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Abstract. Given observed stochastic choice data and a model of stochastic choice,

we offer a methodology that enables separation of the data representing the model’s

inherent randomness from residual noise, and thus quantify the maximal fraction of

the data that are consistent with the model. We show how to apply our approach to

any model of stochastic choice. We then study the case of four well-known models,

each capturing a different notion of randomness. We conclude by illustrating our

results with an experimental dataset.
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1. Introduction

Choice data often have a probabilistic nature. It has been systematically shown that

individual behavior is stochastic, in that, when the same menu of options is presented

repeatedly, the subjects choice varies.1 There is also heterogeneity in individual prefer-

ences, and hence the aggregation of individual choices is often taken to be stochastic.

It comes as no surprise, therefore, that some of the early research in decision theory

adopted a probabilistic approach (see, e.g., Block and Marshak, 1960). Today, there is
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renewed interest in obtaining a better understanding of stochastic choice.2 The litera-

ture offers a number of well-founded stochastic choice models incorporating randomness

in various structured ways. We refer to this randomness as predicted randomness. In

order to fix ideas, let us recall that in the model of Luce (1959), arguably the most

influential stochastic model, predicted randomness is the result of the additive incorpo-

ration of a random variable, with an extreme type I distribution, to the utility values

of the alternatives.

Since every meaningful stochastic choice model has empirical content, actual ran-

dom behavior will often be inconsistent with the model. When this is the case, there

is randomness in the data that is not predicted by the model, and therefore its origin

is necessarily unknown to the analyst and left as unstructured. We refer to this ran-

domness as noise or, alternatively, as residual behavior. The aim of this paper is to

present, for the first time, to the best of our knowledge, a methodology for separating

the data that is consistent with the stochastic choice model, i.e., the part that repre-

sents predicted randomness, from that which falls outside the model, i.e., the part that

represents unknown noise.

In our approach, separating the data means partitioning it into two parts, one rep-

resenting the predictions of the model, in which a particular specification of the model

is identified, and the remainder representing unknown noise, where a specification of

residual behavior is singled-out. Naturally, we aim to minimize the portion of the

data that represents unknown noise, or, equivalently, to maximize the portion that

represents predicted randomness. This exercise provides us with three key elements:

namely, the maximal fraction of data explained by the model; a particular specifica-

tion of the model; and a description of the residual behavior. We argue that these

three elements constitute an important fund of information about the relationship be-

tween the data and the model. Firstly, the maximal fraction of data explained by the

model indicates how accurately the model predicts the data. That is, the exercise pro-

vides a measure of the ability of the model to explain actual behavior. Secondly, the

particular specification of the model identified in the maximal separation is another

2Recently published papers include Gul and Pesendorfer (2006), Dickhaut, Rustichini and Smith

(2009), Caplin, Dean and Martin (2011), Ahn and Sarver (2013), Gul, Natenzon and Pesendorfer

(2014), Manzini and Mariotti (2014), Fudenberg and Strzalecki (2015), Fudenberg, Iijima and Strza-

lecki (2015), Barseghyan, Molinari and O’Donoghue (2016), Brady and Rehbeck (2016), Caplin and

Dean (2016), Apesteguia, Ballester and Lu (2017), Apesteguia and Ballester (forthcoming), Natenzon

(forthcoming) and Webb (forthcoming).



3

potentially useful tool, when associated with large fractions of data explained, e.g., in

counterfactual scenarios, such as those associated with prediction problems. Thirdly,

the residual data identified in the maximal separation facilitates a better understanding

of actual behavior. It endogenously enables identification of the menus and choices for

which the model fails most dramatically, thereby delineating the source of inconsistent

perturbations.

More formally, we consider the case of an analyst who has data in the form of

a stochastic choice function ρ. In other words, the data show the probabilities of

each alternative being chosen from the available menus. The aim of the analyst is to

explain the data in the light of a given stochastic choice model ∆, which we define as

a collection of stochastic choice functions. In the case of the Luce model, for instance,

the set ∆ contains the stochastic choice functions that arise from the different possible

combinations of utility evaluations and extreme type I probability distributions. We

define a separation as a pair 〈δ, ε〉, where δ is an instance of model ∆ representing

predicted randomness, and ε is an instance of the entire set of stochastic choice functions

representing noise, such that the data ρ are the result of the convex combination of δ

and ε. In other words, ρ = λ〈δ,ε〉δ + (1− λ〈δ,ε〉)ε, where the weight λ〈δ,ε〉 represents the

fraction of the data that can be explained by the instance of model δ.

In section 2 we show how to implement our approach for the general case of any

model of stochastic choice behavior. Let us first discuss how to obtain the maximal

fraction of the data ρ that is explained by a particular instance δ of model ∆. We

show that this exercise requires us to focus on the minimum ratio of ρ to δ within

the data, that is, min(a,A)
ρ(a,A)
δ(a,A)

, where ρ(a,A) and δ(a,A) denote, respectively, the

observed and predicted probabilities of choosing alternative a from menu A. The pairs

(a,A) which minimize this ratio, and which we call critical observations, are those

for which δ fails most severely; or, to put it more intuitively, those which are least

consistent with the predictions of δ. Now, when considering model ∆ as a whole, one

merely needs to consider its best instance, i.e., the one that maximizes the ratio on

the critical observations. That is, the instance of the model identified in the maximal

separation is arg maxδ∈∆ min(a,A)
ρ(a,A)
δ(a,A)

and the maximal fraction of the data explained

by the model is maxδ∈∆ min(a,A)
ρ(a,A)
δ(a,A)

. The residual stochastic choice function identified

in the maximal separation follows immediately from these two elements. This is a

simple method, applicable to any model, and potentially instrumental in the analysis

of particular models, as will be shown in the following sections of the paper.
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In section 3.1 we analyze the paradigmatic model of decision-making in econom-

ics: the deterministic choice model. In this model, the individual always selects the

alternative that maximizes a preference relation, and hence there is no predicted ran-

domness whatsoever. Thus, when a stochastic choice function is judged at the light of

the deterministic model, any stochasticity in the data is regarded as noise. Given the

overwhelming use of this model, it seems advisable to make it the first in our analysis

of particular cases. Proposition 2 provides a simple recursive method over the sizes of

the menus used to compute the maximal separations of the deterministic model.

We then turn to the study of three well-known stochastic choice models, each in-

corporating a different form of randomness. We start with the tremble model, where

randomness represents the possibility of making mistakes at the time of choosing. In

the tremble model, with probability (1−γ) the decision-maker maximizes a preference

relation, and with probability γ randomizes over all the available alternatives. Propo-

sition 3 describes how to extend the results of the deterministic model to this case. We

then analyze the model developed by Luce, which is also known as the logistic model.

As mentioned, the Luce model incorporates randomness in the utility evaluation of the

alternatives. Proposition 4 gives simplicity to the analysis of the Luce model by char-

acterizing the structure of critical observations in the maximal separations. Finally, we

study a class of random utility models incorporating randomness in the determination

of the ordinal preference that governs choice. In particular, we study the class of single-

crossing random utility models, that has the advantage of providing tractability, while

also being applicable to a wide variety of important economic settings. Proposition 5

gives the corresponding maximal separations, following a recursive argument over the

collections of preferences in support of the random utility model. In all three cases,

our proofs provide algorithms to implement the maximal separation technique.

Section 4 reports on an empirical application of our approach. We use a previously-

existing experimental dataset comprising 87 individuals making choices from binary

comparisons of lotteries. We take the aggregate data of the entire population and illus-

trate the practicality of our results, obtaining the maximal separation results for all the

models discussed in the paper. We first show that the fraction of the data explained

by the deterministic model is .51, and that the preference relation identified in the

maximal separation basically ranks the lotteries from least to most risky. The tremble

model identifies exactly the same preference relation, together with a tremble proba-

bility of .51, which increases the fraction of data explained to .68. The Luce model
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also increases the fraction of data explained to .74, and identifies a utility function over

lotteries that is ordinally close to the preference ranking of the deterministic and trem-

ble models. Finally, we implement the single-crossing random utility model, assuming

the utility functions given by CRRA expected utility. We obtain that the fraction of

data explained increases further to .78, with the largest mass again being assigned to

very high levels of risk aversion. In addition, we compare the instances identified by

the maximal separation technique with other standard estimation techniques, such as

maximum likelihood or least squares.3 The empirical exercise neatly reveals interesting

complementarities between maximal separation techniques and the standard ones for

gaining a deeper understanding of the data.

Section 5 closes the main body of the paper by discussing several possible avenues

of research that could be explored with the methodology we propose in this paper.

2. Maximal separations

Let X be a non-empty finite set of alternatives. Menus are non-empty subsets of

alternatives and, in order to accommodate the diversity of existing settings, such as

consumer-type domains or laboratory-type domains, we consider a non-empty arbitrary

domain of menus D. Pairs (a,A), with a ∈ A and A ∈ D are called observations, and

denoted by O. A stochastic choice function is a mapping σ : O → [0, 1] which, for

every A ∈ D, satisfies that
∑

a∈A σ(a,A) = 1. We interpret σ(a,A) as the probability

of choosing alternative a in menu A. We denote by SCF the space of all stochastic choice

functions. The data are represented by means of a stochastic choice function, that we

denote by ρ and that we assume to be in the interior of SCF. Namely, ρ(a,A) > 0 for

every (a,A) ∈ O.4 A model is a non-empty closed subset ∆ of SCF and an instance of

the model is denoted by δ ∈ ∆.

We say that 〈δ, ε〉 ∈ ∆× SCF is a separation of data ρ, whenever ρ = λ〈δ,ε〉δ +

(1 − λ〈δ,ε〉)ε for some λ〈δ,ε〉 ∈ [0, 1]. We denote the set of all separations by S∆. In

a separation, we write ρ as a convex combination of the stochastic choice function

3Appendix A formally compares these techniques. In addition, it discusses how the maximal

separation approach compares with inconsistency indices. We stress therein that neither maximum

likelihood, nor ordinary least squares techniques, nor inconsistency indices are suitable for addressing

the issue of concern in this paper, namely the maximal separation of the part of the data representing

predicted randomness, from that representing unknown noise.
4For expositional convenience, we assume ρ in the interior of SCF. The case of ρ in the boundary

of SCF can be trivially dealt with.
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δ, which contains randomness consistent with model ∆, and the stochastic choice

function ε, which contains the residual noise, with λ〈δ,ε〉 being the fraction of data

explained in the separation. Notice that λ〈δ,ε〉 is uniquely determined by the separation

〈δ, ε〉 ∈ S∆, except for the trivial case of δ = ε = ρ, for which any value in [0, 1] is

possible. For convenience, in the latter case we set λ〈ρ,ρ〉 = 1. We are particularly

interested in the largest possible fraction of data explained by model ∆. Hence, we

define maximal separations and the maximal fraction of data explained by model ∆ as

S∆ = arg max
〈δ,ε〉∈S∆

λ〈δ,ε〉 and λ∆ = max
〈δ,ε〉∈S∆

λ〈δ,ε〉, respectively.

