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Abstract

We study global games of regime change within networks of truthful communication.

Agents can choose between attacking and not attacking a status quo, whose strength is

unknown. Players share private signals on this state of the world with their immediate

neighbors. Communication with neighboring players introduces local correlations in poste-

rior beliefs and also allows for the pooling of information. In order to isolate the latter effect,

we provide, as a methodological contribution, sparseness conditions on networks that allow

for asymptotic approximations that eliminate covariances from equilibrium strategies. We

ask how changes in the distribution of connectivities in the population affect the types of

coordination in equilibrium as well as the likelihood of successful rally. We find that without

a public signal strategic incentives align, and the probability of success remains indepen-

dent of the type of network. With a public signal the distribution of degrees unambiguously

affects the probability of success, although the direction of change is not monotone, and

depends crucially on the cost of attack.
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1 Introduction

Important features of political and economic life are determined by the coordinated movement

of large numbers of individuals. The Arab Spring or the sub-prime crises, for instance, are fasci-

nating for the great power of many concentrated (and otherwise negligible) individual decisions.

In these environments, individuals’ payoffs depend on the share of other individuals that are

simultaneously choosing to act a certain way. Moreover, in the case of political uprisings or

currency attacks, payoffs respond discretely, and only jump once a sufficient amount of people

have coordinated. These type of situations describe frameworks of regime change.

Global games of regime change describe coordination games of incomplete information in

which the status quo – i.e. a currency peg, a bank’s balance sheet, or a political regime, – is

abandoned when a sufficient fraction of the population attacks it. So far, most previous work

has treated the population as an infinite, homogeneous, mass of individuals, each with a private

noisy signal of the fundamentals, abstracting from the potential patterns of communication

that admittedly exist amongst individuals (See for instance: Angeletos et al. (2006), Bueno de

Mesquita (2010), and Edmond (2013)). In this paper we propose a new approach to introduce

networks of information transmission within this class of games. We show that the network

structure imposes important considerations on the outcomes of the game.

Our model assumes a population of individuals connected according to a given (and fixed)

network, each with an independent noisy signal on the underlying strength of the status quo. The

state of the world describes the minimal fraction of individuals that are necessary for regime

change. We assume that players observe the signal realization of their neighbors – including

themselves – but do not observe the private information of others in the population. Each agent

can then either choose to attack or not attack the status quo. Attacking can yield a positive

payoff, if regime change is successful, or a negative payoff, if it is not. Not attacking always

yields a 0 payoff. Payoffs are discontinuous both in the state and other players’ actions so that

the payoff structure does not exhibit strategic complementarities in the strict sense.

This model describes a game of incomplete information where the level of informational asym-

metry corresponds to the underlying network structure, which is fixed. At the extreme, in which

everyone is connected, information is symmetric and the structure of the game is common knowl-

edge. However, the information structure also implies that players’ posterior beliefs are locally

correlated: if player i′s signal moves, so too do the beliefs of all neighbors of i, even if they

are not directly connected. This means that certain signals are more "valuable" than others in
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coordinating individuals. At the extreme, if one player is connected to everyone, then her signal

may be used as a coordinating device. In this sense, players’ strategies cannot simply take a

simple average of all incoming signals and attack if the resulting value is below some threshold.

Instead, strategies may trade-off between two signals in a non-linear fashion, thus complicating

the analysis. As in Bueno de Mesquita (2010)’s analysis of political vanguards, this paper also

analyzes models of regime change with non-uniform populations, where the asymmtery is not in

the payoff structure, but rather in individuals’ network position.

To avoid dealing with intractable correlation effects that plague the system for a generic class

of networks, we focus instead on networks where each agent’s neighborhood is sufficiently small

relative to the entire population, such that these correlation effects are negligible. In the end,

we are left with an infinite population split into various partitions of varying connectivity (or

degree) and therefore of varying precision in their private information. We identify the degree

distribution of the network as a crucial determinant of individual strategies and aggregate be-

havior, and compare the equilibrium outcomes for various degree distributions ranked according

to different measures of Stochastic Dominance. Moreover, we present some results on uniqueness

of equilibrium that relate meaningfully to previous models with a homogeneous population.

In the case of a diffuse common prior (i.e. no public information) we prove that the probability

of successful regime change does not vary with the degree distribution: As remarked by Vives

(2005), Ashworth and Bueno de Mesquita (2006) and others, maximal strategic uncertainty with

respect to others’ behavior induces "flatter" best response so that individuals are less concerned

with the aggregate composition of the population. It turns out that each individual responds to

common beliefs about aggregate behavior by selecting a threshold strategy commensurate with

the probability that their private signal zis extreme. This implies that players with smaller tails

in their private signals compensate by selecting larger thresholds at exactly the proportions that

offset any differences across individuals. As a result, everyone in the population (regardless of

their degree) is equally propense to attack the regime, so that altering the proportion of highly

connected individuals does not affect the aggregate share of belligerents. This does not mean,

however, that all equilibria are identical. While the success probability remains unchanged, the

size and composition of attacks conditional on success/failure indeed respond to the varying

connectivity of the population. Populations with a larger (smaller) share of highly connected

individuals will exhibit larger (smaller) successful attacks and smaller (larger) failed attacks.

Introducing public information has important implications for equilibrium outcomes: the de-

gree distribution becomes an instrumental determinant of the success probability, albeit with
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surprising considerations. It turns out that the cost endured by attackers in the event of failure

defines the direction of the comparative statics and sheds some light into the strategic inter-

actions of a population with varying informativeness of the relevant state of the world. When

costs are sufficiently low, increasing the connectivity of the population (by way of First Order

Stochastic Dominance) actually lowers the success probability. The opposite is true for suffi-

ciently high costs. This surprising result reflects the fact that less informed individuals place

less weight on their private signal and respond more to aggregate behavior. As costs fall less

connected individuals increase their propensity to attack far more than more connected agents.

Moreover this difference increases and becomes arbitrarily large as the costs of revolt approach

zero.

The model attains uniqueness for a larger set of parameter values than under a homogeneous

population (i.e. without incorporating a communication network). This is explained by noticing

that the presence of varying degrees in this model essentially translates into a convex combination

of weights placed on the public signal. With a larger proportion of well-connected individuals

(who pay less attention to the public signal) we obtain uniqueness for smaller prior variances

than previous models allowed.

Finally the paper provides a methodological contribution to the literature by identifying suf-

ficient conditions on network sparseness that allow for an approximation of large networks by

an infinite population partitioned by their connectivity. Not only do we gain tractability and

insight but we are able to isolate the effect of connectivity on informativeness by disregarding

the local correlations induced by the network. We show these conditions are quite general and

applicable to a wide range of network global games and we hope these can be useful for future

research in the area.

2 Literature

Our paper mainly contributes to two general strains of literature: that on global games pioneered

by Carlsson and Van Damme (1993) and Morris and Shin (2001), and on network models of

information transmission. The paper essentially extends the static version of the global game of

regime change put forth by Angeletos et al. (2007) in considering the role played by the exchange

of private information within a network. Indeed the presence of local communication lays the

ground for a number of additional questions on the role of connectivity in coordination not

adressed in the basic model. Others, such as Edmond (2013) and Bueno de Mesquita (2010),
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have similarly dealt with discrete action global games in large populations, tackling diverse

aspects such as the possibility of strategic action by the status quo, or by political vanguards.

In a particularly relevant study, Bueno de Mesquita (2010) presents an information model

of revolutions with information transmission between motivated extremists and moderates. He

finds that the model obtains multiple equilibria, and that structural factors may therefore in-

fluence the likelihood of regime change. We focus instead on settings that guarantee a unique

equilibrium in threshold strategies, and we extend some of the insight of these models by consid-

ering the impact of connectivity in shaping equilibrium behavior. We find that the probability

of regime change responds to the underlying structure of connections. Our paper shares with

Hellwig (2002) and Angeletos and Werning (2006) the study of the interaction of private and

public information in determining uniqueness of coordinating equilibria.

More precise efforts to model regime change with heterogeneous agents, such as Chwe (2000)

and Guimaraes and Morris (2007), distinguish agents’ possibly different action spaces contingent

on types or their network position in sequential action games, but similarly make no effort to

model varying connectivity and its role in the sharing of private information. Moreover, the

latter focus on continuous action spaces, which disregards some of the inherent complications of

correlated signals in threshold equilibria with finite players. We show that these considerations

are not innocent, and that the strategic impact of connectivity on equilibrium outcomes is far

from obvious. Most recently, an attempt to adress the role of networks by Dahleh et al. (2015)

has provided a partial characterization for finite populations. Their results are silent to non-

regular network structures and their focus on multiplicity is strangely at odds with the solution

concept employed. Finally, Hassanpour (2010) provides an applied study that underscores the

empirical importance of these types of models in recent experiences with large scale coordinated

attacks on regimes. His theoretical model, however, allows for continuous belief updating à

la deGroot, which fundamentally undermines the impact of limited local communication in

coordinated attacks (DeGroot, 1974).

The network literature includes a rich tradition of modelling communication. Bloch and

Dutta (2009) propose a model of network formation where agents can choose to invest in links of

communication with varying degrees. Their work establishes stable and efficient architectures,

rather than exploring the impact of exchange on games of coordination. Galeotti and Goyal

(2010) consider a model where individuals are partially informed about the structure of the

social network and provide results characterizing how the network structure shape individual

behaviour and payoffs. Finally, Hagenbach and Koessler (2010) consider strategic communication
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in networks by modelling a cheap talk communication stage within networks.

We assume in this paper that communication is truthful and limited to direct network neigh-

bors. This is a modelling assumption shared with Calvó-Armengol and De Martí (2009) that

deals directly with the role of communication networks in a class of global games with continu-

ous quadratic payoffs. They provide a knowledge index that essentially compounds higher-order

expectations in order to map beliefs into actions. Regime change models, however, are discrete

action games that require a consideration of the entire posterior distributions. As such, a new

approach that resolves the underlying correlations is warranted.

The focus of this paper on information structures resembles other efforts to model informa-

tion acquisition in large scale coordination models, such as Szkup and Trevino (2015), Myatt

and Wallace (2012), and Hellwig and Veldkamp (2009). However, these papers model uniform

populations with symmetric signal accuracy. We complement this literature by relating exist-

ing network structures to informational distributions and therefore to the probability of regime

change. In this paper we explore signal heterogeneity, as in Sakovics and Steiner (2012), but

from a very different perspective. We take a network view of varying signal strength, and we

don’t consider vanishing noise, obtaining a unique equilibrium that can be related precisely to

the payoff structure.

