

Barcelona GSE Working Paper Series

Working Paper nº 669

Econometrics on GPUs
Michael Creel
Sonik Mandal

Mohammad Zubair

November 2012

Eonometris on GPUs

Mihael Creel

a,1

, Sonik Mandal

b

, Mohammad Zubair

b

a

Universitat Autònoma de Barelona, Barelona Graduate Shool of Eonomis and MOVE

b

Old Dominion University

Abstrat

A graphial proessing unit (GPU) is a hardware devie normally used to ma-

nipulate omputer memory for the display of images. GPU omputing is the

pratie of using a GPU devie for sienti� or general purpose omputations

that are not neessarily related to the display of images. Many problems in

eonometris have a struture that allows for suessful use of GPU omputing.

We explore two examples. The �rst is simple: repeated evaluation of a likeli-

hood funtion at di�erent parameter values. The seond is a more ompliated

estimator that involves simulation and nonparametri �tting. We �nd speedups

from 1.5 up to 55.4 times, ompared to omputations done on a single CPU ore.

These speedups an be obtained with very little expense, energy onsumption,

and time dediated to system maintenane, ompared to equivalent performane

solutions using CPUs. Code for the examples is provided.

Keywords: parallel omputing; graphial proessing unit; GPU; eonomet-

ris; simulation-based methods; Bayesian estimation.

JEL odes: C13, C14, C15, C33.

1. Introdution

A graphial proessing unit (GPU) is a hardware devie normally used to

manipulate omputer memory for the display of images. GPUs have evolved to

have a great apaity for �oating point omputations of the sort that are needed

to display images, inluding appliations of shading and textures, geometrial

omputations related to the rotation of objets, interpolation, et. GPUs ahieve

their exeptional performane for these operations by performing omputations

in parallel, using a large number of ores. While a typial desktop or laptop

omputer may have a 2 or 4 ore CPU, the GPU that it ontains may have

dozens, hundreds, or even thousands of ores.

Email addresses: mihael.reel�uab.es (Mihael Creel), smand009�odu.edu (Sonik

Mandal), zubair�s.odu.edu (Mohammad Zubair)

1

Support from grants MICINN-ECO2009-11857 and SGR2009-578 is gratefully aknowl-

edged.

Preprint submitted to Computational Statistis & Data Analysis November 13, 2012

GPU omputing is the pratie of using a GPU devie for sienti� or gen-

eral purpose omputations that are not neessarily related to the display of

images. The idea is to take advantage of the many ores of the GPU to a-

elerate omputations by o�oading part of the work of the CPU to the GPU.

Not all problems are good andidates for GPU omputing. Certain omputa-

tions exhibit data-level parallelism, whih means that the same instrutions are

applied to many di�erent piees of data. An example is the omputation of

a log-likelihood funtion, where the log-likelihood is omputed for eah sam-

ple observation, and then summed up. In general, GPUs are well-suited to data

parallel problems. However, in a data parallel environment, it is possible for par-

allel exeution units to perform di�erent operations on their data, based upon

logial branhing (i.e., �if� statements). GPU hardware realizes full e�ieny

when all threads in a group take the same exeution path. Logial branhes

resulting from �if� statements an result in �thread divergene�, where threads

within a group take di�erent exeution paths. Problems whih annot avoid ex-

essive thread divergene are likely not good andidates for porting to the GPU.

Another onsideration is that GPU omputing requires transferring data from

the host omputer to the GPU devie, and results from the GPU devie bak

to the host omputer. Suh memory transfers are relatively slow. A problem

that is a good andidate for GPU omputing should exhibit data parallelism,

with high omputational intensity relative to required memory transfers, and

should require little logial branhing. Within eonometris, many problems

�t these requirements reasonably well. This paper explores several examples of

eonometri omputations that an bene�ially be ported to GPU omputing.

To give a bit of bakground, interest in sienti� uses of GPU omputing be-

gan in the early 2000s. In 2006 and 2007, Nvidia introdued the CUDA parallel

omputing arhiteture and software development kit, whih allowed program-

ming for GPUs using an extension of the C++ language. This programming

model made GPU programming muh more aessible than it had been previ-

ously, and it has sine been used in many appliations in many areas, as perusal

of the web page http://www.nvidia.om/objet/uda_showase_html.html

reveals. Speedups reported on that page range from 1 to 3 orders of magnitude,

ompared to omputations done using a single CPU thread. CUDA and the as-

soiated programming environment generates ode that runs only on hardware

devies from Nvidia. The OpenCL

2

programming framework is a standard gov-

erned by the Khronos non-pro�t onsortium, and it provides a GPU omputing

framework similar to CUDA. The OpenCL language and appliation program-

ming interfae allows for GPU programming and mixed CPU/GPU program-

ming using hardware devies from a number of manufaturers, inluding Nvidia,

Intel and AMD. Though OpenCL and other alternatives to CUDA are available,

the CUDA framework is at present the most widely used environment for GPU

programming. It is the environment for whih most examples available, and

there exists an extensive set of ode libraries that an failitate GPU program-

2

http://www.khronos.org/openl/

2

http://www.nvidia.com/object/cuda_showcase_html.html
http://www.khronos.org/opencl/

ming using CUDA. Libraries exist for basi linear algebra subroutines (uBLAS)

and fast Fourier transform (uFFT), for random number generation (uRAND),

and to enable funtionality of the C++ standard template library on the GPU

(Thrust). As well, third parties have developed extensions and wrappers for

many widely used programming languages, inluding Python, Matlab, Mathe-

matia, and others. Beause of the ompleteness of the environment and its ease

of use at the present time, we fous on uses of CUDA and related tehnology in

this paper. However, it is worth emphasizing that GPU omputing is evolving

rapidly and is ontinually beoming more aessible. We expet that CUDA

and its alternatives will ontinue to beome easier to use.

