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Abstract. We analyze the use of discrete choice models for the estimation of risk

aversion and show a fundamental flaw in the standard random utility model which

is commonly used in the literature. Specifically, we find that given two gambles, the

probability of selecting the riskier gamble may be larger for larger levels of risk aver-

sion. We characterize when this occurs. By contrast, we show that the alternative

random preference approach is free of such problems.
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1. Introduction

Our understanding of labor, finance, development, health or insurance issues relies

critically on an adequate comprehension of individual risk attitudes. Many of the

decisions involved in these settings are of a categorical nature: whether or not to enter

the labor market, which pension plan to adopt, which crop to sow on a certain plot of

land, which drug to prescribe for a particular illness, or whether to accept a deductible

in an insurance contract are all discrete decisions involving an element of risk. It is

unsurprising, therefore, that there is a large stream of literature attempting to estimate

risk aversion through discrete choice analysis.
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The discrete choice approach to the estimation of risk aversion starts by specifying

the choice probabilities associated with the different gambles. This is basically done

by combining the valuation of the gambles with some sort of error. Two broad classes

of discrete choice models are used in the literature. We refer to them here as random

utility models and random preference models. In the former, the error is assumed to

affect the utility of each gamble independently. In the latter, it affects the risk aversion

parameter, which ultimately determines the valuation of the gambles. In this paper, we

show that the use of random utility models generally leads to a fundamental problem

for the estimation of risk aversion. Namely, utility functions with greater risk aversion

may with a larger probability choose the riskier gamble.1 Thus, given two individuals

where one is more risk averse than the other, the random utility model estimation may

give a lower risk aversion coefficient to the first individual than to the second, thereby

seriously disputing the validity of the estimation exercise. Fortunately, we are able to

show that the estimation using random preference models is free of this problem.

To be more specific, let us study the comparison of two gambles, where one is clearly

riskier than the other. We consider the two well-accepted cases: (i) a risky gamble and

a degenerate gamble giving a monetary payoff with certainty, and (ii) two gambles,

where one is a mean-preserving spread of the other. We are now in a position to detail

the main results of this paper.

Random Utility Models. The extent of the problem depends on the utility represen-

tation used in the valuation of gambles. The most direct, and naturally, the most often

used, is the one using the expected utility form. In Theorem 1 we show that the prob-

lem affects every pair of expected utility functions where one is more risk averse than

the other. We then characterize the range of pairs of gambles in which the problem

arises. We illustrate further by using the main parametric functional forms used in the

literature, namely CARA and CRRA. We show in Theorem 2 that, for every pair of

gambles where one is riskier than the other, there exists a level of risk aversion above

which the probability of choosing the riskier gamble increases. Hence, this establishes

1In this introduction we focus on expected utility, where more risk aversion is equivalent to more

curvature of the utility function over monetary payoffs. The implications for utility models beyond

expected utility are discussed in subsequent sections.
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that there is an upper bound of the risk aversion parameter that can be estimated,

however risk averse the individual may be.2

The intuition of these results goes as follows. Random utility models derive prob-

abilities from the cardinal difference in the valuation of the gambles. Essentially, a

larger difference implies less probability of choosing the inferior option. When using

the expected utility representation, greater risk aversion is associated with higher cur-

vature of the utility function of the monetary payoff. As the curvature increases, the

cardinal difference between the valuations of the gambles is reduced, and hence greater

risk aversion may imply that the riskier gamble is chosen with a larger probability.

Alternatively, the literature on occasions uses the certainty equivalent as a utility

representation. We show that, in this case, the results depend heavily on the gambles

that are being compared. When the comparison involves a degenerate gamble, The-

orem 3 shows that there is no problem whatsoever. This is so because the certainty

equivalent of the degenerate gamble is the same for all utility functions, and hence

the difference between the certainty equivalent of a risky gamble and a degenerate one

depends exclusively on the value of the former, which is obviously decreasing with risk

aversion. Unfortunately, however, since the anchor created by the degenerate gamble

disappears as soon as non-degenerate gambles are considered, Theorems 4 and 5 show

that the problem reappears in the mean-preserving spread case.

Random Preference Models. Estimation by random preference models starts by

considering a parametric family of utilities, and assumes that the individual has a risk

aversion level subject to error. Theorem 6 establishes that random preference models

are free from the problem discussed above. The intuition is as follows. In random

preference models, the choice probability of selecting one gamble is determined by the

probability that the error on the risk aversion level causes the individual to rank this

gamble as the best. Now, consider a higher level of risk aversion. Then, notice that

for any given realization of the error, if the riskier gamble is preferred under the higher

risk aversion level, the same necessarily holds for the lower risk aversion level. As a

consequence, the mass of errors for which the riskier gamble is preferred under more

risk aversion is lower, and hence the probability of choosing it is also lower, as desired.

The paper is organized as follows. Section 2 briefly reviews the related literature,

while Section 3 establishes the notation and gives the basic definitions. In Sections 4

2Theorems 7 and 8 in Appendix A establish the corresponding analogous results for the use of the

logarithmic transformation of expected utility, which is often used.
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and 5, we present the results regarding random utility models and random preference

models, respectively. Section 6 concludes. All the proofs are contained in an appendix.

2. Related Literature

Discrete choice models in general settings, not necessarily involving risk, are surveyed

in McFadden (2001). See also Train (2009) for a detailed textbook introduction.

For theoretical papers recommending the use of random utility models in risky set-

tings, see Becker, DeGroot and Marschak (1963) and Busemeyer and Townsend (1993).

The literature using random utility models in the estimation of risk aversion is immense,

and certainly too large to be exhaustively cited here. Therefore, we cite only some of

the most influential pieces of work. Papers using errors on the utility include Cicchetti

and Dubin (1994), Hey and Orme (1994), Harrison, List and Towe (2007), Post et al.

(2008), Toubia et al. (2013), and Noussair, Trautmann and van de Kuilen (2014). For

papers using errors on the log of the utility, see Donkers, Melenberg, and van Soest

(2001), Holt and Laury (2002) and Andersen et al. (2008). Finally, Friedman (1974),

Hey, Morone and Schmidt (2009), Coble and Lusk (2010), and von Gaudecker, van

Soest and Wengstrom (2011) use errors on the certainty equivalent.

