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1 Introduction

Like investors in other retail financial markets, mutual fund investors face non-negligible search

costs, entry costs, and switching costs, and are likely to be financially constrained. While the role

of market frictions on investor choices has received some attention in the mutual fund literature,

the implications of frictions for the determination of mutual fund performance are still not well

understood. In this paper, we investigate how market frictions impact investors’ investment and

disinvestment decisions and the determination of mutual fund performance in equilibrium.

The starting point of our analysis is the model of Berk and Green (BG) (2004), who char-

acterize the competitive provision of capital to mutual funds. In their model, investors learn

about managerial ability from past returns and demand shares of all funds with positive ex-

pected risk-adjusted performance net of fees and other costs. If there are diseconomies of scale

in portfolio management, the flows of money into (out of) outperforming (underperforming)

funds drive their performance down (up) to zero. In equilibrium, all funds deliver zero net ex-

pected performance. Therefore, fund performance is not predictable from fund characteristics

or past performance.

BG’s influential work has changed the prevalent view on mutual fund performance persis-

tence by showing that lack of predictability in mutual fund performance is consistent with a

market populated by competing rational investors, even if fund managers possess skill. How-

ever, there exists abundant empirical evidence that underperforming US equity funds continue

to underperform in the long term (e.g., Carhart, 1997). The model cannot explain, either, why

performance persists for winners in the short term (Bollen and Busse, 2005). Ferreira et al.

(2013) show that fund performance persistence is a widespread phenomenom throughout the

world. Under the framework of BG, such persistence in mutual fund performance is an anomaly

that needs to be explained.

One possible explanation for the discrepancy between the model’s implication of performance

unpredictability and the empirical evidence on performance persistence is that the assumption

of diseconomies of scale in asset management is not a good characterization of the mutual fund

industry. However, the available empirical evidence suggests that US equity fund performance
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decreases with size. Chen et al. (2004) show that, conditional on other fund characteristics,

performance decreases with lagged assets under management, especially for funds investing in

small-cap growth stocks, suggesting that liquidity is a source of diseconomies of scale portfolio

management. Yan et al. (2008) confirm these findings using more direct measures of portfolio

liquidity.

An alternative explanation is that market frictions such as search costs, switching costs, and

liquidity constraints, distort investor decisions and affect mutual fund equilibrium performance.

Understanding the effects of frictions on the determination of equilibrium in the mutual fund

market is precisely the purpose of our study. More specifically, we develop a model of perfor-

mance determination that retains the key features of the model of BG, namely diseconomies of

scale and competition among investors, but extends it in several directions. First, we assume that

investors’ reservation risk-adjusted returns are negative, not zero, for many investors. The idea

that mutual fund investors have negative reservation risk-adjusted returns is indeed consistent

with the abundant empirical evidence that the average actively managed equity fund under-

performs passive benchmarks after fees and trading costs. Negative reservation risk-adjusted

returns can arise as a consequence of search costs. For instance, BG assume that the investment

alternative to actively managed funds is an index fund. In the presence of search costs, the

risk-adjusted return of investing in the index fund net of search costs is negative. Consistently

with this view, Hortaçsu and Syverson (2004) attribute the large dispersion of fees across index

mutual funds tracking the same index to search costs. Since search costs are likely to vary

across investors due to heterogeneity in financial sophistication, in our model we assume that

reservation returns are lower for unsophisticated investors. We believe that regulatory attempts

to make low-cost passively managed funds a mandatory default option give further credence to

the notion that for a substantial fraction of investors, finding a cheap passive alternatively to

actively managed funds is not costless.

Second, we assume that investors are financially constrained, i.e., they face a limit on the

amount of money they can invest in a mutual fund each period. Moreover, investors face the

risk of a liquidity shock, which would prevent them from investing in a mutual fund. We assume
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that this risk is higher for unsophisticated investors.

Like in the model of BG, each period investors must choose between an actively managed

fund and an index fund, an alternative investment opportunity available to all investors with

the same risk as the managed portfolio. We assume that while the fund’s current investors can

reinvest their last period’s wealth as well as invest their current endowment in the fund, new

investors can only invest their current period’s endowment.

If investors were not financially constrained, any fund’s expected risk-adjusted net return

would be equal in equilibrium to the reservation return of the most unsophisticated investor in

the market. Otherwise, there would be excess demand by the most unsophisticated investors for

any fund with a higher level of performance. An increase in expected managerial ability would

not lead to an increase in the fund’s net performance, it would simply result in more flows

from unsophisticated investors. However, when there is a limit on the amount of money each

investor can invest, inflows from the least sophisticated investors do not drive fund performance

down to their reservation return, so the fund can still attract more sophisticated investors.

