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Abstra
t

A graphi
al pro
essing unit (GPU) is a hardware devi
e normally used to ma-

nipulate 
omputer memory for the display of images. GPU 
omputing is the

pra
ti
e of using a GPU devi
e for s
ienti�
 or general purpose 
omputations

that are not ne
essarily related to the display of images. Many problems in

e
onometri
s have a stru
ture that allows for su

essful use of GPU 
omputing.

We explore two examples. The �rst is simple: repeated evaluation of a likeli-

hood fun
tion at di�erent parameter values. The se
ond is a more 
ompli
ated

estimator that involves simulation and nonparametri
 �tting. We �nd speedups

from 1.5 up to 55.4 times, 
ompared to 
omputations done on a single CPU 
ore.

These speedups 
an be obtained with very little expense, energy 
onsumption,

and time dedi
ated to system maintenan
e, 
ompared to equivalent performan
e

solutions using CPUs. Code for the examples is provided.
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1. Introdu
tion

A graphi
al pro
essing unit (GPU) is a hardware devi
e normally used to

manipulate 
omputer memory for the display of images. GPUs have evolved to

have a great 
apa
ity for �oating point 
omputations of the sort that are needed

to display images, in
luding appli
ations of shading and textures, geometri
al


omputations related to the rotation of obje
ts, interpolation, et
. GPUs a
hieve

their ex
eptional performan
e for these operations by performing 
omputations

in parallel, using a large number of 
ores. While a typi
al desktop or laptop


omputer may have a 2 or 4 
ore CPU, the GPU that it 
ontains may have

dozens, hundreds, or even thousands of 
ores.
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GPU 
omputing is the pra
ti
e of using a GPU devi
e for s
ienti�
 or gen-

eral purpose 
omputations that are not ne
essarily related to the display of

images. The idea is to take advantage of the many 
ores of the GPU to a
-


elerate 
omputations by o�oading part of the work of the CPU to the GPU.

Not all problems are good 
andidates for GPU 
omputing. Certain 
omputa-

tions exhibit data-level parallelism, whi
h means that the same instru
tions are

applied to many di�erent pie
es of data. An example is the 
omputation of

a log-likelihood fun
tion, where the log-likelihood is 
omputed for ea
h sam-

ple observation, and then summed up. In general, GPUs are well-suited to data

parallel problems. However, in a data parallel environment, it is possible for par-

allel exe
ution units to perform di�erent operations on their data, based upon

logi
al bran
hing (i.e., �if� statements). GPU hardware realizes full e�
ien
y

when all threads in a group take the same exe
ution path. Logi
al bran
hes

resulting from �if� statements 
an result in �thread divergen
e�, where threads

within a group take di�erent exe
ution paths. Problems whi
h 
annot avoid ex-


essive thread divergen
e are likely not good 
andidates for porting to the GPU.

Another 
onsideration is that GPU 
omputing requires transferring data from

the host 
omputer to the GPU devi
e, and results from the GPU devi
e ba
k

to the host 
omputer. Su
h memory transfers are relatively slow. A problem

that is a good 
andidate for GPU 
omputing should exhibit data parallelism,

with high 
omputational intensity relative to required memory transfers, and

should require little logi
al bran
hing. Within e
onometri
s, many problems

�t these requirements reasonably well. This paper explores several examples of

e
onometri
 
omputations that 
an bene�
ially be ported to GPU 
omputing.

To give a bit of ba
kground, interest in s
ienti�
 uses of GPU 
omputing be-

gan in the early 2000s. In 2006 and 2007, Nvidia introdu
ed the CUDA parallel


omputing ar
hite
ture and software development kit, whi
h allowed program-

ming for GPUs using an extension of the C++ language. This programming

model made GPU programming mu
h more a

essible than it had been previ-

ously, and it has sin
e been used in many appli
ations in many areas, as perusal

of the web page http://www.nvidia.
om/obje
t/
uda_show
ase_html.html

reveals. Speedups reported on that page range from 1 to 3 orders of magnitude,


ompared to 
omputations done using a single CPU thread. CUDA and the as-

so
iated programming environment generates 
ode that runs only on hardware

devi
es from Nvidia. The OpenCL

2

programming framework is a standard gov-

erned by the Khronos non-pro�t 
onsortium, and it provides a GPU 
omputing

framework similar to CUDA. The OpenCL language and appli
ation program-

ming interfa
e allows for GPU programming and mixed CPU/GPU program-

ming using hardware devi
es from a number of manufa
turers, in
luding Nvidia,

Intel and AMD. Though OpenCL and other alternatives to CUDA are available,

the CUDA framework is at present the most widely used environment for GPU

programming. It is the environment for whi
h most examples available, and

there exists an extensive set of 
ode libraries that 
an fa
ilitate GPU program-

2

http://www.khronos.org/open
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ming using CUDA. Libraries exist for basi
 linear algebra subroutines (
uBLAS)

and fast Fourier transform (
uFFT), for random number generation (
uRAND),

and to enable fun
tionality of the C++ standard template library on the GPU

(Thrust). As well, third parties have developed extensions and wrappers for

many widely used programming languages, in
luding Python, Matlab, Mathe-

mati
a, and others. Be
ause of the 
ompleteness of the environment and its ease

of use at the present time, we fo
us on uses of CUDA and related te
hnology in

this paper. However, it is worth emphasizing that GPU 
omputing is evolving

rapidly and is 
ontinually be
oming more a

essible. We expe
t that CUDA

and its alternatives will 
ontinue to be
ome easier to use.

