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Abstract

We study the problem of allocating projects to heterogeneous workers. The simulta-

neous execution of multiple projects imposes constraints across project teams. Each

worker has preferences over the combinations of projects in which he can potentially

participate and his team members in any of these projects. We propose a revelation

mechanism that is Pareto-efficient and group strategy-proof (Theorem 1). We also

identify two preference domains on which the mechanism is strongly group strategy-

proof (Theorem 2). Our results subsume results by Monte and Tumennasan (2013)

and Kamiyama (2013).

Keywords: matching; allocation; heterogeneous agents; preferences over peers; effi-

ciency; (group) strategy-proofness.
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1 Introduction

When a firm seeks for a smooth execution of a project it often has to ensure that the project’s

team has the right combination of skills. For instance, a cross-functional project may require
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a project manager, a certain number of analysts, technical personnel, and administrative

staff. A particular example is that where a project has a minimal quorum (so that the project

can be completed) and a maximum capacity (so that the firm does not run into inefficiencies).

Moreover, when a firm is interested in carrying out multiple projects simultaneously, some

workers might be required or are allowed to participate in more than one project. Hence,

there can be constraints across teams that are to carry out distinct projects.

We study a general framework in which a firm has to allocate projects to workers. We

assume that technical or physical constraints or any other requirements do not completely

pin down the teams that are to execute (a subset of) the projects. Hence, there is room to

take into account any possible preferences of the workers over the (sets of) projects in which

they may be called upon to participate, and their possible co-workers. Our aim is to find

a systematic and meaningful way of using the worker’s preferences to obtain an allocation.

More specifically, we are interested in finding Pareto-efficient allocations through a revelation

mechanism. Since workers have to reveal their preferences, Pareto-efficiency with respect to

the true preferences is only guaranteed if the mechanism satisfies some notion of strategy-

proofness. We propose a revelation mechanism, called the serial shrink project allocation

(SSPA) mechanism, that is Pareto-efficient and group strategy-proof (Theorem 1).1 The

SSPA mechanism is based on a serial dictatorship in which, following a given hierarchy

within the firm, each worker shrinks the set of feasible allocations by selecting those in

which he is to participate in his (weakly) most preferred combinations of projects and co-

workers. We show that group strategy-proofness cannot be strengthened to strong group

strategy-proofness2 on the general domain (Examples 1 and 2). However, for two interesting

preference domains, strong group strategy-proofness can be established (Theorem 2).

Special cases of project allocation are considered in Monte and Tumennasan (2013) and

Kamiyama (2013). Monte and Tumennasan (2013) study the situation in which (a) each

worker can participate in at most one project, (b) workers only have preferences over projects

(i.e., not over possible co-workers), (c) preferences are strict, and (d) each project has a mini-

mum quorum and a maximum capacity (in particular, workers are homogeneous). Kamiyama

(2013) considers more general allocation problems by relaxing Monte and Tumennasan’s

(2013) assumption (d), i.e., constraints can be more complex. Here, we further generalize

Kamiyama’s framework by dropping assumptions (a)–(c). First, we allow for the possibility

that a worker participates in multiple projects. Second, workers may not only have pref-

1A mechanism is group strategy-proof if no group of workers can misrepresent their preferences in such

a way that all its workers obtain a strictly more preferred assignment.
2A mechanism is strongly group strategy-proof if no group of workers can misrepresent their preferences

in such a way that all its workers obtain a weakly more preferred assignment and at least one worker a

strictly more preferred assignment.
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erences over the projects in which they can become involved but over co-workers as well.

Third, for some (but not all) of our results we do not require preferences to be strict.

Monte and Tumennasan (2013) and Kamiyama (2013) propose a revelation mechanism,

called the (generalized) serial dictatorship with project closures ((G)SDPC) mechanism.

