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Abstract

We study many-to-many matching markets in which agents from a set A are matched
to agents from a disjoint set B through a two-stage non-revelation mechanism. In
the first stage, A-agents, who are endowed with a quota that describes the maximal
number of agents they can be matched to, simultaneously make proposals to the
B-agents. In the second stage, B-agents sequentially, and respecting the quota,
choose and match to available A-proposers.

We study the subgame perfect Nash equilibria of the induced game. We prove
that stable matchings are equilibrium outcomes if all A-agents’ preferences are sub-
stitutable. We also show that the implementation of the set of stable matchings is
closely related to the quotas of the A-agents. In particular, implementation holds
when A-agents’ preferences are substitutable and their quotas are non-binding.
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1 Introduction

We study many-to-many matching markets in which agents from a set A are matched
to agents from a disjoint set B through a two-stage non-revelation mechanism. In the
first stage, A-agents, who are endowed with a quota that describes the maximal number
of agents they can be matched to, simultaneously make proposals to the B-agents. In
the second stage, B-agents sequentially, and respecting the quota, choose and match
to available A-proposers. Mechanisms where the agents on one side of the market apply
simultaneously and then the agents on the other side choose sequentially are very common,
e.g., in college admission and school choice (Roth and Sotomayor, 1990; Vulkan et al.,
2013).

We study the subgame perfect Nash equilibria of the induced game. We prove that
stable matchings are equilibrium outcomes if all A-agents’ preferences are substitutable
(Theorem 1); even if only one A-agent does not have substitutable preferences it can
happen that some stable matching is not an equilibrium outcome (Example 1). We also
show that the implementation of the set of stable matchings is closely related to the
quotas of the A-agents (Theorem 2). In particular, implementation holds when A-agents’
preferences are substitutable and their quotas are non-binding (Corollary 1).

In the context of many-to-one matching between students and colleges, Romero-
Medina and Triossi (2014) introduce two sequential non-revelation mechanisms. They
show that if colleges’ preferences are substitutable, then the mechanisms implement the
set of stable matchings in subgame perfect Nash equilibrium. More specifically, Romero-
Medina and Triossi (2014) propose a mechanism, called the CSM (students apply Colleges
Sequentially choose Mechanism), which coincides with our mechanism by taking the set
A to be students, the set B to be colleges, and setting the quota for each agent (student)
in A to be equal to one. Assuming furthermore that preferences of the agents in set
B (colleges) are substitutable, Romero-Medina and Triossi (2014, Proposition 1) show
that CSM implements the set of stable matchings. We provide examples that show that
Proposition 1 of Romero-Medina and Triossi (2014) is tight in the sense that under a slight
relaxation of the assumptions, implementation needs no longer be possible (Examples 2
and 3).

Romero-Medina and Triossi (2014) also consider a mechanism, called the SSM (col-
leges apply Students Sequentially choose Mechanism), where colleges first simultaneously
propose to students and then students sequentially pick a college. The SSM coincides
with our mechanism by taking the set A to be colleges, the set B to be students, and
not limiting the quota for each agent (college) in A. Romero-Medina and Triossi (2014,
Proposition 2) show that SSM implements the set of stable matchings. Our Corollary 1
generalizes Romero-Medina and Triossi (2014, Proposition 2).

Finally, in Section 4, we discuss the validity of our results when using the stronger
stability notion of setwise stability instead of (pairwise) stability: while Theorem 1 remains
valid, Theorem 2 does not hold anymore.
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2 Preliminaries

2.1 Many-to-many matching

There are two disjoint and finite sets of agents A and B. Let I = A ∪ B denote the
set of agents. Generic elements of A, B, and I are denoted by a, b, and i, respectively.
The set of (possible) partners of agent i is Ti ≡ B if i ∈ A, and Ti ≡ A if i ∈ B. The
preferences of agent i are given by a linear order Pi over all subsets of set Ti, 2Ti .1 Let
Pi denote the collection of all possible preferences for agent i. Since we fix the set of
agents, a (many-to-many matching) market is given by a preference profile, i.e., a tuple
P = (Pi)i∈I . For each agent i ∈ I, let Ri denote the ‘at least as desirable as’ relation
associated with Pi, i.e., for each pair j, k ∈ Ti, jRik if and only if j = k or j Pi k. For each
agent i with preferences Pi, let Ch(·, Pi) be the induced choice function on 2Ti . In other
words, for each set T ⊆ Ti, Ch(T, Pi) is agent i’s most preferred subset of T according
to Pi. A set of agents T ⊆ Ti is acceptable to agent i at P if T Ri ∅.

