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Abstract

I provide new empirical evidence on a negative relation between financial fric-

tions and productivity growth over firms’ life cycle. I show that a model of firm

dynamics with incremental innovation cannot explain such evidence. However

also including radical innovation, which is very risky but potentially very pro-

ductive, allows for joint replication of several stylized facts about the dynamics

of young and old firms and of the differences in productivity growth in industries

with different degrees of financing frictions. These frictions matter because they

act as a barrier to entry that reduces competition and the risk taking of young

firms.

1 Introduction

Innovation and technology adoption are fundamental forces that shape firm dynamics

and aggregate productivity growth. New firms bring new ideas and are better suited
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to introduce radical innovations that generate permanent improvements in aggregate

productivity. However new firms are also more likely to face financing frictions, which

may distort their investment and innovation decisions. Hsieh and Klenow (2014) show

that US manufacturing plants on average increase their productivity by a factor of 9.3

from their birth until they are 35 years of age, suggesting an important role for learning

and innovation in building firm specific intangible capital. The same authors also show

that for similar plants in India and Mexico productivity increases only by a factor

of 1.7 and 1.5, respectively. These different life cycle dynamics shape cross country

productivity and income differences, and it is therefore important to understand their

causes. Do financial imperfections play an important role in explaining them?

The two main contributions of this paper are to provide new empirical evidence

on the relation between financial factors and the life cycle dynamics of firms, and

to show that the interaction between financial factors and heterogeneous innovation

decisions are essential to explain such evidence. First, I analyse a very rich dataset

of Italian manufacturing firms for which more than 60.000 observations of balance

sheet data as well as direct information on financial frictions from multiple surveys

are available. I construct alternative measures of productivity and I show a very

consistent empirical pattern: in industries where firms are more likely to be financially

constrained productivity grows less over the firms’ life cycle than in the other industries.

Importantly, these growth differentials do not disappear as firms grow older. Second,

motivated by this evidence, I develop an industry model with financing frictions, firm

dynamics, and innovation decision. I show that if innovation is modelled as a standard

incremental process, financing frictions reduce the innovation of very young firms and

aggregate TFP, but have a very limited effect on the innovation decisions and the

life cycle dynamics of all the other firms, contradicting the empirical evidence. In

continuation, I calibrate a version of the model with both incremental and radical

innovation, where the latter is a very risky experimentation process that can reduce

the competitiveness of the firm if it fails, but is also potentially able to generate a

very large increase in productivity if it succeeds. I show that in equilibrium this model

matches several stylised facts about the innovation dynamics of young and old firms,

and at the same time generates a relation between financial frictions and productivity

dynamics consistent with the empirical evidence. The empirical and theoretical findings

of this paper mutually reinforce each other. The model provides an explanation of

the empirical evidence and at the same time generates a series of additional testable

predictions that both confirm its implications as well as the validity of the empirical

methodology followed to construct the indicator of financial frictions used in the paper.
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The results support the view that financial factors are important in explaining the cross

country findings of Hsieh and Klenow (2014).

In the model, monopolistically competitive firms are subject to financing frictions

and every period receive innovation opportunities with some probability. In the bench-

mark model only incremental innovation is available, which increases productivity

growth after paying a fixed cost. In a calibrated version of this model, innovation

is optimal for all firms except the very unproductive ones. Moreover since firms can

retain earnings to increase their self financing, all firms except the very young ones are

able to innovate, and life cycle dynamics are largely unaffected by financial factors.

I then consider a model with both incremental and radical innovation opportunities.

Radical innovation is risky, but potentially able to generate a very large increase in

productivity. It is risky both because it fails with positive probability, and because

such failure reduces the firm’s productivity below the level it had before innovating.

The intuition for this assumption is that radical innovation, because of its disruptive

nature, is not complementary to the existing tangible and intangible capital of the

firm. Furthermore, such innovation is irreversible and requires the firm to replace

the physical capital, knowledge and organizational capital which were used to operate

the old technology. Therefore in case of failure the firm cannot easily revert back

to the old technology, and its efficiency will be lower with respect to the situation

before innovating.1 I calibrate a financially unconstrained industry with both types

of innovations, and show that it generates realistic life-cycle dynamics whereby young

firms are much more likely to invest in radical innovation, while older firms are on

average more productive, more likely to invest in incremental innovation, and have

less volatile growth rates. These dynamics are consistent with the observation that

innovation is a risky experimentation process, whereby entrepreneurs do not know in

advance "whether a particular technology or product or business model will be successful,

until one has actually invested in it" (Kerr, Nanda and Rhodes-Kropf, 2014). They are

also consistent with Akcigit and Kerr (2010), who analyse US patents data and show

that small firms do relatively more exploration R&D and have a relatively higher rate

of major inventions than large firms, and with Haltiwanger et al (2014), who analyse

US data and find that many young firms fail in their first few years, so that the higher

mean net employment growth of small versus large firms is driven by a small fraction

of surviving very fast growing firms.

1This type of innovation is similar to the concept of radical innovation as it is defined in management
studies. For example Utterback (1996) defines radical innovation as a "change that sweeps away much
of a firm’s existing investment in technical skill and knowledge, designs, production technique, plant

and equipment".
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I use the model with both radical and incremental innovation to simulate indus-

tries with different degrees of financial frictions. These frictions increase bankruptcy

probability for young and financially fragile firms, and reduce entry and competition.

Lower competition increases the profitability of firms that manage to survive, and also

raises the expected value of a successful innovation. This "Shumpeterian effect" makes

incremental innovation more desirable. However, lower competition also discourages

the radical innovation of young firms with relatively low productivity. This happens

because with more competition these young firms are less profitable. On the one hand,

radical innovation is their best chance to rapidly grow in productivity and size. On

the other hand, its cost is limited by the exit option: in case of failure these firms

can cut the losses by closing down. Instead, with lower competition these firms are

more profitable at current productivity levels, have more to lose from a failed radical

innovation, and have a lower propensity to attempt it. A realistically calibrated model

predicts that radical innovation among young firms is up to 48% lower in a financially

constrained industry relative to an unconstrained one. This implies that fewer firms

become large and profitable enough to invest in incremental innovation, slowing down

productivity growth over the life cycle for both young and old firms, and generating

life cycle dynamics consistent with the empirical evidence. Lower radical innovation

caused by financial frictions reduces industry level TFP by up to 18.1%.

In the last part of the paper I provide further empirical evidence supporting the pre-

dictions of the model. I confirm the prediction that differences in productivity growth

across sectors are related to both R&D intensity and to differences in competition.

Moreover I construct approximate empirical measures of radical and incremental inno-

vation and find support for the prediction of the model that firms in more financially

constrained industries do relatively less of both types of innovation, and that incremen-

tal innovation, which increases with firm’s age, is lower in these industries especially

among older firms. Furthermore I combine the simulation results and the empirical

data to estimate the aggregate importance of the distortions in innovation caused by

financial frictions. I find that lowering financial frictions in the 50% most constrained

sectors to the average level, and abstracting from general equilibrium effects on wages

and interest rates, would increase the overall productivity of the Italian manufacturing

sector by 6.3%.
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2 Related literature

My paper is related to the literature on financing frictions and firm dynamics, such as

Buera, Kaboski, and Shin (2011) and Caggese and Cunat (2013), among others. In

particular, the paper is related to Midrigan and Xu (2014), who show that financing

frictions delay firm entry in technologically advanced sectors. In their model this

"delay effect" substantially reduces aggregate productivity, but once firms enter into

the advanced sector, they accumulate retained earnings and financial frictions become

almost irrelevant for the efficient allocation of resources. My model shares this self

financing feature, and also shows a novel indirect channel of financial frictions on

innovation decisions and productivity, which affects the growth dynamics of both young

and old firms, with significant aggregate consequences.

Many authors have recently emphasized the importance of innovation to under-

stand firm dynamics and productivity growth in models with heterogeneous firms and

heterogeneous innovations (among other recent papers, see Klette and Kortum, 2004,

Akcigit and Kerr, 2010 and Acemoglu, Akcigit and Celik, 2014). In common with

these papers, in my paper radical innovation is an investment that has the potential

to greatly increase firm’s productivity and profitability. Moreover I emphasize the im-

portance of the risk of such innovation, and thus my paper relates to Dorastzelsky and

Jaumandreu (2013) and Castro, Clementi and Lee (2015), who notice that innovation

related activities increase the volatility of productivity growth, to Caggese (2012), who

estimates a negative effect of uncertainty on the riskier innovation decisions of entre-

preneurial firms, and to Gabler and Poschke (2013), who also consider the importance

of innovation risk for selection, reallocation, and productivity growth. Finally, the pa-

per is also related to the literature on competition and innovation, because it provides

a novel (to the best of my knowledge) explanation for the positive relation between

competition and innovation often found in empirical studies, which is complementary

to the "Escape Competition effect" of Aghion et al. (2001).

3 Empirical evidence

In this section I provide empirical evidence on the relation between financing frictions

and the life-cycle dynamics of productivity at the firm level. I study a sample of 11429

firms, drawn from the Mediocredito/Capitalia surveys of Italian manufacturing firms.

It is based on an unbalanced panel of firms with balance-sheet data from 1989 to 2000,

as well as additional qualitative information from three surveys conducted in 1995,

5



1998 and 2001. Each survey reports information about the activity of the firms in the

three previous years, and it includes detailed information on financing constraints and

innovation (see Appendix 2 for details).