Another fa
tor whi
h makes learning about GPU 
omputing attra
tive is

that the 
omputational 
apa
ity of GPU hardware is 
onstantly in
reasing at

a rapid rate, as is its energy e�
ien
y. From the page en.wikipedia.org/

wiki/Comparison_of_Nvidia_graphi
s_pro
essing_units, we 
an tra
e the

performan
e of GPUs o�ered for desktop 
omputers. Taking as an example

mid-level 
ards, whi
h o�er good performan
e at a moderate pri
e, the Nvidia

GTX460 GPU was introdu
ed in July 2010, and o�ered 907 G�op/s and 6.05

G�op/s per watt of power 
onsumption, for single pre
ision 
omputations. The

GTX560 Ti was introdu
ed in January 2011 and o�ered 1263 G�op/s and 7.43

G�op/s per watt. At the time of this writing (Mar
h, 2012), the GTX460

is available for roughly $150, while the GTX560Ti 
osts roughly $230 (pri
es

from www.amazon.
om). These theoreti
al peak numbers for single pre
ision


omputations may not translate dire
tly to the performan
e one sees in real-

world appli
ations, but they do illustrate the evolution of GPU 
omputing power

and energy e�
ien
y over time.

For a more realisti
 
omparison of the power of GPU 
omputing in rela-

tion to CPU-only 
omputing, Phillips (2010) reports results for the widely-used

LINPACK ben
hmark, using double pre
ision. A CPU-based system a
hieves

11 G�op/s per $1000 
ost, and 0.15 G�op/s per watt of power 
onsumption. A

mixed CPU-GPU system a
hieves 60 G�op/s per $1000 
ost, and 0.66 G�op/s

per watt. It is 
lear that GPU 
omputing adds a great deal of performan
e

relative to 
ost or energy 
onsumption.

In spite of the potential for 
heap a

ess to this sour
e of 
omputing power,

there has been, up to the present time, remarkably little use of GPU 
omputing

in resear
h work in e
onomi
s and e
onometri
s, though other �elds su
h as

statisti
s (e.g., Su
hard et al. 2010) and areas in the biologi
al s
ien
es (e.g.,

Liepe et al. 2010) have seen more work done. Mathur and Morozov (2012)

use CUDA to solve an optimal 
ontrol problem that involves experimentation

and learning, using value fun
tion iteration, and report speedups of 15-26 times.

Aldri
h et al. (2011) show how GPU 
omputing 
an be used to a

elerate the

solution of a dynami
 equilibrium model, also using value fun
tion iteration

and CUDA. They report speedups of around 200X. Durham and Geweke (2011)

present an algorithm for Bayesian estimation of models, using sequential Monte

Carlo (parti
le �ltering), implemented with CUDA. They do not 
ompare their

CUDA software to a CPU version. Li (2011) uses CUDA to implement kernel

density estimation on a GTX 470 devi
e, whi
h has 448 pro
essor 
odes, and
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reports speedups of more than 400X 
ompared to single threaded Matlab 
ode.

The very limited use of GPU 
omputing in e
onomi
s and e
onometri
s up

to the present time 
an probably be explained by the more demanding 
omputer

programming skills that are needed to 
ode GPU appli
ations. One fa
tor that


an help to over
ome this barrier is the availability of working and 
learly do
-

umented 
ode examples in areas relevant to e
onomists and e
onometri
ians.

This paper provides some examples of GPU 
omputing applied to e
onometri


estimation, a

ompanied by sour
e 
ode that is do
umented and explained. The

intention is not to provide an exhaustive survey of potential uses, but rather to

provide some working examples that illustrate the potential of GPU 
omputing

for e
onometri
 estimation. The sour
e 
ode that a

ompanies the paper 
an

serve as a model for development of 
ode for other estimation problems.

3

We present two examples. The �rst is the 
omputation of a likelihood fun
-

tion. This is a simple example that illustrates the basi
 ideas, it has appli
ation

in both 
lassi
al and Bayesian e
onometri
s, and it shows that a good speedup


an be obtained. The se
ond example uses the indire
t likelihood estimators

of Creel and Kristensen (2011). These estimators are simulation-based, and

simulation is a data parallel task that is an ideal 
andidate for porting to the

GPU. We �nd that use of GPU 
omputing 
an deliver results up to 55 times

more qui
kly than is possible using a single CPU 
ore. We expe
t that similar

speedups would apply to many other problems in e
onometri
 estimation.

