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Abstract

We study a Downsian model of electoral competition, allowing different voters to have different and

private valuations of candidates’quality. Unlike models in which the voters’valuations of candidates’

quality are common and common knowledge and which never admit pure strategy equilibria, in our

setup we show existence of both converging and mildly diverging pure strategy equilibria. Perhaps more

importantly, we uncover a non-monotonic (U-shaped) relationship between the extent of heterogeneity

in voters’valuations and the maximum degree of equilibrium platform differentiation. In particular, we

demonstrate that: a) a disagreement among voters on which candidate is better leads to a depoliticized

vote, while an agreement on this issue leads to a politicized one; and b) as voters become more

heterogeneous in how they evaluate candidates’quality, existence of pure strategy equilibria becomes

more likely.
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1 Introduction

In the existing models of electoral competition with candidates or parties of diverging qualities, it is

assumed that all voters agree on which candidate is of higher quality and this fact is common knowledge

by all actors of the model (see, for example, Ansolabehere and Snyder 2000, Groseclose 2001, Aragonès

and Palfrey 2002 and Caselli and Morelli 2004).1 The common knowledge that all voters value the non-

policy characteristics of a certain candidate more than the non-policy characteristics of the other one,

makes candidates have very diverse incentives as far as electoral platform selection is concerned: the

advantaged candidate always wants to depoliticize the electoral campaign - he wants to imitate the policy

platform of the disadvantaged candidate so that only the non-policy characteristics will determine how

voters will vote - while the disadvantaged candidate always aims at politicizing the vote - he wants to offer

a policy platform distinctly different from the one offered by the advantaged candidate and hence induce

voters to vote also on the basis of which platform they like most. When candidates are Downsian (offi ce

motivated) these diverse dynamics lead to inexistence of pure strategy equilibria and, subsequently, of

stable electoral competition outcomes. In the mixed strategy equilibria of these models the advantaged

candidate proposes (in expected terms) more moderate policies than the disadvantaged one and elections

are politicized - differentiation of policy platforms is suffi ciently large and hence some voters vote for the

disadvantaged candidate (Aragonès and Palfrey 2002, Hummel 2010 and Aragonès and Xefteris 2012).

In this literature, candidates are uncertain about the voters’preferences over policy and share common

beliefs about them, but they are certain that all voters prefer the non-policy characteristics of a specific

candidate. While these papers describe very well cases in which one of the two competing candidates

has a characteristic that is perceived to be an advantage over the other candidate by all voters, they are

not really suitable to analyze electoral competition when there is disagreement among voters about what

kind of candidate characteristics are desirable. Is being the youngest candidate seen as an advantage by

all voters? Do all voters prefer rich candidates to poorer ones? Is the language-style used by a candidate

equally appealing to all voters? Two natural steps that would make these models more realistic would

be: a) to allow voters to be heterogeneous, not only in policy terms, but also in how they evaluate

candidates’quality; and b) to account for candidates having incomplete information in both dimensions

- they should be uncertain about how each voter values candidates’non-policy characteristics as well.

1Further results on electoral competition between heterogeneous candidates (or parties) may be found in Stokes (1963),
Erikson and Palfrey (2000), Dix and Santore (2002), Laussel and Le Breton (2002), Messner and Polborn (2004), Herrera
et al. (2006), Schofield (2007), Degan (2007), Kartik and McAfee (2007), Carillo and Castanheira (2008), Meirowitz (2008),
Zakharov (2009), Ashworth and Bueno de Mesquita (2009), Hummel (2010), Krasa and Polborn (2012), Xefteris (2012),
Pastine and Pastine (2012), Aragonès and Xefteris (2014), Bernheim and Kartik (2014), Di Lonardo (2015), Shapoval et al.
(2015), Carter and Patty (2015) and Mattozzi and Merlo (2015).
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These are precisely the steps that we take in this paper.

We propose a generalization of the original model in which different voters are allowed to have different

valuations of candidates’ quality. In this set up a voter’s valuation of the non-policy characteristics of

the candidates is considered as the voter’s private information and it is possibly different for each voter.

Candidates share a common prior belief on how many voters prefer the non-policy characteristics of

one candidate over the other one. Formally, we represent the candidates’beliefs about their non-policy

characteristic as a random variable with a Bernoulli distribution that is common for all voters and we

assume that each voter’s valuation is given by an independent random draw from it. That is, from the

candidates’perspective, a voter prefers the non-policy characteristics of the first candidate with probability

ρ ∈ [12 , 1]. The assumption that this probability is always at least one-half is obviously without loss of

generality and it allows us to address the first candidate by the name advantaged candidate simply because

he is the one whose non-policy characteristics are expected to be valued more by most voters. In fact,

in the model we propose the advantage has two dimensions. On the one hand, there is the magnitude

of the difference between the qualities of the two candidates from a voter’s point of view (d > 0) and on

the other hand there is the probability with which the advantaged candidate enjoys the aforementioned

advantage (ρ > 1
2).

We characterize the set of all Nash equilibria of the game - both pure and mixed ones - for every

admissible values of the two advantage parameters, given a suffi ciently large electorate. In this model

pure strategy equilibria exist for a wide range of parameter values - as long as voters are expected to be

suffi ciently heterogeneous (ρ > 1
2 but close to

1
2) in their preferences regarding candidates’non-policy

characteristics. These pure strategy equilibria involve converging and mildly diverging pure strategies.

Hence, it is not the fact that voters have preferences about candidates’non-policy characteristics that

rules out pure strategy equilibria, but the assumption that voters’preferences on this issue are common

and common knowledge. These pure strategy equilibria result in depoliticized election: candidates offer

suffi ciently similar platforms and each voter votes for the candidate whose non-policy characteristics he

values most. Within this range of parameter values, as the expected share of voters who find the first

candidate better than the second increases (that is, as ρ increases), the maximum degree of equilibrium

differentiation decreases. The most striking feature of this process is that this decrease in the maximum

value of equilibrium differentiation occurs only because the set of equilibrium strategies of the first can-

didate (the advantaged one) shrinks around the centre of the policy space. That is, the set of equilibrium

strategies of the second candidate (the disadvantaged one) remains invariant to changes in the expected

size of the two groups of voters as long as the group which thinks he is better is suffi ciently large (that is,

as long as 1− ρ is suffi ciently large). When the expected sizes of the two groups become very asymmetric
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(ρ > 1
2 and close to 1) pure strategy equilibria cease to exist and a unique mixed equilibrium exists such

that the advantaged candidate locates in the centre of the policy space and the disadvantaged candi-

date mixes between two policies which are equidistant from the centre of the policy space. This mixed

equilibrium results in a politicized election: in expected terms some voters vote for the candidate whose

non-policy characteristics they value less only because they like the policy he proposed much more than

the one of their favored candidate. For these parameter values, as the expected share of voters who find

the first candidate better than the second one increases (that is, as ρ increases), the maximum degree of

equilibrium differentiation increases. Again, what is most striking is that this is only because the two

policies that are part of the disadvantaged candidate’s mixed strategy go farther away from the centre of

the policy space while the equilibrium behavior of the advantaged candidate remains unaffected.

This shows that when a candidate starts to become advantaged, he most probably moves towards the

centre while at the same time the set of equilibrium strategies of the disadvantaged candidate remains

invariant. It is actually the move of the advantaged candidate towards the centre that eliminates incentives

of the disadvantaged one to politicize the elections: the closer the advantaged candidate is to the centre the

farther away from the centre the disadvantaged candidate would have to locate to politicize the elections.

At some point though, when the expected share of voters who value the non-policy characteristics of the

first candidate becomes much larger than the expected share of voters who think that the second candidate

is better, the disadvantaged candidate is better off by politicizing the elections independently of where the

advantaged candidate locates. From that point on the equilibrium is such that the advantaged candidate

locates precisely at the centre and the disadvantaged one drifts slowly away as the share of voters who

find his non-policy characteristics better decreases. In the limit, that is when ρ→ 1, we converge to the

equilibrium of the complete information model (see, for example, Aragonès and Xefteris 2012).

These asynchronous effects of an increase in ρ ∈ [12 , 1] on equilibrium strategies - first only the

advantaged candidate moves towards the centre and then only the disadvantaged one drifts away - are

responsible for a non-monotonic relationship between the extent of heterogeneity of voters’preferences

in the issue of candidates’non-policy characteristics and the maximum degree of equilibrium platform

differentiation. An increasing asymmetry in how non-policy characteristics of candidates are viewed by

the voters first decreases differentiation between candidates’platforms but after a critical point it pushes

these platforms farther and farther away.