The use of random preference models in settings involving gambles has been theo-

retically discussed in Eliashberg and Hauser (1985), Loomes and Sugden (1995), and

recently in Gul and Pesendorfer (2006). For papers estimating risk aversion in line

with this method, see Barsky et al. (1997), Fullenkamp, Tenorio and Battalio (2003),

and Kimball, Sahm and Shapiro (2008, 2009).

Wilcox (2008, 2011) first inquires into the problem analyzed in this paper. Using

examples, with the logistic error structure over utilities or over the logarithmic transfor-

mation of utilities, and for comparisons of gambles involving mean-preserving spreads,

he discusses how CRRA and CARA may present the sort of problems characterized

here. In addition, he proposes the use of a novel model, contextual utility, which solves

the problem for some specific comparisons of gambles involving the classical case of

three outcomes. In Subsection 4.3, we further discuss his proposal, and show that

the problem persists beyond these comparisons. In addition, Blavatskyy (2011) shows

that, in the case of random utility models based on expected utility differences, there

are no two individuals where one always chooses the non-degenerate gamble over the

degenerate gamble with a lower probability than the other individual. Our Theorem 1

completely characterizes when these anomalies occur.
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3. Preliminaries

A gamble g = [p,x] is described by a finite vector of probabilities p = (p1, . . . , pN),

with pi > 0 and
∑

i pi = 1, over a finite vector of monetary outcomes x = (x1, . . . , xN),

with xi ∈ X. Unless explicitly noted, we assume that X = R. We denote by δx the

degenerate gamble yielding x with certainty.

Let U be a utility function over gambles. A certainty equivalent of a gamble g

for U , is a monetary payoff CE(g, U) such that U(g) = U(δCE(g,U)). The utility

function U is an expected utility function if there exists a utility function over outcomes

u : X → R, that is strictly increasing and continuous, such that for every gamble

g = [p,x], U(g) =
∑

i piu(xi). It is well-known that for expected utility functions

every gamble has a unique certainty equivalent, and also that U1 is (strictly) more risk

averse than U2 if and only if u1 is a (strict) concave transformation of u2.

Throughout the paper we study the attitude of individuals towards pairs of gambles

where one is riskier than the other. The standard textbook comparison considers

a risky gamble g and a certain monetary payoff h = δx. Another widely accepted

comparison involves a mean-preserving spread g of a gamble h. Gamble g is a mean-

preserving spread of gamble h through outcome y and gamble g′ if g can be expressed

as a compound gamble that replaces outcome y of h with gamble g′, which has y as its

expected value. We say that g is a mean-preserving spread of h if there is a sequence

of such spreads from h to g. In both cases, gamble g is clearly riskier than gamble h.

The constant absolute risk aversion (CARA) and constant relative risk aversion

(CRRA) families of monetary utility functions are by far the most widely used spec-

ifications in applications. These functional forms have the useful property of being

ordered in terms of risk aversion by a single parameter r. Thus, a (strictly) larger

value of r implies a (strictly) greater level of risk aversion. The following are standard

definitions. CARA utility functions are defined by urCARA(x) = 1−e−rx
r

for r 6= 0, and

u0
CARA(x) = x. CRRA utility functions are defined by urCRRA(x) = x1−r

1−r for r 6= 1, and

u1
CRRA(x) = log x. For ease of exposition, assume that x ≥ 0 for the case of CARA

and x ≥ 1 for the case of CRRA.3 We write U r
CARA and U r

CRRA when referring to either

the CARA or CRRA expected utility families, and U r
ω when referring to both.

3These assumptions simplify the analysis of CARA and CRRA, as explained in footnote 14.



6

4. Random Utility Models

The first risk aversion estimation method to be analyzed here represents a natural

application of the standard techniques in the micro-econometrics of discrete choice

analysis, and, as such, has been widely used in the literature. In a nutshell, the

valuation of an option comprises two parts, one that it is assumed to be observed and

is modeled using a utility function from a pre-specified family of utility functions, and

another unobserved random part often referred to as errors. It is assumed that the

individual selects the option that provides the greatest total value. Thus, each option

is selected with a certain probability, which can be expressed as a function of the utility

difference between the two. Finally, standard maximum likelihood techniques are used

to select a specific utility function from the available family. We refer to these as

random utility models.

4.1. Expected Utility Differences. This is by far the most widely used specifica-

tion. Formally, consider an expected utility U .4 The valuation of gamble g is given by

the additive consideration of U(g) and a random i.i.d. unobserved term ε(g), which fol-

lows a continuous cumulative distribution Ψ. The probability of selecting gamble g over

gamble h is given by fUΨ[λ](g, h) = P (λU(g) + ε(g) ≥ λU(h) + ε(h)) = P (ε(h)− ε(g) ≤
λ(U(g) − U(h))) = Ψ∗(λ(U(g) − U(h))), where Ψ∗ is the distribution function of the

difference of errors, and hence has mean zero.5 By far the most widely used proba-

bility distributions of the unobserved terms are the extreme type I and the normal,

which involve the logistic model (also known as the Luce model) and the probit model,

respectively. The former has a closed-form expression for the probability of selecting

gamble g over gamble h equal to eλU(g)

eλU(g)+eλU(h) .

We now show that this approach has fundamental flaws. Consider any pair of ex-

pected utility functions U1 and U2, where U1 is more risk averse than U2, and any error

distribution. We prove that there are pairs of gambles, g and h, where either h = δx, or

g is a mean-preserving spread of h, for which the more risk averse utility U1 chooses the

riskier gamble with a larger probability than the less risk averse utility U2. Theorem 1

characterizes the pairs of gambles for which the anomalies occur, and shows that they

4In Remark 1, we discuss the related and influential case where the log of expected utility is used,

and in Section 4.3 we discuss generalizations of expected utility.
5Parameter λ is inversely related to the variance of the initial distribution and is typically inter-

preted as a rationality parameter. The larger λ, the more rational the individual. Whenever λ goes to

zero, choices become completely random, while, when λ goes to infinity, choices become deterministic.
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form a large set.6 It does so by using the function U1−2 = U1 − U2, which expresses

how differently the two utility functions value the gambles.7

Theorem 1. Consider any two expected utility functions U1, U2 such that U1 is strictly

more risk averse than U2. Consider any continuous distribution Ψ, and any λ > 0.