Closer to this paper, recent work by Iachan and Nenov (2015) explore the relationship between

the quality of information and fundamentals. They show that if payoffs (conditional on regime

change) are sensitive to fundamental parameters (such as the strength of the regime) then less

precise signals can induce greater probability of regime change. In this model we provide a

network-based micro-foundation for varying signal qualities across players, and we show that

the effect of signal precision on regime change exists even with conditionally fixed payoffs.

Finally, the recent paper by Barberà and Jackson (2016) characterizes the set of monotone

threshold equilibria for a discrete version of a similar collective action game, with an infinite

number of players but with a finite number of possible signals. Their model assumes that all

individuals receive the same number of signals and, in terms of the network story of this paper,

this could represent the case of a regular network where all players have exactly the same number

of connections. We allow for more general information transmission structures.
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3 Model

This section develops a model that builds on the original model of regime change by introduc-

ing a stage of communication in networks loosely inspired by the work of Calvó-Armengol and

De Martí (2007). By approximating large networks with an infinite population the model es-

sentially introduces heterogeneous variances to the original analysis by Angeletos et al. (2007)

which allows for a different set of comparative statics exercises and, more importantly, introduces

different informational roles across society’s members in the spirit of Bueno de Mesquita (2010).

3.1 Actions, Payoffs and Network

There is a population N of individuals connected according to some network G to be specified

below. Each agent takes an action ai ∈ {0, 1} where ai = 1 will represent an attack on the status

quo. The payoffs are as follows:

Regime Change (A ≥ θ) Failure (A < θ)

ai = 1 1− c −c
ai = 0 0 0

where θ is some exogenous parameter, A = 1
N

∑
n

ai is the proportion of the population that

chooses to attack the status quo and c ∈ (0, 1) represents the cost of attack.

There is a network G that captures the communication process. We assume gij = gji (undi-

rected channels) and gij ∈ {0, 1}, with gij = 1 meaning that agents i and j communicate with

each other. For computational simplicity me let gii = 1. We define the neighborhood of i as

Ni = {j ∈ N |gij = 1} and we denote its cardinality as the degree (that is, di = |Ni|). Let Nd

represent the number of individuals in the network with degree d. Finally, let D = (di)i∈N rep-

resent the set of degrees of all nodes in the network, and D = max(D) be the maximum degree.1

Notice that, contrary to other models of regime-change, conditional payoffs are fixed, and not a

function of fundamentals, such as in Iachan and Nenov (2015). This distinction matters because

we show here that the effects of different information quality distributions across the population

need not depend on the sensitivity of payoffs to fundamentals, as is required in their setting.
1We will also use the typical notation in game theory where D−i = {d1, . . . , di−1, di+1, . . . , dn}
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3.2 Information, Communication, and Belief Formation

Agents have a common prior belief θ0 with a corresponding variance σ2
0, which can be diffuse

or not. Each agent then receives an i.i.d. signal xi = θ + εi where εi ∼ N(0, σ2). There is one

round of truthful communication in which each agent transmits their signal to his/her neighbors.2

Alternatively you could think of the network as describing a technology whereby being connected

to someone implies that their private information is readily available. In any case, after the

dispersal of information, each agent i contains a vector composed of di independent signals with

which to update beliefs about the strength of the status quo, θ, using Bayes’ rule. Clearly, in

the measure that agents’ signal vectors overlap, their posterior beliefs about fundamentals will

correlate, meaning that agents that share most of their neighbors will also have very similar

information; in the limit, a complete network corresponds to a situation of common knowledge.

Formally, agent i forms the following posterior distribution of θ conditioned on the entire

vector of private signals,

θ | xi ∼ N

(
σ2

σ2 + diσ2
0

θ0 +
σ2

0

σ2 + diσ2
0

〈xi,1di
〉 , σ2σ2

0

σ2 + diσ2
0

)
(1)

where 〈·〉 represents the dot product of two vectors and 1di
is a vector of ones of dimension

di. This updating process is instrumental to equilibrium since it refines agents’ beliefs about

the probability of success (holding everyone’s equilibrium behavior fixed) and therefore allows

players to obtain their optimal best response.

3.3 Strategies

In this context a strategy is defined as a function, ai(xi) ∈ {0, 1}, that maps a player’s vector

of signals into one of the two available actions. A natural equilibrium notion for our setup is

Bayesian Nash equilibrium. At equilibrium each player is best-replying to others’ strategies:
2We focus on only one round of communication for ease of exposition. There is nothing special about one

round, and we can easily accomodate more rounds of communication by extending our currrent communication
protocol. If there are, say, t rounds of communication, and we assume that any given player communicates all
signals she knows to her neighbors, the ensuing information structure is equivalent to our current setup with a
new (and denser) network where there is a link between any two nodes that were at most t links apart in the
original network. As an example, with 2 rounds of communication we would define G(2) as the new primitive
network structure, where G(2) = 1 if and only if there exists a path of length at most 2 between i and j.
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player i will choose to attack the status quo for all signal vectors in the set,

Bi(A) = {xi | Pr (A ≥ θ | xi) ≥ c} (2)

where the equilibrium size of attack, A, in terms of equilibrium strategies, is defined as,

A =
1

n

n∑
i

ai =
1

n

n∑
i

1{xi∈Bi} (3)

with 1S representing the indicator function over the set S.

We can now formally define a Bayesian Nash Equilibrium of this model as a situation where,

given others’ strategies B−i, and given the vector of incoming signals, xi, player i forms beliefs

about the size of attack, A, and chooses an optimal strategy, Bi.

Definition 1. An equilibrium corresponds to a profile B = (B1 . . . , Bn) such that equations (2)

and (3) hold simultaneously.

Notice that the definition of the equilibrium is circular: equilibrium strategies (characterized

by the set of signal realizations, for each individual, that induces her to attack) depend on the

aggregate A, which, in turn, depends on individuals’ equilibrium decision to attack. To find the

equilibrium we need to resolve such circularity, and this requires a number of steps.

First, the set Bi(A) contains all vectors of signal realizations that induce agent i to attack

the status quo. Recall, however, that agent i knows that some of these realizations are observed

by other neighboring players. This means that if she observes, say, a very high realization for

the signal of an influential neighbor, she can infer that many other players have observed it

as well. Then, she might expect that the share of attackers, A, will be low and will therefore

need to observe a much lower realizations in her remaining signals to convince her that a low

size A is sufficient for regime change. In other words, the upper boundary of the set Bi can

be highly non-linear, following the network structure and ensuing correlations. The following

section works through an example of this sort, but in general these considerations complicate

the analysis considerably, and it is precisely what we try to avoid with an infinite population

approach.

Furthermore, the size of attack, A, is essentially a binomial random variable (or a sum of

bernoulli random variables), but the correlations implicit in the network structure guarantees

that these are not independent Bernoulli draws. This means that a player’s position in the
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network admittedly affect her expectation about A. To see this notice that players are correlated

amongst individuals up to two links apart (i.e. "I am correlated with my friend’s friend since

both of us received my friend’s signal"). This guarantees that my belief about the possible

states in which, say, A = 1
3
is not the same as someone else with a different set of neighbors

(and thus a different set of correlations). This seems to imply that any two individuals (even of

the same degree) can arrive at radically different beliefs about the possible value of A. However,

common knowledge of the network structure would guarantee that every player knows everyone’s

correlation structure when calculating their thresholds, so that in equilibrium every player would

know each others’ threshold strategies perfectly and in fact would end up calculating the exact

same distribution for A. We are going to find sufficient conditions on the network geometry that

make sure we don’t have to worry about correlation effects. As a consequence, all necessary

information to analyze regime change in large networks is going to be captured in the degree

distribution.3

Finally, notice that nothing in the definition of the equilibrium hinges on the assumption

of normality. Indeed, all we need is that players can form proper beliefs about θ, conditional

on their private information, so that equation (2) is well defined. However, by assuming that

signals are normally distributed we can use equation (1) to obtain convenient analytic expressions

for posterior beliefs that allow us to establish the existence and characterization of a unique

equilibrium. The advantage of the normality assumption is that we obtain simple linear estimates

of the posterior mean, and we retain a full description of the posterior distribution with which to

properly define Pr(A ≥ θ | xi). Most of the classic global games literature has focused on cases

where players receive only one signal. In this context, a unique Bayes equilibrium is typically

defined in threshold strategies, in which players choose one action if their signal is below a

certain threshold and play the other action if the signal is greater than this threshold (Morris

and Shin, 2001; Vives, 2005) . Our problem here is multidimensional because each individual

receives different signals from multiple sources (i.e. their direct neighbors in the network) and it

is therefore more difficult to characterize threshold strategies – we could end up with a nonlinear

frontier, for each individual, that characterizes the mapping between vectors of signals and

actions. The linear estimates of the posterior mean in equation (1), together with the sufficient

condition on correlation effects from 5, reduce the dimensionality of the problem, and provide a

natural way to generalize threshold strategies to our setup: a player attacks if and only if the
3This model deals with very large networks and the idea that the entire geometry is somehow known by

everyone is untenable. Fortunately it is not necessary. It suffices that players all know the degree distribution of
the network and that they have a common prior belief about the likelihood of each particular architecture that
is possible given this degree distribution.
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average of signals received is below a given threshold. In the discussion section at the end of

the paper we briefly mention how other distributional assumptions within the class of conjugate

prior distributions could deliver similar results.

4 A Finite Network Example

In this section we seek to underline the correlation effects that guide equilibrium behavior in finite

networks by working through an amenable example with three players. Given the difficulties in

solving the model for a general finite network of size n, the next section will show that these

correlation effects disappear for large (and sufficiently sparse) networks; this will allow us to

solve the model asymptotically.

In order to solve the model with finite agents we must consider the possibility that players

a priori will not weight all signals equally when defining equilibrium strategies, i.e. the upper

boundary of set Bi is not linear. In the infinite population scenario agents simply take an

average of all signals in anticipation of the negligible impact of correlations. This in turn means

that the position in the network turns out to be irrelevant (all that matters is the degree of

each player) and all incoming signals are equally useful when calculating posteriors. But with

finite agents the position in the network is crucial in determining equilibrium strategies. As an

example, a player might choose to weight one of his neighbor’s signals more if this neighbor

happens to be in a privileged position- i.e. a "hub"’s signal gets read by a large share of the

total population. This implies that depending on others’ equilibrium strategies, best response

functions may take on different shapes corresponding to different weights placed on each signal.