Since we have introduced two novelties (heterogeneous and private valuation of candidates non-policy

characteristics) in this paper a natural question is the following: to which of these two novelties one

should mostly attribute existence of pure strategy equilibria? Are both of them equally necessary for

pure strategy equilibria to exist or, maybe, one of them could be enough? To provide an answer, one
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should notice first that when voters have heterogeneous valuations of candidates’non-policy characteristics

which are common knowledge (that is, candidates know which one is a majority’s favored candidate), it

is impossible to have pure strategy equilibria: the majority’s favored candidate can win with certainty if

he offers the same policy as the other candidate and hence the other candidate has to mix in order to

differentiate from the favored candidate and to maintain some positive probability of election. Then one

should study the case in which valuations are homogeneous but private information (that is, all voters like

the same candidate but the candidates do not know who this candidate is). Existence or inexistence of

pure strategy equilibria in this case is not obvious. For this reason we formally investigate this variation

of the model and we find that indeed pure strategy equilibria exist even in this case. This shows that

it is the assumption of private information, rather than heterogeneity of voters’preferences on the issue

of candidates’non-policy characteristics, which leads to stable outcomes in electoral competition (pure

strategy equilibria) or, viewed from a different angle, to a depoliticized election.

The rest of the paper is organized as follows. In the next section we present the model, in section 3 we

analyze the model and provide equilibrium characterization results, in section 4 we analyze the variation

of the model in which voters’valuations of candidates’non-policy characteristics are homogeneous and

private information and in section 5 we conclude with some final discussion and remarks.

2 The model

The policy space is the [0, 1] interval. There are two candidates, A and B, and each candidate’s objective

is to maximize his probability of winning the election. There are n voters, an odd and finite number.

Voters have a utility function with two components: a policy component and a candidate image

component. The policy component is characterized by an ideal point in the policy space xi ∈ [0, 1], with

the utility of alternatives in the policy space being a quadratic function of the distance between the ideal

point and the location of the policy. The image component is captured by a constant di ∈ {−d, d} such

that d > 0, that is added to the utility a voter gets if candidate A wins the election.2

Let x denote the policy position chosen by candidate A and let y denote the policy position chosen by

candidate B. Then, the utility that a voter with preference parameters (xi, di) obtains if A wins the election

is given by Ui (x) = di − (xi − x)2 and his utility if candidate B wins is given by Ui (y) = − (xi − y)2.

Both the ideal point of the voter and his valuation of the candidates’non-policy characteristics are

the voter’s private information. We assume that both candidates have the same beliefs about voters’

preferences that are common knowledge. Candidates’beliefs are given as follows: a) the ideal point of

2We restrict attention to d > 0 as when d = 0 our model corresponds to the standard Downsian model: the unique
equilibrium of the game is both candidates to choose the ideal policy of the median voter.
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each voter is represented by an i.i.d. draw from a uniform distribution3 whose support is [0, 1] and b) the

image component of each voter is represented by an i.i.d. draw from a Bernoulli distribution with support

{−d, d}. Let ρ = Pr(di = d) denote the probability that a voter values the non-policy characteristics of

candidate A more than the ones of candidate B.4 Without loss of generality we assume that ρ ∈ [12 , 1].

The game takes place in two stages. In the first stage, candidates simultaneously choose policy

positions in [0, 1]. In the second stage, voters vote for the candidate whose election would give them the

highest utility. In case of indifference, a voter is assumed to vote for each candidate with probability equal

to 1
2 .

Since the behavior of the voters is unambiguous in this model, we define an equilibrium of the game

only in terms of the location strategies of the two candidates in the first stage of the game. A pure

strategy equilibrium is a pair of candidate locations (x, y) such that both candidates are maximizing the

probability of winning given the choices of the other candidate. A mixed strategy equilibrium is a pair of

probability distributions (σA, σB) over [0, 1] such that there is no mixed strategy for A that guarantees

higher probability of winning than σA, given σB, and there is no mixed strategy for B that guarantees

higher probability of winning than σB, given σA.

Notice that in this setup all voters with di − (xi − x)2 > − (xi − y)2 prefer to vote for candidate A.

Therefore, if x < y , we have that all voters with an ideal point xi <
x+y
2 + di

2(y−x) = ẋ(x, y, di) prefer to

vote for candidate A. Since the ideal point of each voter is an i.i.d. draw from a uniform distribution and

the non-policy component di is an i.i.d. draw from a Bernoulli distribution, the probability that a voter

votes for candidate A is given by p(x, y, ρ) = ρmin {ẋ(x, y, d), 1} + (1 − ρ) max {0, ẋ(x, y,−d)} and the

probability that a voter votes for candidate B is given by q(x, y, ρ) = 1− p(x, y, ρ).

Similarly if x > y we have that the probability that a voter votes for candidate A is given by p(x, y, ρ) =

ρ(1 − max {0, ẋ(x, y, d)}) + (1 − ρ)(1 − min {ẋ(x, y,−d), 1} and the probability that a voter votes for

candidate B is given by q(x, y, ρ) = 1− p(x, y, ρ). Obviously, when x = y, we have that p(x, y, ρ) = ρ and

q(x, y, ρ) = 1− ρ because only the value of the image component will determine each voter’s behavior.

Since voters’ideal points and candidates’images are independent random draws, the probability with

which a candidate wins the election is given by the probability that he obtains the votes of at least

a majority of the voters. Because each voter will vote for candidate A with probability p(x, y, ρ) the

probability with which candidate A is elected may be computed by the sum of the Bernoulli distributions

3This assumption implies that the ideal point of the expected median voter is distributed according to a symmetric Beta
distribution parametrized by n, the number of voters, in such a way that as the number of voters increases, the variance of
the distribution of the ideal point of the expected median voter decreases and thus the probability that the expected median
voter is close to 1/2 becomes larger.

4 In the spirit of Caselli and Morelli (2004), we can interpret these assumptions in the following manner: after candidates
announce their platforms, each voter receives an independent signal regarding which candidate is of higher quality.

6



corresponding to at least a majority of successes over n trials, that is,

Pn(x, y, ρ) =

n∑
k=n+1

2

(
n

k

)
p(x, y, ρ)k(1− p(x, y, ρ))n−k.

Similarly we could also show that the probability with which B wins the election is given by

Qn(x, y, ρ) =
n∑

k=n+1
2

(
n

k

)
q(x, y, ρ)k(1− q(x, y, ρ))n−k = 1− Pn(x, y, ρ).

Observe that p(x, y, ρ) and q(x, y, ρ) are continuous functions of x ∈ [0, 1], y ∈ [0, 1] and therefore

Pn(x, y, ρ) and Qn(x, y, ρ) are continuous functions of x ∈ [0, 1], y ∈ [0, 1]. This guarantees that our game

admits at least one Nash equilibrium (possibly in mixed strategies) for any parameter values (Glicksberg

1952). Finally, notice that Pn(x, y, ρ) is a strictly increasing function of p(x, y, ρ) and similarly that

Qn(x, y, ρ) is a strictly increasing function of q(x, y, ρ).

3 Results

First we analyze the model for small values of ρ ∈ [12 , 1]. In this case we find that, when ρ is small enough

relative to d, there exist equilibria in pure strategies and in all of them candidates choose moderate

strategies.

Proposition 1 For all d > 0 and all n ≥ 1:

If ρ ∈ [12 ,
1
2 + d

2) any pure strategy profile (x, y) ∈ [12 −
d
2 ,
1
2 + d

2 ]2 is a Nash equilibrium of the game.

If ρ ∈ [12+ d
2 ,
1
2+2d) any pure strategy profile (x, y) ∈ [ρ−

√
d (2ρ− 1), 1−ρ+

√
d (2ρ− 1)]×[12−

d
2 ,
1
2+ d

2 ]

is a Nash equilibrium of the game.

In all these equilibria Pn(x, y, ρ) =
n∑

k=n+1
2

(
n
k

)
ρk(1− ρ)n−k and Qn(x, y, ρ) = 1−

n∑
k=n+1

2

(
n
k

)
ρk(1− ρ)n−k.

There are no other pure strategy equilibria.

The multiple pure strategy equilibria obtained are all concentrated in a neighborhood of 12 . As ρ

increases from 1
2 to

1
2 + d

2 the equilibrium set of strategies for the each candidate remains unchanged,

while as ρ increases from 1
2 + d

2 to
1
2 + 2d the set of equilibrium strategies of A shrinks around the centre

(see figures 1 and 3) while the set of equilibrium strategies of B remains the same (see figures 2 and 4).

The size of the neighborhood that contains the equilibrium strategies depends on the difference between

candidates’qualities (d) and on the probability with which candidate A enjoys the advantage (ρ) (see

figures 1 to 4). On the one hand, the larger the difference between the candidates’qualities (d), the larger
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the set of policies that can be chosen in these equilibria. On the other hand, the larger the probability

with which candidate A enjoys the advantage (ρ), the smaller the set of policies that can be chosen in

these equilibria. This set becomes smaller because when ρ increases, candidate B becomes less likely to

enjoy the advantage and therefore has more incentives to deviate to more extreme policies in order to

differentiate from candidate A. This is avoided when candidate A becomes more moderate as it induces

candidate B to keep choosing moderate policies. As the probability with which candidate A enjoys the

advantage (ρ) increases, the set of pure strategies that candidate A chooses in equilibrium converges to a

singleton equal to 1
2 . As ρ increases further the equilibrium can only exist in mixed strategies, because the

expected share of voters who prefer the non-policy characteristics of candidate B decreases very much and

thus it becomes more profitable for candidate B to politicize the elections; to differentiate from candidate

A to a significant extent.