In this different setup, more sophisticated investors decide to invest in the fund as long as

the fund’s expected performance exceeds their reservation return. In equilibrium, any actively

managed fund offers an expected risk-adjusted net return at least as high as the reservation

return of the most sophisticated investor who decides to invest with the fund. When managerial

ability is low, a fund can survive offering a negative risk-adjusted expected net return if there

are investors with low enough reservation risk-adjusted returns in the market. As managerial

ability increases, the fund’s equilibrium expected performance increases and the fund attracts

more sophisticated investors. A fund can offer a positive expected risk-adjusted net return

provided that investors’ inflows are not sufficient to drive the fund’s performance down to zero.

In sum, in our model both negative and positive expected fund performance are possible in

equilibrium.1 Moreover, expected fund performance increases with managerial ability. To the

extent that managerial ability is persistent through time, so is fund performance. Therefore,

heterogeneity in investors’ reservation returns together with financial constraints can rationalize

1Note, however, that if positive managerial ability is scarce, positive expected performance, although
compatible with equilibrium, will be rarely observed in the data.
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the evidence on fund performance persistence.

The model developed in this paper also predicts that differences in performance between

high- and low-ability managers increase with the amount of unsophisticated investors in the

market. The intuition for this result is as follows. If managerial ability is low, a fund can

operate only if the investors that populate the market are unsophisticated enough. Moreover,

other things equal, a fund captures more assets if there are more unsophisticated investors in the

market, which in turn, hampers its performance. Further, the performance of the fund improves

faster with managerial ability in a market with more unsophisticated investors. The reason is

that the fund’s current investors are less sophisticated and have less money to invest, so their

decision to enter the fund as managerial ability improves is less harmful to fund performance.

Also, current investors require a lower expected risk-adjusted return in order to decide to reinvest

with a fund in a less sophisticated market, so it takes a lower level of managerial ability for all

current investors to reinvest with the fund. Once all current investors have decided to reinvest,

new investors may enter the fund, but since new investors only have their current endowment to

invest, the effect of their entry on fund performance is limited. In sum, other things equal, the

expected performance of a fund in a market with less sophisticated investors is lower, but rises

faster with managerial ability. Holding the cross-sectional distribution of managerial ability

constant, the model predicts that performance differences will be more likely to survive in

markets with less sophisticated investors.

The effect of market frictions on investor decisions has been previously investigated in the

mutual fund literature in the context of studies of mutual fund flows. Sirri and Tufano (1998)

are the first to show that search costs affect investor decisions. In particular, they find that

the flow-performance relation is less steep for funds associated with higher search costs. Huang

et al. (2007) propose a model in which search costs combined with Bayesian learning from past

returns lead investors to consider only funds with the highest recent performance since the costs

of researching a new fund with less than top recent performance outweight the expected benefits.

More recently, Navone (2012) shows that the sensitivity of flows to past performance decreases

with past performance but increases with different proxies for fund visibility.
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Our paper is related to the empirical study of Glode et al. (2011), who investigate time

variation in performance persistence. Glode et al. (2011) find evidence of more persistence after

up-markets, which they attribute to a larger presence of unsophisticated investors in the market.

Our model provides a precise mechanism through which the entry of less sophisticated investors

in the market results in more persistence in performance.

The rest of the paper is organized as follows. In section 2, we describe the model’s setup. Sec-

tion 3 characterizes the equilibrium and discusses the model’s predictions. Section 4 concludes.

The Appendix contains all the proofs.

2 The model

BG consider a fund that can generate returns in excess of a passive benchmark due to its

manager’s ability. Let Rt denote the fund’s return in excess of a passive benchmark before fees

and expenses, Rt = α+ εt, where α reflects managerial ability and εt is an idiosyncratic shock

that is normally distributed with mean 0 and variance σ2. For simplicity, throughout the paper

we refer to risk-adjusted return as return. Managerial ability, α, is not known to managers or

investors, who estimate it using the information contained in past returns.

The cost of managing the portfolio is denoted by C(q), where q is the dollar value of assets

under management. C(q) is common knowledge and it satisfies the following properties: C(0) =

0, lim
q→∞C ′(q) = ∞ and for all q ≥ 0, C(q) ≥ 0, C ′(q) > 0, C ′′(q) > 0. The last assumption,

increasing marginal costs, captures diseconomies in scale in asset trading and is key to the

model’s implications.

Similarly to BG, we model a fund that began operating at time 0 and study the investors’

decisions at time t. Since we do not study fund dynamics, our model analyzes a single-period’s

decision. The fund’s net return at time t is defined as rt ≡ Rt − C (qt)

qt
− f , where qt is the

t−1 investment in the fund and f is the fund’s fee, which is exogenously given.2 If the revenues

2It can be shown that when the fund’s fee is endogenous, it increases with managerial skill although less
than proportionally, so our results are not substantially changed if we do comparative statics with respect
to managerial skill holding the fee constant or with respect to managerial skill net of the endogenous fee.
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collected by the manager at time t, fqt, cover the fixed costs of the fund, the fund continues its

activity, otherwise the fund closes down. We assume for simplicity and without loss of generality

that fixed costs are zero.