A matching is a mapping from the set of agents I into 2A∪2B such that for each agent
a ∈ A and each agent b ∈ B, µ(a) ∈ 2B, µ(b) ∈ 2A, and [a ∈ µ(b) ⇔ b ∈ µ(a)].
For any agent i ∈ I, set µ(i) is called agent i’s match (at µ). Next, we introduce
(pairwise) stability.2 Since the matching markets we consider are based on voluntary
participation, we require a matching to be individually rational. Formally, a matching
µ is individually rational if for all agents i ∈ I, Ch(µ(i), Pi) = µ(i). Matching µ is
blocked by a pair (of agents) (a, b) ∈ A × B, a 6∈ µ(b),3 if for all agents i, j ∈ {a, b}
with i 6= j, j ∈ Ch(µ(i) ∪ {j}, Pi). A matching µ is (pairwise) stable if it is individually
rational and not blocked by any pair (a, b) ∈ A × B. Let Σ(P ) denote the set of stable
matchings. Note that the set of stable matchings Σ(P ) can be empty (see, e.g., Roth and
Sotomayor, 1990, Example 2.7). A well-known sufficient condition for the non-emptiness
of Σ(P ) is substitutability of all agents’ preferences. The preferences Pi of an agent
i ∈ I are substitutable4 if for all sets T ′ ⊆ Ti and for all agents j, j′ ∈ T ′ with j 6= j′,
[ j ∈ Ch(T ′, Pi) =⇒ j ∈ Ch(T ′\{j′}, Pi) ]. For a subset of agents I ′ ⊆ I, we say that
PI′ ≡ (Pi)i∈I′ is substitutable if for all i ∈ I ′, Pi is substitutable.

2.2 A class of non-revelation mechanisms

We assume that for each agent a ∈ A, there is an exogenous quota, given by a positive
integer qa, so that any match for agent a cannot have cardinality larger than qa (for
instance due to legal or physical constraints). We suppose that qa is not smaller than the

1In other words, Pi is transitive, antisymmetric (strict), and total.
2In Section 4, we explain how our results would be affected if we used a stronger stability notion that is

also often considered for many-to-many matching markets, setwise stability, instead of pairwise stability.
3When formulating blocking like this we need to make sure a and b are not already matched (otherwise

a matched pair could block).
4Substitutability is an adaptation of the gross substitutability property (Kelso and Crawford, 1982)

by Roth (1984) and Roth and Sotomayor (1990) to matching problems without monetary transfers.
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largest acceptable match for agent a.5 Let q = (qa)a∈A denote the quota vector.6

Let the set of agents B = {b1, . . . , bk}. Let β = (b1, . . . , bk) be an order of the B-agents.

The [A simultaneously apply – B sequentially choose] mechanism ϕ ≡ ϕβ,q:

For each a ∈ A, let ra ≡ qa.

Step 0 (applications): A-agents simultaneously apply to sets of B-agents.

For each a ∈ A, agent a’s strategy is the set sa ∈ 2B of B-agents agent a applies to.
Let sA = (sa)a∈A.

Steps l = 1, . . . , k (choices): The set of (sA, sb1 , . . . , sbl−1
)-available agents are the A-

agents that applied to bl in Step 0 and that are still available, i.e., the set of agents
a ∈ A with bl ∈ sa and ra > 0. Agent bl chooses a subset of (sA, sb1 , . . . , sbl−1

)-available
agents. If an agent a ∈ A is chosen by bl, then they are (permanently) matched and we
set ra ≡ ra − 1.

For each agent bl ∈ B, agent bl’s strategy is the choice function sb that for each
(sA, sb1 , . . . , sbl−1

) describes agent bl’s choice from the (sA, sb1 , . . . , sbl−1
)-available agents.