Formally, best responses here are not a linear mapping of all incoming signals (as is the case

for infinite players) but instead will be shaped by the relative position of each neighbors who

transmitted each signal.

As an example, consider the game described above played by three agents (call them 1, 2,

and 3) connected in a star-like network as shown in Figure 7. It should be clear from the

communication process that after the signals have dispersed through the network all agents’

beliefs are correlated, and in particular agents 2 and 3 are correlated vis-a-vis 1’s signal.4 An

equilibrium here corresponds to a vector of equilibrium strategies B? = (B?
1 , B

?
2 , B

?
3) defined

4Because communication occurs for one round only, correlations emerge across players with at most 2 degrees
of separation. If we added a fourth player 4 connected to 3, then 2 and 3 would lie 3 links apart and would not
be correlated in their posterior estimates of θ
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2 3

Figure 1: A Simple Three-Player Network

as in equation (2) and a share of agents that attack in equilibrium, A, given by the relation

A (θ) = 1
3

∑
i

1{xi∈B?i }.

As the hub, 1’s private information will take on a larger share of others’ best response corre-

spondences. To develop some intuition consider how player 2 finds her optimal strategy. Given

the strategies of other players fixed, imagine 2 observes signals (x1, x2) such that x1 is very large.

Although player 2 has no direct contact with 3, she knows 3 has also observed this signal and

can reason that it will drive 3’s posterior beliefs about θ upward. Then, given 3’s beliefs about

A fixed, player 2 can argue that 3 will need to observe a very low realization of x3 (the only

remaining signal observed by 3) in order for Pr (A ≥ θ | x3) ≥ c, which we know induces 3 to

attack. In sum, a high realization of x1 gives player 2 some confidence that 3 is very unlikely

to attack, even as 2 and 3 are not directly connected. It should be clear that 2 can perform

similar reasoning with respect to 1’s equilibrium behavior ex-post. Now consider what happens

when 2 observes a very low realization of x1 instead. In this scenario 2 will argue that 3 will

attack more often than before because, keeping others’ strategies fixed, 2 can reason that this

low realization of x1 will induce 3’s beliefs about θ downward and thus P (A ≥ θ | x3) ≥ c holds

for larger realizations of x3 than before. Together, these arguments suggest that low values of

x1 raise 2’s belief about 3’s (and 1’s) propensity to attack, while high values of x1 lower these

beliefs.

This reasoning will affect 2’s equilibrium strategy because it affects her belief about the ag-

gregate size of attack A. Since networks here are small, forming expectations about other’s

equilibrium action will in fact affect the belief about A and therefore will impact best responses.

To see this notice that our indifference condition Pr (A > θ | x?i ) = c, which defines the boundary

of our set Bi, can be reformulated as

∞̂

−∞

Pr (A (θ;B) ≥ θ)Pr (θ | x?i ) dθ = c

12



where the dependence of A on players’ equilibrium strategies B = (B1, B2, B3) is made ex-

plicit. After rearranging and noticing that necessarily A ∈ [0, 1] gives the following meaningful

expression
1̂

0

Pr (A (θ;B) ≥ θ)Pr (θ | x?i ) dθ = c− Pr (θ ≤ 0 | x?i ) (4)

Notice this equation essentially defines a best response correspondence Bi (B−i) for each i that

is non-linear following the intuition above: when determining the set of vectors x?i that satisfy

the indifference condition, players must take into account that signal realizations will not only

affect their inference of θ as determined by Pr (θ | x?i ) but also how they will affect their beliefs

about aggregate equilibrium behavior as defined by Pr (A (θ;B) ≥ θ). While all signals will

contribute equally to statistical inference on the state of the world (the first effect), the previous

discussion makes clear that signals will nonetheless have a varying impact on the belief about

aggregate behavior in equilibrium (the second effect).

In Section 5 we show that, under certain conditions, this entire reasoning may be disregarded:

the fact that 3 is more or less likely to attack (given an observation of a common signal x1)

will not affect 2’s belief about A(θ) when the population tends to infinity.5 As a result, there

is no strategic reason for players to take into account the correlation structures generated by

the network; Indeed, 1’s signal is no more valuable than 2’s signal if the information it provides

about 3’s equilibrium behavior does not move 2’s beliefs about A(θ). More formally, since beliefs

about A(θ) remain constant the above equation can be simplified by identifying regions
(
−∞, θ̂

)
where success occurs with probability 1 and regions

(
θ̂,∞

)
where success never occurs, so that

the above equation can be rewritten as

θ̂̂

−∞

Pr (θ | x?i ) = Pr
(
θ ≤ θ̂ | x?i

)
= c (5)

In short, when signals cannot inform players about aggregate behavior they merely serve to

update beliefs about the underlying state θ, and they are all equally valuable in this regard.

Returning to 2’s equilibrium strategy, consider how her reasoning above affects her best re-

sponse correspondence. We have seen that a high realization of x1 will not only force 2’s posterior

beliefs about θ upward, but it will also allow 2 to conclude that both 1 and 3 will now attack less
5In truth, it is not sufficient that the population tend to infinity. We must also ensure that no player remains

too central as population grows or else her signal would indeed move beliefs on aggregate behavior. This sparseness
condition will be specified in the next section.
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often in equilibrium, so that aggregate behavior A goes down. This will make 2 more reluctant

to engage in attacking the status quo, unless his remaining signal, x2, is extremely favorable for

success. What is important here is that although we could make the same argument for a high

realization of x2, this signal will only allow 2 to form beliefs about 1’s equilibrium behavior,

while x1 allows 2 to form beliefs about the equilibrium behavior of both 1 and 3. In other

words, 1’s signal is more "informative" than 2’s. The unequal weight of signals that emerges

from correlations of beliefs in the network generates nonlinear strategies in finite networks. In

the next section we present an asymptotic strategy to resolve this issue.

5 A Large Network Approximation

The reader should think that the network in this model generates two main effects: imbuing

the system with correlation and allowing for the pooling of information. This paper focuses on

the latter by assuming that we are in sufficiently large networks with only local correlations,

such that they become strategically irrelevant. As a result, the only effect of the network is

that agents with larger degree have more precise signals. Of course not all network architectures

exhibit a sufficiently local correlation structures – consider as a counterexample the complete

network where correlation is maximal across all players. We are therefore looking for a condition

on network sparseness that guarantees sufficiently local correlation effects, which will induce a

weak form of the Law of Large Numbers.

Recall that the equilibrium size of attack is given by the proportion of the population that

takes action 1 in equilibirum, and can be written formally using our definition of the set Bi as,

A =
1

n

N∑
j

1{xj∈Bj}

Notice that each for each j ∈ N the random variable 1{xj∈Bj} is a weakly dependent Bernoulli

with probability parameter Pr(xj ∈ Bj). The trick is to arrive at a convenient expression for the

limiting size of attack that is symmetric on the degree of individuals: this expression will allow

us to solve for the equilibrium as a function of the distribution of connectivities in the society,

which vastly reduces the dimensionality of the network into a manageable object.

First, imagine we can apply a Law of Large Numbers (LLN) to the expression above to obtain
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the following convergence result,

A =
1

n

∑
j

1{xj≤B?j} −→a.s. lim
n→∞

E

[
1

n

∑
j

1{xj≤B?j}

]
(6)

This implies that, if indeed we can guarantee that a LLN applies, then the limiting size of attack

converges to the limit of the expected proportion of attackers in the population. Notice that,

as a limit, this expected proportion does not respond to individual changes in players’ best

responses. In particular, if player, say, k decides to change her equilibrium strategy from B?
k

to B̃k, the value of A will remain fixed. Moreover, we show below that equation (6) implies all

players’ signals are observed by a vanishing fraction of the population. This effect implies that

the identity of each incoming signal is irrelevant, so that in equilibrium players’ will weight all

signals equally in a simple average, and the upper boundary of Bi is therefore linear with a slope

of −1. In other words, to maintain indifference between attacking or not, a low realization of one

signal can be offset by a higher realization of another by exactly the same amount – something

that did not occur in the finite case above. Formally, this means that strategies can now be

formulated in terms of the average of all incoming signals,

Bj =

{
xj |

1

dj

〈
xj,1dj

〉
≤ x?j

}
where we have that x?j satisfies our indifference condition P

(
A ≥ θ | x?j

)
= c.6 With this, we

can now rewrite the above expression as

A −→
a.s.

lim
n→∞

E

[
1

n

∑
j

1{x̄j≤x?j}

]

where x̄j refers to the average of all signals received by individual j, and where x?j corresponds

to the equilibrium scalar value that defines j’s attack threshold: j attacks if and only if the

average of her signals is below this value.

We can further simplify the above expression. As argued above, the position in the network

becomes irrelevant in the limit. Incoming signals can therefore only resolve fundamental uncer-

tainty about θ, but are not able to resolve strategic uncertainty about the equilibrium size of

attack, A.7 Moreover, all signals are equally valuable in terms of forming posterior beliefs about
6Notice the probability now is conditioned on the average realization, rather than on the entire vector. A

cursory look at equation (1) should reveal that these are equivalent formulations
7This distinction between fundamental uncertainty on the one hand and strategic uncertainty on the other is
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θ, so the only relevant form of heterogeneity across players boils down to the number of signals

they receive, which corresponds to their degree. This symmetry across players of the same de-

gree arises from the fact we deal with asymptotically large populations where local correlations

become strategically negligible. Formally, let Nd be the subset of players with degree d. Then we

can extend the previous definition of A by imposing symmetric cutoff strategies for all players of

a given degree, and with some manipulations we can write down the following set of relations:

A −→
a.s.

lim
n→∞

E

[
1

n

D∑
d=1

∑
j∈Nd

1{x̄j≤x̄?d}

]
= lim

n→∞
E

[
nd
n

D∑
d=1

1

nd

∑
j∈Nd

1{x̄j≤x̄?d}

]
=
∞∑
d=1

Pd Pr(x̄d ≤ x̄?d)

The first equality above comes from partitioning the total population n into the different possible

degrees, while the second equality comes from applying the expectation and taking limits. The

last sum goes to infinity because in an infinite population we cannot rule out infinite degrees.8

The previous arguments allow us to conclude that, if indeed we can establish a LLN to equation

(6) above, we would obtain the following limiting result:

A −→
a.s.

