Barcelona

Graduate
School of
Economics

The Implied Volatility of Forward Starting
Options: ATM Short-Time Level, Skew and
Curvature

Elisa Alos
Antoine Jacquier
Jorge A. Lebn

May 2017

Barcelona GSE Working Paper Series
Working Paper n°® 988



The implied volatility of forward starting options:
ATM short-time level, skew and curvature

Elisa Alos* Antoine Jacquier
Dpt. d’Economia i Empresa Department of Mathematics
Universitat Pompeu Fabra Imperial College London
and Barcelona GSE London SW7 2AZ, UK

c¢/Ramon Trias Fargas, 25-27
08005 Barcelona, Spain

Jorge A. Leént
Control Automatico
CINVESTAV-IPN
Apartado Postal 14-740
07000 México, D.F., Mexico

Abstract

For stochastic volatility models, we study the short-time behaviour of
the at-the-money implied volatility level, skew and curvature for forward-
starting options. Our analysis is based on Malliavin Calculus techniques.

Keywords: Forward starting options, implied volatility, Malliavin cal-
culus, stochastic volatility models
JEL code: C02

1 Introduction

Consider two moment times s > t. A forward-start call option with maturity
T > s allows the holder to receive, at time s and with no additional cost, a
call option expirying at T, with strike set equal to K Sy, for some K > 0. So,
the option life starts at s, but the holder pays at time ¢ the price of the option.
Some classical applications of forward starting options include employee stock
options and cliquet options, among others (see for example Rubinstein (1991)).

Under the Black-Scholes formula, a conditional expectation argument leads
to show that the price of a forward starting option is the price of a plain vanilla
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option with time to maturity 7'—¢. In the stochastic volatility case, a change-of-
measure links the price of the forward option with the price of a classical vanilla
(see, for example, Rubinstein (1991), Musiela and Rutkowski (1997), Wilmott
(1998), or Zhang (1998)). For stochastic volatility models, change of numeraire
techniques can be applied to obtain a closed-form pricing formula in the context
of the Heston model (see Kruse and Nogel (2005)).

The implied volatility surface for forward starting options exhibits substan-
tial differences to the classical vanilla case (see for example Jacquier and Roome
(2015)). This paper is devoted to the study of the at-the-money (ATM) short
time limit of the implied volatility for forward starting options. More precisely,
we will use Malliavin Calculus techniques to compute the ATM short-time limit
of the implied volatility level, skew and curvature. In particular, we will see
that -contrary to the classical vanilla case- the ATM short-time level depends
on the correlation parameter (see Lemma 6 and Theorem 7). We will also prove
that the skew depends of the Malliavin derivative of the volatility process in a
similar way as for vanilla options, while the curvature (see Theorems 14 and 15)
is of order O(T — s).

The paper is organized as follows. Section 2 is devoted to introduce forward
starting options and the main notation used troghout the paper. In Section 3
we obtain a decomposition of the option price that will allow us to compute, in
Sections 4, 5 and 6, the limits for the ATM implied volatility level, skew and
curvature.

2 Forward start option

We will consider the Heston model for stock price on a time interval [0, 7] under
a risk neutral probability P* :

dS, = 7Sydt + oSy (det* +/1- p2B;) L te0,T], (1)

where 7 is the instantaneous interest rate (supposed to be constant), W* and
B* are independent standard Brownian motions defined on a probability space
(Q,F,P*) and o is a positive and square-integrable process adapted to the
filtration generated by W*. In the following we will denote by FW" and FB
the filtrations generated by W* and B*, respectively. Moreover we define F :=
FW v FB". It will be convenient in the following sections to make the change
of variable X; = log (S:), t € [0,T]. Now, we consider a point s € [0,T]. We
want to evaluate the following option price:

Vi = e*f(T*t)E;‘ (eXT - ean5)+ , (2)

where E* denotes the conditional expectation given F; and « is a real constant.
Notice that if ¢ > s this is the payoff of a call option, while in the case t < s
this defines a forward start option.

