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Abstract

Two estimation procedures dominate the cointegration literature: Johansen’s

maximum likelihood inference on vector autoregressive error correction models

and estimation of Phillips’ triangular forms. This latter methodology is essen-

tially semiparametric, focusing on estimating long run parameters by means

of cointegrating regressions, but it is less used in practice than Johansen’s ap-

proach since its implementation requires prior knowledge of features, such as

the cointegrating rank and an appropriate set of non-cointegrated regressors.

In this paper we develop a simple and automatic procedure (based on unit root

and regression-based cointegration testing) which, without imposing a para-

metric specification for the short run components of the model, provides an

estimator of the cointegrating rank and data-based just-identifying conditions

for the cointegrating parameters (leading to a Phillips’ triangular form). A

Monte Carlo experiment and an empirical example are also provided.
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1 Introduction

Cointegration has been one of the main workhorses of time series econometrics in the

last two decades and, even if the literature is somewhat mature, it still attracts sub-

stantial attention from both theoretical and empirical perspectives (see, e.g., Hoover

et al., 2008, or Johansen, 2010). Two approaches to the estimation of cointegration

systems appear to be dominant. The first, developed by Johansen (1988, 1991) and

Ahn and Reinsel (1990), focuses on maximum likelihood inference on vector autore-

gressive (VAR) error correction models. This approach has been the most popular

mainly because it both provides an estimator of the cointegrating rank and leads

to empirical (data-based) just-identifying restrictions from which estimators of the

cointegrating vectors can be easily obtained. Additionally, it offers estimators of the

short run parameters and a neat hypothesis testing procedure, where given economic

theories can be checked. The second dominant strategy focuses on estimation of the

so-called Phillips’ triangular form (Phillips, 1991a), which consists of specifying the

cointegrating relations by a set of reduced form regression equations from which es-

timation of structural equations (those with economic meaning) can be derived (see

Saikkonen, 1993). This approach relates directly to the simultaneous equations mod-

els methodology, with long tradition in econometrics. Within this setting, different

estimation methods have been proposed and, noticeably, it has been shown that para-

metric assumptions on the short run components do not lead to gains in asymptotic

efficiency in the estimation of cointegrating vectors (see Phillips and Hansen, 1990,

Phillips, 1991b). Pesaran and Shin (2002) provide a comparison of both methods.

In contrast to Johansen’s approach, Phillips’ methodology is essentially semipara-

metric, focusing on the long run components of the model and taking an agnostic

approach about the short run dynamics, which, in any case, once parameterized, can

be subsequently estimated if desired. While this appears to be an attractive feature

(compared to a fully parametric approach), there are several limitations associated

to Phillips’ methodology. First, the procedure takes the cointegrating rank as given.

Moreover, based on this rank, the vector of observables is decomposed into two subvec-

tors corresponding to dependent variables and regressors in particular cointegrating

regressions. Specifically, the number of dependent variables should be the same as the

cointegrating rank and the rest of the variables (regressors) must not be cointegrated,

otherwise they would be perfectly correlated asymptotically. In short, Phillips’ ap-

proach imposes a priori identification conditions on the cointegrating parameters, and

this leads to uncertainty on how to act in practice. As a result, in comparison to Jo-

hansen’s approach, this methodology has been hardly used in applied work, except
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in the single-equation framework, where an extensive literature on testing for cointe-

gration exists (see, e.g., Haug, 1996, for a review). Note, however, that when facing

multivariate systems the possibility that various cointegrating relations occur needs

to be allowed for, so, at first sight, single-equation regression approaches appear not

to be useful. Single-equation tests can be extended to systems of equations (see Ahn

and Choi, 1995), but this would still require imposing identifying restrictions to de-

sign cointegrating regressions, so the application of such methods in practice remains

speculative.

In this paper we develop a procedure to infer the cointegrating rank and to design

a set of regressions from which the cointegrating vectors in system frameworks can

be estimated. Our analysis focuses on I (1) systems (where, after differencing and

possibly demeaning, the vector of observables is covariance stationary with nonzero

and bounded spectral density), but our method allows for simple extensions to higher

order settings (although we do not pursue this here). Given the extensive literature on

cointegration, it is warranted that we highlight the extent of our contribution. First,

our proposal requires neither the imposition of a priori identifying conditions nor the

specification of a parametric model for the short run components. There are pro-

cedures in the literature which achieve a similar goal, like the principal components

approach (see Stock and Watson, 1988, Harris, 1997, Snell, 1999), the nonparametric

method of Bierens (1997), or the test of common stochastic trends of Nyblom and

Harvey (2000). However, while the main focus of these proposals is to test for a

particular cointegrating rank r, they do not provide a formal discussion of estimation

of r (with the exception of Bierens, 1997), and their estimators of the cointegrating

vectors are based on eigenvalues routines and orthogonality restrictions, which might

be difficult to interpret. On the contrary, we offer a formal discussion of the properties

of our estimator of r and, in addition, this estimator is based on extremely simple

techniques (like unit root testing) which belong to the standard time series toolkit.

Second, once the cointegrating rank is determined, our method provides data-based

just-identifying restrictions leading to a Phillips’ triangular form. In particular, our

proposal identifies automatically the set of regressors from which a Phillips’ triangular

form can be straightforwardly estimated without imposing any a priori identification

conditions. Thus, in practice, we provide a method which makes the application of

Phillips’ approach feasible, hence offering a valid alternative to Johansen’s method-

ology. We believe there are relevant contexts where our proposal might indeed enjoy

clear advantages over Johansen’s. In particular, avoiding parametric assumptions on

the short-run dynamics makes the method more robust to misspecification and it also
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seems preferable in high dimensional models. In the latter, parametric prescriptions

would lead to estimating a very large number of parameters, thus possibly inducing

small sample problems. Additionally, Gonzalo and Lee (1998) showed that residual-

based cointegration tests are more robust than Johansen’s likelihood ratio (LR) type

of tests to empirically relevant departures from the model, such as autoregressive

processes with roots (marginally) larger than unity or stochastic roots, mistaken or-

der of integration of the system (I (2) taken as I (1) with drift), wrong choice of

deterministic components or fractional processes. Finally, our proposal sheds light on

the delicate issue of choosing appropriately the regressors in cointegrating regressions.

Here, our results appear to be useful even in bivariate settings, where residual-based

cointegration testing is routinely applied by practitioners, but where a wrong design

of the possible cointegrating regression (due to cointegrated regressors) might lead to

erroneous conclusions.

The paper is organized as follows. In Section 2 we introduce some preliminary

concepts and a result on which our methodology is based. In Section 3 we present a

method to select common trends which, as will be seen below, is an essential compo-

nent of our procedure. In Section 4 we introduce our estimator of the cointegrating

rank. Next, in Section 5, we compare the finite sample performance of our procedure

with that of Johansen’s trace test (see, e.g., Johansen, 1995). In Section 6 we present

an empirical analysis of the term structure of US interest rates and, finally, in Section

7, we conclude. Proofs of theorems are relegated to the Appendix.

2 Preliminary concepts and results

First, we introduce some definitions. We say that a scalar or vector process ξt is in-

tegrated of order zero (ξt ∼ I (0)) if ξt−E (ξt) is covariance stationary with nonzero

and bounded spectral density at all frequencies. Then, a scalar or vector ζt is inte-

grated of order one (ζt ∼ I (1)), if ∆ζt is I (0), where ∆ = 1 − L, L being the lag

operator. Note that if a vector ζt is I (1), our definition (which is almost identical

to that of Johansen, 1995) implies that at least one of the individual components of

ζt is I (1), but, in general, an I (1) vector is allowed to have individual components

with distinct integration orders.

Next, we define cointegration for I (1) processes. Given a p× 1 process zt ∼ I (1),

zt is cointegrated if there exists a p× 1 vector γ �= 0 such that γ′zt −E (γ′zt) (prime

denoting transposition) can be made covariance stationary by a suitable choice of

initial values. Hereafter, a process which can be made covariance stationary (or I (0))
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by a suitable choice of initial values will be just denoted as stationary (or I (0)).

Again, this definition is almost identical to that of Johansen (1995) and it is signif-

icantly more general than the standard notion of Engle and Granger (1987), where

all observables are required to have identical integration orders. Note that, according

to our definition, some of the cointegrating vectors might be trivial, just indicating

that a particular (possibly demeaned) observable is stationary. Also, note that γ′zt

need not be I (0) (e.g. if γ′zt is noninvertible), although I (0) cointegrating linear

combinations of the observables might be the most common situation encountered in

practice. As usual, the cointegrating rank among the elements of zt (denoted as r)

is the number of linearly independent cointegrating vectors, and the space generated

by these vectors (whose dimension is r) will be denoted as contegrating space.

A very general model which generates a possibly I (1) and cointegrated p × 1

vector of observables zt is

Υ∆(zt − µt) = ut, (1)

where Υ is a p × p nonsingular matrix, µt is a deterministic component and ut is a

zero-mean p × 1 covariance stationary process which satisfies one (and only one) of

the following conditions:

(i) ut is I (0) with nonsingular spectral density matrix at all frequencies;

(ii) some components of ut form a subvector which is I (0) with nonsingular spectral

density matrix at all frequencies, the rest of the components forming another

subvector which is the first difference of a zero-mean stationary process with

bounded spectral density matrix at all frequencies;

(iii) ut is the first difference of a zero-mean stationary process with bounded spectral

density matrix at all frequencies.