We depart from BG in that the fund’s potential investors have limited funds to invest and

exhibit different degrees of financial sophistication. To model different degrees of sophistication

we allow for reservation returns to vary across investors. Like BG, we assume that each investor

i has a specific search cost γi that reflects her ability to find an alternative fund. For simplicity,

we assume that the alternative for all investors is an index fund with zero expected risk-adjusted

return. Net of search costs, the reservation expected risk-adjusted return (henceforth reservation

return) of the i − th investor is −γi. Therefore, unlike in the model of BG, the investor’s

reservation return is different from zero and is also different across investors. Note that γi

is the search cost for investor i, per dollar invested. If search costs are fixed, a wealthier investor

faces a lower γ. We assume that there is a continuum of investors in the market in which the

fund is offered with absolute value of the reservation return γ uniformly distributed over the

interval
[
0, γMAX

]
, with γMAX ≤ 1. Therefore, we assume that all investors in the market have

negative reservation returns net of search costs. Alternatively we could allow some investors

to have positive reservation returns without altering the conclusions. The parameter γMAX

determines the overall level of sophistication in the fund in which the market is offered.

Finally, we also allow for the possibility that new investors who enter the fund at date t

must pay an entry cost K, reflecting either an explicit fee charged by the fund (front-end loads)

or other costs (e.g., switching costs).

The timing of the events is the following:

Date t− 1:

• Investors enter the fund. We denote by γ the absolute value of the reservation return of

the most sophisticated investor who enters the fund. Therefore, all investors with γ in the[
γ, γMAX

]
are invested in the fund.

Date t:
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• The fund’s return at date t is realized and current investors obtain its net return.

• After observing the return at date t, the fund’s current investors decide whether to reinvest

with the fund or withdraw their current investment.

• New investors decide whether they want to invest with the fund.

• We assume that each current investor holds an investment in the fund that is worth m

dollars at t. Also, each investor is endowed with a wealth of m (1− γi) . This assumption

captures the idea that less sophisticated investors face more severe financial constraints.

For instance, investor i could be exposed at time t to the possibility of a liquidity shock

with probability γi.

Date t+ 1:

• The fund’s return at date t+ 1 is realized and the fund’s investors obtain its net return.

3 Equilibrium

We study equilibrium at t. Upon observing the series of net returns and total assets under

management from 1 to t, {rs, qs}s=t
s=1 , investors can infer the series of returns {Rs}s=t

s=1 and

update their beliefs about the fund manager’s ability through Bayesian updating:

φt+1 = E (Rt+1 |R1, ..., Rt ) .

Investor i demands shares of the fund if the fund’s expected return net of trading costs

and fees (Total Performance, TP ) exceeds her reservation return −γi. The fund’s expected net

return in period t equals

TPt+1 (qt+1) = E [rt+1|R1, ..., Rt]

= E

[
Rt+1 − C (qt+1)

qt+1
− f

∣∣∣∣R1, ..., Rt

]
.
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A current investor will either withdraw her date t − 1 investment from the fund or keep

her current investment and invest her date t endowment in the fund depending on whether the

fund’s expected net return at date t is below or above her reservation return.

An equilibrium at t is defined as the amount of assets under management, q∗t+1, such that

investors maximize their expected risk-adjusted return. In an equilibrium in which only current

investors enter the fund, the following conditions must hold:

• The fund’s expected net return is given by TPt+1

(
q∗t+1

)
= φt+1 −

C
(
q∗t+1

)
q∗t+1

− f .

• All investors who withdraw their money from the fund have reservation returns higher

than TPt+1

(
q∗t+1

)
.

• All investors who invest new money in the fund have reservation returns less than or equal

to TPt+1

(
q∗t+1

)
.

• The equilibrium amount of assets q∗t+1 is such that 0 ≤ q∗t+1 ≤ vt + M, where vt ≡
m (γMAX − γ) is the value at t of current investors’ investment at t − 1 and M denotes

the maximum inflow possible in this period: m
(
γMAX − 1

2γ
2
MAX

)
.

To find the cutoff reservation return, −γC , such that all current investors with reservation

returns lower than −γC reinvest with the fund and all current investors with reservation returns

higher than −γC leave the fund, we solve the system:

TPt+1

(
qCt+1

)
= −γC ,

qCt+1 = 2m
(
γMAX − γC

)− m

2
(γ2MAX − (γC)2).

Depending on the value of the solution γC , there are three possible alternatives:

Case 1: γMAX ≤ γC . Even if all existing investors left the fund, so qt+1 = 0 and C(qt+1) = 0,

the fund’s expected net return would be lower than the reservation return of the market’s most

unsophisticated investor. Therefore, the fund must close down and q∗t+1 = 0.

