution translate transaction costs into an approximate utility loss.

Let superindex BB denote the solution with buyback of Section 5.1 and NBB the solution under

no buyback in Section 5.2.

A transaction cost plays the same role as higher gt both in the government budget constraint and

in the utility term βtv(T − ct − gt). The total marginal utility loss of higher gt in t is

λ̃BBt + βtv′(T − cBBt − gBBt − T otBBt )

where λ̃BBt is the ”plain” lagrange multiplier of the government budget constraint. Since we have

normalized the plain lagrange multipliers in the usual way,44 we have that the lagrange multipliers

of Section 5.1 are given by

λ̃BBt = βtλBBt uBBc,t .

42We calibrate repurchases assuming that the auction effects are symmetric in buying and selling. We therefore use
estimates for i = 9 to calibrate the repurchase auction effects one year after a ten year bond has been issued. Point
estimates in Breedon and Turner (2016) suggest that repurchase auction effects may actually be larger than issuance
effects. However given the importance of no buyback in our model we make the more conservative assumption that
the two effects are symmetric and our results are clearly robust to attributing higher effects to repurchases.

43We thank Dimitri Vayanos for suggesting this calculation.
44The ”plain” lagrange multiplier would be the one that would come out of a standard Lagrangean, namely

L = E0

∞∑
t=0

βt(u(ct) + v(T − ct − gt)) +

E0

∞∑
t=0

λ̃t

 ∑
i∈{S,N}

bitEt

(
βiuc,t+i

uc,t

)
−

∑
i∈{S,N}

bit−1Et

(
βi−1uc,t+i−1

uc,t

)
+ gt − (1− vx,t

uc,t
)(gt + ct)

 .
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Therefore the total shadow transaction costs of buyback, in term of utility, is

T otalBB = E0

∞∑
t=0

βt
(
λBBt uBBc,t + vBBx,t

)
T otBBt .

The total costs of the no buyback strategy T otalNBB are found similarly, using the lagrange multi-

pliers of the no-buyback solution and Rt = 0.

Denoting utility of the optimal allocation under each environment as U i = E0

∑∞
t=0 β

t [u(cit) + v(xit)]

for i = BB,NBB, we define total utility net of transaction costs for each policy as U i−T otali. Then,

we find the scaling factor χ such that if the transaction cost functions would be χ
(
T R, T S, T N

)
the

government is indifferent between the two strategies. This factor is given by

χ =
UBB − UNBB

T otalBB − T otalNBB
.

If it turns out that χ < 1 it means that, given the approximate utility calculation, the transaction

costs of buyback outweigh their benefit.45

We find χ = 0.07. In other words, once we take into account transaction costs the buyback

strategy is more costly than no buyback. This would be so even if transaction costs would only be

one tenth lower.

6.3 A Model of Optimal Bond Repurchases

The previous shadow cost calculation supports our intuition that if one considers the two extremes,

buyback or no-buyback, the former involves such large bond transaction that it ceases to be optimal

once transaction costs are taken into account. That result is largely robust to our transaction cost

calibration, as it would still hold if transaction costs were one tenth of the calibrated value.

We now examine the same issue by studying a model where repurchases of any amount are allowed

and the optimal level of repurchases is decided each period. The budget constraint of the government

is as follows∑
i∈{S,N}

pitb
i
t(1− T i(bit)) = bSt−S + bNt−N −Rt−N+1 + pN−1

t Rt(1 + T R(Rt)) + gt − τt(T − xt)(37)

0 ≤ bit ≤
M i∑i
j=1 β

j
, 0 ≤ Rt ≤ bNt−1(38)

There are three differences relative to the models of Sections 3.2 and 3.3: i) we introduce transac-

tion costs T i, ii) repurchases Rt appear as a cost in period t and iii) repurchases Rt−N+1 appear as

an income at t−N , the amount of long bonds that mature at t is now
(
bNt−N −Rt−N+1

)
. The buyback

model of section 3.2 imposes Rt = bNt−1 , the no-buyback model of Section 3.3 imposes Rt = 0 whilst

the current model allows any value in between.

We assume only the government pays all transaction costs, hence the consumer/investor budget

constraint is unchanged relative to previous sections. This simplifies the model. Since we look at

optimal policy the government will take into account the presence of all transaction costs anyway,

45Details on the approximations can be found in the Online Appendix B.4.
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hence results should be very similar even if consumers pay part of the transaction costs. Another

assumption in the above model is that we only consider repurchases of long bonds issued in the pre-

vious period. This keeps as close as possible to the standard optimal DM literature and considerably

simplifies the analysis.46

The Lagrangean is straightforward to write and is shown in Online Appendix A.3. Endogenous

repurchases complicate the simulations in various dimensions: obviously now we have an additional

decision variable Rt. Furthermore, since Rt−N+1 enters the budget constraint at t it might seem that

we now have to add N − 1 lags of R to the state variables Xt so we end up with S + 3N state

variables. However, after some manipulations one can show that a sufficient set of state variables is

Xt =
[
gt, (Bt−i, Bλt−i)

S
i=1 ,

(
Bnet
t−i, Bλ

net
t−i
)N−S+1

i=1
, λt−N , b

N
t−N

]
where

Bnet
t ≡ bNt−1 −Rt

Bt ≡ bSt +Bnet
t−N+1+S

Bλnett ≡ λt−1(1− T N)bNt−1 + λt(1 + T R)Rt

Bλt ≡ λt(1− T S)bSt +Bλnett−N+1+S

see Online Appendix A.3. Therefore we have ”only” 1 + 2N state variables.

6.3.1 Simulation Results

Solving our model with transaction costs calibrated as above but allowing the government to choose

how much debt to repurchase each period effectively generates the no buy back situation. The

government chooses to repurchase only very rarely and even then only during periods of strong debt

reduction due to large government surpluses - similar to the US in the 1920s and 2000-1. In Figure

11 we plot the ratio of the market value of debt to GDP, and the absolute level of repurchases using

the same sample for g as in Figures 6 to 9. Notice that repurchases are a tiny fraction of GDP and

that indeed the government repurchases debt only in periods where debt falls sharply. The moments

are as reported in the final row of Table 4 and they match closely the analogous objects under no

buyback and no lending 47 and those of the US data very well. The t-statistics reported in Table 5

confirm that the model is close to the data.

[ Figure 11 About Here ]

This confirms the main point of the paper, namely, that once we take into account small transac-

tion costs resembling those found in the data a portfolio with a substantial share of short bonds and

46Since we will find that buyback of any amount is very rare there will be bonds outstanding of many maturities
in this model. Hence we could entertain a model where bonds of any maturity could be repurchased. This would
complicate the analysis as there would be N − 2 more decision variables. By considering only immediate repurchases
we are maximizing the possible fiscal insurance benefits of long bonds, since the price of one-year-old long bonds is
the one that provides the largest amount of fiscal insurance as it is the longest bond outstanding.

47For brevity we do not show the portfolio of long and short bonds in a separate figure. However, as the results in
Table 4 show the behavior of the portfolio in the optimal repurchase model is very close to the no buyback model, e.g.
Figure 9
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no repurchases achieves higher utility than the portfolios under buyback that resemble the recom-

mendations arising from effectively complete market models. Therefore the basic Facts 1-7 described

in Section 2 can be matched by a model where debt management is decided optimally. More crit-

ically allowing for transaction costs means no buyback is a preferred strategy and the assumption

that optimal DM requires a reliance on long bonds is no longer accurate with short bonds playing a

significant smoothing role.

7 Robustness and Accuracy

In this section we explore the robustness of our main results to the introduction of various relevant

features. First of all, as US government bonds tend to pay a fixed semi-annual coupon we introduce

coupons in the model to see if this alters our findings. Second, we introduce a third bond in the

analysis enabling us to talk about short, medium and long issuance. Third, given that callable bonds

have been used in the sample period we study a model consistent with Fact 7 where bonds are

recalled before, but close to, maturity. Finally we explore the accuracy of our solutions.

7.1 Coupons

Although ignored in most academic papers, it is a fact that individual long term bonds in the US

pay constant semi-annual coupons. The effect of coupons on DM is non-trivial for two reasons.

Firstly, because coupons add another element of flexibility in bond payments opening up another

channel with which to complete the markets. Secondly, the existence of coupons means that a bond’s

duration (the measure of how long it takes to recoup the price paid for a bond in terms of its cash

flow) is distinct from its maturity. This distinction doesn’t exist for the zero coupon bonds but as

we have established in the presence of no buyback the duration of bonds matters for DM. Therefore

the effects of coupons are non-trivial. Let us discuss the two issues we have raised.

Completing Markets with Coupons

We show that if coupons are fixed at the time of issuance and kept constant for the duration of

the bond markets can not be completed. This occurs even if the fixed coupons are contingent on the

information at issuance. Markets can be effectively completed only if the government promises to

pay coupons contingent on future shocks complete the markets.

The outline of the argument is as follows. Consider the process for g and the notation in section

3.4. Assume the government could issue consol bonds b∞t in period t that paid coupons κjt in period

t+j contingent on the realisation of gt+j for all periods t+j, all j > 0. As in sections 3.4.1 and 3.4.2,

in order to complete the markets the following analog of (17) should hold for these consol bonds48

(39)
t+1∑
j=1

b∞t−j(p
j,∞
t + κjt−j) = zt

where pj,∞t is the price in the secondary market at t of a consol issued at t− j.
48To simplify things we consider the case where the government can not repurchase previously issued console bonds.
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We guess and verify that the following DM policy achieves this equality for the complete market

allocations: issue nothing after t = 0, ie. b∞t = 0 for t > 0, normalise b∞0 = 1; contingent coupons for

the issued bond are given by κj0 = κH , κL contingent on gj = gH , gL for all j.

The values κH , κL are determined as follows. If complete markets are implemented bond prices

in the secondary market at t satisfy p0,∞
t = Et

(∑∞
k=1 β

k u
′(cCMt+k )

u′(cCMt )
κkt

)
. Given that cCMt+j = cH , cL as in

section 3.4.1 we have

p0,∞
t = KH

i κ
H +KL

i κ
L if gt = gi for i = H,L where

Kk
i =

∞∑
j=1

βjµk,ji
u′(ck)

u′(ci)
for k, i = H,L,

where µk,ji =Prob(gt+j = gk | gt = gi) is given by g’s Markov chain. Combining this with (39) we

find values κH , κL have to satisfy

(40) KH
i κ

H +KL
i κ

L + κi = zi for i = H,L

where zH , zL are as in section 3.4. This gives two equations to determine κH , κL. Clearly (39) holds

by construction since p0,∞
t + κt0 = zt for all periods a.s. Therefore issuing one bond at t = 0 that

pays the contingent coupons defined by (40) effectively completes markets.

Consider now the case when coupons are restricted to be fixed for the whole life of the bond,

namely κt = κjt for all j. Most bonds actually issued pay (nominally) fixed coupons. In this case

we can not effectively complete markets. To see this, notice if we implemented complete markets we

would have

pj,∞t = Dtκt−j for Dt ≡ Et

∞∑
k=1

βk
u′(cCMt+k )

u′(cCMt )

so that for (39) to hold we would need

(41) (Dt + 1)
t+1∑
j=1

b∞t−jκt−j = zt.

But since Dt and zt are both different functions of gt, and since the term
∑t+1

j=1 b
∞
t−jκt−j is not

contingent on gt, equation (41) will not hold a.s.49

Therefore, for a consol to complete the markets the government needs to issue debt with contingent

coupons. This is akin to issuing contingent Arrow securities with the added difficulty that the coupon

amounts κH , κL need to satisfy equations (40) requiring a very detailed knowledge of the economy.

Obviously, if g would have a continuum of realisations the coupons paid would need to take a

continuum of values satisfying even more complicated equations.

Fixed coupons as a mixture of long and short bonds

From now one we consider a case where long bonds issued in t pay a (possibly time dependent)

constant coupon κt from periods t+ 1 to t+N and in addition it pays the principal (normalized to

unity) at t + N . Coupons can then be thought of as a means of lessening or even overcoming the

49Notice this reasoning is analogous to the one we gave at the end of section 3.4.3 to conclude that markets are
truly incomplete with zero coupon long bonds.
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problem of no buyback that has been our focus. If the government attaches to each bond a sequence

of fixed coupon payments this makes long bonds closer to short bonds (reduces their duration) and

therefore the consequences of no buyback are less severe. In this section we examine to what extent

coupon payments overcome the N -period cycles of Section 3.4.4 and attenuation of fiscal insurance.

In other words, are coupons a way of using security design to make long bonds more attractive?

