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Abstract

A graphical processing unit (GPU) is a hardware device normally used to ma-
nipulate computer memory for the display of images. GPU computing is the
practice of using a GPU device for scientific or general purpose computations
that are not necessarily related to the display of images. Many problems in
econometrics have a structure that allows for successful use of GPU computing.
We explore two examples. The first is simple: repeated evaluation of a likeli-
hood function at different parameter values. The second is a more complicated
estimator that involves simulation and nonparametric fitting. We find speedups
from 1.5 up to 55.4 times, compared to computations done on a single CPU core.
These speedups can be obtained with very little expense, energy consumption,
and time dedicated to system maintenance, compared to equivalent performance
solutions using CPUs. Code for the examples is provided.

Keywords: parallel computing; graphical processing unit; GPU; economet-
rics; simulation-based methods; Bayesian estimation.

JEL codes: C13, C14, C15, C33.

1. Introduction

A graphical processing unit (GPU) is a hardware device normally used to
manipulate computer memory for the display of images. GPUs have evolved to
have a great capacity for floating point computations of the sort that are needed
to display images, including applications of shading and textures, geometrical
computations related to the rotation of objects, interpolation, etc. GPUs achieve
their exceptional performance for these operations by performing computations
in parallel, using a large number of cores. While a typical desktop or laptop
computer may have a 2 or 4 core CPU, the GPU that it contains may have
dozens, hundreds, or even thousands of cores.
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GPU computing is the practice of using a GPU device for scientific or gen-
eral purpose computations that are not necessarily related to the display of
images. The idea is to take advantage of the many cores of the GPU to ac-
celerate computations by offloading part of the work of the CPU to the GPU.
Not all problems are good candidates for GPU computing. Certain computa-
tions exhibit data-level parallelism, which means that the same instructions are
applied to many different pieces of data. An example is the computation of
a log-likelihood function, where the log-likelihood is computed for each sam-
ple observation, and then summed up. In general, GPUs are well-suited to data
parallel problems. However, in a data parallel environment, it is possible for par-
allel execution units to perform different operations on their data, based upon
logical branching (i.e., “if” statements). GPU hardware realizes full efficiency
when all threads in a group take the same execution path. Logical branches
resulting from “if” statements can result in “thread divergence”, where threads
within a group take different execution paths. Problems which cannot avoid ex-
cessive thread divergence are likely not good candidates for porting to the GPU.
Another consideration is that GPU computing requires transferring data from
the host computer to the GPU device, and results from the GPU device back
to the host computer. Such memory transfers are relatively slow. A problem
that is a good candidate for GPU computing should exhibit data parallelism,
with high computational intensity relative to required memory transfers, and
should require little logical branching. Within econometrics, many problems
fit these requirements reasonably well. This paper explores several examples of
econometric computations that can beneficially be ported to GPU computing.

To give a bit of background, interest in scientific uses of GPU computing be-
gan in the early 2000s. In 2006 and 2007, Nvidia introduced the CUDA parallel
computing architecture and software development kit, which allowed program-
ming for GPUs using an extension of the C++ language. This programming
model made GPU programming much more accessible than it had been previ-
ously, and it has since been used in many applications in many areas, as perusal
of the web page http://www.nvidia.com/object/cuda_showcase_html.html
reveals. Speedups reported on that page range from 1 to 3 orders of magnitude,
compared to computations done using a single CPU thread. CUDA and the as-
sociated programming environment generates code that runs only on hardware
devices from Nvidia. The OpenC programming framework is a standard gov-
erned by the Khronos non-profit consortium, and it provides a GPU computing
framework similar to CUDA. The OpenCL language and application program-
ming interface allows for GPU programming and mixed CPU/GPU program-
ming using hardware devices from a number of manufacturers, including Nvidia,
Intel and AMD. Though OpenCL and other alternatives to CUDA are available,
the CUDA framework is at present the most widely used environment for GPU
programming. It is the environment for which most examples available, and
there exists an extensive set of code libraries that can facilitate GPU program-
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ming using CUDA. Libraries exist for basic linear algebra subroutines (cuBLAS)
and fast Fourier transform (cuFFT), for random number generation (cuRAND),
and to enable functionality of the C++ standard template library on the GPU
(Thrust). As well, third parties have developed extensions and wrappers for
many widely used programming languages, including Python, Matlab, Mathe-
matica, and others. Because of the completeness of the environment and its ease
of use at the present time, we focus on uses of CUDA and related technology in
this paper. However, it is worth emphasizing that GPU computing is evolving
rapidly and is continually becoming more accessible. We expect that CUDA
and its alternatives will continue to become easier to use.

