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ABSTRACT 

The multiple partners game (Sotomayor, 1992) extends the assignment game to 

a matching model where the agents can have several partners, up to their quota, and the 

utilities are additively separable. The present work fills a gap in the literature of that 

game by studying the effects on agents’ payoffs caused by the entrance of new agents in 

the market under both the cooperative and the competitive approaches. The results 

obtained have no parallel in the one-to-one assignment game.  
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1. INTRODUCTION 

Two-sided matching markets where a set of possibly heterogeneous agents from 

one side meet with another set of possibly heterogeneous agents from the other side are 

very common in practice. Examples are the markets for firms and workers, buyers and 

sellers, and venture capital funds and start-ups. These environments can be approached 

cooperatively and competitively. 

Distinct matching models have been proposed by several authors to represent 

such markets, aiming to give them some mathematical treatment that leads to a better 

understanding of their organization as real markets. These models differ in the structure 

of the agents’ preferences as well as in the rules of the market. The simplest one was 

introduced by Shapley and Shubik (1972) in terms of buyers and sellers, and it is 

referred to as the assignment game. The main assumption is that each agent can form 

one partnership at most and utility is identified with money. That paper shows that the 

core of this market is non-empty and is a complete lattice.  It contains a special 

allocation that gives, among all core allocations, the highest payoff to each buyer and 

the lowest payoff to each seller, and another allocation with symmetric properties. 

Moreover, the core of the game coincides with the set of stable allocations and with the 

set of competitive equilibrium allocations.4 

A generalization of the assignment game was obtained by Demange and Gale 

(1985), by allowing the utility functions, although continuous in the money variable, to 

not necessarily be linear. Several papers propose other extensions of this game by 

assuming that the agents from one side or from both sides of the market can form 

several partnerships and can negotiate their payoffs, either as a block or individually 

(we can cite Kelso and Crawford, 1982, Roth, 1984, Kaneko, 1982, Thompson, 1980, 

Sotomayor, 1992, 2002a, and 2002b, among others). These are the so-called many-to-

one and many-to-many matching models, respectively.  

The simplest many-to-many matching model was introduced in Sotomayor 

(1992) and it is obtained by introducing quotas in the assignment game. The quota of an 

agent is the maximum number of partnerships the agent can enter. The main 

                                                            

4 The competitive one-to-one market was proposed in Gale (1960), who proved the existence of 

equilibrium prices. 
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characteristic of this game is that players negotiate their individual payoffs: if agents  i  

and  j  belong to opposite sides and become partners, they undertake an activity together 

that produces a gain  aij, which is divided between them the way both agree:  uij  for  i  

and  vij = aij  uij  for  j. Therefore, an outcome of this game is a matching, that is, a set 

of partnerships that does not violate the quotas of the players, along with individual 

payoffs  uij’s and  vij’s.  

This model is called multiple-partners assignment game (multiple partners 

game, for short). Sotomayor (1999a) shows that the set of stable outcomes of the 

multiple partners game is a non-empty complete lattice, although it does not coincide 

with the core of the game, which is a larger set and it is not always a lattice (Sotomayor, 

1992). 

The competitive approach of the multiple partners game is considered in 

Sotomayor (2007b), through an economic structure in terms of buyers and sellers 

supported on a general concept of competitive equilibrium. It can be interpreted that 

each seller has a number of identical objects to sell and each buyer wants to acquire a 

number of distinct objects. Roughly speaking, facing a vector of prices, one price for 

each object, the buyers behave like price-takers by demanding the most preferred 

bundles of distinct objects, of a size up to their quotas. The preferences of the buyers 

over the bundles are defined by their total payoffs. Sotomayor (2007b) shows that the 

set of competitive equilibrium allocations in this environment also forms a complete 

lattice, which is a sublattice (and may be distinct) of that of the stable allocations.5 

The present work fills a gap in the literature of the multiple partners game by 

studying the effects on the agents’ payoffs caused by the entrance of new agents in the 

market. This is a problem of economic interest as these effects capture fundamental 

differences and similarities between the roles played by agents on opposite sides of the 

market.  

In the literature of matching games, meaningful comparative static results of 

adding agents to the market have been approached in models where the core is endowed 

with a complete lattice structure. It is then assumed that the agents are allocated 

according to one of the extreme points of that lattice, because these allocations always 

                                                            

5 Pérez-Castrillo and Sotomayor (2017) study the manipulability of competitive equilibrium allocation 
rules in the multiple partners game. 
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exist and can be obtained via some well-known algorithms. For the assignment game, 

the comparative static result is given by Proposition 8.17 of Roth and Sotomayor (1990) 

and it is the restriction, to this model, of the proposition proved in Demange and Gale 

(1985). It asserts that when agents’ payoffs correspond to one of the extreme points of 

the lattice of the core, it is the case that if some firms (or buyers) enter the market, no 

current firm is made better off and no current worker (or seller) is made worse off. 

Equivalently, if some workers enter the market, no current worker will be made better 

off and no current firm will be made worse off.  

The core, the set of stable payoffs, and the set of competitive equilibrium 

payoffs coincide in the one-to-one matching model. Therefore, the previous 

comparative static effects hold for the three sets.6 

Given that the core of the multiple partners game is not always a complete 

lattice, and that the existence of the optimal core allocations is an open problem (see 

Sotomayor, 1992), we will follow an different approach from the previous authors. We 

will compare core allocations that are not optimal for either of the two sides, but are 

                                                            

6  For the assignment game, two important references besides Demange and Gale (1985) are Shapley 

(1962) and Mo (1988). Shapley (1962) shows that the optimal core payoff for an agent weakly decreases 

when another agent is added to the same side and weakly increases when another agent is added to the 

other side. Mo (1988) proves that if the incoming firm is allocated to a worker in some core outcome for 

the new market, there is a set of agents such that every worker is better off and every firm is worse off in 

the new market than in the previous one. The symmetric result is valid when the incoming agent is a 

worker. 

Comparative statics results for the marriage markets are obtained in Gale and Sotomayor (1985) and Roth 

and Sotomayor (1990). For the discrete many-to-one matching market, Kelso and Crawford (1982) show 

that, within the context of firms and workers, the addition of firms to the market weakly improves the 

workers’ payoffs, and the addition of workers weakly improves the firms’ payoffs, under the firm-optimal 

core allocation (the case of the worker-optimal core allocation was not studied). Crawford (1991) obtains 

some comparative statics result for a discrete many-to-many matching model, for the firm-optimal and the 

worker-optimal pairwise-stable outcomes. However, pairwise-stable outcomes may be out of the core in 

that model (Blair, 1988), so they may be unstable (Sotomayor, 1999b). Finally, Sotomayor (2007a) 

extends some comparative static results to a hybrid model which includes the marriage market and the 

assignment game. 
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optimal stable or optimal competitive, for one side. These allocations always exist and 

can be reached by using an algorithm.7 

Intuitively, one feels that there is no connection between the comparative static 

effects on the agents’ payoffs and the assumption of the model concerning their quotas. 

We show that this intuition turns out to be right:8 In the extreme points of either the 

lattice of the stable payoffs or the lattice of the competitive equilibrium payoffs of the 

multiple partners game, the entrance of new firms cannot make the current firms better 

off or the current workers worse off. And the reverse happens after the entrance of new 

workers. 

This result is obtained here as a corollary of a non-intuitive and stronger theorem 

that has no parallel in the one-to-one case. The theorem states the comparative statics 

effects on the agents’ individual trades. Specifically, we first prove the following: 

When agents are allocated according to one of the extreme points of the lattice 

of the stable payoffs, it is always the case that if some firms enter the market, no current 

firm will be able to make a trade with a new partner obtaining a higher individual 

payoff than some of its current individual payoffs, nor will she be able to make a more 

profitable trade with one of its current partners. The opposite conclusion holds for the 

workers. Moreover, a symmetric result holds if it is assumed that some workers enter 

the market. 

We also prove a second theorem that states the same result for the extreme 

points of the lattice of the competitive equilibrium payoffs instead of the lattice of the 

stable payoffs.  

The proof of these results involves the comparison for each agent of his/her/its 

set of individual payoffs at some allocation in the original market, with his/her/its set of 

individual payoffs at some allocation after the entrance of the new agents. Therefore, we 

must define, for each agent, some ordering of the individual payoffs in both sets. The 

technical difficulty is that the allocations in comparison belong to distinct markets 

which do not share the same set of optimal matchings. Then, the existent vectorial 

                                                            

7   Sotomayor (2009) presents an algorithm that produces the buyer-optimal stable allocation. It is proved 

in Sotomayor (2007) that this allocation always coincides with the buyer-optimal competitive equilibrium 

allocation. 