We also set E (z0) = µ0, so (1) immediately implies that E (zt) = µt, t ≥ 1. In

(1), the integration and cointegration properties of zt depend both on Υ and ut. For

example, under (i) or (ii), ut ∼ I (0), so Υ−1ut ∼ I (0), and it immediately follows

that zt ∼ I (1). Also, under (i) all individual components of zt are I (1) and they do

not cointegrate, so r = 0. On the other hand, under (iii), ut = vt− vt−1 where vt is a

stationary process with bounded spectral density matrix at all frequencies. Then

zt − µt = z0 − µ0 −Υ
−1v0 +Υ

−1vt, (2)

so zt − µt can be made stationary by setting z0 − µ0 = Υ−1v0. This represents

an extreme case of cointegration where the demeaned vector of observables is itself
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stationary. In this case we will say that the cointegrating rank is full (or r = p).

Under (ii), if the individual components of Υ−1ut are I (0), then all components of zt

are I (1), but some (but not all) observables are allowed to be stationary. Also, (ii)

permits other cointegration possibilities with 0 < r < p, noting that

Υ(zt − µt) = Υ (z0 − µ0) +
t∑

j=1

uj. (3)

In fact, p− r is the number of I (0) components in ut. Although more general struc-

tures could be allowed for, as in Johansen (1995), (ii), (iii) imply that the vector of

cointegrating errors is stationary with bounded spectral density. This vector might be

I (0) (as in Johansen, 1995), but our assumptions allow for more general possibilities

(e.g., all cointegrating errors are noninvertible).

Next, we present a simple result which gives necessary and sufficient conditions

for the existence of a particular cointegrating rank r. Below, we trivially refer to a

scalar process being cointegrated if it is stationary.

Theorem 1. Let zt be generated by (1). Then the cointegrating rank among the

elements of zt is r ∈ {1, ..., p} if and only if a. and b. hold, where

a. There exists a subvector of zt of dimension p − r (say z(b)t) whose individual

components are I (1) and do not cointegrate;

b. All subvectors of zt of dimension larger than p− r containing z(b)t cointegrate.

Remark 1. If r ∈ {1, ..., p− 1}, by Theorem 1 there exist p − r variables in zt

which are individually I(1) and not cointegrated. Say these variables are Qzt, where

Q is a (p− r) × p selection matrix. The rest of the variables are Pzt, where P is a

corresponding r×p selection matrix. Again, by Theorem 1, any set of p−r+1 variables

formed by any of the variables in Pzt and all those in Qzt is always cointegrated, so

there exists an r × (p− r) matrix B such that

P (zt − µt) = BQ (zt − µt) + wt, (4)

where the r-dimensional zero-mean process wt is stationary (the connection between

wt and ut in (1) is explored below). There is no loss of generality in (4) (which implies

a normalization of the cointegration vectors) because the variables in Pzt need to be

present with nonzero coefficients in the cointegrating relations. (4) implies that there

is always a particular ordering of the observables leading to a Phillips’ triangular form

((4) being the first block of this form). Note that B could take arbitrary values, even
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B = 0r×(p−r) if, after demeaning, all the variables in Pzt are stationary. Related to

(1), (4) leads to restrictions on Υ and on the structure of ut. In particular, (4) and the

I (1) and noncointegrated condition of the individual components of Qzt is captured

by (1) letting

Υ =

(
P −BQ

Q

)
, (5)

wt = (P −BQ) (z0 − µ0)+
∑t

j=1
u(a)j, where ut = (u

′
(a)t, u

′
(b)t)

′, u(a)t, u(b)t being r and

(p− r)-dimensional subvectors of ut, respectively, such that u(a)t is the first difference

of a zero-mean r-dimensional stationary process with bounded spectral density and

u(b)t is I (0) with nonsingular spectral density at all frequencies. Also, noting that

Q (zt − µt) = Q (z0 − µ0)+
∑t

j=1
u(b)j, all individual components of Qzt are I (1) and

they do not cointegrate. Given r, any (p− r)-dimensional set of individually I (1)

and noncointegrated variables (like Qzt) will be denoted as a set of common trends

(and also, a variable in such set will be referred to as a common trend).

Remark 2. Theorem 1 motivates a step-wise method to infer the rank. Specifically,

the key is to find sequentially variables which might be common trends. The heuristic

idea is to search initially for at least one I (1) observable. If we suspect that there is

none, then there is evidence in favour of r = p. If, on the contrary, we suspect that

(at least) a particular observable is I (1), then there is evidence in favour of r < p. In

our sequential method this will be denoted as Step 1. In that latter case, we select a

candidate for common trend, and check whether all pairs containing that candidate

are cointegrated. If they are, then there is evidence in favour of r = p−1. Otherwise,

we suspect that r < p − 1, because there is (at least) a pair of observables which

appear not to be cointegrated (Step 2). We then select an additional candidate for

common trend, and test for cointegration within sets of three observables (Step 3)

and so on. In Section 3 we explain how the choice of common trends is done at every

step of the procedure and justify the properties of the choice rule. Then, in Section

4 we present our formal procedure to estimate the rank and justify the properties of

our proposed rank estimator.

Finally, we introduce some additional notation. Denote by aj,t the jth element of

a vector at. Given l distinct natural numbers kj, j = 1, ..., l, l ∈ {1, ..., p} such that

1 ≤ k1, k2, ..., kl ≤ p, we define the null and alternative hypotheses:

Hk1,k2,...,kl : the observables zk1,t, zk2,t, ..., zkl,t are not cointegrated, (6)

Hk1,k2,...,kl : the observables zk1,t, zk2,t, ..., zkl,t are cointegrated, (7)
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where if l = 1, Hk1 is equivalent to zk1,t ∼ I (1). Our procedure will be essentially

based on consistent tests for Hk1,k2,...,kl and related test statistics τ̂k1,k2,...,kl. Although

other options are possible, for reasons pinpointed in the Introduction we advocate

here for the use of traditional unit root and residual-based cointegration tests. These

are simple to compute and also widely available to practitioners. Typical examples

are the Augmented Dickey-Fuller (ADF) or Phillips-Perron (PP) methods (along with

their residual-based versions). Note that the residual-based testing procedures rely

heavily on the specification of a possible cointegrating regression where the regressors

need to be carefully chosen. Section 3 below will shed light on this issue. Notationally,

if l > 1, τ̂ k1,k2,...,kl corresponds to a residual-based test statistic where zkl,t is the left

hand side variable in the regression from which residuals are derived, whereas if l = 1,

τ̂k1 is a standard unit root test statistic. Note that these statistics depend on user-

chosen deterministic structures (typically a constant or a constant plus a time trend).

Although allowing for more generality is possible, we impose throughout that for each

l , the deterministic structure used when calculating τ̂ k1,k2,...,kl is identical irrespective

of the particular variables involved in the statistic. This is not restrictive, as it

simply amounts to assume, e.g., that µt is a polynomial of time, say µt =
∑d

j=0
φjt

j,

where d is not underspecified (typically, d = 0, 1, 2), being also relatively unspecific

about zero restrictions on vectors φj and Υφj. In some cases this might lead to test

statistics based on regressions with irrelevant deterministic components (which might

cause power loses), but this appears to be a second order problem compared to the

underspecification of the deterministic structure.

We characterize further the behaviour of τ̂k1,k2,...,kl . For a certain continuous ran-

dom variable ζ l, let

τ̂k1,k2,...,kl →d ζ l, under Hk1,k2,...,kl, (8)

where “→d” denotes convergence in distribution. Note that (8) implies that for any

α ∈ (0, 1), there exist real numbers νl (α), l = 1, ..., p, such that

lim
n→∞

Pr (τ̂ k1,k2,...,kl < ν l (α)) = α, under Hk1,k2,...,kl , (9)

where n denotes sample size. In addition, if zk1,t, ..., zkl−1,t are common trends (obvi-

ously for l = 1 this requirement does not apply), we assume that for any arbitrarily

large positive K,

lim
n→∞

Pr (τ̂k1,k2,...,kl < −K) = 1 under Hk1,k2,...,kl. (10)

It can be readily shown that, under very general conditions, the ADF and PP
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procedures (and their residual-based versions) satisfy (9), (10). Note also that if

zk1,t, ..., zkl−1,t are common trends, these tests are consistent even in the case where

zkl,t (possibly demeaned) is stationary, so the possibility of a trivial cointegrating

relation with a unit cointegrating vector will be detected. Alternatively, a residual-

based unit root test based on a regression where the regressors are cointegrated (that

is, we are under the alternative) is not, in general, consistent. This is the reason

why the regression needs to be very carefully designed. Throughout, we assume that

the tests for Hk1,k2,...,kl are performed with asymptotic level α, so, noting (9), (10),

this implies that for any k1, k2, ..., kl, l ≥ 1, the hypothesis Hk1,k2,...,kl is rejected if

τ̂k1,k2,...,kl < νl (α).