In each Mediocredito/Capitalia survey firms report whether, in the last year of the

survey, they had a loan application turned down recently; whether they desired more

credit at the market interest rate; and whether they would be willing to pay a higher

interest rate than the market rate to obtain credit. Following Caggese and Cunat

(2008) I aggregate these three variables into a single variable constrainedi,s, which is

equal to one if firm i declares to face some type of financial problem in survey s (14%

of all firm-year observations), and is equal to zero otherwise.2

A firm-level indicator of financial constraints should satisfy two properties. First, it

should be positively related to the probability that the firm faces problems in accessing

external finance because of informational or enforceability problems with lenders. Sec-

ond, it should be unrelated to growth opportunities or other unobserved variables that

directly affect the dependent variable of interest. The variable constrainedi,s is likely

to satisfy the first property. However it may not satisfy the second one, because less

productive and profitable firms are at the same time more likely to claim difficulties in

accessing loans and have worse investment and innovation opportunities. Indeed in the

dataset firms that declare financing frictions are less profitable than the other firms in

the same sector. The difficulty in formulating a reliable indicator of financing frictions

is well known in the corporate finance literature (e.g. see, among others, Farre-Mensa

and Ljungqvist, 2015). In order to control for these problems, I proceed as follows:

first, I consider as constrained only firms that complain about problems in access-

ing external finance while at the same time have average operative profits over added

value larger than 0.1. This threshold excludes the 25% least profitable firms. Second,

I calculate the frequency of financially constrained firms in each 4 digit manufacturing

sector, and I select sectors in 2 different groups.3 One group is composed by the 50%

four digit sectors with most constrained firms, called the "Constrained" group, and

the other group is composed of the 50% four digit sectors with least constrained firms,

called the "Unconstrained" group. Thus the constrained group includes all firms more

likely to face financing problems because of sector specific factors. Third, the model

2Caggese and Cunat (2008) analyse the reliability of this survey-based indicator of financing fric-
tions, and find that it is consistent with alternative indicators based on balance sheet data. In
particular they find that firms with higher coverage ratio, higher net liquid assets, more financial
development in their region and those with headquarters in the same region as the headquarters of
their main bank are less likely to declare to be financially constrained.

3I use the Ateco 91 classification of the Italian National Statistics Office (Istat). The 2-digit Ateco
91 sectors included in the sample are listed in Table 12 in Appendix 2.
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developed and simulated in sections 4-5 predicts that financial frictions mainly affect

innovation indirectly by altering competition and profitability at the industry level. In

other words, it predicts that the effect of financing frictions on productivity growth can

be precisely estimated also if firms currently financially constrained are excluded from

the estimation. Beside being a testable implication, which I will empirically verify in

section 6, this is a very useful property, because eliminating from the analysis firms

declaring financial problems further reduces the above mentioned selection problems.

Table 12 in Appendix 2 reports the distribution of firms in the two groups for each two

digit manufacturing sector. It shows that financial frictions are present in all industries

and not concentrated in only few sectors. Tables 1 and 2 analyse the age profile of pro-

ductivity. They report the results of several regressions where the dependent variable

is a firm level estimate of total factor productivity. The first measure is �v1i,t, revenue

total factor productivity. I estimate the following production function at the two digit

level using the Levinshon and Petrin (2003) methodology (see the details in Appendix

1):

pi,tyi,t = ev
1

i,t

�
pki,tki,t

�α
(wi,tli,t)

β (1)

Where pi,tyi,t is added value, pkt ki,t is the value if capital, and wi,tli,t is cost of labour

for firm i in period t. Years and firms fixed effects are also included in the estimation.

I use the parameters �α and �β, estimated separately for each 2 digits sector, to obtain

an empirical counterpart �v1i,t of v1i,t. A possible limitation of this approach is that rev-

enue productivity may not capture differences in efficiency levels if these are passed to

consumers in the form of price reductions.4 Therefore I also compute two alternative

measures. v2i,t is computed following Hsieh and Klenow (2009), who derive a monopo-

listic competition model with a Cobb Douglas production function similar to equation

(1). They and notice that while revenue productivity is equal to pi,tyi,t

(pki,tki,t)
α
(wi,tli,t)

β , physi-

cal productivity is equal to κs
(pi,tyi,t)

σ
σ−1

(pki,tki,t)
α
l
β
i,t

, where κs is a sector level coefficient and σ > 1

is the elasticity of substitution between firms. Following Hsieh and Klenow (2009) in

using labour cost to measure labour input li,t, and assuming that the unobservable κs

is absorbed by firm and time fixed effects, I estimate the following function:

(pi,tyi,t)
σ

σ−1 = ev
2

i,t

�
pki,tki,t

�α
(wi,tli,t)

β , (2)

where v2i,t is the proxy for physical productivity analogous to the one computed in Hsieh

4For example in the model considered in the previous section an increase in marginal productivity
of labour v does not affect revenue total factor productivity because the fall in prices completely offsets
the productivity gain.
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and Klenow (2009) and (2014).5 A third measure v3i,t is based on the profitability of

firms. I consider the ratio between profits and labour cost for each firm-year observa-

tion,
πi,t

wi,tli,t
. This ratio is monotonously increasing in the productivity of the firm as

long as the firm has some competitive power (or is a price taker but has a decreas-

ing returns to scale production function), also when improvements in productivity are

passed to consumers in the form of price reductions.6 I regress this measure over a set

of fixed effects:

πi,t
wi,tli,t

= β0 +
Ns�

s=1

βsDs +

Ny�

s=1

βyDy + v3i,t (4)

Where Ds are 3 digit sector dummies and Dy are year dummies. �v3i,t is the estimated

residual of this regression. Changes over time in �v3i,t are orthogonal to aggregate

demand and industry factors, and thus are likely to capture changes in the productivity

of the firm.

I measure the evolution of productivity over the firm’s life cycle by estimating the

following model:

�vji,s = β0 + β1agei,s + β2agei,s ∗ constrainedi +
m�

j=1

βjxj,i,s + εi,s (5)

Given that each survey covers a 3-years period, for the following regressions I con-

solidate all the balance sheet variables at the same time interval. The productivity

measure j ∈ {1, 2, 3} of firm i in survey s �vji,s is the dependent variable, and is the

average of �vji,t for the three years of survey s. Among the regressors, the age of the firm

agei,s is included individually and interacted with the financing constraints dummy

constrainedi, which is equal to one if the firm belongs to the 50% of 4-digit manu-

facturing sectors with the highest percentage of financially constrained firms, and zero

otherwise. Thus β1 measures the effect of age on productivity for the unconstrained

group of firms, and β2 measures the differential effect of age for the constrained group.

xj is the set of m control variables, which include firm fixed effects and time effects.

5I set σ = 3, as in Hsieh and Klenow (2009). The idea is that quantity yi,t is inferred using revenues
pi,tyi,t and the assumed elasticity of demand σ.

6For the case of the calibrated model analyzed in the next section, it is possible to show that

πi,t

wi,tli,t
= a−

b

(vt)
2

(3)

Where a and b are positive constants which only depend on sector level variables. By linearising
equation (3) around the sector average value of vt, and redefining it as v3t , it is possible to derive
equation (4).
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Table 1: Relation between age and productivity (empirical sample)

Time dummies interacted with

the constrained group are

included

Dependent variable �v1i,s �v2i,s �v3i,s �v1i,s �v2i,s �v2i,s

agei,s 0.00616∗∗∗ 0.00926∗∗∗ 0.00067 0.00590∗∗∗ 0.00885∗∗∗ 0.000235
(5.83) (5.84) (1.35) (5.22) (5.22) (0.43)

agei,s∗constrainedi −0.00360∗∗ −0.00541∗∗ −0.00207∗∗∗ −0.00290∗ −0.0043∗ −0.00138∗

(−2.59) (−2.6) (−3.3) (−1.91) (−1.9) (−1.95)
N.observations 12390 12390 12672 12390 12390 12672

Adj. R-sq. 0.011 0.011 0.006 0.012 0.012 0.007

Panel regression with firm fixed effect. Time effects are also included. Standard errors clustered at the firm level.

T-statistic reported in parenthesis. �v1i,s is revenue total factor productivity, �v2i,s is total factor productivity computed

following the procedure of Hsieh and Klenow (2009), and �v3i,s is profits based productivity for firm i in survey s.

agei,s is age in years for firm i in survey s. constrainedi, is equal to one if firm i belongs to the 50% of 4-digit

manufacturing sectors with the highest percentage of financially constrained firms, and zero otherwise. ***, **, *

denote significance at a 1%, 5% and 10% level respectively.

In Table 1 the estimated coefficients of age and age interacted with constrainedi

are reported. The presence of firm fixed-effects ensures that the estimation of β1 and

β2 is not affected by a selection bias (the most productive firms are more likely to sur-

vive), since these parameters are identified only by within-firm changes in productivity.

Columns 1-3 report the results using �v1i,s, �v2i,s and �v3i,s as dependent variables, respec-

tively. For firms in less constrained sectors all three productivity measures increase

with age, even though the increase of �v3i,s is not statistically significant. Importantly,

the coefficient of agei,s∗constrainedi is always negative and significant, meaning that

the relation between age and productivity is significantly more negative for the firms in

the more financially constrained sectors. While this evidence supports the hypothesis

that financing frictions reduce productivity growth, one possible alternative explana-

tion of the findings is that more financially constrained sectors happen to be sectors in

relative decline, with a progressive reduction in productivity over time. This possibil-

ity can be controlled for by introducing time dummies interacted with the constrained

group among the regressors. This is done in columns 4 to 6, and also in this case the

results are confirmed, even though they are slightly less significant.

Table 2 replicates the analysis of table 1 with a different selection of constrained

groups. The estimated equation is:
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Table 2: Relation between age and productivity, different classification of constrained
groups (empirical sample)

Time dummies interacted with

the constrained groups are

included

Dependent variable �v1i,s �v2i,s �v3i,s �v1i,s �v2i,s �v3i,s

agei,s 0.00755∗∗∗ 0.0113∗∗∗ 0.000722 0.00752∗∗∗ 0.011∗∗∗ 0.000127
(5.79) (5.8) (1.18) (5.33) (5.34) (0.18)

agei,s∗midconstri −0.00387∗∗ −0.00582∗∗ −0.000528 −0.00373∗ −0.00557∗ −0.000174
(−2.19) (−2.19) (−0.66) (−1.89) (−1.88) (−0.19)

agei,s∗highconstri −0.00529∗∗ −0.00794∗∗ −0.0026∗∗∗ −0.00503∗∗ −0.00755∗∗ −0.00158∗

(−3.16) (−3.16) (−3.42) (−2.75) (−2.75) (−1.79)
N.observations 12390 12390 12672 12390 12390 12672

Adj. R-sq. 0.011 0.011 0.006 0.013 0.013 0.007

Panel regression with firm fixed effect. Time effects are also included. Standard errors clustered at the firm level.

T-statistic reported in parenthesis. �v1i,s is revenue total factor productivity, �v2i,s is total factor productivity computed

following the procedure of Hsieh and Klenow (2009), and �v3i,s is profits based productivity for firm i in survey s. agei,s
is age in years for firm i in survey s. midconstri, is equal to one if firm i belongs to the 33% of 4-digit manufacturing

sectors with the medium percentage of financially constrained firms, and zero otherwise. highconstri, is equal to

one if firm i belongs to the 33% of 4-digit manufacturing sectors with the highest percentage of financially constrained

firms, and zero otherwise. ***, **, * denote significance at a 1%, 5% and 10% level respectively.