Every gamble has either one or two certainty equivalents for U1−2, with at least one

belonging to the interval of possible outcomes of the gamble. Further, for any pair of

gambles g and h such that g is non-degenerate and h = δx (resp. g is a mean-preserving

spread of h through outcome y and non-degenerate gamble g′), fU1

Ψ[λ](g, h) > fU2

Ψ[λ](g, h)

if and only if:

• U1−2 is increasing at the unique certainty equivalent of g (resp. g′) and x <

CE(g, U1−2) (resp. y < CE(g′, U1−2)), or

• U1−2 is decreasing at the unique certainty equivalent of g (resp. g′) and x >

CE(g, U1−2) (resp. y > CE(g′, U1−2)), or

• U1−2 has two certainty equivalents for g (resp. g′) and x is not in

[CE(g, U1−2), CE∗(g, U1−2)] (resp. y is not in [CE(g′, U1−2), CE∗(g′, U1−2)]).

There are several points worth stressing in relation to Theorem 1. First and foremost,

the theorem establishes that, for every error distribution, problems arise in every pair

of expected utility functions where one is strictly more risk averse than the other. To

see this, notice that, in the case involving degenerate gambles, the result shows that

problems arise for any possible gamble g, and for a large range of outcomes x which

intersects with the range of monetary payoffs of the gamble g. In the case of the mean-

preserving spreads, notice that not every pair of utility functions is affected. Consider,

for example, the case of a risk averse utility U1 and a risk-neutral utility U2. Clearly,

U2 values the two gambles equally, and hence assigns equal choice probabilities to them

both, whereas U1 dislikes the mean-preserving spread gamble g, and thus selects it with

less probability, as desired. Theorem 1 characterizes when the problem arises, namely

whenever the gamble g′ is better than the certainty of obtaining the expected value of

g′, namely y, according to U1−2. It is immediate, then, that for every risk averse utility

6In the comparisons involving mean-preserving spreads, Theorem 1 characterizes the case in which

g is directly obtained from h through outcome y and gamble g′. Obviously, indirect spreads can be

characterized by applying the theorem iteratively.
7For ease of exposition, we say that U1−2 is increasing (resp. decreasing) when evaluated at degen-

erate gambles, that is, whenever the corresponding u1−2 = u1 − u2 is increasing (resp. decreasing).
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function U2, and for every gamble g′, one can find a more risk averse utility function

U1, such that U1−2(g′) > U1−2(y).

Let us now provide the intuition for the negative results involving every pair of utility

functions. As per the definition of random utility models, U1 selects the riskier gamble

g less often if U1(g)−U1(h) < U2(g)−U2(h), which is equivalent to U1−2(g) < U1−2(h).

Given g, linearity of U1−2 makes the latter inequality hold for every h only if the

function is constant, which is incompatible with U1 being strictly more risk averse

than U2. Theorem 1 builds on this idea to characterize the ranges within which the

problem arises.

To further illustrate the extent of the identification problem, we now consider two

well-known parametric families of utility functions, CARA and CRRA, and study,

for every g and h and every probability distribution of errors, the properties of the

probability of choosing the riskier gamble g, as the parameter of risk aversion increases.

Clearly, the probability should decrease with risk aversion, but we now show that this

is not in fact the case. In particular, we show that there is always a level of risk aversion

above which the probability of choosing the riskier gamble increases. This implies that

there is an upper limit in the possible estimation of the risk aversion coefficient, however

risk averse the individual may be. Moreover, different levels of risk aversion may be

compatible with the same behavior, thus also creating an identification problem.

Theorem 2. Consider any continuous distribution Ψ, and any λ > 0. For every

pair of distinct gambles, g and h, where either h is degenerate with monetary outcome

strictly within the interval of possible outcomes of g, or g is a mean-preserving spread

of h, there exists r∗ such that fU
r1
ω

Ψ[λ](g, h) > fU
r2
ω

Ψ[λ](g, h) whenever r1 > r2 ≥ r∗.

The main step of the proof of Theorem 2 builds on the following observation. Given

a pair of gambles, when the individual is sufficiently risk averse, the curvature of

the utility function makes the utilities of the possible outcomes associated with the

gambles become sufficiently close. Hence, the utility difference between the gambles

may be reduced to the point that the individual is less able to discriminate between the

two gambles. Thus, in a random utility model, the probability of selecting the riskier

gamble g starts to increase.

Theorem 2 is best illustrated in Figure 1, which uses CARA expected utility and

the logistic model with λ = 2. Figure 1a depicts the probability of choosing gam-

ble g = [(1, 21), (.9, .1)] over the degenerate gamble δ2 for different values of the risk

aversion coefficient r, and Figure 1b the probability of choosing the mean-preserving
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Figure 1. Differences in Expected Utility

Figure 1a: g versus δ2 Figure 1b: g versus h

spread gamble g over h = [(1, 5), (.5, .5)]. It can be appreciated how this probability

decreases with the level of risk aversion as far as risk aversion levels .32 and .15, respec-

tively, after which it starts increasing. The two main problems discussed earlier are

now apparent. Firstly, the maximum risk aversion parameters that can be estimated

using these gambles, even for infinitely risk averse individuals, are .32 and .15, approxi-

mately. Secondly, note that there are two risk averse coefficients consistent with choice

probabilities in the intervals (.33, .5) and (.19, .5), which generates an identification

problem. Theorem 2 shows that, for any given error distribution, problems of this sort

arise for every pair of gambles.

Remark 1. The literature contains influential papers in which a logarithmic transfor-

mation of the utilities is used instead of actual utility values. Thus, the probability of

selecting one gamble over the other depends on the utility ratio, rather than the utility

difference. The results established in this section can basically be replicated for the

case of the utility ratio. See Appendix A for details.

4.2. Certainty Equivalent Differences. In this approach, the risk preferences esti-

mation process is analogous to that studied in the previous section, except that gambles

are evaluated in terms of their certainty equivalents, instead of their expected utility.

The main intuition for this approach is that the certainty equivalent is a monetary

representation of preferences, which facilitates interpersonal comparisons by using a

common scale.
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Formally, given a utility function U , the evaluation of a gamble g is now given by

the additive consideration of its certainty equivalent CE(g, U), and a random i.i.d.

unobserved term ε(g), which follows a continuous cumulative distribution Ψ. The

probability of selecting gamble g over gamble h is then given by f
CE(·,U)
Ψ[λ] (g, h) =

P (λCE(g, U) + ε(g) ≥ λCE(h, U) + ε(h)) = Ψ∗(λ(CE(g, U) − CE(h, U))), where

Ψ∗ is the distribution function of the difference of errors. In this case, the probability

of selecting gamble g over gamble h for the logistic model is eλCE(g,U)

eλCE(g,U)+eλCE(h,U) .