The following proposition facilitates the computation of S∆ and λ∆. In turn, it

also shows the existence of maximal separations and, consequently, that the maximal

fraction of data explained by the model is always well-defined. Notice that, when

the value λ∆ is known, the description of maximal separations simply requires us to

characterize one of the components (either the predicted randomness or the residual

noise). To simplify the text, we focus on the first component of maximal separations,

i.e., that of predicted randomness, henceforth denoted by S 1

∆.5

Proposition 1. S 1

∆ = arg max
δ∈∆

min
(a,A)∈O

ρ(a,A)
δ(a,A)

and λ∆ = max
δ∈∆

min
(a,A)∈O

ρ(a,A)
δ(a,A)

.

Proof of Proposition 1: Consider first the case where ρ ∈ ∆. Then 〈ρ, ρ〉 ∈ S∆,

with λ〈ρ,ρ〉 = 1. Given that min
(a,A)∈O

ρ(a,A)
δ(a,A)

= 1 if and only if ρ = δ, the result follows.

Let us now consider the case of ρ 6∈ ∆. Fix δ ∈ ∆ and λ ∈ [0, 1). We claim that

there exists 〈δ, ε〉 ∈ S∆ for which λ〈δ,ε〉 = λ if and only if λ ≤ min
(a,A)∈O

ρ(a,A)
δ(a,A)

. To

prove the ‘only if’ part, let 〈δ, ε〉 ∈ S∆ with λ〈δ,ε〉 = λ. Then, it is the case that

ρ = λδ + (1 − λ)ε, or equivalently, ρ−λδ
1−λ = ε ≥ 0. This implies that ρ − λδ ≥ 0 and,

ultimately, that λ ≤ ρ
δ
. Hence, it must be that λ ≤ min

(a,A)∈O

ρ(a,A)
δ(a,A)

, as desired.6 To

prove the ‘if’ part, suppose that λ ≤ min
(a,A)∈O

ρ(a,A)
δ(a,A)

. We now prove that 〈δ, ε = ρ−λδ
1−λ 〉

is a separation such that λ〈δ,ε〉 = λ. Since by assumption δ ∈ ∆ and by construction

ρ = λ〈δ,ε〉δ + (1 − λ〈δ,ε〉)ε, we are only required to prove that ε ∈ SCF. We begin

by checking that ε(a,A) ≥ 0 holds for every (a,A) ∈ O. To see this, suppose by

contradiction that this is not true. Then, there would exist (b, B) ∈ O such that
ρ(b,B)−λδ(b,B)

1−λ < 0. This would imply that ρ(b, B) − λδ(b, B) < 0 and hence, that

5In order to avoid the discussion of indeterminacy in fractions throughout the text, we set the

ratio ρ(a,A)
0 to be strictly larger than any real number. This is a harmless convention, since we could

simply replace the expression min(a,A)∈O
ρ(a,A)
δ(a,A) with min(a,A)∈O,δ(a,A)6=0

ρ(a,A)
δ(a,A) .

6Notice that, in dividing by δ, we are using the above-mentioned convention.
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δ(b, B) > 0, with ρ(b,B)
δ(b,B)

< λ ≤ min
(a,A)∈O

ρ(a,A)
δ(a,A)

, which is a contradiction. Finally, it is also

the case that
∑
a∈A

ε(a,A) =
∑
a∈A

ρ(a,A)−λδ(a,A)
1−λ = 1−λ

1−λ = 1 for every A ∈ D. Therefore

ε ∈ SCF and the claim is proved. Now, given the definition of maximal fraction, we

trivially have that λ{δ} = min
(a,A)∈O

ρ(a,A)
δ(a,A)

. This argument immediately implies the desired

results on ∆, provided that maximal separations exist.

We now show the existence of maximal separations. Given the domain, any separa-

tion 〈δ, ε〉 of ρ is a vector in Rn, with n = 2|O|. We prove that S∆ is a closed subset of

Rn. Consider a sequence 〈δt, εt〉∞t=1 in S∆ and suppose that this sequence converges in

Rn. Given the finite-dimensionality and the fact that ∆ and SCF are closed, we have

that limt δt ∈ ∆ and limt εt ∈ SCF. Now consider the sequence of real values {λ〈δt,εt〉}∞t=1.

This sequence must converge and ρ = limt ρ = limt[λ〈δt,εt〉δt + (1 − λ〈δt,εt〉)εt] =

λ〈limt δt,limt εt〉 limt δt + (1 − λ〈limt δt,limt εt〉) limt εt, which shows that 〈limt δt, limt εt〉 is a

separation of ρ. Thus we have proved that S∆ is closed. Also, S∆, as a subset of

[0, 1]n, is bounded and hence, compact. It is immediate to see that, whenever ρ 6∈ ∆,

λ〈δ,ε〉 is a continuous function, thus rendering the existence of maximal separations and

concluding the proof. �

In order to grasp the logic implicit in Proposition 1, let us consider the non-trivial

case where ρ 6∈ ∆. Then, for a given instance of the model δ ∈ ∆, for 〈δ, ε〉 to be a

separation of ρ, the three stochastic choice functions ρ, δ and ε must lie on the same line,

with ρ in between δ and ε. We can always trivially consider the separation 〈δ, ρ〉 with

ρ = 0δ + 1ρ. Increasing λ requires ε to depart from ρ in the opposite direction to that

taken by δ, and hence λ will be maximal when reaching the frontier of SCF. Indeed, in

the latter case, we need only consider frontier observations (a,A) for which ε(a,A) = 0,

i.e., with ρ(a,A) < δ(a,A) or, equivalently, ρ(a,A)
δ(a,A)

< 1. This is because, if ε(a,A) = 1

for some observation, we must also have that ε(b, A) = 0 for any other alternative

b ∈ A \ {a}. Trivially, condition ε = 0 is equivalent to λ = ρ
δ

and hence, the frontier is

first reached by these observations which minimize the ratio ρ(a,A)
δ(a,A)

. Henceforth, we will

call these observations critical and denote them by Oδ. Obviously, λ{δ} = min
(a,A)∈O

ρ(a,A)
δ(a,A)

,

or, equivalently, λ{δ} = ρ(a,A)
δ(a,A)

, with (a,A) ∈ Oδ. When considering the model ∆, the

result follows.
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3. Particular models of choice

The previous section characterizes maximal separations for every possible model ∆.

We now work with specific choice models. In each case we use Proposition 1, together

with the particular structure of the model being studied, to offer tighter results on

maximal separations. The models we consider are the archetypical choice models in

economics, i.e. the deterministic choice model, and three stochastic choice models

incorporating different forms of randomness: the tremble model, the Luce model and

the single-crossing random utility model.

3.1. Deterministic rationality. The standard economic decision-making model con-

templates no randomness whatsoever. Behavior is deterministic and described as the

outcome of the maximization of a single preference relation. Thus, in the light of the

deterministic model, all behavioral randomness must be regarded as residual noise.

Given the fundamental role of this model, we begin our analysis with this special, limit

case. Formally, denote by P the collection of all strict preference relations, that is, all

transitive, complete and asymmetric binary relations on X. Maximization of P ∈ P
generates the deterministic rational choice function δP , which assigns probability one

to the maximal alternative in menu A according to preference P . We denote this alter-

native by mP (A), i.e., mP (A) ∈ A and mP (A)Py for every y ∈ A \ {mP (A)}. Denote

by DET the model composed of all the deterministic rational choice functions.

The following result shows that the maximal fraction and the maximal separation

for DET can be easily computed using a simple recursive structure on subdomains of the

data. For presenting the result, some notation will be useful. Given a subset S ⊆ X,

denote by D|S = {A ∈ D : A ⊆ S} and O|S = {(a,A) ∈ O : A ⊆ S} the corresponding

subdomains of menus and observations involving subsets of S. Then:

Proposition 2. Let {λ̂S}S:D|S 6=∅ and P̂ ∈ P satisfy

(1) λ̂S = max
a∈S

min
{
{ρ(a,A)}(a,A)∈O|S , λ̂S\{a}

}
,

(2) mP̂ (S) ∈ arg max
a∈S

min
{
{ρ(a,A)}(a,A)∈O|S , λ̂S\{a}

}
.7

Then, δP̂ ∈ S
1

DET and λ̂X = λDET.

7Notice that equations (1) and (2) of Proposition 2 always compute a minimum over a non-empty

collection of values. This is so because the computation only takes place when D|S is non-empty and,

hence, either a ∈ A for some A ⊆ S, or D|S\{a} 6= ∅.
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Proof of Proposition 2: Let {λ̂S}S:D|S 6=∅ and P̂ ∈ P satisfy (1) and (2). Denote,

for every S such that D|S 6= ∅, by DETD|S the deterministic rational stochastic choice

functions defined over the subdomain D|S. Similarly, denote by ρ|S the restriction

of ρ to D|S. We start by proving, recursively, that the maximal fraction of data ρ|S
explained by model DETD|S is equal to λ̂S. Consider any subset S for which D|S = S.

In this case, Proposition 1 guarantees that the maximal fraction of data ρ|S explained

by model DETD|S is max
δ∈DETD|S

min
(a,A)∈O|S

ρ|S(a,A)
δ(a,A)

= max
P∈P

min
(a,A)∈O|S

ρ(a,A)
δP (a,A)

= max
P∈P

min
a∈S

ρ(a,S)
δP (a,S)

=

max
P∈P

ρ(mP (S),S)
δP (mP (S),S)

= max
P∈P

ρ(mP (S), S) = max
a∈S

ρ(a, S) = max
a∈S

min
(a,A)∈O|S

ρ(a,A) = λ̂S. Now

suppose that D|S 6= S and that the result has been proved for any strict subset of

S with non-empty subdomain. For any a ∈ S, denote by PaS the set of preferences

that rank a above any other alternative in S, i.e., PaS = {P ∈ P : a = mP (S)},
and by aS the subset of DETD|S generated by preferences in PaS. Trivially, DETD|S =⋃
a∈S

aS =
⋃
a∈S

⋃
P∈PaS

{δP}. Since the only observations for which δP has a non-null value

are those that are in the form (mP (A), A), Proposition 1 guarantees that the maximal

fraction of data ρ|S explained by model DETD|S is max
a∈S

max
P∈PaS

min
A∈D|S

ρ(mP (A), A). Since

P ∈ PaS, we obtain that mP (A) = a whenever a ∈ A and hence, the latter value is

equal to max
a∈S

max
P∈PaS

min
{
{ρ(a,A)}(a,A)∈O|S , {ρ(mP (B), B)}B∈D|S\{a}

}
. This can be ex-

pressed as max
a∈S

min
{
{ρ(a,A)}(a,A)∈O|S , max

P∈PaS
min

B∈D|S\{a}
ρ(mP (B), B)

}
or, equivalently,

as max
a∈S

min
{
{ρ(a,A)}(a,A)∈O|S , min

B∈D|S\{a}
max
P∈PaS

min
C∈D|B

ρ(mP (C), C)
}

. Given that a 6∈ B,

it is clearly the case that max
P∈PaS

min
C∈D|B

ρ(mP (C), C) = max
P∈P

min
C∈D|B

ρ(mP (C), C) and, by

Proposition 1 and the structure of deterministic stochastic choice functions, the latter

is the maximal fraction of data ρ|B explained by model DETD|B , which is equal to λ̂B by

hypothesis. Hence, the maximal fraction of data ρ|S explained by model DETD|S must

be also equal to λ̂S, as desired. As a corollary, we have that λDET = λ̂X . Also, it is

evident from the recursive argument that λDET = λ{δP̂ }, thus concluding the proof. �

Proposition 2 enables a recursive computation of the maximal fraction of ρ explained

by DET, and a maximal separation for DET. The algorithm starts with subdomains

such that D|S = {S}, i.e., menus for which there are no available data in proper

subsets. In these menus, only the highest choice frequency of an alternative must be

considered. This value corresponds to the maximal fraction of the restriction of ρ

to D|S explained by the deterministic model. The separation can be constructed by
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considering the preference relation that places the alternative with the highest choice

frequency above all other alternatives. For any other subdomain D|S, the algorithm

analyzes the alternatives a ∈ S one by one, again considering the consequences of

placing a as the maximal alternative in S. It turns out to be the case that we just need

to consider the following values: (i) the choice frequencies of a in subsets of S, and (ii)

the maximal fractions over the subdomains where alternative a is not present.