∞∑
d=1

PdPr(x̄d ≤ x∗d) (7)

where Pd is the share of the population with degree d.

The above arguments require that we may apply a LLN on equation (6). We now proceed

to provide precise conditions on the network structure such that this is feasible. Notice that

the elements summed in (6) are not independent random variables so a standard LLN does not

apply. Instead we rely on a LLN for weakly dependent random variables. The weak correlation

structures that allow for a LLN also require a minimum level of sparseness in the network. This is

formalized in the following proposition that places conditions on the growth rate of the maximal

degrees in order to assure that these limit properties hold.

Proposition 2. Let D1 = max (D) and D2 = max (D−i), where i ∈ N is such that di = D1.

Then, if D1 ·D2 ∈ o (n), the convergence result in equation (7) holds.

Proof. See Appendix A for a proof of this result and a more general result on convergence for a

first made by Myatt et al. (2002), who demonstrate how "even as the fundamental uncertainty becomes smaller
and smaller, strategic uncertainty can remain as large as ever" (page 410).

8Indeed, Proposition 2 places bounds on the growth rate of the maximal degrees such that this convergence
result holds, but it does not rule out that the maximal degree tends to infinity. In fact, section 7.1 deals with
scale free networks with degree distributions that follow a power-law, in which case the support is the natural
numbers.
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wider class of correlation structures. �

By placing an upper bound on the growth rate of maximal degrees, Proposition 2 essentially

forces us to concentrate on networks that are sufficiently sparse, in the sense that no one indi-

vidual contains too many links relative the size of the population. Intuitively, if we are trying

to coordinate with a large set of individuals, any local correlations that exist within a small

subset of the population become strategically insignificant, and we can therefore disregard them

when forming our optimal strategies. As a result, all incoming signals are equally valuable, and

best-reply functions are linear. This is the key step in the model, and what allows us to proceed

with an analytic solution that focuses on the network effect on precision of beliefs, and ignores

correlations.

To get a better idea of the type of restriction imposed by Proposition 2, consider a family

of networks that satisfies the sparseness requirements. Imagine that, due to some cognitive

or behavioral limitations, individuals cannot realistically sustain more than some predefined

number, d̄, friendships at any given point in time. This implies that no one individual can remain

influential as the network grows in size, and, therefore, correlations vanish asymptotically. We

write this down as an immediate corollary to Proposition 2.

Corollary 3. If di ≤ d̄ for some d̄ ∈ N+, and for all i ∈ N , then Proposition 2 holds.

Another family of networks that satisfies the sparseness requirements of Proposition 2 is

introduced in Section 7.1. This is the class of scale-free networks whose degree distribution

follows a Power Law (i.e. Pr(k) ∝ k−γ). The value of γ defines the size of the right tail of

the degree distribution, and we show that for sufficiently large γ, which implies the tail is thin

enough, we satisfy Proposition 2 almost surely.

Let us also consider a case in which Proposition 2 fails: the star network of Figure 7. In

the star, one individual called the "hub" is connected to everyone (and therefore has degree

equal to n) while everyone else, called "spokes", are only connected to the "hub" (and therefore

have degree equal to 2). Trivially, the maximal degree in this network grows linearly with

n. Correlations here remain a crucial determinant of equilibrium for all population sizes: all

"spokes" know that everyone else has observed the hub’s signal, so the "hub"’s realization will

move everyone’s beliefs about A(θ) much more than their own individual realization. In other

words, the frontier of Bi is not linear because correlation effects imply that not all signals are

equally valuable.
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If we are willing to focus on the networks prescribed by Proposition 2, we may proceed with

the analysis, summarizing any network simply by its degree distribution. In other words, we are

left with an infinite population that is partitioned into classes with proportions Pd for d ∈ N.
In this sense, this model essentially extends the standard global game of regime change to a

population with heterogeneous variances.

6 Equilibrium With Diffuse Prior

This section proceeds with the equilibrium analysis, and we focus first on the case where priors

are completely uninformative. In the next section we analyze the case where individuals hold

particular prior beliefs about the state of the world θ. We analyze both sections separately

because the equilibrium implications are very different.

We follow classic arguments on global games and super-modular games (Morris and Shin, 2001;

Athey, 2002; Vives, 2005) that, under certain conditions on the relation between actions and

payoffs, and for particular signal structures, the unique Bayesian Nash equilibrium is defined in

terms of threshold strategies.9 This implies that if player i receives a vector of signal realization

below some frontier she takes action 1, and conversely takes action 0 if she observes a private

signal above. Of course, precisely at the threshold, player i must be indifferent between the two

available actions, which, given our payoff structure, can be written as, P (A ≥ θ | xi) = c. As

such, player i will choose to attack the status quo for all signal vectors in the set,

Agents have a diffuse prior over the state of the world (i.e. θ is distributed uniformly over

the real line). Next, suppose there is a degree-specific threshold strategy x?d ∈ < such that each

agent, i, with degree d attacks if and only if x̄i ≤ x?d. Then, the right-hand side of expression

(7) transforms into,

A(θ) =
∞∑
d=1

Pd · Φ

(√
d

σ
(x?d − θ)

)
(8)

where Φ is the CDF of the standard normal. Because A(θ) is decreasing and continuous in θ,

there exists a unique value θ̂ that is a fixed point of A(θ). Formally, θ̂ solves,

A(θ̂) =
∞∑
d=1

Pd · Φ

(√
d

σ

(
x?d − θ̂

))
= θ̂ (9)

9For a complete list of these conditions see Morris and Shin (2001). See, for example, Morris and Shin (1999)
and Sakovics and Steiner (2012) for the analysis of setups that are closest to our own modeling assumptions.
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Finally, notice that there is regime change whenever θ ≤ θ̂. Standard Bayesian updating implies

that the posterior expectation for an agent i of degree d that receives a signal realization xi is

θ | xi ∼ N(xi,
σ2

d
). Therefore, to this particular agent, the probability of regime change is given

by, Pr(θ ≤ θ̂ | xi) = Φ
(√

d
σ

(
θ̂ − xi

))
. The agent will find it optimal to attack whenever the

posterior probability of regime change is greater than the marginal cost from attacking c, or

whenever, xi ≤ x?d where x?d solves,

Φ

(√
d

σ

(
θ̂ − x?d

))
= c for d ∈ N (10)

A Bayesian Equilibrium is a sequence,
(
θ̂;x?1, x

?
2, . . .

)
that solves equations (9) and (10). Notice

players are strategic, and respond to everyone else’s strategy through the parameter θ̂. We

are essentially describing a coordination game of incomplete information with heterogeneous

precisions.

Strategic response to others’ strategies does not mean, however, that we face pathological,

corner equilibria where everyone chooses never (always) to attack. Consider the response of

individual i to a population where every other player chooses never to attack (i.e. everyone

chooses x?j = −∞). In that case A (θ) = 0 for all values of θ so that θ̂ = 0. But consider

introducing this to equation (10); Because c > 0 player i will choose an equilibrium threshold

x?i bounded away from −∞, so that never attacking is not an equilibrium strategy. In fact

this will constitute an equilibrium if and only if c = 1. Intuitively, even though everyone else

is choosing not to attack, there is still a positive probability that θ ≤ 0 (recall that player i’s

posterior belief about theta is θ | xi ∼ N (xi, σ
2)) so player i will choose to attack for some

positive probability as a result.10 This is true as well when considering the equilibrium where

everyone always attacks (i.e. this will only be an equilibrium for c = 0). Together this implies we

have a unique equilibrium. Our first result establishes the existence of this unique equilibrium

by explicitly solving for θ̂ (c,p) in equation (9), and then establishes its lack of response to the

degree distribution.

Proposition 4. There exists a unique equilibrium to this static one-shot game in monotone

strategies where θ̂ = 1 − c. The probability of regime change, Pr(θ < θ̂), does not change with
10With a bounded distribution in private noise corner equilibria would be retrieved. To see this imagine instead

that εi ∼ U (ε, .ε). Players’ posterior beliefs about θ would be θ | xi ∼ U (xi − ε, xi + ε). If ε and ε are sufficiently
close, we cannot rule out a situation where all players believe the probability that θ = 0 is 0 (alternatively 1),
so that each player reacts to θ̂ = 0 (θ̂ = 1) by choosing an equilibrium strategy consistent with never (always)
attacking the regime, which means choosing x?i = −∞ (x?i = +∞).
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degree distribution p and decreases with c.

Proof. First rewrite equation (10) to get the best reply function for a player i of degree d,

x?d = θ̂ − σ√
d

Φ−1 (c) (11)

Then substituting this into equation (9) gives

A(θ̂) =
∞∑
d=1

Pd · Φ

(√
d

σ

(
θ̂ − σ√

d
Φ−1 (c)− θ̂

))
=
∞∑
d=1

Pd · Φ

(√
d

σ

(
− σ√

d
Φ−1 (c)

))

=
∞∑
d=1

Pd · Φ
(
−Φ−1 (c)

)
=
∞∑
d=1

Pd
(
1− Φ

(
Φ−1 (c)

))
=
∞∑
d=1

Pd (1− c) = 1− c = θ̂

Then θ̂ = 1− c is independent of the degree distribution (p1, p2, . . .) and clearly decreases with

c. This implies that the probability of regime change Pr
(
θ ≤ θ̂

)
is also invariant to the degree

distribution. Finally, we can calculate threshold strategies (x?1, x
?
2, . . .) that define the equilibrium

by substituting in for θ̂ to obtain x?d = 1− c− σ√
d
Φ−1 (c). �

This result at first glance is not at all intuitive. In fact, we would expect the degree distribution

to have an impact on the probability of regime change. It turns out that the range of θ where

attacks are successful does not change as we alter the average connectivity of the society. Why?