One may entertain the idea that, by creating a common scale, this method could

provide a solution to the problem discussed in the previous section. We show that,

in some instances, this is in fact the case. Take any two utility functions, where one

is more risk averse than the other, a gamble g, and a degenerate gamble δx. Clearly,

the certainty equivalent of the degenerate gamble is the monetary outcome x for both

utility functions, whereas the certainty equivalent of gamble g is obviously lower for

the risk averse one. Thus, the difference between the certainty equivalents of the

two gambles is greater for the more risk averse utility function, and consequently, its

probability of choosing gamble g is lower. This intuition is formally established in the

following result.

Theorem 3. Consider any two expected utility functions U1, U2 such that U1 is more

risk averse than U2. Consider any continuous distribution Ψ, and any λ > 0. For

any non-degenerate gamble g and for any degenerate gamble δx, f
CE(·,U1)
Ψ[λ] (g, δx) ≤

f
CE(·,U2)
Ψ[λ] (g, δx).

We now show that, unfortunately, this method of estimation may be problematic

when non-degenerate gambles are involved. The following results establish that some

pairs of gambles related by the mean-preserving spread notion suffer from the sort of

anomalies identified in Theorems 1 and 2.

Theorem 4. Consider any two expected utility functions U1, U2 such that U1 is strictly

more risk averse than U2 and limx→∞
Ui(δx)
x

= Ui(δ0) = 0, i = 1, 2. Consider any

continuous distribution Ψ, and any λ > 0. There exist gambles, g, and h, such that g

is a mean-preserving spread of h through outcome y and non-degenerate gamble g′ with

f
CE(·,U1)
Ψ[λ] (g, h) > f

CE(·,U2)
Ψ[λ] (g, h).

The property limx→∞
Ui(δx)
x

= Ui(δ0) = 0 simply imposes that, as x grows, the utility

of gamble [(x−1
x
, 1
x
), (0, x)] approaches the utility of obtaining a certain 0 payoff, which

is normalized to 0. For the case of risk averse individuals, this is very intuitive since the



Figure 2. Differences in Certainty Equivalent

Figure 2a: g versus δ2 Figure 2b: g versus h

gamble clearly becomes less and less attractive as x increases, and is satisfied by many

expected utility functions, such as risk averse CARA and CRRA utility functions.

Theorem 4 establishes that problems may reappear when the anchor established by

degenerate gambles is abandoned. Consider two non-degenerate gambles, where one is

a mean-preserving spread of the other, and such that the minimum payoff is the same

in both. Notice that, in this case, as the level of risk aversion increases, the certainty

equivalents of both gambles approach that minimum payoff, and hence the difference

goes to 0. The same argument used in the intuition of the above results then applies.

Theorem 5 uses this type of gambles to establish the existence of a global minimum

for CARA and CRRA.

Theorem 5. Consider any continuous distribution Ψ, and any λ > 0. For every pair

of distinct non-degenerate gambles, g and h, such that the minimum payoff from both

gambles is the same, and g is a mean-preserving spread of h, there exists r∗ such that

f
Urω
Ψ[λ](g, h) ≥ f

Ur
∗
ω

Ψ[λ](g, h) whenever r ≥ r∗.

Figure 2 uses the same utility functions, probability distribution, and gambles as

those used in Figure 1, but now using differences in the certainty equivalents. It is

apparent that the probability of choosing g over δ2 is now well-behaved, whereas the

problem persists with respect to the comparison between g and h.
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To conclude, we have shown that the use of certainty equivalents in a random utility

model may involve problems, but their extent crucially depends on the specific gambles

being considered.

4.3. Other Related Models. The previous two sections work under the assumption

of expected utility. Clearly, any generalization of expected utility, such as cumulative

prospect theory, rank-dependent expected utility, disappointment aversion, etc, are

susceptible to the problems identified above, as they include expected utility as a special

case. Not only this, but the additive nature of these models makes them vulnerable to

the same anomaly even when only non-expected utilities are considered. Furthermore,

they also share the positive results identified in Theorem 3, involving the certainty

equivalent representation in conjunction with comparisons using a degenerate gamble.

This is so because these utility theories also have a unique certainty equivalent for

every gamble, and hence exactly the same arguments apply as in Theorem 3.

Wilcox (2011) suggests a novel utility representation, namely, contextual utility.

When two gambles are defined over the same outcomes, contextual utility normalizes

the utility difference of the gambles by the difference between the utility of the best and

worst of these outcomes. This normalization solves the problem for cases in which the

two gambles are defined over the same three outcomes, and for the mean-preserving

spread comparisons. Problems in line with those identified so far arise when using

pairs of gambles where one is degenerate or where the gambles involve more than three

outcomes with the mean-preserving spread notion.8

We close this section by studying mean-variance utilities, which are much used in

portfolio theory and macroeconomics. Markowitz (1952) was the first to propose a

mean-variance evaluation of risky asset allocations. Roberts and Urban (1988) and

Barseghyan, et al. (2013) are examples of the use of mean-variance utilities in a random

utility model, for the estimation of risk preferences. Formally, given a gamble g, denote

the expected value and variance of g by µ(g) =
∑

i pixi and σ2(g) =
∑

i pi(xi−µ(g))2,

respectively. A utility function U is a mean-variance utility if U(g) = µ(g) − rσ2(g),

8By using differences over expected utility with CRRA and risk aversion coefficients of r1 = .9

and r2 = .5, the following gambles illustrate these points: g = [(0, 5, 10, 15, 20), (.1, .3, .2, .3, .1)] and

δ15, and g = [(0, 5, 10, 15, 20), (.1, .3, .2, .3, .1)] and h = [(0, 5, 10, 15, 20), (.1, .2, .4, .2, .1)]. If one is

willing to compare gambles dominated by stochastic dominance, something that Wilcox discarded,

then g′ = [(5, 10, 15), (.3, .4, .3)] and δ15 is an example of the problems that may arise using the

standard notion of risk aversion in the classical three outcomes world.
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where r is the risk aversion parameter. We now argue that the use of random utility

models in conjunction with mean-variance utility is fortunately free from any of the

problems identified so far. First consider a gamble g, and a degenerate gamble δx.