Another fator whih makes learning about GPU omputing attrative is

that the omputational apaity of GPU hardware is onstantly inreasing at

a rapid rate, as is its energy e�ieny. From the page en.wikipedia.org/

wiki/Comparison_of_Nvidia_graphis_proessing_units, we an trae the

performane of GPUs o�ered for desktop omputers. Taking as an example

mid-level ards, whih o�er good performane at a moderate prie, the Nvidia

GTX460 GPU was introdued in July 2010, and o�ered 907 G�op/s and 6.05

G�op/s per watt of power onsumption, for single preision omputations. The

GTX560 Ti was introdued in January 2011 and o�ered 1263 G�op/s and 7.43

G�op/s per watt. At the time of this writing (Marh, 2012), the GTX460

is available for roughly $150, while the GTX560Ti osts roughly $230 (pries

from www.amazon.om). These theoretial peak numbers for single preision

omputations may not translate diretly to the performane one sees in real-

world appliations, but they do illustrate the evolution of GPU omputing power

and energy e�ieny over time.

For a more realisti omparison of the power of GPU omputing in rela-

tion to CPU-only omputing, Phillips (2010) reports results for the widely-used

LINPACK benhmark, using double preision. A CPU-based system ahieves

11 G�op/s per $1000 ost, and 0.15 G�op/s per watt of power onsumption. A

mixed CPU-GPU system ahieves 60 G�op/s per $1000 ost, and 0.66 G�op/s

per watt. It is lear that GPU omputing adds a great deal of performane

relative to ost or energy onsumption.

In spite of the potential for heap aess to this soure of omputing power,

there has been, up to the present time, remarkably little use of GPU omputing

in researh work in eonomis and eonometris, though other �elds suh as

statistis (e.g., Suhard et al. 2010) and areas in the biologial sienes (e.g.,

Liepe et al. 2010) have seen more work done. Mathur and Morozov (2012)

use CUDA to solve an optimal ontrol problem that involves experimentation

and learning, using value funtion iteration, and report speedups of 15-26 times.

Aldrih et al. (2011) show how GPU omputing an be used to aelerate the

solution of a dynami equilibrium model, also using value funtion iteration

and CUDA. They report speedups of around 200X. Durham and Geweke (2011)

present an algorithm for Bayesian estimation of models, using sequential Monte

Carlo (partile �ltering), implemented with CUDA. They do not ompare their

CUDA software to a CPU version. Li (2011) uses CUDA to implement kernel

density estimation on a GTX 470 devie, whih has 448 proessor odes, and

3

en.wikipedia.org/wiki/Comparison_of_Nvidia_graphics_processing_units
en.wikipedia.org/wiki/Comparison_of_Nvidia_graphics_processing_units
www.amazon.com

reports speedups of more than 400X ompared to single threaded Matlab ode.

The very limited use of GPU omputing in eonomis and eonometris up

to the present time an probably be explained by the more demanding omputer

programming skills that are needed to ode GPU appliations. One fator that

an help to overome this barrier is the availability of working and learly do-

umented ode examples in areas relevant to eonomists and eonometriians.

This paper provides some examples of GPU omputing applied to eonometri

estimation, aompanied by soure ode that is doumented and explained. The

intention is not to provide an exhaustive survey of potential uses, but rather to

provide some working examples that illustrate the potential of GPU omputing

for eonometri estimation. The soure ode that aompanies the paper an

serve as a model for development of ode for other estimation problems.

3

We present two examples. The �rst is the omputation of a likelihood fun-

tion. This is a simple example that illustrates the basi ideas, it has appliation

in both lassial and Bayesian eonometris, and it shows that a good speedup

an be obtained. The seond example uses the indiret likelihood estimators

of Creel and Kristensen (2011). These estimators are simulation-based, and

simulation is a data parallel task that is an ideal andidate for porting to the

GPU. We �nd that use of GPU omputing an deliver results up to 55 times

more quikly than is possible using a single CPU ore. We expet that similar

speedups would apply to many other problems in eonometri estimation.

2. Examples

2.1. Likelihood funtion

For a sample Zn = {(yt, xt)}n of n independent observations of a dependent

variable (yt) and vetor of explanatory variables (xt), let f(yt|xt; θ) be the den-
sity of yt onditional on xt, with parameter vetor θ. The maximum likelihood

estimator of the parameter θ is θ̂ = argmax
∑n

t=1 ln f(yt|xt, θ). In the ontext

of seeking to parallelize omputations, Swann (2002) and Creel (2005) point out

that the sum an be broken into sums over bloks of observations, using up to n

bloks. For parallelization using MPI, one would normally use as many bloks

as available CPU ores. With a many-ore GPU devie, a larger number of

bloks may be used, potentially giving a greater speedup. The simple presenta-

tion used here an easily be adapted to dependent observations, and the basi

idea of omputing the likelihood using bloks of observations is possible as long

as the data are Markovian.