Case 2: γ ≤ γC < γMAX . Current investors with reservation returns higher than −γC exit

the fund and those with reservation returns lower than −γC reinvest with the fund. The fund’s
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expected net return equals E (rt+1) = −γC < 0 and the fund’s assets q∗t+1 = qCt+1.

Case 3: γC < γ. Even if all current investors reinvested with the fund, the fund’s expected

net return would be higher than the reservation return of the fund’s most sophisticated target

investor, so some new, more sophisticated investors might want to enter the fund. Therefore,

q∗t+1 ≥ 2m (γMAX − γ)− m
2 (γ

2
MAX −γ2). In this case, we are interested in knowing whether new

investors would pay the cost K to enter the fund.

In an equilibrium in which new investors enter the fund the following conditions must hold:

• The fund’s expected return equals TPt+1

(
q∗t+1

)
.

• New investors who invest in the fund have reservation returns less than or equal to

TPt+1

(
q∗t+1

)−K.

• New investors who decide not to invest in the fund have reservation returns higher than

TPt+1

(
q∗t+1

)−K.

To find the cutoff reservation return, −γN , such that all current investors reinvest with the

fund, new investors with reservation returns lower than −γN enter the fund, and new investors

with reservation returns higher than −γN do not invest with the fund, we solve the system:

TPt+1

(
qNt+1

)−K = −γN ,

qNt+1 = vt +m

(
(γMAX − γN )− 1

2
(γ2MAX − (

γN
)2
)

)
.

We now distinguish two cases depending on whether the solution γN is higher or smaller

than γ. When γN ≥ γ, no new investors want to enter the fund. Even if only current investors

reinvested with the fund, the fund’s performance would not be enough to convince investors

to pay the entry cost. As a result, only current investors invest in the fund and the amount

invested in the fund at t+ 1 is q∗t+1 = 2vt − m
2 (γ

2
MAX − γ2) ≡ qt+1. The expected return in this

case is E (rt+1) = TPt+1

(
qt+1

)
.

On the other hand, when γN < γ, new investors enter the fund. The last investor i to

enter the fund in the period t has γi = γN , and the quantity invested in the fund is q∗t+1 =
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vt + m
(
(γMAX − γN )− 1

2(γ
2
MAX − (

γN
)2
)
)
. If γN < 0, then all potential investors enter the

fund and the quantity invested in the fund is q∗t+1 = vt + mγMAX

(
1− γMAX

2

)
= vt + M.

Consequently, the fund’s expected net return is E (rt+1) = K−γN , if γ > γN > 0 and E (rt+1) =

TPt+1 (vt +M) , if γN ≤ 0.

Henceforth, we assume for simplicity that C (q) = cq2.

Proposition 1 The expected net return of a fund offered in a market with investors in the

interval [0, γMAX ] equals

E (rt+1 (φt+1)) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

−γC , if Φ1 ≤ φt+1 < Φ2

TPt+1

(
qt+1

)
, if Φ2 ≤ φt+1 < Φ2 +K

K − γN , if Φ2 +K ≤ φt+1 < Φ3 +K

TPt+1 (vt +M) , if Φ3 +K ≤ φt+1,

where Φj, j = 1, 3 are defined in the Appendix and γC , γN , equal:

γC =
1

cm

(
1 + 2cm−A1/2

)
, where

A ≡ 1 + 2cm (2 + φ− f) + c2m2 (2− γMAX)2

and

γN =
1

cm

(
1 + cm−B1/2

)
, where

B ≡ 1 + 2cm (1 + φ− f −K) + c2m2

(
(1− γMAX)2 − 2

m
vt

)
,

respectively.

Figure 1 shows graphically the fund’s expected net return as a function of expected manage-

rial ability holding the fund’s fee constant and assuming that there are no entry costs for new

investors (K = 0). If managerial ability is too low, the fund must close down. As managerial

ability increases, the fund starts to operate with the most unsophisticated investors among all
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φt+1

E(
r t+

1)

0

Figure 1: Expected net return as a function of expected managerial skill. Parameter values:
m = 200, c = 0.01, K = 0, γMAX = 0.7, f = 0.01.

its potential investors. Investors’ limited capital allows fund performance to increase with man-

agerial ability. If managerial ability is high enough, all current investors reinvest with the fund

and new more sophisticated investors start to invest. Because new investors invest only their

current endowment, the fund’s assets increase less rapidly with increases in managerial ability,

so the fund’s expected return increases faster. Once all potential investors are in the fund, fund

performance increases one-to-one with managerial skill.

Proposition 1 shows that the fund’s expected net return in equilibrium can be different from

zero. Equilibrium expected net returns may be negative in our setup when investors prefer

to keep their investment in the fund despite earning a negative return because this return is

still higher than their reservation return. Positive equilibrium expected net returns can be

obtained when managerial ability increases and either entry costs prevent new investors from

entering the fund and eroding funds’ performance or all potential investors have invested with
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the fund. Therefore, the interaction of financial constraints and negative reservation returns

prevents investors’ money from flowing freely into and out of the fund and eliminating non-zero

performance.