2. Examples

2.1. Likelihood fun
tion

For a sample Zn = {(yt, xt)}n of n independent observations of a dependent

variable (yt) and ve
tor of explanatory variables (xt), let f(yt|xt; θ) be the den-
sity of yt 
onditional on xt, with parameter ve
tor θ. The maximum likelihood

estimator of the parameter θ is θ̂ = argmax
∑n

t=1 ln f(yt|xt, θ). In the 
ontext

of seeking to parallelize 
omputations, Swann (2002) and Creel (2005) point out

that the sum 
an be broken into sums over blo
ks of observations, using up to n

blo
ks. For parallelization using MPI, one would normally use as many blo
ks

as available CPU 
ores. With a many-
ore GPU devi
e, a larger number of

blo
ks may be used, potentially giving a greater speedup. The simple presenta-

tion used here 
an easily be adapted to dependent observations, and the basi


idea of 
omputing the likelihood using blo
ks of observations is possible as long

as the data are Markovian.

To give a 
on
rete example, suppose that yt is 
onditionally distributed

Poisson:

f(yt|xt) ∼
exp(−λt)λ

yt

t

yt!

λt = exp(x′tθ)

3

The 
ode is ar
hived at pareto.uab.es/m
reel/GPU_paper_
ode_release_v1.zip
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where xt and θ are k ve
tors. In this 
ase, the 
onditional log-likelihood fun
tion

is ln f(yt|xt, θ) = − exp(x′tθ) + ytx
′

tθ − log(yt!). Computation of the maximum

likelihood estimator requires iterative maximization, involving a number of eval-

uations of the obje
tive fun
tion. Likewise, Bayesian estimation using Markov


hain Monte Carlo requires many evaluations of the likelihood fun
tion (among

other 
omputations) as the 
hain advan
es, where the likelihood fun
tion may

be 
omputed as

L(θ;Zn) = exp

(
n∑

t=1

ln f(yt|xt, θ)

)
.

Fo
using on this last 
ase, we will look at the time to perform 2000 evaluations

of the Poisson likelihood fun
tion, when the dimension of xt and θ is 3. Ea
h

of the 2000 evaluations is done at a di�erent value of the parameter ve
tor,

as would be the 
ase if MCMC were being done. Furthermore, the value of

the parameter is determined using CPU 
omputations, and a memory transfer


ommuni
ating the new parameter values from the CPU to the GPU is done at

ea
h step. On the other hand, the data, Zn, whi
h uses mu
h more memory,

must only be transfered to the GPU on
e. This 
oding solution allows GPU


omputation of the likelihood to be dropped in as a repla
ement for CPU-

based 
omputation, into relatively 
omplex CPU-based software for estimation

by maximum likelihood or MCMC. The 
omputation of the likelihood fun
tion is

the inner-loop 
omputational bottlene
k. When dealing with a 
omplex software


hain, optimizing the inner loop is often where most gains 
an be made. It may

not be desirable to port an entire 
omplex software 
hain to GPU 
omputing

if substantial gains 
an be made by optimizing only the likelihood fun
tion


omputations. This example explores this idea.

2.2. Indire
t likelihood inferen
e

Indire
t likelihood inferen
e (Creel and Kristensen, 2011) is method of e
ono-

metri
 estimation that relies on simulations from the model and on nonpara-

metri
 density or regression fun
tion 
omputations. A very similar, and in some

aspe
ts, identi
al, 
lass of estimators is known in the literature of the biolog-

i
al s
ien
es as Approximate Bayesian Computation (ABC) or likelihood-free

Bayesian inferen
e (see, e.g., Tavaré et al., 1997; Beaumont, Zhang and Bald-

ing, 2002; Marjoram et al., 2003; Sisson, Fan and Tanaka, 2007). The paper

of Creel and Kristensen makes 
lear the relationship with maximum likelihood

estimation, and establishes a theoreti
al base for the estimators. Here, we follow

the notation of that paper. The 
ombination of simulation and nonparametri
s

means that the estimators 
an be 
omputationally demanding. Be
ause sim-

ulations are independent of one another, the needed 
omputations 
an easily

be parallelized. Likewise, nonparametri
 methods su
h as kernels and nearest

neighbors require 
omputing distan
es between large sets of points, and this is

also easily parallelized (Ra
ine, 2002; Creel, 2005; Gar
ia, 2008; Gar
ia, De-

breuve and Barlaud, 2008).

