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Abstract

We propose a new solution concept for TU cooperative games in characteristic

function form, the SCOOP, that builds on the symmetric Nash Bargaining Solution

(NBS), adding to it a consistency requirement for negotiations inside every coalition.

The SCOOP specifies the probability of success and the payoffs to each coalition.

Players share the surplus of a coalition according to the NBS, with disagreement

payoffs that are computed as the expectation of payoffs in other coalitions, using

some common probability distribution, which in turn is derived from the prior dis-

tribution. The predicted outcome can be probabilistic or deterministic, but only

an effi cient coalition can succeed with probability one. We discuss necessary and

suffi cient conditions for an effi cient solution. In either case, the SCOOP always ex-

ists, is generically unique for superadditive games, and easy to compute. Moreover,

in the spirit of the Nash program, we propose a reasonable non-cooperative pro-

tocol whose stationary equilibrium identifies the SCOOP as the limit equilibrium

outcome.
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1 Introduction

The Nash Bargaining Solution (NBS) has long been accepted as the standard solution

concept for negotiations between two, or more, players about how to share the proceeds

of an agreement. Less consensus exists as to the right theory for the problem of coalition

formation. There, different possible agreements involve different sets of players, each

characterized by the worth that the players in the set may obtain and share, should

they reach that agreement. For this problem, we propose a theory that builds on the

symmetric NBS,1 adding to it a consistency requirement for negotiations inside every

coalition. More specifically, we study the problem of forming one of the possible coalitions

of a TU game in characteristic function form. We propose a new solution concept, the

SOlution with Consistent Outside Options (SCOOP), that specifies the probability of

success of, as well as the payoffs within, each coalition. It requires that the surplus

in every coalition is shared according to the NBS, with disagreement points consistently

computed. In particular, each player’s disagreement payoff in one coalition is that player´s

expected payoff in alternative coalitions. The expectation is taken using some probability

distribution over those counterfactuals,2 a system of beliefs that is shared by all players

and is consistent across coalitions. That is, the system of beliefs coincides with the system

of conditional distributions obtained from a joint distribution, a common prior, over all

coalitions. The theory identifies that system of beliefs and that common prior. Finally,

we also require that the probabilities are consistent with the payoffs: a coalition may be

expected to succeed with positive probability only if all players involved have no better

option.

Our first major result is that the SCOOP exists for any game. That is, for any

transferable-utility game of coalition formation there exists a, perhaps probabilistic, pre-

diction of success and surplus sharing consistent with NBS, with the disagreement payoffs

determined by consistent counterfactuals.

We then turn to investigate uniqueness. Restricting attention to superadditive games,

we show that the SCOOP is generically unique.3 Thus, for superadditive games the

1Like in most applications of the NBS, players are assumed to equally share the surplus net of the
disagreement payoffs.

2We refer to these counterfactuals as outside options, although they are external only when considered
from the point of view of negotiations to reach a particular agreement or form a particular coalition.

3Uniqueness can also be ascertained for other classes of games like indivisible games (any pair of
coalitions with positive worth share at least one player), like the three-player, three-cake problem, or
symmetric games (the worth of the coalition only depends on its size).
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SCOOP provides sharp predictions which, moreover, are relatively straightforward to

compute. We also argue that, maintaining the assumption that only one coalition forms,

any sensible solution should content itself with less sharp predictions for more general

classes of games. As a simple illustration, if the only coalitions with positive surplus are

two disjoint coalitions, there is nothing in the characteristic function form on which to

base any prediction sharper than this: one of these two coalitions will form.

We also study the nature of the predictions that follow from our theory. It should not

come as a surprise that when the SCOOP is deterministic, i.e., predicts the formation

of a certain coalition with probability one, such a coalition must be the grand coalition

in strictly superadditive games; or, more generally, one with maximum worth (effi cient).

Having a non-empty core is a necessary, but not suffi cient, condition for a game to have

a deterministic SCOOP. Indeed, a deterministic SCOOP requires that the payoffs to the

players in the grand coalition are preferable to what they might obtain elsewhere. This is

also what an imputation must satisfy to be in the core, and so the payoffs in a deterministic

SCOOP must be an allocation in the core. An immediate implication is that, if the core

is empty, the SCOOP is always probabilistic.

However, a deterministic SCOOP requires more than a non empty core. In particular,

it requires that the agreement in the effi cient coalition be supported by consistent coun-

terfactuals, a stronger requirement, and one which all core allocations may fail to satisfy.

Thus, even if the core of the game is non-empty, the SCOOP may be probabilistic. We

characterize the set of games for which the SCOOP is deterministic and the set for which

it is probabilistic.

In line with the Nash program, we also offer a non-cooperative protocol that im-

plements the SCOOP. First, we discuss why (versions of) the two standard protocols,

the random-proponent protocol and the rejector-proposes protocol, may fail to produce

satisfactory predictions.4 Indeed, besides possibly generating multiple equilibria, these

protocols include initial exogenous (i.e., arbitrary) random devices that end up having a

large impact on the predicted outcomes. In particular, the equilibrium probabilities of

success may be insensitive to changes in the primitives, and exclusively determined by

these exogenous random devices. Our approach is to construct a protocol with elements

of these classes of protocol, but less bonded to the random device. More specifically, our

protocol departs from the standard ones by, first, separating the determination of the

4See Ray (2007) for an excellent discussion of these protocols and other related issues.
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winning coalition from the sharing of the value of this coalition; and, second, by endoge-

nizing the probabilities with which the candidate winning coalition is determined. In our

protocol, stationary equilibria (exist and) necessarily identify the SCOOP as the limit

equilibrium outcome.

One early predecessor of our paper is Bennett (1997), who also endogenizes disagree-

ment payoffs in a particular negotiation as functions of the payoffs that players obtain in

their alternative negotiations. For the three-player/three-cake problem (Binmore, 1985),

Bennett’s approach is to consider as disagreement payoffs in each bilateral negotiation

the payoffs that each player obtains in their negotiations with the third player. In our

language, this is equivalent to assuming that players assign probability one to several,

mutually exclusive, possible counterfactuals. The SCOOP follows Bennett’s lead but

adds the requirement that the counterfactuals used to compute disagreement points be

consistent.

The idea of modeling the division of surplus as based on endogenous disagreement

points is also at the heart of various definitions of internal consistency (the reduced-game

property) that have been invoked to characterize the nucleolus and the Shapley value

as appropriate generalizations of the NBS (Sobolev, 1975; Peleg, 1986; Hart and Mas-

Colell, 1989; Serrano and Shimomura, 1998). Here too, the reduced game is defined while

overlooking the possible incompatibility of alternative agreements. For instance, in a

three-player game, following Hart and Mas-Colell (1989), the Shapley value is consistent

in the following sense: the payoffs to every pair of players is also the NBS of their bilateral

negotiation, with disagreement points defined as the payoffs that each player obtains in

case this negotiation fails and reaches an agreement with the third player. Clearly, these

disagreement payoffs are not based on consistent counterfactuals, since only one of the

players can possibly reach an agreement with the third.

The more recent paper by Compte and Jehiel (2010) is also related to the present paper.

In the context of games in characteristic function form in which the grand coalition is

the one that generates the largest surplus, they define a cooperative solution concept, the

Coalitional Nash Bargaining Solution (CNBS), as the allocation in the core that maximizes

the Nash product. (Thus, their concept is only defined for games with a non-empty core.)

The SCOOP coincides with the CNBS when the former is deterministic. However, as we

have mentioned above, even when the core is not empty, and so the CNBS is defined, the

SCOOP may be probabilistic, and so predict a quite different outcome. Once more, the
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requirement that payoffs are based on the NBS and consistent counterfactuals explain the

departure. Interestingly, there is a property that Compte and Jehiel discuss that we use

to characterize the class of games for which the SCOOP is deterministic.5

The rest of the paper is organized as follows. In the next section we present our

solution concept. Sections 3 and 4 examine the existence and uniqueness of a SCOOP.

The non-cooperative implementation is discussed in Section 5. Section 6 illustrates the

main characteristics of the SCOOP with some examples. Section 7 discusses the relation

between the SCOOP, the core, and the CNBS. The paper closes with precise guidelines

on the computation of the SCOOP in complex games (Section 8), and some concluding

remarks (Section 9).

2 A new solution concept for cooperative games in
characteristic function form

We consider n > 2 agents who negotiate to form a coalition. The set, and the coalition,

of all agents will be denoted by N , and the set of coalitions by S. The coalition s ∈ S has
worth vs ≥ 0. Thus, the pair

(
N, {vs}s∈S

)
defines a coalitional game: a cooperative game

in characteristic function form. In this paper we study the problem of forming a unique

coalition and distributing its worth among its members.

Thus, a solution identifies an outcome. A deterministic outcome is a coalition s ∈ S,
and payoffs, usi , for all i ∈ s. We will also allow for non-deterministic outcomes. Thus, in
general, an outcome is a probability distribution p over the set of deterministic outcomes.

The elements of our theory are simple: agents will consider all possible negotiations

(one in each coalition s ∈ S) simultaneously. Payoffs within each coalition must corre-

spond to the symmetric (equal sharing of the net surplus) Nash Bargaining Solution inside

the coalition, and the disagreement points for each of these negotiations must correspond

to the (expected) payoffs in alternative coalitions. Finally, the expectation is computed

using Bayes’rule and a common probability distribution over coalitions. This probability

distribution must be consistent with the agents’payoffs in all coalitions.

We normalize to 0 the payoff of a player that does not belong to the coalition that is

formed. (Note that this does not exclude the possibility that one-player coalitions have

5This is not coincidence: that property, referred to as Property P1, guarantees that the CNBS is
the subgame equilibrium (limit) outcome of a random proponent protocol. Subgame perfection in fact
incorporates consistency of beliefs, very much in line with the consistency requirement for the SCOOP.
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positive worth.) Let p ≡{ps}s∈S denote a probability distribution on S. Also, for each
s, let {λsr}r 6=s denote a probability distribution on the set of coalitions minus s. Finally,
for each s ∈ S, denote by {tsi}i∈s a vector of disagreement points for the ns players in
coalition s.

Definition A Solution with Consistent Outside OPtions (SCOOP) for the game
(
N, {vs}s∈S

)
is a quadruple σ =

{
{usi}i∈s , {tsi}i∈s , ps, {λ

s
r}r 6=s

}
s∈S

that satisfies:

(i) usi =

{
tsi + 1

ns

(
vs −

∑
j∈s t

s
j

)
, if vs ≥

∑
j∈s t

s
j

0, otherwise
(ii) tsi =

∑
r3i,r 6=s λ

s
ru

r
i . If ps < 1 then λsr = pr

1−ps .

(iii) ps > 0 only if usi ∈ maxr3i u
r
i , for all i ∈ s.

The first line in (i) is simply the symmetric Nash Bargaining Solution. The second line

corresponds to the "outside-option principle": usi may play (part of) the role of an outside

option for an agent i ∈ s in negotiations elsewhere, but only if s is indeed a coalition that
i, and the rest of members of s, may consider joining. Otherwise, the payoffs in s must

be irrelevant, i.e., add nothing to the agents’disagreement points when they negotiate to

form other coalitions r 6= s.