Clearly, the more risk averse utility is the one that more intensely dislikes gamble g,

and hence U1−2(g) < 0 = U1−2(δx) which, as we have argued in relation to Theorem

1, guarantees that the more risk averse utility selects gamble g with less probability.

Moreover, when g is a mean-preserving spread of h, simply notice that g has more

variance than h and since r1 > r2, U1−2(g) = (r2−r1)σ2(g) < (r2−r1)σ2(h) = U1−2(h),

again as desired.

5. Random Preference Models

In random preference models, the individual is assumed to have a probability dis-

tribution over a set of utility functions, of which certain parameters are unknown to

the researcher. At the moment of choice, one of the utilities is drawn from the distri-

bution and the individual ends up selecting the best option according to that utility

function. This process generates a probability distribution over the choice set and

standard maximum likelihood techniques can then be used to determine the unknown

parameters.

5.1. Errors on the Risk Aversion Parameter. Consider a parametric family of

expected utility functions {U r}, such that (strictly) larger values of r are associated

with (strictly) greater risk aversion. The individual is assumed to have a given risk

aversion level that is subject to an error µ, with µ following a symmetric continuous

cumulative distribution φ with mean zero. As a consequence, the probability of select-

ing gamble g over gamble h is given by fU
r

φ[λ](g, h) = P (U r+µ(g) ≥ U r+µ(h)), where λ is

inversely related to the variance of the error distribution, representing the rationality

parameter.9 To illustrate, whenever φ is the logistic, the closed-form probability of

selecting gamble g over h is 1
1+e−λ(r̂(g,h)−r)

, where r̂(g, h) is the parameter that makes

U r̂(g,h)(g) = U r̂(g,h)(h), whenever it exists.10

9Notice that random preference models can be understood as non-independent random utility

models. That is, any random preference model could be alternatively presented as utility values

subject to non-independent errors for the different gambles involved. The joint distribution of errors

on the gambles can be computed from the distribution of errors on the risk aversion parameter.
10The proof of Theorem 6 analyzes the conditions required for such a risk aversion parameter to

exist.
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The following result establishes that this method is free from any of the problems

identified in the previous sections.

Theorem 6. Consider the parametric family of expected utility functions {U r}, and

any two utilities such that r1 ≥ r2. Consider any continuous symmetric distribution φ

with mean zero, and any λ > 0. For any pair of gambles, g and h, such that g is non-

degenerate and h = δx, or g is a mean-preserving spread of h, fU
r1

φ[λ] (g, h) ≤ fU
r2

φ[λ] (g, h).

Figure 3 illustrates the same case as the previous figures, but the probability of

choosing the riskier gamble is now modeled using the errors on the risk aversion pa-

rameter, as studied in this section. The figure exemplifies that the above-identified

problems vanish when this method is used.

5.2. Other Related Models. The assumption on a family of utility functions with a

single risk aversion parameter can be extended to the consideration of families with a

vector r of parameters, where an utility is more risk averse than another if all the vector

components are larger. In this case, the estimation exercise would involve considera-

tion of independent errors on each of the parameters, but follows the same intuition

otherwise. Thus, the parameter space would be divided into two disjoint areas, one in

which gamble g is strictly better than gamble h, and another in which the reverse is

the case. In line with the definition of r̂(g, h), the family of utility functions must be

such that, whenever a vector r belongs to the former area, and r ≥ r′, the vector r′



15

also belongs to it. Similarly, whenever a vector r belongs to the latter area, and r′ ≥ r,

the vector r′ also belongs to it. Consequently, given two utility functions such that

r1 ≥ r2, the model implies that the probability of choosing the riskier gamble is lower

for the first of these utilities.

It is important to notice that exactly the same logic applies beyond expected utility,

provided that there exists the sort of separation threshold described above between the

utility functions that prefer g over h and those that prefer the reverse. This is generally

the case for rank-dependent expected utility, disappointment aversion or cumulative

prospect theory. It is immediate from this that the positive news provided by Theorem

6 applies well beyond expected utility.

Another option is to take a non-parametric approach, by which, under the appropri-

ate assumptions, one can consider the Taylor expansions of utility functions and work

directly on the Arrow-Pratt coefficient of risk aversion. In this case, the considera-

tion of errors over the Arrow-Pratt coefficient would lead to the same positive results

provided by Theorem 6. This is basically the approach adopted in Cohen and Einav

(2007).

Finally, one can entertain a very particular distribution over the set of utility func-

tions, in which only a utility function U and the opposite utility −U have positive

mass. Then, in line with the trembling hand approach in game theory, the individual

uses the utility function U with probability 1 − ε, and the utility function −U with

probability ε. See Harless and Camerer (1994) for an application of this model to the

estimation of risk aversion. It is immediate to see that the ordinal ranking of gambles g

and h is the only determinant of the choice probabilities, and hence a more risk averse

individual will always select the riskier gamble with a lower probability, as desired.11

6. Discussion

We have focused on the issue of risk aversion estimation, finding that, in standard

random utility models, individuals that are more risk averse may choose the riskier

gamble with a larger probability. We note that this problem logically extends from

the individual static problem analyzed here to more general strategic or dynamic set-

tings. When the individual operates under conditions of strategic uncertainty, beliefs

replace objective probabilities. A prominent example of this approach in game theory

11This specification assumes that there are only two gambles. With more gambles, more utilities

have to be taken into consideration, but the conclusion would be the same.
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is the quantal response equilibrium of McKelvey and Palfrey (1995), which assumes

independent errors over expected utility. Hence, for given beliefs and according to our

results, it may be the case that the more risk averse individual may choose the riskier

action with a larger probability. It is clear, moreover, that the problems identified in

the static setting studied here are immediately inherited by dynamic discrete choice

models, which are frequently used to address a variety of economic problems. Some of

these settings involve risk and are modeled by means of random utility models with

errors over expected utility. In this line, see, for instance, Rust and Phelan (1997)

for a retirement model, and Crawford and Shum (2005) for one involving experience

goods markets. Hence, our paper shows that it may occur, for example, that the more

risk-averse individual selects the riskier retirement or drug option. Finally, we have

a companion paper where we identify analogous problems in the estimation of time

preferences (Apesteguia and Ballester, 2014).