To give a onrete example, suppose that yt is onditionally distributed

Poisson:

f(yt|xt) ∼
exp(−λt)λ

yt

t

yt!

λt = exp(x′tθ)

3

The ode is arhived at pareto.uab.es/mreel/GPU_paper_ode_release_v1.zip

4

http://pareto.uab.es/mcreel/GPU_paper_code_release_v1.zip

where xt and θ are k vetors. In this ase, the onditional log-likelihood funtion

is ln f(yt|xt, θ) = − exp(x′tθ) + ytx
′

tθ − log(yt!). Computation of the maximum

likelihood estimator requires iterative maximization, involving a number of eval-

uations of the objetive funtion. Likewise, Bayesian estimation using Markov

hain Monte Carlo requires many evaluations of the likelihood funtion (among

other omputations) as the hain advanes, where the likelihood funtion may

be omputed as

L(θ;Zn) = exp

(
n∑

t=1

ln f(yt|xt, θ)

)
.

Fousing on this last ase, we will look at the time to perform 2000 evaluations

of the Poisson likelihood funtion, when the dimension of xt and θ is 3. Eah

of the 2000 evaluations is done at a di�erent value of the parameter vetor,

as would be the ase if MCMC were being done. Furthermore, the value of

the parameter is determined using CPU omputations, and a memory transfer

ommuniating the new parameter values from the CPU to the GPU is done at

eah step. On the other hand, the data, Zn, whih uses muh more memory,

must only be transfered to the GPU one. This oding solution allows GPU

omputation of the likelihood to be dropped in as a replaement for CPU-

based omputation, into relatively omplex CPU-based software for estimation

by maximum likelihood or MCMC. The omputation of the likelihood funtion is

the inner-loop omputational bottlenek. When dealing with a omplex software

hain, optimizing the inner loop is often where most gains an be made. It may

not be desirable to port an entire omplex software hain to GPU omputing

if substantial gains an be made by optimizing only the likelihood funtion

omputations. This example explores this idea.

2.2. Indiret likelihood inferene

Indiret likelihood inferene (Creel and Kristensen, 2011) is method of eono-

metri estimation that relies on simulations from the model and on nonpara-

metri density or regression funtion omputations. A very similar, and in some

aspets, idential, lass of estimators is known in the literature of the biolog-

ial sienes as Approximate Bayesian Computation (ABC) or likelihood-free

Bayesian inferene (see, e.g., Tavaré et al., 1997; Beaumont, Zhang and Bald-

ing, 2002; Marjoram et al., 2003; Sisson, Fan and Tanaka, 2007). The paper

of Creel and Kristensen makes lear the relationship with maximum likelihood

estimation, and establishes a theoretial base for the estimators. Here, we follow

the notation of that paper. The ombination of simulation and nonparametris

means that the estimators an be omputationally demanding. Beause sim-

ulations are independent of one another, the needed omputations an easily

be parallelized. Likewise, nonparametri methods suh as kernels and nearest

neighbors require omputing distanes between large sets of points, and this is

also easily parallelized (Raine, 2002; Creel, 2005; Garia, 2008; Garia, De-

breuve and Barlaud, 2008).

First, let us brie�y desribe the estimators. We wish to learn about a pa-

rameter θ ∈ Θ ⊂ R
k
desribing a model. Given a sample Yn = (y1, ..., yn)

5

from the model, we make inferene on θ through a q-dimensional statisti,

Zn = Zn(Yn) ∈ R
q
. Let fn(Zn|θ) be the likelihood of the statisti for a

given value of the parameter. Ignore for a moment the fat that the likelihood

is normally not known on losed form. The maximum indiret likelihood (MIL)

estimator maximizes the indiret likelihood de�ned through Zn:

θ̂MIL = arg sup
θ∈Θ

log fn(Zn|θ). (2.1)

This is very muh like a maximum likelihood estimator, exept that the sample

is �ltered through a statisti. This has the advantage of reduing the dimension

of random quantities from O(n) to the �nite value q, whih failitates the use

of nonparametri methods. The disadvantage is a potential loss of e�ieny if

Zn is not a su�ient statisti.

A Bayesian version of the MIL estimator may be of interest, following onsid-

erations in Chernozhukov and Hong (2003), as it obviates the need for numerial

optimization. One possibility is to use the posterior mean of θ given Zn de�ned

as

θ̂BIL = E(θ|Zn) =

ˆ

Θ

θfn (θ|Zn) dθ, (2.2)

where fn (θ|Zn) is the posterior distribution given by

fn (θ|Zn) =
fn (Zn, θ)

fn (Zn)
=

fn(Zn|θ)π (θ)
´

Θ
fn(Zn|θ)π (θ) dθ

(2.3)

for some pseudo-prior density π(θ) on the parameter spae Θ. We refer to this

partiular estimator as the Bayesian indiret likelihood (BIL) estimator. For

most hoies of Zn, the density fn(Zn|θ) is of unknown form, so the MIL and BIL

estimators are infeasible. Feasible versions an be omputed using simulation

and nonparametri estimation. Here we disuss only a feasible version of the

BIL estimator, for the feasible version of the MIL estimator, and additional

disussion, see Creel and Kristensen, 2011.