Part (ii) in the definition establishes that the disagreement points in s are the expected

payoffs in alternative negotiations r 6= s. It also requires that the probability distribution

used to calculate these expected payoffs in alternative negotiations is consistent. That is,

it must be the conditional probability distribution over coalitions other than s obtained

from a common prior p using Bayes’rule, when applicable. That is, the SCOOP can be

probabilistic, ps < 1 for all s, in which case λsr is given by Bayes’rule, or deterministic,

ps = 1 for some s, in which case λsr can be freely chosen.

Part (iii) imposes the consistency of this common prior with payoff predictions. A

coalition can have positive probability only if all its members obtain their maximal payoff

in that coalition. That is, any player is expected to reject a coalition if there is an

alternative one that she strictly prefers.6

Thus, our solution concept can be understood as a generalization of the (symmetric)

NBS to coalitional games, in which the beliefs held in each coalition are consistent: (a)

all players in each coalition hold the same beliefs about the consequences of the failure

6Weaker consistency criteria may be defended. Yet, this strong one is not only compatible with
existence, but delivers a unique prediction in a large class of games. Weaker criteria would have to include
this prediction, and so it may be argued that the SCOOP would still be the most robust prediction.
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of the negotiations, (b) these beliefs emanate from a common probability distribution

(and hence they are consistent across coalitions), and (c) this probability distribution is

compatible with the payoffs. In Section 5, we study a non-cooperative, dynamic bargaining

game that implements, as the discount vanishes, the SCOOP. The bargaining game is

a sensible version of standard protocols, in particular, random-proponent and rejector-

proposes protocols.

3 Existence

Our first result guarantees that this concept always results in a prediction. That is, for

any game in characteristic function form, it is possible to model simultaneous negotiations

à la Nash with consistent counterfactuals and obtain some prediction, a SCOOP. Indeed,

Theorem 1 For any TU game, a SCOOP exists.

The proof is in the Appendix. In this general existence proof, we have used an ar-

gument that parallels the by now most popular proof of the existence of a competitive

(Walrasian) equilibrium. The similarity comes from the use of (a version of) the Walras

law. Indeed, existence of a competitive equilibrium can be proved by referring to (con-

tinuity and) the Walras law: the product of any vector of prices and the corresponding

excess of demand over endowments is always zero. These properties are used to define a

correspondence from the set of (relative) price vectors to itself, a fixed point of which is

a competitive equilibrium. For the SCOOP, the analogues of prices are the probabilities.

"Excess demand" in each "market" (coalition) has nothing to do with utility maximiza-

tion, but simply with a particular property of the SCOOP (the "equal loss"), which is a

direct consequence of the "behavior" predicted by the – symmetric– Nash bargaining

theory. Crucially, this "excess demand" also satisfies an analogue to the Walras law: the

expected total excess payoff is always zero. Using (continuity and) this property, we also

define a correspondence from the set of probability vectors to itself a fixed point of which

is also virtually the SCOOP. This is where the parallel ends. However, just as with com-

petitive equilibrium, it is instructive to view the (Kakutani’s) fixed point theorem as a

process of convergence. In our case, the "Walrasian auctioneer" would name a vector of

probabilities, check where there is "excess demand", i.e., in what coalitions the payoffs

induced by equal loss exceed the worth of the coalition, and then try a new probability
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vector that puts less probability on those coalitions.7

4 Uniqueness

Our second main result refers to the sharpness of the predictions that the SCOOP offers.

For that, we will restrict attention to superadditive games.

Definition The game
(
N, {vs}s∈S

)
is superadditive if for all s, s′ ∈ S such that s∩s′ = ∅,

vs∪s′ ≥ vs + vs′ .

Moreover, we will consider games where v{i} = 0 for all i.8 That is, games where

a true "agreement" (i.e., one among at least two players) is needed to create a surplus

above what individual players obtain when no coalition (that includes them) forms.

In this set of games, multiplicity only arises for very particular combinations of coali-

tion values; that is, for a subset of games with zero measure in the set of superadditive

games.

Theorem 2 Generically, the SCOOP of a superadditive game is unique.

The proof is in the Appendix. We offer here a sketch of the strategy. First, suppose

that there is a SCOOP in which the grand coalition – which is generically the only effi cient

coalition– succeeds with probability 1. In this case, part (iii) of the definition of a SCOOP

implies that the worth of any other coalition should be lower than or equal to the sum of

the payoffs that its members obtain in the grand coalition. Also, the second line of part

(i) of the definition – which embeds the outside-option principle– implies that the only

coalitions that can affect the distribution of payoffs in the grand coalition are the ones

in which the above weak inequality holds with equality. These two points, together with

the principle that players equally share the net surplus – first line of part (i)– , imply

that the payoff vector of a deterministic SCOOP is in fact the imputation in the core that

7The proof in fact shows not only that a SCOOP exists, but also that one exists that satisfies the
– conditional or not– "equal loss" that we discuss later. This has some interest, as our generic uniqueness
result in the next section is solely based on this equal loss. That is, the SCOOP identified in this proof
is generically unique in the set of all games.

8Note that the worth of an individual coalition may be different from the payoff to the individual
when she is not a member of the winning coalition. Thus, we are making the, often implicitly made,
assumption that the game is of strict coalition formation. That is, a coalition needs to have more than
one member to produce any surplus. This assumption is not really necessary for uniqueness, but rather
helps simplifying the analysis of the strategic implementation of the SCOOP.
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maximizes the Nash product. Since the Nash product is strictly quasiconcave and the

set defined by the inequality constraints implied by part (iii) – the core– is convex, the

solution is unique.

This is the way the CNBS of the game (Compte and Jehiel, 2010) is defined and so

this already implies that, when the SCOOP is deterministic, the SCOOP coincides with

the CNBS. However, as we will discuss in more depth in Section 7, even when the CNBS

exists – i.e., when the core is not empty– the SCOOP may not be deterministic. That

is, there may not be consistent counterfactuals that sustain the CNBS as a SCOOP.

Second, suppose that there is a probabilistic SCOOP that puts some positive proba-

bility only on coalitions in some set S+, which cannot include the grand coalition. Part

(iii) of the definition of the SCOOP implies that all these coalitions containing player i

must offer player i the same payoff, say ui. We can now define a new game where the

grand coalition has a worth equal to the sum of ui for all players. Consider the same

constrained optimization problem described in the previous paragraph for this modified

game. The payoffs predicted by the SCOOP in the original game must be a solution, and

so the unique solution, of this problem! Indeed, the first order conditions of the opti-

mization problem are simply – part of– the conditions that define the SCOOP with only

interpreting probabilities as – multiples of– Lagrange multipliers. Thus, we only need

to show that there can be no two such modifications of the original game, as the solution

to one would induce slack – and so, a contradiction to the first part of the definition of

the SCOOP– in an active constraint of the other.

The above discussion already suggests that those games that posses a deterministic

SCOOP typically cannot posses a probabilistic one, and viceversa. More specifically, the

intersection of the set of games with a deterministic SCOOP and the set of games with a

probabilistic SCOOP is not empty but has an empty interior.

Theorem 2 is remarkable. For superadditive games, the consistency of the counter-

factuals that satisfy the particular way in which – symmetric– Nash bargaining theory

predicts the sharing of surplus in every negotiation is not only feasible, but – generically–

is compatible with only one – perhaps probabilistic– outcome.

Non-generic multiplicity may arise in two different circumstances. First, in the inter-

section between the region with a deterministic SCOOP and the region with a probabilistic

SCOOP, which as mentioned above has a non-empty interior, there are typically a contin-

uum of SCOOPs. For instance, consider a three-player game with vN = 1, and vs = 2/3
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for any coalition s with two players, and with zero-worth individual coalitions.9 There

exists a deterministic SCOOP with pN = 1, and ui = 1/3 for all i. However, there also

exists a continuum of non-deterministic SCOOPs where pN = p for any p ∈ [0, 1), and

ps = (1 − p)/3 for each two-player coalition s. Still, every player that belongs to the

winning coalition obtains a payoff of 1/3, but obviously these different SCOOPs are not

equivalent. On the contrary, they are Pareto-ranked, as all individual probabilities of suc-

cess increase with p. Thus, in this boundary case, the SCOOP acknowledges a potential

coordination problem: the indifference of players between coalitions of different size may

preclude a more effi cient outcome.

Multiplicity may also arises in games in which more than one coalition of size smaller

than n have the same worth as the grand coalition, another example of non-generic games.

For instance, consider a four player game where vs = 1 for s = {1, 2, 3, 4}, {1, 2, 3},
{1, 2, 4}, and vs = 0 for all other coalitions. Any (u1, u2) such that u1 + u2 = 1, ui ≥ 0

will be – part of– a SCOOP. Hence, in this type of non-generic game, multiplicity is again

payoff relevant. Only players who belong to all coalitions with the maximum worth can

obtain positive payoffs, but the mere existence of these alternative effi cient coalitions may

provide alternative, consistent counterfactuals that sustain different predictions. Thus, in

this case, the perfect substitutability of players may leave the vector of payoffs undeter-

mined.10

The focus on superadditive games is natural in games without externalities. It is

often argued that if s and s′ are two disjoint coalitions, then they should be able to

"...accomplish at least as much by joining forces as by remaining separate" (Owen, 1995,

page 213). On the other hand, as we anticipated in the Introduction, in the case of games

in which only one coalition can form (that is, the value of all other coalitions drops to zero

after one has formed, an extreme type of externality), if the game is not superadditive

and disjoint coalitions are relevant, then the multiplicity of SCOOPs should be expected.

Indeed, consider a four-player game in which only two coalitions, say (1, 2) and (3, 4),

9If vN > 1 the unique SCOOP is deterministic, pN = 1, and if vN < 1 the unique SCOOP is
probabilistic, ps = 1

3 , pN = 0.
10There are other, non generic, examples of irrelevant multiplicity, as all the SCOOPs predict the same

payoffs and same probabilities of success for all players. First, there are multiple deterministic SCOOPs
in terms of the composition of the set of relevant outside options, S0 (σ), where these alternative sets
represent equivalent disagreement payoffs and hence result in the same payoffs. Similarly, there may be
multiple non-deterministic SCOOPs in terms of the identity of the coalitions that succeed with positive
probability, but result in the same individual payoffs and the same individual probabilities of belonging
to the winning coalition.
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have positive worth – provided the other coalition has not been formed. With – only–

this information, it does not seem reasonable to predict which of these two coalitions will

win the "race". This is what the SCOOP acknowledges: any probability distribution on

these two coalitions may be part of a SCOOP.

Superadditivity is a suffi cient but not a necessary condition for (generic) uniqueness.

In the concluding section we discuss some classes of games that are not necessarily super-

additive and nevertheless exhibit a (generically) unique SCOOP.

5 Non-cooperative implementation

Following the Nash program, we should now inquire what type of strategic game may

implement our solution concept in the class of superadditive games – where v{i} = 0 for

all i. We should note that the most popular protocols in the recent bargaining literature

(with irreversible agreements) are not well fitted to do the job. Any of these protocols

begins with one player, who is chosen using an exogenous random device, proposing a

particular coalition and how to share its value. Next, the members of this coalition

accept or reject the offer. Different protocols differ with respect to the consequences of a

rejection. In the rejector-proposes protocol (Chaterjee et al. 1993), the first player who

rejects the offer becomes the next proponent. In the random-proponent protocol (e.g.,

Compte and Jehiel, 2010), a new proponent is chosen again by the same random device

used at the beginning.