First, let us brie�y des
ribe the estimators. We wish to learn about a pa-

rameter θ ∈ Θ ⊂ R
k
des
ribing a model. Given a sample Yn = (y1, ..., yn)
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from the model, we make inferen
e on θ through a q-dimensional statisti
,

Zn = Zn(Yn) ∈ R
q
. Let fn(Zn|θ) be the likelihood of the statisti
 for a

given value of the parameter. Ignore for a moment the fa
t that the likelihood

is normally not known on 
losed form. The maximum indire
t likelihood (MIL)

estimator maximizes the indire
t likelihood de�ned through Zn:

θ̂MIL = arg sup
θ∈Θ

log fn(Zn|θ). (2.1)

This is very mu
h like a maximum likelihood estimator, ex
ept that the sample

is �ltered through a statisti
. This has the advantage of redu
ing the dimension

of random quantities from O(n) to the �nite value q, whi
h fa
ilitates the use

of nonparametri
 methods. The disadvantage is a potential loss of e�
ien
y if

Zn is not a su�
ient statisti
.

A Bayesian version of the MIL estimator may be of interest, following 
onsid-

erations in Chernozhukov and Hong (2003), as it obviates the need for numeri
al

optimization. One possibility is to use the posterior mean of θ given Zn de�ned

as

θ̂BIL = E(θ|Zn) =

ˆ

Θ

θfn (θ|Zn) dθ, (2.2)

where fn (θ|Zn) is the posterior distribution given by

fn (θ|Zn) =
fn (Zn, θ)

fn (Zn)
=

fn(Zn|θ)π (θ)
´

Θ
fn(Zn|θ)π (θ) dθ

(2.3)

for some pseudo-prior density π(θ) on the parameter spa
e Θ. We refer to this

parti
ular estimator as the Bayesian indire
t likelihood (BIL) estimator. For

most 
hoi
es of Zn, the density fn(Zn|θ) is of unknown form, so the MIL and BIL

estimators are infeasible. Feasible versions 
an be 
omputed using simulation

and nonparametri
 estimation. Here we dis
uss only a feasible version of the

BIL estimator, for the feasible version of the MIL estimator, and additional

dis
ussion, see Creel and Kristensen, 2011.

2.2.1. SBIL

The BIL de�ned above (equation 2.2) is a posterior mean. The SBIL esti-

mator proposed in Creel and Kristensen (2011) (essentially the same idea was

proposed in the ABC literature by Beaumont, Zhang and Balding, 2002) dire
tly


omputes the posterior mean using simulation and nonparametri
 regression, as

follows. Make i.i.d. draws θs, s = 1, ..., S, from the pseudo-prior density π(θ),
for ea
h draw generate a sample Yn(θ

s) from the model at this parameter value,

and then 
ompute the 
orresponding statisti
 Zs
n = Zn(Yn(θ

s)), s = 1, ..., S.
Now let ZS = {Zs

n, s = 1, 2, ..., S} be the set of the simulated statisti
s. We 
an

obtain a simulated version of the BIL (SBIL) through nonparametri
 regression

te
hniques. One su
h is a simple K nearest neighbor regression estimator (see

Li and Ra
ine, 2007, Ch. 14),

θ̂SBIL =
1

K

S∑

s=1

θs1 (‖Zs
n − Zn‖ ≤ dK(Zn,ZS)) , (2.4)

6



where 1(·) is the indi
ator fun
tion that take the value 1 if the argument is true,
and the value 0 otherwise, and dK(Zn,ZS) is the Eu
lidean distan
e between

Zn and the Kth

losest element of ZS to Zn. Simply put, this estimator is

the average of the K values of θs that lead to the K 
losest neighbors to Zn.

There are more sophisti
ated possibilities using weighting s
hemes, but this

simple version presents the main ideas 
learly. This important point is that this

estimator is 
onsistent for the posterior mean E(θ|Zn) as S in
reases, as long as

K is 
hosen to be an appropriately slowly growing fun
tion of S. Be
ause S is

the number of simulations and 
an be 
hosen, we 
an make the nonparametri


approximation to the true posterior mean as a

urate as is needed by using a

su�
ient number of simulations.

2.2.2. Two example models for IL estimation

MA model. A �rst model, 
hosen for it's simpli
ity, is the �rst order moving

average (MA(1)) model

yt = ǫt + ψǫt−1

ǫt ∼ i.i.d.N(0, σ2)

We use a sample sizes of n=200 observations. The parameter ψ is one of the

values {−0.95, −0.9, −0.5, 0, 0.5, 0.9, 0.95}, so the model is always invertible.

The parameter σ is always equal to 1. The parameter ve
tor is θ = (ψ, σ).We set

the parameter spa
e to Θ = (−1, 1)× (0, 2), whi
h imposes invertibility, whi
h

is needed for the parameter to be identi�ed. The auxiliary statisti
 Zn is the

ve
tor of estimated parameters

(
ρ0, ρ1, ..., ρP , σ

2
υ

)
of a P -order autoregressive

(AR(P )) model yt = ρ0 +
∑P

p=1 ρpyt−p + υt, �t to the data using ordinary least

squares. For simpli
ity, we hold the order of the AR(P ) model 
onstant at

P = 10 a
ross the Monte Carlo repli
ations. Thus, the dimension of Zn is 12,

while the dimension of θ is 2, so we have 
onsiderable overidenti�
ation.