[Insert figures 1, 2, 3 and 4 about here]

Notice that in all the pure strategy equilibria the vote is completely depoliticized - the equilibrium

payoffs of both candidates are independent of the policy platforms they propose and depend only on

ρ. This indicates that when no candidate is expected to enjoy a large enough advantage, the elections’

outcome will be determined by the preferences of the voters only on one dimension - on how the evaluate

the non—policy characteristics of candidates. The distribution of ideal policies will play absolutely no

role on the determination of the political outcome which is, to the authors’eyes at least, the strongest

implication of the above result.

As far as mixed equilibria of this case are concerned we observe the following. Given multiplicity of

pure equilibria and the zero-sum nature of the game it is straightforward that any pair of probability

distributions on the set of equilibrium strategies characterized by the above proposition forms a mixed

strategy equilibrium. Therefore, we also have a multiplicity of mixed strategy equilibria but all equilibria,

pure and mixed, yield the same moderate policy outcomes and a depoliticized election.

In order to complete the analysis we should analyze the equilibrium outcomes for larger values of ρ.

That is, for cases in which candidate A is expected to be the favored candidate of the vast majority of

voters. Observe that in the previous case as the value of ρ approaches 12 + 2d, the equilibrium strategies

of candidate A converge to 1
2 . Thus, in the limit candidate A is left with a unique equilibrium strategy

equal to 1
2 . However, all the equilibrium strategies for candidate B survive as best responses when the

value of ρ grows. This seems to suggest that for larger values of ρ candidate A can continue to use a pure

strategy equal to 1
2 while candidate B will have to mix among strategies that are around 1

2 . This is what

we show next. First we show that if candidate A chooses policy 1
2 with probability one, a best response
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of candidate B is a mixed strategy with support two strategies equidistantly away from 1
2 . Notice that if

d > 1
4 then we have that

1
2 + 2d > 1 and hence it is always the case that ρ < 1

2 + 2d. Therefore, for such

large values of d the premises of the previous proposition directly apply to all possible values of ρ. This

is why here we focus on values of d that are smaller or equal than 1/4.

Lemma 1 For all n ≥ 1 and for all 0 < d ≤ 1
4 we have that when ρ ∈ [12 + 2d, 1] then σ̃B =(y =

1
2 −

√
d(2ρ− 1) with probability 50% and y = 1

2 +
√
d(2ρ− 1) with probability 50%) is a best response to

σ̃A = 1
2 .

As we predicted, this lemma shows that when ρ is large enough and candidate A chooses policy 1
2

then candidate B wants to use a mixed strategy with support around 1
2 . Next we show that if candidate

B chooses the mixed strategy proposed above, then the unique best response for candidate A is to choose

1
2 with probability one.

Lemma 2 For 0 < d ≤ 1
4 and ρ ∈ [12 + 2d, 1] we have that σ̃A = 1

2 is the unique best response to

σ̃B =(y = 1
2 −

√
d(2ρ− 1) with probability 50% and y = 1

2 +
√
d(2ρ− 1) with probability 50%) if n is

suffi ciently large (in particular, if n ≥ 1
4d(2ρ−1)).

From the combination of the two previous lemmata we essentially obtain that for large values of ρ, the

mixed strategy profile σ̃A = 1
2 and σ̃

B =(y = 1
2−
√
d(2ρ− 1) with probability 50% and y = 1

2+
√
d(2ρ− 1)

with probability 50%) is a Nash equilibrium of the game if n is large enough (n ≥ 1
4d(2ρ−1)).

Since the threshold of n that determines the existence of the describes mixed strategy equilibrium,

1
4d(2ρ−1) , is decreasing in ρ and this equilibrium only exists for ρ ∈ [12 + 2d, 1] it trivially follows that

a suffi cient condition for this equilibrium to exist for any ρ ∈ [12 + 2d, 1] is that n ≥ 1
4d(2( 1

2
+2d)−1) =

1
16d2

= ( 14d)2. Notice that this threshold coincides with the square of the threshold for the population

size of ρ = 1 case ( 1
4d(2×1−1) = 1

4d), that is, of the complete information model. As the value of ρ tends

to one, the strategies of candidate B approach 1
2 −
√
d and 1

2 +
√
d and in the limit we obtain the ones

described for the complete information model: σ̃B =(y = 1
2 −
√
d with probability 50% and y = 1

2 +
√
d

with probability 50%) (see figure 5).

[Insert figure 5 about here]

Finally, we prove that if this equilibrium exists then it is unique.

Proposition 2 For 0 < d ≤ 1
4 , ρ ∈ [12 + 2d, 1] and n ≥ 1

4d(2ρ−1) we have that σ̃
A = 1

2 and σ̃
B =(y =

1
2 −

√
d(2ρ− 1) with probability 50% and y = 1

2 +
√
d(2ρ− 1) with probability 50%) is the unique Nash

equilibrium of the game.
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Hence, we have shown that in this model there exist multiple equilibria in pure strategies for all n

when ρ is small, and a unique equilibrium in mixed strategies for large values of ρ and a suffi ciently large

number of voters5. We have that existence of pure strategy equilibria is more likely for larger values

of d and for smaller values of ρ, that is, when non-policy issues play a larger role and both candidates

have many supporters. The differentiation exhibited in the policy outcomes depends also on the two

parameters that determine the advantage in this model. In the mixed equilibrium case, that is when ρ is

large enough with respect to d, we have that larger parameter values of the advantage imply larger policy

differentiation in equilibrium. However, in the pure strategy equilibrium case, that is when ρ is small

enough with respect to d, we have that larger values of d imply larger policy differentiation in equilibrium

and instead larger values of ρ imply smaller differentiation in equilibrium. Thus, in this case, we have

that maximum equilibrium policy differentiation is not monotonic with respect to all the parameters that

define the advantage. See figures 6 and 7.

[Insert figures 6 and 7 about here]

In the mixed strategy equilibria we have that the candidate A’s payoffs increase with d, ρ, and n. That

is, increases in any parameter value that represents the advantage benefits candidate A and increasing the

number of voters also increases candidate A’s equilibrium payoffs. What is more important is that these

equilibria lead to politicized elections - both dimensions are relevant for a voter’s choice. This is because

in these equilibria the disadvantaged candidate will locate quite far from the advantaged candidate and

hence even if a voter prefers the non-policy characteristics of the advantaged candidate it may still be the

case that he will vote for the disadvantaged one because he might think that the policy platform that the

disadvantaged candidate proposes is so much better than the one proposed by the advantaged one. This

implies that when elections have a clear favorite, voting will not be only about non-policy characteristics

but about policies as well.

Notice that when both dimensions of the advantage, d and ρ, vanish (d→ 0 and ρ→ 1
2) the equilibrium

tends to the classical median voter result of converging pure strategies at 1/2, while when the value of the

two advantage dimensions increases we can have either pure or mixed strategy equilibrium with increasing

divergence in both cases. However, the role of each one of the advantage parameters is different. To see

this observe that when ρ increases, the mixed strategy equilibrium becomes more likely and also more

divergent. Instead, when d increases, pure strategy equilibria become more likely and more divergent.

5Notice that the number of voters that is needed to guarantee existence and uniqueness of this mixed strategy equilibrium
depends on the values of the parameters d and ρ, and when these parameter values are large enough then the number of
voters required for the equilibrium can be as small as one.
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4 Homogeneous and private valuations

In this part of the paper we investigate a variation of the model in which all voters favor the same candidate

but candidates do not know who is the favored one. Apart from a robustness check to the model presented

above, this variation of the model is of independent interest because it captures the effect of potential

candidate endorsement by well-thought-off institutions or individuals on electoral competition dynamics.

Consider the example in which the main policy issue is redistribution policy (determination of a flat tax

rate for example) and that voters care not only about redistribution but about the moral values of the

candidates as well. In this framework when an individual or organization, which is well-thought-off by

the voters (for example, a local religious leader or a church), announces which one of the two candidates

he believes to be more moral than the other, then this candidate naturally gains a non-policy advantage.

If it is the case that candidates, at the time in which they select platforms, are uncertain about which

one of them will be endorsed by the well-thought-off third party, then their problem is well described

by a model in which all voters value one candidate more (homogeneous valuations) than the other but

candidates are uncertain about which of them is the favored one (candidate valuations can be seen as the

voters’private information). These are precisely the assumptions of the variation of the original model

that we intend to analyze in this section.