These classes of protocols may be too rigid if we want to allow for unrestricted, prob-

abilistic predictions. Indeed, if a player i has some probability of belonging to a coalition

that may form and is chosen by Nature as the proponent with probability 1
n
(and players

discount the future, so that everybody approached by the proponent has incentives to ac-

cept in equilibrium), it seems diffi cult to predict that player i has probability less than 1
n

of belonging to the forming coalition. Such rigidity is quite independent of the primitives

of the bargaining setup, and is related only to the model’s arbitrary moves by Nature.

Our approach is to study a simple version of these standard protocols with two key

modifications. The first is to separate the determination of the —candidate— winning

coalition from the sharing of the value of a coalition. The second is to endogenize the

probabilities with which the —candidate—winning coalition is determined.

Thus, consider the following bargaining game, which takes place over time: t =

0, 1, 2, ...(infinite horizon). All players discount the future using the same discount factor,

11



δ. In period t = 0:

1. SELECTING THE COALITION

(1.1) Each player i simultaneously selects a vote bis ≥ 0 for each coalition s 3 i with
ns > 1 and

∑
s3i b

i
s ≤ 1.

(1.2) Nature selects a coalition s according to the probability distribution µ on S,

where

µs =
mini∈s b

i
s∑

z∈S mini∈z biz
,

as long as
∑

z∈S mini∈z b
i
z > 0, and otherwise, the game moves to stage (1.1) in the next

period.

(1.3) All players involved in coalition s must accept or reject in sequence. a) If all

players accept, the game moves to (2). b) If one player rejects, the player selects a

coalition s′ and the game moves to (2.1) in the next period. (It is the player who rejects,

not Nature, who proposes the coalition and does not need approval from the rest.)

2. SHARING THE VALUE OF THE COALITION

(2.1) Nature selects one of the members of coalition s (or s′), say j, as the proponent

using a uniform probability distribution. Player j makes a proposal to divide vs.

(2.2) The players in s accept or reject in sequence. a) If all accept, then the proposal

is implemented and the game ends. Otherwise, the game moves to the next period and

starts fresh at (1.1).

At any t reached with no agreement, if in time t− 1 a player rejected at stage 2 or if∑
z∈S mini∈z b

i
z = 0, then players continue bargaining following the protocol as in t = 0.

If instead an offer was rejected in stage (1.2) of period t − 1, then the first player who

rejected the offer is the current proponent of a coalition in stage (1.2). In line with our

restriction to games where a "true" coalition (i.e., between at least two players) is needed

to create surplus, in (1.1) players can only vote for such coalitions.

We study subgame perfect equilibria of this game in stationary strategies. We define

a strategy for player i to be stationary if the choices in period t are independent of the

history of the play up to that period. Moreover, in the same spirit, we require that the

answers in stage (1.3) and in stage (2) depend on the selected s, but not on anything

else, in particular the ballots b. (Alternatively, we may suppose that these ballots are not

observed by other players.)

Theorem 3 As δ → 1, any limit point of the sequence of outcomes (coalition that forms

and division of the surplus) of any selection of subgame perfect equilibria in stationary
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strategies, with positive probability of agreement, is the outcome of a SCOOP. More-

over, such sequence of equilibria exists. Thus, asymptotically, the protocol implements the

SCOOP.

A formal proof of this result is in the Appendix. Here, we offer a heuristic proof of the

"necessity part" for the case, perhaps less intuitive, where the limiting equilibrium puts

a positive probability on more than one coalition.

Let δ be given, and denote the equilibrium payoff of player j by Uj. Whoever is the

proponent in stage (2.1) when coalition s has been accepted, say player i, will obtain

a premium of vs −
∑

j∈s δUj, above her continuation payoff, δUi (if that premium is

positive). This premium is the same for all players in s, a feature which is shared by all

other standard protocols based on proposals. In our protocol, and for suffi ciently high δ,

any player that belongs to a coalition at which this premium is highest will reject in (1.3)

any coalition with lower premium and propose one such premium-maximizing coalition in

the next period. (The latter will surely be accepted by all members.) This, together with

superadditivity, implies that any non premium-maximizing coalition will be blocked by

some player. Put in other words, all coalitions that are accepted with positive probability

must be characterized by the same (in the limit) premium. (Obviously, this also implies

that coalitions that do not form are characterized by weakly smaller premia, and that

payoffs for each player are the same in all of her coalitions that succeed with positive

probability.) As we discuss in the Appendix and in the examples in the next section,

this implies "equal loss": all players —that belong to a coalition that forms with positive

probability—expect to lose the same as a consequence of the probability of not being in

the realized winning coalition. This, together with equal payoff for each player in all her

coalitions that form with positive probability and no higher payoffs anywhere else, are the

defining characteristics of a SCOOP.

6 Examples

We now consider a few numerical examples that illustrate the main characteristics of a

SCOOP. They also suggest how to compute it. We start with the simplest example: a

three-player game.

Example 1. Let n = 3, vN = 10, v12 = 8, v13 = v23 = 2, where in this and the rest of

examples a subscript or upperscript ij (k) refers to the coalition of players i and j (and

13



k). Individual coalitions have zero value: vi = 0, i = 1, 2, 3. The SCOOP predicts that

the grand coalition forms with probability one: pN = 1. Coalitions (1, 3) and (2, 3) prove

irrelevant and hence they can be ignored as far as the outcome is concerned. Players 1 and

2 are in a symmetric position and hence they must obtain the same: uN1 = uN2 . If each

of these players were to obtain less than 4, uNi < 4, then, provided the grand coalition is

formed for sure, there would exist a positive net surplus in coalition (1, 2), t12
1 + t12

2 (=

uN1 + uN2 ) < v12, and hence these two players would prefer to form their own coalition

(u12
i > uNi , i = 1, 2), which would render pN > 0 impossible (part (iii) of the definition).

Instead, if uNi > 4 then the "threat" of leaving the grand coalition would cease to be

credible, since at most each of these players could get 4 in the alternative coalition. That

is, t12
1 + t12

2 would be higher than v12 and hence u12
1 = u12

2 = 0. As a result, tN1 = tN2 = 0

and hence their payoffs in the grand coalition would be at most 10
3
< 4. Therefore, the

SCOOP satisfies the outside option principle. Thus, the grand coalition will form for sure,

players 1 and 2 will obtain 4 each, and player 3 will obtain 2.

For completeness, the beliefs that sustain this outcome as the NBS of the grand coali-

tion include λN12 = 1
2
. We can let λNi3, i = 1, 2, and λNj , j = 1, 2, 3 be any non-negative

numbers such that they add up to 1
2
. Also, no agreement in coalitions (1, 3) and (2, 3)

is feasible, since ti3i + ti33 = 6 > vi3 i = 1, 2, and hence ui3i = ui33 = 0. Finally, coalition

(1, 2) is the only influential bilateral coalition, which implies that its net surplus is zero:

t12
1 + t12

2 = v12, and hence u12
i = t12

i = 4.

This example illustrates the main characteristics of a deterministic SCOOP, which hold

more generally, as proved in Lemma 7 in the Appendix (for the class of superadditive

games). First, only an effi cient coalition can succeed with probability one. Hence, a

deterministic SCOOP is tantamount to an effi cient outcome. Second, a deterministic

SCOOP is also characterized by the set of relevant outside options. In the example, this

set is a singleton (coalition (1, 2)). Even though these coalitions have zero probability

of success, they influence the negotiations in the winning coalition. Third, in all other

coalitions that represent non-credible outside options, all players would obtain a payoff of

zero, since the net surplus is negative. Fourth, the beliefs that support the payoffs in the

winning coalition must satisfy the "conditional equal loss" principle: the (counterfactual)

expected losses associated with the failure of negotiations in the winning coalition are the

same for all its members; that is, uN1
(
1− λ12

N

)
= uN2

(
1− λ12

N

)
= uN3 .

Example 2. Consider the previous example, but with a higher worth of coalitions
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(1, 3) and (2, 3): v13 = v23 = 7. If we were to predict the success of the grand coalition with

probability one, then for any distribution of payoffs at least one pair of players would rather

leave the grand coalition and form their bilateral coalition. In this game, the SCOOP

predicts a probabilistic outcome. In particular, p12 = 4
10
, p13 = p23 = 3

10
. Of course,

players obtain their payoffs only in case they belong to the winning coalition, but if they

do, their payoffs are u1 = u2 = 4, u3 = 3, independently of the specific winning coalition.

In other words, players 1 and 2 obtain 4 with probability 7
10
(and zero with probability 3

10
)

and player 3 obtains 3 with probability 6
10
(and zero with the complementary probability).

Notice that in the grand coalition there is a positive net surplus, but all players obtain a

payoff lower than in their alternative coalitions. In particular, tN1 = tN2 = 28
10
, tN3 = 18

10
. As

a result, 1
3

(
vN −

∑
i t
N
i

)
= 13

15
, and uN1 = uN2 = 11

3
< 4, uN3 = 8

3
< 3.

This example illustrates the main characteristics of a probabilistic SCOOP, which

holds more generally, as proved in Lemma 8 in the Appendix. First, any player that

belongs to more than one coalition that succeeds with positive probability obtains the

same payoffs in all of them. Second, players’ payoffs in these coalitions exhaust the

full value of the coalition. Third, the probability distribution satisfies the "equal loss"

property: the expected loss of each player that belongs to at least one of these coalitions,

with respect to the ideal scenario where all players obtain their payoffs with probability

one, is the same for all players. Fourth, coalitions with zero probability of success have a

worth inferior to the sum of the players’payoffs.11

The game in Example 1 has a non-empty core and the payoffs predicted by the (de-

terministic) SCOOP are a selection of that set. In contrast, the game in Example 2 has

an empty core and the SCOOP is probabilistic (and hence, ineffi cient). For three-player

games, this is always so: the SCOOP is deterministic if and only if the game has a non-

empty core. For games with more players, the non-emptiness of the core is necessary,

but not suffi cient, for the SCOOP to be deterministic. Indeed, consider the following

example.

Example 3. n = 4, vN = 31, v123 = 30, v14 = v24 = 14, and the value of all other

coalitions is zero. Note that the core is not empty. In particular, x1 = x2 = 13, x3 = 4,

x4 = 1 belongs to the core. In fact, if the SCOOP of this game was deterministic then it

would be characterized by pN = 1 and uNi = xi. The intuition for such a payoffdistribution

is the same as in Example 1. All other alternative coalitions are relevant outside options,

11If a player does not belong to any of the coalitions with a positive probability of success, then we
impute a payoff equal to the "equal loss".
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and hence payoffs must satisfy
∑

s3i ui = vs for all these coalitions. However, to sustain

these payoffs as the NBS of the negotiations in the grand coalition, players 1 and 2

should have a disagreement payoff of 429
35
, and players 3 and 4 a disagreement payoff of

104
35
and 9

35
, respectively. That would be necessary for the "conditional equal loss" to

be satisfied: uNi
(
1−

∑
s3i λ

s
N

)
should be the same for all players, which implies that

λ123
N = 57

70
, λ14

N = λ24
N = 9

70
. Notice that with these values

∑
s λ

s
N > 1. That is, there are

no consistent beliefs that can sustain that payoff vector. Put in other words, there are

no mutually compatible outside options that sustain the core outcome. In particular, in

the grand coalition players 1, 2, and 3 can jointly claim a total payoff of 30, which means

that player 4 can at most claim 1. Given that, both players 1 and 2 could claim 13 each

(vi3 − 1, more than their equal share of the worth of coalition (1, 2, 3)). However, there

are no beliefs that can sustain all these claims simultaneously.