For any strategy profile s = (si)i∈I , the outcome of non-revelation mechanism ϕβ,q is a
well-defined matching and the mechanism induces an extensive form game. Let Eβ,q(P )
(or E(P ) if no confusion is possible) denote the set of subgame perfect Nash equilibria
(SPE) at P , i.e., Eβ,q(P ) is the set of subgame perfect Nash equilibria strategy profiles.
Similarly, let Oβ,q(P ) (or O(P ) if no confusion is possible) denote the set of SPE outcomes
at P , i.e., Oβ,q(P ) is the set of matchings that result from the set of SPE.

For any strategy profile s and any agent i ∈ I, let s−i ≡ (sj)j∈I\{i}.

An example of a mechanism ϕβ,q is the application of students to public schools: a
student cannot consume more that one school admission, but he is allowed to apply to
more than one public school. Public schools process applications in sequence and once a
student accepts an admission he is no longer available for later admissions.

3 Results

Our first result shows that when A-agents have substitutable preferences, the [A simulta-
neously apply – B sequentially choose] mechanism ϕβ,q implements in SPE a superset of
the set of stable matchings.

5It could very well be that an agent might find matches that exceed a legally prescribed quota accept-
able. We assume that, for all practical purposes, such an agent derives and uses “legal preferences” and
a “legal choice function.”

6Let q, q′ be two quota vectors. Then, q ≥ q′ if and only if for all a ∈ A, qa ≥ q′a.
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Theorem 1. (All stable matchings can be obtained as SPE outcomes)
For any (β, q) and any preference profile P where PA is substitutable,

Σ(P ) ⊆ Oβ,q(P ).

Examples 2 and 3 show that under the assumptions of Theorem 1, Σ(P ) ( Oβ,q(P ) is
possible.

Proof. Without loss of generality, let β = (b1, . . . , bk). Let P be a preference profile. Let
matching µ be stable, i.e., µ ∈ Σ(P ). Consider the following strategy profile s. Each
agent a ∈ A (only) applies to set sa ≡ µ(a). For each bl ∈ B and for each of its decision
nodes, let agent bl accept the set of (sA, sb1 , . . . , sbl−1

)-available agents that he prefers
most according to his preferences Pb. In view of the optimality of the decisions of the
B-agents, it suffices to show that no agent a ∈ A has a profitable unilateral deviation,
i.e., he cannot get matched to a more preferred set of B-agents.

Suppose to the contrary that for some agent a ∈ A such a deviation does exist.
We show that then there exists a blocking pair for matching µ. Let strategy s′a be the
best possible deviation for agent a. Let strategy profile s′ = (s′a, s−a) and matching
µ′ = ϕβ,q(s′). Since strategy s′a is a beneficial deviation, Ch(µ(a) ∪ µ′(a), Pa) Pa µ(a).
Since matching µ is individually rational, Ch(µ(a) ∪ µ′(a), Pa) 6⊆ µ(a). Let b ∈ Ch(µ(a) ∪
µ′(a), Pa)\µ(a). Note that b 6∈ µ(a) and b ∈ µ′(a).

After agent a’s deviation, agent b receives an application from a and the set of previous
applications (which by construction of strategy profile s equals set µ(b)). Then, in view of
the optimality of agent b’s decision at strategy profile s′, it follows that Ch(µ(b)∪{a}, Pb) =
µ′(b). Hence,

a ∈ Ch(µ(b) ∪ {a}, Pb). (1)

For agent a, by substitutability of preferences Pa, b ∈ Ch(µ(a) ∪ µ′(a), Pa) implies

b ∈ Ch(µ(a) ∪ {b}, Pa). (2)

Hence, (1) and (2) imply that (a, b) is a blocking pair for µ; a contradiction.

The following example shows that substitutability of PA cannot be omitted in Theo-
rem 1. In fact, even if only one A-agent does not have substitutable preferences, then it
can happen that some stable matching is not an equilibrium outcome.