3 The choice of common trends

As pinpointed in Remark 2, one of the key aspects of our procedure is the sequential

choice of variables which act as common trends. In fact, this issue is related to

a typical problem (somehow overlooked by the literature) encountered when using

residual-based cointegration testing techniques, which is the choice of the dependent

variable in the possible cointegrating regression from which residuals are derived. In

particular, a residual-based unit root test based on a regression where the regressors

are cointegrated is not, in general, consistent, so the choice of left-hand side variable

and regressors is critical. We illustrate this problem in an I (1) setting by means of

a simple bivariate example. Let z1,t, z2,t be two observables such that z1,t ∼ I (1),

z2,t ∼ I (1) and which do not cointegrate. Suppose we want to test whether these

variables are cointegrated by means of a residual-based method. Here, the key issue

is to choose the regressor in the possible cointegrating regression from which the

residuals are derived. Noting (9), (10), a sensible choice to favour the possibility that

the regressor is I (1) (which ensures that the test is consistent under cointegration),

might be to select as regressor the observable which shows the highest evidence of

being I (1) based on a certain criterion. Thus, a possible strategy might be to choose

as regressor the observable for which τ̂ i is the highest. This choice will be denoted as

the “naive” choice, and it implies that the residual based statistic which depends on

such stochastic choice of regressor is

τ̂ = τ̂121 (τ̂ 1 > τ̂2) + τ̂211 (τ̂ 1 ≤ τ̂2) . (11)
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The challenge is to derive the null limiting distribution of τ̂ , noting that in our setting

both observables are I (1), so τ̂ 12, τ̂21, are well constructed statistics such that

lim
n→∞

Pr (τ̂ 12 < ν2 (α)) = α, lim
n→∞

Pr (τ̂21 < ν2 (α)) = α. (12)

However, in view of (11), the derivation of the null limiting distribution of τ̂ might

be very complicated, as it depends on the joint behaviour of τ̂ 1, τ̂ 2, τ̂12, τ̂ 21. Thus,

it is likely that this distribution is nuisance-parameter dependent, so, using standard

critical values ν2 (α), whether limn→∞Pr (τ̂ < ν2 (α)) ≤ α or not remains speculative

(unreported Monte Carlo results suggest that τ̂ is oversized). Under the alternative,

that is, when z1,t, z2,t, are cointegrated, the “naive choice” works well. First, if both

z1,t and z2,t are I (1), both statistics τ̂ 12 and τ̂21 diverge to −∞, hence τ̂ also does

it and the test is consistent. If, possibly after demeaning, one of the observables is

stationary (say z1,t), the “naive” choice selects as common trend the I (1) variable

(z2,t) with probability approaching one (wpa1). Then, noting (11), 1 (τ̂1 > τ̂2) →p

0, 1 (τ̂ 1 ≤ τ̂ 2) →p 1, τ̂12 = Op (1) (note that this statistic is constructed from the

residuals of a regression of z2,t, which is I (1), on z1,t, which is stationary, so even if

z1,t, z2,t, are cointegrated, those residuals behave like an I (1) variable) whereas τ̂21

diverges to −∞, so the test is consistent.

A simple approach to the problem of calculating the null limiting distribution of

the test statistic is to rely on a different choice rule which, even if both observables are

I (1), selects one (but just one) of the I (1) variables as regressor wpa1. An example

of such choice rule is the following. Let κ̂2 > 0 be a statistic such that, as n→∞,

κ̂2 = op (1) under H2, (13)

and for a real sequence gn > 0 such that either gn = 1 or gn → 0, and a random

variable ξ2 > 0, a.s., let

gnκ̂2 →d ξ2 under H2. (14)

A very convenient example of such κ̂2 is the inverse of the usual variance ratio statistic

(see Tanaka, 1990, Kwiatkowski et al., 1992, Breitung, 2002) applied to process z2,t

(demeaned if needed). In particular

κ̂2 =
n
∑n

t=1

(
z∗2,t
)2

∑n

t=1

(∑t

s=1
z∗2,s

)2 , (15)

where z∗2,t equals the observable z2,t or residuals arising from the regression of z2,t
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on deterministic components (typically a drift and/or a time trend). It is relatively

cumbersome (but simple) to show that, under standard conditions, such κ̂2 satisfies

(13), (14), with gn depending on the memory properties of z2,t: if z2,t ∼ I (0), gn = 1,

whereas if z2,t has negative memory, gn converges to zero at a rate which depends

on the degree of memory (e.g., gn = n−1 if z2,t is noninvertible). Then, the rule we

propose is as follows: choose z1,t as common trend if τ̂21 < τ̂22min {1, κ̂2} ; choose z2,t,

otherwise. The intuition behind this rule is the following. If κ̂2 is large (in particular

larger than one), which may suggest that, after demeaning, z2,t is stationary, we let

τ̂21 and τ̂ 22 compete, so the regressor is chosen on the basis of the evidence of unit

root statistics. Alternatively, if κ̂2 is small (in particular smaller than one), thus

suggesting that z2,t might be I (1), we choose z2,t unless the evidence based on the

unit root statistics is very strong in favour of z1,t (because τ̂
2
1 is much smaller than

τ̂22). This procedure leads to choosing z2,t as the common trend unless either there is

clear evidence that, after demeaning, z2,t is stationary or an overwhelming evidence

of I (1) behaviour in favour of z1,t (in practice, the value of κ̂2 when z2,t ∼ I (1) is

usually very small, so this latter possibility is not expected to happen very often).

As shown in Theorem 2 below, this type of rule implies that a specific true common

trend is chosen wpa1. In our present example, given that both z1,t and z2,t are I (1),

the rule selects wpa1 z2,t. Thus, noting that

τ̂ = τ̂121 (z1,t is chosen as common trend) + τ̂ 211 (z2,t is chosen as common trend) ,

τ̂ − τ̂ 21 = op (1), so the null limiting distribution of τ̂ is that of τ̂21.

There is, however, an important issue to be noted. Our choice rule (and there-

fore our statistic τ̂) is sensitive to the ordering of the observables in the vector zt.

Specifically, if the second observable in the vector (z2,t) is I (1) it is chosen as com-

mon trend wpa1. However an alternative ordering of the observables might lead to

a different statistic. In our particular bivariate example there are two different or-

derings (say o = 1, o = 2), leading therefore to two different statistics τ̂ (1), τ̂ (2),

respectively. The statistic which captures the possibility that both orderings might

be chosen is τ̃ = τ̂ (1)1 (o = 1) + τ̂ (2)1 (o = 2), and the challenge is to derive the null

limiting distribution of τ̃ . Clearly

Pr (τ̃ < ν2 (α)) = Pr
(
τ̂ (1) < ν2 (α)

∣∣ o = 1
)
Pr (o = 1)

+Pr
(
τ̂ (2) < ν2 (α)

∣∣ o = 2
)
Pr (o = 2) . (16)

Let o be independent from the observables, which is innocuous if the chosen or-
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dering is arbitrary. Then, by independence, the conditional probabilities are iden-

tical to the unconditional ones and noting that with the previous choice of com-

mon trend limn→∞ Pr
(
τ̂ (1) < ν2 (α)

)
= limn→∞ Pr

(
τ̂ (2) < ν2 (α)

)
= α, it follows that

limn→∞Pr (τ̃ < ν2 (α)) = α.

As explained in Remark 2, our general procedure to estimate the rank requires a

sequential choice of possible common trends, and generalizing the idea posed in the

previous bivariate example leads to the following method. Let θ̂k1,k2,...,kl = τ̂2k1,k2,...,kl ,

θ̂
∗

k1,k2,...,kl
= τ̂2k1,k2,...,kl min {1, κ̂k1,k2,...,kl}, where κ̂k1,k2,...,kl is the inverse of the variance

ratio statistic (see (15)) applied either to z∗k1,t if l = 1 or to residuals from the

regression of zkl,t on zk1,t, ..., zkl−1,t and deterministic components if l > 1. As before,

it can be shown that

κ̂k1,k2,...,kl = op (1) under Hk1,k2,...,kl, (17)

and that if zk1,t, ..., zkl−1,t are common trends (obviously for l = 1 this requirement

does not apply), for a real sequence gn > 0 such that either gn = 1 or gn → 0 and a

random variable ξk1,k2,...,kl > 0, a.s.,

gnκ̂k1,k2,...,kl →d ξk1,k2,...,kl under Hk1,k2,...,kl. (18)

As anticipated in Remark 2 (and formally discussed in Section 4 below), the first

possible common trend variable, say zc1,t, c1 ∈ {1, ..., p}, is chosen in Step 2 of the

procedure. In particular, we select c1 = 1 if θ̂1 < minj>1 θ̂
∗

j ; otherwise, c1 = 2 if

θ̂2 < minj>2 θ̂
∗

j ; proceeding in this fashion, if c1 �= 1, 2, ..., p − 2, then c1 = p − 1 if

θ̂p−1 < θ̂
∗

p; otherwise, c1 = p. This rule is a straightforward generalization to the

p-dimensional case of the rule presented for the bivariate case.

The second possible common trend, say zc2,t, c2 ∈ {1, ..., p}, c2 �= c1, is chosen

in Step 3, and the idea is identical to that in Step 2 (although notationally more

involved). In particular, given τ̂ c1,i, κ̂c1,i, i ∈ {1, ..., p}, i �= c1, we choose c2 = l,

such that l ∈ {1, ..., p}, l �= c1, where l is the smallest i ∈ {1, ..., p}, i �= c1 such that

θ̂c1,i < minj>i,j �=c1 θ̂
∗

c1,j
; alternatively, if there is no i such that the previous condition

holds, then l = max {1, ..., p} such that l �= c1.

In general, in Step k, noting that in previous steps zc1,t, ..., zck−2,t have been cho-

sen as possible common trends, we choose the possible (k − 1)th common trend, say

zck−1,t, ck−1 ∈ {1, ..., p}, ck−1 �= c1, ..., ck−2. Given τ̂ c1,...,ck−2,i, κ̂c1,...,ck−2,i, i ∈ {1, ..., p},

i �= c1, ..., ck−2, we choose ck−1 = l ∈ {1, ..., p}, l �= c1, ..., ck−2, where l is the smallest

i ∈ {1, ..., p}, i �= c1, ..., ck−2, such that θ̂c1,...,ck−2,i < minj>i,j �=c1,...,ck−2 θ̂
∗

c1,...,ck−2,j
; alter-
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natively, if there is no i such that the previous condition holds, then l = max {1, ..., p}

such that l �= c1, ..., ck−2.