In contrast, the SCOOP of this game is probabilistic. In particular, p123 = 3
4
, p14 =

p24 = 1
8
, and the payoffs conditional on success are u1 = u2 = 12, u3 = 6, u4 = 2.

7 More on the core: The CNBS and the SCOOP

The discussion of uniqueness in Section 5 and the examples in the previous section suggest

that there is a relationship between the core and the SCOOP. These discussions also

advanced the nature of the relationship of the SCOOP with one particular selection of

the core, the CNBS proposed by Compte and Jehiel (2010). In this section, we examine

these relationships more in depth in the context of superadditive games.12

The definition of a SCOOP implies that if the solution is deterministic then the payoffs

must be an imputation in the core. Indeed, in a deterministic SCOOP each player’s

disagreement payoff in any non winning coalition equals the payoff she obtains in the

grand (winning) coalition, tsi = uNi , s 6= N . Thus, no coalition can have a worth above

the sum of its members’payoffs in the grand coalition, vs ≤
∑

i∈s t
s
i =

∑
i∈s u

N
i . Otherwise,

players would obtain a payoff in that coalition strictly above the one they obtain in the

grand coalition, usi > tsi = uNi , which would contradict part (iii) in the definition of

the SCOOP. Therefore, the vector of payoffs predicted by a deterministic SCOOP is an

imputation in the core. An immediate implication is that, if the core is empty, then the

12For other classes of games (e.g., three-player, three-cake problem; indivisible games, defined as games
where any two coalitions with positive worth must share at least one player; etc.), we may consider a
straightforward extension of the core and the CNBS for which the discussion in this section applies.

16



SCOOP will necessarily be probabilistic.

In addition, the outside-option principle embedded in the definition of the SCOOP

places restrictions on the core imputations that can be part of a deterministic SCOOP. In

particular, a coalition s, s 6= N , may affect the disagreement payoffs, and hence the final

payoffs, in the grand coalition only if the sum of disagreement payoffs adds up to exactly

the worth of the coalition: vs =
∑

i∈s t
s
i =

∑
i∈s u

N
i . Indeed, if vs <

∑
i∈s t

s
i =

∑
i∈s u

N
i ,

then line 2 of part (i) in the definition of the SCOOP would make usi = 0, and so would

make the coalition irrelevant; that is,
{
tNi
}
i∈N would be independent of vs. Hence, in a

deterministic SCOOP, the players obtain in the winning coalition the same payoff they

could also get in the unsuccessful, yet influential, coalitions.

Since players equally share the net surplus of the grand coalition (first line of part (i)

in the definition of a SCOOP), uNi −tNi = uNj −tNj , for any i, j, and since tNi =
∑

s3i λ
N
s u

N
i ,

then we have

uNi

(
1−

∑
s3i

λNs

)
= uNj

(
1−

∑
s3i

λNs

)
, (1)

(This expression is nothing but the conditional equal loss property of the SCOOP that we

mentioned in the previous section, and that we formally derive in the proof of Theorem

2.)

These observations may be used as the starting point to explain the relationship of

our theory with the theory of coalition formation proposed by Compte and Jehiel (2010)

for games with a non-empty core. They define a solution concept, the CNBS, as that

imputation in the core that maximizes the Nash product:

max
x∈Rn+

Πi∈Nxi (2)

s.t.
∑

i∈N xi ≤ vN ,∑
i∈s xi ≥ vs, ∀s 6= N.

For games with a core with a non-empty interior, the solution to this problem satisfies

the first order conditions

Πi∈Nxi = xi
(
φ−

∑
s3i δs

)
, ∀i, (3)

δs
(∑

i∈s xi − vs
)

= 0, ∀s,

where δs is the Lagrange multiplier of the restriction in (2) associated to coalition s, and

φ is the one corresponding to the grand coalition N . Now, dividing by φ > 0 the first
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line of (3) corresponding to players i and j, we obtain (1) with only setting xi = uNi and

λNs = δs/φ. Obviously, the system of equalities formed by the binding constraints must

also be satisfied by both solutions. Thus, a deterministic SCOOP solves problem (2) and

so coincides with the CNBS. Put in other words, maximizing the Nash product in (2) is

homomorphic to equally sharing the surplus (net of disagreement payoffs) in N given the

counterfactuals as defined in the SCOOP.

Thus, the relative strength of coalition s (as discussed in Compte and Jehiel, 2010)

is measured by the ratio δs/φ. In the context of the SCOOP, such a ratio has a pre-

cise interpretation as the probability of success of that coalition in case of a breakup of

negotiations in the grand coalition.13 This interpretation also explains why the SCOOP

and the CNBS do not necessarily coincide in games with a non-empty core interior, for

which both concepts are well defined. Indeed, the beliefs {λNs } have another constraint to
meet: its components associated to binding coalitions in the solution to (2) cannot add

to more than 1 (they are part of a probability distribution).14 The latter is a constraint

that {δs/φ} may not satisfy, in which case the CNBS is not the SCOOP. Put in other
words, if

∑
s
δs
φ
> 1 then there are no consistent counterfactuals that sustain the CNBS.

In that case, no deterministic SCOOP exists, and so our solution predicts a probabilistic

outcome even though the core is not empty.

Compte and Jehiel (2010) call φ−
∑

s δs ≥ 0 Property P1.15 Necessary and suffi cient

conditions for an effi cient SCOOP are easier to state if we disregard the borderline cases,

including φ−
∑

s δs = 0, when multiple SCOOPs exist:

Remark When the SCOOP is unique (which is generically the case), then the CNBS and

the SCOOP coincide if and only if the core of the game has a non-empty interior

and φ−
∑

s δs > 0 in the solution to problem (2). In this case, and only in this case,

the unique SCOOP is deterministic and so effi cient.16

13The ratio δs
φ in (3) measures the – per unit– increase in vN needed to leave the maximum Nash

product unchanged when vs increases in one unit. The value λ
N
s in the SCOOP is the increase in claims

that players in s bring to the grand coalition. Thus, it also measures the increase of vN needed to leave
unchanged the net surplus in the grand coalition. As we mentioned above, δsφ and λNs coincide in the
(interior of ) the region where the SCOOP is deterministic.
14There is always at least one coalition that is not binding in problem (2); for instance, individual

coalitions. Hence, the sum of λNs , for s binding, can (and generically will) be strictly less than one.
15One of the key results in Compte and Jehiel (2010) is that the limiting equilibrium of their non-

cooperative bargaining protocol (random proponent) is effi cient if and only if the game satisfies Property
P1.
16If the core of the game has a non-empty interior and

∑
s
δs
φ = 1, then a deterministic SCOOP still

exists and coincides with the CNBS. However, there are other probabilistic SCOOPs. Also, there are
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8 Computing the SCOOP

The SCOOP of a game can be easily computed following the characterization discussed in

Section 6 and formally proved in the Appendix (Lemmas 7 and 6). In the case of games

with a relatively small number of players and/or small number of relevant coalitions,

computing the SCOOP is straightforward. More generally, we can use the following

algorithm, which can be easily programmed with a numerical software.17

1) Looking for a deterministic SCOOP.

1.a: For each subset Z of coalitions in S − {N}, obtain the solution (λN , u, ω̃), where
λN ∈ R#Z , u ∈ Rn and ω̃ ∈ R to the system(

1−
∑

s3i,s∈Z
λNs

)
ui = ω̃, ∀i∑

i∈s
ui = vs, ∀s ∈ Z ∪ {N} .

1.b: Check that ω̃, λNs , ui ≥ 0,
∑

s∈Z λ
N
s ≤ 1, and

∑
i∈s ui ≥ vs for all s /∈ Z.

1.c: If success, stop; otherwise, return to 1.a with a different set Z if there is at least

one left; otherwise, go to 2.

2) Looking for a non-deterministic SCOOP.

2.a: For each subset Z of coalitions in S, define I as the set of players that belong to

at least one coalition in Z, and obtain the solution (p, u, ω), where p ∈ R#Z , u ∈ RI+ and
ω ∈ R+ to the system (

1−
∑

s3i,s∈Z
ps

)
ui = ω, ∀i ∈ I,∑

i∈s
ui = vs, ∀s ∈ Z,∑

s∈Z
ps = 1.

2.b: Check that ω, ps, ui ≥ 0, and if i /∈ I, impute ui = ω, and check
∑

i∈s ui ≥ vs for

all s /∈ Z.
2.c: If success, stop; otherwise, return to 2.a with a different set Z.

Our results imply that there is a (generically unique) solution to this algorithm when

the game is superadditive. If the game is not superadditive, the algorithm may still be

games with a non-empty core but an empty core interior that also have a deterministic SCOOP.
17Stage 1 in this algorithm is simply the algorithm to solve the Kuhn-Tucker conditions for the opti-

mization problem that defines the CNBS.
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used substituting any effi cient coalition for N in 1). In that case, there is no guarantee

that the solution to the algorithm is generically unique.

9 Concluding remarks

In this paper we have proposed a new solution concept, the SCOOP, for games in charac-

teristic function form that can be interpreted as a generalization of the NBS for coalition

formation problems. The SCOOP is based on the idea of simultaneous – virtual– ne-

gotiations in all possible coalitions. In each coalition players negotiate à la Nash with

endogenous disagreement points based on consistent beliefs about the implications of

failure in that particular negotiation. The requirement of consistent beliefs is the most

salient feature of our concept and probably our main contribution. We show that the

SCOOP always exists, is generically unique for superadditive games, and easy to com-

pute. Moreover, we identify the set of games for which the outcome is probabilistic and

hence ineffi cient. Thus, our concept stands ready to be applied to old and new coalition

formation problems in economics and other social sciences.

Our discussion of uniqueness in Section 4 restricted attention to superadditive games.

Superadditivity is a suffi cient but not a necessary condition for (generic) uniqueness. In

fact, to show uniqueness all we need is that, within the set of relevant coalitions (those

with a positive probability of success), any pair of coalitions must be connected by a chain

in which a coalition shares at least one player with the preceding and with the subsequent

coalition. This property is typically satisfied in superadditive games, as disjoint coalitions

are dominated by larger coalitions. But it can also be ascertained for other special classes

of games that are not necessarily superadditive. In particular, games in which any pair

of coalitions with positive worth share at least one player generically possess a unique

SCOOP which, as in the case of superadditive games, may or may not be effi cient.18

Another class of games with unique SCOOP is that of symmetric games, in which the

value of the coalition only depends on its size. For any symmetric game, the unique

SCOOP (in payoffs and individual probabilities of success) assigns equal probabilities

to all the coalitions with the maximal value per player (notice that the set of multiple-

18A popular example of an indivisible game is the three-player, three-cake problem (a game in which
only the bilateral coalitions generate a positive value). An extreme form of indivisibility are games with
essential players. That is, the intersection of all positive-value coalitions is non-empty. The SCOOP of
these games is necessarily deterministic since they have a non-empty core and Property P1 is satisfied:
the first order condition that characterizes the CNBS for an essential player implies that

∑
s
δs
φ < 1.
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player coalitions of the same size is connected), and players equally share the worth of

the coalition.19 Thus, once again, the SCOOP of a symmetric game may or may not be

effi cient, as the coalition size with the maximal value and with the maximal value per

player may not coincide.

