

Barcelona GSE Working Paper Series

Working Paper nº 669

Econometrics on GPUs
Michael Creel
Sonik Mandal

Mohammad Zubair

November 2012

E
onometri
s on GPUs

Mi
hael Creel

a,1

, Sonik Mandal

b

, Mohammad Zubair

b

a

Universitat Autònoma de Bar
elona, Bar
elona Graduate S
hool of E
onomi
s and MOVE

b

Old Dominion University

Abstra
t

A graphi
al pro
essing unit (GPU) is a hardware devi
e normally used to ma-

nipulate
omputer memory for the display of images. GPU
omputing is the

pra
ti
e of using a GPU devi
e for s
ienti�
 or general purpose
omputations

that are not ne
essarily related to the display of images. Many problems in

e
onometri
s have a stru
ture that allows for su

essful use of GPU
omputing.

We explore two examples. The �rst is simple: repeated evaluation of a likeli-

hood fun
tion at di�erent parameter values. The se
ond is a more
ompli
ated

estimator that involves simulation and nonparametri
 �tting. We �nd speedups

from 1.5 up to 55.4 times,
ompared to
omputations done on a single CPU
ore.

These speedups
an be obtained with very little expense, energy
onsumption,

and time dedi
ated to system maintenan
e,
ompared to equivalent performan
e

solutions using CPUs. Code for the examples is provided.

Keywords: parallel
omputing; graphi
al pro
essing unit; GPU; e
onomet-

ri
s; simulation-based methods; Bayesian estimation.

JEL
odes: C13, C14, C15, C33.

1. Introdu
tion

A graphi
al pro
essing unit (GPU) is a hardware devi
e normally used to

manipulate
omputer memory for the display of images. GPUs have evolved to

have a great
apa
ity for �oating point
omputations of the sort that are needed

to display images, in
luding appli
ations of shading and textures, geometri
al

omputations related to the rotation of obje
ts, interpolation, et
. GPUs a
hieve

their ex
eptional performan
e for these operations by performing
omputations

in parallel, using a large number of
ores. While a typi
al desktop or laptop

omputer may have a 2 or 4
ore CPU, the GPU that it
ontains may have

dozens, hundreds, or even thousands of
ores.

Email addresses: mi
hael.
reel�uab.es (Mi
hael Creel), smand009�odu.edu (Sonik

Mandal), zubair�
s.odu.edu (Mohammad Zubair)

1

Support from grants MICINN-ECO2009-11857 and SGR2009-578 is gratefully a
knowl-

edged.

Preprint submitted to Computational Statisti
s & Data Analysis November 13, 2012

GPU
omputing is the pra
ti
e of using a GPU devi
e for s
ienti�
 or gen-

eral purpose
omputations that are not ne
essarily related to the display of

images. The idea is to take advantage of the many
ores of the GPU to a
-

elerate
omputations by o�oading part of the work of the CPU to the GPU.

Not all problems are good
andidates for GPU
omputing. Certain
omputa-

tions exhibit data-level parallelism, whi
h means that the same instru
tions are

applied to many di�erent pie
es of data. An example is the
omputation of

a log-likelihood fun
tion, where the log-likelihood is
omputed for ea
h sam-

ple observation, and then summed up. In general, GPUs are well-suited to data

parallel problems. However, in a data parallel environment, it is possible for par-

allel exe
ution units to perform di�erent operations on their data, based upon

logi
al bran
hing (i.e., �if� statements). GPU hardware realizes full e�
ien
y

when all threads in a group take the same exe
ution path. Logi
al bran
hes

resulting from �if� statements
an result in �thread divergen
e�, where threads

within a group take di�erent exe
ution paths. Problems whi
h
annot avoid ex-

essive thread divergen
e are likely not good
andidates for porting to the GPU.

Another
onsideration is that GPU
omputing requires transferring data from

the host
omputer to the GPU devi
e, and results from the GPU devi
e ba
k

to the host
omputer. Su
h memory transfers are relatively slow. A problem

that is a good
andidate for GPU
omputing should exhibit data parallelism,

with high
omputational intensity relative to required memory transfers, and

should require little logi
al bran
hing. Within e
onometri
s, many problems

�t these requirements reasonably well. This paper explores several examples of

e
onometri

omputations that
an bene�
ially be ported to GPU
omputing.

To give a bit of ba
kground, interest in s
ienti�
 uses of GPU
omputing be-

gan in the early 2000s. In 2006 and 2007, Nvidia introdu
ed the CUDA parallel

omputing ar
hite
ture and software development kit, whi
h allowed program-

ming for GPUs using an extension of the C++ language. This programming

model made GPU programming mu
h more a

essible than it had been previ-

ously, and it has sin
e been used in many appli
ations in many areas, as perusal

of the web page http://www.nvidia.
om/obje
t/
uda_show
ase_html.html

reveals. Speedups reported on that page range from 1 to 3 orders of magnitude,

ompared to
omputations done using a single CPU thread. CUDA and the as-

so
iated programming environment generates
ode that runs only on hardware

devi
es from Nvidia. The OpenCL

2

programming framework is a standard gov-

erned by the Khronos non-pro�t
onsortium, and it provides a GPU
omputing

framework similar to CUDA. The OpenCL language and appli
ation program-

ming interfa
e allows for GPU programming and mixed CPU/GPU program-

ming using hardware devi
es from a number of manufa
turers, in
luding Nvidia,

Intel and AMD. Though OpenCL and other alternatives to CUDA are available,

the CUDA framework is at present the most widely used environment for GPU

programming. It is the environment for whi
h most examples available, and

there exists an extensive set of
ode libraries that
an fa
ilitate GPU program-

2

http://www.khronos.org/open
l/

2

http://www.nvidia.com/object/cuda_showcase_html.html
http://www.khronos.org/opencl/