Finally we describe the properties of our method of choosing common trends. As

clarified before, this choice depends on the ordering of the observables in the vector

zt (with p observables there are p! such alternative orderings). Let r ∈ {1, ..., p− 1}

be the cointegrating rank (so p − r common trends exist). Given an ordering of the

variables (say o = g) independent from the observables, let i1 be the largest number

in {1, ..., p} such that zi1,t ∼ I (1). Similarly, let i2 be the largest number in {1, ..., p},

i2 �= i1 such that zi1,t and zi2,t are not cointegrated. In general, for m = 2, ..., p−r, let

im be the largest number in {1, ..., p}, im �= i1, ..., im−1 such that zi1,t, ..., zim−1,t and

zim,t are not cointegrated. Note that for any l > 1, il depends on i1, ..., il−1, although

we do not reflect this in the notation for simplicity. Also, all the il’s depend on the

ordering o = g, and again for simplicity, this is not reflected in the notation. Also,

the existence of the il’s depends on r. In particular, if r = p − 1, just i1 exists; if

r = p−2, just i1 and i2 exist; in general, for r ∈ {1, ..., p− 1}, just i1, i2, ..., ip−r exist.

Theorem 2. Let r ∈ {1, ..., p− 1} be the cointegrating rank. Then, for any 1 ≤ l ≤

p− r and g ∈ {1, ..., p!}

Pr (c1 = i1, ..., cl = il| o = g)→ 1, as n→∞. (19)

Remark 3. Theorem 2 implies that, whenever there are common trends, we choose

in every step of the procedure a unique valid common trend wpa1. In particular, the

first common trend is the I (1) variable labelled with the highest index in the chosen

ordering (wpa1). Next, the second common trend is the variable not cointegrated with

zc1,t labelled with the highest index (wpa1), and so on. This result allows us to control

the size of our sequential method and derive the neat results in Theorem 3 below.

Note also that Theorem 2 is silent about the behaviour of our choice of common trends

when there are no such common trends. However, this is not an issue of overriding

concern, because, as it will become evident when justifying the properties of the

estimator of the rank given in Theorem 3, the behaviour of our choice of common

trends when such common trends do not exist (that is when l > p − r) is irrelevant

for the properties of our estimator of r.

13



4 Estimation of the cointegrating rank

We present a procedure that leads to an estimator of the cointegrating rank of a

vector of possibly cointegrated observable series zt, and that provides a set of common

trends fromwhich a Phillips’ triangular system can be immediately designed, therefore

leading to straightforward estimation of the cointegrating space. As in Johansen’s

methodology, we impose that zt is at most I (1), although extensions to higher orders

are possible by generalizing appropriately the methodology presented below. The

choice for the maximum integration order of the vector of observables can be justified

on a priori knowledge about the series, or on a preliminary analysis of the individual

integration orders (by means of standard test procedures, like ADF or PP tests; see,

e.g., Phillips and Ouliaris, 1990). As discussed in the previous section, the particular

ordering (o) of the observables in the vector zt plays a role in our procedure. First,

choose a particular ordering, say o = g, g ∈ {1, 2, ..., p!}, where o is independent from

the observables. Given this, our procedure is as follows:

Step 1. Define

H(1) :

p⋃

i=1

Hi, H(1) :

p⋂

i=1

Hi, (20)

so H (1) is rejected if all the individual hypotheses Hi : {zi,t ∼ I (1)} are rejected,

noting that, by Theorem 1, H (1), H (1) are equivalent to r < p, r = p, respectively.

This prompts estimation of the cointegrating rank r by

{
r̂(g) = p

}
= {H (1) is rejected} , (21)

where subindex (g) stresses the dependence of r̂(g) on the chosen ordering. If H (1) is

rejected (because, based on the τ̂ i’s, as a result of performing p hypothesis tests, all

Hi are rejected), the procedure finalizes because there is statistical evidence in favour

of r = p. If H (1) is not rejected, we proceed to the next step.

Step 2. Choose a possible common trend variable zc1,t, c1 ∈ {1, ..., p} by the rule

discussed in Section 3. As explained there, this requires computing statistics τ̂ i (which

have been already used in Step 1) and κ̂i. Note that zc1,t is the variable which shows

the least evidence of being stationary (possibly after demeaning) by our criterion.

Then, given the possible common trend zc1,t, define

H(2) :

p⋃

i=1
i�=c1

Hc1,i, H(2) :

p⋂

i=1
i�=c1

Hc1,i, (22)
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where, again, H (2) is rejected if all Hc1,i : {zc1,t, zi,t are not cointegrated}, are re-

jected, i.e., τ̂ c1,i < ν2 (α) for all i �= c1 (which requires performing p − 1 hypothesis

tests). By Theorem 1, H (1) ∩ H (2), H (1) ∩ H (2), are equivalent to r < p − 1,

r = p− 1, respectively, which prompts estimating r by

{
r̂(g) = p− 1

}
= {H (1) is not rejected and H (2) is rejected} . (23)

If H (2) is not rejected, we proceed to the next step.

Step 3. Choose zc2,t, c2 ∈ {1, ..., p}, c2 �= c1, as in Section 3, so zc1,t, zc2,t are possible

common trends. Again, this choice is based on statistics τ̂ c1,i (computed in Step 2)

and κ̂c1,i. Heuristically, zc2,t is the variable which presents the least evidence of being

cointegrated with zc1,t on the basis of the criterion outlined in Section 3. Then, given

the possible common trends zc1,t, zc2,t, define

H(3) :

p⋃

i=1
i�=c1,c2

Hc1,c2,i, H(3) :

p⋂

i=1
i�=c1,c2

Hc1,c2,i, (24)

and estimate the rank by

{
r̂(g) = p− 2

}
= {H (1) , H (2) , are not rejected and H (3) is rejected} , (25)

noting that if zc1,t, zc2,t are true common trends, then, by Theorem 1, H (2) ∩H (3),

H (2)∩H (3), are equivalent to r < p− 2, r = p− 2, respectively, which justifies r̂(g).

Again, note that Step 3 requires performing p− 2 hypothesis tests

In general, for k = 3, ..., p, we have

Step k. IfH (k − 1) has not been rejected, noting that in previous steps zc1,t, ..., zck−2,t

have been chosen as possible common trends, choose zck−1,t, ck−1 ∈ {1, ..., p}, ck−1 �=

c1, ..., ck−2, so zc1,t, ..., zck−2,t, zck−1,t, are possible common trends. Again, this choice

is based on statistics τ̂ c1,...,ck−2,i (computed in Step k − 1) and κ̂c1,...,ck−2,i. Also, as

before, zck−1,t is the observable which presents the least evidence of being cointegrated

with zc1,t, ..., zck−2,t. Then define

H(k) :

p⋃

i=1
i�=c1,...,ck−1

Hc1,...,ck−1,i, H(k) :

p⋂

i=1
i�=c1,...,ck−1

Hc1,...,ck−1,i, (26)
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and set

{
r̂(g) = p− k + 1

}
= {H (i) , i = 1, ..., k − 1, are not rejected and H (k) is rejected} ,

(27)

and for the step k = p, also
{
r̂(g) = 0

}
= {H (i) , i = 1, ..., p, are not rejected} . Step

k requires performing p− k + 1 hypothesis tests.

So far, for a given ordering o = g, we have derived a procedure to compute r̂(g)

based on a particular choice rule for common trends. Then, given that any ordering

could be chosen, our estimator of the rank is given by r̂ =
∑p!

g=1
r̂(g)1 (o = g). Note

that in practice this estimator is easy to compute, because it amounts to assuming an

arbitrary ordering (which cannot depend on characteristics of the observables) and

for that ordering (say o = g), computing r̂(g). The properties of r̂ are given in the

next theorem.

Theorem 3. Let r ∈ {0, ..., p} be the cointegrating rank in zt. Then the estimator

r̂ of r has the property

lim
n→∞

Pr (r̂ = r) ≥ 1− (p− r)α, (28)

lim
n→∞

Pr (r̂ = k) ≤ α, k = r + 1, ..., p, r < p, (29)

lim
n→∞

Pr (r̂ = k) = 0, k = 0, ..., r − 1, r > 0. (30)

Remark 4. Results in Theorem 3 are comparable to those of Theorem 12.3 of Jo-

hansen (1995), the only difference being (28), where for r ≤ p−2 we obtain a smaller

lower bound than Johansen (1995). Note however that this bound might not be strict

and fits naturally with the upper bound given in (29). Also, when r = p, (28) implies

that limn→∞Pr (r̂ = r) = 1. As it is evident from the proof of the theorem, this result

holds due to consistency of the tests, noting that when r = p the alternative hypothe-

ses H i, i = 1, ..., p, are true. Overestimation of the rank (as in (29)) occurs when in a

certain step all tests for no cointegration (or I (1) in the case of Step 1) are rejected,

but at least one of the corresponding null hypotheses is true. Then, the probability of

the intersection of these events (rejection of all corresponding nulls) is bounded above

by the probability of a single event characterized by the rejection of the null when it

is true. Asymptotically, this probability is bounded by α, so the probability of the

intersection is also bounded by α (as n → ∞), although this bound might not be

tight (see, e.g., (49), (50)). Finally, (30) indicates that, asymptotically, our estimator

never underestimates the rank. Again, this property rests on the consistency of the

tests. As the proof of Theorem 3 shows, to underestimate the rank at least one of the
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tests needs not to reject under the alternative and, due to consistency, the probability

of this event vanishes asymptotically.

Remark 5. Nicely, r̂ does not impose that the chosen common trends are true ones.

The choice of common trends is stochastic, and this is taken into account when ana-

lyzing the properties of r̂. However, note that the results in Theorem 3 are identical

to those corresponding to an alternative (infeasible) estimator of r which bases every

step of the procedure on true common trends. The reason for this appealing result is

that, in every step, if there are valid common trends to be chosen, our method leads

to a choice of valid common trends wpa1.