�vji,s = β0+β1agei,s+β2agei,s∗midconstri+β2agei,s∗highconstri+
m�

j=1

βjxj,i,s+εi,s (6)

where midconstri is equal to 1 if firm i is in the 33% of sectors with intermediate

constraints, and 0 otherwise, and highconstri is equal to 1 if firm i is in the 33% most

constrained sectors and zero otherwise. The results show that the effect of age on

productivity monotonously decreases with the intensity of financing frictions, in all the

different regressions.

I represent graphically the relation between age and productivity for the different

groups in figures 1 and 2. The curves are computed from the estimated coefficients

of a piecewise linear regression in which the β coefficient is allowed to vary for four

different age groups: up to 10 years, 11-20 years, 21-30 years and 31-40 years (see

appendix 2 for details). Firm fixed effects and time dummies interacted with the

constrained group are included as control variables in the regression. Figures 1 and 2

show the age profile of �v2i,s and �v3i,s, respectively. I omit the figure constructed using
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Figure 1: Life cycle of the productivity of firms in the empirical sample, TFP measure
v2
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�v1i,s because it looks qualitatively similar to figure 1. The lines are normalized to a

value of 1 for firms younger than 5 years old. Both figures show that in the less

constrained sectors productivity grows faster as firms become older, relative to the

more constrained sectors. Moreover the differences in growth rates do not disappear

for older firms, consistently with the findings of Hsieh and Klenow (2014).

4 Model

Motivated by the empirical evidence in the previous section, in this section I develop

a model to study the relation between financial frictions, innovation decisions, and

the growth of firms. I consider an industry with firm dynamics and monopolistic

competition as in Melitz (2003). To this framework I add financial frictions and different

types of innovation. Each firm in the industry produces a variety w of a consumption

good. There is a continuum of varieties w ∈ Ω. Consumers preferences for the varieties
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Figure 2: Life cycle of the productivity of firms in the empirical sample, profits based
measure v3
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in the industry are C.E.S. with elasticity σ > 1. The C.E.S. price index Pt is equal to:

Pt =



�

w

pt(w)
1−σ




1

1−σ

(7)

And the associated quantity of the aggregated differentiated good Qt is:

Qt =


�

w

qt(w)
σ−1
σ

� σ
σ−1

(8)

where pt(w) and qt(w) are the price and quantity consumed of the individual varieties

w, respectively. The overall demand for the differentiated good Qt is generated by:

Qt = AP 1−ηt (9)

where A is an exogenous demand parameter and η < σ is the industry price elasticity

of demand. From (8) and (9) the demand for an individual variety w is:

qt(w) = A
P σ−η
t

pt(w)σ
(10)

Each variety is produced by a firm using labour. I assume that the marginal produc-

tivity of labour for the frontier technology is equal to vnt , and it grows every period at

the rate g > 0. To normalize the model, I assume that labour cost also grows at the

same rate and is also equal to vnt . I define vnt as the marginal productivity of labour

for the firm and as vt = vn/vn the productivity relative to the frontier. It follows that

vt = 1 at the frontier, that marginal labour cost is 1
vt
, and that total labour cost is

qt(w)
vt
. The profits for a firm with productivity vt and variety w are given by:

πt (vt, εt) = pt(w)qt(w)−
qt(w)

vt
− Ft (11)

Since all the formulas are identical for all varieties, I drop the indicator w from now

on. Firms are heterogeneous in terms of productivity vt and fixed costs Ft > 0. These

are the overhead costs of production that have to be paid every period. I assume that

they are subject to an idiosyncratic shock εt which is uncorrelated across firms:

Ft = (1 + εt)F (vt)
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where F ′(vt) > 0.7 εt is a mean zero i.i.d. shock which introduces uncertainty in

profits and affects the accumulation of wealth and the probability of default. εtF (vt)

enters additively in πt (vt, εt) so that it does not affect the firm decision on the optimal

price pt and quantity produced qt. This makes the model both easier to solve and more

comparable to the basic model without financing frictions.8

The firm is risk neutral and chooses pt in order to maximize πt (vt, εt) . The first

order condition yields the standard pricing function:

pt =
σ

σ − 1

1

vt
(12)

where σ
σ−1

is the mark-up over the marginal cost 1
vt
. It then follows that:

πt (vt, εt) =
(σ − 1)σ−1

σσ
AP σ−ηvσ−1t − Ft

The timing of the model for a firm which was already in operation in period t−1 is

the following. At the beginning of period t with probability δ its technology becomes

useless forever, and the firm liquidates all its assets and stops activity. With probability

1−δ the firm is able to continue. It observes the realization of the shock εt and receives

profits πt, and its financial wealth at is:

at = R [at−1 −K (It−1)− dt−1] + πt (vt, εt) (13)

where R = 1 + r and r is the real interest rate. dt are dividends. K (It−1) is the cost

of innovation and It−1 is an indicator function which defines the innovation decision in

period t−1. Financing frictions are introduced by following Caggese and Cuñat (2013)

and assuming that the firm cannot borrow to finance the fixed cost of its operations.

While it can pay workers with the stream of revenues generated by their labour input, it

has to pay in advance the other costs of production. Therefore continuation is feasible

only if:9

at ≥ Ft, (14)

7The fixed cost F is proportional to productivity v to ensure that the profitability of small and
large firms in the simulated model are comparable to those in the empirical sample.

8A multiplicative shock of the type εtptqt would not change the qualitative results of the model,
but it would imply that the optimal quantity produced qt would be a function of the intensity of
financing frictions, thus making the solution of the model more complicated.

9Constraint (14) is a simple way to introduce financing frictions in the model, and it generates a
realistic downward sloping hazard rate for firms. It can be interpreted as a shortcut for more realistic
models of firm dynamics with financing frictions such as, for instance, Clementi and Hopenhayn (2006).
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If the constraint (14) is not satisfied, then the firm cannot continue its activity and is

forced to liquidate. Conditional on continuation, innovation of type It is feasible only

if:

at ≥ Ft +K(It). (15)

The presence of financing frictions and the fact that the firm discounts future profits

at the constant interest rate R implies that it is never optimal to distribute dividends

while in operation, since accumulating wealth reduces future expected financing con-

straints. Hence dividends dt are always equal to zero. Profits increase wealth at, which

is distributed as dividends only when the firm is liquidated. After observing εt and

realizing profits πt, the firm decides whether or not to continue activity the next period.

It may decide to exit if it is not profitable enough to cover the fixed cost Ft. In this

case the firm liquidates and ceases to operate forever.

4.1 Benchmark model with incremental innovation.

Below I define how innovation affects firm’s productivity. The empirical analysis in

section 3 estimates productivity measures that are based on revenues and profits, and

are therefore driven both by changes in demand and in production efficiency. Indeed

many authors (e.g. see, among others, Foster Haltiwanger and Syverson, 2015) argue

that gradual increases in plants’ idiosyncratic demand levels are important to explain

the growth of plants in the US. Regarding this, Hsieh and Klenow (2014) notice that

while they focus explicitly on the growth of process efficiency along the plants life cy-

cle, under certain assumptions their measure is equivalent to a composite of process

efficiency and idiosyncratic demand coming from quality and variety improvements.

Similarly, in my model for simplicity I define an innovation process that affects pro-

duction efficiency, but an alternative model with quality and/or variety innovations

that affect firm idiosyncratic demand would have very similar qualitative and quanti-

tative implications.

In the model I assume that every period a firm receives a new idea with probability

γ. Arrival of ideas is independent across firms and over time for each firm. A firm

with a new idea in period t on how to improve productivity has the opportunity to

select It = 1, pay an innovation cost K(1) > 0 to implement the idea, and increase

its relative productivity vt+1 up to the maximum between vt(1 + g)τ and the frontier

technology, where τ > 0 measures how productive the innovation is.10

10γ can also be interpreted as the probability that a better technology is available and K(1) as a
cost of technology adoption.
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A firm which selects It = 0 with K(0) = 0, either because has no innovation oppor-

tunities or because decides not to implement the innovation, is nonetheless able with

probability ξ to marginally improve its productivity to keep pace with the technology

frontier. Therefore its relative productivity v remains constant. With probability 1− ξ

its relative productivity decreases by 1 + g. Therefore the law of motion of vt is:

if It = 0 :

�
vt+1 = vt with probability ξ

vt+1 =
vt
1+g

with probability 1− ξ




if It = 1, vt+1 = max [vt(1 + g)τ , 1]

4.2 Full model with radical and incremental innovation

I modify the previous model by assuming that with probability γ the firm receives both

an "incremental" idea and a "radical" idea. The firm can choose to implement one of

the two, or neither, but it cannot implement both.11 Implementing the incremental

ideal (It = 1) is similar to before. If the firm chooses to implement the radical idea

(It = 2), it invests an amount equal to K (2) > 0 and is successful with probability

ξR. In case of success vt+1 increases by (1 + g)τ
R

, or up to the frontier technology.

However with probability 1 − ξR the innovation fails and vt+1 decreases to vt

(1+g)τR
.

Therefore the term τR >> τ > 0 measures both the downside and upside risk of radical

innovation. This symmetric structure is not essential for the results, but is convenient

to simplify the calibration. The qualitative and quantitative results of the model are

confirmed under alternative hypotheses regarding radical innovation, as long as the

drop in productivity conditional on failure is not negligible. Radical innovation can be

interpreted as a decision to radically change the firm’s organizational structure and/or

to invest in new technologies, products and production processes. The intuition for the

downside risk is that such change is irreversible, and requires the firm to replace the

capital and expertise which was used to operate the old technology. Therefore in case

of failure the firm cannot easily revert back to the old technology, and its efficiency

will be lower with respect to the situation before innovating. The law of motion of

11The assumption that innovation probabilities are not independent simplifies the analysis but is
not essential for the results. Allowing firms to have independent radical and incremental ideas and
to potentially implement both in the same period would not significanly change the quantitative
and qualitative results of the model, because in equilibrium, for the calibrated parameters, radical
innovation is chosen almost exclusively by young/small firms, and incremental innovation is chosed
by old/large firms.