Another factor which makes learning about GPU computing attractive is
that the computational capacity of GPU hardware is constantly increasing at
a rapid rate, as is its energy efficiency. From the page en.wikipedia.org/
wiki/Comparison_of _Nvidia_graphics_processing_units, we can trace the
performance of GPUs offered for desktop computers. Taking as an example
mid-level cards, which offer good performance at a moderate price, the Nvidia
GTX460 GPU was introduced in July 2010, and offered 907 Gflop/s and 6.05
Gflop/s per watt of power consumption, for single precision computations. The
GTX560 Ti was introduced in January 2011 and offered 1263 Gflop/s and 7.43
Gflop/s per watt. At the time of this writing (March, 2012), the GTX460
is available for roughly $150, while the GTX560Ti costs roughly $230 (prices
from www.amazon.com). These theoretical peak numbers for single precision
computations may not translate directly to the performance one sees in real-
world applications, but they do illustrate the evolution of GPU computing power
and energy efficiency over time.

For a more realistic comparison of the power of GPU computing in rela-
tion to CPU-only computing, Phillips (2010) reports results for the widely-used
LINPACK benchmark, using double precision. A CPU-based system achieves
11 Gflop/s per $1000 cost, and 0.15 Gflop/s per watt of power consumption. A
mixed CPU-GPU system achieves 60 Gflop/s per $1000 cost, and 0.66 Gflop/s
per watt. It is clear that GPU computing adds a great deal of performance
relative to cost or energy consumption.

In spite of the potential for cheap access to this source of computing power,
there has been, up to the present time, remarkably little use of GPU computing
in research work in economics and econometrics, though other fields such as
statistics (e.g., Suchard et al. 2010) and areas in the biological sciences (e.g.,
Liepe et al. 2010) have seen more work done. Mathur and Morozov (2012)
use CUDA to solve an optimal control problem that involves experimentation
and learning, using value function iteration, and report speedups of 15-26 times.
Aldrich et al. (2011) show how GPU computing can be used to accelerate the
solution of a dynamic equilibrium model, also using value function iteration
and CUDA. They report speedups of around 200X. Durham and Geweke (2011)
present an algorithm for Bayesian estimation of models, using sequential Monte
Carlo (particle filtering), implemented with CUDA. They do not compare their
CUDA software to a CPU version. Li (2011) uses CUDA to implement kernel
density estimation on a GTX 470 device, which has 448 processor codes, and
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reports speedups of more than 400X compared to single threaded Matlab code.

The very limited use of GPU computing in economics and econometrics up
to the present time can probably be explained by the more demanding computer
programming skills that are needed to code GPU applications. One factor that
can help to overcome this barrier is the availability of working and clearly doc-
umented code examples in areas relevant to economists and econometricians.
This paper provides some examples of GPU computing applied to econometric
estimation, accompanied by source code that is documented and explained. The
intention is not to provide an exhaustive survey of potential uses, but rather to
provide some working examples that illustrate the potential of GPU computing
for econometric estimation. The source code that accompanies the paper can
serve as a model for development of code for other estimation problemsE

We present two examples. The first is the computation of a likelihood func-
tion. This is a simple example that illustrates the basic ideas, it has application
in both classical and Bayesian econometrics, and it shows that a good speedup
can be obtained. The second example uses the indirect likelihood estimators
of Creel and Kristensen (2011). These estimators are simulation-based, and
simulation is a data parallel task that is an ideal candidate for porting to the
GPU. We find that use of GPU computing can deliver results up to 55 times
more quickly than is possible using a single CPU core. We expect that similar
speedups would apply to many other problems in econometric estimation.