Table 1. A stochastic choice function ρ

x y z

{x, y, z} .15 .6 .25

{x, y} .25 .75

{x, z} .7 .3

{y, z} .4 .6

We now illustrate Proposition 2 with the example in Table 1, where the stochastic

choice function ρ is defined on every non-singleton subset of X = {x, y, z}, i.e., D =

{{x, y, z}, {x, y}, {x, z}, {y, z}}. We can first calculate the maximal fraction for every

set for which D|S = {S}, i.e., the binary sets:

λ̂{x,y} = max{ρ(x, {x, y}), ρ(y, {x, y})} = .75,

λ̂{x,z} = max{ρ(x, {x, z}), ρ(z, {x, z})} = .7, and

λ̂{y,z} = max{ρ(y, {y, z}), ρ(z, {y, z})} = .6.

We can then proceed to assign a value to menu X, for which we first analyze

the alternatives in X one-by-one. For alternative x, we compute the minimum of{
{ρ(x, {x, y}), ρ(x, {x, z}), ρ(x,X)}, λ̂{y,z}

}
= ρ(x, {x, y, z}) = .15. For alternative y,

the minimum of
{
{ρ(y, {x, y}), ρ(y, {y, z}), ρ(y,X)}, λ̂{x,z}

}
= ρ(y, {y, z}) = .4 is the

relevant value. Finally, for alternative z we are required to compute the minimum of{
{ρ(z, {x, z}), ρ(z, {y, z}), ρ(z,X)}, λ̂{x,y}

}
= ρ(z, {x, y, z}) = .25. Thus, we get

λDET = λ̂X = max{.15, .4, .25} = .4.

Notice that the last value is obtained with alternative y. In subset X\{y}, the key al-

ternative is x. Hence, the second part of Proposition 2 guarantees that δP̂ with yP̂xP̂ z

conforms to a maximal separation of ρ. From λDET = .4, one can immediately obtain
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the residual noise, given by ε =
ρ−.4δP̂
.6

, i.e., ε(x,X) = 1
4
, ε(y,X) = 1

3
, ε(x, {x, y}) =

5
12
, ε(x, {x, z}) = 1

2
, and ε(y, {y, z}) = 0. To close the discussion of this example, notice

that the frontier of SCF is reached at ε(y, {y, z}) = 0. This is precisely the critical

observation, which in turn determines the maximal fraction of ρ explained by DET, i.e.,
ρ(y,{y,z})
δ(y,{y,z}) = .4

1
= .4.

3.2. Tremble model. In tremble models, behavioral randomness is interpreted as a

mistake at the moment of choice. In the simplest version, the individual contemplates

a preference relation P . With probability (1− γ) ∈ [0, 1], the preference is maximized.

With probability γ, the individual trembles and randomizes between all the alternatives

in the menu.8 This generates the tremble choice function δ[P,γ](a,A) = γ
|A| whenever

a ∈ A \ {mP (A)} and δ[P,γ](mP (A), A) = 1 − γ |A|−1
|A| . Denote by Tremble the model

composed of all tremble choice functions.

The next result describes the maximal fraction of data explained by Tremble and

a maximal separation for Tremble. Given the immediate connection to the rational

deterministic model, the result is a direct extension of Proposition 2.

Proposition 3. Let {λ̂S(γ)}S:D|S 6=∅ and P̂ (γ) ∈ P satisfy, for every γ ∈ [0, 1]:

(1) λ̂S(γ) = max
a∈S

min
{
{ |A|ρ(a,A)

(1−γ)|A|+γ}(a,A)∈O|S , {
|A|ρ(b,A)

γ
}(b,A)∈O|S

b 6=a∈A
, λ̂S\{a}

}
,

(2) mP̂ (γ)(S) ∈ arg max
a∈S

min
{
{ |A|ρ(a,A)

(1−γ)|A|+γ}(a,A)∈O|S , {
|A|ρ(b,A)

γ
}(b,A)∈O|S

b 6=a∈A
, λ̂S\{a}

}
.

Let γ∗ maximize λ̂X(γ). Then λ̂X(γ∗) = λTremble and δP̂ (γ∗) ∈ S 1

Tremble.

Proof of Proposition 3: Since the proof has the same structure as the proof of Propo-

sition 2, we are able to skip some of the steps and use the same notation as before. We

start by (recursively) proving that the maximal fraction of data ρ|S explained by the

collection of stochastic choice functions in TrembleD|S with a fixed degree of tremble

γ, which we denote by TrembleD|S(γ), is equal to λ̂S(γ). We start with any subset S

for which D|S = S. The maximal fraction of data ρ|S explained by TrembleD|S(γ) is

max
δ∈TrembleD|S (γ)

min
(a,A)∈O|S

ρ|S(a,A)
δ(a,A)

= max
P∈P

min
{ ρ(mP (S),S)
δ[P,γ](mP (S),S)

, { ρ(b,S)
δ[P,γ](b,S)

}b∈S\{mP (S)}
}

=

max
P∈P

min
{ |S|ρ(mP (S),S)

(1−γ)|S|+γ , { |S|ρ(b,S)
γ
}b∈S\{mP (S)}

}
= max

a∈S
min

{ |S|ρ(a,S)
(1−γ)|S|+γ , {

|S|ρ(b,S)
γ
}b∈S\{a}

}
=

max
a∈S

min
{
{ |A|ρ(a,A)

(1−γ)|A|+γ}(a,A)∈O|S , {
|A|ρ(b,A)

γ
}(b,A)∈O|S

b 6=a
} = λ̂S(γ). Whenever D|S 6= S, we

8See Harless and Camerer (1994) for an early treatment of the trembling-hand concept in the

stochastic choice literature.
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can write the maximal fraction of data ρ|S explained by model TrembleD|S(γ) as

max
a∈S

max
P∈PaS

min
{
{ |A|ρ(mP (A),A)

(1−γ)|A|+γ }A∈D|S , {
|A|ρ(b,A)

γ
}(b,A)∈O|S ,b 6=mP (A)}. Notice that we can de-

compose { |A|ρ(mP (A),A)
(1−γ)|A|+γ }A∈D|S into { |A|ρ(a,A)

(1−γ)|A|+γ}(a,A)∈O|S and { |B|ρ(mP (B),B)
(1−γ)|B|+γ }B∈D|S\{a} . Sim-

ilarly, we can decompose { |A|ρ(b,A)
γ
}(b,A)∈O|S ,b 6=mP (A) into components { |A|ρ(b,A)

γ
}(b,A)∈O|S

b6=a∈A

and { |B|ρ(b,B)
γ
}B∈D|S\{a}
b 6=mP (B)

. By the same reasoning as in the proof of Proposition 2,

consideration of both { |B|ρ(mP (B),B)
(1−γ)|B|+γ }B∈D|S\{a} and { |B|ρ(b,B)

γ
}B∈D|S\{a}
b6=mP (B)

yields the value

{λ̂B(γ)}B∈D|S\{a} . This proves the claim. As an immediate corollary, we have that

λTremble(γ) = λ̂X(γ) and the results follow directly from Proposition 1. �

We now illustrate Proposition 3 using the example given in Table 1. Replicating the

steps taken in the analysis of DET, we conclude that yP̂xP̂ z is the optimal preference

relation for every given value of γ. In order to find the optimal value of γ, note that

there are only two possible critical observations, depending on the value of γ. When γ

is low, we know from the study of the deterministic case that the critical observation is

(y, {y, z}), with a ratio ρ to δ equal to .4
1−γ+ γ

2
. When γ is high the critical observation

is (x, {x, y, z}), with a ratio ρ to δ equal to .15
γ
3

. By noticing that the first ratio is

increasing and starts at a value below the second ratio, which is decreasing, it follows

that the maximal fraction of data explained by the optimal tremble can be found

by equating these two ratios, which yields γ∗ = .72. Hence, λTremble = λ{δ[P̂ ,.72]} =

.625. Now, one can immediately obtain the residual noise, given by ε =
ρ−.625δP̂
.375

, i.e.,

ε(x,X) = 0, ε(y,X) = 11
15
, ε(x, {x, y}) = 1

15
, ε(x, {x, z}) = 4

5
, and ε(y, {y, z}) = 0.

3.3. Luce model. Denote by U the collection of strictly positive utility functions u

such that, without loss of generality,
∑

x∈X u(x) = 1. Given u ∈ U , a strictly positive

Luce stochastic choice function is defined by δu(a,A) = u(a)∑
b∈A u(b)

with a ∈ A ∈ D.9 In

order to accommodate the Luce model in our framework we consider the closure of the

set of strictly positive Luce stochastic choice functions, which we denote by Luce. To

denote a generic, not necessarily strictly positive, Luce stochastic choice function, we

write δL. However, as we prove below, there are always instances of the model of Luce

identified in the maximal separations that are strictly positive, and hence, the former

assumption is inconsequential.

9It is well known that this definition of a Luce function is equivalent to the one we use in the

Introduction.
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We now describe the structure of maximal separations of Luce. From Proposition 1

we know that the study of a particular instance of model δL requires us to analyze its

critical observations OδL . It turns out to be the case that, under the Luce model, we

only need to check for a simple condition on the set OδL .