ming using CUDA. Libraries exist for basi
 linear algebra subroutines (
uBLAS)

and fast Fourier transform (
uFFT), for random number generation (
uRAND),

and to enable fun
tionality of the C++ standard template library on the GPU

(Thrust). As well, third parties have developed extensions and wrappers for

many widely used programming languages, in
luding Python, Matlab, Mathe-

mati
a, and others. Be
ause of the
ompleteness of the environment and its ease

of use at the present time, we fo
us on uses of CUDA and related te
hnology in

this paper. However, it is worth emphasizing that GPU
omputing is evolving

rapidly and is
ontinually be
oming more a

essible. We expe
t that CUDA

and its alternatives will
ontinue to be
ome easier to use.

Another fa
tor whi
h makes learning about GPU
omputing attra
tive is

that the
omputational
apa
ity of GPU hardware is
onstantly in
reasing at

a rapid rate, as is its energy e�
ien
y. From the page en.wikipedia.org/

wiki/Comparison_of_Nvidia_graphi
s_pro
essing_units, we
an tra
e the

performan
e of GPUs o�ered for desktop
omputers. Taking as an example

mid-level
ards, whi
h o�er good performan
e at a moderate pri
e, the Nvidia

GTX460 GPU was introdu
ed in July 2010, and o�ered 907 G�op/s and 6.05

G�op/s per watt of power
onsumption, for single pre
ision
omputations. The

GTX560 Ti was introdu
ed in January 2011 and o�ered 1263 G�op/s and 7.43

G�op/s per watt. At the time of this writing (Mar
h, 2012), the GTX460

is available for roughly $150, while the GTX560Ti
osts roughly $230 (pri
es

from www.amazon.
om). These theoreti
al peak numbers for single pre
ision

omputations may not translate dire
tly to the performan
e one sees in real-

world appli
ations, but they do illustrate the evolution of GPU
omputing power

and energy e�
ien
y over time.

For a more realisti

omparison of the power of GPU
omputing in rela-

tion to CPU-only
omputing, Phillips (2010) reports results for the widely-used

LINPACK ben
hmark, using double pre
ision. A CPU-based system a
hieves

11 G�op/s per $1000
ost, and 0.15 G�op/s per watt of power
onsumption. A

mixed CPU-GPU system a
hieves 60 G�op/s per $1000
ost, and 0.66 G�op/s

per watt. It is
lear that GPU
omputing adds a great deal of performan
e

relative to
ost or energy
onsumption.

In spite of the potential for
heap a

ess to this sour
e of
omputing power,

there has been, up to the present time, remarkably little use of GPU
omputing

in resear
h work in e
onomi
s and e
onometri
s, though other �elds su
h as

statisti
s (e.g., Su
hard et al. 2010) and areas in the biologi
al s
ien
es (e.g.,

Liepe et al. 2010) have seen more work done. Mathur and Morozov (2012)

use CUDA to solve an optimal
ontrol problem that involves experimentation

and learning, using value fun
tion iteration, and report speedups of 15-26 times.

Aldri
h et al. (2011) show how GPU
omputing
an be used to a

elerate the

solution of a dynami
 equilibrium model, also using value fun
tion iteration

and CUDA. They report speedups of around 200X. Durham and Geweke (2011)

present an algorithm for Bayesian estimation of models, using sequential Monte

Carlo (parti
le �ltering), implemented with CUDA. They do not
ompare their

CUDA software to a CPU version. Li (2011) uses CUDA to implement kernel

density estimation on a GTX 470 devi
e, whi
h has 448 pro
essor
odes, and

3

en.wikipedia.org/wiki/Comparison_of_Nvidia_graphics_processing_units
en.wikipedia.org/wiki/Comparison_of_Nvidia_graphics_processing_units
www.amazon.com

reports speedups of more than 400X
ompared to single threaded Matlab
ode.

The very limited use of GPU
omputing in e
onomi
s and e
onometri
s up

to the present time
an probably be explained by the more demanding
omputer

programming skills that are needed to
ode GPU appli
ations. One fa
tor that

an help to over
ome this barrier is the availability of working and
learly do
-

umented
ode examples in areas relevant to e
onomists and e
onometri
ians.

This paper provides some examples of GPU
omputing applied to e
onometri

estimation, a

ompanied by sour
e
ode that is do
umented and explained. The

intention is not to provide an exhaustive survey of potential uses, but rather to

provide some working examples that illustrate the potential of GPU
omputing

for e
onometri
 estimation. The sour
e
ode that a

ompanies the paper
an

serve as a model for development of
ode for other estimation problems.

3

We present two examples. The �rst is the
omputation of a likelihood fun
-

tion. This is a simple example that illustrates the basi
 ideas, it has appli
ation

in both
lassi
al and Bayesian e
onometri
s, and it shows that a good speedup

an be obtained. The se
ond example uses the indire
t likelihood estimators

of Creel and Kristensen (2011). These estimators are simulation-based, and

simulation is a data parallel task that is an ideal
andidate for porting to the

GPU. We �nd that use of GPU
omputing
an deliver results up to 55 times

more qui
kly than is possible using a single CPU
ore. We expe
t that similar

speedups would apply to many other problems in e
onometri
 estimation.