Stru
tural au
tion model. One would not normally estimate an MA(1) model

using a simulation-based estimator su
h as those dis
ussed in this paper. How-

ever, ri
h stru
tural models with latent variables and nonlinearities often require

the use of simulation-based estimators. An example is the stru
tural au
tion

model presented by Li (2010), who studies the performan
e of the indire
t in-

feren
e estimator using Monte Carlo. Creel and Kristensen (2011) repli
ate the

Monte Carlo study, using the SBIL estimator. Here, we port the same example

to the GPU.

The model is a Dut
h au
tion, where only the winning bid is observed.

The number of bidders is �xed at N = 6, and the sample size is n = 100,
meaning that the out
omes of 100 au
tions are observed. At ea
h au
tion i =
1, 2, ..., 100, the quality, xi, of the item being au
tioned is the square of a uniform

(0, 2) random variable, to introdu
e heterogeneity in the values of the obje
ts

a
ross the au
tions. The 6 bidders draw their independent private values from

a 
ommon exponential distribution with density

f(v|xi) =
1

exp(θ0 + θ1xi)
exp

(
−

v

exp(θ0 + θ1xi)

)

7



so that exp(θ0 + θ1xi) is the mean valuation of the item, over the bidders. The

equilibrium strategy for the winning bid is

b∗i = v∗i −
1

FN−1(v∗i |xi)

ˆ v∗

i

0

FN−1(u|xi)du

where v∗i is the highest private valuation, and F (·|xi) is the exponential distri-
bution fun
tion. For a given value of N (6 in this 
ase), symboli
 
omputation

software 
an be used to obtain a 
ompa
t analyti
 solution for the winning

bid, so the model is easily simulated. The observed data are the 100 values of

{xi, b
∗

i }, and we seek to estimate θ0 and θ1. The true values are set to θ0 = 1
and θ1 = 0.5. To de�ne the auxiliary statisti
, we �t the auxiliary model

log b∗i = α + βxi + σǫi using ordinary least squares. The auxiliary statisti
 is

Zn = (α̂, β̂, log σ̂). The parameter spa
e, for reasons dis
ussed in Creel and

Kristensen (2011), is set to (θ0, θ1) ∈Θ = (−0.05, 2.45)×(0.00, 1.96). The short
explanation is that values outside this region never generate points 
lose to a

Zn that is generated at the true value.

3. The Code and ben
hmarking

3.1. The 
ode

We provide Matlab/O
tave and CUDA 
ode to 
ompute the Poisson likeli-

hood fun
tion and to estimate the MA and au
tion models by SBIL. This 
ode

is do
umented and 
ommented, so we do not des
ribe it in detail here, ex
ept

to note some points of interest. The CUDA 
ode for the Poisson likelihood is

very simple, and serves as a tra
table introdu
tion to e
onometri
ally relevant


omputations using CUDA. It makes some use of the Thrust library. For the

SBIL examples, both the MA and au
tion example use an ordinary least squares

(OLS) �t as the auxiliary statisti
, and at the CUDA kernel level there are no

standard libraries available for OLS. We wrote a CUDA 
ode library for OLS

using Hall (1970) as a guide. This part of our 
ode may be of interest beyond the

examples we work with. Finally, the SBIL estimator uses nearest neighbors non-

parametri
 regression to approximate the 
onditional mean (see equation 2.4).

To perform these 
omputations on the GPU, we use an existing implementation

available at http://www.i3s.uni
e.fr/~
reative/KNN/ (Gar
ia, 2008; Gar-


ia, Debreuve and Barlaud, 2008). This 
ode uses the brute for
e method of


omputing nearest neighbors, whi
h involves expli
itly 
omputing the distan
es

between all target and query points. We have modi�ed this 
ode to use multiple

GPU devi
es, if available.