Proposition 4. δL ∈ S 1

Luce if and only if OδL contains a sub-collection {(ai, Ai)}Ii=1

such that
⋃I
i=1{ai} =

⋃I
i=1Ai. Moreover, λLuce = ρ(a,A)

δL(a,A)
where (a,A) ∈ OδL and

δL ∈ S 1

Luce.

Proof of Proposition 4: We prove the characterization of maximal separations

of Luce, and from this the second part of the claim follows immediately. To prove

the ‘if’ part let δL ∈ Luce and suppose that there exists {(ai, Ai)}Ii=1 ⊆ OδL such

that
⋃I
i=1{ai} =

⋃I
i=1Ai. Assume, by way of contradiction, that δL 6∈ S 1

Luce. By

Proposition 1 and the definition of OδL , there exists δ′L ∈ S
1

Luce such that, for every

i ∈ {1, 2, . . . , I}, it is the case that ρ(ai,Ai)
δL(ai,Ai)

= min
(a,A)∈O

ρ(a,A)
δL(a,A)

< min
(a,A)∈O

ρ(a,A)
δ′L(a,A)

≤ ρ(ai,Ai)
δ′L(ai,Ai)

.

For every i ∈ {1, 2, . . . , I}, we have that ρ(ai, Ai) > 0 and hence, since the ρ/δL ra-

tio is minimized at OδL , it must be that δL(ai, Ai) > 0, making ρ(ai,Ai)
δL(ai,Ai)

< ρ(ai,Ai)
δ′L(ai,Ai)

equivalent to δ′L(ai, Ai) < δL(ai, Ai). Let {δ′vn}
∞
n=1 and {δun}∞n=1 be two sequences

of strictly positive Luce stochastic choice functions that converge to δ′L and δL, re-

spectively. Select an m sufficiently large that δ′L(ai, Ai) < δum(ai, Ai) holds for ev-

ery i ∈ {1, 2, . . . , I}. Given m, now select an m′ sufficiently large that, for every

i ∈ {1, 2, . . . , I}, δ′vm′ (ai, Ai) < δum(ai, Ai) holds. We then have that 1∑
x∈Ai

vm′ (x)

vm′ (ai)

=

vm′ (ai)∑
x∈Ai

vm′ (x)
= δ′vm′ (ai, Ai) < δum(ai, Ai) = um(ai)∑

x∈Ai
um(x)

= 1∑
x∈Ai

um(x)
um(ai)

, thus guarantee-

ing, for every i ∈ {1, 2, . . . , I}, the existence of one alternative x∗i ∈ Ai \ {ai} such that
vm′ (ai)
vm′ (x

∗
i )
< um(ai)

um(x∗i )
. Given that

⋃I
i=1{ai} =

⋃I
i=1Ai, there exists a subcollection {aih}Hh=1

of {ai}Ii=1 with the following properties: (i) aih+1
∈ Aih , with h = 1, . . . , H − 1, and

ai1 ∈ AiH , and (ii)
vm′ (aih )

vm′ (aih+1
)
<

um(aih )

um(aih+1
)

with h = 1, . . . , H − 1 and
vm′ (aiH )

vm′ (ai1 )
<

um(aiH )

um(ai1 )
.

Obviously, 1 =
vm′ (aiH )

vm′ (ai1 )
ΠH−1
h=1

vm′ (aih )

vm′ (aih+1
)
<

um(aiH )

um(ai1 )
ΠH−1
h=1

um(aih )

um(aih+1
)

= 1, which is a contra-

diction. This concludes the ‘if’ part of the proof.

To prove the ‘only if’ part, suppose that δL ∈ S 1

Luce. Let [x] be the set of all

alternatives x′ ∈ X for which there exists a sequence of observations {(bj, Bj)}Jj=1,

with: (i) x = b1 and x′ ≡ bJ+1 ∈ BJ , and (ii) for every j ∈ {1, 2, . . . , J}, δL(bj, Bj) > 0

and δL(bj+1, Bj) > 0. If there is no alternative for which such a sequence exists, let

[x] = {x}. Clearly, [·] defines equivalence classes on X. Whenever there exists A ∈ D
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with {x, y} ⊆ A and δL(x,A) > δL(y, A) = 0, we write [x] � [y]. We claim that � is an

acyclic relation on the set of equivalence classes. To see this, assume, by contradiction,

that there is a cycle of pairs {aq, bq}, menus Aq ⊇ {aq, bq}, and equivalence classes [xq],

q ∈ {1, 2, . . . , Q}, such that: (i) δL(aq, Aq) > δL(bq, Aq) = 0 for every q ∈ {1, 2, . . . , Q},
(ii) aq ∈ [xq] for every q ∈ {1, 2, . . . , Q}, and (iii) bq ∈ [xq+1] for every q ∈ {1, 2, . . . , Q−
1} and bQ ∈ [x1]. We can then consider a sequence of stochastic choice functions

{δun}∞n=1 that converges to δL. Since bq and aq+1 belong to the same equivalence class

[xq+1], either bq = aq+1 or there exists a sequence of observations {(dj, Dj)}Jj=1 with:

(i) bq = d1 and aq+1 = dJ+1 ∈ DJ , and (ii) for every j ∈ {1, 2, . . . , J}, δL(dj, Dj) > 0

and δL(dj+1, Dj) > 0 (and the same holds for aQ and b1). Define the strictly positive

constant Kq = 1 whenever bq = aq+1, and Kq = 1
2
ΠJ
j=1

δL(dj ,Dj)

δL(dj+1,Dj)
otherwise (with a

similar definition for KQ relating aQ and b1). If bq = aq+1, then trivially un(bq) =

un(aq+1) for every n. Otherwise, for an n sufficiently large in the sequence {un}∞n=1,

we have that un(bq)

un(aq+1)
= ΠJ

j=1
un(dj)

un(dj+1)
= ΠJ

j=1
δum (dj ,Dj)

δum (dj+1,Dj)
≥ Kq. Hence, in any case,

un(bq)

Kq
≥ un(aq+1) holds for any sufficiently large n (and the same holds for bQ and a1).

Also, since δL(aq, Aq) > δL(bq, Aq) = 0 for every q ∈ {1, 2, . . . , Q}, we can find an n

sufficiently large that un(aq) >
un(bq)

Kq
. Hence, we can find an m that is sufficiently large

that um(a1) > um(b1)
K1

≥ um(a2) > um(b2)
K2

≥ · · · ≥ um(aQ) >
um(bQ)

KQ
≥ um(a1). This is

a contradiction which proves the acyclicity of �. We can then denote the equivalence

classes as {[xe]}Ee=1, where [xe] � [xe′ ] implies that e < e′. For an equivalence class

[xe], define the vector u[xe] ∈ U such that u[xe](y) = 0 if y 6∈ [xe] and,
u[xe](y)

u[xe](y
′)

= δL(y,A)
δL(y′,A)

whenever y, y′ ∈ [xe], δL(y, A) > 0 and δL(y′, A) > 0. This is clearly well-defined due

to the structure of Luce stochastic choice functions. Now consider the sequence of Luce

stochastic choice functions {δvn}∞n=1 given by vn = (1−
∑E

e=2( 1
2e

)n)u[x1]+
∑E

e=2( 1
2e

)nu[xe],

which clearly converges to δL. Consider the following three collections of observations

O1, O2 and O3. O1 is composed of all observations (a,A) ∈ O such that A ⊆ [a].

O2 is composed of all observations (a,A) ∈ O \ O1, such that b ∈ A, a ∈ [ai] and

b ∈ [aj] imply i ≥ j. O3 is composed of observations in O \ (O1 ∪ O2). Notice that,

for an n sufficiently large, for every (a,A) ∈ O1 we have that ρ(a,A)
δvn (a,A)

= ρ(a,A)
δL(a,A)

and

for every (a,A) ∈ O2 we have that ρ(a,A)
δvn (a,A)

> ρ(a,A)
δL(a,A)

. Also, for an n sufficiently large,

(1
2
)n < min{ρ(a,A) : a ∈ A ∈ D}, and hence (a,A) ∈ O3 implies that ρ(a,A)

δvn (a,A)
≥

ρ(a,A)

( 1
2

)m
> 1. In this case, we can fix an m sufficiently large that, from Proposition 1,
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λ{δvm} = min
(a,A)∈O

ρ(a,A)
δvm (a,A)

= min
(a,A)∈O1∪O2

ρ(a,A)
δvm (a,A)

≥ min
(a,A)∈O1∪O2

ρ(a,A)
δL(a,A)

≥ λ{δL}.
10 Indeed,

since δL ∈ S 1

Luce, it must be that λ{δvm} = λ{δL} and hence, O1 is non-empty, with

Oδvm ⊆ OδL ⊆ O1.

Assume, by way of contradiction, that there is no subcollection {(ai, Ai)}Ii=1 ⊆ OδL
such that

⋃I
i=1{ai} =

⋃I
i=1Ai. Then, for every subcollection {(ai, Ai)}Ii=1 ⊆ Oδvm it

must also be that
⋃I
i=1{ai} 6=

⋃I
i=1Ai. Hence, there must exist at least one alterna-

tive x such that x 6= a for every (a,A) ∈ Oδvm and x ∈ A for some (a,A) ∈ Oδvm .

Consider the segment α1x + (1 − α)vm, with α ∈ [0, 1], where 1x is a function as-

signing a value 1 to x and a value 0 to any other alternative. Select the maximal

separation in this segment, which can be identified as follows. Partition the set of

observations into two classes O′ = {(a,A) ∈ O, a 6= x ∈ A} and O′′ = O \ O′

and then select the Luce utilities defined by the unique value α∗ ∈ [0, 1] that solves

min
(a,A)∈O′

ρ(a,A)
δα1x+(1−α)vm (a,A)

= min
(a,A)∈O′′

ρ(a,A)
δα1x+(1−α)vm (a,A)

. Notice that, given the structure of

the Luce model, the left-hand ratio increases with α, continuously and strictly, ap-

proaching infinity. Similarly, the right-hand ratio weakly decreases with α continu-

ously. Notice also that, for α = 0, the left-hand ratio is strictly below the right-hand

ratio. This is because there exists at least one observation on the left-hand side that

belongs to Oδvm . Thus, α∗ must exist and Proposition 1 guarantees that this provides

the maximal separation in the segment. Then, consider the vector of Luce utilities

v = α∗1x + (1 − α∗)vm. If alternative x is present in all the menus in Oδvm , then

λ{δv} > λ{δvm} = λ{δL}, thus contradicting the maximality of δL. If x is not present in

some menu of Oδvm , it must be the case that Oδv ( Oδvm and λ{δv} = λ{δL}. Given the

finiteness of the data, we can repeat the same exercise for δv and, eventually, contradict

the optimality of δL. This concludes the proof. �

The proof of Proposition 4 describes a convenient method with which to identify

maximal separations for the Luce model. To explain the intuition of the result, consider

a strictly positive instance of Luce given by u ∈ U . Then, we have δu with critical

observations Oδu . Proposition 4 shows that if there is a subcollection {(ai, Ai)}Ii=1 ⊆
Oδu such that

⋃I
i=1{ai} =

⋃I
i=1Ai, then δu constitutes a maximal separation, and the

maximal fraction of the data explained by the Luce model is simply λLuce = ρ(ai,Ai)
δu(ai,Ai)

with (ai, Ai) ∈ Oδu . Suppose that there exists a δv that explains a larger fraction of

10This shows, in addition, that there is always a strictly positive instance of Luce that is maximal.