Appendix A. Expected Utility Ratios

This approach starts by assuming that the utility of every gamble is strictly positive.

The probability of selecting gamble g over gamble h is f
log(U)
Ψ[λ] (g, h) = P (λ log(U(g)) +

ε(g) ≥ λ log(U(h)) + ε(h)) = Ψ∗(λ log(U(g)) − λ log(U(h))) = Ψ∗(λ log(U(g)
U(h)

)), where

Ψ∗ is the distribution function of the difference of errors. In this case, the logistic

model gives the closed-form probability of selecting gamble g over gamble h as being

equal to U(g)λ

U(g)λ+U(h)λ
.

Theorem 7 reproduces the results of Theorem 1. Given the logarithmic transforma-

tion, it uses the ratio of utilities U1/2 = U1

U2
, instead of the difference U1−2.

Theorem 7. Consider any two expected utility functions U1, U2 such that U1 is strictly

more risk averse than U2. Consider any distribution Ψ, and any λ > 0. Every gamble

has either one or two certainty equivalents for U1/2, with at least one belonging to

the interval of possible outcomes of the gamble. Further, let us consider that, for any

pair of gambles, g and h, such that g is non-degenerate and h = δx (resp. g is a

mean-preserving spread of h through outcome y and non-degenerate gamble g′ with

U2(δy) ≥ U2(g′) and U1(δy)

U2(δy)
≥ U1(h)

U2(h)
)), fU1

Ψ[λ](g, h) > fU2

Ψ[λ](g, h) if and only if (resp.

whenever):

• U1/2 is increasing at the unique certainty equivalent of g (resp. g′) and x <

CE(g, U1/2) (resp. y < CE(g′, U1/2)), or
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• U1/2 is decreasing at the unique certainty equivalent of g (resp. g′) and x >

CE(g, U1/2) (resp. y > CE(g′, U1/2)), or

• U1/2 has two certainty equivalents for g (resp. g′) and x is not in

[CE(g, U1/2), CE∗(g, U1/2)] (resp. y is not in [CE(g′, U1/2), CE∗(g′, U1/2)]).

In the next result we reproduce the parametric anomaly for the CARA case. Im-

portantly, notice that CRRA functions are not entirely suitable in this context. This

is because for values of r above 1, utilities become negative, and this is incompatible

with the use of log-transformations.12

Theorem 8. Consider any continuous distribution Ψ, and any λ > 0. For every

pair of distinct gambles, g and h, where either h is degenerate with monetary outcome

strictly within the interval of outcomes of g, or g is a mean-preserving spread of h,

there exists r∗ such that f
log(UrCARA)

Ψ[λ] (g, h) ≥ f
log(Ur

∗
CARA)

Ψ[λ] (g, h) whenever r ≥ r∗.

Figure 4 illustrates the same case as the previous figures for the logarithmic trans-

formation.

Appendix B. Proofs

Proof of Theorem 1: We divide the proof into 4 steps.

12Notice that the function x1−r, without the normalization 1
1−r , is positive for values of r > 1, but

is not in this case monotone in outcomes and thus, is also problematic.
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Step 1. We start by proving that every gamble has either one or two certainty equiva-

lents for U1−2, at least one of which has a value in the interval between the smallest and

largest monetary outcomes of the gamble. First, the continuity of u1 and u2 guarantees

that the function u1−2 = u1−u2 is also continuous. Second, we show that u1−2 is strictly

quasi-concave. To see this, consider three distinct outcomes x < y < z. By the conti-

nuity of u2, there exists p ∈ (0, 1) such that u2(y) = pu2(x) + (1− p)u2(z). Given that

U1 is strictly more risk averse than U2, it must be that u1(y) > pu1(x) + (1− p)u1(z).

Hence, u1−2(y) > pu1−2(x) + (1 − p)u1−2(z) ≥ min{u1−2(x), u1−2(z)}, showing that

u1−2 is strictly quasi-concave.

Now consider any gamble g = [p,x]. To establish the existence of at least one

certainty equivalent within the interval of the monetary outcomes of g, notice that

U1−2(g) =
∑

i piu1−2(xi) ∈ [mini{u1−2(xi)},maxi{u1−2(xi)}]. Continuity guarantees

that u1−2 will achieve the value U1−2(g) for at least one monetary outcome between

the outcomes arg mini{u1−2(xi)} and arg maxi{u1−2(xi)}. Clearly, this monetary payoff

defines a certainty equivalent, that trivially belongs to the interval [mini{xi},maxi{xi}].
Finally, notice that the strict quasi-concavity of u1−2 guarantees that there are at most

two different certainty equivalents of g.

Step 2. We prove that for any two gambles g and h, fU1

Ψ[λ](g, h) > fU2

Ψ[λ](g, h) if and

only if U1−2(g) > U1−2(h). To see this, simply notice that fU1

Ψ[λ](g, h) > fU2

Ψ[λ](g, h) if

and only if Ψ∗(λ(U1(g)−U1(h))) > Ψ∗(λ(U2(g)−U2(h))) if and only if U1(g)−U1(h) >

U2(g)− U2(h) if and only if U1−2(g) > U1−2(h).

Step 3. We now conclude the proof for pairs of gambles g and h, where g is non-

degenerate and h = δx. By step 1, g has either one or two certainty equivalents for U1−2.

If there is only one certainty equivalent CE(g, U1−2), notice that the non-degeneracy

of g precludes its being the maximizer of u1−2. Since u1−2 is strictly quasi-concave, it

can only be strictly increasing or strictly decreasing at CE(g, U1−2). If it is increasing

(resp. decreasing), clearly x < (>) CE(g, U1−2) if and only if U1−2(g) > U1−2(δx).

By step 2, the latter holds if and only if fU1

Ψ[λ](g, δx) > fU2

Ψ[λ](g, δx). If there are two

certainty equivalents, CE(g, U1−2) and CE∗(g, U1−2), strict quasi-concavity guarantees

that x 6∈ [CE(g, U1−2), CE∗(g, U1−2)] if and only if U1−2(g) > U1−2(δx) and again, by

step 2, the result follows.

Step 4. Finally, we prove the case in which g is a mean-preserving spread of h through

outcome y and the non-degenerate gamble g′. Using the additive nature of expected

utility and the assumptions on the gambles, it is U1−2(g) > U1−2(h) if and only if
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pU1−2(g′) > pU1−2(δy), where p is the probability of gamble g′ and outcome y in gam-

bles g and h respectively. The same reasoning used in step 3 applies and the result

follows.�

Proof of Theorem 2: The proof is divided into three steps.