2.2.1. SBIL

The BIL de�ned above (equation 2.2) is a posterior mean. The SBIL esti-

mator proposed in Creel and Kristensen (2011) (essentially the same idea was

proposed in the ABC literature by Beaumont, Zhang and Balding, 2002) diretly

omputes the posterior mean using simulation and nonparametri regression, as

follows. Make i.i.d. draws θs, s = 1, ..., S, from the pseudo-prior density π(θ),
for eah draw generate a sample Yn(θ

s) from the model at this parameter value,

and then ompute the orresponding statisti Zs
n = Zn(Yn(θ

s)), s = 1, ..., S.
Now let ZS = {Zs

n, s = 1, 2, ..., S} be the set of the simulated statistis. We an

obtain a simulated version of the BIL (SBIL) through nonparametri regression

tehniques. One suh is a simple K nearest neighbor regression estimator (see

Li and Raine, 2007, Ch. 14),

θ̂SBIL =
1

K

S∑

s=1

θs1 (‖Zs
n − Zn‖ ≤ dK(Zn,ZS)) , (2.4)

6

where 1(·) is the indiator funtion that take the value 1 if the argument is true,
and the value 0 otherwise, and dK(Zn,ZS) is the Eulidean distane between

Zn and the Kth
losest element of ZS to Zn. Simply put, this estimator is

the average of the K values of θs that lead to the K losest neighbors to Zn.

There are more sophistiated possibilities using weighting shemes, but this

simple version presents the main ideas learly. This important point is that this

estimator is onsistent for the posterior mean E(θ|Zn) as S inreases, as long as

K is hosen to be an appropriately slowly growing funtion of S. Beause S is

the number of simulations and an be hosen, we an make the nonparametri

approximation to the true posterior mean as aurate as is needed by using a

su�ient number of simulations.

2.2.2. Two example models for IL estimation

MA model. A �rst model, hosen for it's simpliity, is the �rst order moving

average (MA(1)) model

yt = ǫt + ψǫt−1

ǫt ∼ i.i.d.N(0, σ2)

We use a sample sizes of n=200 observations. The parameter ψ is one of the

values {−0.95, −0.9, −0.5, 0, 0.5, 0.9, 0.95}, so the model is always invertible.

The parameter σ is always equal to 1. The parameter vetor is θ = (ψ, σ).We set

the parameter spae to Θ = (−1, 1)× (0, 2), whih imposes invertibility, whih

is needed for the parameter to be identi�ed. The auxiliary statisti Zn is the

vetor of estimated parameters

(
ρ0, ρ1, ..., ρP , σ

2
υ

)
of a P -order autoregressive

(AR(P)) model yt = ρ0 +
∑P

p=1 ρpyt−p + υt, �t to the data using ordinary least

squares. For simpliity, we hold the order of the AR(P) model onstant at

P = 10 aross the Monte Carlo repliations. Thus, the dimension of Zn is 12,

while the dimension of θ is 2, so we have onsiderable overidenti�ation.

Strutural aution model. One would not normally estimate an MA(1) model

using a simulation-based estimator suh as those disussed in this paper. How-

ever, rih strutural models with latent variables and nonlinearities often require

the use of simulation-based estimators. An example is the strutural aution

model presented by Li (2010), who studies the performane of the indiret in-

ferene estimator using Monte Carlo. Creel and Kristensen (2011) repliate the

Monte Carlo study, using the SBIL estimator. Here, we port the same example

to the GPU.

The model is a Duth aution, where only the winning bid is observed.

The number of bidders is �xed at N = 6, and the sample size is n = 100,
meaning that the outomes of 100 autions are observed. At eah aution i =
1, 2, ..., 100, the quality, xi, of the item being autioned is the square of a uniform

(0, 2) random variable, to introdue heterogeneity in the values of the objets

aross the autions. The 6 bidders draw their independent private values from

a ommon exponential distribution with density

f(v|xi) =
1

exp(θ0 + θ1xi)
exp

(
−

v

exp(θ0 + θ1xi)

)

7

so that exp(θ0 + θ1xi) is the mean valuation of the item, over the bidders. The

equilibrium strategy for the winning bid is

b∗i = v∗i −
1

FN−1(v∗i |xi)

ˆ v∗

i

0

FN−1(u|xi)du

where v∗i is the highest private valuation, and F (·|xi) is the exponential distri-
bution funtion. For a given value of N (6 in this ase), symboli omputation

software an be used to obtain a ompat analyti solution for the winning

bid, so the model is easily simulated. The observed data are the 100 values of

{xi, b
∗

i }, and we seek to estimate θ0 and θ1. The true values are set to θ0 = 1
and θ1 = 0.5. To de�ne the auxiliary statisti, we �t the auxiliary model

log b∗i = α + βxi + σǫi using ordinary least squares. The auxiliary statisti is

Zn = (α̂, β̂, log σ̂). The parameter spae, for reasons disussed in Creel and

Kristensen (2011), is set to (θ0, θ1) ∈Θ = (−0.05, 2.45)×(0.00, 1.96). The short
explanation is that values outside this region never generate points lose to a

Zn that is generated at the true value.