For economy of space we do not replicate all the assumptions: anything that is not explicitly defined

here is exactly as in the main model. Candidates’beliefs are given as follows: a) the ideal point of each

voter is represented by an i.i.d. draw from a uniform distribution whose support is [0, 1] and b) the

image component of each voter is represented by a unique (common to all voters) draw from a Bernoulli

distribution with support {−d, d}. Let ρ̂ = Pr(d̂ = d) denote the probability with which candidate A

enjoys the advantage. That is, candidate A appears superior to candidate B (d̂ = d) to all voters with

probability ρ̂ and candidate B will be superior to candidate A (d̂ = −d) for all voters with probability

1− ρ̂. Without loss of generality we assume here too that ρ̂ ∈ [12 , 1]. Notice that in this case voters’ideal

points are generated by independent random draws but candidates’images are generated by a common

draw.

The game takes place in two stages. In the first stage, candidates simultaneously choose policy

positions in [0, 1]. In the second stage, voters vote for the candidate whose election would give them the

highest utility. In case of indifference, a voter is assumed to vote for each candidate with probability equal

to 1/2.

Since the behavior of the voters is unambiguous in this model too, we define an equilibrium of the

game again only in terms of the location strategies of the two candidates in the first stage of the game. A

11



pure strategy equilibrium is a pair of candidate locations (x̂, ŷ) such that both candidates are maximizing

the probability of winning, given the choices of the other candidate. A mixed strategy equilibrium is

a pair of probability distributions (σ̂A, σ̂B) over [0, 1] such that there is no mixed strategy for A that

guarantees higher probability of winning than σ̂A, given σ̂B, and there is no mixed strategy for B that

guarantees higher probability of winning than σ̂B, given σ̂A.

In this set up all voters with d̂ − (x̂i − x̂)2 > − (x̂i − ŷ)2 prefer to vote for candidate A. Therefore,

if x̂ < ŷ all voters with an ideal point x̂i <
x̂+ŷ
2 + d̂

2(ŷ−x̂) = ẍ(x̂, ŷ, d̂) prefer to vote for candidate A. For

simplicity of exposition of the coming arguments we define x̄(x̂, ŷ, d̂) = max{0,min
{
ẍ(x̂, ŷ, d̂), 1

}
}.

Let p̂(x̂, ŷ, d̂) denote the probability that a voter votes for candidate A conditional on the realization

of the common image component, d̂, and let q̂(x̂, ŷ, d̂) the probability that a voter votes for candidate B

conditional on the realization of the common image component, d̂.

Since the ideal point of each voter is an i.i.d. draw from a continuous distribution and the non-

policy component d̂ is a common draw from a Bernoulli distribution, the probability that a voter votes

for candidate A conditional on the realization of the common image component, d̂, should be given by

p̂(x̂, ŷ, d̂) = x̄(x̂, ŷ, d̂) and the probability that a voter votes for candidate B conditional on the realization

of the common image component, d̂, should be given by q̂(x̂, ŷ, d̂) = 1− p̂(x̂, ŷ, d̂).

Similarly, if x̂ > ŷ we have that the probability that a voter votes for candidate A conditional on

the realization of the common image component, d̂, should be given by p̂(x̂, ŷ, d̂) = 1 − x̄(x̂, ŷ, d̂) and

the probability that a voter votes for candidate B conditional on the realization of the common image

component, d̂, should be given by q̂(x̂, ŷ, d̂) = 1 − p̂(x̂, ŷ, d̂). Obviously, when x̂ = ŷ, we have that

p̂(x̂, ŷ, d̂) = 1 if d̂ = d, p̂(x̂, ŷ, d̂) = 0 if d̂ = −d and q̂(x̂, ŷ, d̂) = 1− p̂(x̂, ŷ, d̂) because only the value of the

image component will determine the behavior of all voters.

The probability with which a candidate wins the election is given by the probability that he obtains

the votes of at least a majority of the voters. Because each voter will vote for candidate A with probability

p̂(x̂, ŷ, d) if d̂ = d and with probability p̂(x̂, ŷ,−d) if d̂ = −d, the probability with which candidate A is

elected may be computed by the sum of the Bernoulli distributions corresponding to at least a majority

of successes over n trials in each one of the possible states of the world defined according to the sign of

the advantage. That is,

P̂n(x̂, ŷ, ρ̂) = ρ̂
n∑

k=n+1
2

(
n

k

)
p̂(x̂, ŷ, d)k(1− p̂(x̂, ŷ, d))n−k + (1− ρ̂)

n∑
k=n+1

2

(
n

k

)
p̂(x̂, ŷ,−d)k(1− p̂(x̂, ŷ,−d))n−k.

12



Similarly, we also have that the probability with which candidate B wins the election is given by

Q̂n(x̂, ŷ, ρ̂) = ρ̂
n∑

k=n+1
2

(
n

k

)
q̂(x̂, ŷ, d)k(1− q̂(x̂, ŷ, d))n−k + (1− ρ̂)

n∑
k=n+1

2

(
n

k

)
q̂(x̂, ŷ,−d)k(1− q̂(x̂, ŷ,−d))n−k =

= 1− P̂n(x̂, ŷ, ρ̂).

Observe that p̂(x̂, ŷ, d̂) and q̂(x̂, ŷ, d̂) are continuous functions of x̂ ∈ [0, 1] and ŷ ∈ [0, 1] and therefore

P̂n(x̂, ŷ, ρ̂) and Q̂n(x̂, ŷ, ρ̂) are continuous functions of x̂ ∈ [0, 1], ŷ ∈ [0, 1] as well. Again, Glicksberg’s

(1952) theorem applies and a Nash equilibrium is guaranteed to exist.

Since n is assumed to be odd, there exists a unique median voter. Because candidates are assumed

to maximize their probability of winning and because all voters value equally candidates’ non-policy

characteristics, candidates are in fact maximizing the probability that the median voter votes for them.6

In our case the distribution of the median for a fixed value of d̂ corresponds to the distribution

of the median of a sample of size n drawn from a uniform distribution, and in turn it coincides with

the distribution of the n+1
2 th order statistic of such a sample which is distributed according to a Beta

distribution with parameters a = b = n+1
2 , that is, βn(x̂, ŷ, d̂) =

n∑
k=n+1

2

(
n
k

)
p̂(x̂, ŷ, d̂)k(1 − p̂(x̂, ŷ, d̂))n−k.

The density function of such a Beta distribution is unimodal and symmetric about 1
2 and its variance

V ar
(
Beta

(
n+1
2 , n+12

))
= 1

4n+8 decreases with n, that is, with a larger number of voters, the variance

becomes smaller, and the probability that the ideal point of the median voter is close to 1
2 increases.

This implies that the probability that the median votes for candidate A is given by P̂n(x̂, ŷ, ρ̂) =

ρβn(x̂, ŷ, d) + (1 − ρ̂)βn(x̂, ŷ,−d), that is a convex combination of two Beta distributions, and this is

exactly the payoff function that we consider for candidate A.

Observe that, as it happens in the model with a complete information advantage, when the difference

between the candidates’quality is very large (d ≥ 1
4), the policy choices have no effect in determining

the candidates’best responses. In such a case many pure strategy equilibria exist. If A locates at 1
2 ,

then B gets a payoff of 1− ρ̂ independently of where he locates and when B locates at 12 , then A gets a

payoff of ρ̂ independently of where he locates. Thus for large values of d the model is not very interesting

strategy-wise. Therefore, we restrict our attention to values of d that are smaller than 1
4 .

Proposition 3 If 0 < d < 1
4 and

1
2 ≤ ρ̂ < 1 there exists ñ(ρ̂, d) > 0 and ε(ρ̂, d) > 0 such that for

n > ñ(ρ̂, d) all the pure strategy profiles (x̂, ŷ) with
∣∣x̂− 1

2

∣∣ < εx̂ and
∣∣ŷ − 1

2

∣∣ < εŷ, for εx̂, εŷ < ε(ρ̂, d), are

Nash equilibria of the game. In all these equilibria P̂n(x̂, ŷ, ρ̂) = ρ̂ and Q̂n(x̂, ŷ, ρ̂) = 1 − ρ̂. For ρ̂ = 1 no

6Groseclose (2007) shows that in such one-and-a-half dimensional domains the alternative preferred by the median voter
is the majority winner.
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pure strategy equilibrium exists for any 0 < d < 1
4 and any n > 0.

This proposition shows that moderate convergence to the expected median’s ideal point in pure strate-

gies by both parties is an equilibrium of this variation of the model for all values of ρ̂ as long as n is large

enough. Notice that here again we obtain a multiplicity of equilibria in pure strategies that leads to the

same candidates’payoffs. This implies that any combination of the candidates’strategies characterized

by this proposition forms a mixed strategy equilibrium, therefore, we also have a multiplicity of mixed

strategy equilibria.