Step 1. The marginal analogue of u1−2 is vrω = ∂urω
∂r

, which is e−rx(1+rx)−1
r2

in the case

of CARA and x1−r(1−(1−r) log x)
(1−r)2 in the case of CRRA.13 These functions are continuous

and strictly decreasing in monetary payoffs, given the domain assumptions on the

outcomes. Let −V r
ω be the expected utility associated with the continuous and strictly

increasing utility function −vrω. It follows immediately from standard arguments that

CE(g,−V r
ω ) = CE(g, V r

ω ) always exists and is unique.14 We can now compute the

Arrow-Pratt coefficient of risk aversion for −vrω. This is rx−1
x

for CARA and r log x−1
x log x

for

CRRA. These coefficients have a strictly positive derivative with respect to r and thus,

from the classic result of Pratt (1964), it follows that, for any non-degenerate gamble

g, the derivative of CE(g,−V r
ω ) = CE(g, V r

ω ) with respect to r is strictly negative.15

Step 2. We now prove the degenerate gamble case. Let g = [p,x] and h = δx such

that maxi{xi} > x > mini{xi}. Consider the gamble ĝ that assigns exactly the same

probability p to outcome mini{xi} in g, as assigned by g, and assigns to outcome

maxi{xi} in g the probability 1− p. Since ĝ first order stochastically dominates g, it is

the case that −V r
ω (ĝ) ≥ −V r

ω (g). We now show that, for sufficiently large r > 0, it is the

case that −V r
ω (δx) > −V r

ω (ĝ). To see this, notice that −V r
ω (δx) > −V r

ω (ĝ) if and only

if −vrω(x) > −pvrω(mini{xi})− (1− p)vrω(maxi{xi}), which is equivalent to p[−vrω(x) +

vrω(mini{xi})] > (1 − p)[−vrω(maxi{xi}) + vrω(x)]. Since [−vrω(x) + vrω(mini{xi})] is

positive, this is p
1−p > vrω(x)−vrω(maxi{xi})

vrω(mini{xi})−vrω(x)
. Since the curvature of vrω can be made as

large as desired by making r sufficiently large, the right hand side goes to zero as r

increases and hence, we can find r∗ sufficiently large that the inequality holds. Hence,

−V r∗
ω (δx) > −V r∗

ω (ĝ) ≥ −V r∗
ω (g), and therefore V r∗

ω (δx) < V r∗
ω (g) or equivalently,

CE(g, V r∗
ω ) < x. Given the decreasing nature of V in outcomes, this matches the

13These derivatives are well-defined for r 6= 0 in the case of CARA, and r 6= 1 in the case of CRRA.
14 Notice that the decreasing nature of vrω, provided by the domain assumptions, guarantees the

uniqueness of this certainty equivalent. Without these assumptions, we would need to perform a

separate analysis of the remaining cases in which two certainty equivalents exist.
15Notice that we cannot say that CE(g, V r

ω ) is strictly decreasing with r, since this function can

be discontinuous at r = 0 for CARA or r = 1 for CRRA. We can, however, say that CE(g, V r
ω ) is

strictly decreasing both whenever r < 0 and whenever r > 0.
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second case in Theorem 1. Also, for r ≥ r∗ > 0, given that the certainty equivalent

is strictly decreasing in r, we can apply Theorem 1 locally at every such level of risk

aversion and hence, the probability of selecting g over δx is strictly increasing above

r∗.

Step 3. We now prove the mean-preserving spread case. If g is a mean-preserving

spread of h through outcome y and gamble g′, we can apply the argument in step 4 of

Theorem 1 and apply the previous step over gambles g′ and δy, obtaining a value r�

at which V r�
ω (δy) < V r�

ω (g′). If g is a mean-preserving spread of h, we can iteratively

repeat the process to reach h. We then only need to consider r∗ as the maximum of

all the corresponding values r� in order to obtain the desired result.�

Proof of Theorem 3: We can reproduce step 2 in the proof of Theorem 1 to conclude

that f
CE(·),U1

Ψ[λ] (g, δx) ≤ f
CE(·,U2)
Ψ[λ] (g, δx) if and only if Ψ∗(λ(CE(g, U1) − CE(h, U1))) ≤

Ψ∗(λ(CE(g, U2) − CE(h, U2))) if and only if CE(g, U1) − CE(g, U2) ≤ CE(h, U1) −
CE(h, U2). Now, consider a non-degenerate gamble g and a degenerate gamble δx. If

U1 is more risk averse than U2, it follows that CE(g, U1) − CE(g, U2) ≤ 0 = x − x =

CE(δx, U1)− CE(δx, U2), which concludes the proof.�

Proof of Theorem 4: Consider, for any strictly positive integer n, the gamble

gn = [(1 − 1
2n
, 1

2n
), (0, 2n)]. Since U1 is strictly more risk averse than U2, we know

that CE(g1, U2) − CE(g1, U1) > 0. Since limx→∞
Ui(δx)
x

= Ui(δ0) = 0, it is the case

that limn→∞CE(gn, Ui) = 0, and hence, there exists n̄ > 1 such that CE(gn̄, U2) −
CE(gn̄, U1) < CE(g1, U2)−CE(g1, U1). Thus CE(gn̄, U1)−CE(g1, U1) > CE(gn̄, U2)−
CE(g1, U2), which is equivalent to f

CE(·,U1)
Ψ[λ] (gn̄, g1) > f

CE(·,U2)
Ψ[λ] (gn̄, g1). Simply notice

that gn̄ is a mean-preserving spread of g1 through outcome 2 and non-degenerate gam-

ble [(1− 1
n̄
, 1
n̄
), (0, 2n̄)], which concludes the proof.�

Proof of Theorem 5: Consider two distinct non-degenerate gambles g and h such

that xm is the minimum outcome for both and g is a mean-preserving spread of h. Con-

sider any r̂ > 0. Clearly, CE(g, U r̂
ω) < CE(h, U r̂

ω). Given that ω ∈ {CARA,CRRA}
and the fact that both gambles are non-degenerate, we know that the limit of both