It is easy to show that the competitive equilibrium price of this bond is

qNt = κt

N∑
j=1

βjEt

(
uc,t+j
uc,t

)
+ βNEt

(
uc,t+N
uc,t

)

i.e. the price is now the sum of prices of zero coupon bonds of maturity j < N (pjt = βjEt(
uc,t+j
uc,t

))

weighted by the coupon payments plus the value of the bond repayment. Obviously, in the steady

state (with constant coupons and consumption) the bond price becomes equal to κ
∑N

j=1 β
j + βN .

According to the CRSP data, bonds issued by the US government trade close to par when they

are issued, namely qNt ≈ 1. To choose coupons that are consistent with this observation we set

κt = κ = 1−β
β

for all t. It turns out that in this case bonds trade close to par, our simulations yield

qNt close to 1 in all periods.

7.1.1 The Ramsey Program with Coupons

We now find the optimal policy assuming that long bonds pay a yearly coupon κ and assuming no

buyback. Debt limits are:

bNt ∈

[
MN∑N

j=1 β
j + κ

∑N
j=1

∑j
i=1 β

i
,

MN∑N
j=1 β

j + κ
∑N

j=1

∑j
k=1 β

k

]
≡ [M̃N , M̃N ]

and [M̃1, M̃1] ≡ [
M1

β
, M1

β
] for short bonds.50 The planning problem and the FOC with respect to

consumption are given in the Online Appendix A.4. Off corners the first order conditions for b1
t and

bNt are:

λtEt(uc,t+1) = Et(λt+1uc,t+1)(42)

λtEt(κ
N∑
j=1

βjuc,t+j + βNuc,t+N) = Et(κ
N∑
j=1

βjuc,t+jλt+j + βNuc,t+Nλt+N).(43)

Equation (43) is the analogue of equation (15) (when the debt constraints are loose). It reveals that

the multiplier follows a complicated pattern which equates it with the sum of all expected future

terms uc,t+jλt+j for j = 1, 2, . . . , N weighted by the payments that the bond promises. Intuitively a

zero-coupon N maturity bond produced a N cycle in λt, if we think of coupons as themselves zero

coupon bonds then we are adding additional smaller cycles in λt at 1,2,...,N − 1

In Faraglia et al (2016) we study the properties of the single bond coupon model analyzing the

effects of fiscal shocks. We show that the optimal policy is characterized by an important N cycle

component and the main features of optimal fiscal policy under no buyback persist, since basically

50In the US coupon payments are usually six monthly. However, since our model’s horizon is one year we model one
year debt as zero coupon.
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under coupons the bulk of interest rate payments is still concentrated every N periods. For brevity

we refer the reader to Faraglia et al. (2016) for details.

In the fifth row of Table 4 we show the simulation results of the no buyback, no lending, coupon-

paying model. The results show relatively minor changes from the zero coupon case - a small

increase in the portfolio share of short bonds, a less volatile, less persistent share and a slightly

higher correlation between short and long bond issuance. Introducing coupons to long bonds does

not alter our conclusions.

7.2 Three Bonds

A relevant robustness exercise is to consider a government that issues a third bond. In particular, we

assume that in addition to 1- and 10- year bonds now the government can issue a 5-year bond. This

also serves as a test for the ability of the algorithm to deal with larger models, as the state vector

now has five more variables and an additional decision variable.

We keep the zero-coupon assumption for comparability and we only study the no buyback case.

We do not write the model and optimality conditions as they are similar to those in Section 3.3.

As can be seen from the corresponding row in Table 4, now we find that the average share of short

debt is lower than NBB with two bonds and lower than the data. There is a similar phenomenon

with the serial correlation of St. Other statistics remain the same.

The intuition for these results is clear: the five-year bond attenuates the N−period cycles that we

have discussed. By issuing 5-year bonds the height of the spikes of taxes described in Section 3.4.4

is half of the spike with a 10-year bond, hence the government is less reluctant to issuing long bonds

and reduces issuance of 1-year bonds. This example demonstrates one feature of the model at hand:

small changes in the model may have considerable impact on E(St) hence this value is not closely

determined by the theory. But there are many features of optimal DM that are well determined and

robust in the models we have considered, namely: St is never close to zero, it is stable and short

bonds are highly correlated with long bonds. The main focus of our paper is to establish a role for

short term bonds in optimal debt management which is clearly preserved in this case.

7.3 Callable Bonds

In our section on the stylised facts of US government debt we described how in the first half of our

sample period considerable use was made of callable bonds. Just as coupons can be thought of as

shortening the life of a bond so too can a callable bond. By preannouncing a future date at which

the government can buy back a bond at par the government lessens the duration. If, as is the case in

practice, governments tend to repurchase at the first call date, then cash flow is affected and bonds

are not bought back at maturity. This raises another way in which security design may lessen the

problems with long bonds and reduce the need for short bonds. We investigate this (results in the

Online Appendix A.5) by considering the case where the government issues bonds of maturity N but

repurchases them after m years where m < N e.g we assume that governments always repurchases at

the call date. We find that our main result still holds, if callable bonds are redeemed after m years

they offer less fiscal insurance and introduce greater tax volatility at lower frequencies opening up a

positive role for issuing short term debt to support optimal tax smoothing. If governments cannot
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repurchase debt each and every period then long bonds provide additional volatility and short bonds

can help tax smoothing.

7.4 Accuracy

We have performed thorough accuracy tests of all the models for which we report numerical sim-

ulations. To check the accuracy of the solution we run Euler Equation Error (EEE) tests (see for

example Aruoba et al (2006) for an exhaustive description of the methodology). Essentially this

methodology checks that first order conditions hold with an acceptable degree of precision at many

points in the state vector. For example, in the model with buyback one needs to check that Euler

equations (11) hold approximately. To interpret the size of the error, the approximation is expressed

in terms of the change in consumption units that would be required for the Euler equation to hold

exactly.

The tests require to numerically calculate each of the conditional expectations in the Euler equa-

tions. Ours is not a routine application of this accuracy test because we have expectations involving

up to N leads, so that exact integration would be too costly. For this reason we use Monte-Carlo

integration to compute these expectations, using many simulations starting at each point considered

of the state space. Details on how we perform the test are in the Online Appendix B.3.

Since we have two Euler equations (or three in the case of the optimal repurchases model) we

check separately each of them by calculating the value of the multiplier and for consumption in period

t implied by the expectations Ξt generated by our approximation, given the portfolio b1,t, bN,t. Table

6 summarises the test for the main models presented in the paper. 51 As in Aruoba et al. (2006) we

report the absolute errors using base 10 logarithms to make our findings comparable with the rest of

the literature. A value of -3 means a 1$ mistake per 1000$, a value of -4 a mistake of $1 per $10000

and so on.

Table 6 shows that the average of the errors are between -3 and -4 and that the maximum errors

are not large. Moreover, we found that it is quite unlikely that the region of the state space where the

maximum error occurs is visited in simulations. We have calculated also the percentage of positive

and negative errors. A good approximation should deliver evenly distributed errors between the two

signs. In the Online Appendix B.3 we show that the distribution is fairly even in all the models

presented with 41% to 58% of the errors being of positive sign. These results are well within the

range accepted by other authors (e.g. Aruoba et al (2006)) suggesting that the model solutions are

accurate.

8 Conclusion

We have studied optimal debt management under incomplete markets. The literature has to date

isolated a powerful influence of fiscal insurance whereby governments can exploit the negative covari-

ance between long bond prices and fiscal shocks in order to stabilise debt and minimise tax volatility.

The implications of that channel for debt management under incomplete markets leads to a policy

51An additional table in the Online Appendix B.3 provides all the details for each model and each Euler equation
in this work.
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relying heavily on issuing long term debt. The recommendations from this canonical Ramsey ap-

proach are in stark contrast to the actual behaviour of observed US debt management. One might

infer from this literature that governments should issue more long bonds, pursue very active portfolio

management and actively repurchase previously issued long bonds.

Our approach has been to consider whether there are other market frictions that introduce addi-

tional considerations into debt management. If the implications of fiscal insurance are robust across

a range of market frictions then the existing findings in the literature increase in their relevance. If

however the implications from the standard Ramsey model are non-robust then it becomes important

to isolate the exact market frictions that need to be considered in order to better understand the

implications for actual debt management.

Once we introduce incomplete markets, non-negativity constraints on bonds issued and small

transaction costs, the picture changes considerably. Optimal policy now involves repurchasing very

rarely and a sizable and stable proportion of short bonds is key in achieving tax smoothing. Short

bonds play a more important role in supporting optimal debt management than in previous papers,

as short bonds provide a flexibility and optionality that helps reduce tax volatility in the face of

fiscal shocks. Portfolio shares should be more stable and persistent and governments should issue

positive quantities of both short and long debt in response to a shock to deficit. All of these conclu-

sions are diametrically opposite to the standard recommendations from the canonical Ramsey model

mentioned earlier, making observed US debt management look much closer to the recommendations

of optimal debt management.

These main features of optimal debt management under no buyback are very robust, they stand

the introduction of coupons, more bonds, and a callable bond. Clearly the recommendations around

optimal debt management for governments can benefit from a deeper understanding of the reasons

for market incompleteness and their practical relevance. It is of course entirely feasible that other

microfounded features of market incompleteness e.g the clientele effects, asymetric information, liq-

uidity provision, reduced rollover risk, etc. restore a preference for long bonds. Critically however

they would do so for reasons other than fiscal insurance and merely reiterate the importance under

incomplete markets of specifying the reasons for market incompleteness.
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Appendix

A Database and Construction of Figures

Data on US Treasuries was obtained from the CRSP US Treasury Database and is comprised of all

types of marketable treasury securities (bills, notes, bonds and inflation protected securities (TIPS)).

Observations are available at monthly frequency. As discussed in text to compute key moments such

as the share of short maturity debt or the ratio of issuances over total debt, we focus on data from

the years 1955-2015. We extended this sample to include observations from the 1920s 30s and 40s

when we report moments on the frequency of repurchases or the timing of buybacks of callable bonds

(e.g. Tables 2 and 3).

As discussed, not all bonds are recorded by the CRSP in the 1920s-1940s. The missing amounts

outstanding are as high as 60 percent in the mid 30s and 40 percent in the early 40s. This constrains

our empirical analysis to include observations from the 1950s onwards when all bond records on

marketable US government debt are included in our dataset. We report the properties of share of

short maturity debt over total debt in the CRSP from 1955 onwards, so that our estimates exclude

the build up of public debt during the Korean war. Our results however would not be affected if we

included the early 1950s in our sample.

Date variables of particular interest for this study include the quote date, the date of the first

coupon and the maturity date. Amounts outstanding of the bonds are usually available in the CRSP

although missing for certain observations. Gaps in amounts outstanding were filled with preceding

observations for the same bond when possible or future observations if no preceding data points

existed. Coupons are typically paid every six months from the date the bond is issued and until

maturity.

To construct the share of short term debt (e.g. in Figure 1) we stripped the coupons. The

strips, were given distinct maturity dates, face values and market values. For a ten year bond paying

coupons every six months the first coupon is counted as six month maturity debt (at the issuance

date), the second coupon as one year debt and so on. 52 Market values for the strips were imputed

using the yield-maturity data.

Our sample includes both nominal and inflation protected debt (TIPS). TIPS typically represent

long maturity claims (five, ten or thirty year debt) and therefore contribute towards reducing the

average value of the share of short term debt. The first inflation protected security in the US

government bond market was issued in 1997 (before then there was no indexed government debt).

Finally, to construct the time series of the issuances (Figure 2) we adopt the following approach.

Because our definition of short term debt in the data includes maturities which are less than one year

(one month to six months in the CRSP data) we define the total issuance in short maturity debt

as : IS,t = Im,t
12

+ I3m,t
4

+ I6m,t
2

+ I12m,t
1

where Ixm,t denote claims of maturity x months in the data 53

and the quantities Ixm,t are sums of issuances over year t. Note that differently from the case of the

52Our approach to strip the coupons and assign an appropriate maturity to each strip is compatible with the notion
that the benefits from fiscal insurance are proportional to the amount of long term government debt outstanding. If
a long term bond is issued paying coupons every six months then this bond provides less hedging to the governments
budget than a zero coupon long term bond, as is claimed in text. When we construct the model counterparts for the
series plotted in Figure 1 we follow essentially the same approach.

53This definition includes the first coupons of long term notes and bonds.
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stocks displayed in Figure 1 the issuances share is formed by a flow variable in the numerator and a

stock variable in the denominator. This approach enables us therefore to not bias the share upwards

by counting very short term issuances (monthly debt) many times over the year.

B Response of long bonds to higher debt under Buyback

We examine whether issuance of long bonds increases more than proportionally with initial debt in

the complete market case of section 3.4.1, ie.
∂BBBN
∂bg−1

> 1. This plays a role in the intuition we give for

the behavior of DM in Figure 6, section 5.1.

