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Abstract

We study an interactive framework that explicitly allows for non-rational behavior. We

do not place any restrictions on how players can deviate from rational behavior. Instead we

assume that there exists a lower bound p ∈ [0, 1] such that all players play and are believed to

play rationally with a probability p or more. This, together with the assumption of a common

prior, leads to what we call the set of p-rational outcomes, which we define and characterize

for arbitrary p ∈ [0, 1]. We then show that this set varies continuously in p and converges to

the set of correlated equilibria as p approaches 1, thus establishing robustness of the correlated

equilibrium concept to relaxing rationality and common knowledge of rationality. The p-rational

outcomes are easy to compute, also for games of incomplete information, and they can be applied

to observed frequencies of play to compute a measure p that bounds from below the probability

with which any given player is choosing actions consistent with payoff maximization and common

knowledge of payoff maximization.
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1 Introduction

Rationality, understood as consistency of behavior with stated objectives, information, and strate-

gies available, naturally lies at the heart of game theory. Still today, most of game theory and its

applications takes the rationality of the agents, knowledge and higher knowledge thereof as given

and, in an important way, relies on these to make (ideally robust) predictions about behavior.1

However, it is clear that, in practice, departures from full consistency or rationality not only occur

and occur often, but they also occur in innumerable ways.2 To address this, we develop a theory

that relaxes the assumption of rationality and higher order knowledge of rationality. Instead we

assume that, for any given p ∈ [0, 1], a fraction at least p of any given player’s chosen actions is

consistent with rationality understood as payoff-maximizing behavior, while we put no constraint

on what the remaining actions (occurring with frequency at most 1 − p) may be. Among other

things, we study the robustness of behavior with respect to p and derive a measure of “rationality”

for observed frequencies of play.

As a brief illustration, consider the following two examples. The first is a stylized penalty kick

game, taken from Palacios-Huerta (2003), based on actual penalty kicks shot by professional soccer

players in European leagues between 1995 and 2000.3 Players’ strategies are reduced to kick left or

right (KL,KR) for the kicker (row player) and to jump left or right (JL, JR) for the goalkeeper

(column player). The payoffs are described in Figure 1 in the left-hand matrix (and correspond to

probability of scoring for the kicker and probability of saving for the goalkeeper); the right hand

matrix describes the empirical frequencies with which the different strategies were played in the

field.

GPK ≈
JL JR

KL 58,42 95, 5

KR 93, 7 70,30

, πempPK ≈
JL JR

KL 0.168 0.232

KR 0.252 0.348

,

Figure 1: Penalty kicks in professional European soccer leagues (p ≈ 0.96)

Although close, it can be checked that, strictly speaking, frequencies of play are inconsistent with

common knowledge of rationality, as players are not playing best-responses to one another. As we

will discuss in Section 4, where we introduce an empirical measure of rationality derived from our

theory that allows to quantify discrepancies from equilibrium play, we compute that at least 96%

of each player’s (row player’s and column player’s) actions is consistent with common knowledge of

1This is true of almost any modern textbook in game theory, or most of the excellent chapters of the three volumes
of the Handbook of Game Theory with Economic Applications, edited by Robert J. Aumann and S. Hart, and of the
recent fourth volume edited by P. Young and S. Zamir, which meanwhile also has chapters specifically devoted to
behavioral game theory and evolutionary game theory.

2See the exhaustive list of examples in the survey of Conlisk (1996); see also Rubinstein (1998) and Mallard
(2011) on models of bounded rationality; Crawford (2013) and Harstad and Selten (2013) distinguish optimization-
based from non-optimization-based models of bounded rationality; Camerer et al. (2011) and Camerer and Ho (2015)
contain surveys of behavioral game theory and economics. The experimental literature has played an important role
in advancing the research on bounded rationality in game theory.

3We refer to that paper for discussions on the meaning of the strategies, payoffs, and the overall setup; see also
Palacios-Huerta and Volij (2008), Chiappori et al. (2002) for further related results.
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payoff maximization. The second example, represented in Figure 2, is a game taken from Goeree

and Holt (2001) due to David Kreps.

GKreps ≡
L M NN R

T 200, 50 0, 45 10,30 20,-250

B 0,-250 10,-100 30,30 50, 40

, πempKreps ≈
L M NN R

T 0.178 0.054 0.462 0

B 0.082 0.026 0.218 0

.

Figure 2: Kreps game (p ≈ 0.7)

Here subjects playing the column player typically play strategy (NN) that is not in the support of

the unique profile consistent with common knowledge of rationality, which is also the (unique) pure

Nash equilibrium of the game ((T, L)), and which is played with a frequency of 0.178. Nonetheless,

according to our measure, at least 70% of each player’s (row player’s and column player’s) actions

is consistent with common knowledge of payoff maximization.

In order to develop a theory that allows for boundedly rational behavior in normal form games,

we relax the assumptions that agents are rational at all times and that there is common knowledge

of rationality. We replace these with a substantially weaker assumption, namely that there exists

a lower bound on the probability that players assign at the interim level to their opponents being

rational, that is, to choosing actions that are payoff-maximizing given their own information. More

specifically, we study the behavior that arises, if in every state of the world, each player believes

that the other players are rational with a probability p or more. This is what we call joint p-belief

in rationality. Together with the existence of a common prior it defines the notion of p-rational

outcome, which is at the center of our paper. Characterizing the p-rational outcomes is tantamount

to characterizing behavior that is robust to making mistakes, arbitrary mistakes, that for any given

player can occur with frequency bounded above by 1 − p. Importantly, we put no restriction on

what it means to be non-rational, except that the rules of the game implicitly require agents to

select some action from the action space.4

After defining our central notion of p-rational outcomes, we give an explicit characterization in

Theorem 1 in terms of what we call (X, p)-correlated equilibria. These are correlated equilibria,

where incentive constraints hold on a subset (X ⊂ A) of the overall action space, and where actions

from this subset are believed to be played with certain minimum probability p ∈ [0, 1]. Our main

characterization theorem uses the (X, p)-correlated equilibria to relate the p-rational outcomes to

correlated equilibria and can thus be seen as giving a generalization of the main result of Aumann

(1987). The p-rational outcomes are described by linear inequalities consisting of incentive and

p-belief constraints that, for any p, always contain the correlated equilibria and such that, when

p = 1, they coincide with the set of correlated equilibria, and when p = 0 they make up the whole

space of distributions over action space A, ∆(A).

4As we discuss below, this is what separates this paper, from many other papers in the literature, that have looked
at specific ways in which agents can deviate from “full rationality” such as the models of k-level reasoning, cognitive
hierarchy or λ-quantal response, or theories of ε-equilibria and so on; see, e.g., Camerer and Ho (2015) for a discussion
of some of these theories. By contrast, we remain agnostic about how players behave when they are non-rational.
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In Theorem 2, we show that, besides being convex and compact, the set of p-rational outcomes

varies continuously in the underlying parameter p. We further show that when p is sufficiently

close to 1, then strategy profiles involving strategies that do not survive the iterated elimination

of strictly dominated strategies have probability at most 1 − p under the common prior. These

results confirm in a strong sense the robustness of the correlated equilibrium concept to bounded

rationality. Theorem 4 shows that our main characterization result extends directly to the case of

games of incomplete information using the notion Bayes correlated equilibrium of Bergemann and

Morris (2013). To the extent that their results show robustness of the Bayes correlated equilibria

to underlying private information structures, we can view our results as showing that the p-rational

Bayes outcomes we characterize (which coincide with the Bayes correlated equilibria when p = 1)

are robust to underlying bounded rationality of the players, provided it occurs with probability no

more than 1− p.
As a further application of our theory, we use the p-rational outcomes to obtain a unique

number p ∈ [0, 1] that in some sense quantifies proximity to common knowledge of rationality in

a normal form strategic interaction. Indeed, in interactions where the common prior assumption

can be expected to hold, for any given distribution of play, say π ∈ ∆(A), we can derive a unique

number p ∈ [0, 1], that gives the largest p such that each player plays actions that are consistent

with payoff maximization and in fact with common knowledge of payoff maximization, given π

with frequency at least p. This gives a direct measure of the maximum possible amount of actions

consistent with payoff maximization reflected in the distribution π. In those interactions, where the

common prior assumption does not hold, then players may be acting rational, but their rationality

is underestimated by p as it does not take into account possible inconsistencies in beliefs. Allowing

for this, one can show easily that p is a lower bound for the maximum possible amount of actions

consistent with payoff maximization and common knowledge of payoff maximization reflected in

the distribution π. The value p can be useful as a measure of minimum amount of rationality or

consistency of behavior in experimental data. We discuss this in more detail Section 4.

At a theoretical level, our analysis builds on the epistemic literature, centered around the con-

cepts of rationalizability, Bernheim (1984) and Pearce (1984), and correlated equilibrium, Aumann

(1974, 1987), that characterizes behavior under varying assumptions on players’ rationality and

their reciprocal beliefs in each others’ rationality. Tan and Werlang (1988) show that independent

rationalizability characterizes rationality and common certainty of rationality; and Brandenburger

and Dekel (1987) connect it to subjective correlated equilibria and correlated rationalizability. Us-

ing the notion of common p-belief (of Monderer and Samet (1989), who introduce the concept to

study robustness of equilibria to incomplete information regarding payoffs, and thus, do not account

for deviations from rationality), Hu (2007) introduces the notion of (correlated) p-rationalizability,

and shows that it characterizes rationality and common p-belief in rationality, for general p ≤ 1.5

He also shows that as p converges to 1, the set of p-rationalizable actions approaches the set of

5To highlight an important difference with our approach, notice that, within our finite, ex ante context, assuming
common p-belief of rationality and a common prior for any p > 0, amounts to the same as assuming common
knowledge of rationality (see Lemma 1).
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rationalizable actions.