8 However, the proofs are not generalizations of existing proofs. 
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representation of the stable allocations defined in Sotomayor (2007b) cannot be used, 

since some coordinates of both vectors may be indexed by different optimal matchings 

and so the vectors cannot be compared. We solve this problem by providing a new 

ordering of the set of individual payoffs of all agents in both allocations. Moreover, we 

show that, under such a vectorial representation, if the highest payoff of some agent is 

obtained in, say, the first vector, then this vector is greater than or equal to the second 

vector in each component.   

The paper is organized as follows. Section 2 introduces the framework for the 

labor market of heterogeneous firms and workers operating cooperatively. Section 3 

presents and proves the comparative statics results for the model described in section 2. 

Section 4 analyzes the comparative statics effects on the optimal competitive 

equilibrium allocations for each side of the market, in terms of buyers and sellers. The 

final remarks are given in section 5. 

 

2. FRAMEWORK FOR THE LABOR MARKET OF HETEROGENEOUS 

FIRMS AND WORKERS 

We will think of the multiple partners game as a labor market of firms and 

workers. There are two finite and disjoint sets of agents,  F = {i1, i2,…, im}, the set of 

firms, and  W = {j1, j2,…, jn}, the set workers. We will use the letters  i  and  j  to 

represent, generically, any element of  F  and  W,  respectively. Each agent has a quota 

representing the maximum number of partnerships he/she/it can enter. Thus, the quota  

s(j)  of worker  j  is the maximum number of jobs he/she can take. The quota  r(i)  of 

firm  i  is the maximum number of workers it can hire.  

Without loss of generality, we assume that every agent has a reservation utility 

of  0. For each pair  (i, j), there is a non-negative number  aij  0, representing the 

productivity of worker  j  in firm  i. We also assume that agents’ preferences are 

separable across pairs, in the sense that the payoff from a partnership does not depend 

on the other partnerships formed. If firm  i  hires worker  j  at salary  vij, then its 

individual payoff in this transaction is  uij = aij  vij  whereas worker  j  receives  vij. For 

notational simplicity, both sets  F  and  W  include one dummy firm and one dummy 

worker, both players are denoted by 0. The quotas of the dummy agents are enough to 

guarantee that the non-dummy agents in the market can fill their quotas. The 
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productivity of any worker at the dummy firm, as well as the productivity of the dummy 

worker at any firm is zero. That is,  a0j = ai0 = 0  for all  j  W  and all  i  F. 

The market described above will often be denoted by  M, or  M = (F, W, a), 

without reference to the quotas of the players when this simplification does not lead to 

confusion.  

 

Definition 2.1. A feasible matching is a  m×n  matrix  x = (xij)(i,j)F×W  of non-negative 

integer numbers such that  xij  {0, 1}  if  i  F{0}  and  j  W{0}. Furthermore,     

x00 = 0,  F xij = s(j)  for all  j  W{0}  and  W xij = r(i)  for all  i  F{0}.9 

 

If  xij > 0  (respectively,  xij = 0), then we say that firm  i  and worker  j  are 

(respectively, are not) matched at x. An allowable set of partners for firm  i  F{0}  is 

an array with  r(i)  distinct workers, except some of them may be repetitions of the 

dummy worker. Similarly, an allowable set of partners for worker  j  W{0}  is an 

array with  s(j)  distinct firms, except some of them may be repetitions of the dummy 

firm. Therefore, a feasible matching specifies an allowable set of partners for each 

agent. Given a feasible matching  x, we denote by  Ci(x)  the allowable set of partners 

assigned to firm  i  at  x  and by  Cj(x)  the allowable set of partners assigned to worker  j  

at  x.  The set of pairs  (i, j)  F×W  that are assigned to each other at  x  is denoted by  

C(x).   

A matching  x  is optimal if it attains the maximum value among all feasible 

matchings. Formally, 

 

Definition 2.2. A matching  x  is optimal if (a) it is feasible and (b)  F×W aij xij           

F×W aij x’ij  for all feasible matchings  x’. 

 

Definition 2.3. Given two feasible matchings,  x  and  x’,  we say that  firm  i  is a non-

essential partner of worker  j  at  x with respect to  x’  if  i  Cj(x)Cj(x’); worker  j  is 

                                                            

9 We will use the notation  A  to denote the sum over all elements of  A. 
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a non-essential partner of firm  i  at  x  with respect to  x’  if  j  Ci(x)Ci(x’). In both 

cases, we say that  (i, j)  is a non-essential partnership at  x  with respect to  x’. 

 

Definition 2.4. A feasible allocation for  M, denoted by  (u, v, x), is a feasible matching  

x  and a pair of payoffs  (u, v), where the individual payoffs of each  i  F  and  j  W  

are given by the arrays of numbers  uij  0  and  vij  0, respectively, only defined if       

xij > 0, and such that  uij + vij = aij. Consequently, ui0 = u0j = vi0 = v0j = 0  in case these 

payoffs are defined. 

   If  (u, v; x)  is a feasible allocation we say that  (u, v)  is compatible with  x  and vice-

versa. 

 

The total payoff of firm  i  and worker  j  is denoted by  Ui  jCi(x) uij  and         

Vj  iCj(x) vij. Also,  ui  min{uij; j  Ci(x)}  denotes the smallest individual payoff of 

firm  i  and  vj  min{vij; i  Cj(x)}  denotes the smallest individual payoff of worker  j.  

The key concept is that of a stable allocation.10 In Sotomayor (1992) it is proved 

that this notion is equivalent to the following: 

 

Definition 2.5. The allocation  (u, v; x)  is stable for  M  if it is feasible and, for all  (i, j)  

such that  xij = 0,  

ui + vj ≥ aij.      (1) 

 

If (u, v; x) is stable then we say that  x  is a stable matching and (u, v) is a stable 

payoff compatible with  x. 

The interpretation of Definition 2.5 is standard. If condition (1) is not satisfied 

then there would be some pair of agents  (i, j)  who are not partners but who could both 

get a higher payoff by forming a partnership while at the same time dissolving one of 

                                                            

10 In the present model, the idea of stability is captured by the concept of setwise-stability. An allocation 

is setwise-stable if there is no coalition of players who, by forming new partnerships only among 

themselves  possibly dissolving some partnerships to remain within their quotas and possibly keeping 

other partnerships   can all obtain a higher payoff.  Setwise-stability is equivalent to pairwise-stability 

(Sotomayor, 1992). 
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their current partnerships (so as to stay within their quotas). In this case, we say that            

(i, j)  destabilizes the allocation, or that  (i, j)  is a destabilizing pair. 

The existence of stable allocations was originally proved in Sotomayor (1992).11  

 

NOTATION: If  σ = (u, v, x)  is a feasible allocation then  {uij}jCi(x)  and  {vij}iCj(x)  

stands for the arrays of individual payoffs of firm  i  and worker  j, respectively. 

Sotomayor (1999a) shows that if  σ  is stable then we can order the elements of 

{uij}jCi(x)  and  {vij}iCj(x), for all  (i, j)  F×W, in some convenient way, so that the 

resulting vectors are independent of  x. We will denote such vectors by  i  Rr(i)  and  

j  Rs(j), respectively. We will keep the same notation  σ = (u, v, x)  for  u = (i)iF  and  

v = (j)jw, when this does not cause any confusion. 

 

It is proved in Sotomayor (1992) that every stable matching is optimal. The 

vectorial representation of the set of individual payoffs of the agents allows the set of 

stable allocations to be regarded as the Cartesian product of the set of stable payoffs by 

the set of optimal matchings. Therefore, we can characterize the optimal matchings as 

the stable matchings. That is, 

 

Proposition 2.1 (Sotomayor, 1999a, 1992). (a) Let  (u, v; x)  be a stable allocation and  

x’  an optimal matching. Then  (u, v; x’)  is also a stable allocation. 

   (b) If   (u, v; x)  is a stable allocation then  x  is an optimal matching.  

 

Definition 2.6. A stable payoff is called a firm-optimal stable payoff if every firm 

weakly prefers it to any other stable payoff. We define the worker-optimal stable payoff 

similarly. 