2. Examples

2.1. Likelihood fun
tion

For a sample Zn = {(yt, xt)}n of n independent observations of a dependent

variable (yt) and ve
tor of explanatory variables (xt), let f(yt|xt; θ) be the den-
sity of yt
onditional on xt, with parameter ve
tor θ. The maximum likelihood

estimator of the parameter θ is θ̂ = argmax
∑n

t=1 ln f(yt|xt, θ). In the
ontext

of seeking to parallelize
omputations, Swann (2002) and Creel (2005) point out

that the sum
an be broken into sums over blo
ks of observations, using up to n

blo
ks. For parallelization using MPI, one would normally use as many blo
ks

as available CPU
ores. With a many-
ore GPU devi
e, a larger number of

blo
ks may be used, potentially giving a greater speedup. The simple presenta-

tion used here
an easily be adapted to dependent observations, and the basi

idea of
omputing the likelihood using blo
ks of observations is possible as long

as the data are Markovian.

To give a
on
rete example, suppose that yt is
onditionally distributed

Poisson:

f(yt|xt) ∼
exp(−λt)λ

yt

t

yt!

λt = exp(x′tθ)

3

The
ode is ar
hived at pareto.uab.es/m
reel/GPU_paper_
ode_release_v1.zip

4

http://pareto.uab.es/mcreel/GPU_paper_code_release_v1.zip

where xt and θ are k ve
tors. In this
ase, the
onditional log-likelihood fun
tion

is ln f(yt|xt, θ) = − exp(x′tθ) + ytx
′

tθ − log(yt!). Computation of the maximum

likelihood estimator requires iterative maximization, involving a number of eval-

uations of the obje
tive fun
tion. Likewise, Bayesian estimation using Markov

hain Monte Carlo requires many evaluations of the likelihood fun
tion (among

other
omputations) as the
hain advan
es, where the likelihood fun
tion may

be
omputed as

L(θ;Zn) = exp

(
n∑

t=1

ln f(yt|xt, θ)

)
.

Fo
using on this last
ase, we will look at the time to perform 2000 evaluations

of the Poisson likelihood fun
tion, when the dimension of xt and θ is 3. Ea
h

of the 2000 evaluations is done at a di�erent value of the parameter ve
tor,

as would be the
ase if MCMC were being done. Furthermore, the value of

the parameter is determined using CPU
omputations, and a memory transfer

ommuni
ating the new parameter values from the CPU to the GPU is done at

ea
h step. On the other hand, the data, Zn, whi
h uses mu
h more memory,

must only be transfered to the GPU on
e. This
oding solution allows GPU

omputation of the likelihood to be dropped in as a repla
ement for CPU-

based
omputation, into relatively
omplex CPU-based software for estimation

by maximum likelihood or MCMC. The
omputation of the likelihood fun
tion is

the inner-loop
omputational bottlene
k. When dealing with a
omplex software

hain, optimizing the inner loop is often where most gains
an be made. It may

not be desirable to port an entire
omplex software
hain to GPU
omputing

if substantial gains
an be made by optimizing only the likelihood fun
tion

omputations. This example explores this idea.

2.2. Indire
t likelihood inferen
e

Indire
t likelihood inferen
e (Creel and Kristensen, 2011) is method of e
ono-

metri
 estimation that relies on simulations from the model and on nonpara-

metri
 density or regression fun
tion
omputations. A very similar, and in some

aspe
ts, identi
al,
lass of estimators is known in the literature of the biolog-

i
al s
ien
es as Approximate Bayesian Computation (ABC) or likelihood-free

Bayesian inferen
e (see, e.g., Tavaré et al., 1997; Beaumont, Zhang and Bald-

ing, 2002; Marjoram et al., 2003; Sisson, Fan and Tanaka, 2007). The paper

of Creel and Kristensen makes
lear the relationship with maximum likelihood

estimation, and establishes a theoreti
al base for the estimators. Here, we follow

the notation of that paper. The
ombination of simulation and nonparametri
s

means that the estimators
an be
omputationally demanding. Be
ause sim-

ulations are independent of one another, the needed
omputations
an easily

be parallelized. Likewise, nonparametri
 methods su
h as kernels and nearest

neighbors require
omputing distan
es between large sets of points, and this is

also easily parallelized (Ra
ine, 2002; Creel, 2005; Gar
ia, 2008; Gar
ia, De-

breuve and Barlaud, 2008).

First, let us brie�y des
ribe the estimators. We wish to learn about a pa-

rameter θ ∈ Θ ⊂ R
k
des
ribing a model. Given a sample Yn = (y1, ..., yn)

5

from the model, we make inferen
e on θ through a q-dimensional statisti
,

Zn = Zn(Yn) ∈ R
q
. Let fn(Zn|θ) be the likelihood of the statisti
 for a

given value of the parameter. Ignore for a moment the fa
t that the likelihood

is normally not known on
losed form. The maximum indire
t likelihood (MIL)

estimator maximizes the indire
t likelihood de�ned through Zn:

θ̂MIL = arg sup
θ∈Θ

log fn(Zn|θ). (2.1)

This is very mu
h like a maximum likelihood estimator, ex
ept that the sample

is �ltered through a statisti
. This has the advantage of redu
ing the dimension

of random quantities from O(n) to the �nite value q, whi
h fa
ilitates the use

of nonparametri
 methods. The disadvantage is a potential loss of e�
ien
y if

Zn is not a su�
ient statisti
.