Taking derivatives in the equation determining long bonds (18) we have

(44)
∂BBB

N

∂bg−1

= BBB
N

[
∆′z

∆z
− ∆′p

∆p

]
∂τ

∂bg−1

where in this appendix we denote ∆z ≡ zH − zL, ∆′z ≡ ∂ ∆z
∂τ

, similarly ∆p ≡ pN−1
H − pN−1

L and for

all other variables. The values of z and p are evaluated at the complete markets solution.

Note that in this complete market economy ∆x gives the variability of variable x across time.

Therefore
∂BBBN
∂bg−1

depends not only on the bond level itself BBB
N , but also on the tax elasticity of the

variability of the yield curve (∆′p/∆p) and of the variability of surpluses (∆′z/∆z).

It is clear that ∂τ
∂bg−1

> 0 and BBB
N > 0.54 In a partial equilibrium model we would have ∆′p = 0,

but in our general equilibrium model the variability of interest rates depends on consumption and,

therefore, it varies with income taxes so that ∆′p/∆p is not zero. We study this dependence in detail

below.

We first find
∂BBBN
∂bg−1

by calculating BBB
N for different initial debt given our calibration in section

5. We fit a two-value, symmetric g process that roughly reproduces the mean, variance and serial

correlation of (36) and we use gH = 18.94, gL = 16.06, µ = Pr ob(gt+1 = gi | gt = gi) = 0.95. Figure

12 shows
∂BBBN
∂bg−1

in the vertical axis and initial debt bg−1 in the horizontal axis. Clearly
∂BBBN
∂bg−1

> 1 for

bg−1 within the debt limits. This explains why in some periods bNt and b1
t move in opposite directions

in the lending model of section 5.1.

[Figure 12 About Here]

Uncertain signs of the derivative

After showing numerically that
∂BBBN
∂bg−1

> 1 for a specific calibration we now explore the robustness

of this property. We find that this is not a robust feature of the model: the various elasticities of

consumption can combine to produce different
∂BBBN
∂bg−1

, one can even find calibrations where
∂BBBN
∂bg−1

< 0.

To see this we now study the terms in (44) relying on various approximations. We skip large

amounts of algebra - details are available from the authors. We show in bold the sentences where

the signs of the elements in the formula are determined.

Recall that from ABN we know ∆z < 0.

For a symmetric g denote µj = Pr ob(gt+j = gi | gt = gi) for i = H,L. Standard calculations give

µj = 1+(2µ−1)j

2
.

54The first inequality follows from efficient taxes being in the increasing side of the Laffer curve, the second inequality
has been shown in section 3.4.1.
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As shown in Online Appendix A.1, log utility implies

∆p = βN−1(1− µN−1)

[
cH

cL
− cL

cH

]
therefore ∆p < 0.

Using various Taylor approximations and ∆c ' c′g∆g, where c′g is the derivative in equilibrium

consumption with respect to g, we have

∆p ' βN−1(1− µN−1) 2c′g∆g/c̃

where c̃ is average consumption.

Taking derivatives with respect to τ and using Taylor approximations

(45)
∆′p

∆p
'
c′′g,τ
c′g
− c′τ

c̃

where c′′g,τ is the cross derivative of equilibrium consumption with respect to g, τ.

This shows that the term ∆′p
∆p

depends on various elasticities of consumption and that in general

equilibrium ∆′p
∆p

is not zero.

To characterize further this expression note that equilibrium taxes τt = 1− vx,t
uc,t

for the utility in

section 5 imply ηc (1− g − c)−γ = 1− τt. Taking total derivatives in this equality we find

c′g =
−γ

x/c+ γ
< 0

c′τ =
−1

(1− τ) [1/c+ γ/x]
< 0

c′′τ,g = −c′τ
γ(x+ c)

(x+ γc)2 > 0

Plugging this in (45) we have ∆′p
∆p
> 0.

Now we turn to the term ∆′z
∆z
. For the utility function at hand,

bg−1 = zH =
∞∑
t=0

βt
[
µts

H +
cH

cL
(1− µt)sL

]
zL =

∞∑
t=0

βt
[
µts

L +
cL

cH
(1− µt)sH

]

using the approximation
(
cH

cL
sL − cL

cH
sH
)
' s̃

c̃
2(cH − cL)− (sH − sL) we have

∆z ' K1(sH − sL) +K2
s̃

c̃
2
(
cH − cL

)
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for constants

K1 =
∞∑
t=0

βt(2µt − 1) =
1

1− β(2µ− 1)

K2 =
∞∑
t=0

βt(1− µt) =
1

2

[
1

1− β
−K1

]

Since optimal policy involves tax smoothing we take the appoximation τH ' τL to have sH−sL '
τ(∆c+ ∆g)−∆g, then

∆z ' K1

[
τ(c′g + 1)∆g −∆g

]
+K2

s̃

c̃
2c′g∆g

∆′z ' K1

[
(c′g + 1)∆g + τc′′g,τ∆g

]
+K2∆g

s̃′c′g2

c̃
(46)

where we use the approximation s̃ ' 0, which is approximately right if initial debt is close to zero.

However, note s̃′ = (1− x) + τc′τ is non-zero.

The sign of ∆′z is uncertain. Since the numerical calculations of Figure 12 shows that
∂BBBN
∂bg−1

is positive and as we know BBB
N > 0 the bracket of (44) has to be positive for the calibration above.

As we have already shown that ∆′p
∆p

> 0 and ∆z < 0 this implies that for our calibration ∆′z < 0.

However, it is easy to see that under the above approximations the term in brackets in (44) could

be zero or even negative. Consider, for example, the case when µ ' 1, that is when g is nearly a

constant. In this case K2 ' 0 so that, since c′g > −1 equation (46) means ∆′z > 0. Therefore

for very high µ we have ∆′z
∆z
− ∆′p

∆p
< 0 and

∂BBBN
∂bg−1

< 0.
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Remaining Term (in quarters) Normalized Count
0 98.86%

1 0.70%

2-4 0.24%

5-9 0.05%

10-14 0.02%

≥15 0.13%

Notes: The table provides information on the redemption profiles of non callable bonds. The data are all non
callable debt issued by the US Treasury since the 1920s. ’Remaining Term’ counts the number of quarters
remaining until maturity when debt is bought back. When 0 this signifies that debt is bought at maturity.
The data are extracted from the CRSP.

Table 1: Remaining Term at Time of Buyback

Year Amount Issued (in millions) Share Called
1931 755 100%
1934 491 100%
1935 2611 100%
1936 5616 100%
1938 3588 100%
1939 1689 100%
1940 1404 100%
1941 9326 55.35%
1942 14061 38.06%
1943 16763 29.46%
1944 26986 14.16%
1945 28172 11.71%
1952 921 100%
1953 1606 0%
1960 470 0%
1962 365 0%
1963 550 54.55%
1973 1618 100%
1974 587 100%
1975 3616 100%
1976 1574 100%
1977 2638 100%
1978 4516 100%
1979 4523 100%
1980 7794 100%
1981 4626 100%
1982 3163 100%
1983 4921 100%
1984 16142 100%

Notes: The table lists (by year of issuance) the total amounts of callable bonds which have been called prior
to maturity. The data are extracted from the CRSP.

Table 2: Share of Redeemed Callable Treasuries by Year of Issuance
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Bond Term (in years) Call Window* (in years)
2 3 4 5 10 15

5 3 0 0 0 0 0
7 1 0 0 0 0 0
9 1 0 0 0 0 0
10 8 0 0 0 0 0
11 1 0 0 0 0 0
12 3 0 0 0 0 0
13 1 0 0 0 0 0
14 3 1 1 0 0 0
15 1 2 0 0 0 0
16 1 1 0 0 0 0
17 1 2 1 0 0 0
18 0 3 0 0 0 0
20 0 0 1 1 0 0
23 0 1 0 0 0 0
24 0 0 1 0 0 0
25 0 0 0 8 1 2
26 0 0 0 2 0 0
27 0 0 0 6 0 0
29 0 0 0 0 0 2
30 0 0 0 13 2 2

Notes: The table shows the call windows (maturity minus first possible call date) for callable bonds in the
US. The sample used is the same as the sample used for Table 2.

Table 3: Bond Terms and Call Windows
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St (%) σSt (%) ρ(S1,t,S1,t−1) ρ(b̃St ,̃bNt ) %St = 0 %St ≤ 0.1

US DATA 43% 7.8% 0.94 0.86 0 0

BuyBack

’Lend.’ 4·103% 3·105% 0.47 -0.01 - -
’No Lend.’ 12% 13.0% 0.86 0.46 13.1% 56.6%

No Buy back

’Lend.’ 76% 3·103% 0.42 0.87 - -
’No Lend.’ 48% 8.1% 0.92 0.92 0.01% 0.02%

’No Lend.+Coupons’ 51% 4.9% 0.90 0.94 0.01% 0.02%
’3 Bonds’ 31% 5.5% 0.81 0.93 0.11% 0.64%

Repurchases+
T Costs

’No Lend.’ 45% 9.0% 0.92 0.93 0.01% 0.01%

Notes: St denotes the share of debt of maturity less than or equal to one year over the total (market value)
of debt. St represents the average share and σSt denotes the standard deviation. The statistic ρ(b̃St ,b̃

N
t ) is

the correlation between the market value of short debt and the value of long debt both divided by GDP.
The exact definition of the market values, varies depending on the model specification. For example under

buyback it holds that ρ(b̃St ,b̃
N
t ) ≡ ρ(

pSt b
S
t

GDPt
,
pNt b

N
t

GDPt
). Under no buyback and no coupons b̃Nt ≡

∑N
i=S+1 p

i
tbt−N+i

GDPt
.

Therefore, when S = 1 the value of long debt outstanding is the value of all debt which in t is of maturity
greater than one year and b̃St is the market value of all outstanding debt less than one year maturity, divided
by GDP. The data counterpart is constructed applying this logic (see text).
%St ≤ x denotes the percentage of times that St is less than or equal to x.
Finally T denotes the transaction cost function specified in Section 6. See text for details.

Table 4: Moments: Data and Models

St σSt ρ(St,St−1) ρ(b̃St ,̃bNt )
std. of sample moment 0.0314 0.0139 0.0209 0.0354

Buyback
‘Lend.’ -1355 247540 22.44 24.65

‘No Lend.’ 9.87 -3.76 3.79 11.39
No Buyback

‘Lend.’ -10.52 -2744 24.83 -0.17
‘No Lend.’ -1.60 -0.24 0.92 -1.59

‘No Lend.+Coupons’ -2.55 2.05 1.88 -2.15
’3 Bonds’ 3.81 1.61 6.18 -1.87

Repurchases

‘No Lend.’ -0.65 -0.89 0.92 -1.87

Notes: The Table presents t statistics testing the hypothesis that the data moments are equal to the model
generated moments summarized in Table 4.

Table 5: t stats: Data and Model Moments
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BB NBB
lending no lending lending no lending opt. repurch.

EEE1 ave -3.97 -3.72 -3.84 -3.86 -3.84
max -2.30 -2.28 -2.50 -2.64 -2.79

EEEN ave -3.18 -3.06 -3.53 -3.51 -3.18
max -1.81 -1.93 -2.55 -2.47 -2.12

EEEN−1 ave -3.23
max -1.94

Notes: The Table reports average and maximum Euler equation errors (EEE) for the benchmark models
(buyback/ no buyback, lending / no lending, and optimal repurchases). Additional moments and errors for
other models considered in this paper can be found in the Online Appendix B.3.

Table 6: Accuracy Tests

Figure 1: Share of Short Term Debt in the US
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Notes: The Figure plots the share of short maturity government debt (less than or equal to one year) in
the US over the period 1955-2015. The data are annual observations (time aggregated from monthly data
extracted from the CRSP). Details on the data construction are contained in the Appendix A.
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Figure 2: Total Issuance as a Fraction of the Market Value of Outstanding Debt
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Notes: The Figure plots the issuance of new government debt by year and in market value, as a fraction of
the total market value of debt outstanding in the United States. The data are from the CRSP and refer to
the period 1955-2015.