2. Examples
2.1. Likelihood function

For a sample Z,, = {(y¢, z¢)},, of n independent observations of a dependent
variable (y:) and vector of explanatory variables (x:), let f(y:|z+; ) be the den-
sity of y; conditional on z;, with parameter vector §. The maximum likelihood
estimator of the parameter 6 is § = argmax ), In f(y|z¢,6). In the context
of seeking to parallelize computations, Swann (2002) and Creel (2005) point out
that the sum can be broken into sums over blocks of observations, using up to n
blocks. For parallelization using MPI, one would normally use as many blocks
as available CPU cores. With a many-core GPU device, a larger number of
blocks may be used, potentially giving a greater speedup. The simple presenta-
tion used here can easily be adapted to dependent observations, and the basic
idea of computing the likelihood using blocks of observations is possible as long
as the data are Markovian.

To give a concrete example, suppose that y; is conditionally distributed
Poisson:

exp(—=A¢) NVt
flylee)  ~ %

A = exp(x0)
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where x; and 0 are k vectors. In this case, the conditional log-likelihood function
is In f(yi|ae, 0) = —exp(z10) + yixi0 — log(y:!). Computation of the maximum
likelihood estimator requires iterative maximization, involving a number of eval-
uations of the objective function. Likewise, Bayesian estimation using Markov
chain Monte Carlo requires many evaluations of the likelihood function (among
other computations) as the chain advances, where the likelihood function may
be computed as

n
L(6; Z,) = exp <Z In f(yt|:1ct,9)> .

t=1
Focusing on this last case, we will look at the time to perform 2000 evaluations
of the Poisson likelihood function, when the dimension of z; and 6 is 3. Each
of the 2000 evaluations is done at a different value of the parameter vector,
as would be the case if MCMC were being done. Furthermore, the value of
the parameter is determined using CPU computations, and a memory transfer
communicating the new parameter values from the CPU to the GPU is done at
each step. On the other hand, the data, Z,,, which uses much more memory,
must only be transfered to the GPU once. This coding solution allows GPU
computation of the likelihood to be dropped in as a replacement for CPU-
based computation, into relatively complex CPU-based software for estimation
by maximum likelihood or MCMC. The computation of the likelihood function is
the inner-loop computational bottleneck. When dealing with a complex software
chain, optimizing the inner loop is often where most gains can be made. It may
not be desirable to port an entire complex software chain to GPU computing
if substantial gains can be made by optimizing only the likelihood function
computations. This example explores this idea.

2.2. Indirect likelihood inference

Indirect likelihood inference (Creel and Kristensen, 2011) is method of econo-
metric estimation that relies on simulations from the model and on nonpara-
metric density or regression function computations. A very similar, and in some
aspects, identical, class of estimators is known in the literature of the biolog-
ical sciences as Approximate Bayesian Computation (ABC) or likelihood-free
Bayesian inference (see, e.g., Tavaré et al., 1997; Beaumont, Zhang and Bald-
ing, 2002; Marjoram et al., 2003; Sisson, Fan and Tanaka, 2007). The paper
of Creel and Kristensen makes clear the relationship with maximum likelihood
estimation, and establishes a theoretical base for the estimators. Here, we follow
the notation of that paper. The combination of simulation and nonparametrics
means that the estimators can be computationally demanding. Because sim-
ulations are independent of one another, the needed computations can easily
be parallelized. Likewise, nonparametric methods such as kernels and nearest
neighbors require computing distances between large sets of points, and this is
also easily parallelized (Racine, 2002; Creel, 2005; Garcia, 2008; Garcia, De-
breuve and Barlaud, 2008).

First, let us briefly describe the estimators. We wish to learn about a pa-
rameter § € © C R* describing a model. Given a sample Y,, = (y1,...,Yn)



from the model, we make inference on 6 through a ¢-dimensional statistic,
Zy, = Zn(Y,) € R? . Let f,(Z,|0) be the likelihood of the statistic for a
given value of the parameter. Ignore for a moment the fact that the likelihood
is normally not known on closed form. The maximum indirect likelihood (MIL)
estimator maximizes the indirect likelihood defined through Z,,:

éMIL = argsup logfn(Zn|9)- (2-1)
6co

This is very much like a maximum likelihood estimator, except that the sample
is filtered through a statistic. This has the advantage of reducing the dimension
of random quantities from O(n) to the finite value ¢, which facilitates the use
of nonparametric methods. The disadvantage is a potential loss of efficiency if
Z,, is not a sufficient statistic.