Their main results show that the (G)SDPC mechanism is Pareto-efficient and strategy-

proof. We show that in their frameworks our SSPA mechanism boils down to the (G)SDPC

mechanism (Propositions 1 and 2). As a consequence, we obtain their results as corollaries

and find that the (G)SDPC mechanism is in fact strongly group strategy-proof (Corollaries 1

and 2).

Apart from strengthening and generalizing existing results, our approach has other ad-

vantages. In the algorithm on which the (G)SDPC mechanism is based, an allocation is

built up step by step. More precisely, at each step i, worker i receives his most preferred

assignment among those that are still “allowed,” i.e., it is checked whether at future steps

assignments can be arranged so that there is a feasible allocation where all workers 1, . . . , i

receive their chosen assignments. In the algorithm for the SSPA mechanism we take an equiv-

alent yet more transparent approach. Initially, we consider all feasible allocations. Then,

at each step i, worker i further shrinks the set of (remaining) feasible allocations by select-

ing only those in which he receives his most preferred assignment. Therefore, in contrast

with the (G)SDPC algorithm, the feasibility of the final allocation of the SSPA algorithm is

immediate, i.e., does not require any proof. Finally, another advantage of our general frame-

work is that the proofs of Pareto-efficiency and strategy-proofness become substantially more

transparent since they do not contain specific arguments that hinge on quorums/capacities

(Monte and Tumennasan, 2013) or graph theoretical notions (Kamiyama, 2013).

Early contributions of, among others, Barberà (1979), Dasgupta, Hammond, and Maskin

(1979), Pattanaik (1978) already study the immunity or vulnerability of mechanisms to joint

manipulation of coalitions of agents (rather than individual agents) in different settings.

More recently, Barberà, Berga, and Moreno (2010, 2016) study conditions under which

strategy-proofness and group strategy-proofness are equivalent. More specifically, Barberà,

Berga, and Moreno (2010) obtain sufficient and essentially necessary conditions on domains

in public good economies. Barberà, Berga, and Moreno (2016) show that the equivalence

between the two forms of strategy-proofness in many private good economies is due to a

common structure. Even though project allocation is in general neither an instance of

a pure public good economy nor pure private good economy, the two forms of strategy-

proofness of our SSPA mechanism follow from the same arguments as is clear from the proof

of Theorem 1.

The remainder of the paper is organized as follows. In Section 2, we introduce the model.
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In Section 3, we present and prove the results. Section 4 concludes.

2 Model

A firm aims to allocate projects from a set P = {p1, . . . , pm} to a set of workers I =

{1, . . . , n}. Each project may have restrictions or requirements regarding the team of workers

that can carry it out. Additionally, teams that are to execute different projects may have

common workers, but possibly only to some extent. Taking into account all constraints, let

the (feasible) project allocations be given by a non-empty set A with

A ⊆
{{

(p1, T 1), . . . , (pk, T k)
}

: for all l, l′, l 6= l′, ∅ 6= T l ⊆ I, pl ∈ P, and pl 6= pl
′
}
.

In other words, projects p1, . . . , pk can be simultaneously carried out by teams T 1, . . . , T k if

and only if {(p1, T 1), . . . , (pk, T k)} ∈ A.

Let α ∈ A be an allocation. Worker i’s assignment at α is given by

α(i) =
⋃

(pl,T l)∈α : i∈T l

{
(pl, T l)

}
.

Let A(i) = {α(i) : α ∈ A} ∪ {∅} denote worker i’s possible assignments, where ∅ is the

empty assignment, i.e., being unassigned. We assume that worker i has a weak order3 �i over

A(i). For A,A′ ∈ A(i), we write A �i A′ if A �i A′ but not A′ �i A, and we write A ∼i A′

if A �i A′ and A′ �i A. For A = {(p1, T 1), . . . , (pk, T k)} ∈ A(i), let P (A) = {p1, . . . , pk}
denote the projects associated with assignment A. Throughout, we assume that for each

A ∈ A(i), A �i ∅. This assumption says that each non-empty assignment is considered a

“good” which for instance delivers a bonus pay, promotion, or experience. Let Ri denote

the collection of all possible preferences for i. Let R = ×i∈IRi. Since we do not change

the set of projects, workers, and constraints, a (project allocation) problem is given by a

preference profile �= (�i)i∈I ∈ R.