Note that in order to observe dispersion in expected performance in the data, other than

that induced by differences in γMAX or γ, we need to have dispersion in managerial ability. If

managerial ability persists through time, then fund performance also persists.

Note that the necessary conditions to obtain expected net returns different form zero are:

heterogeneity of investors’ reservation returns and limited capital to invest. Investor heterogene-

ity ensures that in equilibrium we have expected returns different from zero, but also different

expected returns for different levels of managerial ability. The assumption that investors are

financially constrained prevents funds from having a risk-adjusted expected net return equal

to the reservation return of the most unsophisticated investor in the market. If investors were

not constrained, there would be excess demand from the most unsophisticated investors for any

fund with a higher level of performance. Therefore, an increase in managerial ability would

not lead to an increase in the fund’s net performance, it would simply attract more flows from

unsophisticated investors.

As we can see from Proposition 1, expected net return of a given fund depends on the level

of sophistication of the investors in the market for that fund, which is given by γMAX . Notice

that both γCand γN increase with γMAX and this is due to the fact that when the potential

investors are less sophisticated, there is a larger amount available for reinvestment in the fund,

and therefore, the fund performance is eroded faster by money inflows. As a result, if investors

are more sophisticated, the fund may earn a higher expected net return in equilibrium. However,

this does not guarantee that an increase in sophistication always increases expected performance.

To see this, let us consider two otherwise identical funds being offered in two different markets,

each one corresponding to a different value of γMAX . Henceforth, we refer to the first market

as the unsophisticated market (U), with γMAX = γUMAX , and to the second market as the

sophisticated market (S), with γMAX = γSMAX , and γUMAX > γSMAX . We assume that the total

amount currently invested in both cases is the same, vt. We denote by ΦU
j ,Φ

S
j the cut-off points
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for the unsophisticated and sophisticated markets, respectively.

Proposition 2 There exist K1 and K2 as defined in the Appendix such that:

1. If K < K1, then ES (rt+1 (φt+1)) > EU (rt+1 (φt+1)) , for any φt+1.

2. If K ∈ [K1,K2] then there exist φ1 ∈
(
ΦU
2 ,Φ

U
2 +K

)
and φ2 ∈

(
ΦS
2 ,Φ

S
2 +K

)
, φ2 > ΦU

2 +K

such that ES (rt+1 (φj)) = EU (rt+1 (φj)) , j = 1, 2. Then, for any φt+1 < φ1 and φt+1 > φ2,

we have that ES (rt+1 (φt+1)) > EU (rt+1 (φt+1)) and for φt+1 ∈ (φ1, φ2) , E
S (rt+1 (φt+1)) >

EU (rt+1 (φt+1)) .

3. If K > K2, then there exists φ1 ∈
(
ΦU
2 ,Φ

U
2 +K

)
such that ES (rt+1 (φ1)) = EU (rt+1 (φ1)) .

Then, for any φt+1 < φ1, E
S (rt+1 (φt+1)) > EU (rt+1 (φt+1)) and for φt+1 > φ1, E

S (rt+1 (φt+1)) <

EU (rt+1 (φt+1)) .

Proposition 2 characterizes the conditions under which a fund in the unsophisticated mar-

ket underperforms a fund in the sophisticated market. When entry costs are small, K < K1

(see Figure 2 for the case K = 0), the fund in the unsophisticated market underperforms an

otherwise identical fund in a market with more sophisticated investors for any level of man-

agerial ability. A fund targeted to more unsophisticated investors captures more investors for

any level of managerial ability, which reduces its performance. As can be seen in Figure 2,

the performance gap between funds targeted to sophisticated investors and funds targeted to

unsophisticated investors narrows as managerial ability increases. This is because it takes a

low level of managerial ability for all current investors of the latter to decide to reinvest with

the fund: They have lower reservation returns and, because they have less money to invest (on

average), their decision to reinvest is not as harmful for fund performance. Once all current

investors have decided to reinvest, new investors enter the fund but entry of new investors has a

less detrimental effect on fund performance than reinvestment by current investors. Therefore,

for low entry costs, differences in expected performance between both funds are more apparent

in the lower end of managerial ability.

Figure 2 suggests that, holding the distribution of managerial ability constant, there will be

more cross-sectional dispersion in fund performance as investor sophistication decreases.
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φt+1

E(
r t+

1)

0

Figure 2: Expected net return as a function of expected managerial skill and market sophisti-

cation, with no entry costs. The solid (dotted) line corresponds to the sophisticated (unsophisti-

cated) market, i.e., low (high) γMAX . Parameter values: m = 200, c = 0.01, K = 0, γUMAX = 1,

γSMAX = 0.5, f = 0.01.