16



productivity becomes:

if It = 0 :

�
vt+1 = vt with probability ξ

vt+1 =
vt
1+g

with probability 1− ξ




if It = 1, vt+1 = max [vt(1 + g)τ , 1]

if It = 2 :





vt+1 = max
�
vt(1 + g)τ

R

, 1
�

with probability ξR

vt+1 =
vt

(1+g)τ
R with probability 1− ξR





4.3 Value functions

I define the value function V 1
t (at, εt, vt) as the net present value of future profits after

receiving πt and conditional on doing incremental innovation in period t:12

V 1t (at, εt, vt) = −K(1)+
1− δ

R
Et {πt+1 (εt+1,max [vt(1 + g)τ , 1]) + Vt+1 (at+1, εt+1,max [vt(1 + g)τ , 1])} .

(16)

Furthermore, I define V 2t (at, εt, vt) as the value function today conditional on doing

radical innovation in period t:

V 2t (at, εt, vt) = −K(2)+
1− δ

R





ξREt





πt+1
�
εt+1,max

�
vt(1 + g)τ

R

, 1
��
+

Vt+1

�
at+1, εt+1,max

�
vt(1 + g)τ

R

, 1
��





+
�
1− ξR

�
Et

�
πt+1

�
εt+1,

vt

(1+g)τR

�
+ Vt+1

�
at+1, εt+1,

vt
(1+g)R

��
,





(17)

And V 0t (at, εt, vt) as the value function conditional on not innovating in period t:

V 0
t (at, εt, vt) =

1− δ

R

�
ξEt {πt+1 (εt+1, vt) + Vt+1 (at+1, εt+1, vt)}

+(1− ξ)Et

�
πt+1

�
εt+1,

vt
1+g

�
+ Vt+1

�
at+1, εt+1,

vt
1+g

��



(18)

Conditional on continuation the firm’s innovation decision It maximizes its value. In

the benchmark model it is equal to:

V ∗
t (at, εt, vt) = γ arg max

It∈{0,1}

�
V 0
t (at, εt, vt) , V

1
t (at, εt, vt)

�
+ (1− γ)V 0t (at, εt, vt) (19)

12Since the discount factor of the firm is 1/R, and the firm is risk neutral, this value coincides with
the present value of expected dividends net of current wealth at.
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While in the full model is equal to

V ∗t (at, εt, vt) = γ arg max
It∈{0,1,2}

�
V 0t (at, εt, vt) , V

1
t (at, εt, vt) , V

2
t (at, εt, vt)

�
+(1− γ)V 0t (at, εt, vt)

(20)

such that equation (15) is satisfied. Given the optimal continuation value V ∗
t (at, εt, vt),

the value of the firm at the beginning of time t, Vt (at, εt, vt) , is:

Vt (at, εt, vt) = 1 (at ≥ Ft) {max [V
∗
t (at, εt, vt) , 0]} (21)

Equation (21) implies that the value of the firm is equal to zero in two cases. First,

when the indicator function 1 (at ≥ F ) is equal to zero because the liquidity constraint

(14) is not satisfied. Second, when value in the curly brackets is equal to zero, which

indicates that since V ∗t (at, εt, vt) < 0, the firm is no longer profitable and exits from

production.

4.4 Entry decision

Every period there is free entry, and there is a large amount of new potential entrants

with a constant endowment of wealth a0. They draw their relative productivity v0

from an initial distribution with support [v, v], after having paid an initial cost SC .

Once they learn their type they decide whether or not to start activity. The free entry

condition requires that ex ante the expected value of paying SC conditional on the

expectation of the initial values v0 and ε0 is equal to zero:

v�

v

max {Eε0 [V0 (a0, ε0, v0)] , 0} f(v0)dv0 − SC = 0 (22)

4.5 Aggregate equilibrium

In the steady state the aggregate price Pt, the aggregate quantity Qt, and the distrib-

ution of firms over the values of vt, εt and at are constant over time. The presence of

technological obsolescence implies that the age of firms is finite and that the distribu-

tion of wealth across firms is non-degenerate. Aggregate price Pt is set to ensure that

the free entry condition (22) is satisfied. The number of firms in equilibrium ensures

that Pt also satisfies the aggregate price equation (7). Aggregation is very simple be-

cause all operating firms with productivity v choose the same price p (v) , as determined

by equation (12).
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4.6 Calibration

I first illustrate the calibration of the benchmark model, then I discuss how I select the

parameters for radical innovation in the full model.

4.6.1 Benchmark model

The parameters are illustrated in Table 3. With the exception of SC , σ, η and r, all

parameters are calibrated to match a set of simulated moments with the moments esti-

mated from the empirical sample analyzed in section 3.13 The following six parameters

determine the dynamics of innovation and productivity: the mean �v and variance σ2ν of

the distribution of productivity of new firms v.14 The depreciation rate of technology

g; the parameter which determines the increase in productivity after innovating τ ; The

probability that productivity depreciates for non innovating firms 1− ξ; the exogenous

exit probability δ. Since all these parameters jointly determine the size, age and pro-

ductivity distribution of firms, I identify them with 6 moments of these distributions:

1) the ratio median productivity/99th percentile of productivity; 2) the average cross

sectional standard deviation of TFP; 3) the yearly decline in TFP for non innovating

firms; 4) the ratio between the 90th and 10th percentile of the size distribution; 5) the

percentage of firms older than 60 years; 6) the average age of firms.

The profits shock ε is modeled as a two state i.i.d. process where ε takes the

values of θ and −θ with equal probability, where θ is a positive constant. The fixed

per period cost of operation Fit(vit) is Fit = F vit
vL
, with F > 0.15 F and θ affect

the variability of profits, and jointly match the fraction of firms reporting negative

profits and the time series volatility of profits over sales. The cost of innovation K(1)

matches the average value of R&D expenditures over profits; the probability to have an

13The initial entry cost SC is set equal to 4. This is 1.3 times the average annual firm profits in
the simulated industry. I experimented with larger and smaller values without obtaining a significant
change in the results. The average real interest rate r is equal to two percent, which is consistent with
the average short-term real interest rates in Italy in the sample period. The value of σ, the elasticity of
substitution between varieties, is equal to 4, in line with Bernard, Eaton, Jensen and Kortum (2003),
who calculate a value of 3.79 using plant level data. The value of η, the industry price elasticity
of demand, is set equal to 1.5, following Constantini and Melitz (2008). The difference between the
values of η and σ is consistent with Broda and Weinstein (2006), who estimate that the elasticity of
substitution falls between 33% to 67% moving from the highest to the lowest level of disaggregation
in industry data.

14I approximate a log-normal distribution of v0 to a bounded distribution with support [vL, vH ] by
cutting the 1% tails of the distribution. So that prob(v < vL) = prob(v > vH) = 1%. The censored
probability distribution is re-scaled to make sure that its integral over the support [vL, vH ] is equal to
1.

15vL is the lower bound of the productivity distribution of new firms, see fn.14.
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Table 3: Calibration of the benchmark model with only incremental innovation

Parameter Value Empirical moment Data Model
F 0.5 Fraction of firms with negative profits 0.40 0.33

θ 0.15 Avg. of time series st.dev. of profits/sales 0.1171 0.102

K(1) 3 Average R&D expenditures /profits 67%2 66%

γ 0.45 Percentage of innovating firms 22.4%2 24%
�v 0.45 Median TFP relative to the 99th percentile 0.78 0.79

σ2v 0.03 Average cross sectional standard deviation of TFP 0.343 0.25

g 1.009 Average yearly decline in TFP for firms not doing R&D 0.4%3 0.23%

τ 3 Ratio between 90th pctile and 10th pctile of size distrib. 13.2 7.29

ξNI 0.25 Percentage of firms with age >60 years 4.8% 8.9%

δ 0.01 Average age 24 22

a0 12 Percentage of firms going bankrupt every period 0.5% 0.5%

Other parameters: SC= 4; r = 2%; η = 1.5; σ = 4;A = 25010.

Profits denote operative profits.

1. I use net income over value added, eliminating 1% outliers on both tails, compute its standard deviation for each
firm with at least 6 yearly observations and then compute the average across firms.

2. Including only R&D where cost of R&D over sales is greater than 0.5%.

3. These statistics are calculated after excluding the 1% outliers on both tails.

innovation opportunity γ matches the percentage of innovating firms, where I classify

as "innovating" all firms in the empirical sample with R&D expenditure higher than

0.5% of sales.16 Despite the model is relatively stylized, table 3 shows that it matches

these empirical moments reasonably well.

Finally, the parameter a0, the initial endowment of wealth of new firms, affects the

intensity of financing frictions and the probability of bankruptcy. I chose a value of

a0 = 12, which in equilibrium corresponds to 40% of average firm sales in the industry,

and which matches an average share of firms going bankrupt every period equal to

0.5%.17 The scale parameter A does not affect the results of the analysis and its value

ensures that the number of firms in the calibrated industry is sufficiently large, and

allows to compute reliable aggregate statistics.

16Firms with very low R&D spending are likely to have only marginal innovation projects which do
not substantially affect their productivity. Since in the model innovation has a lage impact on firm’s
sales and profits, I calibrate it on the fraction of firms in the data which have R&D spending above a
minimum threshold.

17A 2003 study by Istat shows that in 2001 in the whole Italian economy 0.25% of firms went
bankrupt, while the share was equal to 0.4% in the Manufacturing sector. The same study also shows
an average share of bankruptcies of 0.3% for the whole economy in the 1997-2001 period. I apply the
same proportion to estimate a share of bankruptcies in manufacturing equal to 0.5% for the sample
period.
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4.6.2 Full model with incremental and radical innovation

Adding radical innovation to the model requires choosing three additional parameters:

the probability of success ξR, the change in productivity after innovating τR, and the

cost of radical innovation K(2). Since it is very difficult to identify R&D directed to

radical innovations in the data, I use the following strategy: first, I set a value of

τR = 30, which implies that after a successful radical innovation productivity increases

by
�
(1 + g)τ

R

− 1
�
% = 31%, while it decreases by

�
1− 1

(1+g)τR

�
% = 24% in case of

failure. Second, given the value of τR, the probability of success of radical innovation

ξR is chosen to ensure that at least 40% of all innovation is performed by firms at-

tempting to produce a new radical innovation, while the cost of this experimentation

process is set equal to the cost of incremental innovation in expected terms, so that

K(2) = ξR K(1). These assumptions generate a value of ξR = 4.5%, so that every

period 1.8% of firms in the industry are successful radical innovators and increase their

size on average by 224%. The values of τR, ξR and K(2) do not match a specific

moment of the empirical sample, and a sensitivity analysis of the results to changing

these parameters is provided in section 5.2. The qualitative results of the model are

consistent with a large range of values of τR, as long as ξR is sufficiently low and pro-

ductivity decreases by a non negligible amount when radical innovation fails. Moreover

the radical innovation decisions are mainly determined by the values of τR and ξR ,

and are not very sensitive to variations in K(2). Third, I recalibrate the parameters

K(1), τ , γ, δ and a0 to match the distribution of productivity, the overall percentage of

innovating firms, the cost of innovation, the average age of firms, and the percentage

of bankruptcies, while leaving all the other parameters unchanged. Table 4 illustrates

the parameters of the full model.