51



Figure 3: Callable Bonds over Long Bonds in the US data
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Notes: The Figure plots the fraction of long term callable debt over total long term debt outstanding in the
CRSP sample.
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Figure 4: Callable Bonds: Timing of Buybacks and Call Windows
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Notes: The plots shows the timing of redemptions of callable debt in the US. The top left shows this timing
for bonds whose first call date is 2 years before maturity. The y-axis is in percentage points. Therefore,
roughly 75 percent of the bonds are redeemed 2 years before maturity, 15 percent 1 year and 10 percent at
the maturity date. The top right panel represents bonds with 3 year call windows, and the bottom panels
4 and 5 years, left and right respectively.
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Figure 5: Response of the Tax Schedule - No Buyback Model
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Notes: The Figure plots the tax rate in the single bond model without buyback presented in Section 3.4.4.
The solid line corresponds to a bond of one year maturity. The dashed line sets the maturity to three years
and the crossed line to 10 years.
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Figure 6: Model Simulations: Buyback and Lending
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Notes: The Figure plots a typical sample of the optimal portfolio under buyback. The bound on each
maturity is equal to 100% of steady state GDP. The lower bound constraint equals -100% of GDP.
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Figure 7: Model Simulations: Buyback and No Lending
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Notes: The Figure plots a typical sample of the optimal portfolio under buyback and no lending. The upper
bounds on short and long maturities equal 100 percent of steady state GDP. The lower bounds equal 0.
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Figure 8: Model Simulations: No Buyback and Lending

0 50 100 150 200 250 300 350
−20

−10

0

10

20

30

40

50

60

70

80

Period

M
ar

ke
t V

al
ue

 o
f S

ho
rt

 a
nd

 L
on

d 
D

eb
t

Short Debt
Long Debt

Notes: The Figure plots a typical sample of the optimal portfolio under no buyback and lending. The upper
bounds imposed on the market value of short and long debt equal 100% of steady state GDP. The lower
bounds are equal to -100% of GDP.
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Figure 9: Model Simulations: No Buyback and No Lending
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Notes: The Figure plots a typical sample of the optimal portfolio under no buyback and lending. The upper
bounds imposed on the market value of short and long debt equal 100% of steady state GDP. The lower
bounds are equal to 0.
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Figure 10: Models vs Data

1960 1970 1980 1990 2000 2010
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Year

S
ha

re
 O

ve
r 

T
ot

al
 D

eb
t

US Data
Buyback
No Buyback

Notes: The solid line shows the average share of short term debt which was also shown in Figure 1. The
dashed line shows the fit of the no buyback model. As described in text we constructed this figure through
the following steps: First, we used model simulations to estimate the ’short debt share’ policy function,
regressing the share of short debt on its first and second lags, two lags of the market value of total debt
over GDP and the current value and first lag of the spending to GDP series. We also included higher order
terms of these variables to produce a ’good fit’ of the model’s policy function. Second, we fed the ’data
state variables’ to the model’s estimated policy rule, and obtained the dashed line shown. For the buyback
model (crossed line) we applied the same procedure. This gave us the crossed line.
Because of the inclusion of two lags of the share in the regressions, the years covered in the figure are
1957-2015.
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Figure 11: Model Simulations: Debt to GDP ratio and Repurchases
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Notes: The Figure plots the debt to GDP ratio (solid line) and the absolute level of repurchases (dashed
line) in model of Section 6.3. We used the sample of spending as in Figures 6 to 9. The upper bounds
imposed on the market value of short and long debt equal 100% of steady state GDP. Hence the market
value of total government debt can be as high as 200% of steady state GDP. The lower bounds of short and
long bonds are equal to 0.
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Figure 12: Numerical Derivative
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Notes: The Figure plots the numerical derivative
∂BBBN
∂bg−1

in the vertical axis and initial debt bg−1 in the

horizontal axis. See Appendix B for details.
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This appendix has two sections. Section A contains some analytic results that have been left

out of the text and are given here for completeness. We first give some additional details about the

complete markets model under buyback and no buyback. Then we set up the Lagrangeans that have

not been included in the main text, namely for the model with optimal repurchases and transaction

costs of section 6.3, the model with coupons of section 7.1 and the ‘callable bonds’ model of section

7.3. We derive the first order optimality conditions for each model.

Section B contains the Numerical Appendix. It discusses in detail the implementation of the

‘Forward States’ and ‘Condensed PEA’ algorithms, and several practical issues on solving portfolio

models with incomplete markets with the PEA. We discuss how we selected the state variables of the

core vector, Xcore
t and of the ‘out’-vector, Xout

t , as well as the order of the polynomials of the states

that were used. Moreover, we report how many linear combinations of state variables were added

to the approximations. Finally, we discuss how we constructed approximations for the shadow cost

calculation presented in Section 6.2 and we report on the accuracy of the simulated models.

A Some Theoretical Results

For simplicity we take the case S = 1 throughout this section.

A.1 Complete Markets and Buyback

We describe in this section the debt management strategy under complete financial market assuming

buyback. This provides more details for the calculations in section 3.4.1 in the main text.

Let gt = (g0, g1, ..., gt) be the history of government spending shocks up to date t. As in ABN

and as in the main text of this paper z represents the present discounted value of the government

surplus contingent on gt−1 and the current realization of spending gt. Substituting for equilibrium

taxes this is:

(1) zt(g
t−1, gt) = Et

∞∑
i=0

βi

uc,t
[(uc,t+i − vx,t+i)(ct+i + gt+i)− gt+iuc,t+i] .

We assume for simplicity that government expenditure follows a two step Markov process taking

values gH > gL with probabilities µHH and µLL of remaining in the same state. The government

debt is given initially by b1−1 and bN−i for i = 1, ..., N, at t = 0.

Following standard arguments as in Chari and Kehoe (1999) the equilibrium conditions if there

are complete markets for Arrow securities is given by the implementability constraint at date 0

E0

∞∑
t=0

βt [(uc,t − vx,t)(ct + gt)− uc,tgt] = E0

∑
i∈{1,N}

i−1∑
t=0

βtuc,tb
i
t−i.
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The corresponding Lagrangean that gives the Ramsey equilibrium under complete markets is

LCM = E0

{
∞∑
t=0

βt [ u(ct) + v(T − ct − gt)(2)

+Λ((uc,t − vx,t)(ct + gt)− uc,tgt)]− Λ
N∑

i∈{1,N}

i−1∑
t=0

βtuc,tb
i
t−i


where Λ is the Lagrange multiplier of the implementability constraint.

The first order conditions for an optimum are given by:

uc,t − vx,t − Λ[ucc,tct + uc,t − vx,t + vxx,t(ct + gt)] = 0 for t ≥ N(3)

uc,t − vx,t + Λ[ucc,tct + uc,t − vx,t + vxx,t(ct + gt)]− Λucc,t
∑

i∈{1,N}

bit−i = 0 for t ≤ N − 1.(4)

For t ≥ N the first order conditions above are time-invariant so that ct(g
t) = cCMt takes two

possible values ct(g
t−1, gi) = ci for i = H,L. Therefore, given the Markov assumption on g, there are

two possible values for zt(g
t−1, gi) = zi and pN−1(gt−1, gi) = pN−1i for i = H,L and for all t ≥ N .

It is clear that the first order conditions (14)-(15) in the main text coincide with (3) in this

appendix for constant λt = Λ. Therefore cCMt satisfies the first order conditions of the incomplete

markets model. All that is left to show is that the budget constraints under incomplete markets are

satisfied.

As shown, for example, in Angeletos (2002) a necessary and sufficient condition for the period-t

budget constraints to hold is that (17) in the main text holds. Therefore all we need to show is that

if we implement
{
cCMt

}
then z takes only values zH and zL an optimal portfolio needs to satisfy

(5) b1t−1
(
gt−1

)
+ pN−1i

(
gt−1

)
bNt−1

(
gt−1

)
= zi for i = H,L ∀t.

So that

(6)

(
1 pN−1H

1 pN−1L

)(
b1t−1 (gt−1)

bNt−1 (gt−1)

)
=

(
zH

zL

)
.

yielding

(7)

(
b1t−1 (gt−1)

bNt−1 (gt−1)

)
=

(pN−1
H zL−pN−1

L zH

pN−1
H −pN−1

L

zH−zL
pN−1
H −pN−1

L

)
=

(
BBB

1

BBB
N

)
.

To see that BBB
N > 0 note first that clearly surpluses are higher when gL occurs, therefore zH < zL.

We now argue that generically pN−1H − pN−1L < 0. Assume a symmetric g process such that

µ = µHH = µLL and CRRA utility we have pN−1H = βN−1
[
µN−1 + (1− µN−1)

(
cL

cH

)γc]
for risk

aversion −γc, where µj = Pr ob(gt+j = gi | gt = gi). Hence

pN−1H − pN−1L = βN−1(1− µN−1)
((

cL

cH

)γc
−
(
cH

cL

)γc)
.
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As long as consumption is a normal good cH < cL hence pN−1H − pN−1L < 0 for γc < 0. This shows

that, generically, BBB
N > 0.

To see that BBB
1 < 0 note that since BBB

1 = zH − pN−1H BBB
N and BBB

N > 0, as long as initial debt

is close to zero, zH is close to zero and BBB
1 is negative.

As long as debt limits are sufficiently loose to contain BBB
1 , BBB

N this gives the equilibrium under

incomplete markets.

A.2 Complete Markets and No Buyback

Under no buyback the period t budget constraint of the consumer is given by equation (3) in the

main text. In this case the government issues two kinds of bonds, but it really holds N kinds of bonds

every period: in addition to the bonds that mature and produce income at t, namely (b1t−1+bNt−N), the

government also holds long bonds that have not yet matured: namely, bNt−N+1, ..., b
N
t−1. Even though

these non-maturing bonds do not show up in equation (3) they do appear in equation (20), stating

that total wealth equals discounted surpluses z. We now give more details to show that equation

(20), along with equilibrium prices, is necessary and sufficient for a competitive equilibrium under

incomplete markets and no buyback.

To prove that (20) is necessary, proceed as suggested in the paragraph preceding equation (20).

Let st be the government primary surplus as in the main text, define total wealth as Wt = b1t−1 +∑N
j=1 p

N−j
t bNt−j and using equilibrium prices we can show

(8) st + βEt

[
uc,t+1

uc,t
Wt+1

]
= Wt.

Iterating forward and assuming no Ponzi games in the value of bonds Wt yields (20) in the main text

for all t = 0, 1, ... hence this is a necessary condition.

To show that this is a sufficient condition the previous steps can be reversed to show that any

portfolio satisfying (20) and a no Ponzi game condition in Wt also satisfies (3).

Hence an allocation is an incomplete market equilibrium if and only if (20) holds for pjt = Etβ
j uc,t+j
uc,t

and the corresponding debt limits. As we show in the main text, the complete market allocations do

not satisfy all these requirements: if we have bond limits then (20) can not hold for all t.

A.3 Optimal Repurchases: the Ramsey Program

In the optimal repurchase (OR) model of Section 6.3 the government maximizes the utility of the

household subject to the following constraints∑
i∈{S,N}

pitb
i
t(1− T i(bit)) = bSt−S + bNt−N −Rt−N+1 + pN−1t Rt(1 + T R(Rt)) + gt − τt(T − xt)(9)

T − xt = ct + gt + T Ct(10)

0 ≤ bit ≤
M i∑i
j=1 β

j
, 0 ≤ Rt ≤ bNt−1(11)

where T Ct ≡
∑

i∈{S,N} p
i
tb
i
tT i(bit) + pN−1t RtT R(Rt) represents total transaction costs.
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To simplify the solution of this model we assume that the government treats as exogenous the

function T Ct, in other words it does not take derivatives of T Ct with respect to consumption and

the bonds.1

The Lagrangian of the OR model is:

L = E0

∑
t

βt

u(ct) + v(T − ct − gt − T Ct) + λt[
∑

i∈{S,N}

bitβ
iuc,t+i(1− T (bit)

i)(12)

−βN−1uc,t+N−1Rt(1 + T R(Rt))− (bSt−S + bNt−N −Rt−N+1)uc,t

− gtuc,t + (uc,t − vx,t)(gt + ct)] +
∑

i∈{S,N}

ξiU,t(
M i∑i
j=1 β

j
− bit) +

∑
i∈{S,N}

ξiL,tb
i
t + ξRU,t(b

N
t−1 −Rt) + ξRL,tRt

 .
The FONC are given by:

uc,t − vx,t + λt(−ucc,tgt + uc,t + ucc,t(T − xt) + vxx,t(T − xt)− vx,t)− ucc,t [Bt−Sλt −Bλt−S] = 0

Etβ(−uc,t+1λt+1 + uc,t+1λt(1− T 1
t − T 1

b1t
b1t )) + ξ1L,t − ξ1U,t = 0 for i = S

Etβ
N(−uc,t+Nλt+N + uc,t+Nλt(1− T Nt − T NbNt b

N
t )) + Etβ(ξRU,t+1) + ξNL,t − ξNU,t = 0 for i = N

Etβ
N−1(uc,t+N−1λt+N−1 − uc,t+N−1λt(1 + T Rt + T RRtRt)) + ξRL,t − ξRU,t = 0

where

Bt ≡ bSt +Bnet
t−N+1+S

Bnet
t ≡ bNt−1 −Rt

Bλt ≡ λt(1− T St )bSt +Bλnett−N+1+S

Bλnett ≡ λt−1(1− T Nt−1)bNt−1 − λt(1 + T Rt )Rt.