 

That is, a firm-optimal stable payoff gives to each firm the maximum total 

                                                            

11 There are two existence proofs in Sotomayor (1992). One of them uses linear programming duality 

theory. The other one is based on a replication of the agents, the number of times of their quotas, together 

with a convenient income matrix that reduces the model to a related one-to-one assignment game. There 

is also another proof in Sotomayor (2009) given by a mechanism that mimics an auction procedure.  
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payoff among all stable payoffs whereas a worker-optimal stable payoff gives to each 

worker the maximum total payoff among all stable payoffs. 

By using the vectorial representation of the agents’ individual payoffs, 

mentioned above, Sotomayor (1999a) defines two partial order relations,  ≥F  and  ≥W, in 

the set of stable payoffs, such that if    and    are stable payoffs then   ≥F   if  i ≥ i  

for all  i  F  and   ≥W   if  j ≥ j  for all  j  W. She shows that there is a polarization 

of interests between the two sides of the market along the whole set of stable payoffs, 

that is,   ≥F   if and only if   ≥W , for all stable payoffs    and  . Sotomayor 

(1999a) also shows that the set of stable payoffs is endowed with a complete lattice 

structure under each partial order, where one is the dual of the other. As a consequence, 

there exists one and only one maximal element and one and only one minimal element 

in each lattice. Due to the polarization of interests between firms and workers, the 

maximal element of the lattice under  ≥F  is the minimal element of the lattice under  ≥W, 

and vice versa. Formally, 

 

Proposition 2.2 (Sotomayor, 1999a). Let  +  be the maximal element of the lattice of 

stable payoffs under the partial order  ≥F  and  +  be the maximal element of the lattice 

of stable payoffs under the partial order  ≥W. Then,  +
i ≥ i,  j ≥ +

j,  i ≥ +I  and   

+j ≥ j  for every stable payoff    and all  (i, j)  F×W.   

 

Corollary 2.1. Let  +  be the maximal element of the lattice of stable payoffs under the 

partial order  ≥F  and  +  be the maximal element of the lattice of stable payoffs under 

the partial order  ≥W. Then,  +  is the firm-optimal stable payoff and  +  is the worker-

optimal stable payoff. 

 

In an allocation, the payoff that a firm obtains with the workers it hires may 

depend on the identity of the workers. Also, a worker who is hired by several firms may 

obtain a different individual payoff from each of them. When the payoff of a worker is 

the same in all the firms he/she works for, we say that the allocation is F-non-

discriminatory; and similarly for W-non-discriminatory allocations. That is, 

 
Definition 2.7. (a) The feasible allocation  (u, v; x)  is F-non-discriminatory if 

 vij = vj  for all  j  W  and  i  Cj(x).  

   (b) The feasible allocation  (u, w; x)  is W-non-discriminatory if  
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 uij = ui  for all  i  F  and  j  Ci(x).  

   (c) The feasible allocation  (u, w; x)  is non-discriminatory if it is F-non-

discriminatory and W-non-discriminatory. 

 
Proposition 2.3 (Sotomayor, 2007b). (a) Let  (u, v; x)  be a firm-optimal stable payoff. 

Then,  (u, v; x)  is an F-non-discriminatory stable allocation. 

   (b) Let  (u, v; x)  be a worker-optimal stable payoff. Then,  (u, v; x)  is a W-non-

discriminatory stable allocation. 

 
3. COMPARATIVE STATIC EFFECTS ON THE FIRM-OPTIMAL AND 

WORKER-OPTIMAL STABLE ALLOCATIONS  

In this section, we will consider the cooperative game structure of the labor 

market of firms and workers introduced in section 2 and we will analyze the 

comparative static effects when some agents from one side are added to the market. 

More specifically, we are going to provide comparative static effects on the payoffs of 

firms and workers in the firm-optimal and worker-optimal stable allocations when there 

is entry of a group of firms or a group of workers. 

To obtain our main results, we first study the comparison between the payoffs of 

firms and workers in stable allocations in two markets with the same sets of agents but 

that are different because, in the second market, some of the agents on one side become 

non-productive. We develop this analysis in subsection 3.1 and state our main results in 

subsection 3.2. 

 

3.1. PRELIMINARY RESULTS 

In this subsection, we study two markets that involve the set of firms  F = F1F2  

and the set of workers  W. We denote the markets  M  (F, W, a)  and  M’  (F, W, a’). 

The only difference between  M  and  M’  is that the firms in the subset  F2  have a 

productivity of  0  with any worker  in  M’  but not necessarily in  M. That is,  a’ij = aij  

for all  (i, j)  F1×W  and  a’ij = 0  for all  i  F2  and  j  0. Also, we consider any 

stable allocations   = (u, v; x)  and  ’ = (u’, v’; x’)  of  M  and  M’, respectively. 

Without loss of generality, we assume that  x’ij = 0  for all  i  F2  and  j ≠ 0. 

To simplify, when there is no confusion, given feasible allocations   = (u, v; x)  

and  ’ = (u’, v’; x’),  for  M  and  M’, respectively, we sometimes write “non-essential 
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partners at  x,” meaning  “non-essential partners at  x  with respect to  x’.” Also, we 

denote  Ch  and  C’h  the sets  Ch(x)  and  Ch(x’), for  h  FW. 

Given the stable allocations    and  ’, we denote  F()  the set of firms in  F1  

that have non-essential partners at  x  and have a higher minimum individual payoff 

under    than under  ’. Similarly, we denote  W(’)  the set of workers who have non-

essential partners at  x  and a higher minimum individual payoff under  ’  than under  . 

Formally, 

 F()  {i  F1;  ui > u’i  and  Ci ≠ C’i}, 

 W(’)  {j  W;  v’j > vj  and  Cj ≠ C’j}. 

Lemma 3.1 shows that all the non-essential partners at  x  of the firms in  F()  

have a higher minimum individual payoff under  ’  than under  . It also states that all 

the non-essential partners at  x’  with respect to  x  of the workers in  W(’)  have a 

higher minimum individual payoff under    than under  ’. 

 
Lemma 3.1. Let   = (u, v; x)  and ’ = (u’, v’; x’)  be stable allocations for  M  and  

M’,  respectively. Then, 

   (a) if  i  F()  then  i  0  and  CiC’i  W(’);  

   (b) if  j  W(’)  then  j  0  and  C’jCj  F().  

Proof. (a) Let  i  F(). Then,  Ci ≠ C’i, so  CiC’i  . Let  j  CiC’i. Then,  uij  ui > 

u’i  0, which implies  i  0  and  j  0. Suppose by contradiction that  j  W(’). Given 

that  j  CiC’i, it is also true that  i  CjC’j; hence  Cj ≠ C’j. Therefore,  j  W(’)  

requires  vj  v’j. It would then be the case that  aij = uij + vij ≥ ui + vj > u’i + v’j  a’ij, by 

stability of  (u’, v’; x’)  and the fact that  j  C’i. Now use that  a’ij = aij  for  i  F1  to 

get a contradiction. Hence,  j  W(’)  and then  CiC’i  W(’).  

   (b) Let  j  W(’). Then,  C’j ≠ Cj,  so  C’jCj  . Let  i  C’jCj. Then,  v’ij  v’j > vj 

 0, so  j  0  and  i  0. This implies that  i  F1  (because  x’  associates every  i  F2  

to  0). We claim that  i  F(). Otherwise (given that  C’i ≠ Ci  holds) it would be the 

case that  u’ij  u’i  ui. Then,  a’ij = u’ij + v’ij > ui + vj  aij,  by stability of  (u, v; x)  and 

the fact that  j  Ci. Now use that  a’ij = aij  for  i  F1  to get a contradiction. Therefore,  

i  F()  and then  C’jCj  F().   

 



13 

 

Using the previous framework, let    denote the set of all non-essential 

partnerships  (i, j)  at  x  that involve firms in  F(). Similarly, let    denote the set of all 

non-essential partnerships  (i, j)  at  x’  for which  j  W(’). That is,   

 
       ≡ {(i, j);  i  F()  and  j  CiC’i}  and   ≡ {(i, j);  j  W(’)  and  i  C’jCj}. 

 

Proposition 3.1 asserts that the set    coincides with the set of all non-essential 

partnerships at  x  that involve workers in  W(’)  and that the set    coincides with the 

set of all non-essential partnerships at  x’  that involve firms in  F(). Therefore, if  (i, j)  

is a non-essential partnership at  x  or at  x’, then  i  F()  if and only if  j  W(’). 

In the proof of Proposition 3.1 we use Lemma 3.2, which states that at both 

matchings  x  and  x’  the total number of non-essential partners for the firms in  F()  is 

equal to the total number of non-essential partners for the workers in W(’).  

 

Lemma 3.2. Consider the stable allocations    and  ’  for the markets  M  and  M’. 