16

the data, and hence assigns lower Luce probabilities to all the critical observations

of δu. Given the structure of Luce, we can assume, without loss of generality, that∑I
i=1 u(ai) =

∑I
i=1 v(ai). Then, clearly, reducing the Luce probability in (a1, A1)

requires that one alternative in A1, say a2, is such that v(a2) > u(a2). However,

since there exists a critical observation of the form (a2, A2), we need to find another

alternative in A2, say a3, with v(a3) > u(a3). Hence, the process must be cyclic,

and consequently, we cannot improve the ρ/δ ratio of all the critical observations

of δu, which shows its maximality. The situation is entirely different when there is

x ∈
⋃I
i=1Ai \

⋃I
i=1{ai}. In this case, we can find an improvement by moving the

Luce values in the direction of alternative x, that is, by increasing the Luce utility

of x and reducing all the rest by the same proportion. That is, the ρ/δ ratios of the

critical observations of δu increase, some of them strictly, by moving in the segment

α1x+(1−α)u. This process can be repeated in such a way that all the ρ/δ ratios of the

critical observations of δu ultimately strictly increase, thereby leading to a separation

of Luce that explains a strictly larger fraction of the data.

We now illustrate these ideas using the example in Table 1. To begin, consider the

Luce utilities u = (1
3
, 1

3
, 1

3
). The value λ{δu} = min

(a,A)∈O

ρ(a,A)
δu(a,A)

= .45 is obtained only for

observation (x, {x, y, z}). Since {x, y, z} \ {x} = {y, z} is non-empty, we can select

one of the alternatives in {y, z}, say y, and move within the segment α(0, 1, 0) + (1−
α)u = (1−α

3
, 1+2α

3
, 1−α

3
). In order to select the appropriate value of α, we consider the

observations (a,A) with a 6= y ∈ A and the observations (y, A). Among the former,

the minimal ratio of the data to the Luce probabilities is obtained for (x, {x, y, z}),
with value .45

1−α . In the latter, the minimal ratio is reached at (y, {y, z}), with value
.4(2+α)
1+2α

. Equation .45
1−α = .4(2+α)

1+2α
yields α∗ = 1

4
, which leads to v = (1

4
, 1

2
, 1

4
). The value

λ{δv} = min
(a,A)∈O

ρ(a,A)
δv(a,A)

= .6 is obtained for pairs {(x, {x, y, z}), (z, {x, z}), (y, {y, z})}.

Notice that {x, y, z} ∪ {x, z} ∪ {y, z} = X and {x} ∪ {z} ∪ {y} = X, therefore, the

condition of Proposition 4 is met, and the process concludes. λLuce = λ{δv} = .6,

with the Luce stochastic choice function generated by v and residual noise ε(x,X) =

0, ε(y,X) = 3
4
, ε(x, {x, y}) = 1

8
, ε(x, {x, z}) = 1, and ε(y, {y, z}) = 0.

3.4. Single-crossing random utility model. In random utility models (RUMs),

there exists a probability distribution µ over the set of all possible preferences P .

At the choice stage, a preference is realized according to µ, and maximized, thereby

determining the choice probabilities δµ(a,A) =
∑

P∈P:a=mP (A)

µ(P ), for every (a,A) ∈ O.
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In other words, the choice probability of a given alternative within a menu is given by

the sum of the probability masses associated to the preferences where the alternative

is maximal within the menu.

The literature has often considered these models as complex to work with, and

offered models in restricted domains that facilitate their use in applications. Here,

we focus on the single-crossing random utility models (SCRUMs), which are RUMs

over a set of preferences satisfying the single-crossing condition.11 Formally, SCRUMs

consider probability distributions µ on a given ordered collection of preferences P ′ =

{P1, P2, . . . , PT}, satisfying the single-crossing condition Pj∩P1 ⊆ Pi∩P1 if and only if

j ≥ i. That is, the preference over a pair of alternatives x and y reverses once at most

in the ordered collection of preferences. We denote the set of SCRUM stochastic choice

functions by SC. Proposition 5 characterizes the maximal separations for SCRUMs.

Proposition 5. Let δµ̂1 = δP1 and λ̂1 = min
A∈D

ρ(mP1(A), A) and, for every i ∈ {2, . . . , T},

define recursively: (i) δµ̂i = (1− λ̂i−1

λ̂i
)δPi + λ̂i−1

λ̂i
δµ̂i−1

and (ii) λ̂i = min
A∈D

{
ρ(mPi(A), A) +

max
j:j≤i,mPj (A)6=mPi (A)

λ̂j

}
. Then, δµ̂T ∈ S

1

SC and λ̂T = λSC.

Proof of Proposition 5: We start by proving that λ̂T ≤ λSC. The construction

guarantees that 1 ≥ λT ≥ λT−1 ≥ · · · ≥ λ1 ≥ 0. Whenever λ̂T = 0, the result

follows immediately from the fact that λSC ∈ [0, 1]. Now assume that λ̂T ∈ (0, 1).

We prove that there exists 〈δµ̂T , ε〉 ∈ SSC such that λ〈δµ̂T ,ε〉 = λ̂T . First, notice that

the construction guarantees that δµ̂T ∈ SC. Hence, by defining ε =
ρ−λ̂T δµ̂T

1−λ̂T
, we triv-

ially have that ρ = λ̂T δµ̂T + (1 − λ̂T )ε and we are left to prove that ε ∈ SCF. To see

this, consider (a,A) ∈ O and denote by i∗ and i∗ the integers of the first and last

preferences in P ′, such that a is the maximal element in A. The construction guar-

antees that ρ(a,A) ≥ λ̂i∗ − λ̂i∗−1 = λ̂T
λ̂i∗−λ̂i∗−1

λ̂T
. Now, the recursive equations can

be written as µ̂T (Pi) =
λ̂Pi−λ̂Pi−1

λ̂T
for every i ∈ {1, 2, . . . , T}, with λ̂0 = 0 and hence,

ρ(a,A) ≥ λ̂T
∑i∗

i=i∗
µ̂T (Pi) = λ̂T δµ̂T (a,A). This implies that ε(a,A) ≥ 0. Notice also

that
∑

a∈A ε(a,A) =
∑

a∈A
ρ(a,A)−λ̂T δµ̂T (a,A)

1−λ̂T
= 1−λ̂T

1−λ̂T
= 1, thus proving that ε ∈ SCF.

This illustrates the claim and, hence, the desired inequality. Finally, suppose that

λ̂T = 1. In this case, the construction guarantees that ρ = δµ̂T ∈ SC, which implies

that λSC = 1 and the desired inequality.

11See Apesteguia, Ballester and Lu (2017) for a study of this model. Other RUMs using restricted

domains are Gul and Pesendorfer (2006) and Lu and Saito (2017).
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We now show that λ̂T ≥ λSC, by showing that, for every separation for SCRUM

〈δµ, ε〉, it must be the case that λ̂T ≥ λ〈δµ,ε〉. We proceed recursively to show that

λ̂i ≥
∑i

j=1 λ〈δµ,ε〉µ(Pj) holds, and hence, λ̂T ≥
∑T

j=1 λ〈δµ,ε〉µ(Pj) = λ〈δµ,ε〉, as desired.

Let i = 1 and A′ be a menu solving min
A∈D

ρ(mP1(A), A). Hence, λ̂1 − λ〈δµ,ε〉µ(P1) =

ρ(mP1(A′), A′) − λ〈δµ,ε〉µ(P1) ≥ ρ(mP1(A′), A′) − λ〈δµ,ε〉
∑

j:mPj (A′)=mP1
(A′) µ(Pj). By

the definition of SCRUMs, the last expression can be written as ρ(mP1(A′), A′) −
λ〈δµ,ε〉δµ(mP1(A′), A′), or equivalently as (1− λ〈δµ,ε〉)ε(mP1(A′), A′). Since ε ∈ SCF, the

latter expression must be positive, thus proving the desired result. Suppose that the in-

equality is true for every Pj with j < i. We now prove this for Pi. LetA∗ be a menu solv-

ing minA∈D[ρ(mPi(A), A) + maxj:j≤i,mPj (A)6=mPi (A) λ̂j]. Then, we have ρ(mPi(A
∗), A∗) =

λ〈δµ,ε〉δµ(mPi(A
∗), A∗) + (1 − λ〈δµ,ε〉)ε(mPi(A

∗), A∗) ≥ λ〈δµ,ε〉δµ(mPi(A
∗), A∗) =

λ〈δµ,ε〉
∑

P :mP (A∗)=mPi (A
∗) µ(P ). If it is the case that {P : mP (A∗) = mPi(A

∗)} ⊇
{P1, P2, . . . , Pi}, then clearly λ̂i = ρ(mPi(A

∗), A∗) ≥ λ〈δµ,ε〉
∑

P :mP (A∗)=mPi (A
∗) µ(P ) =∑i

j=1 λ〈δµ,ε〉µ(Pj) and we have concluded the induction argument. Otherwise, the

single-crossing condition guarantees that there exists j∗ ∈ {1, . . . , i− 1} such that {P :

mP (A∗) = mPi(A
∗)} ⊇ {Pj∗+1, Pj∗+2, . . . , Pi} and ρ(mPi(A

∗), A∗) ≥
∑i

j=j∗+1 λ〈δµ,ε〉µ(Pj).

In this case, the induction hypothesis also guarantees that λ̂j∗ ≥
∑j∗

j=1 λ〈δµ,ε〉µ(Pj). By

combining these two inequalities, we are able to conclude that λ̂i ≥
∑i

j=1 λ〈δµ,ε〉µ(Pj)

and the induction step is complete. This implies, in particular, that λ〈δµ,ε〉 ≤ λ̂T .

By combining the above two claims, we have shown that λ̂T = λSC, and, by the

construction, that δµ̂T ∈ S
1

SC, which concludes the proof. �

Proposition 5 provides a smooth recursive method with which to obtain a maximal

separation and the corresponding maximal fraction of data explained by SCRUM.

It basically computes the fraction of data, λ̂i, that can be explained by SCRUMs

using preferences up to Pi. Trivially, the maximal fraction of data explained by P1 is

min
A∈D

ρ(mP1(A), A). Now consider any other preference Pi ∈ P ′ and assume that every

preference Pj, j < i, has been analyzed. With the extra preference Pi, and for a given

menu A, we can rationalize data ρ(mPi(A), A) together with any other data ρ(x,A),

x 6= mPi(A), that is rationalized by preferences preceding Pi. This can be achieved by

considering the appropriate linear combination of the constructed SCRUM that uses

preferences up to Pi−1 with preference Pi.