A.4 Coupon Bonds and No Buyback: the Ramsey Program

We solve the optimal policy problem under no buyback and coupons of section 7.1 assuming for

simplicity that S = 1. As in the rest of the paper we introduce debt limits, these are parameterized

as:

(13) bNt ∈
[

MN∑N
j=1 β

j + κ
∑N

j=1

∑j
i=1 β

i
,

MN∑N
j=1 β

j + κ
∑N

j=1

∑j
k=1 β

k

]
≡ [M̃N , M̃N ]

so that M̃ ’s are in terms of the value of debt.

1Without this assumption we would need to keep track of the fact that there is a conditional expectation in the
determination of T Ct, therefore the solution to the model would feature both current and lagged values of the multiplier
on this constraint. This would add yet more state variables in the model but with minimal quantitative effects.

Note that another way to simplify the planner’s program (avoid having to keep track of the resource constraint as
a separate object in the Lagrangean) is to assume T Ct do not enter the feasibility constraint. In this case transaction
costs do not impact the overall resources of the economy, this would correspond to a situation where a financial firm
can charge transaction costs on bond issuances without actually spending labor resources in it. When we run the
model under this assumption (which appears sometimes in the literature) we found virtually no effect on our results.
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Letting [M̃1, M̃1] ≡ [
M1

β
, M1

β
] be the analogous constraint set for one year debt the planning

problem is given by:

L = E0

∑
βt
{
u(ct) + v(T − ct − gt) + λt

[
b1tβuc,t+1 + bNt

(
βNuc,t+N +

N∑
j=1

βjuc,t+jκ

)

−b1t−1uc,t − bNt−Nuc,t − κ
N∑
j=1

bNt−juc,t − gtuc,t + (uc,t − vx,t)(gt + ct)

]
+
∑

i∈{1,N}

ξiU,t(M̃ i − bit) +
∑

i∈{1,N}

ξiL,t(b
i
t − M̃ i)

}
.

The first order condition for consumption is:

uc,t − vx,t + λt(ucc,tct + uc,t + vxx,t(ct + gt)− vx,t)

+ucc,tκ
N∑
j=1

(λt−j − λt)bNt−j + ucc,t
∑

i∈{1,N}

(λt−i − λt)bit−i = 0

and off corners the analogous conditions for b1t and bNt are:

λtEt(uc,t+1) = Et(λt+1uc,t+1)(14)

λtEt(κ
N∑
j=1

βjuc,t+j + βNuc,t+N) = Et(κ
N∑
j=1

βjuc,t+jλt+j + βNuc,t+Nλt+N).(15)

For brevity we summarized the properties of this model in Table 4 in the main text. In Figure

1 of this appendix we show a typical sample of long and short debt (analogous to Figures 6-9 in

the main text). As was claimed in the text, when bonds pay positive coupons the properties of the

model remain very close to the no buyback and zero coupons case.

A.5 Callable Bonds: the Ramsey Program

As explained in Section 2 of the paper the US government issued callable bonds in the past. These

types of securities give the issuer the option to buy them back after m < N years, at every coupon

date, until the bond matures. Their price at buyback is at par. We showed that historically the US

government has repurchased callable bonds at the start of the call window.

In proposing the model of section 7.3, our intention is not to motivate the empirical observations

of why the Treasury chooses to buyback at the first call date. Rather we seek to establish that

removing debt from the market before, but close to, the maturity date is akin to the model of no

buyback and that our findings about the importance of short term debt and the positive comovement

between short and long debt still hold.

This is why we assume that the buyback of the N -year bond occurs automatically m years after

issuance. We keep our calibration N = 10 and we set the recall date m = 5. Notice that a lower m

makes the model closer to the buyback section, since buyback is equivalent with m = 1. If we were

to find that even for a low m the model behaves similar to no buyback, higher m are likely to be

6



Figure 1: Market Value of Short and Long Debt under no Buyback+Coupons
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Notes: The Figure plots a typical sample path from the no buyback model with positive coupons. As
explained in text the value of the coupon κ is calibrated so that bonds trade on average at par. The upper
bound on bNt is given in (13). The lower bound is zero. The value of short term debt in a given period t in
the Figure, is constructed by adding the coupon payments and principals which are to mature in t + 1 to
the market value of one year bonds issued in t.

be even closer to no-buyback. The call window in the data for 10 year bonds starts 2 years before

maturity, suggesting a buyback period of m = 8. Our model choice of a much lower m = 5 means

that if we find that the role for short bonds is close to no buyback this suggests that the same is

likely to happen in practice.

The budget constraint of the government is:∑
i∈{1,N}

pitb
i
t = b1t−1 + pN−mt bNt−m + gt − τt(T − xt).

The ad hoc debt constraints for the N year bond are

bNt ∈

[
MN∑m−1

j=0 β
N−j

,
MN∑m−1

j=0 β
N−j

]
≡ [M̃N , M̃N ].

Letting [M̃1, M̃1] = [
M1

β
, M1

β
] be the analogous constraints for one year debt and substituting the

equilibrium expressions for the tax rate and the bond prices we represent the planning problem as

7



follows:

L = E0

∑
t

βt
{
u(ct) + v(T − ct − gt) + λt

[ ∑
i∈{1,N}

bitβ
iuc,t+i − b1t−1uc,t − bNt−mβN−muc,t+N−m

−gtuc,t + (uc,t − vx,t)(gt + ct)

]
+
∑

i∈{1,N}

ξiU,t(M̃ i − bit) +
∑

i∈{1,N}

ξiL,t(b
i
t − M̃ i)

}
.

The first order conditions for the optimum are given by:

uc,t − vx,t + λt

(
ucc,tct + uc,t + vxx,t(ct + gt)− vx,t

)
+ ucc,t

[
(λt−1 − λt)b1t−1 + (λt−N − λt−N+m)bNt−N

]
βEt(uc,t+1λt − uc,t+1λt+1) + ξ1L,t − ξ1U,t = 0

βNEt(uc,t+Nλt − uc,t+Nλt+m) + ξNL,t − ξNU,t = 0.

We assume M̃1 = M̃N = 0. In Figure 2 we plot a typical sample of the market value of short and

long debt. Notice that assuming that the government repurchases debt from the market m = 5 years

after issuance, does indeed reduce the share of short bonds in the portfolio compared to a model

with no buyback. The portfolio is somewhere between the ‘full buyback model’ studied in the paper

(i.e. when m = 1) and the no buyback model where m = N . In terms of the moments reported

in Table 4 in the paper the model of this section gives us the following: St = 18.5%, σSt = 10.6%,

ρSt,St−1 = 0.88 ρb̃St ,̃bNt
= 0.84 %St=0 = 0.35%.

We view these results as encouraging because they confirm the hypothesis that even if the govern-

ment buys back some of the debt before maturity there is still a role for short bonds. First, because

the share of short debt is very rarely zero in simulations (e.g. %St=0 = 0.35% versus the analogous

figure in the buyback no lending model in the paper of 13%). As we mentioned, the choice of m = 5

is quite conservative. The data suggest that m = 8 would be more appropriate. With m = 8 we

expect the model to generate results very close to the no buyback ones.

This is only a partial study of callable bonds. Clearly, the modelling of callable bonds can be

made closer to the data by introducing that they can be repurchased at par or that transaction costs

are involved in their recall. A model taking all these features into account is beyond the scope of

this paper. However the message that there is still a role for short bonds comes out clearly from the

analysis.
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Figure 2: Market Value of Short and Long Debt under ’Callable’ Bonds
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Notes: The Figure plots a typical sample path from the model of Section A.5. We assume that government
buybacks of 10 year bonds occur 5 years after issuance.
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B Numerical Appendix

In section 4 of the paper we described the ‘Condensed PEA’ that deals with the high dimensionality

of the state vector, and the ‘Forward States PEA’ that deals with the indeterminacy of the portfolio

generated by the use of the PEA. This numerical appendix outlines in greater detail the two methods,

their implementation and the steps we followed to approximate the conditional expectations in the

different models. In particular, we report how we selected the state variables of the core vector, Xcore
t ,

the ‘out’-vector, Xout
t and the order of the polynomials of the states that were used. Moreover, we

report how many linear combinations of state variables were added to the approximations, and also

discuss some practical features of our numerical procedure that can help the algorithm’s convergence.

B.1 Implementation of ”Condensed PEA” and ”Forward states PEA”

B.1.1 Selection of variables in the approximation

Recall that ‘Condensed PEA’ divides the state vector X into two subvectors: the core vector, Xcore
t ,

which includes variables that (we believe a priori) are of primary importance in the approxima-

tion, and the Xout
t vector, which includes the remaining state variables and possibly higher order

polynomial terms. ‘Forward States PEA’ resolved the portfolio indeterminacy issue through approx-

imating Etuc,t+i with Et(Φ
i(Xt+1,γ

i)) and Etλt+1uc,t+i with Et(Ψ
i(Xt+1, δ

i)). To clearly show how

we implemented these two methods, we bring them now together and in what follows we outline the

‘Condensed PEA’ using since the first iteration (i.e. with core state variables only) ‘Forward States’

to solve the portfolio choice.

The Xcore vector:

In all the models presented in the paper, but the 3 bond model, we used the core vector

(16) Xcore
t+1 =

{
1, gt+1, {bit}i=1,N , λt, {(bit)2}i=1,N , {gt+1b

i
t}i=1,N

}
i.e. Xcore

t+1 is composed of a constant, the level of government spending in t + 1, the levels of date t

variables (the bonds and the multipliers), the square of the bonds and the interaction term between

the bonds in t and gt+1.

We solve the system of FONCs after integrating out the term gt+1 as discussed in the text. We

use the analytical formula for the conditional expectation of gt+1 at time t given by:

(17)∫
gt+1fgt+1|gtdgt+1 = ωt+(g−ωt)Φ

(
g − ωt
σε

)
+(g−ωt)

[
1−Φ

(
g − ωt
σε

)]
−σ(

[
φ

(
g − ωt
σε

)
−φ
(
g − ωt
σε

)]
where ωt ≡ ρggt + (1− ρg)gss, Φ (φ) is the standard normal cdf (pdf), g and g are upper and lower
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bounds on government spending2. σε is the standard deviation of the spending shock.3

We have chosen to introduce higher order terms in the core vector for three reasons. First,

approximating the conditional expectations Etuc,t+i means that we are approximating the bond

prices. If we include only the levels of the bonds, {bit}i=1,N , we are imposing that bonds are close

substitutes in terms of their influence on prices.4. This is not a property that we are likely to find in

equilibrium and non-linear terms may be potentially important. Secondly, if the ad hoc debt limits

are occasionally binding this is known to introduce non-linearities so that higher order terms may be

important. Finally the ‘Condensed PEA’ inclusion criterion suggested that these non linear terms

are important for the approximations. Indeed when we solved the models without higher order terms

and tested whether they should be included in the linear combinations, the percentage gains in R2

were substantial. Higher order terms therefore should be included in the polynomials, either in Xcore
t+1

or in Xout
t+1. We ultimately chose to introduce some higher order terms in the core vector and left

others for the linear combinations (see below) finding this helpful for the stability of the algorithm.

The Xout vector:

The ‘out’ vector is different for each of the models presented in the paper. To identify the elements

of Xout we use as guidance the FONC.

2As discussed in the calibration section, we assume that spending fluctuates between 15 and 35 percent of steady
state GDP.

3The expression is reached as follows:∫
gt+1fgt+1|gtdgt+1 =

∫ g−ωt

−∞
gdF (εt+1) +

∫ ∞
g−ωt

gdF (εt+1) +

∫ g−ωt

g−ωt
(ωt + εt+1)dF (εt+1)

= ωt +

∫ g−ωt

−∞
(g − ωt)dF (εt+1) +

∫ ∞
g−ωt

(g − ωt)dF (εt+1) +

∫ g−ωt

g−ωt
εt+1dF (εt+1)

where F denotes the cdf of ε. Standard results give:∫ g−ωt

−∞
(g − ωt)dF (εt+1) =

∫ g−ωt
σε

−∞
(g − ωt)

1√
2π
e−

z2t+1
2 dzt+1 = (g − ωt)Φ(

g − ωt
σε

)

where z is a standard normal variable and Φ is the cdf. Analogously:∫ ∞
g−ωt

(g − ωt)dF (εt+1) = (g − ωt)(1− Φ(
g − ωt
σε

))

Finally, ∫ g−ωt

g−ωt
εt+1dF (εt+1) =

∫ g−ωt
σε

g−ωt
σε

σε
1√
2π
zt+1e

−
z2t+1

2 dεt+1 = −σ(φ(
g − ωt
σε

)− φ(
g − ωt
σε

))

Putting everything together we get (17)
4To see this consider the approximation of Etuc,t+N ≈ γN0 +γN1

∫
gt+1f(gt+1|gt)dgt+1 +γN2 b

1
t +γN3 b

N
t +γN4 λt under

linear polynomials. Clearly there are (infinitely) many pairs (b1t , b
N
t ) that give the same bond price (holding λt fixed).