A Bayesian version of the MIL estimator may be of interest, following
onsid-

erations in Chernozhukov and Hong (2003), as it obviates the need for numeri
al

optimization. One possibility is to use the posterior mean of θ given Zn de�ned

as

θ̂BIL = E(θ|Zn) =

ˆ

Θ

θfn (θ|Zn) dθ, (2.2)

where fn (θ|Zn) is the posterior distribution given by

fn (θ|Zn) =
fn (Zn, θ)

fn (Zn)
=

fn(Zn|θ)π (θ)
´

Θ
fn(Zn|θ)π (θ) dθ

(2.3)

for some pseudo-prior density π(θ) on the parameter spa
e Θ. We refer to this

parti
ular estimator as the Bayesian indire
t likelihood (BIL) estimator. For

most
hoi
es of Zn, the density fn(Zn|θ) is of unknown form, so the MIL and BIL

estimators are infeasible. Feasible versions
an be
omputed using simulation

and nonparametri
 estimation. Here we dis
uss only a feasible version of the

BIL estimator, for the feasible version of the MIL estimator, and additional

dis
ussion, see Creel and Kristensen, 2011.

2.2.1. SBIL

The BIL de�ned above (equation 2.2) is a posterior mean. The SBIL esti-

mator proposed in Creel and Kristensen (2011) (essentially the same idea was

proposed in the ABC literature by Beaumont, Zhang and Balding, 2002) dire
tly

omputes the posterior mean using simulation and nonparametri
 regression, as

follows. Make i.i.d. draws θs, s = 1, ..., S, from the pseudo-prior density π(θ),
for ea
h draw generate a sample Yn(θ

s) from the model at this parameter value,

and then
ompute the
orresponding statisti
 Zs
n = Zn(Yn(θ

s)), s = 1, ..., S.
Now let ZS = {Zs

n, s = 1, 2, ..., S} be the set of the simulated statisti
s. We
an

obtain a simulated version of the BIL (SBIL) through nonparametri
 regression

te
hniques. One su
h is a simple K nearest neighbor regression estimator (see

Li and Ra
ine, 2007, Ch. 14),

θ̂SBIL =
1

K

S∑

s=1

θs1 (‖Zs
n − Zn‖ ≤ dK(Zn,ZS)) , (2.4)

6

where 1(·) is the indi
ator fun
tion that take the value 1 if the argument is true,
and the value 0 otherwise, and dK(Zn,ZS) is the Eu
lidean distan
e between

Zn and the Kth

losest element of ZS to Zn. Simply put, this estimator is

the average of the K values of θs that lead to the K
losest neighbors to Zn.

There are more sophisti
ated possibilities using weighting s
hemes, but this

simple version presents the main ideas
learly. This important point is that this

estimator is
onsistent for the posterior mean E(θ|Zn) as S in
reases, as long as

K is
hosen to be an appropriately slowly growing fun
tion of S. Be
ause S is

the number of simulations and
an be
hosen, we
an make the nonparametri

approximation to the true posterior mean as a

urate as is needed by using a

su�
ient number of simulations.

2.2.2. Two example models for IL estimation

MA model. A �rst model,
hosen for it's simpli
ity, is the �rst order moving

average (MA(1)) model

yt = ǫt + ψǫt−1

ǫt ∼ i.i.d.N(0, σ2)

We use a sample sizes of n=200 observations. The parameter ψ is one of the

values {−0.95, −0.9, −0.5, 0, 0.5, 0.9, 0.95}, so the model is always invertible.

The parameter σ is always equal to 1. The parameter ve
tor is θ = (ψ, σ).We set

the parameter spa
e to Θ = (−1, 1)× (0, 2), whi
h imposes invertibility, whi
h

is needed for the parameter to be identi�ed. The auxiliary statisti
 Zn is the

ve
tor of estimated parameters

(
ρ0, ρ1, ..., ρP , σ

2
υ

)
of a P -order autoregressive

(AR(P)) model yt = ρ0 +
∑P

p=1 ρpyt−p + υt, �t to the data using ordinary least

squares. For simpli
ity, we hold the order of the AR(P) model
onstant at

P = 10 a
ross the Monte Carlo repli
ations. Thus, the dimension of Zn is 12,

while the dimension of θ is 2, so we have
onsiderable overidenti�
ation.

Stru
tural au
tion model. One would not normally estimate an MA(1) model

using a simulation-based estimator su
h as those dis
ussed in this paper. How-

ever, ri
h stru
tural models with latent variables and nonlinearities often require

the use of simulation-based estimators. An example is the stru
tural au
tion

model presented by Li (2010), who studies the performan
e of the indire
t in-

feren
e estimator using Monte Carlo. Creel and Kristensen (2011) repli
ate the

Monte Carlo study, using the SBIL estimator. Here, we port the same example

to the GPU.

The model is a Dut
h au
tion, where only the winning bid is observed.

The number of bidders is �xed at N = 6, and the sample size is n = 100,
meaning that the out
omes of 100 au
tions are observed. At ea
h au
tion i =
1, 2, ..., 100, the quality, xi, of the item being au
tioned is the square of a uniform

(0, 2) random variable, to introdu
e heterogeneity in the values of the obje
ts

a
ross the au
tions. The 6 bidders draw their independent private values from

a
ommon exponential distribution with density

f(v|xi) =
1

exp(θ0 + θ1xi)
exp

(
−

v

exp(θ0 + θ1xi)

)

7

so that exp(θ0 + θ1xi) is the mean valuation of the item, over the bidders. The

equilibrium strategy for the winning bid is

b∗i = v∗i −
1

FN−1(v∗i |xi)

ˆ v∗

i

0

FN−1(u|xi)du

where v∗i is the highest private valuation, and F (·|xi) is the exponential distri-
bution fun
tion. For a given value of N (6 in this
ase), symboli

omputation

software
an be used to obtain a
ompa
t analyti
 solution for the winning

bid, so the model is easily simulated. The observed data are the 100 values of

{xi, b
∗

i }, and we seek to estimate θ0 and θ1. The true values are set to θ0 = 1
and θ1 = 0.5. To de�ne the auxiliary statisti
, we �t the auxiliary model

log b∗i = α + βxi + σǫi using ordinary least squares. The auxiliary statisti
 is

Zn = (α̂, β̂, log σ̂). The parameter spa
e, for reasons dis
ussed in Creel and

Kristensen (2011), is set to (θ0, θ1) ∈Θ = (−0.05, 2.45)×(0.00, 1.96). The short
explanation is that values outside this region never generate points
lose to a

Zn that is generated at the true value.