Let α, α′ ∈ A. Let �∈ R. Allocation α′ Pareto-dominates allocation α at � if for each

i ∈ I, α′(i) �i α(i) and for some j ∈ I, α′(j) �j α(j). Allocation α is Pareto-efficient at �
if there is no allocation α′ that Pareto-dominates α at �.

Let R̄i ⊆ Ri and R̄ = ×i∈IR̄i. A mechanism on R̄ is a mapping ϕ that associates each

problem �∈ R̄ with an allocation ϕ(�) ∈ A. A mechanism ϕ is Pareto-efficient if for

each �∈ R̄, ϕ(�) is Pareto-efficient at �. A mechanism ϕ is strategy-proof if there are

no i ∈ I, �∈R̄, and �′i ∈R̄i such that ϕi(�′i, (�j)j 6=i) �i ϕi(�). A mechanism ϕ is group

3In other words, �i is complete and transitive.
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strategy-proof if there are no I ′ ⊆ I, �∈R̄, and (�′i)i∈I′ ∈ ×i∈I′R̄i such that

for each i ∈ I ′, ϕi((�′j)j∈I′ , (�j)j 6∈I′) �i ϕi(�).

A mechanism ϕ is strongly group strategy-proof if there are no I ′ ⊆ I, �∈ R̄, and

(�′i)i∈I′ ∈ ×i∈I′R̄i such that

for each i ∈ I ′, ϕi((�′j)j∈I′ , (�j)j 6∈I′) �i ϕi(�) and

for some i′ ∈ I ′, ϕi′((�′j)j∈I′ , (�j)j 6∈I′) �i′ ϕi′(�).

Note that strong group strategy-proofness implies group strategy-proofness, which in turn

implies strategy-proofness.

3 Results

We propose a mechanism based on an algorithm that sequentially shrinks the set of project

allocations to a singleton. The algorithm uses an order of the workers that can be thought

of as going down through a hierarchy or an order of decreasing seniority. At each step of the

algorithm a worker discards from the set of still available allocations all allocations that do

not give him one of his most preferred assignments. Without loss of generality, throughout

we order the workers according to their index : 1, . . . , n.

Shrink algorithm

Input: �∈R.

• Step 0 (initialization): set Σ0 ≡ A.

• Step i = 1, . . . , n: let Σi ≡ {α ∈ Σi−1 : α(i) �i α′(i) for each α′ ∈ Σi−1}.
Output: Σ(�) ≡ Σn.

Obviously, since A 6= ∅ and all workers’ preferences are complete, the algorithm is well-

defined and the output contains at least one allocation. In general, the output is not a

singleton,4 but according to the next lemma for each worker all allocations in the output

report the same welfare.

Lemma 1. For each �∈R, Σ(�) only contains Pareto-efficient allocations. All allocations

α, α′ ∈ Σ(�) are Pareto equivalent at �, i.e., for each i ∈ I, α(i) ∼i α′(i).

Proof. Suppose that for some �∈ R an allocation α ∈ Σ(�) is Pareto-dominated by an

allocation β ∈ A. Let l ∈ I be the lowest index worker with β(l) �l α(l). Since for each

j = 1, . . . , l − 1, β(j) ∼j α(j), it follows that α, β ∈ Σl−1. Then, since β(l) �l α(l), α 6∈ Σl,

which contradicts α ∈ Σ(�). The second statement follows from similar arguments.

4A simple example is I = {1}, P = {p1, p2}, A = {{(p1, {1})}, {(p2, {1})}} and {(p1, {1})} ∼1 {(p2, {1})}.
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In view of Lemma 1, the firm can fix a tie-breaking rule so that for each �∈ R we

obtain a unique allocation σ(�) ∈ Σ(�). The serial shrink project allocation (SSPA)

mechanism σ associated with the tie-breaking rule is the mechanism that for each �∈R
yields the allocation σ(�). If for some tie-breaking rule the associated SSPA mechanism

is Pareto-efficient or ((strongly) group) strategy-proof on some preference domain, then all

other SSPA mechanisms (associated with different tie-breaking rules) also are.