We will make use of the following notation



BS(t,z, K,o0) will represent the price of a European call option under
the classical Black-Scholes model with constant volatility o, current log
stock price z, time to maturity T — ¢, strike price K and interest rate 7.
Remember that in this case

BS(t,z,K,0) = e*N(dy) —e " T"OKN(d_),

where N is the cumulative probability function of the standard normal
law and

r—InK+#T—-t) o
dy = + —vT -1t
= oVT —t 2
Lps (o) will denote the Black-Scholes differential operator (in the log vari-
able) with volatility o :

It is well known that Lps (o) BS (-, ; K,0) = 0.
G(t,z,K,0) = (0%, — 0,)BS(t,z,K,0).
H(t,x,K,0) := 0,(0%, — 8,)BS(t,x, K, o).

BS~1(a) := BS™!(t,z,K,a) denotes the inverse of BS as a function of
the volatility parameter.

a* =T —s)

We recall the following result, that can be proved following the same argu-
ments as in that of Lemma 4.1 in Alos, Leén and Vives (2007)

Lemma 1l Let 0 <t < s,u < T and Gy .= F; \/.7-"7W. Then for every n > 0,
there exists C = C(n, p) such that

a) Ifu<s

%(n+1)

. _
|E(6;lG (uaXuaMu,Uu)| gt)' <CFE (GXU‘ Qt) (/ U?ds)

b) Ifu>s

|E (953G (u, Xu, My, v,)| Gi)| < CE (e

T —%(n+1)
gt) </ JgdS) .



3 A decomposition formula for forward option
prices

We will stand for

o M, :=Ej (e®eX:), t € [0,T]. We observe that
¢
M, = e%eXo +/ ouljo,g (u)e®e (W Xu (deJ +v1- deBZ)
0

tAs
= M+ ea/ oue T eXu (deJ +v1- deBZ) .
0

[MES

o U = (TY_’ ) , with

T
T T
Y, ::/ 031[S7T](u)du:/ JZdu
t t

Vs
Notice that, if t <'s, viv/T —t = vs/T — s.

We will need the following hypotheses:

(H1) There exist two constants 0 < ¢ < C such that ¢ < oy < C, for all
te [0, 7], with probability one.

(H2) 0,0eX € L322 N1

Now we are in a position to prove the following theorem, that allows us to
identify the impact of correlation in the forward option price

Theorem 2 Consider the model (1) and assume that hypotheses (H1) and (H2)
hold. Then, for all0 <t <s<T,

Vi = Ef [exp(Xt)BS(s,O,eo‘,vs)

T
+g/ e_’q(“_t)H(u,Xu,Mu,vu)ouAZV*du
S

+gG(s,O,e°‘,vs)/ eiﬁ(“ft)ex“auAZV*du )

t

where AW = [T DV’ 52dg.

uVs

Proof. Remember that M, := E} (e®e*+) and notice that
‘/t — e*f(Tft)Et* (eXT _ 6anS)+ — e*f(Tft)Et* (eXT _ MT)

6_7Q(T_t)BS(T, XT, MT, I/T).

+



Therefore, the anticipating It6’s formula for the Skorohod integral (see for ex-
ample Nualart (2006)) allows us to write

E; (e7™'BS(T, X1, My, vr))

= B e—”BS(t,Xt,Mt,vt)_f/Te—fuBS(u,Xu,Mu,uu)du
t
+/tTe w3 (o, X My, )
—|—/tTe 855 (u, Xo, My, vy) (f 5‘) du
—|—% /tTe a;fzs(u Xu,Mu,vu)a du
+/tT e—fugigfi(u,xu,Mu,vumx, M),
% /tT Juaazﬁf(u,xu,Mu,vumM, M),
i3 [ e (- ) B X M) (4 = o2 0)
% /tTe_max (8‘9; _ ;) (1, X, Mo, 02)7upA" du
+3 /Tai (aam - m) BS (u, Xy My va)rue™e e pAl 110 ()



Vi

That is, using ¢t < s,
= Et* |:BS(t,Xt7Mt7vt)
T ~
+ [T L () BS (1, Xy Mas )
t

T o 0
e T(u=t) ( - ) BS(u, Xy, My, vy) (05 - vi) du
t

1
2 0x? Oz
. /tT e_mu—w%(u, Xu, My, v,)d (X, M),
e [ (2 2 50X M) (5 o2 0
+% /tT e—f(u—t)a%c (6?;2 a 88x) BS(u, Xy, My, vy )oupA) du
sy [l (;; - g ) B8 X Mo v o o0 .