Figure 3 shows the expected performance of both types of funds when K ∈ [K1,K2]. In

this case, there exists an interval, (φ1, φ2) in which the fund in the unsophisticated market

outperforms the fund in the sophisticated market. When all current investors have decided to

reinvest in the former, no new investors are willing to enter the fund as long as its expected

performance does not exceed the reservation return of the least sophisticated new investor plus

the entry cost. In that interval, the fund’s expected performance increases one-to-one with

managerial ability. The fund in the sophisticated market, however, continues to retain its current

investors’ money and attract their t−date endowment, so its expected performance increases

slowly with ability. The lower bound of the entry cost interval, K1, guarantees that the expected

performance of both types funds cross in the interval
(
ΦU
2 ,Φ

U
2 +K

)
. Existence of the intersection
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φt+1

E(
r t+

1)

φ1

φ2

0

Figure 3: Expected net return as a function of expected managerial skill and market sophisti-
cation, with a positive entry cost. The solid (dotted) line corresponds to the sophisticated (un-
sophisticated) market, i.e., low (high) γMAX . Parameter values: m = 200, c = 0.01, K = 0.75,
γUMAX = 1, γSMAX = 0.5, f = 0.01.

is guaranteed by the fact that unsophisticated investors have less money to invest, which gives

funds in less sophisticated markets a performance advantage over funds in more sophisticated

markets when current investors have reinvested with both funds and no new investors wish to

enter. For higher levels of ability, new investors start to enter the fund. Since new investors

in the less sophisticated market enter for lower levels of ability, fund performance deteriorates

sooner as ability improves. In the limit, all possible investors decide to invest. Since the fund

in the market with more unsophisticated investors attracts a larger set of investors, it is larger

and necessarily underperform.

Finally, when entry costs are very high, i.e., when K > K2, there will be no new investors

willing to enter the fund for the range of managerial ability considered. In this case, the fund in

the less sophisticated market outperforms the fund in the more sophisticated market for levels
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of expected managerial ability that are above a minimum level, φ1.

Our model suggests that both negative and positive expected performance are possible in

equilibrium in a market with frictions. It also predicts that expected fund performance increases

with managerial ability, which explains the evidence that cross-sectional differences in observed

performance persist through time.

Finally, the model also delivers a new prediction: Investor sophistication decreases cross-

sectional dispersion in fund performance. Therefore, the model not only explains why and how

performance persistence arises in equilibrium, but it also provides a mechanism through which

the degree of investor sophistication impacts the persistence of performance differences across

funds.

4 Conclusions

Previous studies have noted that price competition alone may not be sufficient to eliminate

differences in net performance across funds when investors fail to react to differences in expected

performance and management companies react strategically (Christoffersen and Musto, 2002;

Gil-Bazo and Ruiz-Verdú, 2008). In this paper, we argue that even if investors react rationally

to differences in expected performance, market frictions distort their choices with respect to

what would be expected in a friction-less market, such as the one described by Berk and Green

(2004), and can generate predictability in fund performance both in the time series and in the

cross section.

The model not only explains persistence in fund performance, but it also delivers a new

prediction: Predictable differences in performance across funds decrease with the presence of

more unsophisticated investors in the market.

An important implication of our results is that policies aimed at improving the efficiency of

the market for mutual funds should focus on eliminating frictions and, particularly, facilitating

product comparisons both within active funds and between active funds and passive alternatives.
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Appendix

Proof of Proposition 1. The current investors exit or reinvest their wealth depend-

ing on whether their reservation return is lower or higher than −γC , where γC is such that

TPt+1

(
q∗t+1

)
= −γC . The quantity invested in the fund is

q∗t+1 = m
(
γMAX − γC

)
+m

(
(γMAX − γC)− 1

2
(γ2MAX − (γC)2)

)
,

where the first term corresponds to the period t−1 investment that is reinvested and the second

term corresponds to the period t investment. The equilibrium condition TPt+1

(
q∗t+1

)
= −γC

can be rewritten as

φ− cm

(
2(γMAX − γC)− 1

2
(γ2MAX − (γC)2)

)
− f = −γC . (1)

Solving for γC , we obtain

γC =
1

cm

(
1 + 2cm−A1/2

)
, where

A ≡ 1 + 2cm (2 + φ− f) + c2m2 (2− γMAX)2 .

γC is a real solution of equation (1) if A > 0 and a sufficient condition for A > 0 is 2 + φ > f,

which is a reasonable assumption.