Theorem 1. SSPA mechanisms are Pareto-efficient and group strategy-proof on R.

Proof. Pareto-efficiency follows from Lemma 1. Suppose σ is not group strategy-proof, i.e.,

there are I ′ ⊆ I, �∈R, and (�′i)i∈I′ ∈ ×i∈I′Ri such that

for each i ∈ I ′, σi(�′) �i σi(�), where �′= ((�′j)j∈I′ , (�j)j 6∈I′). (1)

Let l be the lowest index worker in I ′. Then, from the fact that A does not depend on

the preference profile, it follows that steps 0, . . . , l − 1 of the shrink algorithm for � and �′

are identical. So, at the beginning of step l in the algorithm for �, there is an allocation

(in Σl−1) where worker l’s assignment is σl(�) and there is an allocation (in Σl−1) where

worker l’s assignment is σl(�′). From worker l’s optimization at step l in the algorithm for

�, σl(�) �l σl(�′), which contradicts (1). Hence, σ is group strategy-proof.

The following example shows that group strategy-proofness in Theorem 1 cannot be

replaced by strong group strategy-proofness.

Example 1. (No SSPA mechanism is strongly group strategy-proof (I).)

Consider the problem with P = {p}, I = {1, 2, 3}, and A = {(p, 12), (p, 13)},5 i.e., the

unique project can only be completed by either 12 or 13. Let preferences �∈ R be given by

�1: [(p, 12), (p, 13)], ∅
�2: (p, 12), ∅
�3: (p, 13), ∅.

The assignments are ranked from most preferred (left) to least preferred (right). The brackets

in worker 1’s preferences indicate that he is indifferent between his two non-empty assign-

ments. Since Σ(�) = (p, 12), at � any SSPA mechanism yields the allocation σ(�) = (p, 12)

in which the project is assigned to workers 1 and 2 (i.e., worker 3 is unassigned).

Let I ′ = {1, 3} and suppose that worker 3 submits �′3=�3 and worker 1 submits �′1 ∈ R1

where

5For notational convenience and when no confusion can arise, we write i1i2 . . . ik for the set {i1, i2, . . . , ik}
and omit brackets from singleton sets. So, A={{(p, {1, 2})}, {(p, {1, 3})}} is written as A = {(p, 12), (p, 13)}.
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�′1: (p, 13), (p, 12), ∅.

For �′= (�′1,�2,�′3), Σ(�′) = (p, 13). Hence, at �′ any SSPA mechanism yields the al-

location σ(�′) = (p, 13) in which the project is assigned to workers 1 and 3. Clearly,

σ1(�′) ∼1 σ1(�) and σ3(�′) �3 σ3(�). Hence, no SSPA mechanism is strongly group

strategy-proof. �

A key feature of Example 1 is that a high hierarchy worker (worker 1) who is indifferent

between teams with the same project can “help” a lower hierarchy worker (worker 3) to be

assigned to the project (or even to a different, more preferred project) by pretending that

he (i.e., worker 1) strictly prefers one team over the other(s).

To avoid a manipulation as in Example 1, one possibility is to assume that for each i ∈ I,

worker i’s preferences �i are strict, i.e., for all A,A′ ∈ A(i) with A 6= A′, A 6∼i A′. Let

R>
i ⊆ Ri denote the collection of all possible strict preferences for i. Let R> = ×i∈IR>

i .

According to Theorem 2 below, if preferences are strict, the unique SSPA mechanism on R>

is strongly group strategy-proof.