+
9]

axaK (U’?XIHMuvvu)d <X? M>u

T
+/ e MU=t e (vy) BS(u, Xy, My, v,,)du
t
1 (T [ 0* 0
+§ t o (u=t) (33:2 - (%) BS(u, Xy, My, vy) (02 — 021y 7y(u)) du
/T —7(u—t) 82BS
t

1 (T .. 0*BS

= = Z 2 (4, Xy, M, M, M
+2/f (& aKz (U, U uavu)d< ) >u

1 T 0 [ 0? 0 *

- —fu-t) Z (Z__ Z |\ B X, M AV d
+2/t ¢ or (axZ (‘330) Sty Xowy Moy vi)ouphyy” du

1 ) —r(u—t 0 82 0 a F(s—u) X, w=
+§/t e ( )67K (61‘2 - ax) BS(U,XU,MU,Uu)Jue (& ( )6 pAu dul .

Now, taking into account the facts that
EBS (UU) (BS) (ua XU7 Mua Uu) = 07

d{M,X), = aie“eﬂ‘g_“)ex“ Ljo,s) () du,



d(M,M), = 0562“62”3_“)62)(“1[0,5] (u)du,
8°BS 1 (6°BS 8BS
K === - == K
eor b0 =% ( 822 oz ) (tz, K,0)
and 9°BS 9°BS  9BS
1
oxz b K) =15 (ax - ax> (t.@, K, 0),

it follows that
‘/;5 = E;( |:BS(t, Xt, Mt, ’Ut)

2 Oz \9x2  Ox

1 /% . 2 . .
_|_,/ e*T(“*t)i (8 — 3) BS(u,Xu,Mu,uu)aue”‘eT(S*“)ex“pAuW du
t

T 2
w3 [ el (a - ‘9) BS(u, X M v,)opA du
t

2 OK \ 0x%2 Oz

= E: |:BS(t,Xt,Mt,’Ut)

1 T N a 82 8 )
_ —pu—t) ¢ (¢ O B X M AW p
+2A € I ((9.’172 ax> S(U, ws uvvu)UuP “ m

1/ _; o (o2 0 W
z —tu-t) 2 [ Y
+2/t e e <89L‘2 896) BS(u, Xo, My, vy)oupA,, du

1 /5 . 2 .
+§/ e*r("*”a% (8‘12 — ;) BS (u, Xy, My, v,)00u My pAY du] :
t
Since we have
ﬁ (8235 B 8BS) (4, e, 0) = e*N'(dy) (1 B dy )
Ox2 Ox Tl T — ¢t ovT —t

oz
and 0 (0°BS 0BS *N'(d d
0K \ Ox Ox KoVT —t \ovVT —t
then it is easy to see that
‘/t = E: |:BS<t7Xt,Mt,’Ut)
p [T s -
—1—5/ e_r(u_t)H(u;XuaMuuUu)O—uAZV du
S
+§/ eiﬁ(“ft)G(u,Xu,Mu,vu)auAZV*du )
t



Hence, due to

BS(taXt,Mt,’Ut)
exp(Xy)N (—a T ) + 2 - S)
vV — s 2
—a+ (T — s) US\/T—S)

_ L« X —f(T—s)N( _
€ exp( t)e vsm 9

= eXp(Xt)BS (87 0, eaa’us)

and, for all u < s,

X —a+7(T—s) v/ T —s
e N’(USﬁT_s-i- 5 )

vV — s

= eXuG(s,0,e%,vy),

G(U7XuaMU7vu) -

the proof is complete. m

Remark 3 We have chosen Hypotheses (H1) and (H2) for the sake of simplic-
ity, which can be substituted by adequate integrability conditions.