For incomplete information games and within an ex ante context, Forges (1993, 2006) introduces

several notions of correlated equilibrium. Lehrer et al. (2010, 2013) clarify epistemically the role

of different assumptions and information structures and study their effect on equilibrium behavior.

Bergemann and Morris (2013) introduce a further broader notion of correlated equilibrium, which

they call Bayes correlated equilibrium, and which they show characterizes behavior robust to varying

information structures. Bayes correlated equilibrium is the equilibrium notion we use for our

incomplete information analysis. At the interim stage, starting from hierarchies of beliefs, Dekel et

al. (2007) introduce the notion interim correlated rationalizability and show that it characterizes

common certainty of rationality. Germano and Zuazo-Garin (2015), introduce the notion of interim

correlated p-rationalizability, and show that it characterizes common p-belief of rationality, for

general p ≤ 1. We view the ex ante and the interim approaches as providing complementary

results; the ex ante approach used in this paper making epistemically speaking more restrictive

assumptions (assuming besides a common prior also common knowledge of the model and the

epistemic assumptions it entails). To the extent that the additional assumptions are satisfied, the

ex ante approach provides an effective tool for characterizing resulting behavior and, in our case,

also yields sharper bounds and predictions as compared to the notions of p-rationalizability or

interim correlated p-rationalizability.

The paper is structured as follows. Section 2 defines the main epistemic concepts, including

the notion of p-rational outcome. Section 3 contains all the main results as well as some simple

examples. Section 4 shows how the theory implies a natural measure to quantify the degree of

“rational” behavior in strategic interactions. Section 5 contains some extensions, including to

games of incomplete information, and Section 6 provides some concluding remarks. All the proofs

are in the Appendix.

2 p-Rationality in Games

In this section we define several basic concepts used throughout the paper, and we also introduce

the notion of p-rational outcome, which is at the center of the paper. Properties and extensions of

the p-rational outcomes are studied in subsequent sections.

A strategic-form game with complete information is defined as a tuple G =
〈
I, (Ai)i∈I , (ui)i∈I

〉
,

where I is a finite set of players, and for any player i we have a finite set of actions Ai and a payoff

function ui : A→ R, where A =
∏
i∈I Ai denotes the set of action profiles. We say that distribution

π ∈ ∆ (A) is a correlated equilibrium of G (Aumann, 1987) if for any player i and any action ai ∈ Ai
the following incentive constraints are satisfied:

∑
a−i∈A−i

π (a−i; ai) [ui (a−i; ai)− ui (a−i; a
′
i)] ≥ 0

for any action a′i. We denote the set of correlated equilibria of G by CE (G).
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2.1 Knowledge, Rational Belief Systems and Correlated Equilibria

Following the epistemic framework by Aumann (1987), knowledge and beliefs are exogenously

modeled by a belief system, which consists of a list B =
〈
Ω, (Πi)i∈I , (αi)i∈I , µ

〉
, where (i) Ω is a

finite set of states of the world, and for any player i we have, (ii) Πi, a knowledge partition of Ω

where for any state ω we denote by Πi (ω) the element of the partition containing ω, (iii) a strategy

map αi : Ω → Ai measurable w.r.t. Πi, and (iv) a full support common prior µ ∈ ∆ (Ω).6 Note

that belief system B induces a distribution πB ∈ ∆ (A) given by πB(a) = µ (α = a) for any action

profile a.

An event is a collection of states E ⊆ Ω. For any player i and any state ω, player i’s differential

information is then represented by Πi (ω), and we say that player i knows event E ⊆ Ω at state ω

if Πi (ω) ⊆ E. Player i’s knowledge operator is thus defined as follows,

E 7→ Ki (E) = {ω ∈ Ω |Πi (ω) ⊆ E } , for any E ⊆ Ω.

Note that the measurability of the strategy maps implies that each player knows at every state

what action she chooses. We say that an event E ⊆ Ω is evident knowledge if E ⊆
⋂
i∈I Ki (E), and

for state ω, event C is commonly known at ω if there exists some evident knowledge E such that

ω ∈ E ⊆
⋂
i∈I Ki (E). We denote the event that C is commonly known by CK(C). Additionally,

the common prior and the knowledge partitions induce interim beliefs, conditional on differential

information, that is, for any state ω,

µ (E |Πi (ω)) =
µ (E ∩Πi (ω))

µ (Πi (ω))
, for any E ⊆ Ω.

For any state ω, we say that player i is rational at ω if her choice is optimal given her interim

beliefs, i.e., if

αi(ω) ∈ argmax
ai∈Ai

EB [ui (α−i; ai) |Πi (ω)] ,

where

EB [ui (α−i; ai) |Πi (ω)] =
∑

a−i∈A−i

µ (α−i = a−i |Πi (ω))ui (a−i; ai) .

The set of states in which player i is rational is denoted by Ri and as usual, R−i =
⋂
j 6=iRj

and R =
⋂
i∈I Ri, respectively, denote the event that every player but i is rational, and the event

that every player is rational. Note that in particular, a player knows at every state whether she is

rational or not.

Following Aumann and Dreze (2008), we say that a belief system B is rational if players are

rational at every state, i.e., if Ω = R. Note that this last assumption is just a technical abbreviation

for having common knowledge of rationality. Making use of all these elements, the main theorem

6Formally, a belief system B as defined here is analogous to a correlating device as defined by Dekel and Siniscalchi
(2015), who interpret B as a model of a signal structure. Since we are interested in epistemic aspects, at this respect
this paper follows Aumann’s (1987) interpretation of B.
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in Aumann (1987) shows that the distribution on A induced by a rational belief system B is a

correlated equilibrium of G.

2.2 p-Belief, p-Rational Belief Systems and p-Rational Outcomes

The notion of p-belief, introduced by Monderer and Samet (1989) is a standard tool for relaxing

knowledge. Formally, for probability p, player i’s p-belief operator is defined as,7

E 7→ Bp
i (E) = {ω ∈ Ω |µi (E |Πi (ω)) ≥ p} , for any E ⊆ Ω.

For probability p, event E and state ω we say that player i p-believes E at ω, if ω ∈ Bp
i (E), and

that E is p-evident if E ⊆
⋂
i∈I B

p
i (E). An event C is common p-belief at ω if there exists some

p-evident event E such that ω ∈ E ⊆
⋂
i∈I B

p
i (C). We denote the event that C is common p-belief

by CBp(C).

We now introduce our p-belief counterpart of rational belief systems mentioned above, p-rational

belief systems, whose central concept is joint p-belief in rationality. For reasons explained below in

Lemma 1, joint p-belief in rationality serves as the notion of approximate knowledge of rationality

that replaces in the present paper the notion of common knowledge of rationality assumed in

Aumann (1987) and elsewhere.

Definition 1 (Joint p-belief in rationality, p-rational belief system, p-rational outcome)

Let G be a game, p a probability, B a belief system, and π ∈ ∆ (A) a distribution. Then:

(i) Joint p-belief in rationality is the event that there is mutual p-belief in opponents’ rationality,

i.e. JpBR =
⋂
i∈I B

p
i (R−i).

(ii) We say that B is a p-rational belief system if there is joint p-belief in rationality at every

state, i.e. if JpBR = Ω.

(iii) We say that π is a p-rational outcome of G if there exists some p-rational belief system B

that induces π, i.e. such that π = πB. We denote the set of p-rational outcomes of G by

p-RO(G).

The following lemma establishes some elementary relations between notions regarding joint

p-belief in rationality, common knowledge of rationality, and common p-belief in rationality, and

hence, the relation between rational belief systems as the ones studied by Aumann (1987) and the

p-rational belief systems introduced above.

Lemma 1 Let G be a game, p a probability, and B a belief system. Then:

(i) If p > 0, there is rationality at every state if and only if there is common p-belief in rationality

at every state.

7Note that in this context of finiteness and full support priors, 1-belief equals knowledge.
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(ii) If there is a common prior and there is joint p-belief in rationality at every state, then,

µ (CBp (R)) ≥ µ (R) ≥ p2.

(iii) If p = 1, then there is common p-belief in rationality at every state if and only if there is joint

p-belief in rationality at every state.

If our aim is to replace the assumption that there is common knowledge of rationality at every

state by a less restrictive one involving some p-belief in rationality, the lemma above suggests that

joint p-belief in rationality at every state could be a sensible choice, since (i) common p-belief in

rationality at every state would lead to a model analogous to the one already considered before (or

without) introducing p-beliefs,8 (ii) although joint p-belief in rationality at every state is defined as

a joint and not necessarily common belief, it nonetheless implies common p-belief in rationality with

probability p2, and, (iii) as p converges to 1, joint p-belief in rationality at every state converges

to common 1-belief in rationality at every state (or common certainty of rationality at every state)

and therefore, to common knowledge of rationality. Note that in particular, in a p-rational belief

system, there is common knowledge of joint p-belief in rationality at every state.

The interest of p-rational outcomes lies in the fact that they capture in a precise sense behavior

that is robust to bounded rationality. Our aim is to provide a strategic characterization of p-rational

outcomes, that is, of the distributions over strategy profiles that arise when there is joint p-belief

in rationality at every state, as is done in Aumann (1987) for the case in which rationality holds

at every state.9

3 The Set of p-Rational Outcomes

In this section, we characterize the p-rational outcomes introduced in the previous section. To do

this, we first introduce the notion of (X, p)-correlated equilibrium that generalizes the notion of

correlated equilibrium, and that may be of interest in its own right. After providing our main

characterization result, we prove additional properties of the set of p-rational outcomes, and also

present some simple examples.