3.2. Ben
hmarking

3.2.1. Poisson likelihood fun
tion

We 
omputed 2000 iterations of the Poisson likelihood fun
tion, for sample

sizes n ∈ {28, 210, ..., 216} (for referen
e, 28 = 256, and 216 = 65536). In all 
ases,
there are 3 regressors. The CPU-based 
omputations were done using Matlab

8
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R2010a, running on a Ma
book Air laptop with an Intel Core i5-2557M CPU,

running at 1.7 GHz. The 
omputations using the GPU were done on a single

GTX560Ti 
ard, whi
h has 384 CUDA 
ores and 1GB of memory. The retail

pri
e of this 
ard is presently around $230 (pri
e from www.amazon.
om). The

sample data is transfered to the GPU only on
e, and then the likelihood fun
tion

is evaluated at ea
h of 2000 di�erent parameter values, where the parameter

values are determined sequentially using CPU-based 
omputing. Thus, there

are 2000 CPU->GPU memory transfers of the value of the parameter ve
tor

θ during the 
ourse of the 
omputations, exa
tly as would o

ur if the GPU-

based 
omputation of the likelihood were embedded in a CPU-based Markov


hain Monte Carlo (MCMC) or iterative maximization program. The timing

results are found in Table 1. In this and other tables, log2 S means the base-

2 logarithm of S, so that S = 2log2 S
. Thus, when log2 S in
reases by 1, S

doubles. The timings for the CUDA runs in
lude all memory transfers, that

of the data, and ea
h of the 2000 parameter ve
tor values. For the smallest

sample size, we see that the 
omputations using the GPU devi
e are about 1.5

times faster than the 
omputations done using Matlab on a laptop 
omputer.

For the largest sample size, the 
omputations on the GPU are almost 18 times

faster. The greater speedup for the larger sample size is 
ertainly in�uen
ed by

the greater 
omputational intensity relative to the time needed for the memory

transfers, whi
h is 
onstant with respe
t to the sample size. These results show

that even simple 
omputations with a small sample size 
an be a

elerated

using CUDA, and that when the sample size be
omes larger, the a

eleration

be
omes 
onsiderable. For a more 
omputationally intensive likelihood fun
tion,

we expe
t that the speedup would be greater still.

3.2.2. SBIL estimator

For the SBIL estimator, the basi
 fa
tor that determines exe
ution time is

the time needed to 
ompute S simulations of the auxiliary statisti
 and to �nd

the K nearest neighbors, among the S simulated values, to the observed value of

the auxiliary statisti
, Zn. In this se
tion we report timings for the two models,

along with timings for the same 
omputations done on a CPU. The CPU-based


omputations were done using a single 
ore of an Intel Core 2 Duo E8400 CPU,

whi
h has a 
lo
k speed of 3.0 GHz. For the CPU 
omputations, the simulation

loop was programmed using Matlab R2010a. The nearest neighbors part of the


omputations on the CPU were using the well-known ANN library (http://

www.
s.umd.edu/~mount/ANN/). It should be noted that the simulation part

of the problem is trivial to parallelize, and that the simulation time greatly

dominates the time to �nd the nearest neighbors, so roughly speaking, one 
ould

redu
e the CPU time by a fa
tor of X by running the 
ode on X homogeneous


ores, either on a single ma
hine or on a 
luster.

The time to �nd the K nearest neighbors is virtually 
onstant with respe
t

to K, though it is sensitive to S. This is be
ause to �nd the nearest neighbor to

Zn in the set of S points, ZS , or the K nearest neighbors, all of the S distan
es

must be 
omputed in both 
ases. For this reason, we set K to a single value,

50. Also, it is 
lear that timings will s
ale linearly in S, as we simply need

9
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to generate proportionally more auxiliary statisti
s and 
ompute proportionally

more distan
es. For this reason, we present results for several moderate values

of S, but we do not use very large values of S, be
ause the CPU timings would

be
ome large, without 
ontributing any useful additional information. Regard-

ing the two models, for the MA model, the auxiliary statisti
 has dimension 12,

while for the au
tion model, the dimension is 3. The sample size for the MA

model is 200, while for the au
tion model it is 100. Overall, the MA model

involves manipulating 
onsiderably more data, but the 
omputations are very

simple. The au
tion model involves less data, but more 
omplex 
omputations.

Table 2 presents timings for the MA model, for S = 217 up to S = 220

(217 = 131, 072 and 220 = 1, 048, 576). Timings are given as total wall 
lo
k

time, measured using the Linux �time� 
ommand on an otherwise unloaded sys-

tem. We 
an observe that the CPU and GPU timings s
ale 
lose to linearly,

approximately doubling as S doubles, as expe
ted. The speedup fa
tor is ap-

proximately 11X on average, whi
h is to say that the GPU 
omputations are

about 11 times faster than the CPU 
omputations. For lower values of log2 S
the speedup is a little less, be
ause the overhead of memory transfers between

host and devi
e memories is spread out over less 
omputational time.

Table 3 
ontains similar timings for the au
tion model. Again, the timings

s
ale 
lose to linearly in S. For this model, the speedup from moving to GPU


omputing is 
onsiderably greater, averaging about 40X for the sizes of simu-

lations 
onsidered, and rea
hing a little more than 55X in the best 
ase. The

greater speedup for the au
tion model 
ompared to the MA model is likely due

to the fa
t that the au
tion model involves 
onsiderably more 
omplex 
ompu-

tations, but requires 
onsiderably less memory usage, as it involves a smaller

sample size and a lower dimensional auxiliary statisti
. Again, the speedup is

better for larger log2 S , so the time spent doing 
al
ulations is larger 
ompared

to the time for memory transfers.