Remark 4 Notice that, if t = s we recover the decomposition formula for call
option prices presented in Alos, Ledn and Vives (2007).

Remark 5 If the volatility process is constant (o, = o, for some positive con-
stant o), then vs = o and AW =0, which implies that, fort < s,

Vi= exp(Xt)BS (8707 6a70) . (3)

Consequently, we recover the well-known option pricing formula for forward
start options under the Black-Scholes model (see for example Rubinstein (1991),
Wilmott (1998), or Zhang (1998)).

4 The ATM short-time limit of the implied volatil-
ity.

For t € [0, s], we define the implied volatility (¢, s; «) as the F;-adapted process
satisfying

Vi = exp(X:)BS (5,0, I(t, 53)) (4)
Notice that, from (3), in the constant volatility case o, = o, I(t,s;a) = 0.

For the sake of simplicity, we will consider first the uncorrelated case p = 0.
In this case, we have the following result



Lemma 6 Consider the model (1) with p = 0 and assume that hypotheses in
Theorem 2 hold. Then, for allt < s,

lim I(t,s;a*) = E} (0s).

T—s

Proof. We know that

I(t, s; ™)
= BS YE;(BS (s,0,exp(a®),vs)))
= E; [BS_l(BS(s7O,exp(a*),vs))
+BSTYHE;(BS (5,0, exp(a*),vs))) — BS™'(BS (s,O,exp(a*)mS))]
= E;[vs+ BS™YE;(BS (5,0, exp(a®),vs)))
—BS_l(BS (s,O,exp(a*),vs))] .

Notice that a direct application of Clark-Ocone’s formula gives us that

T
BS(s,0,exp(a”),vs) = Ef (BS(s,0,exp(a®),vs)) +/ U,.dW,,
¢

with

—
ot
=

* 0BS * D’KV* fsT O'?dT’
U, = E, ((60 (5,0, exp(a )’Us)> 2T — ), )

Then, applying It6’s formula to the process BS~1(A,), where

A, = E; (BS(s,0,exp(a™),vs)) +/ U,.dW,
t
and taking expectations, we get
E; [BS™H(E;(BS (s,0,exp(a”),vs))) — BS™H(BS (s,0,exp(a*),v,))]
T
= —%Ef/ (BS™HY'(E,.(BS (s,0,exp(a*),v,))U2dr.
t
Hence
lim I(t,s,a")

T—s

= Ez;k (US)

1 T
— lim §Et*/ (BS™H(E.(BS (s,0,exp(a*),v,))Uzdr.
t

T—s
Now, considering that
(BS™)"(En(BS (s,0,exp(a*), vs))

_ 1 (BswEr(BS (5,0, exp(a*), ve)) (T — s)) |
(N'(dy)VT —5)° 4




BS~!(E,(BS(s,0,exp(a*),vs))vVT—s
2

where dy := , we get that

T
lim 1E;‘/ (BS™Y)"(E.(BS (s,0,exp(a*),vs))UZdr = 0.
T—s 2 t

Therefore, the proof is complete. m
As a consequence of the previous result, we have the following limit in the
correlated case.

Theorem 7 Consider the model (1) and assume that hypotheses in Theorem 2
hold. Then, for all t < s,

1 [ _. -
lim I(t,s;a”) = Ef (0s) + ge_X‘Et* (/ e "W eXug, DV ofdu) .
t

T—s Og

Proof. We know, by Theorem 2, that

I(t,s;a")
= BSTUE}(BS(5,0,exp(a), 1))
T
Jrgexp(th)Et*/ e*f(“*t)H(u,Xu,Mu,vu)au/\y*du

S
—I—gexp(—Xt)E;f (G(S,O,exp(a*),vs)/ e_f'(“_t)eX“JuAZV*du)].
t

By the mean value theorem, we can find 6 between Ej (BS(s,0,exp(a*),vs))
and

E; <BS (s,0,exp(a™), vs)

T
+gexp(—Xt/ e_f'(“_t)H(u,Xu,Mu,vu)ouAEV*du

+ gexp(—XtG(s,O,exp(oz*),vs)/ ef’(“t)ex“auAZV*du>

t

such that

I(t,s;a*) — BS™ (B} (BS(s,0,exp(a®),vs)))