Remark 6. Our procedure is sequential, and the main challenge in the justification

of Theorem 3 is to deal appropriately with this sequentiality without imposing infea-

sible assumptions about true common trends in the different steps. Note that this

sequentiality is, in fact, also an issue in Johansen’s procedure, where the hypotheses

F (j) : {the cointegrating rank is smaller or equal than j} , j = 0, ..., p, (31)

are tested sequentially starting by F (0). If F (0) is rejected, F (1) is carried out, if

F (1) is rejected, F (2) is carried out and so on. Thus, for example if F (0), F (1),

are rejected but F (2) is not, the rank is estimated as r̂ = 2. Here, the sequentiality

problem is the following. Suppose that F (0) is rejected, so F (1) is tested. The

asymptotic distribution on which the test for F (1) is based, assumes that F (0) is

false, so under F (1), r = 1 if F (0) is false. However, it might be that the true

state of nature is r = 0. Note that F (0) is rejected with asymptotic probability α

even if F (0) is true, so, when performing the test for F (1), one might be using a

limiting distribution which is not the true one under the true state of nature (r = 0).

This issue, of course, arises in every step of the procedure. Johansen (1995) indicates

that simulations show that the distributions for smaller ranks than the maximum

allowed in F (j) are shifted towards smaller values (than if r = j), and, hence, they

are not relevant for calculating the appropriate p-values. However, this is not formal

evidence. In contrast, our method guarantees the use of a correct limiting distribution

under the null in every step, but, of course, there is a price to pay for this: given

that we conclude the procedure when one of H (1), H (2),..., is rejected, there is an α

probability at each step of making the wrong decision, and these α’s accumulate, as

we show in (28). Thus, we provide a solution to the sequentiality problem at cost of

providing a smaller lower bound for Pr (r̂ = r) than Johansen (1− (p− r)α instead

of 1− α).

Remark 7. Theorem 3 indicates that, asymptotically, a very small α would be
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desirable. In fact, it can be shown that letting α = αn → 0 with an adequate rate

(accommodating αn to the divergence rate of the corresponding test statistic under

the alternative), then Pr (r̂ = r) → 1 for any r. However, in practice, one needs

to choose critical values, and choosing αn such that αn → 0 does not help much

in finite samples. It might be a nice theoretical artifact (leading asymptotically to

the best result), but the finite sample properties of such approach will be uncertain.

Intuitively, the method might benefit in finite samples from using large (small) α’s

when r is large (small). However, a formal analysis of the linkage between the choice

of α and the finite sample performance of r̂ appears to be very involved. We have

provided some Monte Carlo evidence in Section 5 which nevertheless exemplifies the

previous intuition.

Remark 8. Once the cointegrating rank has been estimated, our procedure leads

to a set of (cointegrating) regressions from which estimation of the cointegrating

space would be straightforward. Letting r ∈ {1, ..., p− 1}, noting (4), (5), define

β′ = P−BQ, so the r columns of β span the cointegrating space. Then this space can

be estimated by simple methods such as ordinary least squares (OLS), fully-modified

OLS or Dynamic OLS applied to (4), choosing Pzt (Qzt), as left (right)-hand side

variables, obtaining B̂, and β̂
′
= P − B̂Q. In practice, if in Step p − r + 1 we

determine that r̂ = r, r = 1, ..., p− 1, our method will also necessarily determine one

set of p − r variables in zt which, in view of the corresponding test statistic, appear

not to be cointegrated. Thus, the choice of Qzt is stochastic (data-based), but simple

and automatic. Note that in the particular case where r = 1, the unique cointegrating

vector can be estimated by a single regression equation (special case of a triangular

form), where the p − 1 right-hand side variables should be those chosen as common

trends in Step p. Note that for a given set of p observables it is only in this final

step where a cointegrating regression with p− 1 regressors might be well specified (in

the sense that the regressors are not cointegrated), although it seems common among

practitioners to initiate an analysis of cointegration by a regression of this type.

Our procedure, therefore, leads to an estimate of the rank r and a choice of

p − r common trends from which a Phillips triangular form can then be estimated.

This implies imposing just-identifying restrictions on the cointegration vectors (see

ex. 2 in Boswijk, 1996, or the discussion in Luukkonen et al., 1999, which both

mention the identification scheme implicit in a triangular form), noting that our

particular identification scheme is valid if we estimate correctly the true r and our

chosen common trends are true ones (which is the case wpa1 if r̂ = r). The validity of

our identification restrictions can be checked by the procedures of Boswijk (1996) or

18



Luukkonen et al. (1999) (which provide tests for the validity of identifying restrictions

of a more general form), or by the tests for the rank of a cointegration submatrix of

Kurozumi (2005) and Paruolo (2006). Note, however, that the validity of all these

procedures relies on the knowledge of the cointegrating rank.

Remark 9. An important issue is whether our approach is useful to test structural

restrictions in the sense of Johansen and Juselius (1992). These restrictions describe

long-run relations in which economic structural hypotheses are usually formulated,

and take the form of linear restrictions on the cointegrating matrix β. For the sake of

simplicity let xt = (P
′, Q′) zt, so xt is the reordered vector of observables where the

last p − r components of xt are the common trends. Related to this reordering, the

corresponding cointegrating matrix is θ = (A,B)′, where A and B (defined in (4)) are

r × r and r × (p− r) matrices, respectively, so that θ is a reordered version of β. In

terms of θ, our just-identifying restrictions are A = Ir (the r-rowed identity matrix).

We particularize our discussion to the H4 type of hypothesis of Johansen and

Juselius (1992), although other types could be also considered. This hypothesis is the

following:

H4 : θ = H4ϕ, (32)

where H4 is a p × s known matrix, ϕ is a s × r unrestricted matrix and r ≤ s ≤ p.

This hypothesis imposes the same p− s restrictions on all r cointegrating vectors, so

it could have been equally expressed as Rθ = 0, where R is a corresponding full rank

(p− s)× p matrix. Partition R according to θ, that is R = (RA, RB), where RA, RB

are (p− s) × r, (p− s) × (p− r), respectively. First, we show that restrictions for

which rank (RB) < p− s are not compatible with our just-identifying restrictions. In

this respect note that, as implied by Theorem 2, if the chosen rank is the true one, our

procedure determines a correct choice of common trends wpa1. Thus if our choice of

common trends is correct, our just-identifying restrictions are valid, so restrictions for

which rank (RB) < p−s are of little interest because they cannot hold. The particular

sense in which such restrictions are not compatible with the just-identifying ones is

that if rank (RB) < p− s, the observables in Qzt are cointegrated (so Qzt cannot be

common trends). Let us justify this. If rank (RB) < p− s, there exists a (p− s)× 1

vector ς �= 0 such that ς ′RB = 0, noting also that ς
′RA �= 0 (otherwise R would not

be full rank). If Rθ = 0, then

RAA
′ +RBB

′ = 0⇒ ς ′RAA
′ = 0, (33)

so A would be singular and by Johansen (2005, p.98) the observables in Qzt are
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cointegrated.

Thus, if we focus on hypotheses for which rank (RB) = p − s, imposing A = Ir,

then

RAA
′ +RBB

′ = 0⇒ RBB
′ = −RA (34)

so the structural restrictions Rθ = 0 can be straightforwardly formulated as overiden-

tifying restrictions on B, which once B is estimated can be easily tested by well-known

methods (e.g., Wald test), see, e.g. Saikkonen (1993).

5 Monte Carlo evidence

We investigate the finite sample performance of our procedure (denoted GBH) and

compare it to that of Johansen’s methodology. Our main analysis is based on gener-

ating systems of four observable series zi,t, i = 1, ..., 4, of lengths n = 50, 100, 200,

500, 1000. First, for j = 1, ..., 4,, we generate an I (0) vector vt corresponding to two

different data generating processes (DGP) given by

DGP1: vj,t = εj,t; DGP2: vj,t = 0.8vj,t−1 + εj,t; (35)

where εt is a normal white noise innovation with V ar(εt) = I4. Then, for cointegrating

ranks r = 1, 2, 3, the observables are generated as

zj,t =
4∑

k=j+1

zk,t + vj,t, j = 1, ..., r, ∆zj,t = vj,t, j = r + 1, ..., 4. (36)

We also cover cases r = 0, where ∆zj,t = vj,t, j = 1, 2, 3, 4, and r = 4, where

zt = vt. Once the observables are generated, they are randomly reordered and both

our procedure and Johansen’s are applied to this reordered vector.

We present in Tables 1-4 results for the estimated ranks provided by our method

(Tables 1 and 3, where all individual tests in the H(j) hypotheses are ADF) and by

the trace test proposed by Johansen (Tables 2 and 4; see, e.g., Johansen, 1995) for

different sample sizes, significance levels and values of r (results for the maximum

eigenvalue test of Johansen, 1995a, are available from the authors upon request.

They are not presented here because in all cases this procedure is outperformed by

the trace test). The number of lags in the ADF tests and in Johansen’s VAR are

chosen automatically using the BIC. The tables show the proportion of the 10,000

replications leading to each estimated rank, so that the blocks in the main diagonals

represent the percentage of “correct answers”, whereas the rest of blocks indicate
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proportions of “mistakes”.

The results for DGP1 are quite straightforward. The performance of our procedure

matches the theoretical properties in Theorem 3. First, when r = p = 4 the test

correctly estimates the rank in 100% cases (for n ≥ 200), showing evidence of (28).

As said before, this is a consequence of consistency of the ADF tests. (i.e., when p = 4

an estimated rank of r̂ = 4 comes from rejection of H(1), which involves rejecting

the four unit root tests on the four observables). In cases where r̂ < p (so some H(i)

hypotheses were not rejected), then the rank is correctly estimated with frequencies

larger than the bound given in (28), the worst results corresponding to the r = 0 case,

as might have been expected in view of (28). In any case, the results suggest that the

bound in (28) is conservative. In Table 2 we present the corresponding results from

Johansen’s trace test procedure. Compared to our method, Johansen’s procedure

performs better in almost all cases, as it was to be expected: it is based on the true

likelihood of the data and, even though the lag length is chosen via an information

criterion, it can never be underestimated. Thus, Johansen’s procedure here is based

on a correctly specified model or, in the worst scenario, on a model which is only

slightly overparameterized.