The ideas that we have discussed in this paper may be of interest for investigating other

classes of games, in particular games where (general types of) externalities are allowed,

and also more than one disjoint coalition can form. That is, games in partition function

form. For games in partition function form, a similar concept would have to predict a

probability distribution, p, over partitions of N rather than over coalitions. Disagreement

payoffs in one coalition could be computed as payoffs expected in the counterfactual

event that the coalition does not form. The main diffi culty that such theory would face

is defining what is the counterfactual – in terms of partitions– of a coalition – not a

partition– forming. We think that this is a promising avenue worth investigating.
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11 Appendix

11.1 Existence: Proof of Theorem 1

Given a vector p = {ps}s∈S, consider the equation

B · x = −p · v · 1, (4)

where 1 is the vector of dimension n with all components equal to 1, v = {vs}s∈S and B
is the n× n matrix whose element bij = −1 if i 6= j and

bii = n(1− qi)− 1,

where qi =
∑

s3i ps. Let ∆ε denote the convex, compact set

∆ε = {p ∈ ∆ : pr ≥ ε ∀r ∈ S} .

where ∆ is the simplex in R|S|. Also, let ∆∪ = ∪ε>0∆ε, and let

∆q = {p ∈ ∆ : qi < 1 ∀i ∈ N} .

Note that ∆∪ ⊂ ∆q. We first prove the following lemma.

Lemma 4 B is invertible on ∆q. Thus, (4) defines x(p) as an implicit, linear differen-

tiable function on ∆q.

Proof. Substract the last row of B from all other rows of the matrix. The resulting

matrix has zeros in all components of the rows 1 through n − 1 except in the diagonal

and in the last column. In row i, the diagonal element is bii + 1, and the element in the

last column −(bnn + 1). Now multiply each row i, from 1 through n − 1, by 1
bii+1

and

add all of them to row n. We then have a triangular matrix (all components below the
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diagonal are zeros). Thus, the eigenvalues of this matrix are the elements of the diagonal:

bii + 1 = n(1− qi) for each i < n and

bnn − (bnn + 1)

[∑
i 6=n

1

bii + 1

]
. (5)

This eigenvalue is also nonzero. Indeed, we can write (5) as

(bnn + 1)

[∏n
i=1(bii + 1)−

∑n
i=1

∏
j 6=i(bjj + 1)∏n

i=1(bii + 1)

]

= −(1− qn)
n∑
i=1

qi
1− qi

< 0

Since this matrix is obtained by row operations on B, we conclude that B also has a

nonzero determinant.

Note that xi(p)(1− qi) is the same for all players, and equals∑
j xj(p)− p · v

n
.

Also, we construct another function, z : ∆q → R|S|, based on x and defined as zs(p) =∑
i∈s xi(p) − vs. z(p) satisfies an important property: for any p ∈ ∆q, p · z(p) = 0.

Indeed, adding the n equations in (4),∑
s∈S

ps

(∑
i∈s

xi(p)−vs

)
=
∑
i∈N

qixi(p)− p · v = 0.

As a consequence, we cannot have that zs(p) > 0 for all s ∈ S. Also, by the same

argument, we cannot have that p puts positive weight only on s such that zs(p) < 0.

To complete the definition of x(p) and z(p) for the case p ∈ ∆ − ∆q, consider any

sequence {p(l)} → p, and define x(p) = liml x(p(l)) and z(p) = liml z(p(l)). Note that

every point of ∆ is a limit point of ∆q – i.e., ∆q is dense in ∆– and x is (linear and

so) uniformly continuous, so this continuous extension is well defined (unique), by the

Continuous Extension Theorem. Also, note that p · z(p) = 0 even for p ∈ ∆−∆q.

Using these functions, and for arbitrary, given ε > 0, we construct a correspondence

h : ∆ε � ∆ε as follows:

hε(p) =

{
p̃ ∈ ∆ε : p̃∈ arg min

p∈∆ε
pz(p)

}
.

Note that pz(p) is a linear function of p and so hε(p) is non-empty and convex. Finally,

z is continuous, and then trivially hε is upper hemi-continuous. Thus, from Kakutani’s

fixed point theorem, we conclude that hε has a fixed point in ∆ε.
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Some properties of these (limits of) fixed points, are important here. Consider a

sequence {ε(l)} → 0 and a corresponding, converging sequence of fixed points p(l) for the

correspondence hε(l). The sequence

λsr(l) =
p(l)r

1− p(l)s
∈ [0, 1] . (6)

λs(l) is also a sequence in a compact set, [0, 1]|S|−1, for all s. Then, the sequence p(l)

contains a subsequence that converges and where λs(l) also converges for all s. Note that

the limit λsr ≥ 0 and since
∑

r 6=s λ
s
r(l) = 1, then∑

r 6=s

λsr = lim
l

∑
r 6=s

λsr(l) = 1. (7)

Moreover

Lemma 5 z(p) ≥ 0.

Proof. Assume otherwise. That is, assume that zs(p) = β < 0. The continuity of z

implies that for l large, zs(p(l)) < β/2. Thus, pr(l) = ε(l) for all r such that zr(p(l)) >

β/2. Therefore, in the limit, p · z(p) < 0, which contradicts the fact that, for all p,

p · z(p) = 0.

Given those limits p and λs, we now construct a candidate SCOOP as the four-tuple{
{usi}i∈s , {tsi}i∈s , ps, {λ

s
r}r 6=s

}
s∈S

where:

1) ps are the components of the vector p;

2) λsr are the components of λ
s;

3) If ps > 0, then usi = xi(p). If ps = 0, then usi is defined according to i) in the

definition of a SCOOP for these threat points.

4) tsi =
∑

r3i,r 6=s λ
s
ru

r
i , where u

r
i and λ

s
r are as defined in 2) and 3).

It is important to notice that, given the definition of hε, whenever zr(p) > 0, λsr(l) =

ε(l) for suffi ciently large l, and so λsr = 0. Likewise, λsr > 0 only if zr(p) = 0, in which

case uri = xi(p). Also, even if ps = 1,
∑

r 6=s λ
s
r = 1.

We show that this four-tuple satisfies the definition of a SCOOP. First, from (6)

and 2), λsr = pr
1−ps when ps < 1 as required in (ii). Also, if p > 0, we have defined

tsi =
∑

r3i,r 6=s λ
s
ru

r
i . Finally, prxi(p) = 0 when pr = 0, and prxi(p) = pru

r
i if pr > 0.

Moreover, if ps = 0 then λsr = pr, and so
∑

r3i,r 6=s λ
s
ru

r
i = qixi(p). Thus, (ii) is satisfied.

That also implies that, from 3), (i) is satisfied for s such that ps = 0. For s such that

ps ∈ (0, 1) (and so zs(p) = 0), we have that (1− qi)usi = (1− qj)usj for all i, j ∈ s, and so,

24



dividing both sides of the equality by (1 − ps) and simplifying, taking into account that
λsr = pr

1−ps in this case and u
s
i = uri for all r with positive probability, we have

usi −
∑

r3i,r 6=s λ
s
ru

r
i = usj −

∑
r3j,r 6=s λ

s
ru

r
j ,

which together with zs(p) = 0 implies (i). Therefore, it only remains to check that (i) is

satisfied for s such that ps = 1. Note that, in this case, uri > 0 only if zr(p) = 0, and in

these cases uri = xi(p) according to 3). Then, according to 4), tsi =
∑

r3i,r 6=s λ
s
rxi(p), and

so usi − tsi = xi(p)(1−
∑

r3i,r 6=s λ
s
r). But,

xi(p(l)) (1− qi(l)) = xi(p(l))

(
1−

∑
r3i

pr(l)

)

= xi(p(l)) (1− p(l)s)
(

1−
∑

r3i,r 6=s

p(l)r
1− p(l)s

)

= (1− p(l)s)xi(p(l))

(
1−

∑
r3i,r 6=s

λsr(l)

)
.

Thus, since xi(p(l)) (1− qi(l)) is common to all players, xi(p(l))
(

1−
∑

r3i,r 6=s λ
s
r(l)
)
is

also common to all players in s, and so this is also the case in the limit. Therefore,

usi − tsi = usj − tsj ≥ 0, for all i, j ∈ s, which, again, together with zs(p) = 0 implies (i).

Turning to (iii), we need only show that if pr = 0 then uri ≤ xi(p). Note that, if

pr = 0, then

uri = qixi(p)+
1

nr
(vr −

∑
j∈r qjxj(p)),

so that, adding and substracting 1
nr

∑
j∈r xj(p), xi(p)−uri is

(1− qi)xi(p)− 1

nr
(vr −

∑
j∈r xj(p) +

∑
j∈r(1− qj)xj(p)) ≥ 0,

where the inequality follows from zr(p) ≥ 0, and again the fact that (1− qi)xi(p) =(1−
qj)xj(p) for all i, j.

11.2 Uniqueness: Proof of Theorem 2

We now prove Theorem 2, the generic uniqueness of the SCOOP for superadditive games.

For that purpose, we begin by formally stating and proving certain properties. As in the

proof of Theorem 1, let qi =
∑

s3i ps for all i ∈ N .
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Lemma 6 σ =
{
{usi}i∈s , {tsi}i∈s , ps, {λ

s
r}r 6=s

}
s∈S

is a non-deterministic SCOOP only if

it satisfies: (a) usi = ui for some ui, for all s ∈ S+(σ) and for all i ∈ ∪S+(σ), where

S+(σ) = {s ∈ S s.t. ps > 0}. (b)
∑

j∈s uj − vs = 0 for all s ∈ S+(σ). (c) There exists

ω ≥ 0 such that (1− qi)ui = ω, for all i ∈ ∪S+(σ). (Equal loss property.) In fact, ω > 0

unless vs = vN ∀s ∈ S+(σ). (d) Let uk = ω, ∀k /∈ ∪S+(σ); then
∑

j∈s uj − vs ≥ 0 for all

s /∈ S+(σ).

Proof. From part (iii) in the definition of SCOOP, any player that is in more than one

coalition in S+(σ) must be indifferent between them. Hence, usi = ui for all i ∈ s and all
s ∈ S+(σ). This is point (a). Suppose that vs −

∑
i∈s ti < 0 for some s ∈ S+(σ), so that

usi = 0 for all i ∈ s. From part (a), this implies that ui = 0 for all players in s, and so∑
i∈s ti = 0 which contradicts vs−

∑
i∈s ti < 0. Thus, vs−

∑
i∈s ti ≥ 0, and so from (i) in

the definition of a SCOOP,
∑

j∈s uj = vs = 0, which is point (b).

Consider a coalition s such that vs −
∑

i∈s ti ≥ 0. Since tsi = qi−ps
1−ps ui for all i ∈ s, then

from (i) in the definition of a SCOOP we can write

usi =
qi − ps
1− ps

ui +
1

ns

(
vs −

∑
j∈s

qj − ps
1− ps

uj

)
,

which, using
∑

j∈s uj = vs from (b), is equivalent to usi = qiui + ωs, where

ωs ≡
1

ns

(
vs −

∑
j∈s

qjuj

)
.