3.1 Strategic Characterization of p-Rational Outcomes

The main objective in this paper is to characterize the set p-RO (G). Before doing so we need to

first introduce the following notion of (X, p)-correlated equilibrium that generalizes the notion of

correlated equilibrium and that plays a key role in all our characterizations.

8The first result of Lemma 1 implies the equivalence between rationality and common p-belief in rationality and
may seem striking at first, however, it should be noted that it follows from the fact that certain assumptions are
applied to every state. Since the set of all possible states is structurally commonly known, so is any event assumed
to hold in every state. In particular, if rationality holds at every state, rationality is commonly known, and indeed
commonly p-believed.

9Another natural alternative, suggested to us by Dov Samet, would be to consider a common prior that satisfies
µ (CBp (R)) ≥ 1− ε for some ε > 0. This is a weakening of our notion of JpBR at every state in that it imposes less
structure on players’ beliefs, nonetheless it appears to be computationally less tractable; we return to this later; see
Remark 1 in Section 6.
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Definition 2 ((X, p)-Correlated Equilibrium) Let G be a game, let X =
∏
i∈I Xi ⊆ A, and

let p be a probability. We say that distribution π ∈ ∆ (A) is a (X, p)-correlated equilibrium of G if

the following conditions are satisfied:

(i)
∑

a−i∈A−i
π (a−i; ai) [ui (a−i; ai)− ui (a−i; a

′
i)] ≥ 0 for any player i, any ai ∈ Xi and any

action a′i ∈ Ai (incentive constraints).

(ii) π (X−i × {ai}) ≥ pπ (A−i × {ai}) for any player i and any ai ∈ Ai (p-belief constraints).

We denote the set of (X, p)-correlated equilibria of G by (X, p)-CE (G).

This notion weakens the usual incentive constraints in the following sense. Fix for each player

i a subset Xi ⊆ Ai and a probability p ∈ [0, 1] such that the distribution on the overall set of

action profiles A satisfies (i) standard incentive constraints for all actions in Xi, and, (ii) p-belief

constraints, meaning each player assigns probability at least p to the other players all choosing action

profiles from X−i =
∏
j 6=iXi. In words, the (X, p)-correlated equilibria allow to relax incentive

constraints on actions not in the Xi’s, while restricting the probability with which this occurs to

1− p.10 Note that CE(G) ⊆ (X, p)-CE(G) for any X ⊆ A and p ∈ [0, 1], and that, if X = A and

p = 1, or just X = A, then CE (G) = (X, p) -CE (G).

The following definition generalizes the idea of doubled game in Aumann and Dreze (2008). For

any n ∈ N we denote N = {0, 1 . . . , n− 1}; as we will see, it is the cases n = 2 and n = 3 that play

a role in our epistemic characterization results.

Definition 3 (n-Game) Let G =
〈
I, (Ai)i∈I , (ui)i∈I

〉
be a game and n ∈ N. The n-game is the

tuple nG =
〈
I, (nAi)i∈I , (un,i)i∈I

〉
, where for each player i,

(i) nAi =
∏
k∈N Ai,(k), where for each k ∈ N , Ai,(k) = (Ai × {k}), is player i’s set of pure

actions. We denote a generic element of nA =
∏
i∈I nAi by (a, ν), where ν ∈ N I specifies

which copy of Ai in nAi each player i’s pure action belongs to.

(ii) un,i is player i’s payoff function, where for each (a, ν) ∈ nA, un,i (a, ν) = ui (a).

In this context when writing the action spaces of the game nG as nAi = Ai ×N we mean that

for each player there are n copies of the original action space Ai. Note that any distribution on the

action profiles of nG, π̂ ∈ ∆ (nA), induces a distribution on the action profiles of G in a natural

way by taking the marginal on A, that is, π = margAπ̂. For any subset Y ⊆ ∆ (nA) we denote by

margA[Y ] = {margAπ̂ where π̂ ∈ Y }. These elements provide all the tools required to go on with

the characterization of the set of p-rational outcomes of the game G. The following theorem shows

that these can be expressed in terms of computationally simple (X, p)-correlated equilibria of the

doubled game 2G.

10Strictly smaller sets Xi ( Ai can reflect agents that follow a mediator’s advice without questioning the “ratio-
nality” of doing so (e.g., in the sense of a social norm), or also agents that simply act irrationally in the sense of
making mistakes (for whatever reason and in whichever way). The belief constraints can reflect bounds or statistical
regularities with which deviations from “rationality” are roughly known to occur.
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Theorem 1 Let G be a game and p a probability. Then, π ∈ ∆ (A) is a p-rational outcome of G

if and only if it is the distribution in ∆ (A) induced by some (A(0), p)-correlated equilibrium of 2G.

Formally,

p-RO (G) = margA
[(
A(0), p

)
-CE (2G)

]
,

This characterizes behavior in a game G under joint p-belief of rationality and a common prior,

or, in other words, all behavior in G that is robust to bounded rationality as captured by the notion

of p-rationality. The intuition for the proof is as follows. A doubled game can be seen as splitting

players’ actions into ones chosen by the rational type (in Ai,(0)) and by the irrational type (in Ai,(1)).

The (A(0), p)-correlated equilibria with are distributions on ∆(2A) that by construction satisfy the

incentive constraints just for the rational types, and where the p-belief constraints ensure that all

players believe the others play rationally with probabilities p or more. Taking marginals, finally,

ensures that the distributions are on ∆(A).11

3.2 Further Properties of p-Rational Outcomes

The next two results further characterize the structure and nature of the set of p-rational outcomes.

The first result in this paragraph strengthens this by showing that as p converges to 1 the p-rational

outcomes converge to the set of correlated equilibria. But more generally it also shows that the

p-rational outcomes always vary continuously in p, at any p ∈ [0, 1]; and go from being the entire

set ∆(A) when p = 0 to the set of correlated equilibria when p = 1.

Theorem 2 Let G be a game and p a probability. Then the set of p-rational outcomes of the game

G is a nonempty, convex, compact set that varies continuously in p.12 Moreover, for p = 0, we

have 0-RO(G) = ∆(A), for p = 1, we have 1-RO(G) = CE(G), and for any p ∈ [0, 1), we have

dim[p-RO(G)] = dim[∆(A)].

The very last statement further shows that all strategies can be in the support of p-rational

outcomes whenever p < 1. The next result qualifies this by showing that if p is close enough 1,

then strategy profiles involving strategies that do not survive the iterated elimination of strictly

dominated strategies get a total weight of at most 1−p. This can be interpreted as the p-rationality

counterpart of the fact that strategies that do not survive the iterated elimination of strictly dom-

inated strategies are not in the support of correlated equilibria. In what follows we denote by A∞

the set of all strategy profiles that survive the iterated elimination of strictly dominated strategies

and denote its complement in A by (A∞)c = A \A∞.

Proposition 1 Let G be a game. Then there exists p̄ ∈ (0, 1) such that, for any p ∈ [p̄, 1], we have

that, if π ∈ p-RO(G), then π((A∞)c) ≤ 1− p.

11Clearly, due to the symmetric role of the different copies of the action spaces of 2G, the theorem would also hold
for X = A(1), whereby only one of the two copies of players’ actions satisfies the incentive constraints.

12A correspondence is continuous if it is both upper- and lower hemicontinuous; see, e.g., Ch. 17 in Aliprantis and
Border (2006) for further details and related definitions.
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The above results confirm in a precise sense the robustness of the correlated equilibrium bench-

mark when weakening the underlying assumption of common knowledge of rationality to joint

p-belief of rationality.

3.3 Examples

The following examples illustrate the p-rational outcomes for two simple 2× 2 games.

3.3.1 Dominance Solvable Game

Consider the following game GD, solvable by strict dominance with corresponding augmented game

2GD,

GD ≡
L R

T 2,2 1,1

B 1,1 0,0

, 2GD ≡

(L, 0) (R, 0) (L, 1) (R, 1)

(T, 0) 2,2 1,1 2,2 1,1

(B, 0) 1,1 0,0 1,1 0,0

(T, 1) 2,2 1,1 2,2 1,1

(B, 1) 1,1 0,0 1,1 0,0

.

To compute the p-RO(GD) we compute the (a(0), p)-CE(2GD). For this notice that the strate-

gies (B, 0) and (T, 1) of the row player and (R, 0) and (L, 1) of the column player are strictly

dominated, so that the remaining constraints that need to be satisfied are the p-belief constraints,

and one obtains,

p-RO(GD) =

{
π ∈ ∆(A)

∣∣∣∣∣ πTL ≥ p1(πTL + πTR), πBL ≥ p1(πBL + πBR)

πTL ≥ p2(πTL + πBL), πTR ≥ p2(πTR + πBR)

}
.

Figures 3 and 4 show the set p-RO(GD) for p = 0.95 and p = 0.80 together with respectively the

ε-neighborhood of the set of correlated equilibria of GD, Nε(CE(GD)), and the set of ε-correlated

equilibria, ε-CE(GD),13 both with ε = 0.20. Clearly the three sets are all distinct.

3.3.2 Matching Pennies Game

Consider the following version GMP of matching pennies, with corresponding doubled game 2GMP ,

GMP ≡
L R

T 1,0 0,1

B 0,1 1,0

, 2GMP ≡

(L, 0) (R, 0) (L, 1) (R, 1)

(T, 0) 1,0 0,1 1,0 0,1

(B, 0) 0,1 1,0 0,1 1,0

(T, 1) 1,0 0,1 1,0 0,1

(B, 1) 0,1 1,0 0,1 1,0

.