A second possible idea to avoid a manipulation as in Example 1 is to assume that for

each i ∈ I, worker i’s preferences �i are indifferent with respect to peers, i.e., for all

A,A′ ∈ A(i), A ∼i A′ if P (A) = P (A′). This assumption ensures that no worker submits

a preference list in which a project with some co-worker is strictly preferred to the same

project with another co-worker (such as in �′1 in Example 1). However, as the following

example shows, this assumption is not sufficient to guarantee that SSPA mechanisms are

strongly group strategy-proof.

Example 2. (No SSPA mechanism is strongly group strategy-proof (II).)

Consider the problem with P = {p}, I = {1, 2, 3}, and A = {(p1, 123), (p2, 12)}. Let

preferences �∈ R be given by

�1: [(p1, 123), (p2, 12)], ∅
�2: (p2, 12), (p1, 123), ∅
�3: (p1, 123), ∅.

Note that since each project can only be completed by one team, all preferences are (trivally)

indifferent with respect to peers. Since Σ(�) = (p2, 12), at � all SSPA mechanisms yield

the allocation σ(�) = (p2, 12). Let I ′ = {1, 3} and suppose that worker 3 submits �′3=�3

and worker 1 submits �′1 ∈ R1 where

�′1: (p1, 123), (p2, 12), ∅
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Let �′= (�′1,�2,�′3). Since Σ(�′) = (p1, 123), at �′ all SSPA mechanisms yield the allo-

cation σ(�′) = (p1, 123). Clearly, σ1(�′) ∼1 σ1(�) and σ3(�′) �3 σ3(�). Hence, no SSPA

mechanism is strongly group strategy-proof. �

We strengthen the previous assumption by demanding that for each i ∈ I, worker i’s

preferences �i are indifferent with respect to peers only, i.e., for all A,A′ ∈ A(i),

A ∼i A′ if and only if P (A) = P (A′). This assumption excludes a worker from being indif-

ferent between two assignments that involve different projects (such as in �1 in Example 2).

More precisely, if �i is indifferent with respect to peers only, then agent i’s preferences are

purely based on the (combinations of) projects (and not on the teammates), and moreover,

preferences over (combinations of) projects are strict. Let R=
i ⊆ Ri denote the collec-

tion of all possible preferences for i where he is indifferent with respect to peers only. Let

R= = ×i∈IR=
i . Domains R> and R= have natural appeal. Still, these domains are of

course somewhat restricted if we believe that in practical applications agents have (more

complicated) indifferences in their preferences. We can now state and prove our second main

result.

Theorem 2. Let R̄ = R>,R=. Then, there is a unique SSPA mechanism on R̄ which

moreover is strongly group strategy-proof.

Proof. Let R̄ = R>,R=. Suppose that there are distinct α, α′ ∈ A, α 6= α′, contained in

the output of the shrink algorithm for some �∈ R̄. Let i ∈ I such that P (α(i)) 6= P (α′(i)).

Since �i ∈ R̄i, α(i) 6∼i α′(i), which contradicts the optimization at step i of the shrink

algorithm. So, for each �∈ R̄, |Σ(�)| = 1. So, there is a unique SSPA mechanism σ on R̄.

Suppose σ is not strongly group strategy-proof on R̄. Then, there are I ′ ⊆ I, �∈R̄, and

(�′i)i∈I′ ∈ ×i∈I′R̄i such that

for each i ∈ I ′, σi(�′) �i σi(�) and

for some i′ ∈ I ′, σi′(�′) �i′ σi′(�),

where �′= ((�′j)j∈I′ , (�j)j 6∈I′). Let l be the lowest index worker in I ′ for which σl(�′) �l
σl(�). Let Σ0,Σ1, . . . ,Σn and Σ′0,Σ

′
1, . . . ,Σ

′
n be the sets of allocations in the algorithm for �

and �′. Obviously, Σ0 = Σ′0. Suppose that for some k with 0 ≤ k < l− 1 we have Σk = Σ′k.