T ex 735_1(9) — S
— V2 exp( Tg—s(T ) [geXp(—Xt)

T
XE: (/ e_f(u_t)H('Uz, XuzMuaUu)auAZV*du>

S

+ gE;" <G(s,0,exp(a*),vs)/t e’z(ut)eX”JuAZV*du>}

I, + . (6)

10



From Lemma 1, we have

: . exp(—Xy) [T, X, 1w
fm L] < C%ﬂzﬁfs B (X016:) (T = )7 A du
< Cexp(—Xy) %im (T — 5)1/2 (E* (eQXs gt))l/Q =0.
—s

Finally, (6) and Lemma 6 imply

lim I(t,s;a”)

T—s
pexp(X¢) exp(ET=2y ps .
E; (0) + 25050 i By | =S / e U= eXug AW gy
t

T—s

X 1 s .
= FE/(os)+ %(JE}* </ efr(uft)eX“JuDZV O’Edu) .
os J;

Therefore, the proof is complete. m

Remark 8 Notice that, in the case s = t, we recover the results by Durrleman
(2008) for classical vanilla options. Also, contrary to the classical vanilla case,
the ATM short-time limit depends on the correlation parameter.

We will need the following lemma later on.

T
Lemma 9 Consider the model (1) and assume that E (exp (f0+?‘du)> < 00.Then

I(t,s;a")WT —s =0
as T — s.

Proof. We know that, in this case,
V= e fT-0 {(QXT _ ef(Tfs)6X5> } :
+

which converges to zero as T — s. Indeed, we have

(eXT — ef(T_s)eXS) — 0,
+

as T — s with probability 1. Moreover, by Novikov theorem (see for example
Karatzas and Shreve (1991)), we have

(eXT _ eﬁ(T—s)eXs) < X7 4 H(T=5) Xo
+

and A A A
E* (eXT + eT(Tfs)eX‘*) =2¢"T 5 2™

11



as T'— s. Thus, the dominated convergence theorem implies that V; — 0 as
T — s, with probability one. On the other hand,

S <N<1<t,s;a*2>m) - N(I(t,s;azm))

= exp(X,) (1 —2N (— I, s: a}/ﬁ)) :

which allows us to complete the proof. m

5 An expression for the derivative of the implied
volatility

Equation (4) leads us to get

oV O0BS o .
e - exp(X;)—— 5% (s,0,e*, I(t, s;x))
0BS o . oI _
+exp(Xt)a—U (s,0,e™ I(t,s;)) a—a(t 85 @),
9BS ._ _9BS

where S5% 1= 50 Ry -

Then, from Theorem 2 we are able to write

ol

Ja

Ve oxp(Xy) 285 (5,0,e, I(t, 5;00))

exp(X;) 283 (5,0, e, I(t, 5;0))

B [285 (5,0,e%,v,)] — 285 (5,0,e%, I(t, s; )
2BS (s 0,2, I(t, s;))

E [fs o (u— t)%lg(u X, e®eXs v,)o A du]
exp(X¢) 283 (5,0, 2, I(t, 5;))

p Ef [9C(5,0,e%,0) [T e ue‘r(“ DoAY dul

+§ exp(Xt)aBS (s,0,ex, I(t,s;)) ' (7)

(t,s; )

_|_7

p
2

Remark 10 Note that in the uncorrelated case (i.e., p = 0), equality (7) implies

LI  CURART) e < CXG (GT0)
60& » [);%S (8,0,6‘17[(15,8;01)) .

12



In this case, for a = a*, we get, by Theorem 2,

. [0BS y
E; [ak (s,0,exp(a )703)}
- E|-N (—”‘”g_sﬂ
) )
2
. :BS (s,0,exp(a*),vs) — 1
= Et 2
_ Viexp(=Xy) -1
N 2
and
B
6akS (s,0,exp(a™), I(t,s;a"))
_ N It s50)VT — s
N 2
_ Viexp(—X;)—1
5 .
So, we conclude that
. [0BS . OBS . N
E; [31@ (s,0,exp(a ),US)] o8 (s,0,exp(a™), I(t,s;a")) =0

and, consequently, %(tv s;a*) =0.