Notice that the optimal portfolio is nonetheless identified under linear polynomials since bit, i = 1, N influence all
conditional expectations and enter in a nonlinear fashion in the system of FONCs (for example in the budget constraint
of the government).
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Consider first the buyback model. The first order conditions, in the case where S = 1, are

uc,t − vx,t + λt

(
ucc,tct + uc,t + vxx,t(ct + gt)− vx,t

)
+ ucc,t

∑
i∈{1,N}

(
λt−i − λt−i+1

)
bit−i = 0(18)

βiEt

(
uc,t+iλt − uc,t+iλt+1

)
+ ξiL,t − ξiU,t = 0 for i = 1, N.(19)

When markets are incomplete, the term
∑

i∈{1,N}

(
λt−i − λt−i+1

)
bit−i summarises interest rate ma-

nipulation under commitment (see FMOS (2016)). Suppose that a positive spending shock arrives

in period t and that bNt > 0. Since

(
λt−1 − λt

)
bNt becomes negative, the government finds optimal

to promise a tax cut in t+N − 1 and lower the marginal utility of consumption in that period. It is

then evident that the terms λt−1b
N
t and λtb

N
t are important determinants of uc,t+N−1 and uc,t+N and

hence they should be accounted for when we approximate the conditional expectations.5

Applying the above argument to determine which states potentially exert a significant influence

to the expectations of date t+ 1, t+N − 1 and t+N variables in the buyback model, we include in

Xout
t+1 the following terms: λtb

N
t , λtb

1
t , λtb

N
t−1, λt−1b

N
t−1, λt−N+1b

N
t−N+1 and λt−N+2b

N
t−N+1.

Two more comments about this choice are necessary. Firstly, despite the fact that each of

the above terms is potentially important for (some of) the conditional expectations we wish to

approximate, it is unlikely that each term bears the same importance to each conditional expectation.

For example, the term λtb
N
t clearly exerts an influence on uc,t+N (through the FONC) but it is less

likely to exert a significant influence on uc,t+N−1. In this case the ‘Condensed PEA’ will assign a

coefficient close to zero to λtb
N
t in the approximation of Etuc,t+N−1 and a coefficient different from

zero in the approximation of Etuc,t+N . This shows how convenient it is to include these terms in

Xout where having coefficients close to zero for some state variables is not an issue, as opposed to

including them in Xcore, in which case variables with close to zero coefficients may cause convergence

problems.

Secondly, as explained before, (18) suggests that the cross terms between λ and b are potentially

important for the solution. However, one may wonder whether the levels of these variables should

also be included in the state vector. The FONCs show that the influence of λt−N+1 on the optimal

allocation in t + 1 is close to zero if bNt−N+1 is close to zero. The effect of changes in the value

5In the text the implementation of ‘Forward States’ to the buyback model was summarized in the following equations

λt =
Et(Ψ

i(Xt+1, δ
i))

Et(Φi(Xt+1,γi))
for i = S,N(20) ∑

i∈{S,N}

bitβ
iEt(Φ

i(Xt+1,γ
i)) =

∑
i∈{S,N}

bit−1β
i−1Φi(Xt,γ

i) + gtuc,t − (uc,t − vx,t)(gt + ct)(21)

Notice that in (21) we parameterize the term Etuc,t+N−1 as ΦN (Xt,γ
N ). In other words we apply the standard

PEA to this term. An alternative is to define Etuc,t+N−2 = ΦN (Xt,γ
N−1) and then use Forward States to get:

Etuc,t+N−1 = EtΦ
N (Xt+1,γ

N−1). We follow the latter route in the numerical implementation. We therefore write
(21) as follows

b1tβEt(Φ
1(Xt+1,γ

1)) + bNt β
NEt(Φ

N (Xt+1,γ
N )) = b1t−1uc,t + bNt−1β

N−1Et(Φ
N−1(Xt+1,γ

N−1))(22)

+gtuc,t − (uc,t − vx,t)(gt + ct)

i.e. when S = 1 and realizing that Etuc,t = uc,t = Φ1(Xt,γ
1).

The two ways of solving the model are obviously conceptually equivalent.
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of the multiplier is felt more when government debt is high. This nonlinear influence seems to be

(sufficiently) well captured in our specification by the cross terms and not by the levels since, as we

verify in section 7.4 of the main text, we pass accuracy tests.6.

We apply the above selection criterion to the other models. Consider the no buyback model and

its first order conditions and budget constraint:

uc,t − vx,t + λt

(
ucc,tct + uc,t + vxx,t(ct + gt)− vx,t

)
+ ucc,t

∑
i∈{1,N}

(
λt−i − λt

)
bit−i = 0

βiEt

(
uc,t+iλt − uc,t+iλt+i

)
+ ξiL,t − ξiU,t = 0 for i = 1, N∑

i∈{1,N}

bitβ
iEtuc,t+i = gtuc,t + uc,t

∑
1,N

bit−i − (uc,t − vx,t)(ct + gt).

We include in the Xout vector: λtb
N
t , λtb

1
t , λt−N+1b

N
t−N+1, and bNt−N+1, as these appear directly on the

FONC.

Next, consider the no buyback model with coupons. To solve the coupon model we need to ap-

proximate the term
∑N

j=1 β
jEtuc,t+jκ+βNuc,t+N and the term

∑N
j=1 β

jEtuc,t+jλt+jκ+βNuc,t+Nλt+N .

From the FONC of consumption and the government budget constraint (omitted for brevity), it is

easy to show that all the lags of bNt−j and λt−jb
N
t−j, for j = 1, 2, .., N − 1 should be introduced in the

out vector. The Xout vector is therefore composed by: {λt−jbNt−j}N−1j=0 , λtb
1
t , {bNt−j}N−1j=1 .

Similarly, when we consider the callable bond model the Xout vector includes:

{bitλt}i=1,N , λtb
N
t−N+m, λt−N+1b

N
t−N+1, λt−N+mb

N
t−N+1 and bNt−N+m+1, wherem is the repurchase date.

Finally, for each of the above models we include in Xout other higher order terms of date t variables

that have not been included in Xcore. In each approximation we add in Xout the following terms: λ2t ,

(bNt )3, (b1t )
3, bNt b

1
t .

We now consider the optimal repurchases model of section 6.3 in the main text (see a previous

subsection of this online appendix for the FONC of this model). The following expectations need to

be approximated with PEA in this case:

Etξ
R
U,t+1 and Etuc,t+i, Etλt+iuc,t+i, i = 1, N,N − 1

where ξRU,t is the Langrange multiplier on the constraint Rt ≤ bNt−1.

As discussed in the text, one way to reduce the total number of state variables in this model is

to rewrite the state vector as:

(23) Xt+1 =

{
gt+1, Bt, Bλt, {Bnet

t+1−i, Bλ
net
t+1−i}Ni=1, λt−N , b

N
t−N

}
6Recall that Xcore includes the variables λt,b

N
t and b1,t in levels. These first order terms, help us to identify the

portfolio, but combined with their squares, cubes and so on can (practically speaking), explain part of the variability
of some of the cross terms in Xout. To avoid having residuals close to zero from the regressions of Xout on Xcore when
we compute linear combinations, we use an additional selection criterion that we describe in the next subsection.
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where

Bnet
t ≡ bNt−1 −Rt

Bt ≡ bSt +Bnet
t−N+2

Bλnett ≡ λt−1(1− T N)bNt−1 + λt(1 + T R)Rt

Bλt ≡ λt(1− T 1)b1t +Bλnett−N+2.

As we did for the previous models we chose Xcore and Xout in the optimal repurchase model to

include the state variables which appear in the FONC and which therefore exert a direct influence

on the conditional expectations. We specified Xcore as in (16) and Xout as follows:

(24) Xout
t+1 =

{
{bitλt}i=1,N , b

N
t−N+1 −Rt−N+2, (bNt−N+1 −Rt−N+2)λt−N+1, Rt−N+2λt−N+2

}
.

Given the specification of Xout
t+1 (and that of Xcore

t+1 ) the terms Bt, Bλt,
(
Bnet
t+1−i, Bλ

net
t+1−i

)N
i=1

appear

in the approximations. For example Bt = b1t + bNt−N+1 − Rt−N+2 and Bnet
t−N+2 = bNt−N+1 − Rt−N+2

are part of the state vector, but we have chosen to separate the terms b1t and bNt−N+1 − Rt−N+2 in

the approximations assigning b1t to the core and bNt−N+1 −Rt−N+2 to the out vector. We did this for

convenience and most importantly to be able to use as an initial guess for our approximation the

solution of the no buyback model.

Moreover, notice that though in principle we could introduce Rt as a variable in Xcore,7 this is

not necessary to identify the optimal path of Rt. Since this is a model where the government can

repurchase only after one period and we assume positive transaction costs, we do not need Rt in the

core states to determine the portfolio.8

Finally notice that in Xcore and Xout, the bond and repurchases variables are not multiplied by

transaction costs. Since these variables (mostly) enter separately in the approximations and since

the costs T are small, this does not influence the properties of the solution.

Let’s now turn to the model with three bonds. When the government issues debt in three maturities

(1 < M < N) under no buyback the FONC are given by:

uc,t − vx,t + λt

(
ucc,tct + uc,t + vxx,t(ct + gt)− vx,t

)
+ ucc,t

∑
i∈{1,M,N}

(
λt−i − λt

)
bit−i = 0

βiEt

(
uc,t+iλt − uc,t+iλt+i

)
+ ξiL,t − ξiU,t = 0 for i = 1,M,N∑

i∈{1,M,N}

bitβ
iEtuc,t+i = gtuc,t + uc,t

∑
1,M,N

bit−i − (uc,t − vx,t)(ct + gt).

We need to approximate now 6 conditional expectations. We specify the ‘core’ and ‘out’ vectors as

7From (23) we know that bNt−1 − Rt is a state variable. However, this will not appear in the FONC in periods
t+ 1, t+N, t+N − 1 and for this reason we dropped it from the core state vector and from the out vector (24).

8In other words Rt can still be identified through the budget constraint or through the nonlinear transaction costs.
Had we allowed the government to repurchase more than once and if the transaction costs were assumed independent
of (the vector in the case of many repurchases) R we would need the control variables R to be in Xcore in order to
solve the model.

Moreover, since Rt is always close to zero introducing it as an independent variable in the core vector leads to
convergence problems. We discuss this further below.
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Table 1: Variables used in approximations

Xcore Xout total
common var. ad hoc

BB
{bitλt}i=1,N , λtb

N
t−1,

λt−1b
N
t−1, λt−N+1b

N
t−N+1,

λt−N+2b
N
t−N+1

19

NBB
{bitλt}i=1,N ,

λt−N+1b
N
t−N+1, b

N
t−N+1

17

coupons

1, gt+1, {bit}i=1,N ,

λt, {(bit)
2}i=1,N ,

{gt+1b
i
t}i=1,N

{(bit)
3}i=1,N ,

λ2t , b
N
t b

1
t

{λt−ibNt−i}N−1i=0 ,
λtb

1
t , {bNt−i}N−1i=1

30

callables
{bitλt}i=1,N , λtb

N
t−N+m,

λt−N+1b
N
t−N+1, λt−N+mb

N
t−N+1

bNt−N+m+1

19

repurchases
{bitλt}i=1,N , b

N
t−N+1 −Rt−N+2

(bNt−N+1 −Rt−N+2)λt−N+1

Rt−N+2λt−N+2

18

3 bonds
1, gt+1, {bit}i=1,M,N ,
λt, {(bit)2}i=1,M,N ,
{gt+1b

i
t}i=1,M,N

{bitλt}i=1,M,N , λ
2
t ,(

bMt
)3
, b1t b

M
t , b

M
t b

N
t

{bit−i+1}i=M,N , {bit−i+1λt−i+1}i=M,N

26

follows:

Xcore
t+1 =

{
1, gt+1, λt, {bit}i=1,M,N , {(bit)2}i=1,M,N , {gt+1b

i
t}i=1,M,N

}
Xout
t+1 =

{
{bitλt}i=1,M,N , {(bit)3}i=1,M,N , {bitbkt }i,k∈{1,M,N},k 6=i, λ

2
t , {bit−i+1}i=M,N , {bit−i+1λt−i+1}i=M,N

}
Therefore we have 12 variables in the core vector and 14 variables in the out vector.

Table 1 summarises the previous discussion on our choices for Xcore and Xout.

B.1.2 An R2 selection criterion for the elements of Xout

Once we have chosen the composition of Xcore and Xout, we apply the following procedure:

1. We first regress each variable Xout
j on Xout

−j and Xcore and compute the R-square of the regres-

sion, R2
j .

2. We find the variable k with the highest R2
k, that is k = arg maxj∈{1,2,...,length(Xout)}{R2

j}. If

R2
k > 0.995 we set the coefficient α1

k = 0. In other words, we set the coefficient of this variable

in the first linear combination (and in all approximations) equal to zero.