Notice that if γC < γ all current investors re-entry and we have also possible entry of new

investors. The new investors have to pay the cost K to enter the fund and therefore, their cutoff

reservation return, −γN , is obtained from:

TPt+1

(
q∗∗t+1

)−K = −γN ,

where q∗∗t+1 = vt +m

(
(γMAX − γN )− 1

2
(γ2MAX − (γN )2)

)
.
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We solve for γN from the equilibrium condition

φ− cm

(
2γMAX − γN − γ − 1

2

(
γ2MAX − (γN )2

))− f −K = −γN , (2)

and obtain

γN =
1

cm

(
1 + cm−B1/2

)
, where

B ≡ 1 + 2cm (1 + φ− f −K) + c2m2
(
1 + 2γ + γ2MAX − 4γMAX

)

= 1 + 2cm (1 + φ− f −K) + c2m2

(
(1− γMAX)2 − 2

m
vt

)
.

γN is a real solution of equation (2) if B ≥ 0. For B to be higher or equal than 0 we need

to have K < K (γMAX) ≡ 1

2cm

(
1 + 2cm (1 + φ− f) + c2m2

(
(1− γMAX)2 − 2

m
vt

))
. So if

K < K (γMAX) there is a solution to equation (2) , otherwise there is no real solution (and

therefore no new investors enter the fund). When there is a real solution, we distinguish two

cases depending on whether the solution γN is higher or smaller than γ. When γN ≥ γ, no

new investors want to enter the fund because the performance of the fund is lower than the

sum of their reservation return and the entry cost. The expected return in this case equals

TPt+1

(
qt+1

)
> −γ. On the other hand, when 0 ≤ γN < γ, new investors enter the fund. Since

the last new investor that entered has reservation return −γN , the expected return in this case

is K − γN .

Notice also that both γC and γN increase with γMAX if γMAX < 2.

Consequently, the amount invested in the fund at time t+ 1 is

qt+1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if φt+1 < Φ1,

m
(
2
(
γMAX − γC

)− 1
2(γ

2
MAX − (γC)2)

)
, if Φ1 ≤ φt+1 < Φ2,

2vt − m

2
(γ2MAX − γ2), if Φ2 ≤ φt+1 < Φ2 +K,

vt +m
((
γMAX − γN

)− 1
2(γ

2
MAX − (γN )2)

)
, if Φ2 +K ≤ φt+1 < Φ3 +K,

vt +M, if Φ3 +K ≤ φt+1,
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where Φ1 ≡ f−γMAX , Φ2 ≡ f+2cvt−γ−1
2cm

(
γ2MAX − γ2

)
and Φ3 ≡ f+cvt+cmγMAX

(
1− γMAX

2

)
.

Notice that if φt+1 < Φ1, the fund closes down. As a result the expected return equals to

E (rt+1 (φt+1)) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

−γC if Φ1 ≤ φt+1 < Φ2

TPt+1

(
qt+1

)
if Φ2 ≤ φt+1 < Φ2 +K

K − γN if Φ2 +K ≤ φt+1 < Φ3 +K

TPt+1 (vt +M) if Φ3 +K ≤ φt+1.

Proof of Proposition 2. Notice that, since γUMAX − γSMAX > 0, we have that ΦS
1 > ΦU

1 ,

ΦS
2 > ΦU

2 but ΦS
3 < ΦU

3 .

We search for φ1 ∈
(
ΦU
2 ,Φ

U
2 +K

)
such that

ES (rt+1) = EU (rt+1)

i.e.− γC = φ1 − cq∗t+1 − f.

Notice that φ1−cq∗t+1−f = φ1−ΦU
2 +ΦU

2 −cvt−f = φ1−ΦU
2 −γU , and −γC = − (

1 + 2a−A1/2
)
.

We define a by a ≡ cm.

Solving for A we obtain A =
(
2a+ a

(
φ1 − ΦU

2 − γU
)
+ 1

)2
, if 2a+ a

(
φ1 − ΦU

2 − γU
)
+1 >

0 i.e. φ1 > ΦU
2 + γU − 2 + 1

a and this is satisfied for φ1 > ΦU
2 . Since on the other hand

A = 1 + 2a (2 + φ1 − f) + a2
(
2− γSMAX

)2
we have that

(
2a+ a

(
φ1 − ΦU

2 − γU
)
+ 1

)2
= 1 + 2a (2 + φ1 − f) + a2

(
2− γSMAX

)2
(
2a+ a

(
φ1 − ΦU

2 −K − γU +K
)
+ 1

)2
= 1 + 2a

(
2 + φ1 −

(
ΦU
2 +K

)
+ΦU

2 +K − f
)

+a2
(
2− γSMAX

)2
(
2a+ a

(−x− γU +K
)
+ 1

)2
= 1 + 2a

(
2− x+ΦU

2 +K − f
)
+ a2

(
2− γSMAX

)2
,

where by definition x ≡ ΦU
2 +K − φ1.
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We define

T ≡ a2
(
2− γSMAX

)2
and

and V ≡ a
(
4cvt − γU − cvt

(
γUMAX + γU

))

= avt

(
4c+

1

m
+

cvt
m

)
− γUMAX (1 + 2cvt) .