The variance of the distribution of the ideal point of the median voter, which in this model is para-

metrized by n seems to be an important parameter here. Since large n implies large probability that

the median voter’s ideal point is close to 1
2 , then, it should be expected that as n increases both parties

tend to prefer policies that are close to 1
2 and subsequently that these equilibria lead to a depoliticized

vote (a candidate is elected if and only if he is his non-policy characteristics are considered to be better

than those of the other candidate). Observe that this large enough n which guarantees existence of pure

strategy equilibria can be as small as one. To see this notice that this variation of our model is identical

to the original game for the case in which there exists a unique voter. Hence, when n = 1, all equilibria

of the original game characterized by Proposition 1 are equilibria of the present variation of the game

too. For this case though, when pure equilibria do not exist, a full characterization of mixed equilibria is

intractable. This is so because the best response of B to a A playing a fixed pure strategy depends on n

too - in the original model the best response of B to a A playing a fixed pure strategy depends only on d

and on ρ - and this increases complexity of formal analysis in several degrees of magnitude. Despite this

one can still describe qualitative features of such mixed equilibria. When only mixed equilibria exist: a)

A behaves, in expected terms, more moderately than B and b) A is elected with larger probability than

B.

5 Concluding remarks

Our analysis shows that when we combine an advantage for one of the candidates with incomplete in-

formation of the candidates about the voters’preferences over candidates’non-policy characteristics, we

obtain existence of pure strategy equilibria for a large range of parameter values and the possibility of

diverging pure strategies in equilibrium. These features are driven by the incomplete information of can-

didates with respect to the advantage, because they do not appear at all in the models with complete

information advantage. Indeed, when the private information of voters with respect to their valuation of

the candidates’quality disappears, then the equilibrium in both models coincides with the equilibrium of
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the original model with a deterministic advantage.

The reason is that when we introduce incomplete information, the advantage acquires a new role.

In fact, in our model the advantage is described with two different parameters. One that refers to the

difference between the candidates’qualities, that is already present in the models of complete information.

And a different parameter that refers to the probability with which each candidate is expected to enjoy

the advantage, which is specific of our incomplete information advantage model.

We have that these two parameters play different roles: for larger values of the difference between

the candidates’qualities existence of pure strategy equilibrium is more likely, however for larger values

of the probability that candidate A enjoys the advantage existence of only mixed strategy equilibria is

more likely. In addition, our equilibrium outcomes show that the degree of policy divergence increases

in all cases with the size of the difference between the candidates’quality, following the intuition that

was already known from the existing models of complete information about the advantage. However this

is not the case when the other advantage parameter increases. When it becomes more and more likely

that candidate A is the advantaged one, we can obtain more or less divergence in equilibrium depending

on whether the size of this probability is large or small. Thus, we obtain that the equilibrium policy

divergence is non monotonic with respect to the size of the advantage.

The introduction of private information for the voters regarding their perception of the non-policy

characteristics of the candidates has some general implications such as:

(i) Pure strategy equilibria are only ruled out when voters are suffi ciently homogeneous as far as how

they value the non-policy characteristics of a candidate.

(ii) Pure strategy equilibria may be diverging.

(iii) Increasing the asymmetry of the model (ρ) makes mixed strategy equilibria more likely, while

increasing the difference between the candidates’qualities (d) makes pure strategy equilibria more likely.

(iv) When voters are suffi ciently heterogeneous as far as how they value the non-policy characteristics

of a candidate then the vote is depoliticized and when they are suffi ciently homogeneous in that respect

then the vote is politicized.

Notice that, since we have modeled preferences on non-policy components as an additive constant,

our analysis fits in the class of differentiated candidates models analyzed by Dziubinski and Roy (2011),

Krasa and Polborn (2012) and Matakos and Xefteris (2014), among others. In these papers pure strategy

equilibria exist only for certain parametrizations of the corresponding models, exactly like in our case.

Our paper, though, is the first one to provide a complete characterization of the set of all Nash equilibria -

both pure and mixed ones - in a differentiated candidates’setup (that is, in the case of heterogeneous and

private valuations). In the rest of the studies that belong in this literature, only pure strategy equilibria
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have been characterized so far - for parametrizations of these models where pure strategy equilibria do

not exist, very little is known about candidates’equilibrium behavior. The heterogeneous and private

valuations version of our model also relates to the probabilistic voting literature.7 In probabilistic models,

given any fixed pair of candidates’policy proposals, a voter’s utility difference from voting for the first

rather than the second candidate depends on the realization of a random variable whose support is usually

continuous. These models, exactly like the differentiated candidates’ones, admit pure strategy equilibria

only for certain parametrizations, but the literature is silent about what happens when pure strategy

equilibria do not exist. By considering a basic specification regarding the random component of a voter’s

utility8 (the support of the distribution of the random variable is binary in our case) we manage to

completely characterize the set of Nash equilibria even when there is none in pure strategies.
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6 Appendix

6.1 Proofs

Proof of Proposition 1. We assume that n = 1. First, we will argue that (x, y) = (12 ,
1
2) is an

equilibrium of the game when ρ ∈ [12 ,
1
2 + 2d]. If y = 1

2 it is trivial to check that P1(x,
1
2 , ρ) ≤ ρ for every

(x, ρ) ∈ [0, 1] × [12 , 1] and that P1(12 ,
1
2 , ρ) = ρ; x = 1

2 is a best response to B playing y = 1 (detailed

arguments which back up this claim are presented in Step 1 of the present proof). If x = 1
2 then, by the

detailed arguments which are available in the proof of Lemma 1, it is clear that y = 1
2 is a best response of

B if and only if ρ ∈ [12 ,
1
2 + 2d]. Hence, (x, y) = (12 ,

1
2) is an equilibrium of the game when ρ ∈ [12 ,

1
2 + 2d].

The payoff of A in this equilibrium is ρ and the payoff B is 1 − ρ. The zero-sum nature of the game

dictates that if other equilibria exist for these parameter values then the payoffs of the candidates in these

equilibria will be the same with the one we have identified here.

Having in mind that our game is zero-sum we characterize the set of pure equilibria (or the sets

of minimaximizer strategies for both players) in two steps: first we identify the set of pure strategy

minimaximizers of player B and then we do the same for player A.

Step 1.

We know that the equilibrium payoff of A is ρ. So if y is a minimaximizer strategy of B then it should

be the case that for any x ∈ [0, 1] we have that P1(x, y, ρ) ≤ ρ.

Assume that B is playing some y ≥ 1
2 and let us check whether it is a minimaximizer strategy or not.

First we note that for any x = y we have that P1(x, y, ρ) = ρ. We define oA(y) = 1−
√

1 + d− 2y + y2

that represents the most leftist policy that candidate A can choose with x ≤ y that allows him to win

with probability 1 when he is the most preferred candidate, that is, when even a voter with ideal point

xi = 1 would prefer to vote for candidate A. Similarly, we define oB(y) =
√
−d+ y2 that represents

the most leftist policy that candidate A can choose with x ≤ y that makes him lose with probability

1 when he is the least preferred candidate, that is, when even a voter with ideal point xi = 0 would

prefer to vote for candidate B. First, by the means of standard algebraic manipulations, we get that

oA(y) > oB(y) if and only if 1+d2 > y. Then we notice the following: if oA(y) < oB(y) (or else if 1+d2 < y)

it is true that ∂P1(x,y,ρ)
∂x =

(−1+ρ)(d−(x−y)2)
2(x−y)2 < 0 for all x ∈ (oA(y), oB(y)) and P1(oB(y), y, ρ) = ρ. That

is if A locates arbitrarily to the left of oB(y) he gets a payoff strictly larger than ρ; thus y cannot be

a minimaximizer strategy of player B. On the other hand if oA(y) ≥ oB(y), that is, if 12 ≤ y ≤ 1+d
2

then it is the case that ∂P1(x,y,ρ)
∂x = 1

2ρ
(

1 + d
(x−y)2

)
> 0 for all x ∈ (oB(y), oA(y)). Therefore for all

1
2 < y < 1+d

2 candidate A prefers oA(y) to any location in (oB(y), oA(y)) (notice also that in this case

P1(x, y, ρ) = ρ for every x ∈ [oA(y), y]). Finally, we simply observe that for every 1
2 ≤ y ≤ 1+d

2 it is
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true that ∂P1(x,ŷ,ρ)
∂x = 1

2

(
1 + d(−1+2ρ)

(x−y)2
)
> 0 for x ∈ [0, oB(y)) and hence when 1

2 ≤ y ≤ 1+d
2 we have that

P1(x, y, ρ) ≤ ρ for any x ∈ [0, y]. One can show with similar (actually easier) arguments that the same

holds for any x ∈ (y, 1].

We have just demonstrated that:

a) if 12 ≤ y ≤
1+d
2 player A cannot get a payoff larger than ρ independently of what strategy he chooses

to play. That is, every y ∈ [12 ,
1+d
2 ] is a minimaximizer for player B.

b) if 1+d
2 < y then player A can get a payoff larger than ρ. That is, every y > 1+d

2 is not a

minimaximizer for B.