13In general, this is the set of probability distributions π ∈ ∆(A) that satisfy the incentive constraints for correlated
equilibria with a slack of ε, analagous to Radner’s ε-Nash equilibria, formally, π is an ε-correlated equilibrium (ε-CE)
if for any i ∈ I, ∑

ai∈Ai

max
a′i∈Ai

∑
a−i∈A−i

π(ai, a−i)
(
ui(a

′
i, a−i)− ui(ai, a−i)

)
≤ ε.

10



Figure 3: 0.95-RO(ΓD) (blue), 0.80-RO(ΓD) (red), N0.10CE(ΓD) (green)

Figure 4: 0.95-RO(GD) (blue), 0.80-RO(GD) (red), 0.10-CE(GD) (green)

11



The set p-RO(GMP ) is now somewhat more tedious to characterize, nonetheless we know it is

a compact, convex polyhedron around π̄ = (1
4 ,

1
4 ,

1
4 ,

1
4), which converges to π̄ as p converges to 1.

In particular it contains profiles that do not yield the agents their value of the game, but rather

something in a neighborhood thereof. Figures 5 and 6 show the set p-RO(GMP ) for p = 0.95

together with the ε-neighbourhood of the set of correlated equilibria, Nε(CE(GMP )), and the set of

ε-correlated equilibria, ε-CE(GMP ), both with ε = 0.10, respectively. Again, the sets p-RO(GMP )

and Nε(CE(GMP )) and ε-CE(ΓMP ) are visibly distinct.

4 On p as an Empirical Measure of Rationality

In the previous section we computed, for a given game G and for a given value p ∈ [0, 1], the set of all

distributions of play π ∈ ∆(A) making up the p-rational outcomes. In this section, we go the other

way around and compute for a game G and for a given distribution of play π, the unique largest

value of p, say p, that is compatible with π being a p-rational ourcome. We then look again at games

played in the field or in experimental settings and compute, for the observed distributions of play,

the unique largest value p that is consistent with the empirical distribution of play πemp. We argue

that p can be interpreted as a lower bound measure for the degree of “rationality” understood as

possible payoff-maximizing behavior that is compatible with the empirical frequency of play πemp.

We now make this more precise.

Recall that from Theorem 2 it follows that the set of p-rational outcomes is always compact and

that it varies continuously in p. Moreover, since it goes from being the set of correlated equilibria

(when p = 1) to being the entire set ∆(S) (when p = 0), it immediately follows that, for any given

distribution of play π ∈ ∆(A), for any finite normal form game G, it is possible to compute a

unique p ∈ [0, 1] such that:

p = max {p ∈ [0, 1] : π ∈ p-RO(G)} .

By definition of the p-rational outcomes, p is also the largest value of p consistent with common

knowledge of joint p-belief of rationality for the distribution π. In particular, this means that at

the distribution π, every player chooses actions that are consistent with payoff maximization with

probability at least p. (Notice that payoff-maximizing here is relative to some p-rational belief

system B deduced from π, see Section 2 for the definitions.) Moreover, given Theorem 1, the

p-rational outcomes are defined by finitely many linear inequalities so that the value p is relatively

easy to compute.

Threrefore the unique value p ∈ [0, 1] defined above can be interpreted loosely, and in a sense

to be further qualified below, as the largest level of rationality in the sense of behavior compatible

with payoff-maximization given the distribution of play π. This can be used to derive a unique

and easily comparable number for any observed finite strategic interaction. In particular, it can

be applied to various games played in experimental settings, also incomplete information games.

12



Figure 5: 0.95-RO(GMP ) (blue), N0.10CE(GMP ) (green)

Figure 6: 0.95-RO(GMP ) (blue), 0.10-CE(GMP ) (green)
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This differs from other notions in the literature such as the level λ of fitted λ-quantal response

models, which is not comparable generally speaking across games, without normalizing the payoffs;

similarly, the mode level k of a fitted k-level model also does not always give a clear-cut value, as

it generally depends on the specified level 0; the approach also typically consists of a distribution

of levels k within the population.14 We discuss some experimental data and make an important

caveat to our measure p that stems from the assumption of a common prior that is implicit in our

theory.

Consider again the penalty kick game (GPK) based on penalty kicks shot by professional soccer

players in European leagues, represented in Figure 1 from the Introcuction. For the empirical fre-

quencies provided, we compute a value of p ≈ 0.96 confirming its closeness to the unique equilibrium

of the game.15 As a second closely related example, consider the following two matching pennies

games with similar strategic characteristics as the penalty kicks game, and that were played in a

lab.16 The first is a standard (symmetric) matching pennies games (GMP ) and the second is an

asymmetric version (GAMP ).

GMP ≡
L R

T 80,40 40,80

B 40,80 80,40

, πempMP ≈
L R

T 0.230 0.250

B 0.250 0.270

,

GAMP ≡
L R

T 320,40 40,80

B 40,80 80,40

, πempAMP ≈
L R

T 0.154 0.806

B 0.006 0.034

,

Figure 7: Matching pennies (p ≈ 0.96) and asymmetric matching pennies (p ≈ 0.8)

As Goeree and Holt (2001) explain, the games are chosen such that while the original game “con-

forms nicely to predictions of Nash equilibrium or relevant refinement,” a change in the payoff

structure produces a “large inconsistency between theoretical predictions and observed behavior.”

Therefore, while behavior is close to the predicted (unique) Nash equilibrium in the basic game

14Camerer and Ho (2015) contains a recent discussion of these different models; Wright and Leyton-Brown (2014)
measure and compare quantitatively the predictive performance of various models (including k-level and λ-quantal
response models) across a large sample of experiments. Aumann (1992) proposes a measure of “irrationality” using
both probabilities and forgone payoffs; implicitly, our measure also takes into account forgone payoffs.

15To give a sense of what the number means in this case, we provide the underlying probability distribution
π2G
PK ∈ ∆(2A) of the doubled game, that supports the value p ≈ 0.96:

π2G
PK ≈

(JL, 0) (JR, 0) (JL, 1) (JR, 1)
(KL, 0) 0.166 0.216 0 0.016
(KR, 0) 0.252 0.348 0 0
(KL, 1) 0.002 0 0 0
(KR, 1) 0 0 0 0

.

Essentially, since the entry at ((KL, 0), (JR, 1)) is positive, this indicates that the goalkeepers jumped right a little
more than optimal, and since the entry ((KL, 1), (JR, 0)) is (barely) positive, this indicates that the kickers kicked left
very slightly more than optimal. The remaining entries with (KL, 0), (KR, 0), (JL, 0), and (JR, 0) are all consistent
with rationality.

16The games and frequencies of play are taken from Goeree and Holt (2001).
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(GMP ), it is less close in the asymmetric version (GAMP ). Again, our theory allows to quantify

the level of “rationality” and obtains values of p ≈ 0.96 for the first interaction (GMP ) and a level

of p ≈ 0.80 for the second one (GAMP ). Notice that while the asymmetric version (GAMP ) was

“designed” to generate behavior visibly inconsistent with Nash behavior, the level of “rationality”

we find (p ≈ 0.80) is significantly above what we would obtain if players had been choosing their

strategies uniformly at random (p ≈ 0.25).17

As a third example, consider the games depicted in Figure 8.18 The first one is solvable in two

rounds of strict dominance, whereas the second one is solvable in three rounds.

GDS2 ≡
L R

T 75,51 42,27

B 48,80 89,68

, πempDS2
≈

L R

T 0.791 0.066

B 0.132 0.011

,

GDS3 ≡

L R

T 53,86 24,19

M 79,57 42,73

B 28,23 71,50

, πempDS3
≈

L R

T 0 0

M 0.181 0.604

B 0.050 0.165

.

Figure 8: Games solvable by two rounds (p ≈ 0.86) and three rounds (p ≈ 0.79) of strict

dominance

In particular, both games have a unique outcome consistent with common knowledge of rationality,

which are (T, L) for GSD2 , played with frequency 0.79, and (B,R) for GSD3 , played with frequency

0.165. Our computed level of “rationality” is p ≈ 0.86 for the first and p ≈ 0.79. The lower value

of p in GSD3 compared with that of GSD2 is consistent with the intuition that coordination that

requires higher levels of beliefs (in this case third order beliefs versus second order) is also more

difficult to obtain.

Finally, consider again the Kreps game GKreps represented in Figure 2 in the Introduction. Here

players typically play a strategy (NN) that is not in the support of the (unique) Nash equilibrium

of the game. Although the strategy is not part of any Nash equilibrium, it nonetheless can be

“rationalized” to some extent, such that by our measure, although the Nash equilibrium profile is

played with a frequency of 0.178, the interaction has a level of “rationality” of p ≈ 0.7.

In the above games, the assumption of rationality and higher order beliefs in rationality imply a

unique outcome, so that the assumption of a common prior is implicit in predicting the equilibrium

outcome. For such games, our measure p is indeed likely to approximately pick up the degree of

“rationality” in the sense of the maximum level p such that every player plays actions consistent

17In a recent article, Martin et al. (2014) study chimpanzee behavior in matching pennies games and compare
it with human behavior. They suggest that the chimpanzees’ choices are closer to Nash equilibrim than humans’,
by calculating standard deviations of observed choices from the Nash prediction. This is a case where our measure
provides a reasonable alternative for assessing and comparing levels of rationality. Notice that equal Euclidean
distance from the equilibrium distribution within the strategy simplex need not at all imply equal p and vice versa.