A Bayesian version of the MIL estimator may be of interest, following consid-
erations in Chernozhukov and Hong (2003), as it obviates the need for numerical
optimization. One possibility is to use the posterior mean of 6 given Z,, defined
as

Op11, = E(0]Z,) :/ O0fn (6]1Z,) db, (2.2)
e
where f, (6|Z,) is the posterior distribution given by

_ fn (Zn,0) _ fn(Zn)0)m (0)
InOV2) = "F 2 = o FuZal0)w (0)d0

for some pseudo-prior density 7(#) on the parameter space ©. We refer to this
particular estimator as the Bayesian indirect likelihood (BIL) estimator. For
most choices of Z,,, the density f,,(Z,|0) is of unknown form, so the MIL and BIL
estimators are infeasible. Feasible versions can be computed using simulation
and nonparametric estimation. Here we discuss only a feasible version of the
BIL estimator, for the feasible version of the MIL estimator, and additional
discussion, see Creel and Kristensen, 2011.

(2.3)

2.2.1. SBIL

The BIL defined above (equation 2.2)) is a posterior mean. The SBIL esti-
mator proposed in Creel and Kristensen (2011) (essentially the same idea was
proposed in the ABC literature by Beaumont, Zhang and Balding, 2002) directly
computes the posterior mean using simulation and nonparametric regression, as
follows. Make i.i.d. draws 6%, s = 1,...,.S, from the pseudo-prior density 7 (6),
for each draw generate a sample Y;,(0°) from the model at this parameter value,
and then compute the corresponding statistic Z5 = Z,(Y,(6%)), s = 1,...,S.
Now let Zg ={Z%, s =1,2,...,5} be the set of the simulated statistics. We can
obtain a simulated version of the BIL (SBIL) through nonparametric regression
techniques. One such is a simple K nearest neighbor regression estimator (see
Li and Racine, 2007, Ch. 14),

s

A 1

Osprr = It E 0°1(|Z, — Znll < dx(Zn, Zs)) , (2.4)
s=1



where 1(+) is the indicator function that take the value 1 if the argument is true,
and the value 0 otherwise, and di(Z,, Zs) is the Euclidean distance between
Z, and the K closest element of Zg to Z,. Simply put, this estimator is
the average of the K values of 6° that lead to the K closest neighbors to Z,.
There are more sophisticated possibilities using weighting schemes, but this
simple version presents the main ideas clearly. This important point is that this
estimator is consistent for the posterior mean E(6|Z,) as S increases, as long as
K is chosen to be an appropriately slowly growing function of S. Because S is
the number of simulations and can be chosen, we can make the nonparametric
approximation to the true posterior mean as accurate as is needed by using a
sufficient number of simulations.

2.2.2. Two example models for IL estimation

MA model. A first model, chosen for it’s simplicity, is the first order moving
average (MA(1)) model

Yo = €&+ e
e ~ i.d.d.N(0,0%)

We use a sample sizes of n=200 observations. The parameter ¢ is one of the
values {—0.95, —0.9, —0.5, 0, 0.5, 0.9, 0.95}, so the model is always invertible.
The parameter o is always equal to 1. The parameter vector is § = (¢, o). We set
the parameter space to © = (—1,1) x (0,2), which imposes invertibility, which
is needed for the parameter to be identified. The auxiliary statistic Z, is the
vector of estimated parameters (po, p1, ..., pp,02) of a P-order autoregressive
(AR(P)) model y; = po + 25:1 PpYt—p + Ut fit to the data using ordinary least
squares. For simplicity, we hold the order of the AR(P) model constant at
P = 10 across the Monte Carlo replications. Thus, the dimension of Z,, is 12,
while the dimension of € is 2, so we have considerable overidentification.