5 Simulation results

In the following sub-sections I simulate several industries in which different values of

the initial endowment a0 generate different degrees of financial frictions. The lower

a0 is, the higher is the fraction of young firms that go bankrupt evert period, or

that have insufficient funds to invest in innovation. This assumption is a simple way

to introduce industry level differences in the intensity of financing frictions, and has

similar implications to assuming that the endowment is identical in all industries but

the borrowing capacity of firms is higher in less constrained industries, as it is frequently

assumed in the firm dynamics literature (e.g. see Buera, Kaboski, and Shin, 2011, and

Midrigan and Xu, 2014).
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Table 4: Calibration of the full model with radical and incremental innovation
Parameter Value Empirical moment Data Model
F 0.5 Fraction of firms with negative profits 0.40 0.34

θ 0.15 Avg. of time series st.dev. of profits/sales 0.1171 0.087

K(1) 6 Average R&D expenditures /profits 67%2 58%

γ 0.85 Percentage of innovating firms 22.4%2 23.3%

�v 0.45 Median TFP relative to the 99th percentile 0.78 0.62

σ2v 0.03 Average cross sectional standard deviation of TFP 0.343 0.32

g 1.009 Average yearly decline in TFP for firms not doing R&D 0.4%3 0.4%

τ 2 Ratio between 90th pctile and 10th pctile of size distrib. 13.2 12.2

ξNI 0.25 Percentage of firms with age >60 years 4.8% 14.4%

δ 0.015 Average age 24 26

a0 4.5 Percentage of firms going bankrupt every period 0.5% 0.06%

Additional radical innovation parameters: K(2) = 0.01; ξR = 0.045; τR = 30
Other parameters: SC=4; r=2%; η=1.5; σ=4; A=25010. Profits denote operative profits.

1. I use net income over value added, eliminating 1% outliers on both tails, compute its standard deviation for each
firm and then compute the average across firms. Standard deviation computed only for firms with at least 6 yearly
observations and then averaged across firms.

2. including only R&D where cost of R&D over sales is greater than 0.5%.

3. These statistics are calculated after excluding the 1% outliers on both tails.

For both the benchmark and the full model I compare 4 industries: i) A "financially

unconstrained industry", with a0 = 30, or 100% of y, .where y is the average of firm

sales in the industry. For this industry the value of a0 is sufficiently high so that no firm

is financially constrained in equilibrium. ii) The benchmark industry; iii) A "moderately

financially constrained industry", with a0 = 4; iv) A "financially constrained industry",

with a0 = 2; v) A "severely financially constrained industry", with a0 = 1.

5.1 Benchmark model

Table 5 shows summary statistics for the benchmark model. In order to illustrate the

results it is useful to first distinguish two channels trough which financial frictions can

potentially affect innovation: first, there is a "competition effect". Financing frictions

increase bankruptcy risk, and fewer firms enter so that in equilibrium expected bank-

ruptcy costs are compensated by lower competition and higher profitability. Second,

there is a "binding constraint effect", when constraint (15) is binding with equality

and firms are not able to innovate.

The first column of table 5 reports the statistics for the unconstrained industry. De-

spite no firm is ever financially constrained, only 25.6% of the firms innovate on average,
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Table 5: Simulated industries, benchmark model with only incremental innovation:
descriptive statistics

Financially

unconstr.

industry

(a0=30)

Benchmark

industry

(a0=12)

Moderately

Financially

Constrained

industry

(a0=4)

Financially

Constrained

industry

(a0=2)

Severely

Financially

Constr.

industry

(a0=1)

% going bankrupt every period 0% 0.5% 3.1% 5.7% 7.7%

% not innovating because of fin. frictions1 0% 1.9% 11% 18% 25%

Price index P relative to benchmark 99.9% 100% 100.7% 102.3% 103.5%

E (π | v) relative to benchmark 99.6% 100% 102.1% 109.6% 114.0%

Average percentage of innovating firms 25.7% 23.8% 16.7% 21.3% 23.3%

Weighted Avg. TFP relative to benchmark 102.2% 100% 92.9% 96.4% 97.4%

1. Defined as firms that would like to innovate but have insufficient financial wealth to invest in innovation.

For all industries I simulate 3000 periods then discard the first 300 and use the remaining ones to compute aggregate
statistics.

much less than the probability to get an innovation opportunity γ = 45%, because in-

cremental innovation is performed only by larger and more productive firms. Some

unproductive and small firms do not innovate because the cost of innovation K(1),

which is constant, is larger than the gains from innovation, which are proportional to

the firm’s current productivity.

Comparing the different industries, The first two rows of table 5 show that the

more constrained the industry is, the larger is the fraction of firms which go bankrupt

and which cannot invest in innovation. The finding that financing frictions reduce

the investment and technology adoption of young and financially constrained firms

is common to other models of firm dynamics with financial imperfection (e.g. Buera

Kaboski and Shin, 2011, and Midrigan and Xu, 2014, among others). The next two rows

show that financing frictions act as a barrier to entry which reduces competition, and

increases prices and expected profits for firms that do not go bankrupt, also increasing

the expected return from incremental innovation.18 Because of the competition effect,

average profits are 14% higher in the severely constrained industry with respect to the

benchmark. This is why the relation between financing frictions and innovation in the

fifth row of the table is U shaped. For moderate increases of financing frictions (from

column 1 to column 3) the binding constraint effect dominates and innovation and TFP

decline, but for higher levels (from column 3 to column 5) the indirect competition effect

dominates, and innovation and TFP increase.

18This effect of competition on innovation is well known in Endogenous Growth Theory, see for
example Aghion and Howitt (1992).
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Figure 3: Size and productivity over the firm’s life-cycle (new firms=1; simulated
industries, benchmark model with only incremental innovation).
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Figure 3 shows the life cycle dynamics of size and productivity for industries with

different degrees of financing frictions. To make the graph more readable I include only

three industries. Following Hsieh and Klenow (2014) the values are relative to the value

for new firms, which is normalized to 1, and each line represents average values for a

cohort of firms that stay in operation during the whole period, thus excluding selection

effects. Figure 3 shows that financial frictions have an ambiguous effect on the growth

dynamics of firms as they grow older, with a moderate amount of financial frictions

generating a slightly faster growth. Surprisingly, despite 25% of firms cannot innovate

in the severely financially constrained industry, firms growth is not very different from

the benchmark industry. The intuition for this result is that firms use retained earnings

to overcame financial frictions very early on in their life.

5.2 Simulation results, full model with incremental e radical

innovation.

In the previous section the simulation of the benchmark model generates two main

insights: first, financial constraints prevent some young firms to invest in productivity

enhancing innovation and reduce aggregate TFP, even though the overall negative

effect is mitigated by the fact that financial frictions also act as barriers to entry and

increase profits and innovation rents for financially unconstrained firms. Second, the

model is unable to generate large differences in the life cycle dynamics of firms between
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Figure 4: Innovation decisions in the unconstrained industry, full model with both
radical and incremental innovation.
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industries with different degrees of financing frictions. Contradicting both the empirical

evidence shown in section 3, and the intuition that financial factors should play a role

in explaining the life cycle dynamics of plants estimated by Hsieh and Klenow (2014).

In this section I demonstrate that a model with both radical and incremental in-

novation is instead consistent with the empirical evidence. Figure 4 shows innovation

dynamics in the unconstrained industry for the full model. The upper panel shows

the probability to implement an innovation idea. The variable on the X-axis is rel-

ative productivity v, which also uniquely determines the relative size of the firm.

As in the benchmark model, also here incremental innovation is performed only by

the larger/more productive firms. Conversely radical innovation is performed only by

smaller/less productive firms. The high risk of failure of this innovation, with the as-

sociated drop in productivity, makes it not very attractive for large firms. Conversely

smaller firms do not value the upside potential and the downside risk symmetrically,

because the value function is bounded below at zero, since they can always cut losses by

exiting from production. The lower panel shows innovation dynamics along the firms

life cycle. Very young firms on average perform most of the radical innovation in the

industry. These firms then either exit after failure, or grow fast after success, and once
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Figure 5: Probability to innovate, comparison of industries, full model with both radical
and incremental innovation.

they become large they start investing in incremental innovation. Therefore the frac-

tion of firm doing incremental innovation rises gradually with age. Thus the full model

with both radical and incremental innovation generates firm dynamics consistent with

the empirical evidence. Not only with the well know fact that small firms grow faster

than larger firms and have more volatile growth rate, but also with the observation that

innovation is a risky experimentation process (Kerr, Nanda and Rhodes-Kropf, 2014),

as well as with the findings of Akcigit and Kerr (2010), who analyse US patents data

and show that small firms do relatively more exploration R&D and have a relatively

higher rate of major inventions than large firms. Finally it is also consistent with the

high positive skewness in the growth of young firms observed by Haltiwanger et al

(2014) : "...median net employment growth for young firms is about zero. As such, the

higher mean reflects the substantial positive skewness with a small fraction of very fast

growing firms driving the higher mean net employment growth."

Figures 5-7 describe the relation between financing frictions and innovation and

growth dynamics in the full model. In order to better illustrate the different effects at

play, I focus on the comparison between the extreme cases of the unconstrained industry

and the severely constrained industry. Figure 5 shows the probability to innovate as
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a function of productivity. The differences in radical innovation across industries are

driven almost entirely by the competition effect. The lower is competition, the higher

are the profits of the younger and smaller firms, so that many of them decide to

postpone risky radical innovation. If financing frictions are reduced and competition

increases, the same firms have a much lower profitability and much less to lose if they

fail to innovate, thanks to the exit option, and they find it optimal to innovate much

sooner.19 This effect explains the shaded area for values of v around 0.52, where firms

perform radical innovation only in the unconstrained industry. Since the distribution of

firms, consistently with the empirical evidence, is heavily skewed with a lot of young and

small firms, the shaded area determines a large difference in radical innovation across

industries. Conversely the binding constraint effect explains why, for certain values

of productivity v, the percentage of firms undertaking an innovation opportunity is

positive in the constrained industry but lower than one. This happens especially in

the intermediate region of v between 0.65 and 0.75. However very few firms are in this

region, and therefore this effect is going to be negligible at the aggregate level.20

Figure 6 compares the life cycle profile of innovation in the unconstrained indus-

try and in the severely constrained industry. In the latter young firms perform less

radical innovation, so that at any given age fewer firms reach a level of productivity

high enough to find optimal to invest in incremental innovation. This explains why the

fraction of firms doing incremental innovation increases more slowly in this industry

than in the unconstrained industry. Figure 7 shows the implications of different inno-

vation dynamics for the lifecycle profile of size and productivity in the two industries.