Example 1. (PA not substitutable and Σ(P ) * Oβ,q(P ))
Consider the market with A = {a1, a2}, B = {b1, b2}, and preference profile P given by
Table 1: in this and the following examples, we list only individually rational matches
and better matches are ranked higher. Note that all preferences except for those of agent
a1 are substitutable.
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a1 a2 b1 b2

{b1, b2} {b2} {a1} {a1}
∅ ∅ ∅ {a2}

∅

Table 1: Preference profile P in Example 1

Let quota vector q = (qa1 , qa2) = (2, 1) and let β = (b1, b2) be the order of the B-agents.
One easily verifies that the (boxed) matching

a1 a2

µ : | |
∅ b2

is stable, i.e., µ ∈ Σ(P ). However, matching µ 6∈ Oβ,q(P ). To see this, suppose µ ∈
Oβ,q(P ). Let strategy profile s ∈ Eβ,q(P ) such that ϕβ,q(s) = µ. Let strategy s′a1 = {b1, b2}
and strategy profile s′ = (s′a1 , s−a1). Then, at matching µ′ ≡ ϕβ,q(s′) agent a1’s match is
µ′(a1) = {b1, b2} which he strictly prefers to µ(a1) = ∅. Hence, µ 6∈ Oβ,q(P ). �

Romero-Medina and Triossi (2014) study a many-to-one matching model where a
set of students S has to be matched to a set of colleges C. They assume that each
student s ∈ S finds it unacceptable to being matched to a set of two or more colleges (so,
in particular each student s has substitutable preferences). Romero-Medina and Triossi
(2014) propose a mechanism, called the CSM (students apply Colleges Sequentially choose
Mechanism), which coincides with our mechanism ϕβ,q by taking set A = S, set B = C,
and setting for each agent a ∈ A, quota qa = 1. Assuming furthermore that preferences
PB are substitutable, Romero-Medina and Triossi (2014, Proposition 1) show that in this
particular case the mechanism implements the set of stable matchings, i.e., it is possible
to obtain the other inclusion in Theorem 1: Σ(P ) ⊇ Oβ,q(P ).

Proposition 1. (Romero-Medina and Triossi, 2014, Proposition 1)
For any (β, q) and any preference profile P where PB is substitutable and for all a ∈ A,
qa = 1,

Oβ,q(P ) = Σ(P ).

The next two examples show that Proposition 1 of Romero-Medina and Triossi (2014)
is tight in the sense that under a slight relaxation of the assumptions, implementation
needs no longer be possible.

The first example related to Proposition 1 of Romero-Medina and Triossi (2014) shows
that an unstable SPE outcome may exist if some B-agent has preferences that are not
substitutable (even when all other preferences are substitutable and all quotas equal 1).
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Example 2. (For some b ∈ B, Pb is not substitutable, for all a ∈ A, qa = 1, and
Σ(P ) ( Oβ,q(P )) Consider the market with A = {a1, a2}, B = {b1, b2}, and preference
profile P given by Table 2. Note that all preferences except for those of agent b2 are
substitutable. Hence, by Theorem 1, Σ(P ) ⊆ Oβ,q(P ).

a1 a2 b1 b2

{b2} {b1} {a1} {a1, a2}
{b1} {b2} {a2} {a2}
∅ ∅ ∅ ∅

Table 2: Preference profile P in Example 2

Let quota vector q = (qa1 , qa2) = (1, 1) and let β = (b1, b2) be the order of the B-agents.
We show that Σ(P ) ( Oβ,q(P ).

Let s be the strategy profile where sa1 = {b1}, sa2 = {b1, b2}, and both B-agents
choose optimally according to their preferences in all their decision nodes. One easily
verifies that the (boxed) matching

a1 a2

µ : | |
b1 b2

is the resulting matching, i.e., µ = ϕβ,q(s). We claim that strategy profile s is an SPE,
i.e., s ∈ Eβ,q(P ). To see this, suppose there is a profitable deviation s′a1 for agent a1.
Then, s′a1 = {b1, b2} or s′a1 = {b2}. However, in the first case, agent a1 would again be
matched to b1. In the second case, agent a1 would remain unmatched. Suppose now that
there is a profitable deviation s′a2 for agent a2. Then, s′a2 = {b1} which however would
leave agent a2 unmatched. Thus, s ∈ Eβ,q(P ) and µ ∈ Oβ,q(P ). But since (a1, b2) is a
blocking pair for µ, µ is not stable; i.e., µ 6∈ Σ(P ). Hence, Σ(P ) ( Oβ,q(P ). �

The second example related to Proposition 1 of Romero-Medina and Triossi (2014)
shows that an unstable SPE outcome may exist if some A-agent has a quota that is larger
than 1 (even when all preferences are substitutable and all other quotas equal 1).