18These are taken from Costa-Gomes et al. (2001). We are grateful to Miguel Costa-Gomes for kindly providing
us the data for these experiments.
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with payoff maximization with probability at least p, at the empirical distribution of play πemp.19

On the other hand, in games with multiple equilibria, such as the coordination game below, the

assumption of a common prior becomes crucial in interpreting the value p. Consider the following

simple (battle of the sexes) coordination game:

GBS ≡
L R

T 2,1 0,0

B 0,0 1,2

, πBS =

L R

T 0 0

B 1 0

.

For the extreme case where players play (L,B) with probability 1, this corresponds to a value

p = 0. At the same time, if we do not assume a common prior, the profile (L,B) is consistent with

common knowledge of rationality. (Player 1 believes player 2 will play R, and player 2 believes

player 1 plays T ; it is a rationalizable profile). In this case, our measure, confounds the two

possible sources of “non-rationality,” namely, non-payoff-maximizing behavior that is due to lack of

rationality and higher order beliefs in rationality or behavior that is due to lack of a common prior.

Without knowing whether or not the assumption of a common prior is met, we cannot separate

the two, and so the resulting measure p cannot be interpreted as a measure of “rationality” in the

sense of an approximate maximum probability of payoff-maximizing behavior at the distribution

of play πemp.20 However, and this is important for many cases of empirical relevance, the value

p can nonetheless be interpreted as a measure of “rationality” in the sense of a lower bound on

the probability of payoff-maximizing behavior at the distribution of play πemp. In other words,

it remains true that a computed value p implies that, at π, every player chooses actions that are

consistent with payoff maximization with probability at least p, whether or not there is a common

prior.21 The only difference is that without a common prior this need no longer be the maximal

such value. As the above example shows, the amount of payoff-maximizing behavior may be above

p for all players; this cannot happen if there is a common prior.

5 Some Extensions

In this section, we extend our analysis of p-rational outcomes and relate them to further concepts

studied in the literature. First, we relate them to the notion of rational expectations of Aumann

and Dreze (2008) and compute what payoffs to expect at p-rational outcomes. Then, we extend

our basic framework to games of incomplete information and relate the resulting p-rational Bayes

outcomes to the notion of Bayes correlated equilibrium of Bergemann and Morris (2013).

19The degree of approximation improves the closer the empirical distribution is to the unique equilibrium and the
higher the value p is. The Kreps game is a case, where the unique equilibrium is played with low probability and
some players may anticipate opponents playing the NN action. Here the prior may be further from the one implied
by common belief in rationality.

20Kneeland (2013) estimates for an interesting class of “ring games” the degrees to which agents are rational,
hold beliefs of opponents being rational, and consistency of beliefs, and deduces that deviations from “equilibrium
behavior” are largely due to inconsistency of beliefs.

21To see this, notice that the computation of the largest p consistent with payoff maximization and no further
constraint must yield a no smaller p than the same computation with the additional constraint of the common prior
assumption.
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5.1 p-Rational Expectations

Following Aumann and Dreze (2008), we can analyze expected payoffs or expectations in a game

from the point of view of a fixed player who already gained differential information and has therefore,

interim beliefs.

Definition 4 (p-Rational Expectation) Let G be a game, let p be a probability, and let B be a

p-rational belief system for G. Then a p-rational expectation in G is an interim expected payoff of

some player. We denote the set of all such p-rational expectations of G by p-RE (G).

The following result provides the joint p-belief of rationality counterpart of Aumann and Dreze’s

characterization:

Theorem 3 Let G be a game and p a probability. Then the p-rational expectations in G are the

expected payoffs of the
(
A(0), p

)
-correlated equilibria of the tripled game 3G, conditional on playing

an action in 3Ai. Moreover, the p-rational expectations of players acting rationally at the interim

stage are the expected payoffs of the
(
A(0), p

)
-correlated equilibria of the tripled game 3G, conditional

on playing an action in Ai,(0).

5.2 Games with Incomplete Information

We now extend the characterization of p-rational behavior to games of incomplete information.

5.2.1 Preliminaries

We follow the formalization in Lehrer et al. (2010, 2013) and Bergemann and Morris (2013) that

splits the game with incomplete information in two components so that strategic and informational

aspects can be studied separately. The first one is a basic game G =
〈
I,Θ, ψ, (Ai)i∈I , (ui)i∈I

〉
,

where: I is a finite set of players, Θ is a finite set of states of nature, ψ ∈ ∆ (Θ) is a common prior

with full support, and for any player i we have a finite set of actions Ai, and a payoff function

ui : A × Θ → R, where A =
∏
i∈I Ai is the set of action profiles. The second component is an

information structure S =
〈
(Ti)i∈I , σ

〉
, where each Ti is a finite set of signals (or types) for player

i, and we have signal distribution σ : Θ → ∆ (T ), where T =
∏
i∈I Ti is the set of signal profiles.

The game proceeds then as follows:

(i) A states of nature θ is randomly drawn with probability ψ (θ).

(ii) A profile of types t is randomly drawn with conditional probability σ (t|θ) = σ (θ) (t).

(iii) Each player i, who privately receives signal ti, chooses an action ai and gets payoff ui ((a−i; ai) , θ).

In this context, the concept of belief system is extended in order to be able to include payoff-

uncertainty and signal structures, so that we have a list B =
〈
Ω, (Πi)i∈I , µ, κ, (αi)i∈I , (τi)i∈I

〉
,

where (i) Ω is a finite set of states of the world, (ii) each Πi is a partition of Ω, (iii) κ : Ω → Θ
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is a random variable that assigns a state of nature to each state of the world, and (iv) for any

player i we have random variables αi : Ω → Ai and τi : Ω → Ti, both measurable w.r.t. Πi,

that respectively determine the action and signal corresponding to player i at each state of the

world. Following Bergemann and Morris (2013), we assume that a belief model always satisfies the

following consistency condition:

µ (τ = t, κ = θ) = ψ(θ)σ (t |θ ) for any (t, θ) ∈ T ×Θ.

Rationality is defined as the event that players choose optimally given their private information.

Thus,

Ri = {ω ∈ Ω |∨ai∈AiE [ui ((α−i, ai) , κ) |Πi (ω) ] ≤ E [ui ((α−i, αi (ω)) , κ) |Πi (ω) ]}

represents the event that player i is rational. Again, we denote R−i =
⋂
j 6=iRj and R =

⋂
i∈I Ri.

For each player i, both p-belief operators and joint p-belief in rationality are defined exactly as

done in Subsection 2.2, and again, for any p ∈ [0, 1] we say that a belief system is p-rational, if

joint p-belief in rationality holds at every state.

Then, for game with incomplete information (G,S) and probability p, distribution π ∈ ∆ (T ×A×Θ)

is a p-rational Bayes outcome of G if there is some belief system B satisfying consistency and joint

p-belief in rationality such that π (t, a, θ) = µ (τ = t, α = a, κ = θ) for any (t, a, θ) ∈ T ×A×Θ. We

denote the set of p-rational Bayes outcomes of (G,S) by π ∈ p-RBO (G,S).

5.2.2 Strategic Characterization of p-Rational Bayes Outcomes

The characterization of the set of p-rational Bayes outcomes follows a similar pattern as the char-

acterization of p-rational outcomes of a game with complete information: we first define a notion

analogous to that of a correlated equilibrium for games with incomplete information, and second,

we define the n-basic game.

Definition 5 ((X, p)-Bayes Correlated Equilibrium) Let (G,S) be a game with incomplete

information, let X =
∏
i∈I Xi ⊆ A, and let p be a probability. We say that distribution π ∈

∆ (T ×A×Θ) is a (X, p)-Bayes correlated equilibrium of (G,S) if the following conditions are

satisfied:

(i) π (A× {(t, θ)}) = ψ (θ)σ (t|θ) for any (t, θ) ∈ T ×Θ (consistency constraints).

(ii)
∑

(a−i,θ)∈A−i×Θ π (T−i × {(ti, a−i, ai, θ)}) [ui (a−i, ai, θ)− ui (a−i, a
′
i, θ)] ≥ 0 for any player i,

any ai ∈ Xi, any a′i ∈ Ai and any ti ∈ Ti (incentive constraints).

(iii) π (T−i ×X−i ×Θ× {(ti, ai)}) ≥ pπi (T−i ×A−i ×Θ× {(ti, ai)}) for any player i, any ai ∈ Ai
and any ti ∈ Ti (p-belief constraints).

We denote the set of (X, p)-Bayes correlated equilibria of (G,S) by (X, p)-BCE (G,S).
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It is easy to see that for any game with incomplete information (G,S), (X, p)-BCE (G,S)

where p = 1 is precisely the set of Bayes correlated equilibria as defined by Bergemann and Morris

(2013).22 The only remaining element to proceed with the characterization result is a generalization

of the n-game:

Definition 6 (n-Basic Game) Let G =
〈
I,Θ, ψ, (Ai)i∈I , (ui)i∈I

〉
be a basic game and let n ∈ N,

then the n-basic game is the tuple nG =
〈
I,Θ, ψ, (nAi)i∈I , (un,i)i∈I

〉
, where for each player i,

(i) nAi =
∏
k∈N Ai,(k), where for each k ∈ N , Ai,(k) = (Ai × {k}), is player i’s set of pure

actions. We denote a generic element of nA =
∏
i∈I nAi by (a, ν), where ν ∈ N I specifies

which copy of Ai in nAi each player i’s pure action belongs to.

(i) nAi =
∏
k∈N (Ai × {k}), is player i’s set of pure actions. We denote a generic element of

nA =
∏
i∈I nAi by (a, ν), where ν ∈ N I specifies which copy of Ai in nAi each player i’s pure

action belongs to.

(ii) un,i is player i’s payoff function, where for each (a, ν, θ) ∈ nA×Θ, un,i (a, ν, θ) = ui (a, θ).