We obtain two solutions x∗1,2 =
(
2− γU +K ± 1

a

√
T + V

)
. If γUMAX < 2 and K > K1 ≡

1
a

(√
T + V − a

(
2− γU

))
, the solution x∗1 =

(
2− γU +K − 1

a

√
T + V

) ∈ (0,K) . Consequently,

φ1 = ΦU
2 +K − x∗1 ∈

(
ΦU
2 ,Φ

U
2 +K

)
.

Notice that x∗2 =
(
2− γU +K + 1

a

√
T + V

)
is always a positive solution but is also higher

than K, so it cannot be solution of our problem.

We have shown in Proposition 1 that if K ≥ K
(
γUMAX

) ≡ K2 then no new investors

will enter the fund that targets the unsophisticated investors. The expected return of this

fund increases one to one with φt+1, and since ΦS
2 > ΦU

2 it implies that EU
(
rt+1

(
ΦS
2 +K

))
>

ES
(
rt+1

(
ΦS
2 +K

))
for any φt+1 > φ1.

Let us then consider the case when K < K
(
γUMAX

)
. To prove next that there is φ2 ∈(

ΦS
2 ,Φ

S
2 +K

)
such that ES (rt+1) = EU (rt+1) is enough to prove that the following two

conditions are true: EU
(
rt+1

(
ΦU
2 +K

))
> ES

(
rt+1

(
ΦU
2 +K

))
and EU

(
rt+1

(
ΦS
2 +K

))
<

ES
(
rt+1

(
ΦS
2 +K

))
.

We have shown that when K > K1 it exists φ1 ∈ (
ΦU
2 ,Φ

U
2 +K

)
such that ES (rt+1) =

EU (rt+1) and this implies that ES
(
rt+1

(
ΦU
2 +K

))
could be either −γC or ΦU

2 +K−cqt+1−f. In

the first case, it is straightforward that since the return does not change the slope in that interval,

EU
(
rt+1

(
ΦU
2 +K

))
> ES

(
rt+1

(
ΦU
2 +K

))
. In the second case, if ES

(
rt+1

(
ΦU
2 +K

))
= ΦU

2 +

K − cqt+1 − f we have then that

EU
(
rt+1

(
ΦU
2 +K

))
= ΦU

2 +K − cqt+1

(
γUMAX

)− f >

ES
(
rt+1

(
ΦU
2 +K

))
= ΦU

2 +K − cqt+1

(
γSMAX

)− f ⇔

qt+1

(
γUMAX

)
< qt+1

(
γSMAX

)
.
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Notice that qt+1 (γMAX) = 2vt−m

2
(γ2MAX−γ2) = 2vt−vt

2
(γMAX+γ) = vt

(
2− 1

2
(2γMAX − vt

m)

)
.

Since qt+1 (γMAX) decreases with γMAX it results that qt+1

(
γUMAX

)
< qt+1

(
γSMAX

)
.

To prove that EU
(
rt+1

(
ΦS
2 +K

))
< ES

(
rt+1

(
ΦS
2 +K

))
we calculate both the expected

adjusted returns evaluated in ΦS
2 +K. Notice that in this range both returns equal to K−γN and

γN increase with γMAX if γMAX < 1. Since γSMAX < γUMAX it implies K−γS,N > K−γU,N and

therefore EU
(
rt+1

(
ΦS
2 +K

))
< ES

(
rt+1

(
ΦS
2 +K

))
, with γS,N , γU,N denoting the value of γN

in the sophisticated and the unsophisticated market, respectively. If K > K (γMAX) , the return

for the sophisticated equals ES
(
rt+1

(
ΦS
2 +K

))
= ΦS

2 +K− cqt+1

(
γUMAX

)− f > K− γS,N and

EU
(
rt+1

(
ΦS
2 +K

))
= K − γU,N , so again EU

(
rt+1

(
ΦS
2 +K

))
< ES

(
rt+1

(
ΦS
2 +K

))
q.e.d.

22



References

Berk, J. and R. Green (2004). Mutual fund flows and performance in rational markets. Journal

of Political Economy 112 (6), 1269–1295.

Bollen, N. and J. Busse (2005). Short-term persistence in mutual fund performance. Review

of Financial Studies 18 (2), 569–597.

Carhart, M. (1997). On persistence in mutual fund performance. Journal of Finance 52 (1),

57–82.

Chen, J., H. Hong, M. Huang, and J. Kubik (2004). Does fund size erode mutual fund perfor-

mance? The role of liquidity and organization. The American Economic Review 94 (5),

1276–1302.

Christoffersen, S. and D. Musto (2002). Demand curves and the pricing of money management.

Review of Financial Studies 15 (5), 1499–1524.

Ferreira, M. A., A. Keswani, A. F. Miguel, and S. Ramos (2013). Testing the Berk and Green

model around the world. Working paper .
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