Example 3. (P substitutable, for some a ∈ A, qa > 1, and Σ(P ) ( Oβ,q(P ))
Consider the market with A = {a1, a2}, B = {b1, b2}, and preference profile P given
by Table 3. Note that all preferences are substitutable. Hence, by Theorem 1, Σ(P ) ⊆
Oβ,q(P ).

Let quota vector q = (qa1 , qa2) = (2, 1) and let β = (b1, b2) be the order of the B-agents.
We show that Σ(P ) ( Oβ,q(P ).
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a1 a2 b1 b2

{b1, b2} {b1} {a1} {a2}
{b2} {b2} {a2} {a1}
{b1} ∅ ∅ ∅
∅

Table 3: Preference profile P in Example 3

Let s be the strategy profile where sa1 = {b2}, sa2 = {b1, b2}, and both B-agents
choose optimally according to their preferences in all their decision nodes. One easily
verifies that the (boxed) matching

a1 a2

µ : | |
b2 b1

is the resulting matching, i.e., µ = ϕβ,q(s). We claim that strategy profile s is an SPE, i.e.,
s ∈ Eβ,q(P ). To see this, note that agent a2 gets his most preferred match and that B-
agents choose optimally. Hence, a1 is the only possible candidate for a profitable deviation.
Suppose there is a profitable deviation s′a1 for agent a1. Then, s′a1 = {b1} or s′a1 = {b1, b2}.
However, in both cases one easily verifies that at strategy profile s′ = (s′a1 , s−a1) agent a1

is matched to {b1}. Hence, s′a1 is not a profitable deviation for agent a1. Thus, s ∈ Eβ,q(P )
and µ ∈ Oβ,q(P ). But since (a1, b1) is a blocking pair for matching µ, µ is not stable; i.e.,
µ 6∈ Σ(P ). Hence, Σ(P ) ( Oβ,q(P ). �

Example 3 shows that if some quota is larger than 1, then not all equilibrium out-
comes need to be stable. We next show that if all quotas are large enough, then all
equilibrium outcomes are guaranteed to be stable matchings (without any assumptions
on the preferences!).

We say that quotas are non-binding if for all agents a ∈ A, qa ≥ |B|. When quotas
are non-binding, at any strategy profile s, no A-agent ever becomes unavailable, i.e., if an
agent a decides to apply to set sa, then any agent b ∈ sa can choose agent a in any of its
decision nodes.

Our second result shows that when quotas are non-binding, the [A simultaneously
apply – B sequentially choose] mechanism ϕβ,q implements in SPE a subset of the set of
stable matchings.

Theorem 2. (Non-binding quotas guarantee stability in equilibrium)
For any (β, q) and any preference profile P where quotas are non-binding,7

Oβ,q(P ) ⊆ Σ(P ).

7Alternatively, instead of requiring that quotas are non-binding, we could restrict A-agents’ strategies
to not exceed their quotas: the result and the proof would then remain the same (but limiting the number
of applications an A-agent can submit might be difficult to enforce in practice).
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Proof. Let P be a preference profile. Let matching µ be an SPE outcome, i.e., µ ∈
Oβ,q(P ). Suppose matching µ is not stable, i.e., µ 6∈ Σ(P ). Let strategy profile s ∈ Eβ,q(P )
such that µ = ϕβ,q(s). Since µ is an equilibrium outcome, it is individually rational. So,
there is a blocking pair (a, b) ∈ A × B with a 6∈ µ(b), b ∈ Ch(µ(a) ∪ {b}, Pa), and a ∈
Ch(µ(b) ∪ {a}, Pb).

Let strategy s′a = Ch(µ(a) ∪ {b}, Pa) and strategy profile s′ = (s′a, s−a). We show
that strategy s′a is a profitable deviation for agent a. Since b ∈ Ch(µ(a) ∪ {b}, Pa),
Ch(µ(a) ∪ {b}, Pa) Pa µ(a) and it suffices to show that at strategy profile s′ each agent in
s′a chooses a.