With a diffuse prior, players pay no attention to prior information; only private signals feed the

inference of posterior beliefs. As a result, the strategic uncertainty of each agent is maximal with

respect to the behavior of others. Formally, each player’s higher-order beliefs on θ characterized

by equation (10) have the same shape as the commonly observed distributions of private signals

that sum in equation (9). Players have no way of improving on these beliefs. So even though

different degrees select different threshold strategies, it turns out that precisely at the value of θ

where the size of attack is the smallest successful attack, the propensity to take action is identical

across the entire population. This is important because it implies that shuffling the distribution

of degrees will not modify where the smallest successful attack is defined, so it will not modify

the range of θ where successful attacks begin. As a result, the probability of observing a success

will also remain fixed.

It is important to stress that threshold strategies are not identical. In fact threshold strategies

depend crucially on d. However, the behavior of the population in equilibrium cannot be glimpsed
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Figure 2: Size of Attack as a function of θ for d′ > d

directly from these values. Instead, the share of individuals of degree d that decide to attack the

status quo in equilibrium is defined by Pr (xd ≤ x?d | θ), and this need not obey the ordering of

threshold strategies x?d. To see this consider the case of c > 1
2
. Players with a larger degree have

a tighter posterior of θ and will choose a strictly higher threshold defined by x?d = θ̂− σ√
d
Φ−1 (c).

However, notice that for the same threshold x?, these high degree individuals will observe x ≤ x?

less often than low degree individuals. It turns out that at θ̂ high degree players will choose

a threshold that is larger by the amount that exactly compensates the lower probability of

observing a signal to the left of said threshold. As a result, even though it is true that x?1 < x?2 <

· · · , in equilibrium we have that Pr(x1 ≤ x?1 | θ̂) = Pr(x2 ≤ x?2 | θ̂) = · · · . This striking result

comes from the fact that the shape of the posterior belief about θ (which chooses the threshold

x?d) and the shape of the distribution of signals (which determines Pr (xd ≤ x?d) ) are equal and

they therefore cancel out. Once we introduce a prior with finite variance players make us of it

as a public coordinating device and higher order beliefs about θ will depart from higher order

beliefs about xd ∼ N
(
θ, σ

2

d

)
. As we will see, this affects the above result. However, too little

strategic uncertainty in the form of too low prior variance, leads to multiplicity by increasing

strategic complementarities of the model.

Proposition 4 should not convey the idea that the propensity to attack is independent of

the degree distribution. This is only true at the point θ̂ = A
(
θ̂
)
, which as mentioned above

implies that the likelihood of observing a successful attack remains fixed for all p. However,

the equilibrium is defined for all values of θ 6= θ̂. In these cases, the size of the attack responds

directly to the weights chosen for each degree. In other words, conditional on the attack being

too small to be successful, its size will vary with the degree distribution. The same applies for

attacks large enough to be successful. In order to gain some intuition, Figure 2 plots the size of

attack A (θ) for two different populations: one with pd = 1 and the other with pd′ = 1 (where
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d′ > d). You can think that a population with positive weight on both these degrees will have

an A (θ) line somewhere in between. What is important to note first is that Proposition 4 can

be thought of as stating that these two lines (and in fact all other lines for all degrees d ∈ N)
intersect at the 45◦ line. It should be clear that any convex combination of these two functions

(i.e. for any degree distribution) will always cross the 45◦ at the same point of intersection

θ̂ = 1− c. For all values different form θ̂, however, the two curves take on quite different values

and it is here where the degree distribution will determine the size of attacks. This is the content

of our next result.

Proposition 5. Define Ap (θ) as the equilibrium size of attack under degree distribution p and

state of the world θ. Let p′ FOSD p then:

• for θ > θ̂ (failure) Ap (θ) > Ap′ (θ) and Ap (θ)− Ap′ (θ) increases with θ

• for θ < θ̂ (success) Ap (θ) < Ap′ (θ) and Ap (θ)− Ap′ (θ) increases with θ

Moreover, this effect is largest whenever c = 1
2
and decreases monotonically as c→ {0, 1}

Proof. Consider the equilibrium size of attack by plugging in equilibrium threshold strategies

found in Proposition 4 into the definition of A (θ)

A(θ) =
∞∑
d=1

Pd · Φ

(√
d

σ

(
1− c− σ√

d
Φ−1 (c)− θ

))
=

∞∑
d=1

Pd · Φ

(√
d

σ
(1− c− θ)− Φ−1 (c)

)

Notice that whenever θ < θ̂ (θ > θ̂) then the factor multiplying
√
d
σ

above is positive (negative) so

that the argument of Φ is larger (smaller) for d′ > d. Then, since Φ is an increasing function, by

shifting weight to larger degrees (FOSD) we increase the weights on those terms in the summation

that are larger (smaller) leading to a total value of A (θ) that is larger (smaller). Moreover, as we

increase the value θ, this effect becomes larger if θ > θ̂ (since the factor multiplying
√
d
σ

becomes

larger in absolute value) and this effect becomes smaller if θ < θ̂ (since the factor multiplying
√
d
σ

converges to zero). For the second part of the proof notice that for c = 1
2
we have Φ−1 (c) = 0

and that as c tends to the extremes, Φ−1 (c) tends to ±∞. �

Proposition 5 essentially states that in a population with equal weights, unsuccessful attacks

are composed by a majority of less connected individuals, while successful attacks are composed
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by a majority of more connected individuals. This confirms our intuition that more connected

individuals, because they are more informed, miscoordinate less often. After all, they obtain a

more precise estimate of the true parameter, so it only makes sense that once θ is too large to

guarantee success they retreat from attacking in larger shares. Graphically, you can see that for

θ > θ̂ the slope of A (θ) is steeper for the more connected individual.

What seems harder to reconcile, however, is that the difference in performance across degrees

diminishes monotonically as the costs of revolt become more extreme. The intuition here is that

the informational advantage of more informed individuals is greatest when the costs of attack

are the least extreme. In other words, for costs neither too high nor too low more informed

individuals shirk from attacking much more quickly as θ rises, creating a large advantage vis-a-

vis the less informed. But for extreme costs these individuals respond less to the value of θ and

choose to attack more or less the same for all state of the world (after all, either the costs are so

low that attacking is almost always a better option, or too high to attack regardless of the state

of the world).

7 Equilibrium With Non-Diffuse Prior

Next we turn to the case where player’s hold a finite-variance prior about the state of the world,

and must therefore incorporate it into their posterior beliefs. It turns out that in this scenario

the previous results change dramatically. In particular, with the presence of a public signal

the degree distribution completely determines the probability of success. Most interestingly,

this comparative static is not monotone- so that more average connectivity means a greater

probability of success- and instead depends on the cost of attack, c. When the costs are high

more connectivity translates to a larger share of success, but the opposite is true for sufficiently

low costs.

To begin the analysis, notice that if the prior is not diffuse, and instead follows a normal

distribution,

θ ∼ N (θ0, σ
2
0)

then the posterior distribution of the state of the world, θ, looks like,

θ|xi ∼ N (
diσ

2
0xi + σ2θ0

diσ2
0 + σ2

,
σ2

0σ
2

diσ2
0 + σ2

)
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The computation of A(θ) remains unaffected. However, the latter part of the analysis changes

because posterior beliefs about θ now must trade off public and private signals according to their

relative qualities. This leads to a modified expression for the cutoff decision of an individual of

connectivity equal to d, which is now given by,

x∗d = (1 +Rd)θ̂ −
σ√
d

√
1 +RdΦ

−1(c)−Rdθ0. (12)

where we define,

Rd =
σ2

dσ2
0

Notice that this expression resembles the cutoff expression for diffuse priors in section 6, except

for two main differences. The first difference is the term 1 + Rd that replaces the term 1 in

equation (11). Notice that this term depends on the relative precision of public and private

signals, and tends to zero if the public signal is noisy relative to the private one. The second

difference is that now cutoff strategies depend on the value of the common signal (or prior), and

for larger values of θ0, individuals will attack less often all else equal.

Plugging expression (12) in the equality A(θ̂) = θ̂ of equation (9) leads to the following fixed

point representation of θ̂,

∑
d

PdΦ

(
σ

σ2
0

√
d

(
θ̂ − θ0

)
−
√

1 +RdΦ
−1 (c)

)
= θ̂ (13)

An Equilibrium is a D+ 1− tuple
(
θ̂, (x?d)

D
d=1

)
that simultaneously solves equations (12) and

(13).

Equilibrium Analysis

One first thing to notice is that, in equation (12), as σ2
o → ∞ , the equilibrium strategy for all

degrees x?d tends to θ̂− σ√
j
Φ−1(c) (the solution to section 6) and that similarly x?d tends to θ̂ for

sufficiently large degrees. This seems to suggest that as the public signal becomes more noisy

and agents switch to the private signal, then the same effect as in diffuse prior starts kicking in.

In other words the marginal effect of degree on the weights placed on each signal disappears. In

a sense, we can think of the degree distribution as determining how strongly the population will

value their private signal against the public signal.

Before we proceed to establish the effect of the degree distribution on the size and outcome
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of coordinated attacks, we shall establish the existence of a unique equilibrium. Unlike the

previous section, the presence of a public signal means we can only guarantee uniqueness above

a minimum public variance. The reason rests on arguments from Morris and Shin (2001). As the

public signal variance diminishes, all players will shift their posterior beliefs towards said signal,

in effect increasing the level of correlated beliefs and, in a sense, continuously increasing the

level of common knowledge. At a certain point the level of strategic uncertainty is sufficiently

low to generate multiplicity. The following result establishes the lower bound on public variance

to guarantee uniqueness.