Note that a distribution π∗ ∈ ∆ (T × nA×Θ) naturally induces a distribution π ∈ ∆ (T ×A×Θ)

by setting π (t, a, θ) = π∗
(∏

i∈I ({ai} ×N)× {(t, θ)}
)

for any (t, a, θ) ∈ T ×A×Θ. For any subset

Y ⊆ ∆ (T × nA×Θ), define margT×A×Θ[Y ] =
{

margT×A×Θπ̂ where π̂ ∈ Y
}

. The characteriza-

tion result in this case becomes:

Theorem 4 Let (G,S) be a game with incomplete information and let p ∈ [0, 1]I . Then, π ∈
∆ (T ×A×Θ) is a p-rational Bayesian outcome of (G,S) if and only if it is the distribution in

∆ (T ×A×Θ) induced by some (A(0), p)-Bayes correlated equilibrium of (2G,S). Formally,

p-RBO (G,S) = margT×A×Θ

[(
A(0), p

)
-BCE (2G,S)

]
,

This is parallel to our characterization result for the complete information case. Finally, con-

sider a game with incomplete information (G,S) and epistemic model E. Besides consistency

and joint p-incentive compatibility, and following Forges (1993, 2006), we can additionally im-

pose the following conditions on E: (1) µ (κ = θ |∨i∈IΠi ) = µ (κ = θ |τ ) for any θ ∈ Θ, and (2)

µ (τ−i = t−i, κ = θ |Πi ) = µ (τ−i = t−i, κ = θ |τi ) for any t−i ∈ T−i, and θ ∈ Θ and any i ∈ I. It is

then easy to see that if we impose only (1), or both (1) and (2), the respective distributions induced

in A×Θ are p-belief versions of Forges’ Bayesian solution and belief invariant Bayesian solution.

6 Concluding Remarks

We conclude with a few remarks.

22In such a case p = 1, the p-beliefs constraints only hold if X = supp (margAπ), and thus, the incentive constraints
are satisfied if and only if π satisfies what Bergemann and Morris call obedience.
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Remark 1 ((p, q)-Rational Outcomes) An important objective of the paper was to put as

few restrictions on non-rational behavior as possible, so as to cover all sorts of departures from

rationality. However, throughout the paper we implicitly assumed – as part of the notion of JpBR

– that players always believe the other players are rational with probability p or more; thus we

indirectly assumed that all players and all player types have the same p whether or not they are

rational at a given state. This is consistent with all players making mistakes with same lower

bound probabilities and always being aware of others making mistakes with these lower bound

probabilities. Strictly speaking though, it restricts behavior of rational and non-rational types.

A more general benchmark – also in line with our motivation – is to allow for different beliefs in

rationality for different players and for different types (whether rational or non-rational at a given

state). In particular, we can assume that each player i believes the other players are rational with

probability pi or more when rational and believes others are rational with probability qi or more

when not rational; importantly, one can drop any restriction on the non-rational types and directly

set qi = 0 for all i ∈ I, which would allow to not impose any belief constraints on non-rational

types.

This can be formalized by assuming a vector (p, q) ∈ [0, 1]2I , where the components associated to

states in which the agents are rational are represented by the vector of probabilities p ∈ [0, 1]I , while

the components associated to the non-rational states are represented by the vector of probabilities

q ∈ [0, 1]I . This leads to the more general (p, q)-rational outcomes of G ((p, q)-RO(G)). These are

again marginals of
(
A(0), (p, q)

)
-correlated equilibria of 2G, in that they are distributions satisfying

the same conditions as the
(
A(0), p

)
-CE(2G) except that the p-belief constraints now hold with

probabilities pi (instead of the fixed p) for all rational types of player i, and hold with probability

qi (instead of the same p) for all non-rational types of player i. That is we replace the original

p-belief constraints ((ii)) with the more general (p, q)-beliefs constraints of the form,

(ii′) π (X−i × {ai}) ≥ piπ (A−i × {ai}) for any player i and any ai ∈ Ai,(0).

(ii′′) π (X−i × {ai}) ≥ qiπ (A−i × {ai}) for any player i and any ai ∈ Ai,(1).

Thus, whenever pi ≤ p and qi ≤ p for all i, we have that
(
A(0), p

)
-CE(2G) ⊂

(
A(0), (p, q)

)
-

CE(2G) ⊂
(
A(0), (p,0)

)
-CE(2G) and therefore,

p-RO(G) ⊂ (p, q)-RO(G) ⊂ (p,0)-RO(G) for max{pi, qi : i ∈ I} ≤ p.

While the correspondence (p, q)-RO(G) maintains the basic topological properties of the corre-

spondence p-RO(G), it need not converge to the set of correlated equilibria of G as (p, q)→ (1,0),

i.e., if only the rational types believe opponents are rational with probability 1, but does so if one

also requires (p, q)→ (1,1). This can be seen already in Example 1. A (1,0)-rational belief system

can be very far from a (1,1)-rational belief system in that the former need not put any restriction

on the total mass of states where all players are rational µ(R).23

23To see that in a (1,0)-rational belief system the total mass of states where agents are non-rational is unrestricted,
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The alternative notion of approximate knowledge of rationality requiring µ(CBp(R)) > 1−ε, for

ε > 0, (instead of JpBR), is more flexible with respect to the players’ beliefs in that it only restricts

the total mass of common p-belief and hence does not specify directly what beliefs individual players

and types have. A characterization of p-rational outcomes with this definition is possible along the

lines of our Theorem 1, but involves more complicated incentive and p-belief constraints that are

imposed over all possible subsets and permutations of players. We leave such a characterization for

future work.

Remark 2 (Non-Common Priors) Throughout the paper we assumed the existence of a common

prior (CP ). This together with the notion of joint p-belief of rationality allowed us to derive

relatively stringent restrictions on behavior. It is natural to ask, what happens if the common prior

assumption is relaxed. As it turns out, under subjective or non-common priors, joint p-belief of

rationality puts no restrictions on possible behavior – even when p = 1.24 This provides a stark

contrast with the behavior under common certainty of rationality and also common p-belief of

rationality as in, respectively, Aumann (1974); Bernheim (1984); Brandenburger and Dekel (1987);

Pearce (1984); Tan and Werlang (1988) and Börgers (1994); Hu (2007); Germano and Zuazo-Garin

(2015), and in a sense further highlights the stringency of the common prior assumption.25

Remark 3 (Comparison with Further Solution Concepts) Our sets of p-rational outcomes

define sets of distributions of play that are broader than the correlated equilibria. As the examples

show, they are distinct from ε-neighborhoods of the correlated equilibria, and put further structure

on the deviations from the set CE(G) that occur as p departs from 1. At the same time, they

are distinct from the ε-correlated equilibria, reflecting the fact that they impose no constraints

on the type of departure from rationality assumed – unlike the ε-optimizers of the ε-correlated

equilibria. A similar remark applies to the quantal response equilibria of McKelvey and Palfrey

(1995) or other models such as the level-k reasoning models (e.g, Camerer (2003)) that put specific

take the game in Example 1 and consider the belief systemB =
〈
Ω, (Πi)i∈I , (αi)i∈I , µ

〉
, where Ω = A, si(a−i; ai) = ai,

for all (a−i; ai) ∈ Ai, i ∈ I, and where µ ∈ ∆(A) is given by µTL = µTR = µBL = 0 and µBR = 1. It can be checked
that it is (1,0)-rational and clearly µ(R) = 0. At the same time, in a (p, q)-rational belief system it is always the
case that, for any i ∈ I, ω ∈ Ω, µ (R−i |Πi (ω)) ≥ qi, hence

µ(R−i ∩Πi (ω)) ≥ qiµ(Πi (ω)) =⇒
∑

Πi(ω)∈Πi

µ(R−i ∩Πi (ω)) = qi
∑

Πi(ω)∈Πi

µ(Πi (ω)) =⇒ µ(R−i) ≥ qi,

which besides confirming the expected convergence to the correlated equilibria as (p, q) → (1,1), also shows that
positive qi’s do put restrictions on the total mass of states where agents are rational µ(R).

24To see the non-common prior case, define belief system B =
〈
Ω, (Πi)i∈I , (αi)i∈I , (µi)i∈I

〉
to be subjectively p-

rational if Ω =
⋂

i∈I B
p
i (R−i). Given a finite game in strategic form G with set of players I and set of action profiles

A, and given p ∈ [0, 1], we say that a family of distributions (πi)i∈I ∈ (∆ (A))I is a p-subjectively rational outcome of
G (p-SRO(G)) if there exists some subjectively p-rational belief system B = B =

〈
Ω, (Πi)i∈I , (αi)i∈I , (µi)i∈I

〉
for G

such that for any i ∈ I, we have πi = µi ◦ α−1. As shown in the Appendix, it is easy to see that, for any p ∈ [0, 1],
the whole space is obtained, namely:

p-SRO (G) = (∆ (A))I .

In particular, an agent that is certain that all the other agents are rational given his priors may still select a non-
rational action given, and so any pure strategy profile in A is consistent with subjective p-rationality, even when
p = 1.

25Recall that the result of part (a) of Lemma 1 also holds with non-common priors.
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restrictions on how players can deviate from rationality. More closely related are the rationalizable

and the p-rationalizable strategy profiles (see respectively Bernheim (1984); Pearce (1984); Dekel

et al. (2007) and Hu (2007); Germano and Zuazo-Garin (2015)), which are derived at the interim

stage and without appealing to priors. Unlike the p-rational outcomes, whose set of distributions is

fully supported on A, whenever p < 1, both the rationalizable and the p-rationalizable profiles may

be strict subsets of A. It remains an empirical question to what extent the p-rational outcomes

bound observed behavior in a robust and useful manner.