3. We repeat Steps 1 and 2 removing the excluded variables from Xout until R2
k < 0.995.

4. We apply the ‘Condensed PEA’ to find the coefficients γi,f and δ
i,f

, i.e. the new fixed point in

the model, with the first linear combination of the elements of Xout which ‘survive’ Steps 1-3.

5. When we recover γi,f and δ
i,f

, we repeat steps 1-4 to determine which of the variables in Xout

have a non-zero coefficient in the second linear combination. We apply this procedure to all

linear combinations we include to the model.
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To understand why the above criterion is useful notice that when R2
j > 0.995, most of the

variability of Xout
j is either explained by the core state variables and/or Xout

j is highly correlated

with other variables in Xout. In the first case the residuals of the regression of Xout
j on Xcore (required

to estimate the linear combination) will be close to zero so that the variable does not add almost

anything to the approximation. In the second case, the residuals will be highly correlated with the

residuals of other Xout variables. In both cases estimating the coefficients α becomes problematic

and the convergence of the model with linear combinations becomes more difficult. Since a high R2
k

denotes that the k−th variable is redundant, it helps the algorithm to converge if its coefficient is

set to zero beforehand.

Number of linear combinations used in the approximation

Tables 2 to 4 summarize the number of linear combinations we add to the approximations of

some of the models considered in the paper. Consider first Table 2 which reports the results for the

buyback models (under ‘no lending’, top panel and under ‘lending’, bottom panel).

As described in the text, a new linear combination is added when it reduces significantly the

residual sum of squares obtained from the regression of uc,t+i, (for instance) on Xcore and the linear

combinations which were added in the approximation in previous rounds. Our criterion is based on

the percentage gain in the coefficient of variation R2 we get when we add the new linear combination.

The rows in the table summarise the gains in R2 for each linear combination. R2
aug is the value

of the coefficient of variation we obtain when we include an additional linear combination to the

model. R2
old the coefficient of variation without the additional linear combination. The row labeled

LC1 corresponds to the ’Condensed PEA’ test when we solve the model only with the Xcore variables

and test the inclusion of the first linear combination. LC2 tests the significance of the second linear

combination and so on.

We add a further linear combination to an approximation when

R2
diff =

R2
aug −R2

old

R2
old

∗ 100 > 0.05,

in other words when the gain in R2 is greater than 0.05 percent.

As Table 2 shows the buyback model under ‘no lending’ requires one linear combination. The

approximations of Etuc,t+1 and Etuc,t+N−1 include a linear combination in the first round and the

approximation of Etuc,t+1λt+1 includes one in the second round. In the buyback ‘lending’ model the

importance of the Xout variables is limited and so this model does not require any linear combinations.

Table 3 reports the analogous findings in the no buyback models and Table 4 for the case of

coupons. Each of these models is solved with linear combinations.
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Table 2: Linear Combinations: Buyback Model

BuyBack ’no Lending’

uc,t+1 uc,t+N uc,t+N−1 uc,t+1λt+1 uc,t+Nλt+1

R2
aug−R2

old

R2
old

∗ 100
LC1 0.0757 0.0169 0.1677 0.0441 0.0258

LC2 0.0026 0.0228 0.0043 0.0547 0.0417

LC3 0.0259 0.0232 0.0234 0.0060 0.0308

Total 1 0 1 1 0

BuyBack ’Lending’

R2
aug−R2

old

R2
old

∗ 100 LC1 0.0081 0.0451 0.0403 0.0385 0.0322

Total 0 0 0 0 0

Note: The table shows the number of linear combinations in the buyback models (’no lending’, top panel
and ’lending, bottom panel). The columns list the conditional expectations we approximate in these models.
The rows report the percentage gains in R2 from adding a further linear combination to the model. Hence
row LC1 shows the gains when we compare the regressions with Xcore only (R2

old) to the regressions with
Xcore and one linear combination (R2

aug.) In row LC2 R
2
old derives from a regression on Xcore and the first

linear combination and R2
aug adds a second linear combination and so on.

We denote in bold values of
R2
aug−R2

old

R2
old

∗ 100 which exceed the 0.05 threshold (above which we introduce an

additional linear combination to the model).

Table 3: Linear Combinations: No-Buyback model

uc,t+1 uc,t+N uc,t+1λt+1 uc,t+Nλt+N

No BuyBack ’No Lending’

R2
aug−R2

old

R2
old

∗ 100
LC1 0.0173 0.0166 0.0561 0.0646

LC2 0.0578 0.0112 0.0109 0.0035

LC3 0.0002 0.0194 0.0058 0.0001

Total 1 0 1 1

No BuyBack ’Lending’

R2
aug−R2

old

R2
old

∗ 100
LC1 0.0194 0.0590 0.0342 0.1448

LC2 0.0167 0.0007 0.0140 0.0006

Total 1 0 0 1

Note: The table shows the number of linear combinations in the no buyback models (’no lending’, top panel
and ’lending, bottom panel). See Table 3 for details.
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Table 4: Linear Combinations: No-Buyback Model with Coupons

uc,t+1 qc,t uc,t+1λt+1 qλc,t

No BuyBack Coupons

R2
aug−R2

old

R2
old

∗ 100
LC1 0.0067 0.0154 0.0213 0.0654

LC2 0.0048 0.0108 0.0077 0.0011

Total 0 0 0 1

Note: The table shows the number of linear combinations in the no buyback model with coupons. See Table
3 for details. We define qc,t ≡

∑N
j=1 β

juc,t+jκ+ βNuc,t+N and qλc,t ≡
∑N

j=1 β
juc,t+jλt+jκ+ βNuc,t+Nλt+N .
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The picture is similar when we consider the models not included in the tables: the callable bonds,

three maturities and the model with optimal repurchases. The callable bond model needs one linear

combination to be added to get accurate solutions. For the three maturities model we find that Xcore

is sufficient and therefore we do not include any linear combinations. The optimal repurchase model

requires two linear combinations to be accurately solved. The first linear combination is introduced

to the approximations of Etuc,t+iλt+i, i = 1, N,N − 1 and Etξ
R
U,t+1. The second linear combination

is introduced to the approximation of Etuc,t+1.

B.2 Some practical features of the numerical implementation

B.2.1 Dealing with occasionally binding constraints on debt

As explained in the main text, we impose an upper and lower bound on the issuance of short and long

bonds. In a two bond model we have in total four constraints. These constraints are only occasionally

binding and in theory we could use the approach explained, for example, in Marcet and Singleton

(1999) to deal with them. Suppose that the government can issue only one bond, whatever the

maturity. Marcet and Singleton suggest for every period t first to solve the unconstrained problem

and check whether one of the debt constraints is violated. If it is violated, the value of the bond is

set equal to the value of the debt limit and ct and λt are recalculated accordingly.

Unfortunately, this cannot be easily applied in the case of more than one maturity because of the

number of constraints involved. If one of the constraints is violated when solving the unconstrained

problem, we need to verify that forcing the constraint is not going to generate a violation of one of

the constraints on the other bond. This problem presents too many cases to be checked one by one

and the computational burden increases considerably when an additional maturity is introduced to

the model. For this reason we impose the following (quadratic) costs when the bonds violate the

limits in the buyback model:

C(bit) =


φ1
2

(
bit − M i

βi

)2
bit >

M i

βi

φ1
2

(
M i

βi
− bit

)2
bit <

M i

βi

0 otherwise

for i = 1, N . φ1 governs the penalty from deviating from the debt limits
M i

βi
and M i

βi
. We choose a

value of φ1 equal to unity. Analogous cost functions are used in the no buyback and coupons models,

the debt limits have to be adjusted in these cases as described in text.

In the optimal repurchase model we have an additional constraint on the level of repurchases:

0 ≤ Rt ≤ bNt−1. In this case we continue to impose C(bit) for i = 1, N however we use Marcet and

Singleton’s approach to deal with this extra constraint. When R violates a limit (either because

Rt < 0 or Rt > bNt−1) we fix the value of Rt to the constraint and solve the FONC to determine the

optimal portfolio and the value of the multipliers, ξRL,t and ξRU,t.

B.2.2 Initial conditions and sample size
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In order to generate a more precise approximation of the policy functions over the debt space we use

PEA with oversampling. We choose 25 different initial conditions for the debt levels b1−1 and bN−j,

where j = 1, 2, ..N − 1 uniformly distributed in the interval
[
M i

βi
, M i

βi

]
(e.g. in the buyback model).

We draw 10 samples of 500 periods for each initial condition. The total number of observations is

then 125000.

Given the initial conditions for the portfolio, we also need to specify some initial values for

the λ’s. For this purpose we recover initial values λ−N = ..., λ−1 that would be consistent with

the deterministic steady state. As is well known in steady state the debt level in these models is

indeterminate and so we can obtain a different λ (consistent with a different c) for each bond vector.

Under no buyback we obviously need to set bN−1 = bN−2 = ... = bN−N+1 to be in steady state.9

B.2.3 Rescaling

To improve the stability of the algorithm, we rescale the variables which enter in Xcore and Xout. For

example we use
bit
Mi
βi

and λt−λs
λs

instead of bit and λt. This is applied to every lag of the independent

variables used in the approximation. We also rescaled the dependent variables in the PEA regressions

by their steady state values such that their means are close to one in the approximations. For example,

we regress uc,t+1

usc
and uc,t+1λt+1

uscλ
∗ on Xcore and the linear combinations, to obtain the approximations of

Et

(
uc,t+1

usc

)
and Et

(
uc,t+1λt+1

uscλ
∗

)
respectively. The same is done for the other expectations.

Rescaling is useful because some of the coefficients could be very small without it. For example,

consider the buy back no lending model; bNt can fluctuate in simulations between 0 and M i

βi
≈ 117

and its square between 0 and 1172. It is obvious that the estimated coefficients of these terms may be

close to zero. This makes it difficult to find a reliable convergence criterion for the model.10 Through

rescaling the state variables fluctuate between 0 and 1. This improves significantly the stability of

our algorithm (see also Judd et al (2011)).

B.2.4 Convergence of PEA - Finding Good initial conditions for the coefficients

Den Haan and Marcet (1990) show that PEA does not guarantee convergence. Convergence is more

likely if we use good initial conditions for the coefficients. This is even more necessary in the context

9Notice that since sample sizes are sufficiently long (500 observations) our results do not change when we set
λ−1 = λ−2 = ... = 0.

10To see this, denote the coefficient of variable bNt in the approximation of Etuc,t+i by γi3. Let γi3,1 be the update

of this coefficient and γi3,0 the initial value. If we use a stopping rule

Converge if
|γi3,1 − γi3,0|
|γi3,0|

< ε(25)

and γi3,1, γ
i
3,0 ≈ 0, then the behavior of (25) will be very erratic (both very high and very low values are possible, and

this does not tell us much about convergence of the model’s quantities). Analogously, if we use the convention

Converge if
|γi3,1 − γi3,0|
1 + |γi3,0|

< ε(26)

for some ε, then the algorithm may (wrongly) converge after a few iterations.
In our codes we employ the criterion (26), but since the variables are rescalled, we are sure that coefficients which

are small in values, do not matter much for the optimal policy.
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of the optimal portfolio problem under incomplete markets. If the initial coefficients constitute a

very poor guess of the equilibrium of the model, then the algorithm may circle for a long time and

subsequently diverge.

Good initial conditions for portfolio choice models can be obtained as follows:

1. Solve portfolio models with positive transaction costs.

For example consider solving the Ramsey problem under buyback subject to the following

government budget constraint:

∑
i=1,N

pitb
i
t =

∑
i=1,N

pi−1t bit−1 + gt −
(

1− vx,t
uc,t

)
(ct + gt) +

∑
i=1,N

ωi(b
i
t)

2

where ωi(b
i
t)

2 is a transaction cost paid by the government at issuance. It is obvious that in

this model the optimal portfolio is determinate (even with the conventional PEA). In the limit

when ωi → 0 we obtain the buyback model considered in this paper, if ωi → ∞ there is no

trade in bonds. Hence, good initial conditions can be found from solving models with positive

transactions costs and gradually reducing ωi till 0.

2. Solve models under tight debt limits and gradually loosen them.

We found that models with tight debt constraints converge more easily than models with looser

ones. Generally speaking, models with very loose debt constraints can converge to a wrong

equilibrium which features for example a constant λ as in the case of complete markets. This

holds in particular because running the models with samples of 500 observations may imply

that the debt limits are rarely hit, if they are very loose.11 Moreover, when the bounds are

loose, poor initial conditions may make the PEA circle or diverge. Assuming tight bounds

helps the algorithm converge. The converged coefficients can then be used as initial conditions

for models with looser bounds and so on.