3. The Code and benhmarking

3.1. The ode

We provide Matlab/Otave and CUDA ode to ompute the Poisson likeli-

hood funtion and to estimate the MA and aution models by SBIL. This ode

is doumented and ommented, so we do not desribe it in detail here, exept

to note some points of interest. The CUDA ode for the Poisson likelihood is

very simple, and serves as a tratable introdution to eonometrially relevant

omputations using CUDA. It makes some use of the Thrust library. For the

SBIL examples, both the MA and aution example use an ordinary least squares

(OLS) �t as the auxiliary statisti, and at the CUDA kernel level there are no

standard libraries available for OLS. We wrote a CUDA ode library for OLS

using Hall (1970) as a guide. This part of our ode may be of interest beyond the

examples we work with. Finally, the SBIL estimator uses nearest neighbors non-

parametri regression to approximate the onditional mean (see equation 2.4).

To perform these omputations on the GPU, we use an existing implementation

available at http://www.i3s.unie.fr/~reative/KNN/ (Garia, 2008; Gar-

ia, Debreuve and Barlaud, 2008). This ode uses the brute fore method of

omputing nearest neighbors, whih involves expliitly omputing the distanes

between all target and query points. We have modi�ed this ode to use multiple

GPU devies, if available.

3.2. Benhmarking

3.2.1. Poisson likelihood funtion

We omputed 2000 iterations of the Poisson likelihood funtion, for sample

sizes n ∈ {28, 210, ..., 216} (for referene, 28 = 256, and 216 = 65536). In all ases,
there are 3 regressors. The CPU-based omputations were done using Matlab

8

http://www.i3s.unice.fr/~creative/KNN/

R2010a, running on a Mabook Air laptop with an Intel Core i5-2557M CPU,

running at 1.7 GHz. The omputations using the GPU were done on a single

GTX560Ti ard, whih has 384 CUDA ores and 1GB of memory. The retail

prie of this ard is presently around $230 (prie from www.amazon.om). The

sample data is transfered to the GPU only one, and then the likelihood funtion

is evaluated at eah of 2000 di�erent parameter values, where the parameter

values are determined sequentially using CPU-based omputing. Thus, there

are 2000 CPU->GPU memory transfers of the value of the parameter vetor

θ during the ourse of the omputations, exatly as would our if the GPU-

based omputation of the likelihood were embedded in a CPU-based Markov

hain Monte Carlo (MCMC) or iterative maximization program. The timing

results are found in Table 1. In this and other tables, log2 S means the base-

2 logarithm of S, so that S = 2log2 S
. Thus, when log2 S inreases by 1, S

doubles. The timings for the CUDA runs inlude all memory transfers, that

of the data, and eah of the 2000 parameter vetor values. For the smallest

sample size, we see that the omputations using the GPU devie are about 1.5

times faster than the omputations done using Matlab on a laptop omputer.

For the largest sample size, the omputations on the GPU are almost 18 times

faster. The greater speedup for the larger sample size is ertainly in�uened by

the greater omputational intensity relative to the time needed for the memory

transfers, whih is onstant with respet to the sample size. These results show

that even simple omputations with a small sample size an be aelerated

using CUDA, and that when the sample size beomes larger, the aeleration

beomes onsiderable. For a more omputationally intensive likelihood funtion,

we expet that the speedup would be greater still.

3.2.2. SBIL estimator

For the SBIL estimator, the basi fator that determines exeution time is

the time needed to ompute S simulations of the auxiliary statisti and to �nd

the K nearest neighbors, among the S simulated values, to the observed value of

the auxiliary statisti, Zn. In this setion we report timings for the two models,

along with timings for the same omputations done on a CPU. The CPU-based

omputations were done using a single ore of an Intel Core 2 Duo E8400 CPU,

whih has a lok speed of 3.0 GHz. For the CPU omputations, the simulation

loop was programmed using Matlab R2010a. The nearest neighbors part of the

omputations on the CPU were using the well-known ANN library (http://

www.s.umd.edu/~mount/ANN/). It should be noted that the simulation part

of the problem is trivial to parallelize, and that the simulation time greatly

dominates the time to �nd the nearest neighbors, so roughly speaking, one ould

redue the CPU time by a fator of X by running the ode on X homogeneous

ores, either on a single mahine or on a luster.

The time to �nd the K nearest neighbors is virtually onstant with respet

to K, though it is sensitive to S. This is beause to �nd the nearest neighbor to

Zn in the set of S points, ZS , or the K nearest neighbors, all of the S distanes

must be omputed in both ases. For this reason, we set K to a single value,

50. Also, it is lear that timings will sale linearly in S, as we simply need

9

www.amazon.com
http://www.cs.umd.edu/~mount/ANN/
http://www.cs.umd.edu/~mount/ANN/

to generate proportionally more auxiliary statistis and ompute proportionally

more distanes. For this reason, we present results for several moderate values

of S, but we do not use very large values of S, beause the CPU timings would

beome large, without ontributing any useful additional information. Regard-

ing the two models, for the MA model, the auxiliary statisti has dimension 12,

while for the aution model, the dimension is 3. The sample size for the MA

model is 200, while for the aution model it is 100. Overall, the MA model

involves manipulating onsiderably more data, but the omputations are very

simple. The aution model involves less data, but more omplex omputations.