We prove that Σk+1 = Σ′k+1. The statement follows immediately if k + 1 6∈ I ′. Suppose

k + 1 ∈ I ′. Since k + 1 < l, σk+1(�′) ∼k+1 σk+1(�). Hence, worker k + 1 shrinks the set of

allocations at � and �′ in exactly the same way. (Here we use that �′k+1 ∈ R̄k+1.) Hence,

Σk+1 = Σ′k+1. We conclude that Σl−1 = Σ′l−1. But then σl(�′) �l σl(�) contradicts worker

l’s optimization at step l of the algorithm for �. Hence, σ is strongly group strategy-proof

on R̄.
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Next, we discuss two classes of allocation problems that have been studied in the literature

and derive two corollaries to Theorems 1 and 2.

3.1 Two classes of allocation problems

Monte and Tumennasan (2013) study so-called matching with quorums. Their model is

a special case of ours in two aspects. First, each project p requires at least qp ≥ 1 workers

(its minimum quorum) to be completed and has a maximum capacity kp ≤ n. Workers are

assumed to be homogeneous. Hence, the feasible project allocations are given by A = Aq

where

Aq =

{
{(p1, T 1), . . . , (pk, T k)} : for all l, l′, l 6= l′, T l ⊆ I, pl ∈ P, pl 6= pl

′
,

T l ∩ T l′ = ∅, and qpl ≤ |T l| ≤ kpl

}
.

In particular, each worker i ∈ I can be assigned to at most one project (T l ∩ T l′ = ∅),
i.e., for each assignment A∈A(i), |A| ≤ 1. Second, workers are indifferent with respect to

peers only. Monte and Tumennasan (2013) propose a mechanism (on R=) called the serial

dictatorship with project closures (SDPC) mechanism. They show that the SDPC mecha-

nism is Pareto-efficient and strategy-proof (Monte and Tumennasan, 2013, Theorem 1). In

matching with quorums, the SDPC mechanism coincides with the unique SSPA mechanism

(see Proposition 2, Appendix A). Hence, we obtain the following corollary to Theorems 1

and 2.

Corollary 1. (Matching with quorums.)

The serial dictatorship with project closures (SDPC) mechanism in matching with quorums

is Pareto-efficient and strongly group strategy-proof.

Kamiyama (2013) studies so-called abstract matching markets. His model subsumes

that of Monte and Tumennasan (2013), yet it is still a special case of ours in again two

aspects. First, in Kamiyama (2013) there is a finite bipartite graph G = (V,E) where

V = I ∪ P is the set of vertices and E is a (possibly incomplete) set of edges between

vertices in I and vertices in P . There is also a non-empty family F of subsets of E such

that for each F ∈ F , [{i, p}, {i, p′} ∈ F ⇒ p = p′]. The feasible project allocations are given

by A = Aa where

Aa =

{
{(p1, T 1), . . . , (pk, T k)} : for all l, l′, l 6= l′, ∅ 6= T l ⊆ I, pl ∈ P, pl 6= pl

′
,

and
⋃
l′′

⋃
i∈T l′′

{{i, pl′′}} ∈ F
}
. (2)

9



In particular, each worker can only be assigned to at most one project. Second, workers

are indifferent with respect to peers only. Kamiyama (2013) proposes a mechanism (on R=)

called the generalized serial dictatorship with project closures (GSDPC) mechanism. He

shows that the GSDPC mechanism is Pareto-efficient and strategy-proof (Kamiyama, 2013,

Theorem 2). In abstract matching markets, the GSDPC mechanism coincides with the

unique SSPA mechanism (see Proposition 1, Appendix A). Hence, we obtain the following

corollary to Theorems 1 and 2.

Corollary 2. (Abstract matching markets.)

The generalized serial dictatorship with project closures (GSDPC) mechanism in abstract

matching markets is Pareto-efficient and strongly group strategy-proof.