We now illustrate how Proposition 5 works in the example of Table 1, where we as-

sume the set of single-crossing preferences zP1yP1x, yP2zP2x, yP3xP3z and xP4yP4z.
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We start with P1. The fraction of data explained by P1 is λ̂1 = min
A⊆X

ρ(mP1(A), A) =

min{ρ(z,X), ρ(y, {x, y}), ρ(z, {x, z}), ρ(z, {y, z})} = min{.25, .75, .3, .6} = .25, where

trivially µ1(P1) = 1. We then consider preference P2, where we have that λ̂2 =

min{ρ(y,X) + λ̂1, ρ(y, {x, y}), ρ(z, {x, z}), ρ(y, {y, z}) + λ̂1} = min{.6 + .25, .75, .3, .4 +

.25} = .3 with µ2(P1) = λ̂1

λ̂2
= 5

6
and µ2(P2) = 1

6
. For preference P3, we have that

λ̂3 = min{ρ(y,X) + λ̂1, ρ(y, {x, y}), ρ(x, {x, z}) + λ̂2, ρ(y, {y, z}) + λ̂1} = min{.6 +

.25, .75, .7 + .3, .4 + .25} = .65, with µ3(P1) = λ̂2

λ̂3
µ2(P1) = 5

13
, µ3(P2) = λ̂2

λ̂3
µ2(P2) =

1
13

and µ2(P3) = 7
13

. Finally, we have that λ̂4 = min{ρ(x,X) + λ̂3, ρ(x, {x, y}) +

λ̂3, ρ(x, {x, z}) + λ̂2, ρ(y, {y, z}) + λ̂1} = min{.15 + .65, .25 + .65, .7 + .3, .4 + .25} = .65

and hence µ4 = µ3. Thus, we conclude that λSC = .65, with SCRUM δµ4 and residual

noise ε(x,X) = 3
7
, ε(y,X) = 4

7
, ε(x, {x, y}) = 5

7
, ε(x, {x, z}) = 1, and ε(y, {y, z}) = 0.

4. An empirical application

Here we use an experimental dataset to operationalize the maximal separation results

obtained in the previous section.12 There were nine equiprobable monetary lotteries,

described in Table 1. Each of the 87 participants faced 108 different menus of lotteries,

including all 36 binary menus and a random sample of larger menus.13 There were two

treatments. Treatment NTL was a standard implementation, with no time limit on

the choice. In treatment TL, subjects had to select a lottery within a limited time. At

the end of the experiment, one of the menus was chosen at random and the subject

was paid according to his or her choice from that menu.14

Table 1. Lotteries

l1 = (17) l4 = (30, 10) l7 = (40, 12, 5)

l2 = (50, 0) l5 = (20, 15) l8 = (30, 12, 10)

l3 = (40, 5) l6 = (50, 12, 0) l9 = (20, 12, 15)

To ensure a sufficiently large number of observations, we focus on the choices made

in the binary menus, which, when aggregating both treatments, gives a total of 87

12We collected the experimental data together with Syngjoo Choi at UCL in March 2013, within

the context of another research project. This is the first completed paper to use this dataset. We are

very grateful to Syngjoo for kindly allowing us to use this dataset.
13There were menus of 2, 3 and 5 alternatives, presented one at a time, in a randomized order. No

participant was presented more than once with the same menu of alternatives. The location of the

lotteries on the screen was randomized, as was the location of the monetary prizes within a lottery.
14Specifically, subjects had 5, 7 and 9 seconds for the menus of 2, 3, and 5 alternatives, respectively.
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observations overall.15 Table 2 reports the choice probabilities in each of the binary

menus. It also reports the optimal and the residual stochastic choice functions identified

in the maximal separation results, using the models described in the previous section.

In SCRUM we use the CRRA expected utility representation, which is by far the most

widely used utility representation for risk preferences.16 There are several lessons to be

learned from the table.

First note that the maximal fractions of the data explained by the respective models,

λ∆, increase from the deterministic choice model, to the tremble model, to the Luce

model and, finally, to the SCRUM-CRRA model. It is worth noting that the deter-

ministic model already explains about half of the data, i.e., λDET = .51. The identified

optimal instance is the one associated with the preference l1Pl5Pl4Pl8Pl7Pl9Pl3Pl6Pl2.

The top alternative, lottery l1, is the safest, since it gives £17 with probability one.

The next is lottery l5, which has the second lowest variance at the expense of a very

low expected return. Lottery l2, the one with the highest expected value and highest

variance, is regarded as the worst alternative. Hence, the deterministic model pictures

a population that is essentially highly risk-averse. The model reaches its explanatory

limits with the critical observation (l8, {l7, l8}) where, by Proposition 1, the ratio of

observed to predicted probability is minimal. Specifically, the observed choice proba-

bility is .51 while the deterministic prediction is 1. The ratio of these two values gives

the fraction of data explained by the model, λDET = .51.

The tremble model identifies exactly the same preference as the deterministic model,

while markedly increasing the maximal fraction of the data explained from λDET = .51 to

λTremble = .68. This is the result of using a relatively large tremble probability, γ = .51.

The tremble model is characterized by critical observations (l8, {l7, l8}) and (l9, {l5, l9}).
As in the deterministic case, choice data is scarce for l8 versus l7, but the problem is less

severe thanks to the presence of a tremble, due to which, the individual is predicted to

choose l8 only with probability .74, thereby reducing the ratio of observed to predicted

probabilities to .68. This ratio cannot be improved beyond this point. Although

increasing the tremble probability would increase this ratio, it would also decrease the

ratio of the other critical observation, (l9, {l5, l9}), which has the same value of .68. To

15Due to the time limit in one of the treatments, the number is slightly lower for some menus.

Specifically, there are 18 menus with 87 observations, 12 with 86, 3 with 85 and 3 with 84.
16The CRRA Bernoulli function is x1−r

1−r , whenever r 6= 1, and log x otherwise, with x representing

money. We have also studied the cases of CARA expected utility, and mean-variance utility, and

obtained similar results, which are available upon request.
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Table 2. Data and ∆-Maximal Separations

DET TREMBLE LUCE SCRUM-CRRA

A ρ δDET εDET δTremble εTremble δLuce εLuce δSC-CRRA εSC-CRRA

{l1, l2} 0.75 1.00 0.49 0.74 0.75 0.91 0.30 0.74 0.77

{l1, l3} 0.60 1.00 0.19 0.74 0.29 0.71 0.28 0.55 0.78

{l2, l3} 0.33 0.00 0.67 0.26 0.50 0.20 0.69 0.24 0.66

{l1, l4} 0.53 1.00 0.05 0.74 0.07 0.62 0.27 0.47 0.75

{l2, l4} 0.28 0.00 0.56 0.26 0.32 0.15 0.64 0.24 0.40

{l3, l4} 0.43 0.00 0.86 0.26 0.78 0.40 0.50 0.42 0.46

{l1, l5} 0.58 1.00 0.16 0.74 0.24 0.46 0.92 0.47 1.00

{l2, l5} 0.25 0.00 0.51 0.26 0.25 0.08 0.73 0.26 0.23

{l3, l5} 0.45 0.00 0.92 0.26 0.87 0.26 1.00 0.45 0.46

{l4, l5} 0.49 0.00 0.99 0.26 0.98 0.34 0.89 0.53 0.33

{l1, l6} 0.72 1.00 0.44 0.74 0.68 0.87 0.31 0.76 0.60

{l2, l6} 0.44 0.00 0.89 0.26 0.84 0.42 0.51 0.42 0.53

{l3, l6} 0.80 1.00 0.60 0.74 0.93 0.74 1.00 0.79 0.84

{l4, l6} 0.76 1.00 0.51 0.74 0.79 0.81 0.62 0.76 0.76

{l5, l6} 0.75 1.00 0.49 0.74 0.75 0.89 0.35 0.76 0.71

{l1, l7} 0.63 1.00 0.25 0.74 0.38 0.77 0.23 0.74 0.22

{l2, l7} 0.24 0.00 0.49 0.26 0.22 0.26 0.21 0.26 0.19

{l3, l7} 0.48 0.00 0.96 0.26 0.94 0.57 0.20 0.53 0.27

{l4, l7} 0.62 1.00 0.24 0.74 0.37 0.67 0.49 0.76 0.14

{l5, l7} 0.63 1.00 0.26 0.74 0.40 0.79 0.18 0.76 0.18

{l6, l7} 0.27 0.00 0.54 0.26 0.29 0.33 0.10 0.24 0.36

{l1, l8} 0.64 1.00 0.27 0.74 0.42 0.67 0.57 0.76 0.21

{l2, l8} 0.22 0.00 0.45 0.26 0.15 0.17 0.36 0.26 0.09

{l3, l8} 0.36 0.00 0.73 0.26 0.58 0.45 0.12 0.45 0.03

{l4, l8} 0.56 1.00 0.12 0.74 0.18 0.55 0.60 0.56 0.56

{l5, l8} 0.62 1.00 0.23 0.74 0.36 0.70 0.40 0.76 0.13

{l6, l8} 0.20 0.00 0.40 0.26 0.07 0.23 0.12 0.24 0.04

{l7, l8} 0.49 0.00 1.00 0.26 1.00 0.37 0.83 0.42 0.77

{l1, l9} 0.76 1.00 0.51 0.74 0.78 0.74 0.81 0.79 0.62

{l2, l9} 0.28 0.00 0.56 0.26 0.32 0.23 0.42 0.28 0.28

{l3, l9} 0.39 0.00 0.79 0.26 0.68 0.53 0.00 0.45 0.17

{l4, l9} 0.55 1.00 0.08 0.74 0.13 0.63 0.32 0.53 0.60

{l5, l9} 0.83 1.00 0.65 0.74 1.00 0.76 1.00 1.00 0.20

{l6, l9} 0.22 0.00 0.44 0.26 0.14 0.29 0.02 0.26 0.08

{l7, l9} 0.56 1.00 0.12 0.74 0.18 0.46 0.87 0.45 0.96

{l8, l9} 0.64 1.00 0.26 0.74 0.41 0.58 0.78 0.53 1.00

λ∆ 0.51 0.68 0.74 0.78

Note: A denotes the binary menu of lotteries, ρ, δ∆ and ε∆ are the observed percentage, pre-

dicted choice of model ∆ and error choice probability of ∆, respectively, associated with choosing

lottery li from menu {li, lj}, and λ∆ reports the maximal fraction of the data explained by ∆ with

∆ ∈ {DET, Tremble, Luce, SC-CRRA}. Data entries in bold refer to the menus containing the critical

observations in the respective model.
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see this, notice the choice prediction for alternative l9, being worse than alternative

l5, corresponds entirely to the tremble probability, and hence, an increase in tremble

would increase the predicted probability and thus decrease the ratio.