The speedups are very satisfa
tory, in our opinion. For the sort of 
omputa-

tions required for IL estimation, a single graphi
s 
ard that 
osts around $230

obtains performan
e equivalent to at least 9 and up to 55 CPU 
ores. A typi-


al 
luster would 
onsist of ra
kmount servers, and a fairly typi
al ra
kmount

server may 
ontain two quad 
ore CPUs, for a total of 8 
ores. The 
ost of su
h

a server is roughly 10 times that of the GPU 
ard. For the au
tion model, one

would need four su
h servers to equal the performan
e of the single GPU 
ard,

for a total 
ost of roughly 40 times that of the GPU 
ard. The maintenan
e 
ost

of su
h a 
luster, as well as the 
ost of powering and 
ooling it is 
onsiderable,

as is the noise that it makes. In 
ontrast, the GPU devi
e 
an be installed in

a single 
heap, quiet, energy e�
ient desktop 
omputer, and one only needs

maintain a single 
omputer.

These results use a single GPU devi
e, and a single query point. When mul-

tiple query points are used, whi
h is the 
ase when doing Monte Carlo, or when

running multiple MCMC 
hains, the nearest neighbors part of the 
omputations

be
omes more demanding, and it be
omes bene�
ial to seek further possibilities

for parallelization. It is straightforward to spread the 
omputations over several

GPU devi
es, using OpenMP. The 
ode that a

ompanies this paper dete
ts

10



and uses multiple GPU devi
es, if available.

4. E
onometri
 results

In this se
tion we extend the results of Creel and Kristensen (2011) by explor-

ing the e�e
t of in
reasing the number of simulations, S, and also systemati
ally

exploring the 
hoi
e of the number of neighbors, K. In Creel and Kristensen

(2011), the number of simulations used in various examples is between 106 and
107 , and the paper 
ontains no investigation of the e�e
t of the 
hoi
e of S on

the performan
e of the estimators. Also, in that paper, a simple rule setting

K = 1.5×S0.25
is used to sele
t the number of neighbors for the nonparametri


�t. With GPU 
omputing, it is mu
h qui
ker do Monte Carlo work, whi
h fa-


ilitates more 
areful study of the performan
e of the IL estimators in relation

to the tuning of the nonparametri
 �tting methods used.

We present results for the MA model of Se
tion 2.2.2. The �ndings are very

similar for all 7 design points, so we fo
us on the 
ase of ψ = 0.9, so as to present
fewer tables. First, we generate 5000 Monte Carlo repli
ations of Zn. Then we

generate S repli
ations of Zs
n, and �nd the 300 nearest neighbors to ea
h of the

5000 Monte Carlo repli
ations of Zn. This information is saved. This pro
ess

is done for the values log2 S ∈ {12, 14, ..., 24}. Then we 
an 
ompute the SBIL

estimator using any number of neighbors up to 300, whi
h is the most that were

saved.

Table 4 presents root mean squared error (RMSE) for estimation of ψ, as a

fun
tion of log2 S andK. In this table, the minimum RMSE values tend to lie on

the �main diagonal�. We 
an see that for a given log2 S, RMSE has a U shape as

a fun
tion of K, �rst de
lining to a minimum, then rising. For the larger values

of log2 S, we do not observe the rise, as we have not 
omputed enough neighbors.
This shape is expe
ted. For a given log2 S, when K is small, bias is small, but

the varian
e is large, be
ause we are averaging few neighbors. When K is large,

parameter values far from the true value will be in
luded among the neighbors,

provoking a large bias. Likewise, for a given K, there is a value of log2 S that

minimizes RMSE, whi
h is seen 
learly in the �rst rows of the Table. When

log2 S is too small for a given K, the pool of potential neighbors is too small,

and we are for
ed to in
lude parameter values that are far from the true value,

provoking ex
ess bias. When log2 S is too large, there will be relatively many Zs

that are realized in the tails of their 
onditional distributions given θs, and their

in
lusion among the neighbors provokes an in
rease in the varian
e. The table


on�rms the result from theory thatK should be an in
reasing fun
tion of S.We

note that the rule relating K and S used in Creel and Kristensen (2011) leads

to too small of a value of K. For example, when log2 S = 20, S = 1, 048, 576,
and the rule K = 1.5 × S0.25

gives K = 48. The RMSE reported in Creel and

Kristensen (2011) using this value of K is 0.042. The minimum RMSE value in

Table 4 is 0.040, with the 
orrespondingK ≥ 150. This indi
ates that there may
be s
ope for improving results by more 
areful sele
tion of S and K. However,

the di�eren
e is quite small, and we observe in the Table that RMSE is fairly


onstant over wide ranges of S and K, so ex
essive e�ort devoted to sear
hing

11



is not warranted. Also, moderate values of S 
an give good results. It is to be

kept in mind, however, that the dimension of the parameter ve
tor is only 2 in

this example, and that higher dimensions will require larger simulated samples.