4 Concluding remarks

We have studied a general framework to allocate projects to workers. We have assumed that

each worker submits a preference list where all his possible assignments are ranked weakly

above the empty assignment. Even though this is restrictive, we can think of situations in

which the firm can call upon its workers to participate in projects, e.g., because of conditions

in employment contracts, and hence workers should be ready to do so. Especially when

projects are “goods” (as is the case in our framework) the assumption seems very reasonable.

Note that Kamiyama (2013) and Monte and Tumennasan (2013) make this assumption as

well.

If we would like workers to have preferences and submit lists where some assignments

could be declared “unacceptable,” then the definitions related to mechanisms can be adjusted

as follows. Let R∗i denote the collection of weak orders6 over A(i). Let R∗ = ×i∈IR∗i . A

mechanism on R∗ is a mapping ϕ that associates each problem �∈ R∗ with an allocation

ϕ(�) ∈ A ∪ {∅}. Pareto-efficiency and strategy-proofness of mechanisms are defined as

before. In the case of unacceptable assignments, it is natural to also include individual

rationality as a desirable property of a mechanism. A mechanism ϕ is individually rational

if for each �∈R∗, α = ϕ(�) is individually rational at �, i.e., for each i ∈ I, α(i) �i ∅.
The following example shows that there is no individually rational mechanism on R∗

that is both Pareto-efficient and strategy-proof.

Example 3. (Unacceptable assignments.)

Consider the problem with P = {p1, p2}, I = {1, 2}, and A = {(p1, 12), (p2, 12)}. Let ϕ be

6So, since ∅ ∈ A(i), we allow for preferences �i∈ R∗i and A ∈ A(i) with ∅ �i A.
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an individually rational and Pareto-efficient mechanism on R∗. Let preferences �∈ R∗ be

given by

�1: (p1, 12), (p2, 12), ∅
�2: (p2, 12), (p1, 12), ∅.

At� there are two individually rational and Pareto-efficient allocations, namely both workers

are assigned to either p1 or p2. Suppose mechanism ϕ selects p1. Then, consider

�′2: (p2, 12), ∅, (p1, 12),

i.e., worker 2 reports p1 to be unacceptable. Obviously, at �′=(�1,�′2) ∈ R∗, the unique in-

dividually rational and Pareto-efficient allocation assigns both workers to project p2. Hence,

at � worker 2 can manipulate mechanism ϕ and obtain a more preferred assignment. If the

mechanism selects p2 at �, then similarly worker 1 can manipulate the mechanism. Hence,

there is no individually rational mechanism that is both Pareto-efficient and strategy-proof.

�

Finally, note that in general there are multiple Pareto-efficient allocations. Then, a natu-

ral question that comes to mind is whether each Pareto-efficient allocation can be obtained as

the outcome of some SSPA mechanism (by possible changing the order of the workers). The

example in Monte and Tumennasan (2013, p.17) shows that the answer is already negative

for the specific case of matching with quorums.

Appendix A

Kamiyama (2013, Section 4.2) shows that the class of matching markets with quorums is a

special class of abstract matching markets and that for matching with quorums the SDPC

mechanism coincides with the GSDPC mechanism. Hence, it is sufficient to establish the

equivalence of the GSDPC mechanism with the serial shrink project allocation mechanism

for abstract matching markets. We first introduce an equivalent way to specify feasible

project allocations.

Let P̄ = P ∪ {∅}. A matching is a correspondence µ : P̄ → I, i.e., for each p ∈ P̄ ,

µ(p) ⊆ I, such that
⋃
p∈P̄ µ(p) = I and for all p, p′ ∈ P̄ with p 6= p′, µ(p) ∩ µ(p′) = ∅. Let

α ∈ A be a feasible project allocation. Then, µ defined by

µ(p) =

{
T if p ∈ P and T ⊆ I is such that (p, T ) ∈ α;

∅ if p ∈ P and there is no T ⊆ I with (p, T ) ∈ α

and µ(∅) = I\
⋃
p∈P µ(p) is a matching. Matchings that are thus obtained from feasible

project allocations are called feasible matchings.
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Lemma 2. There is a one-to-one correspondence between feasible matchings and feasible

project allocations.