The Luce model is able to explain close to three quarters of the data. The optimal

utility values for the lotteries are u = (0.22, 0.02, 0.09, 0.13, 0.25, 0.03, 0.07, 0.11, 0.08),

which again suggest a highly risk averse population. The alternative with the highest

Luce utility value is lottery l5, followed by lottery l1, while lottery l2, which is the

riskiest, has the lowest Luce utility value. That is, although u does not represent

PDET exactly, it represents a preference very close to it. Interestingly, we see that the

Luce model can accommodate a larger fraction of the data by allowing randomness to

depend on the cardinal evaluation of alternatives. The model is hard pressed to explain

observations (l5, {l3, l5}), (l6, {l3, l6}), (l3, {l3, l9}) and (l9, {l5, l9}), that represent the

type of cyclical structure described in Proposition 4. In each of these observations,

the ratio of observed to predicted probabilities is equal to .74. Increasing any of these

ratios would require decreasing the utility of one alternative in {l3, l5, l6, l9}, but only,

of course, at the expense of the ratio of another of these critical observations.

Finally, SC-CRRA explains as much as nearly 80% of the data. In so doing, it assigns

positive masses to 9 of the 30 possible CRRA preferences, with the largest probabil-

ity mass, .44, associated with the most risk averse CRRA preference, i.e., preference

l1Pl5Pl9Pl8Pl4Pl7Pl3Pl6Pl2, which is again very close to PDET. Since each prefer-

ence compatible with CRRA corresponds to an interval of risk aversion levels, we

can completely describe the optimal SC-CRRA instance by reporting the values of the

cumulative distribution function at the upper bounds of these intervals. These are

F (−4.15) = 0.21, F (−0.31) = 0.25, F (0.34) = 0.27, F (0.41) = 0.29, F (0.44) = 0.43,

F (0.61) = 0.47, F (1) = 0.53, F (4) = 0.56 and F (∞) = 1. Notice that, in addition

to explaining a large fraction of the data, SC-CRRA is also rich enough to show that a

quarter of the population is risk loving, F (−0.31) = 0.25. The limits of SC-CRRA in

explaining the data are reached at observations (l5, {l1, l5}) and (l9, {l8, l9}). On the

one hand, lottery l5 is preferred over lottery l1 by all CRRA levels with a risk aversion

level below 2, which has an accumulated mass of .53. Given the observed choices, this

leads to a critical ratio for observation (l5, {l1, l5}) of .78. Improving this ratio would

necessarily require us to assign a higher weight to levels of risk aversion above 2. How-

ever, this would immediately conflict with the ratio of l9 to l8, since l9 is ranked above
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l8 at all levels of risk aversion above 1. As the ratio of observed to predicted data for

(l9, {l8, l9}) also has the critical value of .78, no improvement can take place.

To conclude the discussion of Table 2, we would like to emphasize that the four

models are very consistent in the qualitative judgment of the population. All four

models take the population of subjects to be highly risk averse. Then, we see that, by

introducing different sources of randomness, it is possible to explain larger fractions

of the data, and that the precise source of randomness affects the fraction of the data

explained.

The identification of maximal separations of the data can be contrasted with other

standard estimation techniques, such as maximum likelihood or least squares. Appen-

dix A contains a formal comparison of these techniques. Here, we briefly comment on

the differences that emerge when using these alternative techniques. First, the stan-

dard techniques identify instances of the models, but they do not quantify the fraction

of the data explained by them, nor do they characterize the nature of the data that falls

outside the models. Thus, in the exercise that follows, we must limit the comparison to

the instances of the models identified by the different estimation techniques. Second,

Appendix A shows how the structure of maximum likelihood and least squares loss

functions are relatively similar to each other; both techniques are additive processes by

which the deviations from all observations are aggregated. As a matter of fact, with

our data, the estimates derived from both techniques are almost identical, and hence

we concentrate, in what follows, on comparing our technique with one of them, the

maximum likelihood technique.

Table 3 reports the instances of the models identified by the maximal separation

and the maximum likelihood techniques. With respect to the deterministic model, no

difference whatsoever is observed, as exactly the same preference relation is estimated.

This ordinal similarity is preserved in the case of the tremble model, although our

technique predicts a substantially smaller trembling coefficient, .51 < .68. The intuition

for this difference is straightforward. Recall that, as we mentioned above, (l9, {l5, l9})
is a critical observation in the maximal separation exercise for Tremble. The observed

probability in this observation is small, .17, and the identified instance of the model for

our technique predicts, due to the trembling parameter, a rather relative large frequency

of .26. However, the maximum likelihood exercise is not severely affected by this local

consideration and makes the estimation only by averaging over all the observations.

Consequently, the estimation exercise in maximum likelihood is willing to sacrifice the
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Table 3. Maximal Separation and Maximum Likelihood Instances of the Models

Deterministic

MS P = [l1, l5, l4, l8, l7, l9, l3, l6, l2]

ML P = [l1, l5, l4, l8, l7, l9, l3, l6, l2]

Tremble

MS P = [l1, l5, l4, l8, l7, l9, l3, l6, l2]; γ = .51

ML P = [l1, l5, l4, l8, l7, l9, l3, l6, l2]; γ = .68

Luce

MS u = (0.22, 0.02, 0.09, 0.13, 0.25, 0.03, 0.07, 0.11, 0.08)

ML u = (0.18, 0.04, 0.1, 0.14, 0.17, 0.04, 0.11, 0.13, 0.09)

SCRUM-CRRA

MS F (−4.15) = 0.21, F (−0.31) = 0.25, F (0.34) = 0.27, F (0.41) = 0.29

F (0.44) = 0.43, F (0.61) = 0.47, F (1) = 0.53, F (4) = 0.56, F (∞) = 1

ML F (−4.15) = 0.22, F (−0.31) = 0.29, F (0.44) = 0.44

F (1) = 0.50, F (−4) = 0.56, F (∞) = 1

Note: MS and ML denote maximal separation and maximum likelihood, respectively. P denotes

the preference identified in the corresponding case, where the ranking declines from left to right,

γ is the tremble probability in Tremble, u is the Luce utility vector associated with Luce, where

the i-th entry in u corresponds to the utility value of lottery li, and finally F (r) denotes the

cumulative probability masses associated with the upper bounds of the intervals of the relative

risk aversion coefficients r consistent with those CRRA preference relations that have a strictly

positive mass in the corresponding estimation procedure.

prediction quality of this extreme observation in order to favor the prediction over

other moderate ones. This is done by increasing substantially the trembling parameter

and consequently the prediction in this particular observation (l9, {l5, l9}), reaching a

disproportionate value of .34, two times the observed value. A similar reasoning applies

to the comparison of the cases of Luce and SC-CRRA.

The comparative analysis of both estimation techniques can be complemented with

a prediction exercise that helps to explain the pattern of differences that emerges.

We take all the binary data except for one binary set, estimate the instances of the

models by maximal separation and maximum likelihood using these data, and use the

estimated instances to predict the behavior in the omitted binary set. We do so for

all the 36 binary sets. For some of these binary sets, both maximal separation and

maximum likelihood overestimate the probability of the same alternative in the binary
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Table 4. Forecasting Results of Maximal Separation and Maximum Likelihood

Tremble Luce SCRUM-CRRA

A ρ MS ML A ρ MS ML A ρ MS ML

{l9, l5} 0.17 0.26 0.34 {l9, l5} 0.17 0.24 0.35 {l6, l3} 0.20 0.21 0.22

{l6, l3} 0.20 0.26 0.34 {l6, l3} 0.20 0.26 0.29 {l6, l8} 0.20 0.24 0.29

{l6, l8} 0.20 0.26 0.34 {l6, l8} 0.20 0.23 0.24 {l6, l9} 0.22 0.26 0.29

{l6, l9} 0.22 0.26 0.34 {l6, l9} 0.22 0.29 0.31 {l2, l8} 0.22 0.26 0.29

{l2, l8} 0.22 0.26 0.34 {l2, l7} 0.24 0.26 0.28 {l6, l4} 0.24 0.24 0.29

{l6, l4} 0.24 0.26 0.34 {l9, l1} 0.24 0.26 0.34 {l2, l7} 0.24 0.26 0.29

{l2, l7} 0.24 0.26 0.34 {l6, l7} 0.27 0.33 0.27 {l2, l5} 0.25 0.26 0.29

{l9, l1} 0.24 0.26 0.34 {l3, l8} 0.36 0.45 0.43 {l2, l1} 0.25 0.26 0.29

{l2, l5} 0.25 0.26 0.34 {l9, l8} 0.36 0.42 0.41 {l2, l9} 0.28 0.28 0.29

{l2, l1} 0.25 0.26 0.34 {l3, l9} 0.39 0.53 0.52 {l3, l8} 0.36 0.45 0.44

{l6, l5} 0.25 0.26 0.34 {l5, l1} 0.42 0.54 0.48 {l9, l8} 0.36 0.47 0.49

{l8, l7} 0.51 0.74 0.66 {l9, l7} 0.44 0.54 0.45 {l3, l9} 0.39 0.45 0.44

{l5, l4} 0.51 0.74 0.66 {l8, l4} 0.44 0.45 0.47 {l3, l1} 0.40 0.45 0.44

{l7, l3} 0.52 0.74 0.66 {l8, l7} 0.51 0.63 0.54 {l5, l1} 0.42 0.53 0.51

{l1, l4} 0.53 0.74 0.66 {l5, l4} 0.51 0.66 0.54 {l9, l7} 0.44 0.55 0.56

{l5, l3} 0.55 0.74 0.66 {l1, l4} 0.53 0.62 0.56 {l9, l4} 0.45 0.47 0.49

{l4, l9} 0.55 0.74 0.66 {l5, l3} 0.55 0.74 0.63 {l4, l1} 0.47 0.53 0.51

{l6, l2} 0.56 0.74 0.66 {l4, l9} 0.55 0.63 0.61 {l3, l7} 0.48 0.53 0.51

{l4, l8} 0.56 0.74 0.66 {l4, l3} 0.57 0.60 0.59 {l4, l5} 0.49 0.53 0.51

{l7, l9} 0.56 0.74 0.66 {l1, l3} 0.60 0.71 0.64 {l8, l7} 0.51 0.58 0.56

{l4, l3} 0.57 0.74 0.66 {l3, l2} 0.67 0.80 0.70 {l5, l3} 0.55 0.55 0.56

{l1, l5} 0.58 0.74 0.66 {l4, l2} 0.72 0.85 0.77 {l6, l2} 0.56 0.58 0.56

{l1, l3} 0.60 0.74 0.66 {l1, l6} 0.72 0.87 0.81 {l4, l8} 0.56 0.56 0.56

{l9, l3} 0.61 0.74 0.66 {l1, l2} 0.75 0.91 0.81 {l5, l8} 0.62 0.76 0.71

{l5, l8} 0.62 0.74 0.66 {l5, l6} 0.75 0.89 0.80 {l4, l7} 0.62 0.76 0.71

{l4, l7} 0.62 0.74 0.66 {l5, l2} 0.75 0.92 0.79 {l1, l7} 0.63 0.74 0.71

{l1, l7} 0.63 0.74 0.66 {l4, l6} 0.76 0.81 0.78 {l5, l7} 0.63 0.76 0.71

{l5, l7} 0.63 0.74 0.66 {l1, l8} 0.64 0.76 0.71

{l8, l9} 0.64 0.74 0.66 {l3, l2} 0.67 0.76 0.71

{l1, l8} 0.64 0.74 0.66 {l1, l9} 0.76 0.79 0.78

{l8, l3} 0.64 0.74 0.66 {l5, l9} 0.83 1.00 1.00

Note: Every binary menu of lotteries A = {li, lj} reported in the table is ordered such that li is

the lottery where the predictions of both maximal separation (MS) and maximum likelihood (ML)

are above the observed choice data ρ. Those observations for which one of the predictions of MS

or ML is above the observed choice data and the other below are not reported in the table. Then,

for each one of the models, the binary menus of lotteries are ordered from lower to higher observed

choice probabilities. Bold entries refer to the cases where MS is closer to the data and italicized

entries refers to those cases where ML is closer to the data.

menu. This makes comparing their ability to estimate the probabilities in this menu

straightforward; one of the methods is unambiguously more accurate than the other.