The results for DGP2 (Tables 3 and 4) are more interesting. The main challenge

of DGP2 is that the stationary roots are now close to unity. We expect that the

first step of our procedure (single unit root tests) may have difficulties, given the well

known low power of unit root tests against “near unit roots.” This is indeed the case:

when r = 4 our procedure needs many observations (n ≥ 200) to produce appropriate

results (as a result of rejecting the unit root hypothesis in all four observables and

estimate the correct rank). On the other hand, when the true rank is not full (r < 4)

it is less likely that the procedure incorrectly rejects H (1) and selects r̂ = 4 (compare

the case r = 3, r̂ = 4 in Tables 1 and 3). In a sense, the near unit root variables

help in keeping with the unit root null in the first steps of the procedure. The

drawback is that the near unit roots tend to prevent rejection in further steps so

that our procedure underestimates the cointegrating rank more frequently. These

results are also related to the choice of significance level α (see Remark 7), which

generates a trade-off between underestimation and overestimation of the rank: a low

α leads to less frequent rejections of the null hypotheses of the ADF tests and thus

to lower frequencies of rank overestimation. Alternatively, the frequencies of rank

underestimation, coming from not rejecting the null hypotheses too often, are much

larger. In any case, overall, in terms of proportions of correct answers, our procedure

performs strictly better (worse) than Johansen’s in 61 (7) out of 75 cases, which
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is an encouraging result. In particular, for systems with high cointegrating rank,

our procedure tends to outperform Johansen’s for all sample sizes, but compared to

DGP1, our method performs now slightly better even in the cases of intermediate

and low true cointegration ranks. Overall, Johansen’s method performs well, as it

should be, given that it is, again, based on a correct likelihood, although for small n

its performance is poor given that underspecification is possible now.

Next, we repeat the above simulations allowing for the innovations to be correlated

(see Toda, 1995, for a discussion of how such correlation may affect the performance

of LR cointegration tests). Tables 5, 6 show the frequencies with which the two pro-

cedures estimate the correct rank (r̂ = r) for different values of the covariance of the

innovations. In particular, we let Cov(εj,t,εi,t), j �= i, be 0.4 (Panel A), 0.8 (Panel

B) and -0.3 (Panel C). The performance of both procedures worsens slightly in the

white noise case (DGP 1), but, still, correct rank detection approaches the theoret-

ical properties of the estimators, and Johansen’s procedure tends to outperform our

proposal. For the autoregressive case (DGP 2), our proposal behaves similarly to the

uncorrelated case for all values of correlation. However, in line with the results in

Toda (1995), the performance of Johansen’s procedure worsens quite significantly in

the high and negative correlation case for low values of r (so the procedure overesti-

mates the rank). This suggests that in the case of “near unit roots” the correlation

between innovations makes Johansen’s procedure overestimate the extent of cointe-

gration more frequently than our procedure does.

We also used an alternative DGP with moving average innovations (DGP3: vj,t =

εj,t − 0.5εj,t−1). We do not present these results (which are available upon request):

the two procedures work reasonably well, although the performance of both is worse

than for DGP1 and DGP2 (note that the error dynamics cannot be represented as a

simple finite-length autoregresive process). In the uncorrelated case and with nega-

tive correlation (-0.3), our procedure outperforms Johansen’s for small sample sizes

and for systems with high cointegration rank (except when r = p, where both proce-

dures consistently estimate the true rank). With positive correlation, our procedure

overestimates the rank more often than Johansen’s.

Overall, our method is comparable to Johansen’s in systems with high r and it may

be superior in some cases when the DGP departs from pure white noise and, therefore,

lag lengths can be misspecified. Given that this is a relevant empirical situation, the

above results suggest that our proposal may be a useful alternative to Johansen’s in

contexts with expected high cointegration ranks compared to the number of variables.

This is the case, for example, of the solutions of some macroeconomic models that are
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a function of a few integrated shocks or factors (our empirical application below is an

example of such a setting). Additionally, in high-dymensional systems the number

of parameters in the short-run dynamics may be quite large, and there may be some

advantage to a procedure, such as ours, that does not require to specify these short-

run dynamics. Note also that even in large systems, if the cointegrating rank is

large, our method is based on tests that involve a small number of variables, which

might simplify matters. In order to provide some evidence of this latter situation, we

compare in Table 7-Panel A the performance of the two procedures when facing high-

dimensional systems. In particular, we generate systems of ten variables (p = 10)

which contain a mixture of I(1) and I(0) variables. The possible settings here are

numerous, so we show the results of only a few combinations of p1 (number of I(1)

variables), r1 (the cointegration rank among the I (1) variables) and p0 (number of

I(0) variables). The cointegration rank of each system is r = r1 + p0 (so r1 =

r − (p − p1)). The I(1) observables are constructed as before using DGP2, and the

I(0) variables are generated as zj,t = vj,t = 0.8vj,t−1+ εj,t. In all cases V ar (εt) = I10.

We generate samples of n = 500, 1000 observations and show the results (for tests

with α = 0.05) of correct rank estimation (i.e., we have only tabulated the frequencies

for which r̂ = r). As seen from the table, our procedure outperforms Johansen’s in

almost all cases, which is quite remarkable, noting that in our procedure the number

of lags in the ADF tests is chosen using BIC, whereas for Johansen’s method we have

used the true lag of one. This is a consequence of a moderate sample size compared

to the number of parameters to be estimated, but note that the employed sample

sizes are larger than those in typical macroeconomic settings.

Finally, we compare our procedure with that of Johansen in two situations where,

as described by Gonzalo and Lee (1998), regression-based methods might be more

robust to misspecification, since the LR type tests tend to conclude in favour of

cointegration even when the variables are not cointegrated (“spurious cointegra-

tion”). The first situation corresponds to processes with autoregressive roots mar-

ginally larger than one. We generate four observable series zj,t = 1.01zj,t−1 + εj,t,

j = 1, 2, 3, 4, where εt is generated as before with V ar (εt) = I4. The observables

are independent, and the system, therefore, is close to one with rank r = 0. The

second misspecification concerns fractional processes. We generate four observables

zj,t = (1− L)−1.4 {εj,t1 (t > 0)}, j = 1, 2, 3, 4, where 1 (·) is the indicator function and

εt is generated as before. Again, the true cointegration rank is r = 0. Results are

reported in Table 7 (Panel B.1: roots close to unity; Panel B.2: fractional processes),

where we only tabulate frequencies for which r̂ = 0 (correct rank estimation) and
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r̂ = 1 (“spurious cointegration”). As anticipated by Gonzalo and Lee (1998), our

method tends to indicate that r = 0 in both scenarios, whereas the outcome of Jo-

hansen’s trace test is unclear, with a substantial number of cases indicating “spurious

cointegration”.

6 Empirical example

We illustrate our procedure with two examples in the context of the US term structure,

using data which have already been analyzed in, for example, Diebold and Li (2006),

Giese (2008) and, originally, in Hall et al. (1992). We call im,t the yield of a zero-

coupon bond of maturity m (hereafter “the interest rate of maturity m”), and define

the term premium for that maturity as Lmt . Under a no-arbitrage condition (see,

e.g., Giese, 2008, for a derivation) the spread between a rate of any maturity and the

short-term rate i1,t must be

im,t − i1,t =
1

m

m−1∑

j=1

(m− j)Et (∆i1,t+j) + Lmt . (37)

Since im,t are typically considered to be I(1) variables, the first term in the right hand

side is stationary and if the term premium Lmt is stationary, then interest rates of

different maturities should cointegrate with the short-term rate, with cointegration

vector (1,−1)′. Hence, all pairs of rates would be cointegrated (all term spreads

would be stationary) and one interest rate (for example, i1,t) could be taken as the

common trend or, in the terminology used in the literature, as a common factor that

would drive the level of the term structure. If, however, there are other common

trends present (i.e., there are additional common factors in the term structure), then

some term premia Lmt may be I(1) and not all term spreads would be stationary. The

results in Diebold and Li (2006) and Giese (2008) suggest that short-term rates mostly

depend on one factor (level) and would therefore be cointegrated with a particular

short-rate that would act as the common trend (so short-term spreads are stationary);

however, if we include longer maturities in the analysis, then additional factors (slope,

curvature) could be present and further common trends would be needed. In our

terminology, the first situation would imply that in a set of p interest rates of short

maturities there should be p−1 cointegrating vectors and one common trend, whereas

if we mix short and long maturities we could observe r cointegrating vectors and

p− r = 2, .. common trends. We use two subsets of interest rates from the database

of different maturities constructed by Diebold and Li (2006) from US Treasuries.
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Example 1 (Ex1 hereafter) focuses only on short rates and uses five series (p = 5)

in the short end of the yield curve (maturities m = 1, 3, 9, 12, 15 months). Example

2 (Ex2 hereafter) selects a mixture of maturities (m = 1, 3, 18, 48, 120 months). In

both cases we use monthly observations from January 1985 to December 2000 for a

total of 192 observations. Evidence of structural breaks in the data prior to 1985

has been documented (see, e.g., Diebold and Li, 2006), so we opted for keeping the

sample used by Diebold and Li (2006) and Giese (2008).