We will need the following hypothesis
(H3) There exist two constants C' > 0 and § > 0 such that, for all ¢t < 0 <

u<r
E; <(DXV*O'T)2) <C(r—u)? (8)
nd
) B ((DG *DgV*o—,)2> <Cr—s2r—02. 9)

Theorem 11 Consider the model (1), and assume that hypotheses (H1), (H2)
and (H3) hold and that here exists a Fs-measurable random variable Df oy such
that

. 4
E:( sup ‘EZ (DZV J%—Djag)‘ >—>OasT—>s. (10)
s<u<o<T

Then, for all s < t,

—7(s — + 52
i 5 (si07) = COPCHE Dy (o D272

T-s O 4dexp(X, K o2

13



Proof. From (7) we obtain

ol

a—a(t,s;a*)
By [955 (5,0, exp(a*),vs)] — 285 (5,0,exp(a*), I(t, s;a*))

daB;S (s,0,exp(a ) I(t, s; %))

LE} [fT e_’“(“_t)a—H(u,Xu, Mu,vu)auAZV*du}
exp(X;) %52 (5,0, exp(a*), I(t, s; %))
LBy [92(s,0,exp(a*), vs) [} eXue " (Do, AV du
exp(Xt)aBS (s,0,exp(a*), I(t, s;a*))
= T\ 4+ Ty +Ts

Proceeding as in Remark 10 and using Theorem 2,we get

By [aais(s 0,exp(a*), v )} - 855 (5,0, exp(a”), I(t, s;0%))

« [ BS (s,0,exp(a*),vs) — 1 Viexp(—X;) — 1
= B 2 - 2
-X T .
S L ”Ei*{g / e 0 B (u, Xy, My, 0)0u AW dit] -

-X s x
—MC(S,O,GXI)(O[*),US)/ e g eXu AW du}.
¢

Then,
lim 77 = lim I; + hm I,
T—s T—s
where
exp (—X;) pE;f (f e "W H (u, Xy, My, vy)ou A du )|a:a*
I =— i
! 486%3 (s,0,exp(a*), I(t,s;a*))
and

exp (—X¢) pE; (G(s,0,exp(a*),vy) [ e ", eXe AW du)
4% (5707 eXp( )7I(t7 S’a )) .

It is easy to see that, under (H3), limyp_,, I; = 0 due to Lemma 1. On the other
hand,
oG

* s :27
G5, 0,exp(0"), vs) = 25

S, 07 exp(oz*), US)a

which yields

I,
_ pexp(—Xy) By (28 (s,0,exp(a*), v,) [ e "D eXug AV du)
; 2 aaBS (s,0,exp(a*), I(t,s;a*))
- —T3.

14



This gives us that Iy + 73 = 0. On the other hand, using Lemmas 1 and 9, and
the anticipating It6’s formula again, it follows that

§B; [J7 e 9 (u, X, My, 0o A du
lim 7, = lim 555 =
T—s T—s exp(X;) %2 (s,0,exp(ar), I(t, s;a%))
E: [%—g(s,XS,MS,vS)e—NS-t) 1T 0 AW dul
1 9BS . PN
T—s exp(Xt)a— (s,0,exp(a*), I(t, s;a*))

o

po o [exp (X)) exp (—i(s — 1) /T we |
9 Tt l exp(X;)v3 (T — s)? s Tuftu A

P . *
= ———— lim F,
2 exp(Xt) Tos

exp (Xs)exp (—F(s — t)) T «
S e d“]‘

Now, (10) allows us to write

and now the proof is complete. m

Remark 12 Ift = s, this formula agrees with the at-the-money short-time limit
skew proved in Alos, Leon and Vives (2007).