Average productivity steeply increases with age in the unconstrained industry. As a

consequence firm’s size over the life-cycle grows by 500%, while it grows only by 50% in

the severely constrained industry. Figure 7 contrasts sharply with the analogous figure

3, which showed little effect of financing frictions on size and productivity growth in the

model with only incremental innovation. Financial factors matter in the full model not

because the lack of internal finance prevents firms to invest optimally, but because the

competition effect reduces the incentives to innovate for many young firms. Likewise in

19The empirical competition literature often estimates a positive relation between competition and
innovation (e.g. Blundell et al. 1995, and Nickell, 1996). To the best of my knowledge this paper pro-
poses a novel theoretical mechanism consistent with this evidence, different from and complementary
to the well known "Escape Competition effect" of Aghion et al. (2001).

20To be precise, there is also a third "gambling for resurrection" effect: bankruptcy risk implies
that the value of a firm Vt (at, εt, vt) is convex around the value of at = F. Intuitively, Vt (at, εt, vt) as
defined in equation (21) is strictly concave for at ≥ F, because higher wealth reduces bankruptcy risk,
and is equal to zero for at < F. Such local convexity encourages firms close to the bankruptcy region
to take more risk, and explains a positive radical innovation probability in the constrained industry
in the bottom left part of the shaded area. However the aggregate impact of this effect is negligible.
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Figure 6: Fraction of innovating firms, different industries
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the severely constrained industry shown in figure 7 average size and productivity grow

slowly for older firms not because these are financially constrained, but because many

of them have not reached a level of productivity sufficiently high to invest in radical

innovation.

Table 6 shows the summary statistics for the simulated industries. Radical innova-

tion in the severely constrained industry is more than 50% lower than in the benchmark

industry, despite less than 1% of firms cannot innovate because of a binding financing

constraint.21 This confirms that the indirect competition effect is the main reason why

financing frictions reduce innovation. As a consequence average TFP is 18.1% lower in

this industry than in the benchmark one.

How much does the reduction in radical innovation caused by financial frictions

matter for the whole economy? By combining the above simulation results and the

data from the empirical dataset I can estimate its aggregate effects for the Italian

manufacturing industry. First, I define a mapping between the declared financing

frictions in the surveys and the intensity of financial frictions in the model. The latter

21In equilibrium innovation is constrained by internal finance only for a very small fraction of firms,
even in the most constrained industry, because the cost of radical innovation K(2) is relatively small,
and by the time firms become large enough to invest in incremental innovation, they are also wealthier
and not financially constrained.
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Figure 7: Size and productivity over the firm’s life-cycle (new firms=1; simulated
industries, full model with both radical and incremental innovation).
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can be measured by the expected return of retained earnings in excess of the real

interest rate r. Since the value of the firm Vit (ait, εit, vit) is the present value of future

profits net of current wealth at, I define the excess expected return of firm i in period

t φit as:

φit =
∂Vit (ait, εit, vit)

∂ait
, (23)

where φit measures the extra return for firm i in period t of accumulating cash reserves

and reducing current and future expected financial problems. It is straightforward to

show that φit is negatively related to ait and it is equal to zero for values of ait high

enough so that the firm is unconstrained today or in the future. I assume that in the

empirical sample firms declare financial difficulties if φit is higher or equal than an

unobserved common threshold φ. Then I fix the value of φ in the simulations so that

for the benchmark calibration the percentage of simulated firms "declaring financial

frictions" is the same as in the whole empirical sample (14% of all firm-year observa-

tions). Finally, I simulate a continuum of industries with identical parameters except

for the value of the initial endowment a0. A lower value of a0 increases the mean value

of φit across firms in equilibrium. I use the fraction of firms declaring financial diffi-

culties (the fraction of firms with φit > φ) to match the simulated industries with the
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empirical 4 digit sectors of the Italian sample, and I compute the weighted average of

the reduction in productivity caused by financial frictions across these sectors. I find

that reducing financial frictions in the 50% most constrained sectors at the benchmark

level, and abstracting from general equilibrium effects on wages and interest rates,

would increase overall productivity in the Italian manufacturing sector by 6.3%

Since the risk of radical innovation τR is not calibrated, it is important to describe

how the results depend on its value. Therefore I relax the symmetry assumption, so

that in case of success of radical innovation vt+1 = (1 + g)
τHvt, while in case of failure

vt+1 =
vt

(1+g)τL
. Once I do not restrict τL and τH to be equal, it is easy to show that a

necessary condition for the results is that radical innovation has a high return and low

success probability. That is, a high value of τH associated with a low value of ξR. If

these two conditions are satisfied, then the results hold also conditional to a relatively

low value of the "downside risk" τL . Intuitively, if innovation is very risky then even

a low value of τL is sufficient to ensure that radical innovation is mainly performed

by young and small firms, and that increases in competition encourage these firms to

take on more risk. This is shown in Panel B, where I keep τH = 30 and reduce τL

to 5, while lowering the parameter ξ to ensure that average radical and incremental

innovation remain roughly constant in the "benchmark" column. The results of this

panel are qualitatively similar to Panel A, with financing frictions reducing both types

of innovation and aggregate productivity.

In order to further identify the importance of the competition effect, Panel C re-

peats the same exercise of Panel A, but varying the entry cost SC across industries,

while keeping a0 fixed at the benchmark level. I choose the values of SC to match

the equilibrium prices in the four industries analyzed in panel A. In other words, in

Panel C entry costs replicate the competition effect generated by financing frictions

in Panel A. The results show that the higher are the barriers to entry, the lower is

radical innovation, which also implies less incremental innovation and average TFP.

In the industry with very high entry barriers average TFP is 15.1% lower than in the

benchmark industry.

6 Robustness checks

The simulation results in the previous section provide an explanation of the empirical

evidence shown in section 3: financial frictions negatively affect growth because they

reduce risky innovation activity. They do so by generating entry barriers that reduce
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Table 6: Simulated industries: descriptive statistics, full model with both incremental
and radical innovation

PANEL A: Main analysis

Financially

unconstr.

industry

Benchmark

industry

Moderately

Financially

Constrained

industry

Financially

Constrained

industry

Severely

Financially

Constr.

industry

Average P relative to benchmark 99.4% 100% 100.1% 102.1% 103.0%

E (π | v) relative to benchmark 97.7% 100% 100.2% 107.0% 110.0%

Average percentage of innovating firms 20.4% 23.3% 21.9% 10.7% 8.6%

Percentage doing Radical Innovation 9.3% 11.0% 10.5% 5.4% 4.5%

Not doing R.I.. because of fin. frictions 0% 0% 0.02% 0.2% 0.06%

Percentage doing Incremental Innovation 11.1% 12.3% 11.4% 5.3% 4.2%

Not doing I.I. because of fin. frictions 0% 1.7% 1.6% 0.5% 0.4%

Weighted Avg. TFP relative to benchmark 98.0% 100% 98.3% 85.6% 81.9%

PANEL B: Lower downside risk
Average percentage of innovating firms 21.7% 21.8% 21.4% 12.3% 10.6%

Percentage doing Radical innovation 14.3% 14.5% 14.2% 8.1% 7.%

Percentage doing Incremental innovation 7.4% 7.3% 7.2% 4.2% 3.6%

Weighted Avg. TFP relative to benchmark 101% 100% 100% 91.0% 87.5%

PANEL C: Barriers to entry
Moderately

Lower

Barriers

Benchmark

industry

Moderately

High

Barriers

High

Entry

Barriers

Very high

Entry

Barriers

Average P relative to benchmark 99.9% 100% 100.6% 102.6% 103.6%

Entry cost F relative to benchmark 99.4% 100% 115% 177% 212%

Average percentage of innovating firms 20.9% 23.38% 18.0% 11.3% 8.0%

Percentage doing Radical innovation 9.8% 11.0 8.4% 5.1% 3.6%

Percentage doing Incremental innovation 11.1% 12.3% 9.6% 6.2% 4.4%

Weighted Avg. TFP relative to benchmark 100.1% 100% 97.4% 90.5% 84.9%

For all industries I simulate 3000 periods then discard the first 300 and use the remaining ones to compute aggregate

statistics. In Panels A and B only the value of a0 varies across industries. In panel B the value of τ conditional on

failing radical innovation is τL = 5,and ξR is recalibrated to match the average number of innovating firms in the

benchmark column. In Panel C the industries with barriers to entry have identical parameters than in the benchmark

industry except for SC .
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Table 7: Relation between age and productivity (empirical sample)

All observations
Currently constrained firms

excluded

Dependent variable �v1i,s �v2i,s �v3i,s �v1i,s �v2i,s �v3i,s

agei,s 0.00616∗∗∗ 0.00926∗∗∗ 0.00067 0.0686∗∗∗ 0.0103∗∗∗ 0.00078
(5.83) (5.84) (1.35) (6.17) (6.18) (1.49)

agei,s∗constrainedi −0.00360∗∗∗ −0.00541∗∗ −0.00207∗∗∗ −0.00351∗∗ −0.00528∗∗ −0.00208∗∗

(−2.59) (−2.60) (−3.3) (−2.37) (−2.37) (−3.11)
N.observations 12390 12390 12672 11065 11065 11299

Adj. R-sq. 0.011 0.011 0.006 0.013 0.013 0.005

Panel regression with firm fixed effect. Time effects are also included. Standard errors clustered at the firm level.

T-statistic reported in parenthesis. �v1i,s is revenue total factor productivity, �v2i,s is total factor productivity computed

following the procedure of Hsieh and Klenow (2009), and �v3i,s is profits based productivity for firm i in survey s.
agei,s is age in years for firm i in survey s. constrainedi, is equal to one if firm i belongs to the 50% of 4-digit

manufacturing sectors with the highest percentage of financially constrained firms, and zero otherwise. ***, **, *

denote significance at a 1%, 5% and 10% level respectively.

competition and distort the incentives to innovate. These implications of the model

can be tested on the empirical sample. More specifically, the indirect competition effect

implies the two following predictions:

Prediction 1: the result that firm’s productivity growth is lower in financially con-

strained industries should hold after excluding firms declaring financial difficulties.