Then: 

   ∑iF() |CiC’i| = ∑jW(’) |CjC’j|  and 

   ∑jW(’) |C’jCj| = ∑iF() |C’iCi|. 

Proof. Since  CiC’i  W(’)  for all  i  F()  by Lemma 3.1 (a), we have that 

 ∑iF() |CiC’i|  ∑jW(’) |CjC’j|.   (2) 

Similarly, because  C’jCj  F()  for all  j  W(’)  by Lemma 3.1 (b), we have: 

 ∑ jW(’) |C’jCj|  ∑iF() |C’iCi|.   (3) 

On the other hand,  |CiC’i| = |C’iCi|  for all  i  F  and  |C’jCj| = |CjC’j|  for 

all  j  W. Then, by (2) and (3),  we obtain 

∑iF() |CiC’i|  ∑jW(’) |CjC’j| = ∑jW(’) |C’jCj|  ∑iF() |C’iCi| = ∑iF() |CiC’i|. (4) 

Therefore, all inequalities in (4) are equalities. In particular,  ∑iF() |CiC’i| = 

∑jW(’) |CjC’j|  and  ∑jW(’) |C’jCj| = ∑iF() |C’iCi|.    

 

We can now state and prove Proposition 3.1. 
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Proposition 3.1. Let   = (u, v; x)  and ’ = (u’, v’; x’)  be stable allocations for  M  and  

M’, respectively. Then,  

  = {(i, j);  j  W(’)  and  i  CjC’j}  and 

  = {(i, j);  i  F()  and  j  C’iCi}. 

Proof. First, notice that according to Lemma 3.1,  CiC’i  W(’)  for all  i  F(). 

Also,  j  CiC’i  implies that  i  CjC’j, Therefore,   ≡ {(i, j);  i  F()  and                

j  CiC’i}  {(i, j);  j  W(’)  and  i  CjC’j}. Then,   

   ∑iF()|CiC’i| = ||  |{(i, j); j  W(’)  and  i  CjC’j}| = ∑jW(’)|CjC’i|. (5) 

Under Lemma 3.2, the inequality in (5) must be equality, so   = {(i, j); j  

W(’)  and  i  CjC’j}.  

For the second equality of the proposition, Lemma 3.1 also implies that       

C’jCj  F()  for all  j  W(’), so    {(i, j); i  F()  and  j  C’iCi}. Using that  

∑jW(’)|C’jCj| = ∑iF()|C’iCi|  by Lemma 3.2, we get that   = {(i, j); i  F()  and          

j  C’jCi}.     

 

Proposition 3.1 implies that if  (i, j)  is a non-essential partnership at  x  or at  x’  

then firm  i  F1  and  ui > u’i  if and only if  v’j > vj. Proposition 3.2, which is our next 

result, adds that if  (i, j)  is a non-essential partnership  at  x  (x’, respectively), and           

i  F()  or  j  W(’), then  i   and  j  obtain their minimum individual payoff in    (’, 

respectively) in their partnership.    

     

Proposition 3.2. Let   = (u, v; x)  and ’ = (u’, v’; x’)  be stable allocations for  M  and  

M’,  respectively. Then,   

 uij = ui  and  vij = vj  for all  (i, j)    and 

 u’ij = u’i  and  v’ij = v’j  for all  (i, j)  .  

Proof. We can write: 

∑ aij = ∑ (uij + vij) = ∑iF()∑jCiC’i
 uij + ∑jW(’)∑iCjC’j

 vij ≥ 

   ∑iF()∑jCiC’i
 ui + ∑jW(’)∑iCjC’j

 vj = ∑iF() |CiC’i| ui + ∑jW(’) |CjC’j| vj = 

   ∑iF() |C’iCi| ui + ∑jW(’) |C’jCj| vj = 

   ∑iF()∑jC’iCi
 ui + ∑jW(’)∑ iC’jCj

 vj = ∑ (ui + vj) ≥ ∑ aij,  (6) 



15 

 

where the first equality in (6) follows from the feasibility of  (u, v; x)  and the definition 

of the set  , the second equality follows from Proposition 3.1, and the last inequality 

follows from the stability of  (u, v; x)  and the fact that  xij = 0  for every  (i, j)  . 

Then, 

    ∑ aij ≥ ∑ aij.     (7) 

Also,  

   ∑ aij = ∑ (u’ij + v’ij) = ∑iF()∑jC’iCi
 u’ij + ∑jW(’)∑iC’jCj

 v’ij ≥ 

   ∑iF()∑jC’iCi
 u’i + ∑jW(’)∑ iC’jCj

 v’j = ∑iF() |C’iCi| u’i + ∑jW(’) |C’jCj| v’j = 

   ∑iF() |CiC’i| u’i + ∑jW(’) |CjC’j| v’j = 

   ∑iF()∑jCiC’i
 u’i + ∑jW(’)∑ iCjC’j

 v’j = ∑ (u’i + v’j) ≥ ∑ aij,  (8) 

where the first equality in (8) follows from the feasibility of  (u’, v’; x’)  and the 

definition of the set  , the second equality follows from Proposition 3.1, and the last 

inequality follows from the stability of  (u’, v’; x’)  and the fact that  x’ij = 0  in  . Then,  

    ∑ aij ≥ ∑ aij.     (9) 

Therefore,  ∑ aij = ∑ aij  by (7) and (9), which implies that all inequalities are 

equalities in (6) and (8). Hence,  uij = ui  and  vij = vj  for all  (i, j)  . Similarly,  u’ij = 

u’i  and  v’ij = v’j  for all  (i, j)  , as we wanted to prove.    

 

Corollary 3.1 uses the result of Proposition 3.2 to provide additional information 

concerning the payoffs of firms and workers in the stable allocations of markets  M  and  

M’.  

 

Corollary 3.1. Let   = (u, v; x)  and  ’ = (u’, v’; x’)  be stable allocations for  M  and  

M’, respectively. Then, 

   (a) If  i  F(),  j  Ci  and  k  C’iCi, then  uij > u’ik. If  j  W(’),  i  C’j  and             

t  CjC’j, then  v’ij > vtj. 

   (b) If  i  F1F(),  j  CiC’i  and  k  C’i, then  u’ik  uij. If  j  WW(’),  i  Cj  

and  t  C’jCj, then  vij  v’tj. 

   (c) If  i  F1  and  j  CiC’i, then  u’ij > uij  if and only if  vij > v’ij;  uij > u’ij  if and 

only if  v’ij > vij; and  u’ij = uij  if and only if  vij = v’ij  

   (d) If  i  F1  and  W(’) =   then  u’ik  uij  for all  k  C’i  and  j  CiC’i.   
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Proof. (a) Let  i  F(),  j  Ci  and  k  C’iCi. Then,  uij ≥ ui > u’i = u’ik, where the 

equality follows from Proposition 3.2 because  (i, k)    under Proposition 3.1. For the 

other assertion, let  j  W(’),  i  C’j  and  t  CjC’i. Then,  v’ij ≥ v’j > vj = vtj, where 

the equality follows from Proposition 3.2. 

   (b) Let  i  F1F(),  j  CiCi(x’), and  k  C’i. According to Proposition 3.1,              

i  F()  implies  j  W(’). Hence,  vj  v’j. Now suppose, by way of contradiction, that  

uij > u’ik. Then, we have an absurd because  aij = uij + vij > u’ik + vj  u’i + v’j  a’ij = aij, 

where the last inequality is implied by the stability of  (u’, v’; x’)  and the fact that               

j  C’i. Hence,  u’ik  uij. 

For the other assertion, take  j  WW(’),  i  Cj  and  t  C’jCj. Proposition 

3.1 implies that  t  F(). Then,  u’t  ut  if  t  F1  and  ut  u’t = 0  if  t  F2. In the last 

case,  j = 0, so  v’tj = 0  and then  0 = vij  v’tj. In the former case, suppose by way of 

contradiction that v’tj > vij. Then, we get an absurd because  atj = u’tj + v’tj > u’t + vij         

ut + vj  atj, where the last inequality is implied by the stability of  (u, v; x)  and the fact 

that  t  Cj. Hence,  vij  v’tj. 

   (c) The proof follows from the fact that if  j  CiC’i  and  i  F1  then  uij + vij = aij = 

a’ij = u’ij + v’ij.   

   (d) The proof is immediate from (b) and (c) since  W(’) =   implies, first, that         

F() =   by Proposition 3.1 and, second, that  vj  v’j  for all  j  W.   

 

Our next results concern properties of allocations that are constructed as follows. 