We examine cointegration among these two sets of interest rates by applying our

procedure and Johansen’s methodology. The five series in each example are ordered

by maturity. We assume that the maximum integration order of the system is one

(based on ADF tests for the first-differenced series, which provide very strong evidence

against I (2)) and start our procedure by Step 1. Table 8 presents the sequences of

tests involved. Based on the initial ADF tests τ̂m, H (1) cannot be rejected in either

example, so there is evidence of p < r in both systems (because at least one interest

rate appears to be I(1)). We then select the first common trend of the systems. As

it is evident from Table 8, none of the conditions θ̂1 < minj>1 θ̂
∗

j , θ̂2 < minj>2 θ̂
∗

j ,

θ̂3 < minj>3 θ̂
∗

j , θ̂4 < θ̂
∗

5 hold in either system, so our procedure chooses zc1,t = i15,t

in Ex1 and zc1,t = i120,t in Ex2 as the first common trend. We next check whether

all pairs of rates (im,t,i15,t) m = 1, 3, 9, 12, (Ex1) and all pairs of rates (im,t, i120,t)

m = 1, 3, 18, 48 (Ex2) are cointegrated. This is done via ADF residual-based tests

for cointegration (reported in Table 8 as τ̂ c1,m), where, following previous studies, we

include a constant but no deterministic trend in the cointegrating regressions. Strong

evidence of cointegration between all pairs of rates is detected in Ex1 but not in Ex2,

where none of the four pairs shows evidence of cointegration. We therefore reject

H(2) for Ex1 and stop the testing procedure, concluding that r̂ = 4. For Ex2, H(2)

is not rejected, so we move on to Step 3, where we choose a second common trend

and then test H(3), i.e., test whether groups of three interest rates are cointegrated.

Given θ̂c1,m, θ̂
∗

c1,m
, the choice for the second common trend is i3,t. The test of H(3)

is, therefore, based on residual-based ADF statistics τ̂ c1,c2,m (last line of Table 8): all

tests strongly reject the null of no cointegration, so H (3) is rejected and we conclude

the procedure with estimated rank r̂ = 3 for Ex2.

Once the ranks have been estimated, cointegrating vectors can be easily estimated

by regression-based methods where we choose i15,t as regressor (Ex1) and i120,t and i3,t

as regressors (Ex2), the rest being left hand side variables. We estimate the systems
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by OLS

(i1,t, i3,t, i9,t, i12,t)
′ = A1 +B1i15,t + w1,t (Ex1),

(i1,t, i18,t, i48,t)
′ = A2 +B2(i3,t, i120,t)

′ + w2,t (Ex2), (38)

where A1 = (a1, a3, a9, a12)
′, B1 = (b1, b3, b9, b12)

′, A2 = (a1, a18, a48)
′, B2 is a (3× 2)

matrix of coefficients and w1,t and w2,t are generic stationary processes. The results

are shown in Table 9. We also report results of Dynamic-OLS (Stock and Watson,

1993), where four lags and leads of the first differences of the common trends are

included in the regressions (other choices of lags and leads yield very similar results).

These latter estimators of B1 and B2 have a mixed-normal asymptotic distribution,

so standard inference rules can be applied. The results of OLS and DOLS are similar,

and the estimated cointegrating vectors are quite intuitive: in Ex1 the cointegrating

coefficients bm increase with m; in Ex2 the longer m, the more the interest rate loads

on the long-term rate (i120,t). An alternative specification for Ex2, more in the line

of the structure in Giese (2008), defines the common trends as i120,t (which would

account for the level of the term structure) and i120,t − i3,t (which would account

for the slope). This specification would be equivalent to a reparameterization of our

results.

Johansen’s methodology applied to both examples yields the same estimates of

the rank, r̂ = 4 in Ex1 and r̂ = 3 in Ex2 (the test procedure is well known, so we

omit these results and offer them upon request), and the estimated coefficients are

very similar to DOLS (we have included them in Table 9, normalized to be directly

comparable to those of our cointegrating regressions).

7 Conclusions and final comments

We have presented a simple procedure to infer the cointegrating rank and, sub-

sequently, estimate the cointegrating vectors in system frameworks. This method

requires neither the imposition of a priori identifying conditions nor a parametric

specification for the short run components of the model. Our proposal appears to

be a simple alternative to Johansen’s likelihood-based methodology, since only stan-

dard regression-based techniques are necessary, and it leads to feasible estimation of

Phillips’ triangular representations of cointegrated systems, providing guidance for

the correct choice of left and right hand side variables. In terms of finite sample

performance, our results are satisfactory and comparable to those provided by alter-
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native procedures, like Johansen’s maximum eigenvalue and trace tests. In addition,

the outcomes of our procedure appear to be robust to some possible misspecifications

and the procedure seems to work quite satisfactorily for high dimensional systems.

Our procedure places emphasis on the long-run structure of the data. If one

were specifically interested in the short-run dynamics of model (1), these could be

subsequently estimated by imposing parametric assumptions on ut. The unknown

cointegrating parameters in Υ would have to be replaced by the corresponding esti-

mates and therefore the estimation of the short run structure of ut would be based

on cointegrating residuals and first differences of the common trends. It can easily

be shown that the first order asymptotic properties of the estimates of the short run

parameters are unaffected by using either the true cointegrated errors or the corre-

sponding residuals.

Finally, the procedure can be generalized to I (2) systems. The extension to

cover more general forms of integration and cointegration (like fractional ones) is also

possible, but this is rather more involved and will be the object of future research.

APPENDIX. PROOFS OF THEOREMS

Proof of Theorem 1. First, suppose that the cointegrating rank is r, so there exists

a full rank p× r matrix β such that β′zt is stationary. Without loss of generality, we

assume that the elements of zt are ordered in such a way that β = (β′A, β
′
B)
′
, where

βA, βB are r × r, (p− r)× r matrices respectively, and βA is nonsingular. Partition

zt = (z
′
(A)t, z

′
(B)t)

′ accordingly, so z(A)t, z(B)t are r× 1, (p− r)× 1 vectors respectively.

Then, we know that the elements of z(B)t are individually I (1) and not cointegrated

(see, e.g., Johansen, 2005, p.98), so a. holds.

Next, given that linear combinations of cointegrating vectors are also cointegrat-

ing, the columns of ββ−1A =
(
Ir,
(
β−1A

)′
β′B

)′
are cointegrating vectors, so b. follows.

On the other hand, suppose that a. and b. hold. First, setting zt = (z
′
(a)t, z

′
(b)t)

′,

where z(a)t collects the individual components of zt not collected by z(b)t, there exists

a (p− r)×r matrix A such that the columns of β = (Ir, A
′)′ are cointegrating vectors,

so the cointegrating rank is larger or equal than r. If the rank is larger than r, there

exists a vector θ = (θ′a, θ
′
b)
′
, where θa is r × 1 and θb is (p− r) × 1, such that the

columns of the p×(r + 1)matrix (β, θ) are linearly independent and θa �= 0 (otherwise

a. would not hold). However the vector

(
Ir

A

)
(−θa) +

(
θa

θb

)
,
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is nonzero by linear independence, and it is also cointegrating, which contradicts a.

Thus, the rank must be r, to conclude the proof of the theorem.

Proof of Theorem 2. Let Pr ( ·| o = g) = Prg (·). Then the proof follows by in-

duction by showing: (i) Prg (c1 = i1) → 1 as n → ∞; (ii) If for r < p − 1 and

l = 2, ..., p − r, Prg
(
∩l−1k=1 {ck = ik}

)
→ 1 as n → ∞, then Prg

(
∩lk=1 {ck = ik}

)
→ 1

as n→∞.

First, we show (i). Let i1 = 1. Then

Pr
g
(c1 = 1) = Pr

g

(
p⋂

j=2

{
θ̂1 < θ̂

∗

j

})
≥

p∑

j=2

Pr
g

(
θ̂1 < θ̂

∗

j

)
− (p− 2) .

Then the required result follows on showing that for all j = 2, ..., p,

Pr
g

(
θ̂1 < θ̂

∗

j

)
→ 1 as n→∞. (39)

Clearly, Prg

(
θ̂1 < θ̂

∗

j

)
= Prg

(
τ̂ 21 < τ̂ 2j min {1, κ̂j}

)
, so (39) holds because by (8) τ̂ 21 =

Op (1), whereas by (10), (18), τ̂2j min {1, κ̂j} diverges to ∞, noting also that these

statistics are independent from o.

Next, let 1 < i1 < p. Then

Pr
g
(c1 = i1) = Pr

g

(
i1−1⋂

j=1

{c1 �= j} ,

p⋂

j=i1+1

{
θ̂i1 < θ̂

∗

j

})
≥

i1−1∑

j=1

Pr
g
(c1 �= j)

+

p∑

j=i1+1

Pr
g

(
θ̂i1 < θ̂

∗

j

)
− (p− 2) .

Then, the required result follows on showing

Pr
g
(c1 �= j) → 1 as n→∞, for all j = 1, ..., i1 − 1, (40)

Pr
g

(
θ̂i1 < θ̂

∗

j

)
→ 1 as n→∞, for all j = i1 + 1, ..., p. (41)

First, for j = 1, ..., i1 − 1,

Pr
g
(c1 �= j) = Pr

g

(
p⋃

k=j+1

{
θ̂j ≥ θ̂

∗

k

})
≥ Pr

g

(
θ̂j ≥ θ̂

∗

i1

)
= Pr

g

(
τ̂2j ≥ τ̂2i1 min {1, κ̂i1}

)
→ 1,

as n → ∞, because by (8) τ̂2i1 = Op (1), by (17) κ̂i1 = op (1), whereas by (8) or (10)

τ̂2j either has an exact rate Op (1) or it diverges to ∞.
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Next, for j = i1+1, ..., p, Prg
(
θ̂i1 < θ̂

∗

j

)
= Prg

(
τ̂2i1 < τ̂ 2j min {1, κ̂j}

)
, so (41) holds

because by (8) τ̂ 2i1 = Op (1), whereas by (10), (18), τ̂ 2j min {1, κ̂j} diverges to ∞.

Finally, let i1 = p. Then

Pr
g
(c1 = p) = Pr

g

(
p−1⋂

j=1

{c1 �= j}

)
≥

p−1∑

j=1

Pr
g
(c1 �= j)− (p− 2) ,

so the result follows by showing

Pr
g
(c1 �= j)→ 1 as n→∞, for all j = 1, ..., p− 1,

which holds by identical reasons to (40), to conclude the proof of (i).