3. The Code and ben
hmarking

3.1. The
ode

We provide Matlab/O
tave and CUDA
ode to
ompute the Poisson likeli-

hood fun
tion and to estimate the MA and au
tion models by SBIL. This
ode

is do
umented and
ommented, so we do not des
ribe it in detail here, ex
ept

to note some points of interest. The CUDA
ode for the Poisson likelihood is

very simple, and serves as a tra
table introdu
tion to e
onometri
ally relevant

omputations using CUDA. It makes some use of the Thrust library. For the

SBIL examples, both the MA and au
tion example use an ordinary least squares

(OLS) �t as the auxiliary statisti
, and at the CUDA kernel level there are no

standard libraries available for OLS. We wrote a CUDA
ode library for OLS

using Hall (1970) as a guide. This part of our
ode may be of interest beyond the

examples we work with. Finally, the SBIL estimator uses nearest neighbors non-

parametri
 regression to approximate the
onditional mean (see equation 2.4).

To perform these
omputations on the GPU, we use an existing implementation

available at http://www.i3s.uni
e.fr/~
reative/KNN/ (Gar
ia, 2008; Gar-

ia, Debreuve and Barlaud, 2008). This
ode uses the brute for
e method of

omputing nearest neighbors, whi
h involves expli
itly
omputing the distan
es

between all target and query points. We have modi�ed this
ode to use multiple

GPU devi
es, if available.

3.2. Ben
hmarking

3.2.1. Poisson likelihood fun
tion

We
omputed 2000 iterations of the Poisson likelihood fun
tion, for sample

sizes n ∈ {28, 210, ..., 216} (for referen
e, 28 = 256, and 216 = 65536). In all
ases,
there are 3 regressors. The CPU-based
omputations were done using Matlab

8

http://www.i3s.unice.fr/~creative/KNN/

R2010a, running on a Ma
book Air laptop with an Intel Core i5-2557M CPU,

running at 1.7 GHz. The
omputations using the GPU were done on a single

GTX560Ti
ard, whi
h has 384 CUDA
ores and 1GB of memory. The retail

pri
e of this
ard is presently around $230 (pri
e from www.amazon.
om). The

sample data is transfered to the GPU only on
e, and then the likelihood fun
tion

is evaluated at ea
h of 2000 di�erent parameter values, where the parameter

values are determined sequentially using CPU-based
omputing. Thus, there

are 2000 CPU->GPU memory transfers of the value of the parameter ve
tor

θ during the
ourse of the
omputations, exa
tly as would o

ur if the GPU-

based
omputation of the likelihood were embedded in a CPU-based Markov

hain Monte Carlo (MCMC) or iterative maximization program. The timing

results are found in Table 1. In this and other tables, log2 S means the base-

2 logarithm of S, so that S = 2log2 S
. Thus, when log2 S in
reases by 1, S

doubles. The timings for the CUDA runs in
lude all memory transfers, that

of the data, and ea
h of the 2000 parameter ve
tor values. For the smallest

sample size, we see that the
omputations using the GPU devi
e are about 1.5

times faster than the
omputations done using Matlab on a laptop
omputer.

For the largest sample size, the
omputations on the GPU are almost 18 times

faster. The greater speedup for the larger sample size is
ertainly in�uen
ed by

the greater
omputational intensity relative to the time needed for the memory

transfers, whi
h is
onstant with respe
t to the sample size. These results show

that even simple
omputations with a small sample size
an be a

elerated

using CUDA, and that when the sample size be
omes larger, the a

eleration

be
omes
onsiderable. For a more
omputationally intensive likelihood fun
tion,

we expe
t that the speedup would be greater still.

3.2.2. SBIL estimator

For the SBIL estimator, the basi
 fa
tor that determines exe
ution time is

the time needed to
ompute S simulations of the auxiliary statisti
 and to �nd

the K nearest neighbors, among the S simulated values, to the observed value of

the auxiliary statisti
, Zn. In this se
tion we report timings for the two models,

along with timings for the same
omputations done on a CPU. The CPU-based

omputations were done using a single
ore of an Intel Core 2 Duo E8400 CPU,

whi
h has a
lo
k speed of 3.0 GHz. For the CPU
omputations, the simulation

loop was programmed using Matlab R2010a. The nearest neighbors part of the

omputations on the CPU were using the well-known ANN library (http://

www.
s.umd.edu/~mount/ANN/). It should be noted that the simulation part

of the problem is trivial to parallelize, and that the simulation time greatly

dominates the time to �nd the nearest neighbors, so roughly speaking, one
ould

redu
e the CPU time by a fa
tor of X by running the
ode on X homogeneous

ores, either on a single ma
hine or on a
luster.