Prediction 2: The difference in the life cycle dynamics between financially con-

strained and financially unconstrained industries is similar to the difference between

industries selected according to competition.

Moreover, I can use the information on R&D spending in the empirical sample to

perform a robustness check related to the importance of innovation:

Prediction 3: The difference in the life cycle dynamics between financially con-

strained and financially unconstrained industries should disappear if I only include in

the analysis firms not performing R&D.

Finally, I estimate empirical proxies of radical and incremental innovation to provide

empirical evidence related to innovation dynamics:

Prediction 4: Firms in more financially constrained industries do relatively less in-

novation. Radical innovation decreases with firm’s age, and is lower in financially con-

strained industries especially among younger firms. Incremental innovation increases

with firm’s age, and is lower in financially constrained industries especially among older

firms.

In order to test prediction 1, I repeat the estimation of equations 5 and 6 after ex-
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Table 8: Relation between age and productivity, different classification of constrained
groups (empirical sample)

All observations
Currently constrained firms

excluded

Dependent variable �v1i,s �v2i,s �v3i,s �v1i,s �v2i,s �v3i,s

agei,s 0.00755∗∗∗ 0.00113∗∗∗ 0.000722 0.00818∗∗∗ 0.0123∗∗∗ 0.000647
(5.79) (−0.00582) (1.18) (6.02) (6.03) (1.02)

agei,s∗midconstri −0.00387∗∗ −0.00582∗∗ −0.000528 −0.00359∗ −0.00541∗ −0.000209
(−2.19) (−2.19) (−0.66) (−1.94) (−1.94) (−0.25)

agei,s∗highconstri −0.00529∗∗∗ −0.00794∗∗∗ −0.0026∗∗∗ −0.00529∗∗ −0.00794∗∗ −0.00246∗∗

(−3.16) (−3.16) (−3.42) (−2.96) (−2.97) (−3.05)
N.observations 12390 12390 12672 11065 11065 11299

Adj. R-sq. 0.011 0.011 0.006 0.013 0.013 0.005

Panel regression with firm fixed effect. Time effects are also included. Standard errors clustered at the firm level.

T-statistic reported in parenthesis. �v1i,s is revenue total factor productivity, �v2i,s is total factor productivity computed

following the procedure of Hsieh and Klenow (2009), and �v3i,s is profits based productivity for firm i in survey s. agei,s
is age in years for firm i in survey s. midconstri, is equal to one if firm i belongs to the 33% of 4-digit manufacturing

sectors with the medium percentage of financially constrained firms, and zero otherwise. highconstri, is equal to

one if firm i belongs to the 33% of 4-digit manufacturing sectors with the highest percentage of financially constrained

firms, and zero otherwise. ***, **, * denote significance at a 1%, 5% and 10% level respectively.

cluding firms which are currently declaring financing problems. Tables 7 and 8 confirm

that the coefficient of constrainedi interacted with age is still negative and significant

in all specifications, thus confirming prediction 1. This finding is important because it

confirms that the empirical relation between financing frictions and productivity growth

estimated in section 3 is not driven by firms declaring financial difficulties because of

their poor performance. In order to verify prediction 2, as an empirical measure of

competition I consider the Price-cost margin (PCM):

PCMi,t =
ri,t −mi,t

rit

Where ri,t is total revenues and mit are variable costs for firm i in survey s. I calculate

the average of PCMi,s for each 4 digit sector and generate a dummy which is equal

to one if firm i belongs to one of the 50% of sectors with highest Price-cost margin,

and zero otherwise, called lowcompi. I interact this dummy variable with age in a re-

gression similar to the one performed in table 1. Table 9 shows the regression results.

The estimated difference in the relation between age and productivity among differ-

ent groups is remarkably similar to the one estimated in table 1, for all productivity

measures. In other words, the low competition sectors behave very similarly to the
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Table 9: Relation between age and productivity - sectors selected according to compe-
tition (empirical sample)

Baseline

Time dummies interacted with

the low competition group

are included

Dependent variable �v1i,s �v2i,s �v3i,s �v1i,s �v2i,s �v3i,s

agei,s 0.00622∗∗∗ 0.00935∗∗∗ 0.000293 0.00613∗∗∗ 0.00919∗∗∗ 0.000288
(5.8) (5.81) (0.63) (5.31) (5.31) (0.58)

agei,s∗lowcompi −0.00404∗∗ −0.00607∗∗ −0.00153∗∗ −0.00379∗∗ −0.00566∗∗ −0.00155∗∗

(−2.91) (−2.91) (−2.48) (−2.47) (−2.46) (−2.26)
N.observations 12390 12390 12672 12390 12390 12672

Adj. R-sq. 0.011 0.011 0.005 0.011 0.011 0.005

Panel regression with firm fixed effect. Time effects are also included. Standard errors clustered at the firm level.

T-statistic reported in parenthesis. �v1i,s is revenue total factor productivity, �v2i,s is total factor productivity computed

following the procedure of Hsieh and Klenow (2009), and �v3i,s is profits based productivity for firm i in survey s. agei,s
is age in years for firm i in survey s. lowcompi, is equal to one if firm i belongs to the 50% of 4-digit manufacturing

sectors with highest average Price-cost margin, and zero otherwise. ***, **, * denote significance at a 1%, 5% and

10% level respectively.

high financing frictions sectors with respect to productivity dynamics along the firms

life-cycle. These results are consistent with the simulation results shown in panel C of

table 6 and confirm Prediction 2.22

The third robustness check verifies the importance of innovation in driving the

empirical relation between financing frictions and productivity growth. In table 10

columns 1 and 2 replicate the results obtained in the second part of table 1. To

save space I do not report the results using �v2i,s, which are qualitatively very similar

to using �v1i,s. Columns 3 and 4 repeat the analysis after eliminating the firm-survey

observations that reported doing R&D, and columns 5 and 6 repeat it after eliminating

all the observations of firms that did R&D in at least one survey. The results show

that the life-cycle profiles of productivity for firms in constrained and unconstrained

groups are no longer significantly different once innovating firms are excluded from the

22Note that the correlation between the average of the price cost margin PCMs and the fraction
of constrained firms constraineds across four-digit sectors is nearly zero in the empirical data, being
equal to -0.0379. This low correlation is consistent with the model, where variations in financing
frictions affect total profits of the firms but do not significantly affect the relation between profits and
sales, which mainly depends on the elasticity of substitution σ. In other words, changes in financing
frictions are similar to variations in competition driven by differences in entry barriers, while the
empirical price-cost margin is related to variations in competition generated by variations in the
elasticity of substitutions σ. In Panel C of Table 6 I have shown simulation results where competition
varies because of different entry costs. Simulations where changes in competition are caused by
variations in σ yield very similar results.
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Table 10: Relation between age and productivity - firms doing research and develop-
ment excluded (empirical sample)

Baseline

Firm-survey obs.

with positive R&D

excluded

Firms with some

positive R&D

excluded

Dependent variable �v1i,s �v3i,s �v1i,s �v3i,s �v1i,s �v3i,s

agei,s 0.00590∗∗∗ 0.000235 0.0575∗∗∗ −0.000832 0.00429∗ −0.00147∗

(5.22) (0.43) (3.73) (−1.16) (2.46) (−1.94)
agei,s∗constrainedi −0.00290∗ −0.00138∗ −0.00222 −0.000307 −0.00109 −0.0001

(−1.91) (−1.95) (−1.12) (−0.34) (−0.49) (−0.09)
N.observations 12390 12672 10287 10505 6156 6273

Adj. R-sq. 0.012 0.007 0.014 0.010 0.010 0.012

Panel regression with firm fixed effect. Time effects are included individually as well as interacted with the "con-

strained" group. Standard errors clustered at the firm level. T-statistic reported in parenthesis. �v1i,s is revenue total

factor productivity and �v3i,s is profits based productivity for firm i in survey s. agei,s is age in years for firm i in

survey s. constrainedi, is equal to one if firm i belongs to the 50% of 4-digit manufacturing sectors with the highest

percentage of financially constrained firms, and zero otherwise. ***, **, * denote significance at a 1%, 5% and 10%

level respectively.

analysis, thus confirming Prediction 3.

The last robustness check is related to Prediction 4. As a very rough proxy I

classify as doing radical innovation all firms investing in R&D and having very volatile

productivity. I first calculate sdvi , the standard deviation for firm i of the estimated

measure of productivity �v1i,t (see section 3 for details). The Radical Innovation indicator

Rad_inni,s is equal to 1 if firm i in survey s has a ratio of R&D spending over sales

larger than 0.5% and if the volatility of the estimated productivity is larger than

the 75th percentile, and is equal to zero otherwise (Rad_inni,s = 1 for 9.5% of all

firms). The complementary indicator of Incremental Innovation Incr_inni.s is equal

to 1 if firm i in survey s has a ratio of R&D spending over sales larger than 0.5% and

if the volatility of its productivity is smaller than the 75th percentile, and is equal

to zero otherwise (Incr_inni.s = 1 for 13.5% of all firms). The joint indicator is

Tot_innis = Rad_innis + Incr_innis. I verify Prediction 4 by estimating a Logit
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model on the relation between age and the probability to innovate:23

Inni,s = β0 +
n�

l=2

βlDage
l
i,s +

n�

l=1

βcl (constrainedi ∗Dage
l
i,s) +

m�

j=1

βjxj,i,s + εi,s (24)

where Inni,s is equal to the innovation indicatorsRad_inni,s, Incr_inni,s and Tot_inni,s

in three separate regressions, and Dageli,s is equal to 1 if firm i in survey s belongs

to age group l ∈ {1, 2, 3, 4}, and is equal to zero otherwise. l = 1 indicates firms

with age up to 10 years, and l = 2, 3, 4 indicates firms aged 11-20, 21-30 and 31-40

years, respectively. Firms older than 40 years are excluded from the estimation. The

control variables xj include 2 digit sector dummies and time dummies, and errors are

clustered at the firm level. The coefficients βl for l = 2, 3, 4, in equation (24) measure

the difference in frequency of innovation for these age groups relative to the omitted

group of youngest firms (l = 1). If innovation increases over firm’s age, these coeffi-

cients should be positive and with an increasing value as l increases. The coefficients

βc1, ..., β
c
4 measure the difference in innovation probability between firms of similar age

in the constrained group relative to the unconstrained one. As shown in figure 6,

the model predicts that they should be negative and that their magnitude should in-

crease in age for incremental innovation, while they should decrease in age for radical

innovation.