Proposition 6. A unique equilibrium exists if σ2
0 >

σ√
2π

∑
d

pd√
d

Proof. We want to show that there exists a θ̂ that solves equation (13). Rewrite equation (13)

as F (θ; θ0, σ
2, σ2

0) = 0 where

F
(
θ; θ0, σ

2, σ2
0

)
=
∑
d

PdΦ

(
σ

σ2
0

√
d

(
θ̂ − θ0

)
−
√

1 +RdΦ
−1 (c)

)
− θ

Note that F (θ; ·) is continuous and differentiable in θ ∈ (0, 1) and that

F (0; ·) =
∑
d

pdΦ

(
−θ0σ

σ2
0

√
d
−
√

1 +RdΦ
−1 (c)

)
> 0

and

F (1; ·) =
∑
d

pdΦ

(
σ

σ2
0

√
d

(1− θ0)−
√

1 +RdΦ
−1 (c)

)
− 1 < 0

Then, we need to show F is monotonically decreasing in θ. Notice that

∂F

∂θ
=
∑
d

pdφ

(
σ

σ2
0

√
d

(θ − θ0)−
√

1 +RdΦ
−1 (c)

)
·
(

σ

σ2
0

√
d

)
− 1

and given that max
θ̂
φ (·) = 1√

2π
the condition 1√

2π
σ
σ2
0

∑ pd√
d
< 1 =⇒ σ2

0 >
σ√
2π

∑ pd√
d
is both

necessary and sufficient for F to be monotonic in θ. �

This result suggests that introducing heterogeneity in the model retrieves uniqueness for a

greater range of parameter values. This is to be expected since the presence of a degree distribu-

tion essentially introduces a mass of individuals with a lower private variance with respect to the

homogeneous population scenario. The presence of more informed individuals strengthens the

role of private information, making coordination more difficult. In other words, the presence of
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varying degrees in this model essentially translates into a convex combination of weights placed

on the public signal. As more weight is placed on high degree individuals (who in turn pay less

attention to the public signal) then we retain uniqueness for smaller public-signal variances than

the previous models allowed.

There is no explicit analytical solution to equation (13) of the form θ̂ (c,p) that would de-

scribe the impact of p on the probability of regime change. However, we can use the implicit

function theorem to say something about the comparative statics across various types of degree

distributions. We will focus on the set of parameter values that guarantees uniqueness (i.e.

σ2
0 > σ). The following result establishes a surprising non-monotone comparative statics for a

population composed of only two arbitrary values of degrees, and a completely general class of

degree distributions.

Proposition 7. Let σ2
0 > σ and D = 2. Define two general degree distributions p = (p1, (1− p1))

and p′ = (p′1, (1− p′1)) such that p FOSD p′ (i.e. such that p1 < p′1). Then, there exists a thresh-

old ĉ ∈ (0, 1) such that

• for all c ∈ (0, ĉ) the probability of regime change is lower under p than under p′

• for c ∈ (ĉ, 1) the probability of regime change is larger under p than under p′.

Moreover, ĉ (σ, σ0, θ0) decreases with θ0 and increases with σ2
0

σ2 .

Proof. Rewrite equation (13) for D = 2

p1Φ

(
σ

σ2
0

(
θ̂ − θ0

)
−
√

1 +R1Φ−1 (c)

)
+

(1− p1)Φ

(
σ

σ2
0

√
2

(
θ̂ − θ0

)
−
√

1 +R2Φ−1 (c)

)
= θ̂

define an implicit function F
(
θ̂ (p1) , p1

)
= 0. Applying the implicit function theorem, as before,

we obtain,

∂θ̂

∂p1

= −
∂F
∂p1
∂F

∂θ̂

=

−
Φ
(
σ
σ2
0

(
θ̂ − θ0

)
−
√

1 +R1Φ−1 (c)
)
− Φ

(
σ

σ2
0

√
2

(
θ̂ − θ0

)
−
√

1 +R2Φ−1 (c)
)

∑
d

pdφ
(

σ
σ2
0

√
d

(
θ̂ − θ0

)
−
√

1 +RdΦ−1 (c)
)(

σ
σ2
0

√
d

)
− 1
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Whenever σ2
0 > σ the denominator is negative (see previous proof). As a result, the sign of the

comparative static is determined entirely by the sign of the numerator. Notice that

∂θ̂

∂p1

= 0 =⇒ σ

σ2
0

(
θ̂ − θ0

)
−
√

1 +R1Φ−1 (c) =
σ

σ2
0

√
2

(
θ̂ − θ0

)
−
√

1 +R2Φ−1 (c)

rearranging we get:

Φ


(
θ̂ − θ0

)(
σ
σ2
0
− σ

σ2
0

√
2

)
√

1 +R1 −
√

1 +R2

 = c

where θ̂ is endogenously determined in equilibrium and decreases with c (check equation (13)).

Since Φ (·) is a continuous, monotone function defined over the interval [0, 1] and moves positively

with θ̂, we can be sure there exists a unique ĉ that solves,

Φ


(
θ̂(ĉ)− θ0

)(
σ
σ2
0
− σ

σ2
0

√
2

)
√

1 +R1 −
√

1 +R2

 = ĉ

Finally, notice that for all c < ĉ the left hand side of this equation is larger than the right

hand side so that ∂θ̂
∂p1

> 0 and for all c > ĉ the left hand side is smaller than the right so that
∂θ̂
∂p1

< 0, thus proving the result. �

The non-monotonicity implied by Proposition 7 is surprising. Indeed, increasing the average

connectivity of the population does not increase the likelihood of success unambiguously. Instead,

a low cost of failure increases the marginal propensity to attack of low connected individuals

by far more than the corresponding increase experienced by highly connected individuals. As a

result, low connected players choose to attack more often for a greater range of θ values, including

the value θ̂ that determines the likelihood of success. It is still true (as in Proposition 5) that

all failed attacks will register greater participation by less connected (less informed) individuals.

But when costs are low some successful attacks also will contain greater shares of low connected

players, so the overall likelihood of success increases.

Intuitively, the low risk involved in attacking the status quo gives less informed individuals

an advantage by being more "reckless" (i.e counting more on rare tail events). Anticipating

this behavior, the minorities of more informed individuals respond by attacking more than their

signals would normally prescribe: equilibrium threshold strategies respond to θ̂, which captures

the strategic response of players to aggregate behavior. Of course, as more informed individuals
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Figure 3: Size of Attack as a function of θ for d′ > d.

cease to be a minority, the opposite will occur and less informed individuals will strategically

respond to expected aggregate behavior: they will choose to be more cautious about attacking

the regime than their low-quality information would prescribe.

To provide a better intuition, Figure 3 plots the size of attacks as a function of θ for both

low high costs. You can see in the right-hand panel that for costs sufficiently low, the fraction

of attackers for the low degree case d is in fact superior to the fraction for the high degree

case d′ for all values of θ ≥ θ̂ corresponding to failed attacks (as was the case in the previous

section). However, now this fraction of attackers is also greater for some range of values of θ ≤ θ̂,

corresponding to cases of successful attacks. In other words, less connected players surpass more

connected players in their shares of attack at a lower value of θ than was the case with no prior

information. Therefore, if the shares of low connected individuals increase the value of θ̂ will

increase, and so will the overall probability of regime change.

Notice, however, that increasing the probability of regime change is not without a cost, and

the welfare implications are far from obvious. Indeed, although shifting the degree distribution

alters the probability of regime change, it also affects the relative fractions of participants reaping

success or enduring failure. For instance, for the high cost case on the left panel of Figure 3,

notice that while increasing connectivity raises the probability of regime change, it also raises

the fraction of the population that attacks when regime change fails (i.e. for those values of θ to

the right of the 45◦ line and to the left of the point where the two curves intersect). This larger

share of attackers must incur a negative payoff of −c for this range of θ, so the final effect on

total welfare of moving from d to d′ is therefore not obvious (a similar and converse argument

can be made for the low cost case on the right panel).
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Figure 4: Less Informed Players choose larger x?i for c sufficiently low

Why are players with less precise posterior beliefs more willing to act when the costs are

low? A look at figure 4 reveals that this result comes from the symmetry of distributions. Less

connected individuals attain a more dispersed posterior belief about the state of the world, θ, and

therefore must center their distributions further away from the critical cutoff θ̂ in order to attain

a probability of success equal to c. When c > 1
2
(Right-hand panel) the cutoff will certainly lie

to the right of every player’s expected belief, and less connected players will therefore choose

a lower equilibrium threshold (With a lower threshold the propensity to attack is lower). But

when c < 1
2
(Left-hand panel) the cutoff will lie to the left of the distribution’s center. In that

case, more dispersed distributions will locate further to the right than less dispersed ones. As

a result, low degree individuals will choose an equilibrium threshold that is larger (i.e. higher

propensity to attack). Moreover this effect increases with the value of c and the distance between

the threshold strategies for high and low-degree players can be made arbitrarily big. If costs are

sufficiently low, so that this distance is very large, less connected individuals can be much more

prone to attack and value of θ̂ is larger with less connected populations. (see figure 3).

Intuitively, the high expected gains and low expected losses that come with low values of c

mean that players need not be very sure of the probability of success (remember at equilibrium

players choose threshold such that probability of success equals c). In that case being less

informed has a strategic advantage in so far as more weight is given to rare events, and these

rare events are now enough to trigger action. Then as a low connected individual you will attack

unsuccessfully more often than others, but you will also sometimes attack successfully more often

than others. As a result, the status quo will need to be stronger to survive a population with

your equilibrium behavior.
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7.1 Power Law Degree Distribution

The previous result showed that the model exhibits non-monotone comparative statics with

respect to the degree distribution for a general class of distributions and D = 2. Of course we

would like to say something for a wider support of the degree distribution. The difficulty emerges

in expressing a FOSD shift in one single parameter. We need this since our proofs rest on totally

differentiating an implicit function in θ. Indeed for a great many number of distributions this

cannot be done.

Following a vast number of studies that have documented the prevalence of scale-free character-

istics across most types of large networks, we focus on degree distributions where the probability

that a vertex is connected to k other vertices decays as a power law following Pr(k) ∝ k−γ,

for k ≥ 1.11 This type of scale-free distributions have been shown to accurately describe the

behavior of online social networks, such as twitter, that proved instrumental in transmitting

information prior to large scale mobilization and regime change in the Arab Spring.12

We must first guarantee that this type of scale-free networks satisfy the sparseness require-

ments in Proposition 2. Following Barabási (2016), it is well known that, in a scale-free network,

the expected maximum degree (also known as the natural cutoff ), dmax, satisfies the following

relation

dmax = dmin n
1

γ−1

where dmin defines the minimum degree. It therefore follows that the product of D1 and D2 in

Proposition 2 can be bounded above by an increasing, but concave function of the network size

n:

D1 ·D2 ≤ d2
min n

2
γ−1

Therefore, in terms of the sparseness condition in Poposition 2, we can conclude that

D1 ·D2

n
≤ d2

min n
2

γ−1
−1 −→

n→∞
0

whenever γ > 3. In other words, if the decay parameter is sufficiently strong, then a scale free

network’s expected maximal degree grows sufficiently slow to apply Proposition 2. Moreover,

γ above 3 is reasonable in many contexts, and in fact describes many real-life communication

networks, such as mobile phone calls (γ = 4.69), email (γ = 3.43), scientific collaboration
11See, for instance, Barabási and Albert (1999)
12For evidence on the Power Law properties of online social media, see for instance Goel et al. (2015), Bakshy

et al. (2011), and Kwak et al. (2010).
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Figure 5: Probability of Success against Cost of Failure for model simulations under a powerlaw
distributions and with parameters D = 200, σ2

0 = 4, σ2 = 16. Panel A: θ0 = 0. Panel B: θ0 = 2.