That is, from (a), (1− qi)ui = ωs. The left hand side is independent of s. Thus, for

any two coalitions s, s′ such that s ∩ s′ 6= ∅, ωs = ωs′ . Now, suppose that two coalitions

s, s′ ∈ S+(σ) are such that s ∩ s′ = ∅. If s ∪ s′ ∈ S+(σ), then by the argument above,

ωs = ωs′∪s = ωs′ . Thus, suppose that s ∪ s′ /∈ S+(σ). Then, vs1∪s2 −
∑

i∈s1∪s2 t
s1∪s2
i ≥

vs1+vs2−
∑

i∈s1∪s2 qiui =
∑

i∈s1∪s2 (1− qi)ui ≥ 0. The first inequality uses superadditivity

plus the definition of disagreement points for a coalition outside S+. The second equality

simply uses the fact that the sum of payoffs in coalitions s1 and s2 are equal to the value of

these coalitions. Therefore, for all i ∈ s∪ s′, us∪s′i = qiui +ωs∪s′ . Also, by superadditivity

ωs∪s′ ≥ ns
ns+ns′

ωs +
ns′

ns+ns′
ωs′ . Without loss of generality, suppose that ωs > ωs′ . Then,

ωs∪s′ > ωs′ , which implies that for all i ∈ s, usi = ui < us∪s
′

i , which contradicts part (iii)

of the definition of a SCOOP. Therefore, if the game is superadditive even if coalitions in

S+ (σ) are disjoint they still must have the same ω, and hence the equal loss property of

part (c) must hold.
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Consider now a coalition s /∈ S+(σ). If vs −
∑

i∈s t
s
i < 0, since tsi = qiui ≤ ui, then

vs −
∑

i∈s ui < 0. If instead vs −
∑

i∈s t
s
i ≥ 0, then as mentioned above for all i ∈ s,

usi = qiui + ωs. From part (iii) of the definition of SCOOP, usi ≤ ui for all i ∈ ∪S+(σ).

Hence,

(1− qi)ui ≥ ωs. (8)

Also, let uk = ω obtained above for every player k /∈ ∪S+(σ), i.e., so that qk = 0. Thus,

adding (8) for all i ∈ s, ∑
i∈s

(1− qi)ui ≥ nsωs = vs −
∑
i∈s

qiui,

or, equivalently, ∑
i∈s

ui ≥ vs.

This is point (d). Finally, we show that ω > 0 unless there is more than one effi cient

coalition. Indeed, suppose ω = 0. This implies that qi = 1 for all i ∈ ∪S+(σ) such that

ui > 0. That is, ui > 0 only for players in ∩S+(σ). For all r ∈ S+(σ), and from (b),

vr =
∑
i∈r

ui =
∑
i∈N

ui ≥ vN ,

which implies that vr = vN . This completes the proof of point (c).

Let r be the coalition that succeeds with probability one in a deterministic SCOOP. In

this case Bayes rule does not apply and we can freely choose the conditional probabilities

{λrs}s 6=r . We denote by S0 (σ) the set of coalitions with positive worth for which there is

an agreement; i.e., S0(σ) =
{
s ∈ S, s.t.

∑
i∈s u

s
i = vs > 0

}
. Also, let q̃i =

∑
s∈S0(σ),s3i λ

r
s.

That is, q̃i is the probability that, conditional on the failure of coalition r, player i obtains

a positive payoff. Since λrs can be strictly positive for s /∈ S0 (σ) (there is always at least

one coalition outside S0 (σ); for instance, individual coalitions), then
∑

s∈S0(σ) λ
r
s can (and

generically will) be strictly less than one.

Lemma 7 σ =
{
{usi}i∈s , {tsi}i∈s , ps, {λ

s
r}r 6=s

}
s∈S

is a deterministic SCOOP, pr = 1,

only if: (a) Coalition r is an effi cient coalition. (b) For all s ∈ S0(σ) and i ∈ s, usi = ui

for some ui. Moreover, usi = 0 if i /∈ r. (c) For all s /∈ S0(σ),
∑

j∈s∩r uj − vs > 0, and

usi = 0. (d) There exists ω̃ ≥ 0 such that (1− q̃i)ui = ω̃ for all i ∈ r. (Conditional equal
loss property.) In fact, ω̃ > 0, unless s ∈ S0(σ) implies vs = vr.
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Proof. If pr = 1, then for all s 6= r, tsi = uri if i ∈ r ∩ s, and tsi = 0 otherwise. Also,∑
i∈r t

r
i ≤ vr. Indeed, otherwise uri = 0 and tsi = 0 for all s, so that usi = vs/ns > 0 = uri

for s such that vs > 0, which contradicts part (iii) of the definition of a SCOOP. Hence,∑
i∈r u

r
i = vr, from (i) of the definition of a SCOOP. Let ui = uri for all i ∈ r. If∑

j∈s t
s
j (=

∑
j∈s∩r uj) < vs, then (from part (i) of the definition of a SCOOP) for all

i ∈ s ∩ r, usi > ui, which contradicts part (iii) of the definition of a SCOOP. Hence,∑
j∈s∩r uj − vs ≥ 0 for all s. Also, if s 6= r and

∑
j∈s t

s
j (=

∑
j∈s∩r uj) = vs, (i.e.,

s ∈ S0 (σ)), and from (i) in the definition of a SCOOP, then (tsj =) usj = uj if j ∈ s ∩ r
and (tsj =) usj = 0 if j /∈ r, and this concludes the proof of (b). If s /∈ S0(σ), i.e.,∑

j∈s∩r uj − vs > 0, and since
∑

i∈s t
s
i =

∑
i∈s∩r u

r
i , then from part (i) of the definition of

a SCOOP, usi = 0 for all i, which proves (c). Also,

vr =
∑
i∈r

uri ≥
∑
i∈r∩s

ui ≥ vs,

for every s ∈ S, and so r is an effi cient coalition. This proves (a). Finally, note that, for
i ∈ r, tri = q̃iui. Hence, from part (i) of the definition of a SCOOP

ui = q̃iui +
1

nr

(
vr −

∑
j∈r

q̃juj

)
.

Letting ω̃ = 1
nr

(
vr −

∑
j∈r q̃juj

)
≥ 0, we have (1− q̃i)ui = ω̃ for all i ∈ r. If ω̃ = 0 then

q̃i = 1 for all i ∈ r such that ui > 0. Then, for any coalition s ∈ S0(σ), s 6= r we have

from (b) that

vr =
∑
i∈r

ui =
∑
i∈s∩r

ui = vs.

That is, any s ∈ S0(σ) is also an effi cient coalition. On the other hand, if S0(σ) = {r},
then tri = 0 for all i ∈ r, and so ω̃ > 0, since vr > 0. This completes the proof of (d).

Since games with more than one effi cient coalition are non-generic, in the rest of the

proof we focus on games with a unique effi cient coalition, which for superadditive games

is the grand coalition, N . Hence, in a deterministic SCOOP we must have ω̃ > 0, and in

a non-deterministic one, ω > 0.

Next, we will use the parallel between the SCOOP and the solution to problem (2),

i.e., the CNBS, to investigate when the SCOOP may or may not be deterministic. Thus,

consider the first order conditions for problem (2):
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N
xi

= φ−
∑

s3i δs, ∀i,

φ
(∑

i∈N xi − vN
)

= 0, (9)

δs
(∑

i∈s∩N xi − vs
)

= 0, ∀s 6= N.

Let M be the set of restrictions (coalitions) that satisfy
∑

i∈s xi − vs = 0. The solution

{xi}i∈N to this optimization problem exists and is unique, since the objective function

is strictly quasiconcave and the constraints are linear. Hence, conditions (9) are both

necessary and suffi cient when the interior of the core is non empty.

Let Region I denote the set of games characterized by a core with a non-empty interior

and φ >
∑

s 6=N δs (Property P1 in Compte and Jehiel, 2010, is satisfied with strict equal-

ity). Let Region II be the set of games with (i) an empty core, or (ii) a non-empty core

and φ <
∑

s 6=N δs (Property P1 fails). Notice that the only games left outside Regions I

and II are those with (i) a non-empty core with an empty interior, and (ii) a core with

a non-empty interior and φ −
∑

s 6=N δs = 0. These regions are well defined due to the

following lemmas. Moreover, the set of games not included in Regions I and II has an

empty interior.

Lemma 8 Problem (2) is equivalent to an optimization problem with linearly indepen-

dent, equality constraints. If the choice set in problem (2), and so the core, has a non-

empty interior, then φ,δs are unique and differentiable with respect to vN and vs for all

s 6= N in the solution to the equivalent problem. Moreover, dδs/dvN < 0 and dφ/dvN > 0

for all s 6= N .

The lemma will be proved in three steps

Step 1 Problem (2) is equivalent to a (different) optimization program with the same

objective function and equality constraints with non-singular Jacobian of the system

of active constraints.

Proof. Let the Jacobian of the system of active constraints in one solution to problem

(2) be A. Obviously, the solution x∗ to problem (2) is also the solution to an alternative

program with only the constraint N and constraints M . Suppose that A is not a linearly

independent system, so that As, for some s ∈M ∪ {N} can be written as

As =
∑

s′∈M∪{N}−{s}

αs′As′ ,
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for some vector α = {αs′}s′∈M∪{N}−{s}. This means that

x · As = x ·
∑

s′∈M∪{N}−{s}

αs′As′ ,

for any vector of payoffs x. In particular, it is satisfied by the solution x∗, so that

vs = x∗ · As = x∗ ·
∑

s′∈M∪{N}−{s}

αs′As′ =
∑

s′∈M∪{N}−{s}

αs′vs′

Therefore, any vector x that satisfies the constraints corresponding to the coalitions s′ 6= s,

i.e., such that x · As′ = vs′ also satisfies

x ·
∑

s′∈M∪{N}−{s}

αs′As′ =
∑

s′∈M∪{N}−{s}

αs′xAs′ =
∑

s′∈M∪{N}−{s}

αs′vs′ = vs,

and so satisfies the constraint related to s. Thus, the constraint corresponding to coalition

s is redundant. We can therefore exclude this coalition from M ∪ {N}, and the new
program would still have the same solution x∗. Repeating this argument, if needed, we

conclude that there exists a set M ′ ∪ {N} of constraints such that the problem defined

by (2) with only these equality constraints has x∗ as a solution and its Jacobian is non-

singular.

Step 2 Let (x∗, φ, δ) and (x∗, φ′, δ′) be two solutions to system (9). Then, φ−
∑

s∈S−{N} δs

= φ′−
∑

s∈S−{N} δ
′
s. Moreover, if Property P1 is satisfied, then both φ and

∑
s6=N δs

are unique.

Proof. The active constraints in (9) can be written as

A ·
[
φ
−δ

]
=

−→N
x∗
, (10)

where, similarly as before, A is the |N | × (|M |+ 1) matrix with component ais = 1 if

i ∈ s and 0 otherwise, for s ∈M ∪{N}, δ is the |M | dimensional vector with components
δs, and

−→N
x∗ is the |N | dimensional vector with components all equal to

N
x∗i
. If A has rank

|M | + 1 (≤ |N |), then the solution, which exists, is unique. Then Step 2 is trivially
satisfied. Otherwise, one of the columns in A is a linear combination of the rest. Consider

two possible cases. First, if AN is not spanned by the rest of columns of A. In this

case, it is not spanned by any subset of them, of course, and if the rank of A is smaller

than |M | + 1 it must be because the set of |M | columns other than AN is not a linearly
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independent system. That is, one of these other columns of A, call it Ar, can be obtained

as a linear combination of the columns in A other than Ar and AN . Then, system (10)

can be written as

aiNφ−
∑
s 6=r

aisδs − δr

(∑
s 6=r

aisαs

)
=
N
x∗i
⇐⇒

aiNφ−
∑
s 6=r

ais (δs + αsδr) =
N
x∗i
,

for some vector α ∈ R|M |−1. Thus, φ and δ̂s = δs + αsδr, together with x∗ satisfies the

system (9), provided that we consider the constraints in M except the one corresponding

to r. Note that

φ−
∑

s∈M−{r}

δ̂s = φ−
∑
s∈M

δs.