Regression results are shown in table 11. Consistently with Prediction 4 the prob-

ability to innovate increases with age for Tot_innis, and to a greater extent for

Incr_innis, while it decreases with age for Rad_innis. Even though for the latter

variable the relation is not monotonous, the group of oldest firms (age 31-40) are sig-

nificantly less likely to do radical innovation than the omitted group of youngest firms

(less than 10 years old). Regarding financing frictions, their effect is generally negative

but not always significant, especially for radical innovation. This is probably caused

by the absence of very young firms in the empirical sample, because the model predicts

that most differences in radical innovation activity across industries happen for firms

between 1 and 4 years old (see figure 6). Nonetheless, for incremental innovation the

23For the regressions in section 3 the dependent variables �v1i,s, �v2i,s and �v3i,s are constructed start-
ing from more than 60000 firm-year observations of balance sheet data available in the sample (see
appendix 2 for details). This large sample size makes it possible to perform a panel estimation with
firm fixed effects. Unfortunately the innovation variables Rad_inni,s and Incr_inni,s only have one
observation for each three-year survey, and they have little within-firm variation, both because few
firms are present in more than one survey and because R&D is persistent over time for each firm. For
example, the variable Incr_inni,s is equal to 1 for 1538 out of 13601 valid firm-survey observations,
but only 363 firms report a change in the value of such variable over time. Therefore instead of
estimating a fixed effect model I estimate equation 24 with sector specific fixed effects.
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Table 11: Relation between age and innovation (empirical sample)

Dependent variable Tot_inni,s Incr_inni,s Rad_inni,s

Dage2i,s 0.0556 (0.1100) 0.2520 (0.1437)* -0.1818 (0.1458)

Dage3i,s 0.1060 (0.1182) 0.2793 (0.1529)* -0.1177 (0.1581)

Dage4i,s 0.2530 (0.1304)* 0.6269 (0.1621)*** -0.3324 (0.1904)*

constrainedi∗Dage1i,s 0.0044 (0.0167) 0.0172 (0.0212) -0.0102 (0.0227)

constrainedi∗Dage2i,s -0.0141 (0.0062)** -0.0103 (0.0077) -0.0159 (0.0088)*

constrainedi∗Dage3i,s -0.0060 (0.0044) -0.0093 (0.0055)* -0.0004 (0.0061)

constrainedi∗Dage4i,s -0.0078 (0.0042)* -0.0093 (0.0049)* -0.0028 (0.0065)

Time dummies yes yes yes

2 digit sector dummies yes yes yes

N.observations 8844 8844 8844

Adj. R-sq. 0.08 0.07 0.06

Probit regression. Standard Errors, reported in parenthesis, are clustered at the firm level.

Tot_inni,s, Incr_inni,s and Rad_inni,s are equal to one if firm i in survey s performs

any innovation, incremental innovation and radical innovation, respectively, and equal to zero

otherwise. Dageli,s is equal to 1 if firm i in survey s belongs to age group l ∈ {1, 2, 3, 4},

and is equal to zero otherwise. l = 1 indicates firms with age up to 10 years, and l = 2, 3, 4
indicates firms aged 11-20, 21-30 and 31-40 years, respectively. Control variables include 2 digit

sector dummies and time dummies. constrainedi, is equal to one if firm i belongs to the 50% of

4-digit manufacturing sectors with the highest percentage of financially constrained firms, and zero

otherwise. ***, **, * denote significance at a 1%, 5% and 10% level respectively.

effect of financing frictions is significantly negative for the groups of oldest firms (age

21-40) consistently with the simulations results in figure 6. Overall these results are

noisy but broadly in line with the predictions of the model.

7 Concluding remarks

This paper analyses a dataset of Italian manufacturing firms with both survey and

balance sheet information and documents a significantly negative relation between

financing frictions and the productivity growth of firms along their life cycle. It explains

this finding with the model of an industry with both radical and incremental innovation,

where the indirect effects of financing frictions are much more important for innovation

decisions than the direct effects. For realistic parameter values, despite relatively few

firms have a binding financing constraints in equilibrium, financing frictions act as

barriers to entry which reduce competition and negatively affect radical innovation,

productivity growth at the firm level, and aggregate productivity. The empirical and

theoretical findings of this paper mutually reinforce each other. The model provides
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an explanation of the empirical evidence and at the same time generates a series of

additional testable predictions that both confirm its implications as well as the validity

of the empirical methodology followed to construct the indicator of financial frictions

used in the paper. Finally, the predictions of the model regarding the relation between

competition and radical innovation apply not only to financial frictions but also to any

other factor which could raise barriers to entry into an industry. Therefore the results

have potentially wider implications and applicability than the specific financial channel

which is the focus of this paper.
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8 Appendix 1

In order to obtain a numerical solution for the value functions V 0
t (at, εt, vt) , V

1
t (at, εt, vt) ,

V 2t (at, εt, vt) , V
∗
t (at, εt, vt) and Vt (at, εt, vt) I consider values of at in the interval be-

tween 0 and a, where a is a sufficiently high level of assets such that the firm never risks

bankruptcy now or in the future. I then discretize this interval in a grid of 300 points.

The shock εt is modeled as a two-state symmetric Markov process. The productivity

state vt is a grid of N points, where vn =
1

(1+g)n−1
for n = 1, ..., N. N is chosen to be

equal to 120, which is a value large enough so that, conditional on the other parameter

values, no firm remains in operation when v = 1
(1+g)N−1

.

In order to solve the dynamic problem I first make an initial guess of the equilibrium

aggregate price P. Based on this guess I calculate the optimal value of Vt (at, εt, vt) using

an iterative procedure. I then apply the zero profits condition (22) and I update the

guess of P accordingly. I repeat this procedure until the solution converges to the

equilibrium. Then I simulate an artificial industry in which every period the total

number of new entrants ensures that condition (7) is satisfied.

9 Appendix 2

Each Mediocredito survey covers 3 years, therefore the 1995, 1998 and 2001 surveys

cover the 1992-1994, 1995-1997 and 1998-2000 periods respectively. Each survey covers

around 4500 firms, including a representative sample of the population of firms below

500 employees as well as a random sample of larger firms. Caggese and Cunat (2013)

analyse the same dataset and find that, relative to the population of Italian firms, small

firms are underrepresented and large firms are overrepresented. Nonetheless Caggese

and Cunat (2013) verify that results obtained after using population weights for firms

larger than 10 employees are very similar to the results obtained using the original

sample.

Since some firms are kept in the sample for more than one survey, I have a total

of 13601 firm-survey observations, of which 9502 are observations of firms appearing

in only one survey, 3364 are observations of firms appearing in two surveys, and 735

are observations of firms appearing in all 3 surveys. Table 12 shows the list of 2 digit

sectors included in the final sample (5 sectors with less than 50 firms are excluded) and

the fraction of firms in the constrained and unconstrained groups.

Moreover for each firm surveyed Mediocredito/Capitalia makes available several

years of balance sheet data in the 1989-2000 period. In total I have available 67519
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Table 12: Frequency of constrained and unconstrained firms in each 2 digit manufac-
turing sector

Sector

2 digits

Ateco 91

code

n. observations

Fraction of firms

in the group of 50%

most constrained

4 digits sectors

Fraction of firms

in the group of 50%

least constrained

4 digits sectors

Food and Drinks 15 1037 75% 25%

Textiles 17 1224 30% 70%

Shoes and Clothes 18 571 38% 62%

Leather products 19 564 87% 13%

Wood Furniture 20 357 65% 35%

Paper 21 408 72% 28%

Printing 22 500 51% 49%

Chemical, Fibers 24 650 43% 57%

Rubber and Plastic 25 755 44% 56%

Non metallic products 26 886 76% 24%

Metals 27 665 49% 51%

Metallic products 28 1264 69% 31%

Mechanical Products 29 2187 42% 58%

Electrical Products 31 550 90% 10%

Television and comm. 32 320 45% 55%

Precision instruments 33 199 75% 25%

Vehicles 34 285 75% 25%

other manufacturing 36 696 62% 38%
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firm-year observations of balance sheet data.

For the estimation of the production function (1), by taking logs and adding fixed

effects I obtain:

log(pi,tyi,t) = κi + γt + α log
�
pki,tki,t

�
+ β log (wi,tli,t) + v1i,t (25)

where κi and γt are firm and year fixed effects, respectively. I use the following

variables: added value py is sales minus cost of variable inputs used during the period

plus capitalized costs minus cost of services; capital pk is the book value of fixed

capital; labour wl is total wage cost; I follow the methodology of Levinshon and Petrin

(2003) and I use the cost of variable inputs to control for unobservable productivity

shocks. I also include yearly dummies. In order to eliminate outliers I exclude from

the estimation all firm-year observations with values of y

k
and y

l
larger than the 99%

percentile and smaller than the 1% percentile. I estimate the production function

separately for each 2 digit sector for which I have at least 50 firms in the dataset. I

follow the same procedure also for the estimation of equation (2).

For the estimation of the price-cost margin PCMi,t : ri,t is total revenues and mi,t

is total cost of variable inputs used in the period plus total wage costs. The subindexes

refer to firm i and year t.

For the piecewise linear estimations in figures 1 and 2 I estimate the following

model:

�vji,s = β0 +
n�

l=1

βul (unconstri ∗ age
l
i,s) +

n�

l=1

βml (midconstri ∗ age
l
i,s) + (26)

+

n�

l=1

βcl (highconstri ∗ age
l
i,s) +

m�

j=1

βjxj,i,s + εi,s

I construct a set of variables agel which is equal to the age of the firm if the firm is

in group l, and zero otherwise. The index l = 1, 2, 3, 4 indicates the age intervals, with

l = 1 indicating firms with age up to 10 years, and l = 2, 3, 4 indicates firms aged 11-20,

21-30 and 31-40 years, respectively. Firms older than 40 years are excluded from the

estimation. The dummy "unconstr" is the complementary of "midconstr+highconstr",

so that the coefficients βu1 ...β
u
4 , β

m
1 ...β

m
4 and βc1...β

c
4 measure the effect of age on pro-

ductivity for the unconstrained, mid constrained and most constrained industries, re-

spectively. The set of control variables includes fixed effects, time dummies, and time

dummies interacted with the constrained groups.
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