6 The second derivative of the implied volatility

In this section we figure out %(t, s;a*). Towards this end, note that

S = () 22 (5,0,ex(0), Tt 530)
+exp(X0) 252 (5,0,0xp(0), 1(1, 5 0) G (t,5: )
implies
TV~ o) ZE (5.0 exp(a). 10,50)
2exp(X) 223 (1,0, exp(a). (t.5:0) 2 1, 5:0)

8BS oI ?
+exp(x) 27 (5.0, ex0(0). 1005 0)) (o 1 5:0))

+exp(X3) 8;15 (s,0,exp(a), I(t,s;a)) T(t, 85 ). (11)

15



6.1 The uncorrelated case

In this subsection we assume that p = 0.
We will need the following result, similar to Theorem 5 in Alos and Ledén
(2015).

Lemma 13 Consider the model (1) with p = 0 and assume that hypotheses in
Theorem 11 hold. Then

oBS . oy 021 .
W(S,O,EXP(Q )a‘[(ta S5 )) W(tvsaa )
= | [T 2Y (e (B (5, 0,exp(a), 02))) U2d
= 5B t Tz - 3,0, exp(a™), vy Ldu|

where
B 0°BS

U(a) : wEN

(.0, exp(a”), BS™" (a))
and U is given in (5).

Proof. This proof is similar to that in Alos and Leén (2015) (Theorem 5), so
we only skecth it. Notice that (11) and Remark 10 give us

0%V,
Bz 1=
0’BS
= exp(Xt)W (s,0,exp(a™), I(t,s;a"))
oBS ) oy 2L .
+eXp(Xt)W (s,0,exp(a”), I(t, s; ))@(YZS;@ ).

Then, taking into account Theorem 2 and the fact that I(, s;a*) = BS~!(exp(—X;)V;),
we are able to write

2

0BS N o 071 "
eXP(Xt)W (s,0,exp(a”), I(t, s;a”)) W(tas;a )

82, 9°BS . .
sza* - eXp(Xt)W (s,0,exp(a”), I(t, s;0%))

. (0°BS . 9’BS . .
= exp(Xy)FE; <8k2 (s,0,exp(a™),vs) — WIh (s,0,exp(a®), I(t, s;a ))>
0’BS

S (5,0, exp(a”), BS ™ (BS(s,0,exp(a”), v,)))

— e(X)E; |

L5 (5,0, exp(a), BS (B (BS(5,0,expla”), m»)} |

Now, using (4), applying Itd’s formula to the process
0’BS
ok?
and taking expectations, the result follows. m

A, = (s,O,eXp(oz*)7 BS! (Er (BS(S,O,eXp(oz*),vs)))
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Theorem 14 Consider the model (1) with p = 0 and assume that hypotheses
in Theorem 2 are satisfied. Then

. 621 * 1 * ° * DZV*U? ’ * -3
%Tlm(T—s)w(t,s,a )= zEt (/t (Eu (%)) (B} (05)) “du ).

Proof. Lemma 13 yields

92
Jim (7 — S)W(t’ s;a”)
Ez( |: ts l?;z\g (EZ (BS (57076XP(04*),U5))) U,%du}
T—s 2(%52 (s,0,exp(a*), I(t, s; %))
* T 627\11 * * 2
By fs da? (Eu (BS (s,0,a",v))) Uzdu

+ lim (T — s) TS - —

T Q(W (5,0, exp(a*), I(t, s;a*))
T—s

Remember that we are assuming that there exist two positive constants ¢, C' > 0
such that ¢ < o < C. Thus, the fact that BS(s,0,e"(T=%) .) is an increasing
function, together with (H3) and

62—\1, (EX (BS (5,0,a,v5)))

Oa?
(BS™H(Bxu(BS(5,0,e" T 0.))))*(T—s)
24/27 exp < 3

(BS—1(E %, (BS(s,0,e"T=5) p))))* (T — 5)3/2

allows us to deduce that, considering that C' is a constant that may change from
line to line,

. T exp (£2=2)) C r

< (T — s)Y/2.

which implies that limp_, s To = 0.
Finally, the dominated convergence theorem and Lemma 6 give us that

I(u,s;0*)2(T—s)

. o [Texp(mE )
lim Ty, = 1
Tos ! T . I(u,s;0%)3(T — s)

T * 2
s DW 2 d
_ lnmE;/ ! py (L Pu_o)dr) )
4 75 . I(u,s;a%)3(T —s) vV T — s
1 * * * DZV*Jg 2 * —
17 (/ (5 (%57)) ®iio 3d“>
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and this allows us to complete the proof. =

6.2 General case

Now we are ready to analyze the curvature in the correlated case. So we assume

p # 0.