Table 2 presents timings for the MA model, for S = 217 up to S = 220

(217 = 131, 072 and 220 = 1, 048, 576). Timings are given as total wall lok

time, measured using the Linux �time� ommand on an otherwise unloaded sys-

tem. We an observe that the CPU and GPU timings sale lose to linearly,

approximately doubling as S doubles, as expeted. The speedup fator is ap-

proximately 11X on average, whih is to say that the GPU omputations are

about 11 times faster than the CPU omputations. For lower values of log2 S
the speedup is a little less, beause the overhead of memory transfers between

host and devie memories is spread out over less omputational time.

Table 3 ontains similar timings for the aution model. Again, the timings

sale lose to linearly in S. For this model, the speedup from moving to GPU

omputing is onsiderably greater, averaging about 40X for the sizes of simu-

lations onsidered, and reahing a little more than 55X in the best ase. The

greater speedup for the aution model ompared to the MA model is likely due

to the fat that the aution model involves onsiderably more omplex ompu-

tations, but requires onsiderably less memory usage, as it involves a smaller

sample size and a lower dimensional auxiliary statisti. Again, the speedup is

better for larger log2 S , so the time spent doing alulations is larger ompared

to the time for memory transfers.

The speedups are very satisfatory, in our opinion. For the sort of omputa-

tions required for IL estimation, a single graphis ard that osts around $230

obtains performane equivalent to at least 9 and up to 55 CPU ores. A typi-

al luster would onsist of rakmount servers, and a fairly typial rakmount

server may ontain two quad ore CPUs, for a total of 8 ores. The ost of suh

a server is roughly 10 times that of the GPU ard. For the aution model, one

would need four suh servers to equal the performane of the single GPU ard,

for a total ost of roughly 40 times that of the GPU ard. The maintenane ost

of suh a luster, as well as the ost of powering and ooling it is onsiderable,

as is the noise that it makes. In ontrast, the GPU devie an be installed in

a single heap, quiet, energy e�ient desktop omputer, and one only needs

maintain a single omputer.

These results use a single GPU devie, and a single query point. When mul-

tiple query points are used, whih is the ase when doing Monte Carlo, or when

running multiple MCMC hains, the nearest neighbors part of the omputations

beomes more demanding, and it beomes bene�ial to seek further possibilities

for parallelization. It is straightforward to spread the omputations over several

GPU devies, using OpenMP. The ode that aompanies this paper detets

10

and uses multiple GPU devies, if available.

4. Eonometri results

In this setion we extend the results of Creel and Kristensen (2011) by explor-

ing the e�et of inreasing the number of simulations, S, and also systematially

exploring the hoie of the number of neighbors, K. In Creel and Kristensen

(2011), the number of simulations used in various examples is between 106 and
107 , and the paper ontains no investigation of the e�et of the hoie of S on

the performane of the estimators. Also, in that paper, a simple rule setting

K = 1.5×S0.25
is used to selet the number of neighbors for the nonparametri

�t. With GPU omputing, it is muh quiker do Monte Carlo work, whih fa-

ilitates more areful study of the performane of the IL estimators in relation

to the tuning of the nonparametri �tting methods used.

We present results for the MA model of Setion 2.2.2. The �ndings are very

similar for all 7 design points, so we fous on the ase of ψ = 0.9, so as to present
fewer tables. First, we generate 5000 Monte Carlo repliations of Zn. Then we

generate S repliations of Zs
n, and �nd the 300 nearest neighbors to eah of the

5000 Monte Carlo repliations of Zn. This information is saved. This proess

is done for the values log2 S ∈ {12, 14, ..., 24}. Then we an ompute the SBIL

estimator using any number of neighbors up to 300, whih is the most that were

saved.

Table 4 presents root mean squared error (RMSE) for estimation of ψ, as a

funtion of log2 S andK. In this table, the minimum RMSE values tend to lie on

the �main diagonal�. We an see that for a given log2 S, RMSE has a U shape as

a funtion of K, �rst delining to a minimum, then rising. For the larger values

of log2 S, we do not observe the rise, as we have not omputed enough neighbors.
This shape is expeted. For a given log2 S, when K is small, bias is small, but

the variane is large, beause we are averaging few neighbors. When K is large,

parameter values far from the true value will be inluded among the neighbors,

provoking a large bias. Likewise, for a given K, there is a value of log2 S that

minimizes RMSE, whih is seen learly in the �rst rows of the Table. When

log2 S is too small for a given K, the pool of potential neighbors is too small,

and we are fored to inlude parameter values that are far from the true value,

provoking exess bias. When log2 S is too large, there will be relatively many Zs

that are realized in the tails of their onditional distributions given θs, and their