Remark 4 (Learning to Play p-Rational Outcomes) Clearly, all learning dynamics that lead

to correlated equilibria (see e.g., Hart (2005)) will also lead to p-rational outcomes, which includes

dynamics that converge in polynomial time (see e.g., Hart and Mansour (2010)). The question arises

as to what further dynamics (not necessarily converging to correlated equilibria) may converge to

p-rational outcomes and whether they include interesting dynamics that for example allow for faster

or more robust convergence.
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APPENDIX

A Proof of Lemma 1

(i) By definition, CBp (R) ⊆
⋂
i∈I B

p
i (R), and therefore, for any i ∈ I, CBp (R) ⊆ Bp

i (Ri).

Then, since p > 0, and ω ∈ Bp
i (Ri), we have that Ri ∩ Πi (ω) 6= ∅, and therefore, that

Πi (ω) ⊆ Ri and, in particular, ω ∈ Ri. Thus, Bp
i (Ri) ⊆ Ri.

(ii) If
⋂
i∈I B

p
i (R−i) = Ω, then R =

⋂
i∈I (Bp

i (R−i) ∩Ri) =
⋂
i∈I B

p
i (R). Thus, R is p-evident be-

lief and therefore, R ⊆ CBp(R). Now, since
⋂
i∈I B

p
i (R−i) = Ω, we have both that µ (R−i) ≥

p, and µ (R−i ∩Ri) ≥ pµ (Ri). The fact that for any j 6= i, µ (R) = µ (R−i|Ri)µ (Ri) ≥
pµ (Ri) ≥ pµ (R−j) ≥ p2 completes the proof.

(iii) It is immediate that CB1 (R) = Ω if and only of
⋂
i∈I B

1
i (R) = Ω, so it suffices to prove that⋂

i∈I B
1
i (R) = Ω if and only if

⋂
i∈I B

1
i (R−i) = Ω. The right implication is immediate. For the

proof of the left one, from part (i) of the lemma, it is enough to check that if
⋂
i∈I B

1
i (R−i) = Ω

then R = Ω. But this is immediate: take i, j ∈ I, i 6= j, then B
pj
j (R−j) ⊆ B

pj
j (Ri), and

therefore, B
pj
j (Ri) = Ω. Hence µ (Ri) =

∑
ω∈Ω µ (Ri ∩Πj (ω)) =

∑
ω∈Ω µ (Πj (ω)) = 1. Since

µ has full support on Ω, the latter implies that Ri = Ω. As the proof applies for any i ∈ I,

we obtain that R = Ω.

B Proofs of the Characterization Results

In this section we first prove a technical lemma. Then we prove Theorem 4, and then Theorem 1

as a special case of Theorem 4. The technical lemma is the following:

Lemma 2 Let (G,S) be a game with incomplete information and let p ∈ [0, 1], n ∈ N, and π∗ ∈(
A(k), p

)
-BCE (nG, S), for some k ∈ N . Let belief system B =

〈
Ω, (Πi)i∈I , µ, κ, (αi)i∈I , (τi)i∈I

〉
defined as follows: (i) Ω = {(t, a, ν, θ) ∈ T × nA×Θ |π∗ [(a, ν, θ)) > 0}, and for any (t, a, ν, θ) ∈ Ω,

(ii) µ (t, a, ν, θ) = π∗ ((t, a, ν, θ)), (iii) κ (t, a, ν, θ) = θ, and for any i ∈ I, (iv) we have cells

Πi (t, a, ν, θ) = T−i × nA−i × Θ × {(ti, ai, νi)}, (v) αi (t, a, ν, θ) = ai, and (vi) τi (t, a, ν, θ) = ti.

Then, B is a belief system for (G,S) satisfying consistency and joint p-belief in rationality that

induces π∗ in T ×A×Θ.

Proof. It is immediate that αi and τi are measurable w.r.t. Πi for any i ∈ I. Take (t, θ) ∈
T ×Θ; then, we have µ (τ = t, κ = θ) = π∗ (nA× {(t, θ)}) = ψ (θ)σ (t|θ), and therefore, B satisfies

consistency. Now, note first the fact that for any ω = (t, a, ν, θ) ∈ Ω and any a′i ∈ Ai,

E
[
ui
(
α−i, a

′
i, κ
)
|Πi(ω)

]
=∑

(t′−i,(a′−i,ν
′
−i),θ′)

π∗
((
t′−i, ti, (a

′
−i, ν

′
−i), (ai, νi), θ

′))ui ((a′−i, ν ′−i); (ai, νi), θ
′) ,
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together with the incentive constraints, implies that for any i ∈ I we have that T×nA−i×Ai,(k)×Θ ⊆
Ri, and therefore,26 that µ

(
A−i,(k) ∩Πi(ω)

)
≤ µ (R−i ∩Πi(ω)) for any i ∈ I and any ω ∈ Ω. Then,

take i ∈ I and ω = (t, a, ν, θ) ∈ Ω; note that:

µ
(
A−i,(k) ∩Πi(ω)

)
=

∑
t′−i∈T−i

π∗
(
A−i,(k) ×Θ× {(ti, ai, νi)}

)
,

µ (Πi(ω)) =
∑

t′−i∈T−i

π∗ (nA−i ×Θ× {(ti, ai, νi)}) .

In consequence, due to the p-belief constraints, we have µ (R−i ∩Πi(ω)) ≥ pµ (Πi(ω)), and there-

fore, B satisfies joint p-incentive compatibility.

B.1 Proof of Theorem 4

For the right inclusion, take distribution π ∈ p-RBO (G,S) and B, a belief model that induces π.

Take distribution π∗ ∈ ∆ (T × 2A×Θ) defined as follows:

π∗ ((t, a, ν, θ)) = µ

(
[τ = t, α = a, κ = θ] ∩

⋂
i:vi=0

Ri ∩
⋂

i:vi=1

¬Ri

)

for any (t, a, ν, θ) ∈ T × nA × Θ. Then, π∗ ∈ ∆ (T × nA×Θ). The consistency constraint is

satisfied, since we have that,

π∗ (nA× {(t, θ)}) = µ

[τ = t, κ = θ] ∩
⋃
ν∈NI

( ⋂
i:vi=0

Ri ∩
⋂

i:vi=1

¬Ri

)
= µ (τ = t, κ = θ) = ψ (θ)σ(t|θ)

for any (t, θ) ∈ T ×Θ. Now, note that for any i ∈ I, any ai, a
′
i ∈ Ai, any ti ∈ Ti and any νi ∈ N ,

∑
(t−i,a−i,ν−i,θ)

π∗ [(t−i, ti, (a−i, ν−i), (ai, 0), θ)]ui ((a−i, ν−i), (ai, 0), θ)

−
∑

(t−i,a−i,ν−i,θ)

π∗ [(t−i, ti, (a−i, ν−i), (ai, 0), θ)]ui
(
(a−i, ν−i), (a

′
i, νi), θ

)
=

=
∑

ω∈Ri∩[τi=ti,αi=ai]

E [ui ((α−i, αi (ω)) , κ) |Πi (ω) ]−
∑

ω∈Ri∩[τi=ti,αi=ai]

E
[
ui
((
α−i, a

′
i

)
, κ
)
|Πi (ω)

]
≥ 0.

26We abbreviate, µ
(
A−i,(k) ∩Πi(ω)

)
= µ

((
T ×A−i,(k) × nAi ×Θ

)
∩Πi(ω)

)
, with some abuse of notation.
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In addition, note that for any (ti, ai, νi) ∈ Ti × nAi,

π [X−i ×Θ× {(ti, ai, νi)}] = µ [R−i ∩ [τi = ti, αi = ai] ∩ [1Ri = 1− νi])

=
∑

ω∈[τi=ti,αi=ai]∩[1Ri
=1−νi]

µ [R−i ∩Πi (ω)]

≥
∑

ω∈[τi=ti,αi=ai]∩[1Ri
=1−νi]

pµ [Πi (ω)] = pπ∗ [T−i × nA−i ×Θ× {(ti, ai, ν)}] .

Thus, both the incentive constraints and the p-belief constraints are satisfied. For the left inclusion,

just apply Lemma 2 to n = 2 and k = 0.

B.2 Proof of Theorem 1

This theorem can be seen as a corollary of Theorem 4. To see this, note that if G is a game with

complete information, we can define a game with incomplete information (G′, S), where we have (i)

G′ =
〈
I,Θ, ψ, (Ai)i∈I , (u

′
i)i∈I

〉
, with Θ = {θ}, ψ = 1{θ} and u′i(a, θ) = ui(a) for any a ∈ A and i ∈ I,

and (ii) S =
〈
(Ti)i∈I , σ

〉
with Ti = {ti} for any i ∈ I and σ(t|θ) = 1. It is immediate that, for any

X =
∏
i∈I Xi ⊆ A and any p ∈ [0, 1], we have that (X, p) -CE (G) = (X, p) -BCE (G′, S). But note

also that if we take some list B′ =
〈
Ω, (Πi)i∈I , (αi)i∈I , (τi)i∈I , µ

〉
, which is a candidate to be a belief

system forG′, for any i ∈ I, forcefully τi = 1{ti}; and therefore, B′ is a belief system forG′ if and only

if B =
〈
Ω, (Πi)i∈I , (αi)i∈I , µ

〉
is a belief system for G. Thus, it is immediate that, for any p ∈ [0, 1],

we have p-RO (G) = p-RBO (G′, S). So, let G be a game, and p ∈ [0, 1]. Then, we just checked

above that both p-RO (G) = p-RBO (G′, S) and (X, p) -CE (2G) =
(
A(0), p

)
-BCE (2G′, S), hold,

so from Theorem 4 we obtain p-RO (G) =
(
A(0), p

)
-CE (2G).