(γ = 3.35), and the router internet network (γ = 3.42).13

We will consider shifts in γ as FOSD movements in the degree distributions. To see that

this is equivalent, notice that lower values of γ imply that the probably of degrees decays more

slowly, so that at least for large values of d, a power-law distribution with γ′ > γ is First Order

Stochastically dominated with respect to a power-law distribution with parameter γ.

We solve the model numerically by first simulating power law degree distributions for D = 200

and a wide array of different γ′s. We then find the θ̂ that solves the equilibrium condition shown

in equation (13). Recall that the value of θ̂ specifies the likelihood of successful regime change

in equilibrium. From this exercise we therefore obtain the success probability as a function of

c, for each different power law distribution (parametrized by γ). We plot the results in Figures

5 and 6 for different values of θ0, σ0, and σ. The two panels of Figure 5 capture the effect of

changing θ0, the mean of the prior beliefs about the strength of the status quo. The left panel

corresponds to θ0 = 0 and the right panel corresponds to θ0 = 2. As found in Proposition 7 for

the case of D = 2, raising the prior beliefs about θ lowers the value ĉ at which the comparative

statics are reversed. In any case, notice that there exists one unique value ĉ (σ, σ0, θ0) ∈ (0, 1)

such that, to the left of ĉ increasing γ increases the probability of regime change, and to the right

of ĉ the probability of success decreases with γ. The two panels of Figure 6 capture the effect

of an increase in σ2
0

σ2 . Again, it is clear that there exists one unique value ĉ (σ, σ0, θ0) ∈ (0, 1)

where the ordering of the curves is reversed. However, in this case, raising σ2
0

σ2 in fact increases

13See, for instance, Barabási (2016)
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Figure 6: Probability of Success against Cost of Failure for model simulations under a powerlaw
distributions and with parameters D = 200, θ0 = 0. Panel A: σ2

0 = σ2 = 4. Panel B: σ2
0 = 4,

σ2 = 32.

the value of ĉ. This was also true in Prop 7 for the case of D = 2.

In general, while an analytic solution for power law distributions (Pr(k) ∝ k−γ) is hard to

come by, the numerical results presented in Figures 5 and 6 have been carried out for an extensive

range of parameter values.14 We can therefore state the following useful observation.

Simulation Results (Power Law Distribution): Let σ2
0 > σ. For the class of degree

distributions following a Power Law (i.e. Pr(d) ∝ d−γ for some γ > 0), there exists a unique

threshold ĉ (σ, σ0, θ0) ∈ (0, 1) such that for all 0 < c < ĉ the probability of regime change increases

with γ, and for all 1 > c > ĉ the probability of regime change decreases with γ. Moreover,

ĉ (σ, σ0, θ0) decreases with θ0, increases with σ2
0

σ2 .

The results above suggest that, as with the case where D = 2, the success probability does

not respond monotonically to a FOSD shift in the degree distribution, and instead identifies a

threshold cost where the direction of comparative statics is reversed. The intuition corresponds

to the arguments presented above and can be seen clearly in Figures 5 and 6.
14Only a few examples are shown here (code available upon request). Notice that, although strictly speaking

Proposition 2 requires that γ > 3, we also plot curves for γ below 3. We do this to make the relationship between
the curves stand out as much as possible – curves for γ > 3 are much closer together and it is therefore harder
to visualize the existence of a unique threshold that reverses their order. However, the results are qualitatively
identical for all values of γ.
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8 Discussion

Models of large-scale coordination with incomplete information have usually neglected the role of

communication, and in particular the role of connectivity in pooling information. In this paper,

we propose a model of large-scale coordination within a network of information transmission.

We assume agents observe the private information held by their neighbors within a given social

network. This generates a situation of locally public signals that correlate posterior beliefs

according to the structure of social interactions. Moreover, a connectivity effect guarantees that

the strength of posterior beliefs In this environment, we describe the equilibrium for two-action,

two-outcome global games with large networks.

The main technical contribution of this paper provides an upper bound on network density as

a function of size, such that, for any communication protocol, the correlation of posterior beliefs

is sufficiently mild relative to the connectivity effect. This implies that, for large networks, the

connectivity effect dominates and, in the limit, the problem reduces to independent posterior

beliefs with strength proportional to connectivity. This allows us to solve for an equilibrium,

simply as a function of a network’s degree distribution.

After characterizing the equilibrium, we perform comparative statics on the network by shift-

ing the degree distribution. We show that these considerations are not innocent, and that the

strategic impact of connectivity on equilibrium outcomes is far from obvious. Indeed, largely

connected individuals, while they care little (a priori) for publicly observed information, must

strategically respond to the behavior of less connected individuals, and therefore to the public

signal indirectly. We show that, when prior beliefs are diffuse (i.e. publicly-held information is

completely uninformative of the state of the world), then the probability of successful coordi-

nation does not depend at all on the degree distribution. However, the size of successful and

unsuccessful attacks does vary with the degree distribution – more informed populations will

correspond with smaller, unsuccessful attacks and larger successful attacks.

On the other hand, when public information provides information, shifting the degree distribu-

tion affects the likelihood of successful coordination, and we show that the effect is non-monotone

and depends crucially on the cost paid when mis-coordination happens. In particular, if the cost

of failure is sufficiently small, then the probability of success increases as networks are, on av-

erage, less connected. The opposite is true for large failure costs. Intuitively, if payoffs don’t

fall by much when coordination fails then the probability of success is maximized by having less

informed individuals that are less selective about when to attack. Indeed in this scenario failure
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is also more ubiquitous, but so are successful attacks, increasing the total probability.

Although we frame most of the paper in the context of attacking a regime to overthrow the

status quo, the current model can apply in a great deal of additional setting in which agents

must choose between two possible choices and there is incomplete information about others’

beliefs. One particularly exciting context is the adoption of new technologies. Switching costs

and network externalities (i.e. that the value of the product to a consumer depends on the level

of consumption by others) implies that individuals will only choose to adopt a new technology if

they can be sure that a minimum mass of other individuals will also choose to adopt it. Typical

examples are social media platforms, such as Twitter, Facebook, and Whatsapp. In this respect,

the model can speak to the type of pre-existing communication network that will maximize the

probability of adoption, or can guide firms and developers towards markets or communities that

are more likely to switch to the new product. This is just one example, and Myatt et al. (2002)

allude to this and a number other settings in which these type of models can be useful – for

instance, speculative currency attacks, fire sales of assets, and, of course, popular revolts.

We have considered here equilibrium and comparative statics results in the world where infor-

mation’s noise does not vanish. Part of the literature of global games has focused attention in

what happens when noise tends to zero. In that sense, the work of Sakovics and Steiner (2012)

is complementary to our approach: in their paper, different groups can receive information with

different probability distributions, and they provide a closed form expression of the common

threshold for all groups in the limiting case where noise vanishes.

Although we have assumed normally distributed signals, the current model could be extended

to other information structures. Indeed, it is true and well-known that, if we restrict ourselves

to linear estimators, the minimum variance estimator (and indeed the minimum mean squared

error estimator) is given precisely by a weighted average of signals, where the weights correspond

to the relative precision of each signal, such as in the expression of the posterior mean of θ in

equation (1) (Scharf and Demeure, 1991). However, restricting ourselves to linear estimators

is often not the best strategy. In the statistics literature, Diaconis and Ylvisaker (1979) show

that, within the class of exponentially distributed signals, only conjugate proper priors satisfy

the property that the Bayes estimate of the mean corresponds to a linear function of the signals.

Moreover, even if we could obtain a linear mean as in (1), the equilibrium of this model requires

that we know a lot more about the posterior distribution. Notice that our equilibrium is defined

by equating the probability of success to the cost of failure, given formally by Pr(θ ≤ θ̂ | x?d) = c.

This requires integrating the posterior distribution of θ, which requires knowing all moments of
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the distribution. The elegant thing about the normal setting is that, as a conjugate prior,

the posterior distribution is known and well-defined, so we can readily obtain our equilibrium

condition. This is the main reason why normality is assumed in most papers on global games

of regime change in the literature (i.e. Angeletos and Werning (2006), Angeletos et al. (2007)

etc.). To summarize, we argue that our model could probably extend to other settings with

conjugate symmetric priors, such that the posterior distributions is known and symmetric, and

such that the mean and variance are given as in equation (1). This corresponds, for instance,

to the gamma prior for the Poisson distribution, or the beta prior for the negative binomial.

Notice, however, that this would require justifying a very specific prior and signal relationship.

A point must be made about the communication protocol that is assumed in this paper.

Indeed, there are ex-post mechanisms that could be applied in this setting to extract information

from others’ signals. For instance, Cremer and McLean (1988) show that truthful messages can

be induced by certain mechanisms with side payments, as long as player’s types are correlated.

In the hard overlapping information structure that we assume in this model, these type of

mechanisms could be implemented locally by soliciting two separate reports on a single person’s

signal realization. This would lead to full information revelation at a local level. However, as long

as information revelation is only local, one can think that this leads to an augmented network

where signals are observed at a greater distance. Since our model applies to any network, this

environment can be readily incorporated in this framework.

A more thorough investigation of these type of communication protocols on coordination

games is also warranted. Particularly, the solution for finite populations introduces complicated

correlation effects. It would be worthwhile to provide more nuanced predictions on the impact

of social structure on equilibrium actions. As mentioned above, if posterior beliefs are correlated

across nearby players, particularly popular signals will provide information on the state of the

world (as always), but at the same time they will also provide information on others’ equilibrium

actions. Equilibrium considerations therefore will depend on a more detailed description of the

network structure than that provided solely by the degree distribution.
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Supplementary Appendix

A Sparseness Condition for Approximating Correlated Net-

works

A.1 Background

The following discussion proves that we can impose conditions on the network architecture that

guarantee correlations across players are sufficiently local and can be disregarded when dealing

with large populations. Recall that players optimally choose a threshold strategy following an

updated belief about the share of the population that will choose to attack the status quo. In

particular, players must form beliefs about the value of A defined as the share of the population

that choose ai = 1

A =
1

n

N∑
j

1{xj∈Bj}

With a finite population, A is a binomial random variable and calculating the equilibrium

translates into a grueling combinatorics exercise that requires calculating, for each player, the

level of correlations with every other individual in order to form high-level posterior beliefs.