The time to �nd the K nearest neighbors is virtually
onstant with respe
t

to K, though it is sensitive to S. This is be
ause to �nd the nearest neighbor to

Zn in the set of S points, ZS , or the K nearest neighbors, all of the S distan
es

must be
omputed in both
ases. For this reason, we set K to a single value,

50. Also, it is
lear that timings will s
ale linearly in S, as we simply need

9

www.amazon.com
http://www.cs.umd.edu/~mount/ANN/
http://www.cs.umd.edu/~mount/ANN/

to generate proportionally more auxiliary statisti
s and
ompute proportionally

more distan
es. For this reason, we present results for several moderate values

of S, but we do not use very large values of S, be
ause the CPU timings would

be
ome large, without
ontributing any useful additional information. Regard-

ing the two models, for the MA model, the auxiliary statisti
 has dimension 12,

while for the au
tion model, the dimension is 3. The sample size for the MA

model is 200, while for the au
tion model it is 100. Overall, the MA model

involves manipulating
onsiderably more data, but the
omputations are very

simple. The au
tion model involves less data, but more
omplex
omputations.

Table 2 presents timings for the MA model, for S = 217 up to S = 220

(217 = 131, 072 and 220 = 1, 048, 576). Timings are given as total wall
lo
k

time, measured using the Linux �time�
ommand on an otherwise unloaded sys-

tem. We
an observe that the CPU and GPU timings s
ale
lose to linearly,

approximately doubling as S doubles, as expe
ted. The speedup fa
tor is ap-

proximately 11X on average, whi
h is to say that the GPU
omputations are

about 11 times faster than the CPU
omputations. For lower values of log2 S
the speedup is a little less, be
ause the overhead of memory transfers between

host and devi
e memories is spread out over less
omputational time.

Table 3
ontains similar timings for the au
tion model. Again, the timings

s
ale
lose to linearly in S. For this model, the speedup from moving to GPU

omputing is
onsiderably greater, averaging about 40X for the sizes of simu-

lations
onsidered, and rea
hing a little more than 55X in the best
ase. The

greater speedup for the au
tion model
ompared to the MA model is likely due

to the fa
t that the au
tion model involves
onsiderably more
omplex
ompu-

tations, but requires
onsiderably less memory usage, as it involves a smaller

sample size and a lower dimensional auxiliary statisti
. Again, the speedup is

better for larger log2 S , so the time spent doing
al
ulations is larger
ompared

to the time for memory transfers.

The speedups are very satisfa
tory, in our opinion. For the sort of
omputa-

tions required for IL estimation, a single graphi
s
ard that
osts around $230

obtains performan
e equivalent to at least 9 and up to 55 CPU
ores. A typi-

al
luster would
onsist of ra
kmount servers, and a fairly typi
al ra
kmount

server may
ontain two quad
ore CPUs, for a total of 8
ores. The
ost of su
h

a server is roughly 10 times that of the GPU
ard. For the au
tion model, one

would need four su
h servers to equal the performan
e of the single GPU
ard,

for a total
ost of roughly 40 times that of the GPU
ard. The maintenan
e
ost

of su
h a
luster, as well as the
ost of powering and
ooling it is
onsiderable,

as is the noise that it makes. In
ontrast, the GPU devi
e
an be installed in

a single
heap, quiet, energy e�
ient desktop
omputer, and one only needs

maintain a single
omputer.

These results use a single GPU devi
e, and a single query point. When mul-

tiple query points are used, whi
h is the
ase when doing Monte Carlo, or when

running multiple MCMC
hains, the nearest neighbors part of the
omputations

be
omes more demanding, and it be
omes bene�
ial to seek further possibilities

for parallelization. It is straightforward to spread the
omputations over several

GPU devi
es, using OpenMP. The
ode that a

ompanies this paper dete
ts

10

and uses multiple GPU devi
es, if available.

4. E
onometri
 results

In this se
tion we extend the results of Creel and Kristensen (2011) by explor-

ing the e�e
t of in
reasing the number of simulations, S, and also systemati
ally

exploring the
hoi
e of the number of neighbors, K. In Creel and Kristensen

(2011), the number of simulations used in various examples is between 106 and
107 , and the paper
ontains no investigation of the e�e
t of the
hoi
e of S on

the performan
e of the estimators. Also, in that paper, a simple rule setting

K = 1.5×S0.25
is used to sele
t the number of neighbors for the nonparametri

�t. With GPU
omputing, it is mu
h qui
ker do Monte Carlo work, whi
h fa-

ilitates more
areful study of the performan
e of the IL estimators in relation

to the tuning of the nonparametri
 �tting methods used.

We present results for the MA model of Se
tion 2.2.2. The �ndings are very

similar for all 7 design points, so we fo
us on the
ase of ψ = 0.9, so as to present
fewer tables. First, we generate 5000 Monte Carlo repli
ations of Zn. Then we

generate S repli
ations of Zs
n, and �nd the 300 nearest neighbors to ea
h of the

5000 Monte Carlo repli
ations of Zn. This information is saved. This pro
ess

is done for the values log2 S ∈ {12, 14, ..., 24}. Then we
an
ompute the SBIL

estimator using any number of neighbors up to 300, whi
h is the most that were

saved.

Table 4 presents root mean squared error (RMSE) for estimation of ψ, as a

fun
tion of log2 S andK. In this table, the minimum RMSE values tend to lie on

the �main diagonal�. We
an see that for a given log2 S, RMSE has a U shape as

a fun
tion of K, �rst de
lining to a minimum, then rising. For the larger values

of log2 S, we do not observe the rise, as we have not
omputed enough neighbors.
This shape is expe
ted. For a given log2 S, when K is small, bias is small, but

the varian
e is large, be
ause we are averaging few neighbors. When K is large,

parameter values far from the true value will be in
luded among the neighbors,

provoking a large bias. Likewise, for a given K, there is a value of log2 S that

minimizes RMSE, whi
h is seen
learly in the �rst rows of the Table. When

log2 S is too small for a given K, the pool of potential neighbors is too small,

and we are for
ed to in
lude parameter values that are far from the true value,

provoking ex
ess bias. When log2 S is too large, there will be relatively many Zs