Note that s′a ⊆ µ(a) ∪ {b}. Hence, each agent in s′a\{b} receives the same set of
applications at strategy profile s and at strategy profile s′. Since quotas are non-binding,
at strategy profile s′ each agent in set s′a\{b} chooses the same set of agents including
agent a.

Next, we prove that b 6∈ sa. Suppose to the contrary that b ∈ sa. Then, agent
a ∈ {ā ∈ A : b ∈ sā}. Since µ(b) = Ch({ā ∈ A : b ∈ sā}, Pb) it follows that µ(b) =
Ch(µ(b) ∪ {a}, Pb). Thus, a ∈ Ch(µ(b) ∪ {a}, Pb) implies a ∈ µ(b); a contradiction. So,
b 6∈ sa.

Since b ∈ s′a\sa and strategy profile s′ only contains a unilateral deviation from strategy
profile s, at strategy profile s′ agent b receives the same set of applications as at strategy
profile s and in addition the application of a. In other words, {ā ∈ A : b ∈ s′ā} = {ā ∈
A : b ∈ sā} ∪ {a}. Suppose agent b does not choose agent a at strategy profile s′. Then,
a 6∈ Ch({ā ∈ A : b ∈ s′ā}, Pb) = Ch({ā ∈ A : b ∈ sā} ∪ {a}, Pb) = Ch(µ(b) ∪ {a}, Pb),
where the last equality follows from a 6∈ µ(b) = Ch({ā ∈ A : b ∈ sā}). Since we obtain
a contradiction to a ∈ Ch(µ(b) ∪ {a}, Pb), it follows that agent b chooses agent a at
strategy profile s′. This shows that strategy s′a is a profitable deviation for agent a; a
contradiction.

The following result is a corollary to Theorems 1 and 2.

Corollary 1. (Implementation)
For any (β, q) and any preference profile P where PA is substitutable and quotas are
non-binding,

Oβ,q(P ) = Σ(P ).

Corollary 1 subsumes results obtained by Romero-Medina and Triossi (2014, Proposi-
tion 2) and Sotomayor (2003, Theorems 1 and 2). More specifically, Romero-Medina and
Triossi (2014) consider a mechanism, called the SSM (colleges apply Students Sequentially
choose Mechanism), where colleges first simultaneously propose to students and then stu-
dents sequentially pick a college. The SSM coincides with our mechanism ϕβ,q by taking
set A = C, set B = S, and setting for each a ∈ A, qa = |B|.8

8Essentially, the second phase of the SSM is equivalent to a simultaneous-move game among students.
Games in which first colleges move simultaneously and then students move simultaneously are also studied
in Alcalde and Romero-Medina (2000). As a consequence, Proposition 2 in Romero-Medina and Triossi
(2014) is closely related to Theorem 4.1 in Alcalde and Romero-Medina (2000).
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Corollary 2. (Romero-Medina and Triossi, 2014, Proposition 2)
For any (β, q) and any preference profile P where PA is substitutable, for all agents b ∈ B
and for all T ⊆ A, [|T | ≥ 2⇒ ∅ Pb T ], and for all agents a ∈ A, qa = |B|,

Oβ,q(P ) = Σ(P ).

4 Concluding remark: setwise stability

For many-to-many matching markets, the following stronger stability notion is also often
considered. Let P be a preference profile. Then, matching µ is blocked by a set (of agents)
I ′ = A′ ∪ B′ ⊆ A ∪ B, I ′ 6= ∅, if there exists a matching µ′ such that (a) for all i ∈ I,
µ′(i) \ µ(i) ⊆ I ′ —new matches are among the members of the blocking coalition only—
and (b) for all i ∈ I ′, µ′(i) Pi µ(i) and µ′(i) = Ch(µ′(i), Pi) —all members of the blocking
coalition receive a better and individually rational match. Note that agents outside the
blocking coalition are not matched to new agents, but possibly some of their matches
are canceled by members of the blocking coalition. A matching µ is setwise stable if it is
individually rational and not blocked by any set of agents I ′ = A′ ∪B′. Let Ω(P ) denote
the set of setwise stable matchings.

First, note that a setwise stable matching is always (pairwise) stable, i.e., for all
preference profiles P , Ω(P ) ⊆ Σ(P ). Hence, Theorem 1 would also hold if we used setwise
stability instead of (pairwise) stability.