We start with two allocations:   = (u, v; x)  for  M  and  ’ = (u’, v’; x’)  for  M’. Also, 

we assume that   and  ’  are either F-non-discriminatory or W-non-discriminatory, that 

is, the agents of a given side of the market do not discriminate among the agents of the 

other side. Then, we construct two new allocations that are based on either the 

minimum payoffs for the workers or the minimum payoffs for the firms between their 

payoffs in    and  ’. For this purpose, we first define the matching  y  so that it agrees 

with  x  on  F()×W(’)  and with  x’  otherwise. Also, we define the matching  z  so that 

it agrees with  x’  on  F()×W(’)  and with  x  otherwise. Under Proposition 3.1, 

matchings  y  and  z  are feasible for  M’  and  M, respectively. We construct the new 

allocations in two cases: 
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Case 1.   and  ’  are  F-non-discriminatory stable allocations for  M  and  M’, 

respectively. Then, define  # = (u#, v#; y), where  v#ij =v#j = min{vj, v’j}  for all  j  W  

and  i  Cj(y), and  u#  is feasibly  defined.  

Case 2.   and  ’  are  W-non-discriminatory stable allocations for  M  and  M’, 

respectively. Then, define  # = (u#, v#; z),  where  u#ij =u#i = min{ui, u’i}  for all  i  F1  

and  u#ij =u#i = ui  for all  i  F2  and all  j  Ci(z), and  v#  is feasibly  defined.  

 

Remark 3.1. (a) Notice that if  i  F2  then  Ci(y) = Ci(x’). Hence,  j = 0  if  yij > 0, so  

u#
ij = 0  and  v#j = 0. In this case,  u#

i = u’i = 0. Also, we claim that if  i  F2  and  xij > 0  

then  j  W(’). In fact, if  j  W(’)  then  j  0, so  i  Cj(x)Cj(x’). Then, under 

Proposition 3.1,  i  F(), which implies that  i  F2, in contradiction with  i  F2.  

Therefore, we have that  vj ≥ v’j, so  v#j = v’j.  

   (b) Notice that it follows from Proposition 3.1 that if  i  F1F()  then all non-

essential partners of  i  at  x  and  x’  are in  WW(’). Also, if  j  WW(’)  then all 

non-essential partners of  j  at  x  and  x’  are in  F1F().   

 

The allocation  #  (the allocation  #, respectively) is defined by taking the 

minimum of the payoffs for the workers (the firms, respectively) in the stable 

allocations    and  ’  when   and  ’  are  F-non-discriminatory (W-non-

discriminatory, respectively). Proposition 3.3 provides information about the payoffs for 

the firms (workers, respectively) in  #  (#, respectively). 

 

Proposition 3.3 (a) Let   = (u, v; x)  and  ’ = (u’, v’; x’)  be  F-non-discriminatory 

stable allocations for  M  and  M’,  respectively. Then,  u#
ij = max{uij, u’ij}  for all            

i  F1  and  j  CiC’i. Furthermore, if  i  F1  we must have that  u#
i ≥ max{ui, u’i}.   

   (b) Let   = (u, v; x)  and  ’ = (u’, v’; x’)  be  W-non-discriminatory stable 

allocations for  M  and  M’,  respectively. Then,  v#
ij = max{vij, v’ij}  for all  j  W  and  

i  CjC’j. Furthermore, if  j  W  we must have that  v#
j ≥ max{vj, v’j}.   

Proof. We will prove (a); the proof of part (b) follows dually. 

Let  i  F1  and  j  CiC’i. By definition of  v#, if  v’j ≥ vj  then  v#ij = v#j = vj, 

and if  vj ≥ v’j  then  v#ij = v#j = v’j. In the first case, Corollary 3.1 (c) implies that              
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uij ≥ u’ij. Then, also using that  (u, v; x)  is  F-non-discriminatory, we get that                

u#
ij = aij  v#ij = aij  vj = uij ≥ u’ij. In the second case, Corollary 3.1 (c) implies that            

u’ij ≥ uij. Then, using similar arguments to those above, we get that  u#
ij = u’ij ≥ uij. 

Hence,  u#
ij = max{uij, u’ij}.   

For the second assertion, if i  F()  then  ui > u’i  and  CiC’i    by definition 

of  F(). Take  j  CiC’i. Then,  (i, j)  . According to Proposition 3.1,  j  W(’), so  

v#j = vj  and  yij = xij > 0; hence,  u#
ij = uij  by definition of  u#. On the other hand, 

Proposition 3.2 implies that  uij = ui. Thus,  u#
ij = ui > u’i  for all  j  CiC’i. 

Furthermore, if  k  CiC’i, it follows from the previous assertion that                            

u#
ik = max{uik, u’ik}, so  u#

ik ≥ uik ≥ ui = u#
ij. Therefore,  u#

i = ui = max{ui, u’i}. 

Now suppose  i  F1F(). Then  u’i ≥ ui. We therefore have to show that          

u#
ij ≥ u’i  for all  j  Ci(y) = C’i. If  j  C’iCi  then, as follows from Remark 3.1, we 

have that  j  WW(’), so  v#j = v’j  and  u#
ij = u’ij  by definition of  u#. Moreover,             

u’ij ≥ u’i, so  u#
ij ≥ u’i. If  j  CiC’i, it follows from the previous assertion that                

u#
ij ≥ u’ij ≥ u’i. Then,  u#

ij ≥ u’i  for all  j  Ci(y). In particular,  u#
i ≥ u’i ≥ max{ui, u’i},  

and the proof is complete.      

 

Our last result in this subsection states that the allocation  #  that we have 

defined for the situations where    and  ’  are  F-non-discriminatory stable allocations 

for  M  and  M’  is also F-non-discriminatory stable for M’. It states a symmetric result 

for the allocation  #. 

 

Lemma 3.3. (a) Let   = (u, v; x)  and  ’ = (u’, v’; x’)  be  F-non-discriminatory stable 

allocations for  M  and  M’,  respectively. Then,  # = (u#, v#; y)  is a F-non-

discriminatory stable allocation for  M’. 

   (b) Let   = (u, v; x)  and  ’ = (u’, v’; x’)  be  W-non-discriminatory stable 

allocations for  M  and  M’,  respectively. Then,  # = (u#, v#; z)  is a  W-non-

discriminatory stable allocation for  M. 

Proof. We will prove (a); the proof of part (b) follows dually. We have to prove that    

(I)  #  is feasible for  M’, (II)  v#ij = v#j  for all  i  Cj(y) , and (III)  u#
i + v#j ≥ a’ij  for all           

(i, j)  F×W  such that  yij = 0. 
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Under Proposition 3.1,  y  is a feasible matching for  M’. Furthermore, the 

individual payoffs are defined so that the allocation  #  is compatible with  y  in the 

market  M’. Then, condition (I)  is satisfied. Also, condition (II) is implied by the 

definition of  #. 

To prove that (III) holds, take  (i, j)  F×W  such that  yij = 0. If  i  F2, then  a’ij 

= 0  for all  j  W. The non-negativity of  u#
i  and  v#j  implies that  u#

i + v#j ≥ 0 = a’ij, so 

condition (III) is satisfied. If  i  F1, Proposition 3.3 asserts that  u#
i  max{ui, u’i}. 

Then, condition (III) is clearly satisfied if  (i, j)  F()×W(’)  or  (i, j)  F1×(WW(’)). 

In the first case,  u#
i + v#j = u#

i + vj  ui + vj  aij = a’ij, where the last inequality follows 

from the stability of  (u, v; x)  and the fact that  xij = yij = 0. In the second case,  u#
i + v#j 

= u#
i + v’j  u’i + v’j  a’ij, where the last inequality follows from the stability of          

(u’, v’; x’)  and the fact that  x’ij = yij = 0. For the remaining case, where  i  F1F()  

and  j  W(’), we have that  yij = x’ij = 0. Also,  xij = 0  (because if  xij > 0  then it would 

be case that  j  CiC’i  and Proposition 3.1 would imply that  i  F(), which is a 

contradiction). Then,  u#
i + v#j = u#

i + vj  ui + vj  aij = a’ij, where the last inequality 

follows from the stability of  (u, v; x)  and the fact that  xij = 0. Hence,  #  is F-non-

discriminatory stable allocation for  M’  and the proof is complete.    

 

3.2. MAIN RESULTS FOR THE COMPARATIVE STATIC EFFECTS ON 

STABLE ALLOCATIONS 

In this subsection, we use the previous properties to obtain our main results, 

which involve the comparative static effects on the firm-optimal and worker-optimal 

payoffs when some firms or some workers are added to the market. 