Structural auction model. One would not normally estimate an MA(1) model
using a simulation-based estimator such as those discussed in this paper. How-
ever, rich structural models with latent variables and nonlinearities often require
the use of simulation-based estimators. An example is the structural auction
model presented by Li (2010), who studies the performance of the indirect in-
ference estimator using Monte Carlo. Creel and Kristensen (2011) replicate the
Monte Carlo study, using the SBIL estimator. Here, we port the same example
to the GPU.

The model is a Dutch auction, where only the winning bid is observed.
The number of bidders is fixed at N = 6, and the sample size is n = 100,
meaning that the outcomes of 100 auctions are observed. At each auction i =
1,2,...,100, the quality, z;, of the item being auctioned is the square of a uniform
(0,2) random variable, to introduce heterogeneity in the values of the objects
across the auctions. The 6 bidders draw their independent private values from
a common exponential distribution with density

(ol e (i)
exp(t% + 91$Z) P exp(t% + 91131)



so that exp(6y + 01z;) is the mean valuation of the item, over the bidders. The
equilibrium strategy for the winning bid is

1 vi
b= —— [N (ye)d
v Gy ], P e

where v} is the highest private valuation, and F(-|z;) is the exponential distri-
bution function. For a given value of N (6 in this case), symbolic computation
software can be used to obtain a compact analytic solution for the winning
bid, so the model is easily simulated. The observed data are the 100 values of
{z;, b7}, and we seek to estimate 6y and 6. The true values are set to 6 = 1
and #; = 0.5. To define the auxiliary statistic, we fit the auxiliary model
logb? = o + Bx; + o¢; using ordinary least squares. The auxiliary statistic is
Z, = (a, B, loga). The parameter space, for reasons discussed in Creel and
Kristensen (2011), is set to (6g, 61) €O = (—0.05,2.45) x(0.00,1.96). The short
explanation is that values outside this region never generate points close to a
Z, that is generated at the true value.

3. The Code and benchmarking

3.1. The code

We provide Matlab/Octave and CUDA code to compute the Poisson likeli-
hood function and to estimate the MA and auction models by SBIL. This code
is documented and commented, so we do not describe it in detail here, except
to note some points of interest. The CUDA code for the Poisson likelihood is
very simple, and serves as a tractable introduction to econometrically relevant
computations using CUDA. It makes some use of the Thrust library. For the
SBIL examples, both the MA and auction example use an ordinary least squares
(OLS) fit as the auxiliary statistic, and at the CUDA kernel level there are no
standard libraries available for OLS. We wrote a CUDA code library for OLS
using Hall (1970) as a guide. This part of our code may be of interest beyond the
examples we work with. Finally, the SBIL estimator uses nearest neighbors non-
parametric regression to approximate the conditional mean (see equation 2.4).
To perform these computations on the GPU, we use an existing implementation
available at http://www.i3s.unice.fr/~creative/KNN/| (Garcia, 2008; Gar-
cia, Debreuve and Barlaud, 2008). This code uses the brute force method of
computing nearest neighbors, which involves explicitly computing the distances
between all target and query points. We have modified this code to use multiple
GPU devices, if available.

3.2. Benchmarking

3.2.1. Poisson likelihood function

We computed 2000 iterations of the Poisson likelihood function, for sample
sizesn € {28,219 ..., 216} (for reference, 28 = 256, and 2'¢ = 65536). In all cases,
there are 3 regressors. The CPU-based computations were done using Matlab
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R2010a, running on a Macbook Air laptop with an Intel Core i5-2557M CPU,
running at 1.7 GHz. The computations using the GPU were done on a single
GTX560Ti card, which has 384 CUDA cores and 1GB of memory. The retail
price of this card is presently around $230 (price from www.amazon.com). The
sample data is transfered to the GPU only once, and then the likelihood function
is evaluated at each of 2000 different parameter values, where the parameter
values are determined sequentially using CPU-based computing. Thus, there
are 2000 CPU->GPU memory transfers of the value of the parameter vector
0 during the course of the computations, exactly as would occur if the GPU-
based computation of the likelihood were embedded in a CPU-based Markov
chain Monte Carlo (MCMCQC) or iterative maximization program. The timing
results are found in Table[[l In this and other tables, log, S means the base-
2 logarithm of S, so that S = 2!°229 Thus, when log, S increases by 1, S
doubles. The timings for the CUDA runs include all memory transfers, that
of the data, and each of the 2000 parameter vector values. For the smallest
sample size, we see that the computations using the GPU device are about 1.5
times faster than the computations done using Matlab on a laptop computer.
For the largest sample size, the computations on the GPU are almost 18 times
faster. The greater speedup for the larger sample size is certainly influenced by
the greater computational intensity relative to the time needed for the memory
transfers, which is constant with respect to the sample size. These results show
that even simple computations with a small sample size can be accelerated
using CUDA, and that when the sample size becomes larger, the acceleration
becomes considerable. For a more computationally intensive likelihood function,
we expect that the speedup would be greater still.