We therefore focus our comparison on these menus, since the conclusions may otherwise
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depend on the particular distance function employed. Table 4 reports all the binary

menus for which the predictions of both maximal separation and maximum likelihood

can be unambiguously ranked, focusing on the observations for which both predictions

are in excess of the observed data.17 The theoretical analysis of the two techniques

suggests a very intuitive conjecture; namely, that the maximal separation technique is

very cautious and can therefore be expected to perform better in observations with low

choice probabilities. This conjecture is largely confirmed in our analysis. In all three

models, the overestimation of small probabilities is less problematic for the maximal

separation technique, while maximum likelihood deals better with the overestimation

of large probabilities. If one is interested in forecasting exercises, these results suggest

that, to obtain a clear picture of the overall situation, it may be useful to apply both

estimation techniques: maximal separation and maximum likelihood.

5. Final considerations

We have offered a novel methodology aimed at finding the maximal fraction of the

data that can be explained by a stochastic choice model, by identifying the instance

of the model that best explains the data, and discerning the anomalies involved in

residual behavior. We have characterized the general results for any model, and in-

vestigated several prominent models used in the literature. Our approach may, in

addition, prove instrumental in exploring several lines of research, some of which we

now briefly comment.

Firstly, the study of maximal separations permits an intuitive use of mixture models.

On the one hand, it allows us to define a model as the convex combination of other

models (as in the case of SCRUMs, which are defined as the convex hull of some

deterministic choice models), and directly provide maximal separations for the mixture

model. However, if the analyst prefers to give priority to a certain model, she may

sequentially repeat the maximal separation exercise, i.e., obtain a maximal separation

for the preferred model, and take the residual data as the new observed stochastic

choice function to be maximally separated using a different model. This enables the

identification of a second behavioral type.

Secondly, one may be interested in restricting the space of possible residual choice

functions to, e.g., a closed subset of stochastic choice functions containing the particular

17We do not report the results of the deterministic method, where the maximal separation and

maximum likelihood predictions are exactly the same.
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model of analysis and the actual data. This would enable the identification of residual

stochastic choice functions with a certain structure of interest. It is clear that our

techniques would, with minor modifications, apply to such a setting.

Finally, a related but alternative way of thinking would be to find the instance of

model δ̃ and residual noise ε̃, such that δ̃ = λ̃ρ+(1−λ̃)ε̃, with minimal 1−λ̃. This would

identify the minimal missing stochastic behavior, which, when combined with the data,

rationalizes an instance of the model. It is easy to see that the logic of Proposition 1

applies here in basically the opposite direction. Now, the critical observations are those

which maximize the ratio of the data to the instance of the model, that is, those cases

where the data far exceed the predictions of the model. Consequently, the identification

of the optimal instance of the model would require minimizing the ratios involved in

the critical observations.

Appendix A. Deviation measures

Here we relate our approach to two important strands of literature involving loss

functions and inconsistency indices. Essentially, both of these notions study devia-

tions of actual behavior with respect to some benchmark. Loss functions measure the

deviation between data and each instance of a stochastic model, with the ultimate pur-

pose of identifying the closest instance, i.e., the one that minimizes the loss function,

whereas inconsistency indices aim to measure the deviation of actual behavior when

judged from the perspective of the standard deterministic choice model.

Loss functions. A loss function is a map L : ∆× SCF→ R that measures the devi-

ation of data ρ from each of the instances δ of a stochastic model ∆. The loss function

is then minimized in the space ∆, in order to identify the best instance of the model.

Here, we formalize how the identification of the best instance in a maximal separation

can be rewritten in terms of the minimization of a loss function. We then compare the

resulting maximal-separation loss function with the well-known loss functions of other

standard approaches in the literature, such as least squares and maximum likelihood.

In order to facilitate the discussion, we focus on the case of δ being strictly positive.

Maximal separations are those that maximize the fraction of the data consistent with

the model, that is λ∆, or alternatively, the ones that minimize the fraction representing

residual noise, that is 1 − λ∆. It is evident, therefore, that, within our approach, we

can obtain optimal instances by simply minimizing the loss function 1−λ{δ} across all
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the instances δ of model ∆. Proposition 1 characterizes the structure of the maximal-

separation loss function. Since 1 − min
(a,A)∈O

ρ(a,A)
δ(a,A)

= max
(a,A)∈O

[1 − ρ(a,A)
δ(a,A)

], the loss function

can be written as

LMS(δ, ρ) = max
(a,A)∈O

[1− ρ(a,A)

δ(a,A)
].

The least squares approach involves the minimization of the quadratic loss function

LLS(δ, ρ) =
∑

(a,A)∈O

(δ(a,A)− ρ(a,A))2.

First, notice that, for each observation (a,A) ∈ O, LMS and LLS evaluate the

existing gap between the data and the model in different ways. While LLS evaluates

the absolute difference between the data and the specified model, the function LMS

operates in a relative sense. Note, further, that, while LLS aggregates the deviations

across observations, LMS focuses on the largest relative deviation.

Similarly, it is well known that the maximum likelihood approach is equivalent to

the minimization of the loss function given by the Kullback-Leibler divergence from δ

to ρ, which can be written as

LML(δ, ρ) =
∑

(a,A)∈O

ρ(a,A) log
ρ(a,A)

δ(a,A)
.

The Kullback-Leibler divergence can be interpreted as the amount of information

lost due to the use of δ instead of ρ. Comparing LMS with LML, notice that, although

both loss functions operate over the ratios of the data to the model, LMS works over

the largest deviation between the data and the specified model, while LML operates in

the form of an expectation.

Table 2. LMS versus LLS and LML

x y z LMS LLS LML

ρ .25 .45 .3

δ1 .15 .65 .2 .31 .06 .04

δ2 .2 .35 .45 .33 .03 .02
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Table 3. LLS versus LMS and LML

x y z LMS LLS LML

ρ .1 .3 .6

δ1 .2 .1 .7 .5 .06 .07

δ2 .15 .1 .75 .33 .065 .06

Table 4. LML versus LMS and LLS

x y z LMS LLS LML

ρ .3 .6 .1

δ1 .05 .5 .45 .78 .19 .22

δ2 .25 .25 .5 .8 .28 .18

Tables 2, 3 and 4 report simple examples of menus with three alternatives, showing

that the differences in the structure of these loss functions may translate into the iden-

tification of different best instances. For each of the three loss functions, the tables

give a dataset ρ and two model instances δ1 and δ2, such that the corresponding loss

function ranks these two instances in complete reverse to the ranking given by the

other two loss functions.

Inconsistency indices. Starting with Afriat (1973), there is a literature on mea-

suring deviations of actual behavior with respect to the standard, deterministic, ra-

tional choice model. Formally, an inconsistency index can be defined as a mapping

I : SCF → R describing the inconsistency of a dataset ρ ∈ SCF with the standard

deterministic model, that is when the reference model is set as ∆ = DET. Despite some

exceptions, most of the existing inconsistency indices are obtained throughout the min-

imization of a loss function. That is, the index starts by measuring the deviation of

data with respect to every instance of the deterministic model, i.e., to every preference

relation. In a second stage, the loss is minimized across all possible instances of the

model, providing an inconsistency value and, at the same time, identifying the closest

preference relation to the data.18

18See Apesteguia and Ballester (2015) for a characterization of this class and for a detailed review

of the literature.
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We can then immediately analyze the inconsistency index emerging from the max-

imal separation technique. Using the loss function discussed above, and the insights

obtained in Section 3.1, we have

IMS = 1− λDET = min
δP

max
A

∑
a∈A:

δP (a,A)=0

ρ(a,A).19

It is important to note that the nature of this index is unique in the literature. To

illustrate this more clearly, we now compare the inconsistency index arising from the

maximal separation approach with the well-known inconsistency index of Houtman and

Maks (1985), which represents the closest index to IMS. The Houtman and Maks index

measures inconsistency by the minimal amount of data that needs to be removed in

order to make the remainder of the data rationalizable by the standard choice model.

The key difference is that the Houtman-Maks index enables different proportions of

data to be removed from different menus of alternatives. Hence, using our notation,

we can write the Houtman-Maks index as

IHM = min
δP

∑
A

∑
a∈A:

δP (a,A)=0

ρ(a,A).

These formulations provide a transparent comparison between the two approaches.

Both methods remove data minimally until the surviving data is rationalizable. In the

case of a maximal separation, since data must be removed at the same rate across all

menus, the index focuses on the most problematic menu. In the case of Houtman and

Maks, different proportions of data can be removed from different menus, therefore an

aggregation across menus takes place.

Table 5. IMS versus IHM

x y z

{x, y, z} .25 .3 .4

{x, y} .8 .2

{x, z} .4 .6

{y, z} .7 .3

19Section 3.1 studies in detail the deterministic model and provides a convenient algorithm for

computing 1− λDET.



31

Table 5 reports an example of a choice function ρ with three alternatives and with

data on all the relevant menus of alternatives. Taken from the perspective of IMS, the

data show the optimal preference to be zPxPy, while from the perspective of IHM it

is xP ′yP ′z.

To conclude this comparison of the maximal separation approach with both loss

and inconsistency functions, it is crucial to emphasize that the loss function LMS

and the inconsistency index IMS are the by-products of addressing a more general

issue, which is to provide a methodology for maximally separating data representing

predicted randomness, from that representing unknown noise. That is, the maximal

separation approach is unique when it comes to quantifying the fraction of the data

that is consistent with the model, and identifying the instance of the model and the

residual-noise stochastic choice function that jointly explain the data. Thus, for anyone

interested in the conceptual problem addressed in this paper, LMS and IMS are the

way to go.
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