CE(g, U r
ω) and CE(h, U r

ω) when r increases is xm. Hence, there exists r̃ > r̂ such

that xm < CE(g, U r
ω) < CE(h, U r

ω) < xm + CE(h, U r̂
ω) − CE(g, U r̂

ω), or equiva-

lently, CE(h, U r
ω) − CE(g, U r

ω) < CE(h, U r̂
ω) − CE(g, U r̂

ω), for all r ≥ r̃. This means
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f
CE(·,Urω)
Ψ[λ] (g, h) > f

CE(·,U r̂ω)
Ψ[λ] (g, h) for all r ≥ r̃. We can now define r∗ as the value that

minimizes the probability of choosing g over h in the closed interval [r̂, r̃], and the

result follows.�

Proof of Theorem 6: We start with the case where g is a non-degenerate gamble

and h = δx. Suppose first that x ≤ limr→+∞CE(g, U r). Then, for all µ, it is the case

that U ri+µ(g) ≥ U ri+µ(δx), and hence, fU
r1

φ[λ] (g, δx) = fU
r2

φ[λ] (g, δx) = 1. Similarly, if x ≥
limr→−∞CE(g, U r), it is the case that fU

r1

φ[λ] (g, δx) = fU
r2

φ[λ] (g, δx) = 0. Finally, consider

the intermediate case where x ∈ (limr→−∞CE(g, U r), limr→+∞CE(g, U r)). Clearly,

since the family of utility functions is assumed to be strictly ordered by the risk aversion

parameter, there exists r̂(g, δx) such that CE(g, U r) < (>) x whenever r > (<) r̂(g, δx),

and hence, since r1 ≥ r2, fU
r1

φ[λ] (g, δx) = φ(r̂(g, δx)− r1) ≤ φ(r̂(g, δx)− r2) = fU
r2

φ[λ] (g, δx),

as desired.

For the mean-preserving spread case, let g be a mean-preserving spread of h through

outcome y (with probability p) and non-degenerate gamble g′. Then, for all µ, it is

the case that U ri+µ(g) ≥ U ri+µ(h) if and only if pU ri+µ(g′) ≥ pU ri+µ(δy). Hence,

we only need to apply the reasoning used in the previous paragraph to conclude that

fU
r1

φ[λ] (g, h) = φ(r̂(g′, δy)− r1) ≤ φ(r̂(g′, δy)− r2) = fU
r2

φ[λ] (g, h), as desired. �

Proof of Theorem 7: The proof follows analogous arguments to those in Theo-

rem 1. To reproduce step 1, notice that pu1(x)+(1−p)u1(z)
pu2(x)+(1−p)u2(z)

= pu2(x)
pu2(x)+(1−p)u2(z)

u1/2(x) +
(1−p)u2(z)

pu2(x)+(1−p)u2(z)
u1/2(z) ≥ min{u1/2(x), u1/2(z)} where u1/2 = u1

u2
. Strict quasi-concavity

of u1/2 follows immediately. The strict positivity of u2 can be used to prove con-

tinuity of this function and the rest follows. Now, to reproduce step 2, simply no-

tice that f
log(U1)
Ψ[λ] (g, h) > f

log(U2)
Ψ[λ] (g, h) if and only if Ψ∗(λ(log(U1(g)) − log(U1(h)))) >

Ψ∗(λ(log(U2(g)) − log(U2(h)))) if and only if log(U1(g)
U1(h)

) > log(U2(g)
U2(h)

), or equivalently,

U1/2(g) > U1/2(h). Step 3 is completely analogous to that of Theorem 1. Step 4 re-

quires us to notice that we can write U1/2(h) = BU1/2(h−y) + (1 − B)U1/2(δy), where

B = (1−p)U2(h−y)

(1−p)U2(h−y)+pU2(δy)
and h−y is the gamble that appears when eliminating outcome y

from gamble h and normalizing the corresponding probabilities. Since U2(δy) ≥ U2(g′),

we have that B ≤ A = (1−p)U2(h−y)

(1−p)U2(h−y)+pU2(g′)
. Since U1/2(δy) ≥ U1/2(h), it must also be

the case that U1/2(δy) ≥ U1/2(h−y) and thus, U1/2(h) = BU1/2(h−y)+(1−B)U1/2(δy) ≤
AU1/2(h−y) + (1 − A)U1/2(δy). Then, whenever U1/2(g′) > U1/2(δy), we have that

U1/2(h) < AU1/2(h−y) + (1 − A)U1/2(g′) = U1/2(g) and the result for mean-preserving
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spreads holds.�

Proof of Theorem 8: Consider two distinct gambles, g = [p,x] and h, where either

h is a degenerate gamble with monetary outcome in (mini{xi},maxi{xi}), or g is a

mean-preserving spread of h. There exists r̂ > 0 such that U r̂
CARA(g) < U r̂

CARA(h), and

hence log(U r̂
CARA(g)) < log(U r̂

CARA(h)). Notice that, for the mean-preserving spread

case, any value of r above 0 is valid, while, for the degenerate gamble case, such an r̂

depends on the specific g and the monetary outcome.

Since the limits of log(rU r
CARA(h)) and log(rU r

CARA(g)) as r increases are both 0,

there exists r̃ > r̂ such that log(rU r
CARA(h)) − log(rU r

CARA(g)) < log(U r̂
CARA(h)) −

log(U r̂
CARA(g)). Given that log(U r

CARA(h))−log(U r
CARA(g)) is equal to log(rU r

CARA(h))−
log(rU r

CARA(g)), then log(U r
CARA(h))−log(U r

CARA(g)) < log(U r̂
CARA(h))−log(U r̂

CARA(g)),

or, equivalently log(
UrCARA(h)

U r̂CARA(h)
) < log(

UrCARA(g)

U r̂CARA(g)
) for all r ≥ r̃. This, as shown in The-

orem 7, is equivalent to f
log(UrCARA)

Ψ[λ] (g, h) > f
log(U r̂CARA)

Ψ[λ] (g, h) for all r ≥ r̃. Now, the

function f
log(UrCARA)

Ψ[λ] (g, h) is continuous on [r̂,∞) and, hence, achieves a minimum r∗ in

the closed interval [r̂, r̃]. Since we have proved that f
log(UrCARA)

Ψ[λ] (g, h) > f
log(U r̂CARA)

Ψ[λ] (g, h)

for all r ≥ r̃, we know that r∗ is also a minimum in [r̂,∞), which concludes the proof.�
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