When we study the effect of the entrance of a set of firms  F2  we denote, as in 

the previous subsection,  M  (F, W, a)  and  M’  (F, W, a’), where  F = F1F2,                 

a’ij = aij  for all  (i, j)  F1×W  and  a’ij = 0  for all  i  F2  and  j  0. Also, the original 

market, before the entrance of new firms, is denoted by  M1 = (F1, W, a1), where             

a1
ij = aij|(F1×W). If  x1  is a feasible matching for  M1, we denote  C1

h  Ch(x1)  for all              

h  F1W.   

By exchanging the roles between firms and workers, we can define the markets  

M  and  M’  accordingly:  W = W1W2,  M  (F, W, a)  and  M’  (F, W, a’),  where           

a’ij = aij  for all  (i, j)  F×W1  and  a’ij = 0  for all i  F  and  j  W2. By the symmetry 
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of the model, all the results of subsection 3.1 hold for these markets. Thus, the original 

market, before the entrance of new workers, is denoted by  M1 = (F, W1, a1), where              

a1
ij = aij|(F×W1). 

We prove that the comparative static result obtained in Demange and Gale 

(1985) for the one-to-one assignment game generalizes to the multi partners assignment 

game: when agents are allocated according to the firm-optimal or the worker-optimal 

stable payoffs, it is always the case that if some firms enter the market, no current firm 

will be made better off and no current worker will be made worse off. Equivalently, as 

follows from the symmetry of the model, if some workers enter the market, no current 

worker will be made better off and no current firm will be made worse off. Indeed, 

Theorem 3.1 provides a stronger result which has that generalization as an immediate 

corollary. Theorem 3.1 concerns not only the change in the agents’ total payoffs in the 

extreme points of the lattice of the stable payoffs, but also the change in the individual 

payoffs of each agent in these allocations. As an illustration, Theorem 3.1 establishes 

that if the agents are allocated according to the firm-optimal or the worker-optimal 

stable allocations, and some firms are added to the market, then for any of the firms 

present in the original market, any of its current individual payoffs are at least as high as 

any of its ex-post individual payoffs obtained with non-essential partners. Also, with 

any of its essential partners, such a firm obtains an individual payoff that is at least as 

high in the original market as in the new market. 

In order to state Theorem 3.1, it is convenient to redefine the vectorial 

representation of a firm’s individual payoffs as follows. Consider any firm  i  F1  and 

any allocations  1  and    of  M1  and  M, respectively. If, say,  |C1
iCi| = p  then we 

can reindex the elements of  W  so that {j1, j2,…, jp} = C1
iCi. We can then represent 

the  p  first coordinates of allocation  1
i  of  M1  and allocation  i  of  M  as  u1

i1, u
1

i2,…, 

u1
ip  and  ui1, ui2,…, uip, respectively. The remaining  r(i)-p  coordinates in  1

i  and  i  

are arbitrarily ordered. Analogously, we redefine the vectorial representation of  1
j  and  

j  for all  j  W. Such a new ordering of  1
h  and  h, for all  h  F1W, will be said to 

preserve h’s essential partnerships.  

 

Theorem 3.1. (a) Let   = (u, v; x)  be a firm-optimal (worker-optimal, respectively) 

stable allocation for market  M = (F1F2, W, a). Let  1 = (u1, v1; x1)  be a firm-optimal 
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(worker-optimal, respectively) stable allocation for market  M1 = (F1, W, a1), where           

a1
ij = aij|(F1×W). Suppose    and  1  preserve the agents’ essential partnerships. Then, 

whatever the order of the agents’ non-essential partners in    and 1, we have that             

1
i ≥ i  and  j ≥ 1

j  for all  i  F1  and  j  W.   

   (b) Let  = (u, v; x)  be a firm-optimal (worker-optimal, respectively) stable 

allocation for market  M = (F, W1W2, a). Let  1 = (u1, v1; x1)  be a firm-optimal 

(worker-optimal, respectively) stable allocation for market  M1 = (F, W1, a1), where            

a1
ij = aij|(F×W1). Suppose    and  1  preserve the agents’ essential partnerships. Then, 

whatever the order of the agents’ non-essential partners in    and 1,  i ≥ 1
i  and           

1
j ≥ j   for all  i  F  and  j  W1.   

Proof. (a) Suppose that   = (u, v; x)  and  1 = (u1, v1; x1)  are firm-optimal stable 

allocations for  M  and  M1, respectively. The proof of the case in which    and  1  are 

worker-optimal stable allocations for  M  and  M1, respectively, follows dually.  Let          

’ = (u’, v’; x’)  be some firm-optimal stable allocation for market  M’ = (F, W, a’). 

Clearly,  x’|(F1×W)  is an optimal matching for  M1. Then, without loss of generality we 

can set  x1  x’|(F1×W).  

Notice that, by construction of the markets, any stable allocation for  M1  can be 

extended to a stable allocation of  M’  by assigning the firms in  F2  to the dummy 

worker, with payoffs of  0. This way, the allocation  1  can be extended to a stable 

allocation for  M’.  By the firm optimality  of  ’  in  M’  and Proposition 2.2 we get that  

u’ij ≥ u1
ij  for all  i  F1  and  j  C’i  and 

v’ij  v1
ij  for all  j  W  and  i  C’j.    (10) 

Also, the restriction of any stable allocation of  M’  to  M1  is a stable allocation for  M1. 

Then, such a restriction of  ’  is a stable allocation for  M1. By the firm optimality of  1  

in  M1  and Proposition 2.2 we get that  

u1
ij ≥ u’ij  for all  i  F1  and  j  C’i  and 

v1
ij  v’ij  for all  j  W  and  i  C’j.      (11) 

Under (10) and (11) we have 

u1
ij = u’ij  for all  i  F1  and  j  C’i  and    

v1
ij = v’ij  for all  j  W  and  i  C’j.    (12) 
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According to Proposition 2.3 (a), the firm-optimal stable allocations are F-non-

discriminatory. Then, Lemma 3.3 (a) implies that  # = (u#, v#; y)  (defined using    and  

’) is stable and F-non-discriminatory for  M’. Therefore,  (u#, v#)  can be indexed by  x’  

(see Proposition 2.1). Thus, using (12), the firm optimality of  ’  in  M’, and 

Proposition 2.2, it follows that 

u1
ij ≥ u#

ij  and  v1
ij  v#ij  for all  i  F1  and  j  C’i.  (13) 

By definition,  v#j  vj, so  v1
j  vj  for all  j  W  (here, it is used that both allocations  

(u#, v#; x’)  and  (u1, v1; x’)  are F-non-discriminatory). Since  (u, v; x)  is F-non-

discriminatory, we must have that  j ≥ 1
j  for all  j  W  whatever the order of the non-

essential partners in  j  and  1
j. 

For the other assertion, notice that  v’j = v1
j  vj  for all  j  W  implies that W(’)  

= . If  i  F1,  j  C’iCi, and  k  CiC’i, Corollary 3.1 (d) implies that   u1
ij = u’ij  

uik. If  i  F1  and  j CiC’i  then, since  v’j  vj, Corollary 3.1 (c) implies that                 

u1
ij = u’ij  uij. Hence, whatever the order of the non-essential partners in  1

i  and  i, it 

follows that  1
i ≥ i  for all  i  F1.  

   (b) The proof of part (b) is obtained by reversing the roles between firms and workers 

in the proof of part (a) and by taking  # = (u#, v#; z)  instead of  # = (u#, v#; y). Hence 

the proof of Theorem 3.1 is complete.  

 

Remark 3.2. Notice that while Theorem 3.1 (a) proves that  i ≥ i  for all                       

i  F, Corollary 3.1 (d) allows us to state a stronger result:  minjCi(x
){uij} ≥ 

maxjCi(x)Ci(x
){uij}  for all  i  F. Then if, say, firm  i  gets the set of individual payoffs  

{, , }  in the original market, it cannot expect to obtain an individual payoff larger 

than    with any new partner in the new market. 

 

The generalization to many-to-many matching models of the comparative static 

result obtained in Demange and Gale (1985) for the one-to-one model is stated in 

Corollary 3.2. Additionally, Corollary 3.3 states the comparative static effects on the 

minimum and maximum individual payoffs of firms and workers. 
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Corollary 3.2. (a) Let   = (u, v; x)  be a firm-optimal (worker-optimal, respectively) 

stable allocation for market  M = (F1F2, W, a). Also, let  1 = (u1, v1; x1)  be a firm-

optimal (worker-optimal, respectively) stable allocation for market  M1 = (F1, W, a1), 

where  a1
ij = aij|(F1×W). Then,  U1

i  Ui  for all  i  F1  and  V1
j  Vj  for all  j  W. 