By symmetry one can show that every y ∈ [12−
d
2 ,
1
2 ] is a minimaximizer of player B when ρ ∈ [12 ,

1
2+2d)

and n = 1.

Step 2.

We have shown at the beginning of this proof that the equilibrium payoff of B is 1 − ρ. So if

x is a minimaximizer strategy of A then it should be the case that for any y ∈ [0, 1] we have that

Q1(x, y, ρ) ≤ 1− ρ.

Assume that A is playing some x ≥ 1
2 and let us check whether it is a minimaximizer strategy.

First we note that for any x = y we have that Q1(x, y, ρ) = 1 − ρ. We define eB(x) = 1 −
√

1 + d− 2x+ x2 that represents the most leftist policy that candidate B can choose with y ≤ x that

allows him to win with probability 1 when he is the most preferred candidate, that is, when even a voter

with ideal point xi = 1 would prefer to vote for candidate B. Similarly, we define eA(x) =
√
−d+ x2

that represents the most leftist policy that candidate B can choose with y ≤ x that makes him lose with

probability 1 when he is the least preferred candidate, that is, when even a voter with ideal point xi = 0

would prefer to vote for candidate A. Using the argument from the previous step, we can show that

eA(x) ≤ eB(x) if and only if 1+d2 > x. Notice that here we have that ∂Q1(x,y,ρ)∂y > 0 for every y ∈ (0, eA(x))

only when x −
√
d (2ρ− 1) > eA(x). Otherwise, when x −

√
d (2ρ− 1) ≤ eA(x), then for y ∈ [0, eA(x)]

we have that y = x−
√
d (2ρ− 1) maximizes Q1(x, y, ρ). So, when x−

√
d (2ρ− 1) < eA(x), x ≥ 1

2 will

not be a pure strategy minimaximizer of player A if Q1(x, x−
√
d (2ρ− 1), ρ) > 1− ρ.

By simple algebraic manipulations we get that x−
√
d (2ρ− 1) < eA(x) andQ1(x, x−

√
d (2ρ− 1), ρ) >

1 − ρ are simultaneously true if and only if x > 1 − ρ +
√
d (2ρ− 1) and 1+d

2 < ρ < 1
2 + 2d. In other

words there exists ẏ ∈ [0, x] such that Q1(x, ẏ, ρ) > 1 − ρ if and only if x > 1 − ρ +
√
d (2ρ− 1) and

1+d
2 < ρ < 1

2 + 2d. Hence, when ρ ≤ 1+d
2 it is the case that for every y ∈ [0, x] we have Q1(x, y, ρ) ≤ 1− ρ

as long as x ∈ [12 ,
1
2 + d

2 ]; and when 1+d
2 < ρ < 1

2 + 2d it is the case that for every y ∈ [0, x] we have

Q1(x, y, ρ) ≤ 1−ρ as long as x ∈ [12 ,min{12+ d
2 , 1−ρ+

√
d (2ρ− 1)}]. Notice that 1−ρ+

√
d (2ρ− 1) = 1

2+ d
2
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when ρ = 1+d
2 and 1 − ρ +

√
d (2ρ− 1) < 1

2 + d
2 when ρ >

1+d
2 . One can show with similar (actually

easier) arguments that these conditions on x guarantee that Q1(x, y, ρ) ≤ 1 − ρ for all y ∈ (x, 1] too as

long as x satisfies the above conditions. Therefore, any x ∈ [12 −
d
2 ,
1
2 + d

2 ] is a minimaximizer of player A

when ρ ∈ [12 ,
1
2 + d

2) and any x ∈ [ρ −
√
d (2ρ− 1), 1 − ρ +

√
d (2ρ− 1)] is a minimaximizer of player A

when ρ ∈ [12 + d
2 ,
1
2 + 2d).

Now if n > 1 we notice that it is true that Pn(x, y, ρ) = G(P1(x, y, ρ)), where G(x) =
n∑

k=n+1
2

(
n
k

)
xk(1−

x)n−k which is strictly increasing x ∈ (0, 1). Therefore, if for some y ∈ [0, 1] we have that x∗ maximizes

P1(x, y, ρ) it must also be the case that it maximizes Pn(x, y, ρ). In other words this model is such that

if it has a pure strategy equilibrium for n = 1 then this equilibrium exists for any n.

Proof of Lemma 1. Consider that A locates at x = 1
2 . Then since Qn(x, y, ρ) is strictly increasing in

q(x, y, ρ) it follows that Qn(12 , y, ρ) is maximized when q(12 , y, ρ) is maximized. As we know for y < x we

have that q(x, y, ρ) = 1− [ρ(1−max {0, ẋ(x, y, d)})+(1−ρ)(1−min {ẋ(x, y,−d), 1}] and hence finding the

values of y for which q(12 , y, ρ) takes its maximal value depends on understanding the functions ẋ(12 , y, d)

and ẋ(12 , y,−d).

We have studied these functions to some extent already in the proof of Proposition 1. In particular

we know that:

a) if y ∈ [1− 1
2

√
1 + 4d, 12) then ẋ(12 , y, d) ≤ 0 and ẋ(12 , y,−d) ≥ 1,

b) if y ∈ [
√

1
4 − d, 1−

1
2

√
1 + 4d) then ẋ(12 , y, d) ≤ 0 and ẋ(12 , y,−d) ∈ (0, 1),

c) if y <
√

1
4 − d then ẋ(12 , y, d) ∈ (0, 1) and ẋ(12 , y,−d) ∈ (0, 1).

Therefore, q(12 , y, ρ) = 1− ρ when y ∈ [1− 1
2

√
1 + 4d, 12 ] and q(12 , y, ρ) < 1− ρ when y ∈ [

√
1
4 − d, 1−

1
2

√
1 + 4d) while it may be larger or smaller than 1− ρ for y ∈ [0,

√
1
4 − d).

Since for y ∈ [0,
√

1
4 − d) we have that ẋ(12 , y, d) ≤ 0 and ẋ(12 , y,−d) ∈ (0, 1) it follows that q(12 , y, ρ) =

1− [ρ(1− ẋ(12 , y, d)) + (1− ρ)(1− ẋ(12 , y,−d)] which is at least twice differentiable in y.

By solving the standard maximization problem, maxy {q(12 , y, ρ) s.t. y ∈ [0,
√

1
4 − d]}, we get the

solution:

y∗ = 1
2 −

√
d(2ρ− 1) <

√
1
4 − d if ρ >

1
4

(
−
√

1−4d
d2

+ 1
d

)
and

y∗ =
√

1
4 − d if ρ <

1
4

(
−
√

1−4d
d2

+ 1
d

)
.

We observe that: a) q(12 ,
√

1
4 − d, ρ) < 1 − ρ and that b) q(12 ,

1
2 −

√
d(2ρ− 1), ρ) = 1

2 −
√
d(2ρ− 1).

Moreover it is easy to check that: a) 12 −
√
d(2ρ− 1) > 1−ρ if and only if ρ > 1

2 + 2d and b) ρ > 1
2 + 2d if

and only if ρ > 1
4

(
−
√

1−4d
d2

+ 1
d

)
. To sum up, we have demonstrated that when ρ > 1

2 + 2d the function

q(12 , y, ρ) - and subsequently the function Qn(12 , y, ρ) - admits a maximum only at y = 1
2 −

√
d(2ρ− 1)
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and (by symmetry) at y = 1
2 +

√
d(2ρ− 1). This completes the proof of this lemma.

Proof of Lemma 2. Consider that B is using the strategy σ̃B =(y = 1
2 −

√
d(2ρ− 1) with probability

50% and y = 1
2 +

√
d(2ρ− 1) with probability 50%). Then we need to show that Pn(x, σ̃B, ρ) admits a

maximum at x = 1
2 .

Since Pn(x, σ̃B, ρ) = 1
2

n∑
k=n+1

2

(
n
k

)
p(x, 12−

√
d(2ρ− 1), ρ)k(1−p(x, 12−

√
d(2ρ− 1), ρ))n−k+ 1

2

n∑
k=n+1

2

(
n
k

)
p(x, 12+√

d(2ρ− 1), ρ)k(1 − p(x, 12 +
√
d(2ρ− 1), ρ))n−k is continuous and both p(x, 12 −

√
d(2ρ− 1), ρ) and

p(x, 12 −
√
d(2ρ− 1), ρ) can be easily shown to be increasing in x ∈ [0,

√
1
4 + 2dρ−

√
d(2ρ− 1)] and

decreasing in x ∈ [1 −
√

1
4 + 2dρ−

√
d(2ρ− 1), 1], it follows that to prove this lemma we only need to

study Pn(x, σ̃B, ρ) for x ∈ [
√

1
4 + 2dρ−

√
d(2ρ− 1), 1−

√
1
4 + 2dρ−

√
d(2ρ− 1)].