inlusion among the neighbors provokes an inrease in the variane. The table

on�rms the result from theory thatK should be an inreasing funtion of S.We

note that the rule relating K and S used in Creel and Kristensen (2011) leads

to too small of a value of K. For example, when log2 S = 20, S = 1, 048, 576,
and the rule K = 1.5 × S0.25

gives K = 48. The RMSE reported in Creel and

Kristensen (2011) using this value of K is 0.042. The minimum RMSE value in

Table 4 is 0.040, with the orrespondingK ≥ 150. This indiates that there may
be sope for improving results by more areful seletion of S and K. However,

the di�erene is quite small, and we observe in the Table that RMSE is fairly

onstant over wide ranges of S and K, so exessive e�ort devoted to searhing

11

is not warranted. Also, moderate values of S an give good results. It is to be

kept in mind, however, that the dimension of the parameter vetor is only 2 in

this example, and that higher dimensions will require larger simulated samples.

When this is the ase, the speedup from GPU omputing will beome even more

attrative.

5. Conlusions

Within eonometris, many proedures have a data parallel struture that

requires minimal logial branhing and whih have a high omputational inten-

sity. This paper has shown that GPU omputing an obtain good speedups for

this type of work. Likelihood funtions for Markovian data, Monte Carlo, sim-

ple bootstrapping, nonparametri �tting methods based on loal averaging, and

similar problems have strutures that are amenable to GPU omputing. This is

ertainly not to suggest that GPU omputing is a good solution for all omput-

ing problems in eonometris. Models for non-Markovian data normally require

sequential omputations, whih do not �t the data parallel paradigm. Methods

suh as MCMC or simulated annealing are essentially sequential, and even if

one onsiders ensemble versions that an be parallelized with relative ease, the

problem of thread divergene an arise, as di�erent parts of the ensemble take

di�erent exeution paths. This ould limit the gains from moving suh om-

putations to the GPU, and given the greater omplexity of programming for

GPUs, suh problems are probably best takled using CPU-based solutions, at

least at present.

GPU omputing, when it is appliable, has many advantages over alter-

native methods of parallelization, suh as lustering mahines for CPU-based

omputation, in that the hardware, energy and maintenane ost is muh lower

for GPU omputing. It is true that programming for GPU omputing is more

omplex than is standard programming for CPU omputing. In addition to

the usual hallenges of thinking in terms of parallel omputing, the available

libraries of ode to aomplish needed tasks are more limited. For example, we

had to program the OLS estimation in the CUDA kernel from srath. How-

ever, there is no doubt that this problem will beome less severe in the future,

as more libraries beome available. Our ode for OLS �tting is now available,

and an be used in other appliations of GPU omputing. It is also possible

to port only some parts of a omputational problem to the GPU, as we have

done with the omputation of the likelihood funtion. A large and omplex

CPU-based software body an bene�t from seletive use of GPU omputing by

porting only omputational bottleneks that are well adapted to the data par-

allel and branh-free paradigm that suits GPU omputing. We reiterate that

the ode that aompanies this paper is available from the authors

4

. It is ex-

tensively ommented, with instrutions for its use. We hope that this ode an

4

The ode is arhived at pareto.uab.es/mreel/GPU_paper_ode_release_v1.zip

12

http://pareto.uab.es/mcreel/GPU_paper_code_release_v1.zip

help other eonometriians to learn to use GPU omputing for their researh

interests.

13

Tables

Table 1: Time to ompute 2000 evaluations of Poisson likelihood funtion.

log2(S) 8 10 12 14 16

CPU (ms) 114 210 572 2086 7037

GPU (ms) 74 75 85 148 393

Speedup (CPU/GPU) 1.54 2.80 6.73 14.10 17.90

Table 2: MA(1) model, time to simulate and �nd 50 neighbors to Zn.

log2(S) 17 18 19 20

CPU (s) 29.80 57.26 113.45 221.48

GPU (s) 3.15 5.41 9.93 19.07

Speedup (CPU/GPU) 9.46 10.58 11.42 11.61

Table 3: Aution model, time to simulate and �nd 50 neighbors to Zn.

log2(S) 17 18 19 20

CPU (s) 27.98 53.12 104.36 205.61

GPU (s) 1.23 1.57 2.29 3.71

Speedup (CPU/GPU) 22.75 33.83 45.57 55.42

Table 4: MA(1) model, estimation of ψ, RMSE as a funtion of log2S and K

log2(S)
K 12 14 16 18 20 22 24

10 0.040 0.046 0.046 0.044 0.044 0.044 0.044

20 0.040 0.042 0.043 0.042 0.042 0.042 0.043

30 0.040 0.041 0.042 0.041 0.042 0.042 0.042

40 0.042 0.041 0.041 0.041 0.041 0.041 0.042

50 0.045 0.040 0.041 0.041 0.041 0.041 0.042

100 0.058 0.041 0.040 0.040 0.041 0.041 0.041

150 0.066 0.042 0.040 0.040 0.040 0.041 0.041

200 0.075 0.044 0.040 0.040 0.040 0.040 0.041

250 0.089 0.046 0.041 0.040 0.040 0.040 0.041

300 0.107 0.048 0.041 0.040 0.040 0.040 0.041

14

Referenes

[1℄ Aldrih, E., Fernández-Villaverde, J., Gallant, A.R., and Rubio-Ramírez,

J.F., 2011, �Tapping the superomputer under your desk: Solving dynami

equilibrium models with graphis proessors,� Journal of Eonomi Dy-

namis and Control, 35, 386�393.