   (b) Let   = (u, v; x)  be a firm-optimal (worker-optimal, respectively) stable 

allocation for market  M = (F, W1W2, a). Also, let 1 = (u1, v1; x1)  be a firm-optimal 

(worker-optimal, respectively) stable allocation for market  M1 = (F, W1, a1), where     

a1
ij = aij|(F×W1). Then,  U1

i  Ui  for all  i  F1  and  V1
j  Vj  for all  j  W. 

Proof. (a) For all  h  F1W, take any reordering of  h  and 1
h  that preserves h’s 

essential partnerships. Then, part (a) follows immediately from the property established 

in Theorem 1 (a) that  1
i ≥ i  for all  i  F1  and  1

j ≤ j  for all  j  W. 

   (b) For all  h  FW1  take any reordering of  h  and  1
h  that preserves h’s  

essential partnerships.  Then, part (b) follows from the property established in Theorem 

1 (b)  that 1
i ≤ i  for all i  F  and  1

j ≥ j  for all  j  W1.  

 

Corollary 3.3. (a) Let   = (u, v; x)  be a firm-optimal (worker-optimal, respectively) 

stable allocation for market  M = (F1F2, W, a). Also, let  1 = (u1, v1; x1)  be a firm-

optimal (worker-optimal, respectively) stable allocation for market  M1 = (F1, W, a1), 

where  a1
ij = aij|(F1×W).. Then: 

 maxjC1
i{u1

ij} ≥ maxjCi{uij}  and  minjC1
i{u1

ij} ≥ minjCi{uij}  for all  i  F1; 

 maxiC1
j{v1

ij}  maxiCj{vij}  and  miniC1
j{v1

ij}  miniCj{vij}  for all  j  W.  

   (b) Let   = (u, v; x)  be a firm-optimal (worker-optimal, respectively) stable 

allocation for market  M = (F, W1W2, a). Also, let  1 = (u1, v1; x1)  be a firm-optimal 

(worker-optimal, respectively) stable allocation for market  M1 = (F, W1, a1), where  a1
ij 

= aij|(F×W1).  Then: 

 maxjC1
i{u1

ij}  maxjCi{uij}  and  minjC1
i{u1

ij}  minjCi{uij}  for all i  F; 
 maxiC1

j{v1
ij} ≥ maxiCj{vij}  and  miniC1

j{v1
ij} ≥ miniCj{vij}  for all  j  W1.  

Proof. Immediate from Theorem 3.1. (Given two vectors  A  and  B, if  A ≥ B  then the 

max and the min of the components of  A  are larger than or equal to the max and the 

min, respectively, of the components of  B).  
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4. COMPARATIVE STATIC EFFECTS ON THE BUYER-OPTIMAL AND 

SELLER-OPTIMAL COMPETITIVE EQUILIBRIUM ALLOCATIONS 

 

In this section, we will look at players as being buyers and sellers and will 

analyze the comparative static effects on the competitive (instead of the cooperative) 

game structure of the buyer-seller market, when agents from the same side are added to 

the market. Then, we will interpret  F  as a set of buyers and  W  as a set of sellers. The 

rest of the model described in section 2 has the natural interpretation. For completeness, 

we repeat here some of the elements of the model. In particular, each seller  j  W  has  

s(j)  identical objects to sell, which will also be denoted by  j. Each buyer  i  F  wants 

to acquire  r(i)  objects, at most. As before, both sets  F  and  W  include one dummy 

buyer and one dummy seller, both denoted by 0. For this interpretation, we add several 

null objects, also denoted by  0, owned by the dummy seller, in order to fulfil the 

demand of the buyers. No buyer can acquire more than one object of the same seller, 

except from the dummy seller. 

The number  aij  is the maximum amount of money buyer  i  will consider paying 

for an object of seller  j. If buyer  i  purchases object  j  at price  pj  then her individual 

payoff in this transaction is  uij = aij  pj  whereas seller  j  receives  vij = pj. For 

notational simplification, the market is denoted by  M = (F, W, a), without reference to 

the set of objects.  

A bundle (of objects) for buyer  i  F  is a set with  r(i)  objects that contains at 

most one object of the same non-dummy seller (although it may include several null 

objects). An assignment of the buyers to the objects assigns each non-dummy buyer to a 

bundle of objects for her12 and each non-null object to one buyer (who might be the 

dummy buyer). Of course, the dummy buyer may be assigned to any number of objects 

and the null object may be allocated to any number of buyers. If an object is assigned to 

a buyer then the seller who owns this object is matched to that buyer. If an object is 

assigned to the dummy buyer, we say that it is left unsold. Therefore, there is no loss in 

identifying an assignment between the set of buyers and the set of objects with a 

matching between  F  and  W. Thus, as before, we will represent a matching 

                                                            

12 We will refer to a buyer as “she” and to a seller as “he.” 
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(assignment) by a matrix  x = (xij)(i,j)FxW. If  xij > 0  we say, indistinctly, that buyer  i  is 

matched to seller  j  or that one of the objects of seller  j  is allocated to buyer  i  at  x. 

For a matter of simplification, if no confusion is caused,  Ci(x)  will also denote the 

bundle of objects for buyer  i  that is allocated to her at matching  x. Matching  x  is 

feasible if it satisfies Definition 2.1.  

In the competitive approach of the market, a feasible price vector is a non-

negative vector which associates a price to each object and the price  0  to the null 

objects. The demand set of buyer  i  at prices  p  is defined as follows: 

 Di(p) = {S  W;  S  is a bundle of objects for  i  and 

 jS (aij  pj) ≥ kS’ (aik  pk} for any bundle  S’  of objects for  i}. 

That is,  S  Di(p)  if  i  weakly prefers  S  to any other bundle. 

The key concept in this section is that of a competitive equilibrium allocation.  

 

Definition 4.1. A competitive equilibrium is a pair  (p, x), where  p  is a feasible price 

vector and  x  is a feasible matching such that  Ci(x)  Di(p)  for all  i  F  and  pj = 0  

if object  j  is left unsold. A competitive equilibrium allocation  is a triple  (u, p; x), 

where  (p, x)  is a competitive equilibrium and  uij = aij  pj  for all  i  F and  j  Ci(x).   

 

Therefore, matching  x  assigns every buyer to a bundle in her demand set at 

prices  p. If the allocation  (p, x)  is a competitive equilibrium, we say that  p  is an 

equilibrium price vector,  x  is a competitive matching, and  x  is compatible with  p  and 

vice versa. If  (u, p; x)  is a competitive equilibrium allocation then  (u, p)  is called a 

competitive equilibrium payoff compatible with  x.   

Every seller sells all his objects at the same price at a competitive equilibrium 

(Sotomayor, 2007b). This implies that if  (u, p; x)  is a competitive equilibrium 

allocation then it is F-non-discriminatory. The condition that every unsold object has 

price  0  implies that  (u, p; x)  is also feasible. Finally, the condition that  Ci(x)  Di(p)  

for all  i  F  implies that  (u, p; x)  does not have any destabilizing pair. Therefore,           

(u, p; x)  is an F-non-discriminatory stable allocation. Sotomayor (2007b) proves that 

the converse of this assertion is also true. That is, 

 

Proposition 4.1 The feasible allocation  (u, v; x)  is a competitive equilibrium 

allocation if and only if it is an F-non-discriminatory stable allocation.  



26 

 

 

It is not hard to construct examples of a multiple partners game in which non-

discriminatory stable allocations do not exist (see Sotomayor, 2017). Nevertheless, the 

set of F-non-discriminatory stable allocations (as well as the set of W-non-

discriminatory stable allocations) is always non-empty and has the algebraic structure of 

a complete sublattice of the lattice of the stable allocations (Sotomayor, 2007b). 

Therefore, there exists the optimal F-non-discriminatory stable payoff (and the optimal 

W-non-discriminatory stable payoff) for each side of the market. The F-non-

discriminatory stable allocations play a relevant role in the competitive game structure 

of the buyer-seller market because they are precisely the competitive equilibrium 

allocations. Thus, the buyer-optimal F-non-discriminatory stable payoff is the buyer-

optimal competitive equilibrium payoff. Similarly, the seller-optimal F-non-

discriminatory stable payoff is the seller-optimal competitive equilibrium payoff. 