3.2.2. SBIL estimator

For the SBIL estimator, the basic factor that determines execution time is
the time needed to compute S simulations of the auxiliary statistic and to find
the K nearest neighbors, among the S simulated values, to the observed value of
the auxiliary statistic, Z,. In this section we report timings for the two models,
along with timings for the same computations done on a CPU. The CPU-based
computations were done using a single core of an Intel Core 2 Duo E8400 CPU,
which has a clock speed of 3.0 GHz. For the CPU computations, the simulation
loop was programmed using Matlab R2010a. The nearest neighbors part of the
computations on the CPU were using the well-known ANN library (http://
www.cs.umd.edu/"mount/ANN/). It should be noted that the simulation part
of the problem is trivial to parallelize, and that the simulation time greatly
dominates the time to find the nearest neighbors, so roughly speaking, one could
reduce the CPU time by a factor of X by running the code on X homogeneous
cores, either on a single machine or on a cluster.

The time to find the K nearest neighbors is virtually constant with respect
to K, though it is sensitive to S. This is because to find the nearest neighbor to
Zyp, in the set of S points, Zg, or the K nearest neighbors, all of the S distances
must be computed in both cases. For this reason, we set K to a single value,
50. Also, it is clear that timings will scale linearly in S, as we simply need
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to generate proportionally more auxiliary statistics and compute proportionally
more distances. For this reason, we present results for several moderate values
of S, but we do not use very large values of S, because the CPU timings would
become large, without contributing any useful additional information. Regard-
ing the two models, for the MA model, the auxiliary statistic has dimension 12,
while for the auction model, the dimension is 3. The sample size for the MA
model is 200, while for the auction model it is 100. Overall, the MA model
involves manipulating considerably more data, but the computations are very
simple. The auction model involves less data, but more complex computations.

Table [ presents timings for the MA model, for S = 2'7 up to § = 2%
(217 = 131,072 and 2%° = 1,048,576). Timings are given as total wall clock
time, measured using the Linux “time” command on an otherwise unloaded sys-
tem. We can observe that the CPU and GPU timings scale close to linearly,
approximately doubling as S doubles, as expected. The speedup factor is ap-
proximately 11X on average, which is to say that the GPU computations are
about 11 times faster than the CPU computations. For lower values of log, S
the speedup is a little less, because the overhead of memory transfers between
host and device memories is spread out over less computational time.

Table [B] contains similar timings for the auction model. Again, the timings
scale close to linearly in S. For this model, the speedup from moving to GPU
computing is considerably greater, averaging about 40X for the sizes of simu-
lations considered, and reaching a little more than 55X in the best case. The
greater speedup for the auction model compared to the MA model is likely due
to the fact that the auction model involves considerably more complex compu-
tations, but requires considerably less memory usage, as it involves a smaller
sample size and a lower dimensional auxiliary statistic. Again, the speedup is
better for larger log, S, so the time spent doing calculations is larger compared
to the time for memory transfers.

The speedups are very satisfactory, in our opinion. For the sort of computa-
tions required for IL estimation, a single graphics card that costs around $230
obtains performance equivalent to at least 9 and up to 55 CPU cores. A typi-
cal cluster would consist of rackmount servers, and a fairly typical rackmount
server may contain two quad core CPUs, for a total of 8 cores. The cost of such
a server is roughly 10 times that of the GPU card. For the auction model, one
would need four such servers to equal the performance of the single GPU card,
for a total cost of roughly 40 times that of the GPU card. The maintenance cost
of such a cluster, as well as the cost of powering and cooling it is considerable,
as is the noise that it makes. In contrast, the GPU device can be installed in
a single cheap, quiet, energy efficient desktop computer, and one only needs
maintain a single computer.