[2℄ Beaumont, M., W. Zhang and D. Balding, 2002, �Approximate Bayesian

omputation in population genetis�, Genetis, 162, 2025-2035.

[3℄ Chernozhukov, V. and H. Hong, 2003, �An MCMC approah to lassial

estimation,� Journal of Eonometris, 115, 293-346.

[4℄ Creel, M., 2005, �User-friendly parallel omputations with eonometri ex-

amples�, Computational Eonomis, 26, 107-128.

[5℄ Creel, M. and D. Kristensen, 2011, �Indiret likelihood inferene�,

Barelona GSE Working Paper 558, http://researh.barelonagse.eu/

tmp/working_papers/558.pdf.

[6℄ Durham, G. and J. Geweke, 2011, �Massively Parallel Sequential Monte

Carlo for Bayesian Inferene�, http://ssrn.om/abstrat=1964731.

[7℄ Garia, V., E. Debreuve and M. Barlaud, 2008, �Fast k nearest neighbor

searh using GPU�, in Proeedings of the CVPR Workshop on Computer

Vision on GPU, Anhorage, Alaska, USA.

[8℄ Garia, V., 2008, Ph.D. Thesis: Suivi d'objets d'intérêt dans une séquene

d'images : des points saillants aux mesures statistiques, Université de Nie

- Sophia Antipolis, Sophia Antipolis, Frane.

[9℄ Hall, R. 1970, �The alulation of ordinary least squares esti-

mates�, http://stanford.aademia.edu/RobertEHall/Papers/63352/

The_Calulation_of_Ordinary_Least_Squares_Estimates

[10℄ Li, S., 2011, Three essays on eonometris: asymmetri exponential power

distribution, eonometri omputation, and multifator model, PhD. disser-

tation in Eonomis, Rutgers, The State University of New Jersey.

[11℄ Li, T., 2010, �Indiret inferene in strutural eonometri models,� Journal

of Eonometris, 157, 120-128.

[12℄ Li, Q. and J. Raine, 2007, Nonparametri Eonometris: Theory and Pra-

tie. Prineton: Prineton University Press.

[13℄ Liepe, J., C. Barnes, E. Cule, K. Erguler, P. Kirk, T. Ton, and M. Stumpf,

2010, �ABC-SysBio�approximate Bayesian omputation in Python with

GPU support �, Bioinformatis, 26, 1797�1799.

15

http://research.barcelonagse.eu/tmp/working_papers/558.pdf
http://research.barcelonagse.eu/tmp/working_papers/558.pdf
 http://ssrn.com/abstract=1964731
http://stanford.academia.edu/RobertEHall/Papers/63352/The_Calculation_of_Ordinary_Least_Squares_Estimates
http://stanford.academia.edu/RobertEHall/Papers/63352/The_Calculation_of_Ordinary_Least_Squares_Estimates

[14℄ Marjoram, P., J. Molitor, V. Plagnol and S. Tavaré, 2003, �Markov hain

Monte Carlo without likelihoods�, Proeedings of the National Aademy of

Sienes, USA, 100, 15324-15328.

[15℄ Morozov, S. and S. Mathur, 2012, Massively parallel omputation using

graphis proessors with appliation to optimal experimentation in dynami

ontrol, Computational Eonomis, 40, 151-182.

[16℄ Phillips, E., 2010, �Cuda aelerated LINPACK on lusters�, http://www.

nvidia.om/ontent/PDF/s_2010/theater/Phillips_SC10.pdf

[17℄ Raine, Je� (2002) Parallel distributed kernel estimation, Computational

Statistis & Data Analysis, 40, 293-302.

[18℄ Sisson, S., Y. Fan and M. Tanaka, 2007, �Sequential Monte Carlo without

likelihoods�, Proeedings of the National Aademy of Siene, USA, 104,

1760-1765.

[19℄ Suhard, M, Q. Wang, C. Chan, J. Frelinger, A. Cron, and M. West, 2010,

�Understanding GPU Programming for Statistial Computation: Studies

in Massively Parallel Massive Mixtures �, Journal of Computational and

Graphial Statistis, 19, 419�438.

[20℄ Swann, C.A., 2002, �Maximum likelihood estimation using parallel om-

puting: an introdution to MPI�, Computational Eonomis, 19, 145-178.

[21℄ Tavaré, S., D. Balding, R. Gri�ths and P. Donnelly, 1997, �Inferring oa-

lesene times from DNA sequene data�, Genetis, 145, 505-518.

16

http://www.nvidia.com/content/PDF/sc_2010/theater/Phillips_SC10.pdf
http://www.nvidia.com/content/PDF/sc_2010/theater/Phillips_SC10.pdf

	Introduction
	Examples
	Likelihood function
	Indirect likelihood inference
	SBIL
	Two example models for IL estimation

	The Code and benchmarking
	The code
	Benchmarking
	Poisson likelihood function
	SBIL estimator

	Econometric results
	Conclusions