that are realized in the tails of their
onditional distributions given θs, and their

in
lusion among the neighbors provokes an in
rease in the varian
e. The table

on�rms the result from theory thatK should be an in
reasing fun
tion of S.We

note that the rule relating K and S used in Creel and Kristensen (2011) leads

to too small of a value of K. For example, when log2 S = 20, S = 1, 048, 576,
and the rule K = 1.5 × S0.25

gives K = 48. The RMSE reported in Creel and

Kristensen (2011) using this value of K is 0.042. The minimum RMSE value in

Table 4 is 0.040, with the
orrespondingK ≥ 150. This indi
ates that there may
be s
ope for improving results by more
areful sele
tion of S and K. However,

the di�eren
e is quite small, and we observe in the Table that RMSE is fairly

onstant over wide ranges of S and K, so ex
essive e�ort devoted to sear
hing

11

is not warranted. Also, moderate values of S
an give good results. It is to be

kept in mind, however, that the dimension of the parameter ve
tor is only 2 in

this example, and that higher dimensions will require larger simulated samples.

When this is the
ase, the speedup from GPU
omputing will be
ome even more

attra
tive.

5. Con
lusions

Within e
onometri
s, many pro
edures have a data parallel stru
ture that

requires minimal logi
al bran
hing and whi
h have a high
omputational inten-

sity. This paper has shown that GPU
omputing
an obtain good speedups for

this type of work. Likelihood fun
tions for Markovian data, Monte Carlo, sim-

ple bootstrapping, nonparametri
 �tting methods based on lo
al averaging, and

similar problems have stru
tures that are amenable to GPU
omputing. This is

ertainly not to suggest that GPU
omputing is a good solution for all
omput-

ing problems in e
onometri
s. Models for non-Markovian data normally require

sequential
omputations, whi
h do not �t the data parallel paradigm. Methods

su
h as MCMC or simulated annealing are essentially sequential, and even if

one
onsiders ensemble versions that
an be parallelized with relative ease, the

problem of thread divergen
e
an arise, as di�erent parts of the ensemble take

di�erent exe
ution paths. This
ould limit the gains from moving su
h
om-

putations to the GPU, and given the greater
omplexity of programming for

GPUs, su
h problems are probably best ta
kled using CPU-based solutions, at

least at present.

GPU
omputing, when it is appli
able, has many advantages over alter-

native methods of parallelization, su
h as
lustering ma
hines for CPU-based

omputation, in that the hardware, energy and maintenan
e
ost is mu
h lower

for GPU
omputing. It is true that programming for GPU
omputing is more

omplex than is standard programming for CPU
omputing. In addition to

the usual
hallenges of thinking in terms of parallel
omputing, the available

libraries of
ode to a

omplish needed tasks are more limited. For example, we

had to program the OLS estimation in the CUDA kernel from s
rat
h. How-

ever, there is no doubt that this problem will be
ome less severe in the future,

as more libraries be
ome available. Our
ode for OLS �tting is now available,

and
an be used in other appli
ations of GPU
omputing. It is also possible

to port only some parts of a
omputational problem to the GPU, as we have

done with the
omputation of the likelihood fun
tion. A large and
omplex

CPU-based software body
an bene�t from sele
tive use of GPU
omputing by

porting only
omputational bottlene
ks that are well adapted to the data par-

allel and bran
h-free paradigm that suits GPU
omputing. We reiterate that

the
ode that a

ompanies this paper is available from the authors

4

. It is ex-

tensively
ommented, with instru
tions for its use. We hope that this
ode
an

4

The
ode is ar
hived at pareto.uab.es/m
reel/GPU_paper_
ode_release_v1.zip

12

http://pareto.uab.es/mcreel/GPU_paper_code_release_v1.zip

help other e
onometri
ians to learn to use GPU
omputing for their resear
h

interests.

13

Tables

Table 1: Time to
ompute 2000 evaluations of Poisson likelihood fun
tion.

log2(S) 8 10 12 14 16

CPU (ms) 114 210 572 2086 7037

GPU (ms) 74 75 85 148 393

Speedup (CPU/GPU) 1.54 2.80 6.73 14.10 17.90

Table 2: MA(1) model, time to simulate and �nd 50 neighbors to Zn.

log2(S) 17 18 19 20

CPU (s) 29.80 57.26 113.45 221.48

GPU (s) 3.15 5.41 9.93 19.07

Speedup (CPU/GPU) 9.46 10.58 11.42 11.61

Table 3: Au
tion model, time to simulate and �nd 50 neighbors to Zn.

log2(S) 17 18 19 20

CPU (s) 27.98 53.12 104.36 205.61

GPU (s) 1.23 1.57 2.29 3.71

Speedup (CPU/GPU) 22.75 33.83 45.57 55.42

Table 4: MA(1) model, estimation of ψ, RMSE as a fun
tion of log2S and K

log2(S)
K 12 14 16 18 20 22 24

10 0.040 0.046 0.046 0.044 0.044 0.044 0.044

20 0.040 0.042 0.043 0.042 0.042 0.042 0.043

30 0.040 0.041 0.042 0.041 0.042 0.042 0.042

40 0.042 0.041 0.041 0.041 0.041 0.041 0.042

50 0.045 0.040 0.041 0.041 0.041 0.041 0.042

100 0.058 0.041 0.040 0.040 0.041 0.041 0.041

150 0.066 0.042 0.040 0.040 0.040 0.041 0.041

200 0.075 0.044 0.040 0.040 0.040 0.040 0.041

250 0.089 0.046 0.041 0.040 0.040 0.040 0.041

300 0.107 0.048 0.041 0.040 0.040 0.040 0.041

14

Referen
es

[1℄ Aldri
h, E., Fernández-Villaverde, J., Gallant, A.R., and Rubio-Ramírez,

J.F., 2011, �Tapping the super
omputer under your desk: Solving dynami

equilibrium models with graphi
s pro
essors,� Journal of E
onomi
 Dy-

nami
s and Control, 35, 386�393.