This process may be repeated until the system M is reduced to a linearly independent

subsystem. Thus, (9), with constraints only in this subsystem, are satisfied by the solution

—in x∗ and multipliers—to (2). Since that subsystem has a unique solution, and the solution

to (2) with this set of constraints exists, we conclude that this unique solution is x∗, φ, δ̂,

and the lemma follows.

Now suppose that AN is spanned by the rest of the columns of A. As before, system

(10) can be written as

φ

(∑
s∈M

aisαs

)
−
∑
s∈M

aisδs =
N
x∗i
⇐⇒

∑
s∈M

ais (−δs + αsφ) =
N
x∗i
,

for some vector α ∈ R|M |, so that φ̂ = 0 and δ̂s = δs − αsφ, together with x∗, is a

new solution to system (9), when we consider only the constraints in M except the one

corresponding to A. Note that, again,

−
∑
s∈M

δ̂s = φ−
∑
s∈M

δs. (11)

Repeating the procedure until we obtain a set of linearly independent constraints, and

recalling that still a solution to (2) must exist and be characterized as the unique solution

to (9) when considering the surviving constraints, we obtain that again that φ−
∑

s∈M δs

is unique. Then, Property P1 contradicts (11), since δ̂s ≥ 0 for all s ∈ M . This finishes
the proof of Step 2.
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Step 3 The solution (φ, δ, x) to (2) with only equality constraints in (a linearly inde-

pendent set of constraints) M ′ is a differentiable function of vN and vs. Also,

dδs/dvN < 0 and dφ/dvN > 0 for all s 6= N .

Proof. Consider the problem in (2) with only equality constraints in (a linearly indepen-

dent set of constraints) M ′. Let (φ, δ, x) be a solution to this problem. That is, (φ, δ, x)

maximizes

L(φ, δ, x) = Πixi − φ(
∑

i xi − vN) +
∑

s∈M ′ δs
(∑

i∈s xi − vs
)
. (12)

The first order conditions for this problem are

Gi ≡
∂N
∂xi
− φ+

∑
s3i δs = 0,

Gs ≡
∑

i∈s xi − vs = 0,

GN ≡ −
∑

i xi + vN = 0,

where, once more, N ≡ Πi∈exi. Differentiating this system with respect to (φ, δ, x) and

ve, we obtain the system

D ·

 dx
dδ
dφ

 =
[
− ∂G
∂vN

dvN
]
, (13)

where D is the Hessian matrix of N , H, bordered with the Jacobian of the constraints,
A:

D =

[
H A
A′ 0

]
;

dx is the vector of size |N | with components dxi; dδ is the vector of dimension m′ with
components dδs, and ∂G

∂vN
is the |N |+m′+ 1 dimensional vector with terms ∂Gi

∂vN
, ∂Gs
∂vN
, and

∂GN
∂vN

. Note that H is invertible. Indeed, the ij entry in H is N
xixj

if i 6= j and 0 if i = j.

Thus, multiplying each row i by xi
N and each column j by xi, all nonzero values, we have

a matrix with entries 1 for all ij with i 6= j and 0 if i = j. The determinant of this matrix

is (−1)|N |−1 (|N | − 1) 6= 0, and so the determinant of H is also nonzero. Thus,

detD = detD/H detH,

where D/H is the Schur complement of H, −A′H−1A. Note that D/H is full rank.

Indeed, −H−1 is positive semidefinite and invertible, and so there exists a permutation

matrix P such that

−P ′H−1P = R′R
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for some upper triangular matrix R with all elements on the diagonal strictly positive

(see, for instance, Highham 1990). Thus,

−A′H−1A = −A′PP ′H−1PP ′A = −A′PR′RP ′A.

Note that A′P is simply a permutation of A′, and so has rank m, and then A′PR′ has

also rank m. Thus, the rank of the product of that matrix and its transpose is m, and

we conclude that detD/H > 0 and detD 6= 0. Thus, (φ, δ, x) is indeed a differentiable

function of vN and of vs.

Now, note that ∂N
∂xi

= N
xi
. Thus, multiplying each of the expressions Gi in the first

order conditions of (12) by the corresponding xi, and adding them for all i, and taking

into account the rest of the first order conditions, we have

nN − (φvN −
∑
s∈M ′

δs) = 0.

This is an identity, and so, differentiating with respect to φ and vN , and taking into

account that (from the envelope theorem) dN /dvN = φ and dN /dφ = 0, we obtain

dφ

dvN
=

(n− 1)φ

vN
> 0.

The rest of signs are obtained similarly.

For any game, we consider now a modification that makes Property P1 hold with

equality:

Definition 9 For any game (N, v), the game (N, v̂(v)) satisfies v̂s(v) = vs for all s 6= N ,

and v̂N(v) is such that φ−
∑

s 6=N δs = 0 in problem (2).

Lemma 10 For every game (N, v) that either has a core with an empty interior or a

non-empty interior but violates Property P1, v̂(v) exists and is unique.

Proof. Consider any given game v with a non-empty core such that Property 1 does

not hold: φ −
∑

s 6=e δs < 0. Consider the game v′ defined by v′s = vs for all s 6= N , and

v′N = n × vN + ε. The solution to (9) for this game is ui = xi =
v′N
n
∀i (the generalized

Nash bargaining solution), φ > 0, and δs = 0 for all s 6= N . Thus, φ−
∑

s 6=N δs > 0. Since

– some values of– the multipliers are continuous (and differentiable) in vN from Lemma

8, and φ−
∑

s 6=N δs is strictly monotone in vN , the result follows. Now suppose the core

of v is empty. Still, the game v′N has a non-empty core. Thus, there exists a minimum

33



value v′′N < v′N for which the core is not empty: the core is monotone in vN . Thus, the

result follows unless the game v′′, defined with that value v′′N , satisfies Property P1 with

strict inequality. We can rule out this possibility: the Nash product cannot increase if we

increase the worth of a binding coalition by as much as what we increase the worth of vN ,

when the interior of the core is empty.

Next, we provide necessary conditions for a SCOOP to be deterministic and non-

deterministic, in terms on whether the game lies in Region I or in Region II.

Lemma 11 The SCOOP of a game that belongs to Region II cannot be deterministic.

Moreover, if the game belongs to Region I, then the payoffs {uri} of a deterministic
SCOOP, σ =

{
{usi}i∈s , {tsi}i∈s , ps, {λ

s
r}r 6=s

}
s∈S

is the solution to problem (2), and as

a result σ is the unique deterministic SCOOP in payoffs and probabilities.

Proof. Let σ =
{
{usi}i∈s , {tsi}i∈s , ps, {λ

s
r}r 6=s

}
s∈S

be a deterministic SCOOP with pN =

1. Then, it satisfies conditions (b) to (d) in Lemma 7. These conditions imply that {usi}i∈N
is an imputation in the core. Suppose the core of the game has a non-empty interior. Let

N = Πiui, xi = uNi , φ = N
ω̃
, and δs = λNs

N
ω̃
for s in (a subset of) S0(σ) (that forms a

linearly independent system of constraints) and δs = 0 otherwise. These values satisfy

condition (9) and hence the SCOOP coincides with the solution to problem (2), which

is unique in x. Thus, since
∑

s∈S0 λ
N
s ≤ 1 and φ −

∑
s 6=N δs = N

ω̃

(
1−

∑
s6=N λ

N
s

)
≥ 0,

Property P1 holds, and hence the game does not belong to Region II. Also, if the game

belongs to Region I it is the unique deterministic SCOOP.

Lemma 12 The SCOOP of a game that belongs to Region I cannot be probabilistic.

Moreover, if the game lies in Region II, then the payoffs {ui} of a probabilistic SCOOP,
σ =

{
{usi}i∈s , {tsi}i∈s , ps, {λ

s
r}r 6=s

}
s∈S
, with ω > 0, is the solution to problem (2) for the

modified game v̂ (v), and hence σ is unique in payoffs and probabilities.

Proof. Consider a game that lies in Region I, i.e., the solution to (9) satisfies φ −∑
s 6=N δs > 0. Suppose that σ =

{
{usi}i∈s , {tsi}i∈s , ps, {λ

s
N}s 6=N

}
s∈S

is a probabilistic

SCOOP for this game, and so satisfies conditions (a) to (d) of Lemma 6. Hence, we have

that
∑

i ui ≥ vN . If this weak inequality were to hold as equality, then we could construct

a deterministic SCOOP with pN = 1 and λNs = ps, and using the arguments developed

in the previous lemma, we would conclude that φ−
∑

s 6=N δs = 0, which implies that the

game does not lie in Region I. Therefore,
∑

i ui > vN . Now, consider a different game, ṽ,
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in which ṽN =
∑

i ui and ṽs = vs, for all s 6= N. Note that the values xi = ui for all i,

φ = N
ω

(1 − pN), and δs = ps
N
ω
, for N = Πiui, satisfy equations (9), with M = S+(σ),

for game ṽ. Thus,
∑

s 6=N δs =
∑

s 6=N ps
N
ω

= φ. Note that if v has a core with a non-

empty interior, then ṽ does too, and also a continuous path from v to ṽ with (weakly)

increasing vN . Thus, from Lemma 8 it must be the case that φ−
∑

s 6=N δs < 0. This is a

contradiction which proves the first part of the lemma.

Let us now prove generic uniqueness, i.e., uniqueness for games in Region II, so that

if the game has a non-empty interior then φ −
∑

s 6=N δs < 0. Suppose that we have two

non-deterministic SCOOPs, σ and σ′. For a player j who does not belong to any coalition

in S+ (σ), let uj = ω, and similarly for the SCOOP σ′. Then, using the payoffs of σ,

consider the game ṽ, where ṽN =
∑

i ui and ṽs = vs for all s 6= N ; and, using the payoffs

of σ′, a similar game ṽ′ with ṽ′N =
∑

i u
′
i. Note that the values xi = ui, φ = N

ω
, and

δs = ps
N
ω
, where N = Πiui, satisfy (9) with M = S+(σ). Moreover, φ −

∑
s∈M δs = 0,

and so ṽ = v̂(v). The same argument can be made for the SCOOP σ′; in particular,

ṽ = v̂(v). Since v̂(v) is unique according to Lemma 10, and the CNBS of a game is also

unique, we conclude that {ui} = {u′i}. Thus, the SCOOP is unique in payoffs. Also, note
that an implication is that the SCOOP of a game that lies in Region II always assigns

zero probability to the grand coalition, as
∑

i∈N ui = ṽN > vN . Also, as discussed in

Lemma 6, the set of coalitions M and the associated Lagrange multipliers are generically

unique,20, which implies that generically ps = p′s. Thus, the SCOOP is also generically

unique in probabilities. Even in those non-generic cases where the Lagrange multipliers

are not unique, we still have that the individual probabilities of success are unique. In

particular, condition (3) can be written as

N
ui

= φ(1−
∑

s3i
δs
φ

) = φ(1− qi),

for all i, and since N
ui
but also φ are unique from Lemma 8, we conclude that qi = q′i.

Once more, the arguments used in the proof also imply that conditions (a)-(d) in

Lemma 6 are suffi cient to (generically) identify the payoffs and probabilities of the unique

SCOOP. Moreover, these conditions cannot be satisfied in Region I.