Theorem 15 Under the assumptions of Theorem 2, we have

, 021 )
%lgls(T— s)@(t,s,a )
s w* 2 2
- g (/ (5:(22)) (E:;<as>>‘3du>
1 1

+—= -
Ef (o) E; (0s) + §exp(—X,)Ef (a% ftS e*f(“*t)SXuJuDXV*JEdLO

P * 1 3 —r(u— w *
—5 exp(—X;) E} (Uf;’/t e T eXug, (DZV af) du).

Proof. By Theorem 2 and (11), we deduce

OBS . 0?1
exp(Xt)W (s,0,exp(a™), I(t,s;)) W(t, 85 )
. (0°BS . 0°BS .
= (07 (S5 (s 0.ema) v - 2% (s0.exp(a), It s )

2

-2 exp(Xt)aais (s,0,exp(a™), I(t,s;a)) g—i(t, s; Q)

9B oI 2
— exp(Xt)T (s,0,exp(a®), I(t,s;a")) ((%z(t’ s; a*))

T 2
" O0“H X
—r(u—t 4%
/s e " )8k2 (u, Xo, My, v,)ou Ay, du

0?G

* ° —(u—t) , X w*
+W(Saoaexp(a )7”5)/ € ( )6 UuAu du] . (]_2)

t

Thus we can write
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2

I
(T - S)W(t,s;a*)
. Ef( oI (5 0, exp(a*),v (5 0, exp(a™), Io(t,s;a*)))
= T=9) OdBS(SOeXp( )I(tsa)
- E; ( 5 (s,0,exp(a*), I°(t, s;a%)) — 8k2s (S7O,exp(a*),l(t,s;a*)))
=) 9B (5.0, explar), I(t, 5;0"))
(T—s Q%U]gf(s()exp( ), I(t s; ))—(t s;a*)
(=9 985 (5,0, exp(a*), I(t, s;a%))
(T-s) 8;525 (s,0,exp(a*), I(t, S'a*))( (t, s ))
8573 (s,0,exp(a*), I(t,s;a*))
Lexp(—Xy)Ef U e~ (u— t)ak (w, Xy, My, v,)o, AV du
e B3 (5,0, expla”). 1t 550) B
exp(—X1)E;f (55 (s,0,exp(a*), vs) [} e " DeXug, AV du
+ (T —5s) <6§BS )

o (5,0, exp(a”), I(t, s;0%))

= T+ To+Ts+Ty+Ts+Ts.

Here I°(t, s; ) denotes the implied volatility in the uncorrelated case p = 0.

It is easy to see te definition of BS leads us to limp_, (75 + T4 +T5) = 0.
Moreover, we can easily see that
2B (s, 0,exp(a%), I 510°))
1m =
T—s 225 (5,0, exp(a*), I(t, 5;.a*))
Then, the proof of Lemma 13 yields
. . 0*I°(t, s, ")
g Ty = Jim (T = ) =5
By computing a;fzs it is easy to see that
1 1
lim Ty = 1i — .
T 2 T T (Io(t,s;a*) I(t,s;a*))
Therefore, we can use Lemma 6 and Theorem 7 to figure out this limit.
On the other hand
lim T6
T—s
0 E*( ¢ (5,0, exp(a*), vs) Ce” Pu—t) e Xug AW*du>
= =—exp(—X;) lim (T —s
2 p( t)T—>s ( ) 985 (5,0, exp(a*), I(t, s; %))

1 [ _. *
_ _g eXp(_Xt)E: (3 / e—T(u—t)eXua-u (D’ZV 0-3) du) .
Os Jt

S
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Finally, the result is a consequence of Lemma 6, and Theorems 7 and 14. =
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