[2℄ Beaumont, M., W. Zhang and D. Balding, 2002, �Approximate Bayesian

omputation in population geneti
s�, Geneti
s, 162, 2025-2035.

[3℄ Chernozhukov, V. and H. Hong, 2003, �An MCMC approa
h to
lassi
al

estimation,� Journal of E
onometri
s, 115, 293-346.

[4℄ Creel, M., 2005, �User-friendly parallel
omputations with e
onometri
 ex-

amples�, Computational E
onomi
s, 26, 107-128.

[5℄ Creel, M. and D. Kristensen, 2011, �Indire
t likelihood inferen
e�,

Bar
elona GSE Working Paper 558, http://resear
h.bar
elonagse.eu/

tmp/working_papers/558.pdf.

[6℄ Durham, G. and J. Geweke, 2011, �Massively Parallel Sequential Monte

Carlo for Bayesian Inferen
e�, http://ssrn.
om/abstra
t=1964731.

[7℄ Gar
ia, V., E. Debreuve and M. Barlaud, 2008, �Fast k nearest neighbor

sear
h using GPU�, in Pro
eedings of the CVPR Workshop on Computer

Vision on GPU, An
horage, Alaska, USA.

[8℄ Gar
ia, V., 2008, Ph.D. Thesis: Suivi d'objets d'intérêt dans une séquen
e

d'images : des points saillants aux mesures statistiques, Université de Ni
e

- Sophia Antipolis, Sophia Antipolis, Fran
e.

[9℄ Hall, R. 1970, �The
al
ulation of ordinary least squares esti-

mates�, http://stanford.a
ademia.edu/RobertEHall/Papers/63352/

The_Cal
ulation_of_Ordinary_Least_Squares_Estimates

[10℄ Li, S., 2011, Three essays on e
onometri
s: asymmetri
 exponential power

distribution, e
onometri

omputation, and multifa
tor model, PhD. disser-

tation in E
onomi
s, Rutgers, The State University of New Jersey.

[11℄ Li, T., 2010, �Indire
t inferen
e in stru
tural e
onometri
 models,� Journal

of E
onometri
s, 157, 120-128.

[12℄ Li, Q. and J. Ra
ine, 2007, Nonparametri
 E
onometri
s: Theory and Pra
-

ti
e. Prin
eton: Prin
eton University Press.

[13℄ Liepe, J., C. Barnes, E. Cule, K. Erguler, P. Kirk, T. Ton, and M. Stumpf,

2010, �ABC-SysBio�approximate Bayesian
omputation in Python with

GPU support �, Bioinformati
s, 26, 1797�1799.

15

http://research.barcelonagse.eu/tmp/working_papers/558.pdf
http://research.barcelonagse.eu/tmp/working_papers/558.pdf
 http://ssrn.com/abstract=1964731
http://stanford.academia.edu/RobertEHall/Papers/63352/The_Calculation_of_Ordinary_Least_Squares_Estimates
http://stanford.academia.edu/RobertEHall/Papers/63352/The_Calculation_of_Ordinary_Least_Squares_Estimates

[14℄ Marjoram, P., J. Molitor, V. Plagnol and S. Tavaré, 2003, �Markov
hain

Monte Carlo without likelihoods�, Pro
eedings of the National A
ademy of

S
ien
es, USA, 100, 15324-15328.

[15℄ Morozov, S. and S. Mathur, 2012, Massively parallel
omputation using

graphi
s pro
essors with appli
ation to optimal experimentation in dynami

ontrol, Computational E
onomi
s, 40, 151-182.

[16℄ Phillips, E., 2010, �Cuda a

elerated LINPACK on
lusters�, http://www.

nvidia.
om/
ontent/PDF/s
_2010/theater/Phillips_SC10.pdf

[17℄ Ra
ine, Je� (2002) Parallel distributed kernel estimation, Computational

Statisti
s & Data Analysis, 40, 293-302.

[18℄ Sisson, S., Y. Fan and M. Tanaka, 2007, �Sequential Monte Carlo without

likelihoods�, Pro
eedings of the National A
ademy of S
ien
e, USA, 104,

1760-1765.

[19℄ Su
hard, M, Q. Wang, C. Chan, J. Frelinger, A. Cron, and M. West, 2010,

�Understanding GPU Programming for Statisti
al Computation: Studies

in Massively Parallel Massive Mixtures �, Journal of Computational and

Graphi
al Statisti
s, 19, 419�438.

[20℄ Swann, C.A., 2002, �Maximum likelihood estimation using parallel
om-

puting: an introdu
tion to MPI�, Computational E
onomi
s, 19, 145-178.

[21℄ Tavaré, S., D. Balding, R. Gri�ths and P. Donnelly, 1997, �Inferring
oa-

les
en
e times from DNA sequen
e data�, Geneti
s, 145, 505-518.

16

http://www.nvidia.com/content/PDF/sc_2010/theater/Phillips_SC10.pdf
http://www.nvidia.com/content/PDF/sc_2010/theater/Phillips_SC10.pdf

	Introduction
	Examples
	Likelihood function
	Indirect likelihood inference
	SBIL
	Two example models for IL estimation

	The Code and benchmarking
	The code
	Benchmarking
	Poisson likelihood function
	SBIL estimator

	Econometric results
	Conclusions