Second, we show that a result similar to Theorem 2 cannot be obtained if we used
setwise stability instead of (pairwise) stability.

Example 4. (Setwise stability not obtained in equilibrium)
Consider the market introduced by Blair (1988, Example 2.6) where A = {a1, a2, a3},
B = {b1, b2, b3}, and preference profile P is given by Table 4. Note that all preferences
are substitutable.

a1 a2 a3 b1 b2 b3

{b1, b2} {b2, b3} {b1, b3} {a1, a2} {a2, a3} {a1, a3}
{b2, b3} {b1, b3} {b1, b2} {a2, a3} {a1, a3} {a1, a2}
{b1} {b2} {b3} {a1} {a2} {a3}
{b2} {b1} {b1} {a2} {a1} {a1}
{b3} {b3} {b2} {a3} {a3} {a2}
∅ ∅ ∅ ∅ ∅ ∅

Table 4: Preference profile P in Example 4

Let quota vector q = (qa1 , qa2 , qa3) = (2, 2, 2) and let β = (b1, b2, b3) be the order of the
B-agents. We show that Ω(P ) ( Oβ,q(P ). First, Blair (1988) shows that even though a
unique stable (boxed) matching
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a1 a2 a3

µ : | | |
b1 b2 b3

exists, it can be setwise blocked by I ′ = A ∪B through the boldfaced matching

a1 a2 a3

µ′ : | | |
{b1, b2} {b2, b3} {b1, b3}.

Thus, Σ(P ) = {µ} and Ω(P ) = ∅.
Next, we show that matching µ is an SPE outcome, i.e., µ ∈ Oβ,q(P ). Let s be

the strategy profile where sa1 = {b1}, sa2 = {b2}, sa3 = {b3}, and all B-agents choose
optimally according to their preferences in all their decision nodes. One easily verifies
that the (boxed) matching µ is the resulting matching, i.e., µ = ϕβ,q(s).

We claim that strategy profile s is an SPE, i.e., s ∈ Eβ,q(P ). To see this, suppose
there is a profitable deviation s′a1 for agent a1. Then, s′a1 = {b1, b2}, s′a1 = {b2, b3}, or
s′a1 = {b1, b2, b3}. However, in the first case, agent a1 would again be matched with {b1},
in the second case, agent a1 would be matched with {b3}, and in the third case, agent
a1 would be matched with {b1, b3}. Hence, s′a1 is not a profitable deviation for agent
a1. Similarly, we can show that neither agent a2 nor agent a3 has a profitable deviation.
Thus, s ∈ Eβ,q(P ) and µ ∈ Oβ,q(P ). Hence, Ω(P ) ( Oβ,q(P ). �

Note that Example 4 remains valid with non-binding quotas, e.g., q = (3, 3, 3). Thus,
Example 4 shows that in many-to-many matching markets with substitutable preferences
and non-binding quotas, an implementation result for setwise stable matchings similar to
Corollary 1 need not hold. Interestingly, for the variation of our mechanisms where A-
agents simultaneously apply and B-agents simultaneously choose, Echenique and Oviedo
(2006, Corollary 7.2) show that the set of setwise stable matchings can be implemented if
A-agents have substitutable preferences andB-agents have so-called strongly substitutable
preferences. The preferences Pi of an agent i ∈ I are strongly substitutable if for all j ∈ Ti
and for all sets T ′, T ⊆ Ti with T ′ Pi T , [ j ∈ Ch(T ′∪{j}, Pi) implies j ∈ Ch(T ∪{j}, Pi) ].
In Example 4, all agents’ preferences are substitutable but not strongly so.9 Because in
our setting the effect of B-agents moving simultaneously can be obtained via non-binding
quota, an implication of Echenique and Oviedo (2006, Corollary 7.2) is the following
corollary.

Corollary 3. (Implementation)
For any (β, q) and any preference profile P where PA is substitutable, PB is strongly
substitutable, and quotas are non-binding,

Oβ,q(P ) = Ω(P ).
9For instance, Pb1 violates strong substitutability since T ′ ≡ {a2, a3} Pb1 {a1} ≡ T and a3 ∈ Ch(T ′ ∪

{a3}, Pb1), but a3 6∈ Ch(T ∪ {a3}, Pb1).
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