Proof. The statement follows from the observation that if µ is a feasible matching, then

α =
⋃

p∈P :µ(p) 6=∅

{(p, µ(p))}

is the feasible project allocation that induces µ.

Let an abstract matching market (Kamiyama, 2013) have feasible project allocations Aa,
i.e., as specified in (2). One easily verifies that a matching ν is feasible if and only if⋃

p∈P :
ν(p)6=∅

⋃
i∈ν(p)

{{i, p}} ∈ F . (3)

In abstract matching markets, workers are indifferent with respect to peers only. So,

all allocation problems are in R=. Then, for convenience, we can omit co-workers from the

description of each worker’s assignment (at any allocation). Similarly, with slight abuse of

notation, we can use�i to denote worker i’s linear order over projects (and being unassigned).

In particular, for all p, p′ ∈ P with p 6= p′ we will write p �i p′ if and only if for all/some

{(p, T )}, {(p′, T ′)}∈A(i), {(p, T )}�i {(p′, T ′)}. We similarly slightly abuse the notation �i.
Fix the order of workers as 1, . . . , n. The GSDPC algorithm can be described as follows.

GSDPC algorithm (Kamiyama, 2013)

Input: �∈R=.

• Step 0 (initialization): for each p ∈ P̄ , set µ(p) ≡ ∅.
• Step i = 1, . . . , n:

I. Compute7

Pi =

{
p ∈ P : for some F ∈ F ,

[
{{i, p}} ∪

⋃
p′∈P :
µ(p′)6=∅

⋃
j∈µ(p′)

{{j, p′}}
]
⊆ F

}
∪ {∅}.

II. Let p∗ ∈ Pi such that for each p ∈ Pi\{p∗}, p∗ �i p.
Adjust µ(p∗) ≡ µ(p∗) ∪ {i}.

Output: a feasible matching µ� ≡ µ.

7Kamiyama (2013) requires in the definition of Pi that F\
[
{{i, p}} ∪

⋃
p′∈P :
µ(p′) 6=∅

⋃
j∈µ(p′){{j, p′}}

]
only

contains edges that involve (a subset of) workers i+ 1, . . . , n (and any projects). However, this requirement

is redundant by his assumptions that (1) for each F ∈ F , [{j, q}, {j, q′} ∈ F ⇒ q = q′] and (2) for each

{j, q} ∈ E, q �j ∅.
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The GSDPC mechanism yields for each �∈R= the feasible matching µ� obtained by

applying the GSDPC algorithm to �.

Proposition 1. In abstract matching markets, the GSDPC mechanism coincides with the

unique SSPA mechanism. Formally, for each �∈R=, each worker is assigned to the same

project (or no project) at µ� and σ(�).

Proof. Let �∈R=. From (3), it follows that for each i = 1, . . . , n,

Pi =

{
p ∈ P : there is a feasible matching ν such that[

{{i, p}} ∪
⋃
p′∈P :
µ(p′)6=∅

⋃
j∈µ(p′)

{{j, p′}}
]
⊆

⋃
p′∈P :
ν(p′) 6=∅

⋃
j∈ν(p′)

{{j, p′}}
}
∪ {∅}.

Using Lemma 2 one can now easily prove by induction that for each i = 1, . . . , n, if p∗ ∈ Pi
is such that p∗ 6= ∅ and for each p ∈ Pi\{p∗}, p∗ �i p, then for each α ∈ Σi in the shrink

algorithm for �, p∗ is the unique project in P (α(i)). Similarly, if for each p ∈ Pi\{∅}, ∅ �i p,
then for each α ∈ Σi in the shrink algorithm for �, P (α(i)) = ∅. Hence, each worker is

assigned to the same project (or no project) at µ� and σ(�).

The following result is an immediate corollary to Proposition 1 and Kamiyama (2013,

Section 4.2).

Proposition 2. In matching with quorums, the SDPC mechanism coincides with the unique

SSPA mechanism.
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