Formally, 

 

Definition 4.2. A competitive equilibrium payoff is called a buyer-optimal competitive 

equilibrium payoff if every buyer weakly prefers it to any other competitive equilibrium 

payoff. We similarly define the seller-optimal competitive equilibrium payoff.  

 

That is, the buyer-optimal (seller-optimal, respectively) competitive equilibrium 

payoff gives to each buyer (seller, respectively) the maximum total payoff among all 

competitive equilibrium payoffs. 

The central result of this section is Theorem 4.1. It shows that the comparative 

static effects caused at the extreme points of the lattice of the competitive equilibrium 

payoffs by the entrance of new agents in the market are similar to those caused at the 

corresponding extreme points of the lattice of the stable payoffs. However, the proof of 

Theorem 4.1 is distinct from that of Theorem 3.1. It uses the following propositions 

from Sotomayor (2007b).  

  
Proposition 4.2. Let  (u, v; x)  be a stable allocation. Set  v’ij = vj  and  u’ij = aij  v’ij  if  

xij > 0. Then,  (u’, v’; x)  is a competitive equilibrium allocation. Furthermore, if           

(u, v; x)  is an optimal stable allocation for one side of the market then  (u’, v’; x)  is the 

corresponding optimal competitive equilibrium allocation for that side. 
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Proposition 4.3. Let  (u, v)  be the buyer-optimal stable payoff. Then, (u, v) is the buyer-

optimal competitive equilibrium payoff. 

 

Sotomayor (2007b) shows that the seller-optimal stable payoff and the seller-

optimal competitive equilibrium payoff may be distinct. 

 

Theorem 4.1. (a) Let   = (u, v; x)  be a buyer-optimal (seller-optimal, respectively) 

competitive equilibrium allocation for market  M = (F1F2, W, a). Also, let  1 =         

(u1, v1; x1)  be a buyer-optimal (seller-optimal, respectively) competitive equilibrium 

allocation for market  M1 = (F1, W, a1), where  a1
ij = aij|(F1×Q). Suppose    and 1  

preserve the agents’ essential partnerships. Then, whatever the order of the agents’ 

non-essential partners in    and  1, we have that  1
i ≥ i  and  j ≥ 1

j  for all  i  F1  

and  j  W.    

   (b) Let   = (u, v; x)  be a buyer-optimal (seller-optimal, respectively) competitive 

equilibrium allocation for market  M = (F, W1W2, a). Also, let  1 = (u1, v1; x1)  be a 

buyer-optimal (seller-optimal, respectively) competitive equilibrium allocation for 

market  M1 = (F, W1, a1), where  a1
ij = aij|(F×Q1). Suppose    and 1  preserve the 

agents’ essential partnerships. Then, whatever the order of the agents’ non-essential 

partners in    and  1,  1
i ≤ i  and  j ≤ 1

j  for all  i  F  and  j  W1.   

Proof. Under Proposition 4.3, the buyer-optimal stable payoff and the buyer-optimal 

competitive equilibrium payoff coincide. Then, according to Theorem 3.1, the result 

holds when the allocations in comparison are buyer-optimal competitive equilibrium 

allocations. 

For the case where the allocations in comparison are seller-optimal competitive 

equilibrium payoffs, Theorem 3.1 does not apply because these allocations are not 

necessarily seller-optimal stable payoffs. We will prove part (a) for this case. Part  (b)  

is obtained by reversing the roles between buyers and sellers in the proof of part (a), 

with the due adaptations. Thus, we assume that the allocations    and  1  are seller-

optimal competitive equilibrium allocations for the markets  M  and  M1,  respectively. 

For this proof, we also use the auxiliary market  M’ = (F, W, a’), where  a’ij = aij  for all  

(i, j)  F1×W  and  a’ij = 0  for all  i  F2  and  j  W. Let  ’ = (u’, v’; x’)  be some 

seller-optimal competitive equilibrium allocation for market  M’. We have that  x’|(F1×W)  
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is an optimal matching for  M1. Then, without loss of generality we can set                      

x1  x’|(F1×W).   

Let  * = (u*, v*; x),  *1 = (u*1, v*1; x1)  and  *’ = (u*’, v*’; x’)  be seller-

optimal stable allocations for  M,  M1,  and  M’, respectively. It follows from 

Proposition 4.2 that, first,  vj = vij = v*j  for all  j  W  and  i  Cj(x)  and, second,                 

v1
j = v1

tj = v*1
j  and  v’j = vtj’ = v*’j  for all  j  W  and  t  Cj(x’). Corollary 3.3 (a) then 

implies that  v*j ≥ v*1
j,  so  vj ≥ v1

j  for all  j  W. Consequently,  j ≥ 1
j  for all  j  W. 

For the other assertion, it is easy to show, by using the seller-optimality of  1  in  

M1  and of  ’  in  M’, we can identify  1  with  ’, by assigning the buyers in  F2  to the 

dummy seller, with payoffs of  0. It then follows that  v1
j = v’j, and  so  vj ≥ v’j  for all         

j  W, from which follows that  W(’) = . The result then follows from Corollary 3.1 

(d), by using that    and  ’  are stable allocations in  M  and  M’, respectively. Hence, 

the proof is complete.    

 

The proofs of the following corollaries follow the arguments used in the proofs 

of Corollary 3.2 and Corollary 3.3, respectively. 

    

Corollary 4.1 (a) Let  (u, v; x)  be a buyer-optimal (seller-optimal, respectively) 

competitive equilibrium allocation for market  M = (F1F2, W, a). Also, let  (u1, v1; x1)  

be a buyer-optimal (seller-optimal, respectively) competitive equilibrium allocation for 

market  M1 = (F1, W, a1), where  a1
ij = aij|(B1×Q).  Then,  U1

i  Ui  for all  i  F1  and            

V1
j  Vj  for all  j  W. 

   (b) Let  (u, v; x)  be a buyer-optimal (seller-optimal, respectively) competitive 

equilibrium allocation for market  M = (F, W1W2, a). Also, let  (u1, v1; x1)  be a buyer-

optimal (seller-optimal, respectively) competitive equilibrium allocation for market            

M1 = (F, W1, a1), where  a1
ij = aij|(B×Q1). Then,  U1

i   Ui  for all  i  F1  and  V1
j  Vj  for 

all  j  W. 

 

Corollary 4.2. (a) Let  (u, v; x)  be a buyer-optimal (seller-optimal, respectively) 

competitive equilibrium allocation for market  M = (F1F2, W, a). Also, let  (u1, v1; x1)  
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be a buyer-optimal (seller-optimal, respectively) competitive equilibrium allocation for 

market  M1 = (F1, W, a1), where  a1
ij = aij|(B1×Q).  Then,  

   maxjCi(x
1){u1

ij} ≥ maxjCi(x){uij}  and  minjCi(x
1){u1

ij} ≥ minjCi(x){uij}  for all  i  F1; 

   maxiCj(x
1){v1

ij}  maxiCj(x){vij}  and  miniCj(x
1){v1

ij}  miniCj(x){vij}  for all  j  W.  

   (b) Let   = (u, v; x)  be a buyer-optimal (seller-optimal, respectively) competitive 

equilibrium allocation for market  M = (F, W1W2, a). Also, let 1= (u1, v1; x1)  be a 

buyer-optimal (seller-optimal, respectively) competitive equilibrium allocation for 

market  M1 = (F, W1, a1), where  a1
ij = aij|(F×W1).  Then 

   maxjCi(x
1){u1

ij}  maxjCi(x){uij}  and  minjCi(x
1){u1

ij}  minjCi(x){uij}  for all i  F; 

   maxiCj(x
1){v1

ij} ≥ maxiCj(x){vij}  and  miniCj(x
1){v1

ij} ≥ miniCj(x){vij}  for all  j  W1.  

  

5. FINAL REMARKS  

The theory developed in this paper has allowed us to provide comparative statics 

results for four specific core allocations: the maximal and the minimal elements of the 

lattice of the stable payoffs, and the maximal and the minimal points of the lattice of the 

competitive equilibrium payoffs. Nevertheless, such comparative statics effects are not 

restricted to these four allocations of the core. Indeed, there are infinitely many pairs of 

points in the core that reflect the same comparative static effects. For example, any 

convex combination of the two extreme points of the lattice of the stable payoffs yields 

the same comparative statics effects as those produced at each of the two extreme 

allocations. Moreover, since the lattice of the stable payoffs in any market is a convex 

set in some Euclidean space then the convex combinations are stable allocations in the 

corresponding markets (Sotomayor, 2007b). 
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