B.3 Proof of Theorem 3

We prove the first statement; the next one concerning the p-rational expectations of rational types

then follows directly. We suppose we are taking some player i’s expectation. For right inclusion,

take p-rational belief system B =
〈
Ω, (Πi)i∈I , (αi)i∈I , µ

〉
and ω ∈ Ω. We define:

π∗i,ω (a, ν) = µ

[α = a] ∩Wi ∩
⋂

j 6=i,νj=0

Rj ∩
⋂

j 6=i,vj 6=0

¬Rj


for any (a, ν) ∈ 3A, where Wi = Ri\Πi (ω) if νi = 0, Wi = ¬ (Ri \Πi (ω)) if νi = 1, and Wi = Πi (ω)

if νi = 2. It is immediate that π∗i,ω ∈ ∆ (3A). By an argument similar to the one in the first part

of the proof of Theorem 4, reduced to the degenerate case where |Θ| = 1, we can conclude that

πi,ω is a
(
A(0), p

)
-correlated equilibrium of G; moreover, it is immediate that player i’s expectation

conditional on playing (αi (ω) , 2) induced by πi,ω is exactly EB [ui (α−i, αi (ω)) |Πi (ω)]. For the

left inclusion, take Lemma 2 for the case of n = 3, k = 0, and |Θ| = 1.
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C Proof of Theorem 2

Non-emptiness follows from the fact that correlated equilibria always exist for any finite game G

and constitute p-rational outcomes for any p ∈ [0, 1]. Given that the set of p-rational outcomes

is a projection of the (X, p)-correlated equilibria of 2G, with X = A(k) a copy of the action

space of the original game G, the remaining properties follow once they have been shown for the

(X, p)-correlated equilibria of 2G. This is what we do next. For the given game G, define the

(X, p)-correlated equilibrium correspondence, where X = A(k) with k ∈ {0, 1}, is fixed:

ρ : [0, 1] −→ ∆(2A)

p → (X, p)-CE (2G) .

Clearly ρ is convex- and compact-valued; it remains to be shown that it is also continuous. We

do this by showing that it is upper- and lower-hemicontinuous (respectively, uhc and lhc) as a

correspondence of p.

uhc

Since 2A is finite, ∆(2A) is compact, and hence upper-hemicontinuity is equivalent to showing that

ρ has a closed graph. But this is immediate from inspection of the inequalities defining the sets

(X, p)-CE (2G). In particular, all the inequalities are all weak inequalities, linear in p. Moreover,

the domain [0, 1] is compact.

lhc

Denote by Γρ ⊂ [0, 1]×∆(2A) the graph of the correspondence ρ. Fix (p, π̂) ∈ Γρ and let (pn)n ⊂
[0, 1] be a sequence converging to p. We need to show that there exists a sequence ((π̂)n)n converging

to π̂ such that (π̂)n ∈ ρ(pn) for sufficiently large n. Take the point (p, π̂). Clearly this satisfies all

inequalities defining ρ(p), in particular also the p-rationality constraints. Consider the following

sequence (pn, π̂)n ⊂ [0, 1] × ∆(2A). If for sufficiently large n the elements are contained in Γρ

we are done. So consider the case where they are not. Consider the family of projections Πρ :

[0, 1]×∆(2A) −→ [0, 1]×∆(2A) that map, for fixed p̄ ∈ [0, 1], any element (p̄, π̄) ∈ [0, 1]×∆(2A)

to the point in the set {p̄} × ρ(p̄) that is closest to (p̄, π̄). Since the sets ρ(·) are always non-

empty, convex, compact polyhedra, we have that Πρ (pn, π̂) is uniquely defined and moreover,

Πρ (pn, π̂) ∈ Γρ for any point in the sequence (pn, π̂)n. It remains to be shown that the sequence

(Πρ (pn, π̂))n converges to the point (p, π̂). Apart from the p-belief constraints all other constraints

defining ρ(p) are independent of p. Hence, if (p, π̂) satisfies those constraints, then so must any other

point in the sequence (pn, π̂)n. Therefore the only constraints that can be violated by elements of the

sequence (pn, π̂)n are the p-belief constraints. Consequently, any point in the sequence (Πρ (pn, π̂))n
lies on the boundary of the polyhedra defined by the p-belief constraints. As mentioned, these

constraints are linear in p, and since they also define non-empty, convex, compact polyhedra, the
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sequence (Πρ (pn, π̂))n indeed converges to (p, π̂). This shows the continuity of ρ and hence also of

p-RO(G) in p.

Finally, the claims that, for p = 0, we have 0-RO(G) = ∆(A), and for p = 1, we have 1-

RO(G) = CE(G), are immediate. To see that for any p ∈ [0, 1), we have dim[p-RO(G)] =

dim[∆(A)], notice that the (X, p)-correlated equilibria with X = A1 and p < 1 entail distributions

that put strictly positive weight on all strategies in A2 as well as all convex combinations of such

distributions. Projecting onto the original space ∆(A) implies distributions with strictly positive

weights on all strategies in A as well as all possible convex combinations. This concludes the proof.

D Proof of Proposition 1

Fix G and let An = Πi∈IA
n
i denote the space of all pure strategy profiles that survive n rounds of

iterated elimination of strictly dominated strategies in G, and similarly for the individual sets Ani .

Let Gn denote the subgame of G with strategies restricted to An. Because G is finite, the limit

sets A∞i , A
∞, and G∞ are well defined (and are obtained after finitely many iterations). Also, for

any subset Y ⊂ A, let Y c = A \ Y denote the complement of Y in A. For any given p ∈ [0, 1], take

p′ ≥ p. We show that for p sufficiently close to 1, behaviour is supported with high probability

in A∞. Specifically, we construct a p̄ < 1 such that for any p ∈ [p̄, 1], if π ∈ p-RO(G), then

π ((A∞)c) ≤ 1− p. Consider the game G0 = G and pick some p1 < 1. It immediately follows from

p-rationality that for p ∈ [p1, 1], if π ∈ p-RO(G), then we have π
((
A1
)c) ≤ 1 − p. Suppose now

that the above statement is true for n− 1, namely there exists pn−1 < 1 such that for p ∈ [pn−1, 1],

if π ∈ p-RO(G), then we have π
((
An−1

)c) ≤ 1 − p. We show that the statement also holds for

n. Fix game Gn−1. It follows from finiteness of G and continuity of the payoffs that there exists

pn ∈ [pn−1, 1) such a strategy in An−1 \ An that is strictly dominated in Gn−1 (by some strategy

in Gn−1 and hence in G) is also strictly dominated in G (by the same strategy) given a p-rational

belief system with p ≥ pn.27 This implies that for any p ∈ [pn, 1] and any π ∈ p-RO(G), we also

have π ((An)c) ≤ 1 − p. Finiteness of the game implies that the process ends after finitely many

steps implying that indeed there exists p∞ < 1 such that for p ∈ [p∞, 1] and any π ∈ p-RO(G), we

have π ((A∞)c) ≤ 1− p. Taking p̄ = p∞ proves the claim.

E Proof of Result in Remark 2

Following Aumann (1974, 1987), for any X =
∏
i∈I Xi ⊆ A, we say that the family (πi)i∈I ⊆

(∆ (A))I is a (X, p)-subjective correlated equilibrium of G, if, for any i ∈ I,

• For any ai ∈ Xi, the following incentive constraints are satisfied,∑
a−i∈A−i

πi (a−i; ai)
[
ui (a−i; ai)− ui

(
a−i; a

′
i

)]
≥ 0,

27This follows from pn ≥ pn−1, and because π ∈ p-RO(G) with p ≥ pn−1 implies π
((
An−1

)c) ≤ 1− p
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for any a′i ∈ Ai.

• For any ai ∈ Ai the following p-belief constraint is satisfied,∑
a′−i∈X−i

πi
(
a′−i; ai

)
≥ p

∑
a−i∈A−i

πi (a−i; ai) .

We denote the set of (X, p)-subjective correlated equilibria of game G by (X, p) -SCE (G). Given

n ∈ N and a n-game nG, we have a map margAI : (∆ (nA))I → (∆ (A))I , where for any (π̂i)i∈I ∈
(∆ (nA))I , we have that margAI

(
(π̂i)i∈I

)
= (margA (π̂i))i∈I . Then, the proof of the identity,

p-SRO (G) = margAI [(X, p) -SCE (2G)] ,

where X =
∏
i∈I (Ai × {0}), is the same as the one for Theorem 1 after slight modifications (just

add sub-indices where needed). To see that the above marginals constitute the whole space, take

(ai)
i∈I ⊆ A, and for any i ∈ I, πi = 1{ai}. Fix k ∈ {0, 1}, and define, for any i ∈ I, π̂i =

1{(
(aij ,k)j 6=i;(aii,1−k)

)}. It is immediate that margA
(
(π̂i)i∈I

)
= (πi)i∈I . Now, take i ∈ I, then the

incentive constraints are trivially satisfied, since π̂i (2A−i × (Ai × {0})) = 0. Moreover, the p-belief

constraint is also satisfied, because regardless of i’s action, the sums are on both sides 0 or 1. We

conclude that, again for X =
∏
i∈I (Ai × {0}), we have

(
1{ai}

)
i∈I ∈ margA ((X, p) -SCE (2G)) for

any
(
ai
)
i∈I ⊆ A, so by convexity, margA ((X, p) -SCE (2G)) = (∆ (A))I .
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