We notice that for such values of x it is the case that ẋ(x, 12 −
√
d(2ρ− 1), d) ∈ (0, 1), ẋ(x, 12 −√

d(2ρ− 1),−d) ∈ (0, 1); and ẋ(x, 12 +
√
d(2ρ− 1), d) ∈ (0, 1) and ẋ(x, 12 +

√
d(2ρ− 1),−d) ∈ (0, 1).

Hence, Pn(x, σ̃B, ρ) is at least twice differentiable in x ∈ [
√

1
4 + 2dρ−

√
d(2ρ− 1), 1−

√
1
4 + 2dρ−

√
d(2ρ− 1)].

We compute the derivative of Pn(x, σ̃B, ρ) with respect to x and we get:
∂Pn(x,σ̃

B ,ρ)
∂x = n

2

(n−1
n−1
2

)
[[p(x, 12 −

√
d(2ρ− 1), ρ)(1 − p(x, 12 −

√
d(2ρ− 1), ρ))]

n−1
2

∂p(x, 1
2
−
√
d(2ρ̃−1),ρ)
∂x +

[p(x, 12 +
√
d(2ρ̃− 1), ρ)(1− p(x, 12 +

√
d(2ρ̃− 1), ρ))]

n−1
2

∂p(x, 1
2
+
√
d(2ρ̃−1),ρ)
∂x ].

First, we will prove that for large enough values of n we have that:

[p(x, 12−
√
d(2ρ− 1), ρ)(1−p(x, 12−

√
d(2ρ− 1), ρ))]

n−1
2

∂p(x, 1
2
−
√
d(2ρ−1),ρ)
∂x +[p(x, 12+

√
d(2ρ̃− 1), ρ)(1−

p(x, 12 +
√
d(2ρ̃− 1), ρ))]

n−1
2

∂p(x, 1
2
+
√
d(2ρ̃−1),ρ)
∂x ] > 0

whenever x ∈ [
√

1
4 + 2dρ−

√
d(2ρ− 1), 12).

This holds if and only if:[
p(x, 1

2
−
√
d(2ρ−1),ρ)

(
1−p(x, 1

2
−
√
d(2ρ−1),ρ)

)
p(x, 1

2
+
√
d(2ρ−1),ρ)

(
1−p(x, 1

2
+
√
d(2ρ−1),ρ)

)
]n−1

2
∂p(x, 1

2
−
√
d(2ρ−1),ρ)
∂x +

∂p(x, 1
2
+
√
d(2ρ−1),ρ)
∂x > 0.

Notice that

[
p(x, 1

2
−
√
d(2ρ−1),ρ)

(
1−p(x, 1

2
−
√
d(2ρ−1),ρ)

)
p(x, 1

2
+
√
d(2ρ−1),ρ)

(
1−p(x, 1

2
+
√
d(2ρ−1),ρ)

)
]n−1

2

decreases with n and it tends to zero as n tends

to infinity. This is because for x ∈ [
√

1
4 + 2dρ−

√
d(2ρ− 1), 12) we have that p(x, 12 −

√
d(2ρ− 1), ρ) >

p(x, 12 +
√
d(2ρ− 1), ρ) > 1

2 which implies that:

p(x, 12 −
√
d(2ρ− 1), ρ)

(
1− p(x, 12 −

√
d(2ρ− 1), ρ)

)
<

p(x, 12 +
√
d(2ρ− 1), ρ)

(
1− p(x, 12 +

√
d(2ρ− 1), ρ)

)
always holds, since it does not depend on n. Thus

[
p(x, 1

2
−
√
d(2ρ−1),ρ)

(
1−p(x, 1

2
−
√
d(2ρ−1),ρ)

)
p(x, 1

2
+
√
d(2ρ−1),ρ)

(
1−p(x, 1

2
+
√
d(2ρ−1),ρ)

)
]n−1

2

< 1

and limn→∞

[
p(x, 1

2
−
√
d(2ρ−1),ρ)

(
1−p(x, 1

2
−
√
d(2ρ−1),ρ)

)
p(x, 1

2
+
√
d(2ρ−1),ρ)

(
1−p(x, 1

2
+
√
d(2ρ−1),ρ)

)
]n−1

2

= 0.
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We have that
∂p(x, 1

2
+
√
d(2ρ−1),ρ)
∂x > 0 for any x ∈ [

√
1
4 + 2dρ−

√
d(2ρ− 1), 12) and hence we also

have that

[
p(x, 1

2
−
√
d(2ρ−1),ρ)

(
1−p(x, 1

2
−
√
d(2ρ−1),ρ)

)
p(x, 1

2
+
√
d(2ρ−1),ρ)

(
1−p(x, 1

2
+
√
d(2ρ−1),ρ)

)
]n−1

2
∂p(x, 1

2
−
√
d(2ρ−1),ρ)
∂x +

∂p(x, 1
2
+
√
d(2ρ−1),ρ)
∂x > 0 for large

(but finite) values of n. Similarly, we can show that for x ∈ (12 , 1 −
√

1
4 + 2dρ−

√
d(2ρ− 1)] we have

∂Pn(x,σ̃
B ,ρ)

∂x < 0 for suffi ciently large n. Finally, we compute ∂2Pn(x,σ̃
B ,ρ)

∂x2
|x= 1

2
and we get that it is smaller

or equal to zero if and only if n ≥ 2[ 1
4
−(
√
d(2ρ−1))2]

2(
√
d(2ρ−1))

√
d(2ρ−1)

+ 1 = 1
4d(2ρ−1) .

So when ρ ∈ [12 + 2d, 1], for suffi ciently large (but finite) values of n we actually have that x = 1
2 is the

unique maximum of Pn(x, σ̃B, ρ). Moreover, one can show with computational support that for all values

of n for which ∂2Pn(x,σ̃
B ,ρ)

∂x2
|x= 1

2
≤ 0 it is the case that ∂Pn(x,σ̃

B ,ρ)
∂x > 0 if x ∈ [

√
1
4 + 2dρ−

√
d(2ρ− 1), 12)

and that ∂Pn(x,σ̃
B ,ρ)

∂x < 0 if x ∈ (12 , 1 −
√

1
4 + 2dρ−

√
d(2ρ− 1)]. That is, for any n ≥ 1

4d(2ρ−1) we have

that x = 1
2 is a best-response to σ̃

B =(y = 1
2 −

√
d(2ρ− 1) with probability 50% and y = 1

2 +
√
d(2ρ− 1)

with probability 50%).

Proof of Proposition 2. Uniqueness is implied by the arguments used in the proofs of the previous

lemmata. If B uses σ̃B then we have that σ̃A = 1
2 is the unique best response of A. That is,

1
2 is the

unique minimaximizer strategy of A or else the unique strategy that A may use in an equilibrium. If A

uses σ̃A = 1
2 then we have shown that B has exactly two pure best responses, y = 1

2 −
√
d(2ρ− 1) and

y = 1
2 +

√
d(2ρ− 1). But in an any mixture between them except for the even one, A has a best response

different than 1
2 which gives him a larger payoff than his minimaximizer strategy. Hence, the even mixture

between y = 1
2 −

√
d(2ρ− 1) and y = 1

2 +
√
d(2ρ− 1) is the unique minimaximizer strategy of B.

Proof of Proposition 3. Consider that A is expected to locate at x̂ = 1
2 . Then B by locating at ŷ = 1

2

gets elected with probability 1− ρ̂. If B deviates to some ŷ < x̂ = 1
2 then three things may occur.

Case 1. If B deviates to ŷ ∈ [1 − 1
2

√
1 + 4d, 12) then his payoff remains unaffected. Notice that

1− 1
2

√
1 + 4d is the value of ŷ which solves ẍ(12 , ŷ,−d) = 1. That is, if d̂ = −d and ŷ ∈ [1− 1

2

√
1 + 4d, 12)

then B is elected with probability one and if d̂ = −d and ŷ < 1 − 1
2

√
1 + 4d then B is elected with a

probability strictly smaller than one. Similarly,
√

1
4 − d is the value of ŷ which solves ẍ(14 , ŷ, d) = 0. That

is, if d̂ = d and ŷ ∈ [
√

1
4 − d,

1
2) then B is elected with probability zero and if d̂ = d and ŷ <

√
1
4 − d then

B is elected with a probability strictly larger than zero. Since
√

1
4 − d is strictly smaller than 1− 1

2

√
1 + 4d

for any d ∈ (0, 14), we must have that if x̂ = 1/2 then for all ŷ ∈ [1− 1
2

√
1 + 4d, 12) candidate B’s payoff is

equal to 1− ρ̂.

Case 2. If B deviates to ŷ ∈ [
√

1
4 − d, 1 −

1
2

√
1 + 4d) then we have that if d̂ = −d candidate B is

elected with a probability strictly smaller than one and if d̂ = d we have that candidate B is elected with

probability zero. That is B’s payoff is strictly smaller than 1− ρ̂.
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Case 3. Finally, if B deviates to ŷ <
√

1
4 − d we have that ẍ(12 , ŷ,−d) ∈ (0, 1) and ẍ(12 , ŷ, d) ∈ (0, 1).