For networks exceeding 5 players the calculations become highly intractable and provide little

insight. Instead, we propose approximating a large network with an infinite population in order

to rid the model of correlation effects and focus instead on the relation between connectivity and

informativeness. Formally, we provide conditions on the network architecture that guarantees

that,

A =
1

n

∑
j

1{xj≤B?j} −→a.s. lim
n→∞

E

[
1

n

∑
j

1{xj≤B?j}

]
Then, following arguments in the text, we can conclude that

A −→
D∑
d=1

pd · Pr (xd ≤ x?d)

where pd is the share of the population with degree d. Not only do we gain in tractability,

but we are now able to express the equilibrium as a fixed prediction of success/failure and

size/composition of attacks for each value of θ- the alternative would provide for each state

of the world θ a probability of success and failure and a distribution of possible sizes and
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compositions of attacks. In short, the network here introduces two effects: local correlation

in private information, and precision stemming from the connectivity of each individual. The

following is a methodological contribution for ridding the model of the former effect in order to

exploit the impact of the latter effect on the equilibrium.

A.2 Finite-Range Dependence and Strong Mixing Sequences

First we define a class of sequences with bounded correlations called finite-range dependent

sequences. We then relate them to another class known as ?-mixing sequences, for which a

large and well-known class of laws of large numbers (LLN) exist. The reason we proceed this

way is that in the following section we develop an algorithm for naming nodes on a network

that guarantees, under some intuitive conditions on the growth rates of the largest degrees in

the network, that the sequence of Bernoulli random variables in the definition of A in equation

(6) indeed satisfy finite-range dependence. Once we show that finite-range dependence implies

?-mixing, we can refer to the classic convergence results to establish the desired LLN.

Let (Ω, F, P ) be a probability space and let {Xn, n = 1, 2, . . .} be a sequence of real-valued

random variables defined on (Ω, F, P ). For each positive integer n, let Fn be the smallest σ-

algebra in which Xn is measurable, and for n ≤ m let Fm
n be the smallest σ-algebra in which

Xn, . . . , Xm is jointly measurable.

Definition 8 (Finite-Range Dependence). A sequence {xi}∞i=1 of random variables defined on

(Ω, F, P ) exhibits finite-range dependence if and only if there exists an I such that if | i− i′ |≥ I

then xi and xi′ are independent:

P (A ∩B) = P (A)P (B)

for all A ∈ Fi and B ∈ Fi′.

Finite range dependence implies that if we take two elements far enough apart in the sequence,

we are guaranteed that these elements must be independent. Similarly, ?-mixing sequences place

bounds on the strength of the correlation as a function of the distance between elements in the

sequence, and imposes that as the distance grows the strength of the correlation vanishes.

Definition 9 (?-Mixing Sequences from Li and Zhang (2010)). Let {Xn, n ≥ 1} be a sequence

of random variables. Xn is called a ?-mixing sequence if there exists a positive integer I, and
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a function f such that f ↓ 0 and for all n ≥ I, m ≥ 1, A ∈ Fm
1 , and B ∈ F∞n+m,

| P (A ∩B)− P (A)P (B) |≤ f(n)P (A)P (B).

Next we need to show that if a random sequence satisfies finite-range dependence, then it

must necessarily satisfy the ?-mixing (or uniformly strong mixing) property.

Lemma 1. Any sequence that exhibits Finite Range Dependence is a ?-Mixing Sequence.

Proof. Our definition of finite range dependence in Definition 8 can be expressed in terms of

σ-algebras as saying that for all j ∈ Z, there exists an I such that for every s > I we have

α̂ (s, j) = 0, where,

α̂ (s, j) = sup {|P (A ∩B)− P (A)P (B)| : A ∈ Fj, B ∈ Fj+s, }

But notice that, by finite range dependence, if xj is independent of xj+s then it is also independent

of xk for all k > j+s. Similarly all xm withm < j are also independent of xj+s (and consequently

also independent of all xk with k > j + s). As a result we can establish that,

α̂ (s, j) = sup
{
|P (A ∩B)− P (A)P (B)| : A ∈ F j

1 , B ∈ F∞j+s,
}

Now, since α̂ (s, j) = 0 for all s > I, definition 9 is satisfied, for instance, for f(n) = 1/n since

we have that

| P (A ∩B)− P (A)P (B) |= 0 ≤ 1/n P (A)P (B).

for all s ≥ I, j ≥ 1, A ∈ F j
1 , and B ∈ F∞j+s �

Finally, by Theorem 2.1 of Li and Zhang (2010) that establishes SLLN for uniformly strong

mixing sequences, we can establish the following result:

Lemma 2. If a sequence {xi}∞i=1 of non-negative random variables defined on (Ω, F, P ) exhibits

finite-range dependence, such that Exi = µi <∞ for all i, and
∑∞

i=1 EX2
i /i

2 <∞, then

lim
n→∞

1

n

n∑
i=1

(Xi − µi) = 0 a.s.

so a Strong Law of Large Numbers applies.
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A.3 A Naming Algorithm

Once the above Lemma is shown to hold, we can construct an algorithm that assigns indexes

to the players in the network such that the resulting sequence exhibits finite-range dependence.

By the above lemma, the LLN applies to sub-sequences corresponding to players of the same

degree, and thus Proposition 2 holds. The following algorithm is essentially a Breadth-First-

Search algorithm on a graph.

Algorithm. Start from any node in the network, call it 1. Assign consecutive indexes to each of

1′s neighbors. Next, starting from the neighbor with the lowest index, assign consecutive

indexes to the neighbors of 1′s neighbors. If a node is already named, do not rename it.

Continue in this way.

Recall that D represents the maximal degree and that D represents the set containing the degree

of each player in the network. Now define D1 = max (D) and D2 = max (D−i) for some i ∈ N
with di = D1. Given the naming algorithm, we can find a value of I < n such that the sequence

of all players has finite-range dependence. Specifically, we have that when

I = D1 (1 +D2)

there is finite-range dependence for the entire sequence of nodes. To see this notice that any two

players i and j with |i− j| > D1 (1 +D2) must necessarily lie more than two links away from each

other. Given our information aggregation procedure, this guarantees that they are not correlated.

Of course this is not true for the complete network, but in that case I = (n− 1)n which is greater

than n for n > 2. Clearly the network must be sufficiently sparse such that I < n15. Although

the algorithm gives some freedom as to the precise labeling of the nodes it guarantees that any

two nodes with labels I units away will necessarily lie more than two links away from each other.

Figure ?? illustrates the algorithm and shows how the value I = D1 (1 +D2) guarantees two

degrees of separation for a tree network of 21 players. The reason for using the tree is that,

because no neighbor of 1’s neighbors is also 1’s neighbor, it constitutes the starkest example

imaginable.

The argument above has assumed that I corresponds to a fixed integer. It is easy to see that

fixing the maximum degree while increasing the total population increases network sparseness.
15In fact, the next section imposes additional conditions on the behavior of I as a function of the total

population n. That is, I < n is a necessary, but not sufficient condition for convergence.
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Figure 7: The Breadth-First-Search Algorithm for a Tree network with n = 21 and D1 = 4,
D2 = 4 (i.e. I = 20). Notice that for all i and j with | i− j |> 20 will necessarily lie more than
two links away.

It turns out, however, that weaker conditions exist. Specifically we can establish the same result

for values of I that grow with n, provided the growth rate is sufficiently slow. The following

section formalizes this result.

A.4 Conditions on the Growth Rate of Degrees

In this section we specify sufficient conditions on the behavior of the largest degrees in the

network, D1 ≥ D2 ≥ . . . in order to guarantee that we can construct sequences of nodes with

finite-range dependence, and hence the law of large numbers applies. As mentioned above, we

need LLN to hold so that we can approximate the network with an infinite population and gain

tractability. The algorithm above guarantees that we can construct I = D1 (1 +D2) sequences

of independent random variables, each with n
I
elements. Of course, we need that as n tends to

infinity, the value of I does not grow too fast so that we can be sure that n
I
also tends to infinity.

Otherwise the sequences would only contain a finite number of terms (which is not possible). We

could just impose that D1, D2, . . . are fixed to some constant, but we are interested in finding

weaker conditions. So we need that
n

I (n)
−→
n→∞

∞

this implies that I ′ (n)−→0.

In general for I = D1 +D1D2 we have that I ′ (n) = D′1 (n)+D′1 (n)D2 (n)+D1 (n)D′2 (n). We

know that in general for any i ∈ E, D′i (n) ≥ 0 (otherwise nothing to prove) and so the condition

that I ′ (n) → 0 implies that all three terms go to zero. The first condition simply implies

concavity- i.e. D′′1 (n) < 0. This makes sense, it says that as n grows, the maximum degree

should grow at a slower rate. The next two conditions however impose additional conditions on
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the concavity of these functions. So far we only have results for the case where degrees follow a

power function of the entire population.

A General Result

In general we can think of a number of communication protocols that generate all sorts of

local correlations. We have assumed in this model that correlations are present up to 2 links

of separation. But there is no reason why this should be the case. In general, if correlations

emerged at k degrees of separation, then we would need to redefine our I. In this case

I = D1 +D1D2 +D1D2D3 + · · ·+D1D2D3 . . . Dk =
k∑
j=1

j∏
l=1

Dl (14)

It is clear that as the aggregation procedure generates correlations that stretch farther across

the network, then the restrictions on the growth rate of the degrees becomes stronger in the

sense that it imposes structure on the shape of smaller degrees. Finally, we provide a general

characterization that guarantees I(n)
n
→ 0. Notice that for any general k the convergence rate of

I (n) is determined by the last term in the sum in equation (14), so that the necessary condition

becomes

k∏
j=1

Dj

n
→ 0 or, what is the same, that

k∏
j=1

Dj ∈ o (n)

which is a general form of the expression in Proposition 2.
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