These results use a single GPU device, and a single query point. When mul-
tiple query points are used, which is the case when doing Monte Carlo, or when
running multiple MCMC chains, the nearest neighbors part of the computations
becomes more demanding, and it becomes beneficial to seek further possibilities
for parallelization. It is straightforward to spread the computations over several
GPU devices, using OpenMP. The code that accompanies this paper detects
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and uses multiple GPU devices, if available.

4. Econometric results

In this section we extend the results of Creel and Kristensen (2011) by explor-
ing the effect of increasing the number of simulations, S, and also systematically
exploring the choice of the number of neighbors, K. In Creel and Kristensen
(2011), the number of simulations used in various examples is between 10 and
107 , and the paper contains no investigation of the effect of the choice of S on
the performance of the estimators. Also, in that paper, a simple rule setting
K = 1.5 x §%25 is used to select the number of neighbors for the nonparametric
fit. With GPU computing, it is much quicker do Monte Carlo work, which fa-
cilitates more careful study of the performance of the IL estimators in relation
to the tuning of the nonparametric fitting methods used.

We present results for the MA model of Section The findings are very
similar for all 7 design points, so we focus on the case of ¥ = 0.9, so as to present
fewer tables. First, we generate 5000 Monte Carlo replications of Z,,. Then we
generate S replications of Z2, and find the 300 nearest neighbors to each of the
5000 Monte Carlo replications of Z,,. This information is saved. This process
is done for the values log, S € {12, 14, ...,24}. Then we can compute the SBIL
estimator using any number of neighbors up to 300, which is the most that were
saved.

Table [ presents root mean squared error (RMSE) for estimation of v, as a
function of log, S and K. In this table, the minimum RMSE values tend to lie on
the “main diagonal”. We can see that for a given log, S, RMSE has a U shape as
a function of K, first declining to a minimum, then rising. For the larger values
of log, S, we do not observe the rise, as we have not computed enough neighbors.
This shape is expected. For a given log, .S, when K is small, bias is small, but
the variance is large, because we are averaging few neighbors. When K is large,
parameter values far from the true value will be included among the neighbors,
provoking a large bias. Likewise, for a given K, there is a value of log, S that
minimizes RMSE, which is seen clearly in the first rows of the Table. When
log, S is too small for a given K, the pool of potential neighbors is too small,
and we are forced to include parameter values that are far from the true value,
provoking excess bias. When log, S is too large, there will be relatively many Zj
that are realized in the tails of their conditional distributions given 65, and their
inclusion among the neighbors provokes an increase in the variance. The table
confirms the result from theory that K should be an increasing function of S. We
note that the rule relating K and S used in Creel and Kristensen (2011) leads
to too small of a value of K. For example, when log, S = 20, S = 1,048, 576,
and the rule K = 1.5 x §%?gives K = 48. The RMSE reported in Creel and
Kristensen (2011) using this value of K is 0.042. The minimum RMSE value in
Tabledlis 0.040, with the corresponding K > 150. This indicates that there may
be scope for improving results by more careful selection of S and K. However,
the difference is quite small, and we observe in the Table that RMSE is fairly
constant over wide ranges of S and K, so excessive effort devoted to searching
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is not warranted. Also, moderate values of S can give good results. It is to be
kept in mind, however, that the dimension of the parameter vector is only 2 in
this example, and that higher dimensions will require larger simulated samples.
When this is the case, the speedup from GPU computing will become even more
attractive.