We moreover observe that it is always the case that ẍ(12 , ŷ, d) < 1 − ẍ(12 , ŷ,−d). This implies that

q̂(12 , ŷ,−d) < p̂(12 , ŷ, d) = 1− q̂(12 , ŷ, d). That is, q̂(12 , ŷ, d) < 1
2 .

We have to consider two cases:

(i) If q̂(12 , ŷ,−d) ≤ 1
2 with a straightforward Condorcet jury theorem like argument we obtain that

limn→+∞ Q̂n(12 , ŷ, ρ̂) < 1 − ρ̂.9 That is, there must exist ñ such that whenever n > ñ deviations to

ŷ <
√

1
4 − d are unprofitable for candidate B.

(ii) If q̂(12 , ŷ,−d) > 1
2 we have that

lim
n→+∞

n∑
k=n+1

2

(
n

k

)
q̂(

1

2
, ŷ, d)k(1− q̂(1

2
, ŷ, d))n−k = 0

and

lim
n→+∞

n∑
k=n+1

2

(
n

k

)
q̂(

1

2
, ŷ,−d)k(1− q̂(1

2
, ŷ,−d))n−k = 1.

and, hence, limn→+∞ Q̂n(12 , ŷ, ρ̂) = 1− ρ̂.

What we need to show is that Q̂n(12 , ŷ, ρ̂) converges to 1 − ρ̂ from below because in that case there

should exist ñ such that whenever n > ñ deviations to ŷ <
√

1
4 − d would be unprofitable for candidate

B.

To prove that Q̂n(12 , ŷ, ρ̂) converges to 1− ρ̂ from below one needs to show that for n large enough we

always have Q̂n(12 , ŷ, ρ̂) < 1− ρ̂. But Q̂n(12 , ŷ, ρ̂) < 1− ρ̂ holds if and only if

ρ̂
n∑

k=n+1
2

(
n

k

)
q̂(

1

2
, ŷ, d)k(1− q̂(1

2
, ŷ, d))n−k + (1− ρ̂)

n∑
k=n+1

2

(
n

k

)
q̂(

1

2
, ŷ,−d)k(1− q̂(1

2
, ŷ,−d))n−k < 1− ρ̂

or if and only if

ρ̂

1− ρ̂

n∑
k=n+1

2

(
n
k

)
q̂(12 , ŷ, d)k(1− q̂(12 , ŷ, d))n−k

[1−
n∑

k=n+1
2

(
n
k

)
q̂(12 , ŷ,−d)k(1− q̂(12 , ŷ,−d))n−k]

< 1.

We moreover notice that both
n∑

k=n+1
2

(
n
k

)
q̂(12 , ŷ, d)k(1− q̂(12 , ŷ, d))n−k and 1−

n∑
k=n+1

2

(
n
k

)
q̂(12 , ŷ,−d)k(1−

q̂(12 , ŷ,−d))n−k converge to zero when n goes to infinity. By the Stolz—Cesaro theorem (see Stolz 1885

9See, for example, Kirstein and Wangenheim (2010).
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and Cesaro 1888) we have that

lim
n→+∞

n∑
k=n+1

2

(
n
k

)
q̂(12 , ŷ, d)k(1− q̂(12 , ŷ, d))n−k

1−
n∑

k=n+1
2

(
n
k

)
q̂(12 , ŷ,−d)k(1− q̂(12 , ŷ,−d))n−k

=

= lim
n→+∞

n+2∑
k=n+2+1

2

(
n+2
k

)
q̂(12 , ŷ, d)k(1− q̂(12 , ŷ, d))n+2−k −

n∑
k=n+1

2

(
n
k

)
q̂(12 , ŷ, d)k(1− q̂(12 , ŷ, d))n−k

n∑
k=n+1

2

(
n
k

)
q̂(12 , ŷ,−d)k(1− q̂(12 , ŷ,−d))n−k −

n+2∑
k=n+2+1

2

(
n+2
k

)
q̂(12 , ŷ,−d)k(1− q̂(12 , ŷ,−d))n+2−k

.

By Kirstein and Wagenheim (2010) we have that

n+2∑
k=n+2+1

2

(
n+ 2

k

)
q̂(

1

2
, ŷ, d)k(1− q̂(1

2
, ŷ, d))n+2−k −

n∑
k=n+1

2

(
n

k

)
q̂(

1

2
, ŷ, d)k(1− q̂(1

2
, ŷ, d))n−k =

= [2q(
1

2
, ŷ, d)− 1]

(
n
n+1
2

)
[q̂(

1

2
, ŷ, d)(1− q̂(1

2
, ŷ, d)]

n+1
2 < 0

and that

n∑
k=n+1

2

(
n

k

)
q̂(

1

2
, ŷ,−d)k(1− q̂(1

2
, ŷ,−d))n−k −

n+2∑
k=n+2+1

2

(
n+ 2

k

)
q̂(

1

2
, ŷ,−d)k(1− q̂(1

2
, ŷ,−d))n+2−k =

= −[2q(
1

2
, ŷ,−d)− 1]

(
n
n+1
2

)
[q̂(

1

2
, ŷ,−d)(1− q̂(1

2
, ŷ,−d)]

n+1
2 < 0.

Thus,

lim
n→+∞

n∑
k=n+1

2

(
n
k

)
q̂(12 , ŷ, d)k(1− q̂(12 , ŷ, d))n−k

1−
n∑

k=n+1
2

(
n
k

)
q̂(12 , ŷ,−d)k(1− q̂(12 , ŷ,−d))n−k

=

= lim
n→+∞

[2q(12 , ŷ, d)− 1]
(
n
n+1
2

)
[q̂(12 , ŷ, d)(1− q̂(12 , ŷ, d)]

n+1
2

−[2q(12 , ŷ,−d)− 1]
(
n
n+1
2

)
[q̂(12 , ŷ,−d)(1− q̂(12 , ŷ,−d)]

n+1
2

=

=
[2q(12 , ŷ, d)− 1]

−[2q(12 , ŷ,−d)− 1]
× lim
n→+∞

[
q̂(12 , ŷ, d)(1− q̂(12 , ŷ, d)

q̂(12 , ŷ,−d)(1− q̂(12 , ŷ,−d)
]
n+1
2 = 0

because as n increases [
q̂( 1
2
,ŷ,d)(1−q̂( 1

2
,ŷ,d)

q̂( 1
2
,ŷ,−d)(1−q̂( 1

2
,ŷ,−d) ]

n+1
2 converges to zero due to the fact that 12 < q̂(12 , ŷ,−d) <

1 − q̂(12 , ŷ, d). That is, indeed Q̂n(12 , ŷ, ρ̂) < 1 − ρ̂ for n large enough, therefore there must exist ñ such
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that whenever n > ñ deviations to ŷ <
√

1
4 − d are unprofitable for candidate B. Similarly, deviations of

B to ŷ > x̂ = 1
2 can be proven to be unprofitable by arguments symmetric to the ones presented here for

the ŷ < x̂ = 1
2 case. Finally, the arguments that rule out profitable deviations of A are identical to the

ones presented here for B.

Notice that all the analysis that we have performed above would still hold, after appropriate mod-

ifications,10 if A located instead at 1
2 ± ε as long as ε > 0 were small enough. This is because: a) all

the arguments of cases 1 and 2 directly hold for x̂ = 1
2 ± ε when ε > 0 is small enough and b) all the

inequalities of case 3 are strict and involve functions which are continuous in x̂ and ŷ and are, hence,

preserved when x̂ takes values suffi ciently close to 1
2 . The second part of the proposition is a known result

(see, for example, Aragonès and Xefteris 2012).

10Appropriate modifications here means to substitute threshold values. That is, to have 1− 1
2

√
1 + 4d− 4ε+ 4ε2 instead

of 1− 1
2

√
1 + 4d and

√
( 1
2
+ ε)2 − d instead of

√
1
4
− d.
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Figure 1: Minimaximizer strategies of A as a function of 
ρ∈[1/2,1/2+2d) when d=0.1. 

 

 
 

Figure 2: Minimaximizer strategies of B as a function of 
ρ∈[1/2,1/2+2d) when d=0.1. 

 

 
 

Figure 3: Minimaximizer strategies of A as a function of 
ρ∈[1/2,1/2+2d) when d=0.2. 

 

 
 

Figure 4: Minimaximizer strategies of B as a function of 
ρ∈[1/2,1/2+2d) when d=0.2. 

 



 
 
 

 
 
 
 

Figure 5: Mixed strategy equilibrium for ρ =1. 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 

 
 
 
 

Figure 6: Maximum equilibrium differentiation as a function  
of ρ when d=0.1. 

 
 

 
 
 
 

Figure 7: Maximum equilibrium differentiation as a function  
of ρ when d=0.2. 
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