B.2.5 Calculating the sample moments

As discussed in the text, to compute the moments reported in Table 4 in the paper, we simulated

the model 1000 times using as initial conditions the values of St and the market value of debt, we

recovered from the data. In 1955 the share of short debt equaled 39% and the initial debt to GDP

ratio was 38% in the CRSP sample.

We then computed the values b1−1 and bN−j, j = 1, 2, .., N in the deterministic steady state such

that the initial share and market value of debt are consistent with these targets. For example in the

11To see this, consider the following example: Suppose that the initial guess for the polynomials is Etuc,t+i =
γi0 + γi1Etgt+1 + γi2b

1
t + γi3b

N
t and Etλt+1uc,t+i = λ∗Etuc,t+i. Then, under very loose bounds (e.g. −M i = M i = ∞)

for every t we get λt = λ∗ as a solution to the system of FONC, as in the case of complete markets.

Under tight bounds however, it is likely that bit = Mi

βi or bit =
Mi

βi for some t, and in this case the condition

λt =
Etuc,t+iλt+1

Etuc,t+i
does not hold. λt is recovered from the FONC of consumption and generally it will be that λt 6= λ∗.

This introduces variability in λt.
A similar argument, showing the importance of ‘moving bounds’ for convergence in the PEA, was made by Maliar

and Maliar (2003).
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buyback model we have

βb1−1
βb1−1 + βNbN−1

= 0.39 βb1−1 + βNbN−1 = 0.38 ∗ 70

The analogous expressions for the other models are omitted for brevity.

Given the initial conditions for the bonds, we found the initial values of c and λ to satisfy the

FONC of consumption and the government budget constraint in the deterministic steady state.

We then simulated the models and computed the market value of government debt and the share

of short bonds. Notice that whereas in the buyback models to construct the market values for short

and long bonds it is sufficient to use the approximations of Etuc,t+1 and Etuc,t+N , in the no buyback

model this is not the case. In particular we need to compute the value of non-matured debt in

period t. This requires all the prices pjt for j = 2, 3, ..., N − 1. Since these prices do not affect

the equilibrium properties of optimal allocations, we computed the approximations through simple

regressions of uc,t+i on Xt+1 once our algorithm has converged.12

Finally, note that because the model is solved with quadratic costs if the debt limits are violated,

as described in subsection B.2.1, the market value of government debt can become (slightly) negative

in the no lending models, in some periods and samples. The statistics reported in Table 4 in the

paper are calculated after dropping samples where the market value becomes negative in ’no lending

models’. For the same reason in order to avoid having a negative share of short debt in simulations

(if say b1t < 0, bNt > 0) or greater than unity (i.e. when bNt < 0, b1t > 0) , we computed the moments

using min{max{St, 0}, 1} in the no lending models: we forced the share to be equal to zero when it

was negative and 1 when it exceeded unity. This adjustment obviously was much more frequent in

the buyback ’no lending model’ than in the no buyback model.13

B.2.6 Some limitations of the PEA

We cannot claim that the numerical algorithm we propose in this paper can solve every portfolio

choice problem under incomplete markets. To make this point, we describe here a few cases where

the approximation of conditional expectations under ‘Forward States’ may not compute accurately

equilibria with multiple assets.

The first noteworthy difficulty of our methodology is that as the number of assets increases the

optimal allocation may be close to the complete markets’ one. Recall that in this case the portfolio

and the multiplier λ are constant through time. Clearly, such equilibria cannot be approximated with

polynomials of the form Etuc,t+i = γi0 + γi1Etgt+1 + γi2b
1
t + γi3b

N
t + γi3λt + ...; if the RHS variables are

roughly constant, the estimation of the polynomial coefficients will not be reliable. Our algorithms

are designed to deal with cases where markets are incomplete, this involves either few assets, or tight

debt constraints or both.

12In these regressions we used all bonds and cross terms bNt−j and bNt−jλt−j j = 0, 1, ..., N−1 as independent variables.
We do not use the ‘Condensed PEA’ to approximate the bond prices since these approximations are performed

when the algorithm has converged and thus the algorithms convergence properties do not depend on them.
13Recall that one of the main findings of the paper is that under no buyback long and short debt levels comove

strongly. This property also holds for the issuances b1t and bNt . It is therefore rare that b1t is slightly negative and
bNt > 0. If this occurs in our simulations it is likely that the overall market value is slightly negative in which case the
sample is dropped as described previously.

However, under buyback and no lending, we frequently have bNt >> 0 and b1t ≈ 0 so that small negative values of
short debt can occur. In these cases we set the short term share to 0.
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Second, even under incomplete markets if the government can trade three or more maturities we

cannot rule out equilibria where some of the assets are roughly constant over time (and thus stable

coefficients for the polynomials are hard to obtain). To see this assume that in the buyback model the

government issues three different maturities: 1 year, M year and N year bonds where 1 < M < N .

To take advantage of fiscal hedging the government will likely adopt the following debt management

strategy: set b1t =
M1

β
< 0, bNt = MN

β
> 0 and use bMt to finance deficits and surpluses over the

business cycle.14 Therefore the values of b1t and bNt will be roughly constant over time and thus it

will be difficult to construct approximations of the conditional expectations when the polynomials

contain b1t and bNt as state variables.

Third, (we found that) it is not as easy to solve models where the government issues bonds of

maturities close to one another (e.g. 1, 9 and 10 years or 1, 2 and 10 years) as it is to solve models

where maturities are further from one another (e.g. 1, 5 and 10 years). As we have seen, no buyback

models give us portfolios where all issuances have the tendency to comove strongly, however, when

bonds are close substitutes, asset prices also comove strongly and so portfolios are difficult to pin

down. The algorithm then tends to circle without converging.

Note that these difficulties are not relevant if the goal is to solve models with multiple assets and

realistic frictions (e.g. imperfect substitutability among the assets). Small transaction costs, bond

clienteles and preferences for short term (safe) assets, will give well defined demand curves for each

maturity and these are realistic features of government debt markets. Our methodology is therefore

broadly applicable to solve models with many assets, the limitations described in this subsection

arise because our model is a simplistic one and abstracts from several realistic frictions.

B.3 Accuracy of the solutions

To check the accuracy of the solution of each model we compute the Euler Equation Errors (EEE)

generated by our approximations (see for example Arouba et al (2006) for an exhaustive description

of the methodology). Essentially this methodology checks that first order conditions hold with an

acceptable degree of precision at many points in the state vector.

In particular, the test requires to numerically calculate each conditional expectation in the Euler

equations. Ours is not a routine application of the standard accuracy test because we have expec-

tations up to N leads, so the exact integration is not feasible. We use Monte Carlo integration to

approximate the expectation integrals. In practice we draw 250 shock samples (for 25 initial condi-

tions of public debt with 10 samples for each initial condition) of 450 periods each. We then simulate

each model using our approximations. We discard the first 200 periods of each sample, and for each

subsequent period 15, t, we draw k = 10000 different shock paths of length N , the number of leads

in the conditional expectations. We simulate our model for each shock path separately using our

approximated policy functions and initial states given by the allocation in t. We then compute the

conditional expectations as the mean over the k samples. For example for the buy back and no buy

14If the debt limits on bMt are sufficiently loose, this strategy is feasible.
15For the 3 bond model we check the errors every 5 periods. This choice was made for computational purposes

because in this model we have 125 initial conditions and 10 samples per initial condition.
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back models we compute:

Ξt,1 = Et

(
uc,t+1

)
=

∑k
i=1 u

i
c,t+1

k

Ξt,2 = Et

(
uc,t+N

)
=

∑k
i=1 u

i
c,t+N

k

Ξt,3 = Et

(
uc,t+1λt+1

)
=

∑k
i=1 u

i
c,t+1

λi
t+1

k

ΞNBB
t,4 = Et

(
uc,t+Nλt+N

)
=

∑k
i=1 u

i
c,t+N

λi
t+N

k
or ΞBB

t,4 = Et (uc,t+Nλt+1) =

∑k
i=1 u

i
c,t+N

λi
t+1

k

Since we have two Euler equations, we check separately each of them, calculating the value of

the multiplier in period t implied by the expectations Ξt, given the portfolio b1,t, bN,t
16. In theory we

could stop here and check the difference between the implied multiplier and the one generated by

our simulation. However it is difficult to give an intuitive economic interpretation of this difference.

Following the literature we then state our results in terms of of consumption deviations. To do this

we calculate the implied consumption error using the FONC of ct, given the implied multiplier.

In particular we compute the following quantities:

EEE1
t =

c̃1
t
− ct
c̃1
t

EEEN
t =

c̃N
t
− ct
c̃N
t

where c̃t is the consumption implied by the new approximation of the expectations, Ξt, and ct the

one implied by our approximation. We compute the average EEE across all samples and initial

conditions, the maximum error and the percentage of positive and negative errors. We average over

62500 errors.

As in Aruoba et al. (2006) we report the absolute errors using base 10 logarithms to make our

findings comparable with the rest of the literature. A value of -3 means a 1$ mistake per 1000$, a

value of -4 a mistake of $1 per $10000 and so on. Table 5 reports the results.

Table 5 shows that the average of the errors are between -3 and -4, that the percentage of positive

errors is close to 50% and that the maximum errors are not large. Moreover, we find that it is quite

unlikely that the region of the state space where the maximum error occurs is visited in simulations.

These results are well within the range accepted by other authors (e.g. Aruoba et al (2006)). This

suggests that the model solutions are accurate.

B.4 Shadow Cost Calculations

In section 6.2 of the paper we presented the results of an approximate ”shadow cost” calculation of

the loss in utility due to transaction costs. In this section we give details on how we proceeded in

16Since the optimal portfolio is determined through ’Forward States’ it is not possible to use objects Ξt,i to deter-
mined new values of b1,t, bN,t.
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Table 5: Euler Equation Errors

BB NBB
lending no lending lending no lending coupons callable repurch. 3 bonds

ave -3.97 -3.72 -3.84 -3.86 -3.89 -3.92 -3.84 -3.77
EEE1 max -2.30 -2.28 -2.50 -2.64 -2.60 -2.51 -2.79 -2.32

%+ 0.41 0.51 0.48 0.44 0.43 0.44 0.48 0.51
ave -3.18 -3.06 -3.53 -3.51 -3.30 -3.75 -3.18 -3.62

EEEN max -1.81 -1.93 -2.55 -2.47 -1.99 -2.49 -2.12 -2.74
%+ 0.50 0.54 0.54 0.49 0.57 0.49 0.61 0.42

-3.23
EEEN−1 -1.94

0.40
ave -3.59

EEEM max -2.30
%+ 0.58

our calculations. As explained in the text we seek to find:

χ =
UBB − UNBB

T otalBB − T otalNBB

where U i = E0

∑∞
t=0 β

t [u(cit) + v(xit)] denotes the total welfare for each model i = BB,NBB.

T otali = E0

∑∞
t=0 β

t
(
λitu

i
c,t + vix,t

)
T otit is the total shadow transaction cost of buyback or no buyback

in term of utility where T otit is the total transaction cost at time t for the optimal portfolio.

We then calculated numerically the four elements that determine χ using a mix of short and long

run simulations in order to have a good approximation of the infinite sums. Let’s take for example

UBB = E0

∑∞
t=0 β

t
[
u(cBBt ) + v(xBBt )

]
. In order to approximate this term we first run a long simula-

tion of the buyback model with 100000 periods and calculated UBB
L,t

=
∑T

t=t β
t−t [u(cBBt ) + v(xBBt )

]
for every t = 1, ..., T , where T = 100000. Starting from T = 100000 we defined UBB

L,T
= U

BB

1−β where

U
BB

is the average of u(cBB) + v(xBB) over the entire simulation. Then, iterating backwards one

period we got UBB
L,T−1 = u(cBB

T−1) + v(xBB
T−1) + βUBB

L,T
. We continued to obtain UBB

L,t
up to t = 1.

After dropping the first 100 and the last 2000 periods, we regressed the generated sums on

b1t−1, b
N
t−1, .., b

N
t−N , λt−1, .., λt−N and gt. This gave us an approximation f(b1t−1, b

N
t−1, .., b

N
t−N , λt−1, .., λt−N , gt)

of the conditional expectation of UBB in t based on the long run simulation. We used this as an ’end

point’ in the short run simulations.

The short run simulations were carried out as follows: We simulated our models 10000 times

for 100 periods starting from the same initial condition. Continuing with the previous example of

the buyback model, we calculated UBB
S,i =

∑100
t=1 β

t
[
u(cBBt,i ) + v(xBBt,i )

]
+ β101UBB

L,i for every sample

i = 1, ..., 10000 where UBB
L,i = f(b1100,i, b

N
100,i, .., b

N
100−N,i, λ100,i, ..., λ100−N,i, g100,i). Our approximation

of UBB is the average of UBB
S,i over the 10000 samples.

The above procedure was repeated for all four elements of χ, calibrating the transaction costs as

explained in section 6.1 of the paper.
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