5. Conclusions

Within econometrics, many procedures have a data parallel structure that
requires minimal logical branching and which have a high computational inten-
sity. This paper has shown that GPU computing can obtain good speedups for
this type of work. Likelihood functions for Markovian data, Monte Carlo, sim-
ple bootstrapping, nonparametric fitting methods based on local averaging, and
similar problems have structures that are amenable to GPU computing. This is
certainly not to suggest that GPU computing is a good solution for all comput-
ing problems in econometrics. Models for non-Markovian data normally require
sequential computations, which do not fit the data parallel paradigm. Methods
such as MCMC or simulated annealing are essentially sequential, and even if
one considers ensemble versions that can be parallelized with relative ease, the
problem of thread divergence can arise, as different parts of the ensemble take
different execution paths. This could limit the gains from moving such com-
putations to the GPU, and given the greater complexity of programming for
GPUs, such problems are probably best tackled using CPU-based solutions, at
least at present.

GPU computing, when it is applicable, has many advantages over alter-
native methods of parallelization, such as clustering machines for CPU-based
computation, in that the hardware, energy and maintenance cost is much lower
for GPU computing. It is true that programming for GPU computing is more
complex than is standard programming for CPU computing. In addition to
the usual challenges of thinking in terms of parallel computing, the available
libraries of code to accomplish needed tasks are more limited. For example, we
had to program the OLS estimation in the CUDA kernel from scratch. How-
ever, there is no doubt that this problem will become less severe in the future,
as more libraries become available. Our code for OLS fitting is now available,
and can be used in other applications of GPU computing. It is also possible
to port only some parts of a computational problem to the GPU, as we have
done with the computation of the likelihood function. A large and complex
CPU-based software body can benefit from selective use of GPU computing by
porting only computational bottlenecks that are well adapted to the data par-
allel and branch-free paradigm that suits GPU computing. We reiterate that
the code that accompanies this paper is available from the authordd. It is ex-
tensively commented, with instructions for its use. We hope that this code can

4The code is archived at [pareto.uab.es/mcreel/GPU_paper _code_release _v1.zip
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help other econometricians to learn to use GPU computing for their research
interests.
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Tables

Table 1: Time to compute 2000 evaluations of Poisson likelihood function.

| 10g2(5) [ 8 [ 10 [ 12 ] 14 | 16 |
CPU (ms) 114 | 210 | 572 | 2086 | 7037
GPU (ms) 74 | 75 | 85 | 148 | 393
Speedup (CPU/GPU) | 1.54 | 2.80 | 6.73 | 14.10 | 17.90

Table 2: MA(1) model, time to simulate and find 50 neighbors to Zj.

| loga(S) | 17 | 18 | 19 | 20 |
CPU (s) 29.80 | 57.26 | 113.45 | 221.48
GPU (s) 315 | 541 | 9.93 [ 19.07
Speedup (CPU/GPU) [ 9.46 | 10.58 | 11.42 | 11.61

Table 3: Auction model, time to simulate and find 50 neighbors to Z,.

| loga(5) | 17 [ 18 [ 19 [ 20 |
CPU (s) 27.98 [ 53.12 [ 104.36 | 205.61
GPU (s) 123 | 1.57 | 229 | 3.71
Speedup (CPU/GPU) | 22.75 | 33.83 | 45.57 | 55.42

Table 4: MA(1) model, estimation of ¢, RMSE as a function of log2S and K

loga(5)
K| 12 [ 14 [ 16 [ 18 | 20 | 22 | 24 |
10 | 0.040 | 0.046 | 0.046 | 0.044 | 0.044 | 0.044 | 0.044
20 | 0.040 | 0.042 | 0.043 | 0.042 | 0.042 | 0.042 | 0.043
30 | 0.040 | 0.041 | 0.042 | 0.041 | 0.042 | 0.042 | 0.042
40 | 0.042 | 0.041 | 0.041 | 0.041 | 0.041 | 0.041 | 0.042
50 | 0.045 | 0.040 | 0.041 | 0.041 | 0.041 | 0.041 | 0.042
100 | 0.058 | 0.041 | 0.040 | 0.040 | 0.041 | 0.041 | 0.041
150 | 0.066 | 0.042 | 0.040 | 0.040 | 0.040 | 0.041 | 0.041
200 | 0.075 | 0.044 | 0.040 | 0.040 | 0.040 | 0.040 | 0.041
250 | 0.089 | 0.046 | 0.041 | 0.040 | 0.040 | 0.040 | 0.041
300 | 0.107 | 0.048 | 0.041 | 0.040 | 0.040 | 0.040 | 0.041
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