When this is the 
ase, the speedup from GPU 
omputing will be
ome even more

attra
tive.

5. Con
lusions

Within e
onometri
s, many pro
edures have a data parallel stru
ture that

requires minimal logi
al bran
hing and whi
h have a high 
omputational inten-

sity. This paper has shown that GPU 
omputing 
an obtain good speedups for

this type of work. Likelihood fun
tions for Markovian data, Monte Carlo, sim-

ple bootstrapping, nonparametri
 �tting methods based on lo
al averaging, and

similar problems have stru
tures that are amenable to GPU 
omputing. This is


ertainly not to suggest that GPU 
omputing is a good solution for all 
omput-

ing problems in e
onometri
s. Models for non-Markovian data normally require

sequential 
omputations, whi
h do not �t the data parallel paradigm. Methods

su
h as MCMC or simulated annealing are essentially sequential, and even if

one 
onsiders ensemble versions that 
an be parallelized with relative ease, the

problem of thread divergen
e 
an arise, as di�erent parts of the ensemble take

di�erent exe
ution paths. This 
ould limit the gains from moving su
h 
om-

putations to the GPU, and given the greater 
omplexity of programming for

GPUs, su
h problems are probably best ta
kled using CPU-based solutions, at

least at present.

GPU 
omputing, when it is appli
able, has many advantages over alter-

native methods of parallelization, su
h as 
lustering ma
hines for CPU-based


omputation, in that the hardware, energy and maintenan
e 
ost is mu
h lower

for GPU 
omputing. It is true that programming for GPU 
omputing is more


omplex than is standard programming for CPU 
omputing. In addition to

the usual 
hallenges of thinking in terms of parallel 
omputing, the available

libraries of 
ode to a

omplish needed tasks are more limited. For example, we

had to program the OLS estimation in the CUDA kernel from s
rat
h. How-

ever, there is no doubt that this problem will be
ome less severe in the future,

as more libraries be
ome available. Our 
ode for OLS �tting is now available,

and 
an be used in other appli
ations of GPU 
omputing. It is also possible

to port only some parts of a 
omputational problem to the GPU, as we have

done with the 
omputation of the likelihood fun
tion. A large and 
omplex

CPU-based software body 
an bene�t from sele
tive use of GPU 
omputing by

porting only 
omputational bottlene
ks that are well adapted to the data par-

allel and bran
h-free paradigm that suits GPU 
omputing. We reiterate that

the 
ode that a

ompanies this paper is available from the authors

4

. It is ex-

tensively 
ommented, with instru
tions for its use. We hope that this 
ode 
an

4

The 
ode is ar
hived at pareto.uab.es/m
reel/GPU_paper_
ode_release_v1.zip
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help other e
onometri
ians to learn to use GPU 
omputing for their resear
h

interests.
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Tables

Table 1: Time to 
ompute 2000 evaluations of Poisson likelihood fun
tion.

log2(S) 8 10 12 14 16

CPU (ms) 114 210 572 2086 7037

GPU (ms) 74 75 85 148 393

Speedup (CPU/GPU) 1.54 2.80 6.73 14.10 17.90

Table 2: MA(1) model, time to simulate and �nd 50 neighbors to Zn.

log2(S) 17 18 19 20

CPU (s) 29.80 57.26 113.45 221.48

GPU (s) 3.15 5.41 9.93 19.07

Speedup (CPU/GPU) 9.46 10.58 11.42 11.61

Table 3: Au
tion model, time to simulate and �nd 50 neighbors to Zn.

log2(S) 17 18 19 20

CPU (s) 27.98 53.12 104.36 205.61

GPU (s) 1.23 1.57 2.29 3.71

Speedup (CPU/GPU) 22.75 33.83 45.57 55.42

Table 4: MA(1) model, estimation of ψ, RMSE as a fun
tion of log2S and K

log2(S)
K 12 14 16 18 20 22 24

10 0.040 0.046 0.046 0.044 0.044 0.044 0.044

20 0.040 0.042 0.043 0.042 0.042 0.042 0.043

30 0.040 0.041 0.042 0.041 0.042 0.042 0.042

40 0.042 0.041 0.041 0.041 0.041 0.041 0.042

50 0.045 0.040 0.041 0.041 0.041 0.041 0.042

100 0.058 0.041 0.040 0.040 0.041 0.041 0.041

150 0.066 0.042 0.040 0.040 0.040 0.041 0.041

200 0.075 0.044 0.040 0.040 0.040 0.040 0.041

250 0.089 0.046 0.041 0.040 0.040 0.040 0.041

300 0.107 0.048 0.041 0.040 0.040 0.040 0.041
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