By putting together Lemmas 11 and 12, and then taking Theorem 1 into account, we

conclude that the SCOOP is generically unique. Moreover: (a) In Region I the unique

SCOOP (in payoffs and individual probabilities of success) is deterministic, and (b) in

20The cases where the Lagrange multipliers are not unique withM constraints lie on a set of dimension
M − 1.
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Region II the unique SCOOP (in payoffs and individual probabilities of success) is non-

deterministic.

11.3 Non-cooperative implementation: Proof of Theorem 3

We will limit attention to equilibria where players that are indifferent between accepting

and rejecting in (2.2) (when the proposer strictly prefers acceptance) accept: if that were

not so, then the proposer’s best offer in 2.1 would not be defined, and that open set

problem would be incompatible with equilibrium.

Suppose that we have a limit point of a sequence (in δ) of equilibrium outcomes (payoffs

and probabilities of coalitions’success). Let xsi (δ) be the expected payoff of player i if

coalition s is selected in (1.2) and everybody accepts in (1.3), and Ui(δ) be the equilibrium

payoff; that is, the expected payoff of player i at 1) before the voting. We let xsi and Ui

respectively to be the limits of these sequences. When there is no risk of ambiguity, we

will drop the index δ from the corresponding variable.

Let Z+(δ) be the set of coalitions s that succeed with positive probability when the

discount is δ. Finally, let Z+ be the set of coalitions that succeed with positive probability

in the limit.21 For s ∈ Z+(δ), it must be that

xsi (δ) =
1

ns

(
vs − δ

∑
j 6=i,j∈s Uj(δ) + δ(ns − 1)Ui(δ)

)
(14)

= δUi(δ) +
1

ns

(
vs − δ

∑
,j∈s Uj(δ)

)
,

and so xsi − δUi(δ) = xsj− δUj(δ) for all i, j ∈ s. Define Ωs(δ) = 1
ns

(
vs − δ

∑
,j∈s Uj(δ)

)
≥

0, and accordingly Ωs as the limit of Ωs(δ).

First, suppose that Z+ contains two disjoint coalitions, s1, s2 ∈ Z+ with s1 ∩ s2 = ∅.
Consider a large δ (so that s1 and s2 are proposed with positive probability). Also,

without loss of generality, assume that Ωs1(δ) ≤ Ωs2(δ). Consider z = s1 ∪ s2, and note

that nz = ns1+ns2 . Also, note that, since the game is supperadditive, and so vz ≥ vs1+vs2

and so, from (14), vz ≥ vs1 ≥
∑

i∈z Ui(δ), so that in (2.2) coalition z would not be rejected;

and also nzΩz(δ) ≥ ns1Ωs1(δ) + ns2Ωs2(δ) ≥ 0. Thus,

Ωs1(δ)− Ωz(δ) ≤ (1− ns1
nz

)Ωs1(δ)−
ns2
nz

Ωs2(δ)

=
ns2
nz

(Ωs1(δ)− Ωs2(δ)) ≤ 0.

21Note that we do not need to discount the probability of success.
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Thus, if in the limit Ωs1 < Ωs2 then Ωs1 − Ωz < 0. For suffi ciently large δ, and since for

s1 ∈ Z+(δ) we must have that xs1i ≥ δxzi , that is,

δUi(δ) + Ωs1(δ) ≥ δ2Ui(δ) + δΩz(δ),

we obtain a contradiction. (If Ωs1 > Ωs2 we would have a similar contradiction, of course.)

A similar argument shows the other part: Ωs cannot be larger for s /∈ Z+.

A consequence of this is that in equilibrium there could be no delays. Indeed, note

that Ωs(δ) > 0 for all s in Z+(δ). Indeed, otherwise xsi (δ) = δUi(δ) for all such coalitions

and players in them, which is a contradiction: the expected payoff(Ui(δ)) cannot be larger

than the largest payoff received (xsi (δ)). Now, if Ωs(δ) > 0, then vs − δ
∑

,j∈s Uj(δ) > 0

for all coalitions in Z+(δ), and so in equilibrium no player can reject in (1.3) or in (2.2).

Thus, let ϕs(δ) be the probability that coalition s forms in the equilibrium when the

discount is δ, and let ϕs be the limit point of that sequence. Define

ps = ϕs.

For the rest of the values that define a SCOOP, we consider two cases.

Case 1: Suppose that ϕs < 1 for all s ∈ S. For all s ∈ S define

λsr =
ϕr

1− ϕs
; (15)

usi = xsi for all s ∈ Z+ (i.e., all s with ps = ϕs > 0); tsi according to (ii) in the definition

of a SCOOP:

tsi =
∑

r3i,r 6=s λ
s
ru

r
i . (16)

Thus,

tsi =
Ui − ϕsxsi

1− ϕs
, (17)

which substituting in (14) in the limit implies for all s ∈ Z+

xsi = tsi +
1

ns

(
vs −

∑
j∈s

tsj

)
. (18)

For any s /∈ Z+, and given the above values (the only ones needed), define usi as in (i) of

the definition of a SCOOP. Thus, for any such coalition, (with ps = 0, and so tsi = Ui from

(17)) usi is either 0 or Ui + Ωs. Therefore, the values thus define satisfy both parts (i) and

(ii) of the definition of a SCOOP. Finally, since only coalitions with maximum Ωs have

positive probability of success, part (iii) of the definition of a SCOOP is also satisfied.
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Case 2: Finally, suppose that ϕs = 1 for some s ∈ S. Consider any sequence of δ → 1

and define λsr as a limit point of
δϕr(δ)

1−δϕs(δ)
for all r 6= s. (The sequence is well defined, as

the denominator is positive for all terms of the sequence. Also, all these terms are smaller

than 1 – and the sum over all r 6= s is not larger than 1. Thus, we have constructed a

sequence in a compact set, so that indeed a limit point exists.) Also, define λrs = 1 for

all r, usi = xsi , and t
i
r accordingly for all r 6= s. Then, define uri according to (i) in the

definition of a SCOOP, and tsi accordingly. The only thing left to prove is that u
s
i satisfy

(i) in the definition of a SCOOP, and that uri ≤ usi .

To that end, note that xsi (1 −
∑

r∈i,r 6=s λ
s
r) is the same for all players in s. Indeed,

recall that, from (14), xsi − δUi(δ) = xsj − δUj(δ) for all i, j ∈ s. Also,

xsi (δ)− δUi(δ) = xsi (δ)− δ
∑

r3i ϕr(δ)x
r
i (δ)

= xsi (δ)(1− δϕs(δ))− δ
∑

r3i,r 6=s ϕr(δ)x
r
i (δ).

Therefore,

xsi (δ)− δ
∑

r3i,r 6=s
ϕr(δ)

1− δϕs(δ)
xri (δ)

is the same for all i in s. Thus, at a limit point of the sequence ϕr(δ)
1−δϕs(δ)

, we have xsi −∑
r3i,r 6=s λ

s
rx

r
i , and the result follows if x

s
i = xri when λ

s
r > 0. This, in turn, holds since,

otherwise, i.e., if |xsi − xri | > ε, for large δ (when ϕr(δ) > 0) player i would have an

incentive to reject in (1.3) either s or r and propose the other in the following period.

Thus, xsi (1−
∑

r∈i,r 6=s λ
s
r) is the same for al players in s, and since

∑
i∈s x

s
i = vs, it follows

that usi satisfy (i) in the definition of a SCOOP. Finally, u
r
i ≤ usi follows exactly from the

same argument as in case 1).

This concludes the proof of the first part of the theorem: any converging selection of

SPE in stationary strategies implements the SCOOP asymptotically.

We now show that a sequence of equilibria —with positive probability of a coalition

forming—exists. Begin with the SCOOP values for ui and ω and let Z+ = S+. Note that

(14) implies a modified version of the equal loss property. Indeed, for any two players

in s, the last term is common. We begin by investigating the existence of a solution

{ϕs}s∈S+ ,Ω to the system.

ui(1− δ
∑

s3i,s∈S+ ϕs) = Ω, ∀i ∈ ∪S+,∑
s∈S+ ϕs = 1,
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for given δ. That is, we prove that the following linear system has a positive solution

C+ ·
[

Ω
ϕ

]
=

[
u
1

]
, (19)

where u is the N -dimensional vector with components ui, and ϕ is the m-dimensional

vector with components ϕs, with m = |S+|, and C+ is the (N + 1)× (m+ 1) matrix

C+ =


1 δI(1, s1)u1 ... δI(1, sm)u1

... ... ... ...
1 δI(N, s1)uN ... δI(N, sm)uN
0 1 .. 1

 ,
where I(i, s) is an indicator function that takes the value of 1 if i ∈ s and 0 otherwise.

Note that, for δ = 1, this system has a solution: the probabilities ps and the "loss" Ω in

the SCOOP. Denote this solution by (Ω∗, ϕ∗). Also note that the space spanned by the

rows of the matrix C+ is the same as the one spanned by those of the matrix Ĉ+ obtained

by multiplying each of its N rows by 1/δ. (u, 1) belongs to this space: in this basis Ĉ+,

(u, 1) has coordinates (δΩ∗, ϕ∗). Thus, (u, 1) belongs to the space spanned by C+ and so

a solution to the system (19) indeed exists. Moreover, since ϕ∗s > 0, the new coordinates

(Ω, ϕ) are all positive for suffi ciently large δ.

Thus, for large, given δ, consider the following strategy for player i for a given value

of δ, defined in terms of the SCOOP values u and this solution (Ω, ϕ), defining Uj =∑
s3j ϕsuj:

• bis = ϕs if i ∈ s ∈ S+; bis = 0 if i ∈ s /∈ S+.

• Accept in (1.3) if vs ≥ δ
∑

j∈s uj; reject otherwise. (Reject otherwise and choose

any coalition in S+ containing i in the next period.)

• In (2.1), if selected, propose keeping vs − δ
∑

,j∈s
j 6=i

Uj, and giving Uj to each j 6= i, if

vs ≥ δ
∑

,j∈s Uj and otherwise, insist on keeping vs.

• In (2.2), accept if proposed to receive δUi or more, and reject otherwise.

Given that all players play according to this strategy, the behavior stipulated for (2)

is optimal. So the strategy profile is a Nash equilibrium in any subgame beginning at

any node of (2). Also, if a player rejects in (1.3), choosing any s ∈ S+ with i ∈ s is also
optimal: the player will get the highest feasible payoff ui. That is also what the player

will obtain accepting in (1.3) any coalition where vs ≥ δ
∑

j∈s uj. If vs < δ
∑

j∈s uj, the
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optimal response will be to reject and (hope to) choose in the next period a coalition in

S+. Finally, the ballot bis is also optimal. Indeed, a (one-shot) deviation cannot result in a

higher payoff: either it does not affect the probability that a coalition in S+ containing i is

selected by Nature, or it reduces it. Any coalition not in S+ has probability 0 independent

of what the player votes. Thus, for large δ indeed a SPE in stationary strategies indeed

exists.

For simplicity, in the existence part of the proof of this result we have used equilibrium

strategies where players may not exhaust all their votes in the voting stage. In particular,∑
s3i b

s
i is typically strictly less than one. It is important to note that these voting

strategies may be part of weakly non dominated strategies of the game. Nevertheless, it

can be shown (details upon request) that there exists equilibrium strategies that exhaust

the players’voting ability and support the same probabilities and payoffs.
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