Next we show (ii). Let al (al) be the smallest (largest) number within {1, ..., p}

such that al, al �= i1, ..., il−1. First, let il =al. Then

Pr
g

(
l⋂

k=1

{ck = ik}

)
= Pr

g



l−1⋂

k=1

{ck = ik} ,

al⋂

j=il+1
j �=i1,...,il−1

{
θ̂i1,...,il−1,il < θ̂

∗

i1,...,il−1,j

}



≥ Pr
g

(
l−1⋂

k=1

{ck = ik}

)
+ Pr

g




al⋂

j=il+1
j �=i1,...,il−1

{
θ̂i1,...,il−1,il < θ̂

∗

i1,...,il−1,j

}

− 1

so (ii) follows by showing that for any j > il, j �= i1, ..., il−1, Prg

(
θ̂i1,...,il−1,il < θ̂

∗

i1,...,il−1,j

)
→

1 as n→∞. Clearly

Pr
g

(
θ̂i1,...,il−1,il < θ̂

∗

i1,...,il−1,j

)
= Pr

g

(
τ̂2i1,...,il−1,il < τ̂2i1,...,il−1,jmin

{
1, κ̂i1,...,il−1,j

})
,

so, noting that zi1,t, ..., zil−1,t, zj,t, are cointegrated, the result holds because by (8)

τ̂2i1,...,il−1,il = Op (1), whereas by (10), (18), τ̂2i1,...,il−1,jmin
{
1, κ̂i1,...,il−1,j

}
diverges to

∞.
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Next, if al < il < al,

Pr
g

(
l⋂

k=1

{ck = ik}

)

= Pr
g



l−1⋂

k=1

{ck = ik} ,

il−1⋂

j=al
j �=i1,...,il−1

{cl �= j} ,

al⋂

j=il+1
j �=i1,...,il−1

{
θ̂i1,...,il−1,il < θ̂

∗

i1,...,il−1,j

}



≥ Pr
g

(
l−1⋂

k=1

{ck = ik}

)
+ Pr

g




il−1⋂

j=al
j �=i1,...,il−1

{cl �= j}




+Pr
g




al⋂

j=il+1
j �=i1,...,il−1

{
θ̂i1,...,il−1,il < θ̂

∗

i1,...,il−1,j

}

− 2. (42)

First, we show that the second term on the right hand side of (42) tends to one as

n→∞, which would hold if for any j ∈ {al, ..., il − 1}, j �= i1, ..., il−1, Prg (cl �= j)→

1. Clearly

Pr
g
(cl �= j) = Pr

g




al⋃

k=j+1
k �=i1,...,il−1

{
θ̂i1,...,il−1,j ≥ θ̂

∗

i1,...,il−1,k

}

 ≥ Pr

g

(
θ̂i1,...,il−1,j ≥ θ̂

∗

i1,...,il−1,il

)

= Pr
g

(
τ̂ 2i1,...,il−1,j ≥ τ̂2i1,...,il−1,il min

{
1, κ̂i1,...,il−1,il

})
→ 1 as n→∞, (43)

because by (8), (10), τ̂ 2i1,...,il−1,j either has an exact rate Op (1) or diverges, by (9)

τ̂2i1,...,il−1,il = Op (1), whereas by (17) κ̂i1,...,il−1,il = op (1). Next, noting that for j > il,

j �= i1, ..., il−1, zi1,t, ..., zil−1,t, zj,t, are cointegrated, it can be readily shown that the

third term on the right hand side of (42) tends to one as n → ∞, to conclude the

proof for the al < il < al case.

Finally, if il = al

Pr
g

(
l⋂

k=1

{ck = ik}

)
= Pr

g



l−1⋂

k=1

{ck = ik} ,

al−1⋂

j=al
j �=i1,...,il−1

{cl �= j}


→ 1 as n→∞,

by identical arguments to those in the proof of (43), to conclude the proof of the

theorem.

30



Proof of Theorem 3. First, we show that the results given in the theorem apply

also to conditional probabilities (given o = g), that is

lim
n→∞

Pr
g

(
r̂(g) = r

)
≥ 1− (p− r)α, r < p, (44)

lim
n→∞

Pr
g

(
r̂(g) = k

)
≤ α, k = r + 1, ..., p, r < p, (45)

lim
n→∞

Pr
g

(
r̂(g) = k

)
= 0, k = 0, ..., r − 1, r > 0. (46)

First, we show (44) for r = p. For any null hypothesis H0, denote RH0, AH0, if H0

is rejected or not rejected, respectively. Then

Pr
g

(
r̂(g) = p

)
= Pr

g

(
p⋂

j1=1

RHj1

)
≥

p∑

j1=1

Pr
g
(RHj1)− (p− 1)

=

p∑

j1=1

Pr
g
(τ̂ j1 < ν1 (α))− (p− 1) ,

so the results holds immediately by (10) because if r = p, the Hi’s are true for all

i = 1, ..., p, and, under Hj1 , Prg (τ̂ j1 < ν1 (α)) → 1 as n → ∞, noting that the τ̂ j1 ’s

are independent of o.

Next, we show (45) for k = p (which requires r < p). First, given that r < p, by

Theorem 1 there exists (at least) a particular l such that Hl is true. Then

Pr
g

(
r̂(g) = p

)
= Pr

g

(
p⋂

j1=1

RHj1

)
≤ Pr

g
(RHl) = Pr

g
(τ̂ l < ν1 (α)) , (47)

so (45) for k = p is justified by (9) taking limits on both sides of (47). Next, we show

(45) for k = p− 1 (which requires r < p− 1). By the law of total probability

Pr
g

(
r̂(g) = p− 1

)
=

p∑

k1=1

Pr
g

(
r̂(g) = p− 1, c1 = k1

)

= Pr
g

(
r̂(g) = p− 1, c1 = i1

)

+
∑

k1 �=i1

Pr
g

(
r̂(g) = p− 1, c1 = k1

)
, (48)

noting that the first term in (48) corresponds to the particular correct choice of

common trend defined in Theorem 2. The idea of the proof is to derive a bound for the

first term of (48) (noting that the test statistics involved there are well constructed),

and also show that the second term of (48) (which is potentially problematic because
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the properties of the tests statistics involved are unknown) is o (1). First, the first

term on the right hand side of (48) is

Pr
g




p⋃

j1=1

AHj1 ,

p⋂

j2=1
j2 �=i1

RHi1,j2 , c1 = i1


 ≤ Pr

g




p⋂

j2=1
j2 �=i1

{τ̂ i1,j2 < ν2 (α)} , c1 = i1


 , (49)

noting that the residual-based test statistics τ̂ i1,j2 are well constructed because zi1,t

is a true common trend. Then, by Theorem 1, if r < p − 1 there exists (al least) a

particular l (i1) such that Hi1,l(i1) is true. Then, the right hand side of (49) is bounded

by

Pr
g

({
τ̂ i1,l(i1) < ν2 (α)

}
, c1 = i1

)
≤ Pr

g

(
τ̂ i1,l(i1) < ν2 (α)

)
, (50)

so, by (9), limn→∞ Prg
(
r̂(g) = p− 1, c1 = i1

)
≤ α. Then (45) follows because the

second term on the right hand side of (48) is clearly o (1) by Theorem 2.

Next, we show (45) for k = p− 2 (which requires r < p− 2). By the law of total

probability

Pr
g

(
r̂(g) = p− 2

)
=

p∑

k1=1

p∑

k2=1
k2 �=k1

Pr
g

(
r̂(g) = p− 2, c1 = k1, c2 = k2

)
(51)

= Pr
g

(
r̂(g) = p− 2, c1 = i1, c2 = i2

)

+
∑∑

(k1,k2)�=(i1,i2)

Pr
g

(
r̂(g) = p− 2, c1 = k1, c2 = k2

)
. (52)

The first term on the right hand side of (52) is

Pr
g




p⋃

j1=1

AHj1 ,

p⋃

j2=1
j2 �=i1

AHi1,j2 ,

p⋂

j3=1
j3 �=i1,i2

RHi1,i2,j3 , c1 = i1, c2 = i2




≤ Pr
g




p⋂

j3=1
j3 �=i1,i2

{τ̂ i1,i2,j3 < ν3 (α)} , c1 = i1, c2 = i2


 , (53)

noting again that the residual-based test statistics τ̂ i1,i2,j3 are well constructed because

zi1,t, zi2,t, are true common trends. Then, by Theorem 1, if r < p− 2 there exists (at

least) a particular l (i1, i2) such that Hi1,i2,l(i1,i2) is true. Then, the right hand side of
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(53) is bounded by

Pr
g

({
τ̂ i1,i2,l(i1,i2) < ν3 (α)

}
, c1 = i1, c2 = i2

)
≤ Pr

g

(
τ̂ i1,i2,l(i1,i2) < ν3 (α)

)
, (54)

so the result holds by (9) by taking limits on the right hand side of (54) and noting

that the second term on the right hand side of (52) is clearly o (1) by Theorem 2.

The proof of (45) for a general k = r + 1, ..., p − 1, is as follows. By the law of

total probability,

Pr
g

(
r̂(g) = k

)
=

p∑

k1=1

p∑

k2=1
k2 �=k1

...

p∑

kp−k=1
kp−k �=k1,...,kp−k−1

Pr
g

(
r̂(g) = k, c1 = k1, c2 = k2, ..., cp−k = kp−k

)

= Pr
g

(
r̂(g) = k,

p−k⋂

h=1

{ch = ih}

)

+
∑

....
∑

(k1,...,kp−k) �=(i1,...,ip−k)

Pr
g

(
r̂(g) = k,

p−k⋂

h=1

{ch = kh}

)
. (55)

The first term on the right hand side of (55) equals

Pr
g




p⋃

j1=1

AHj1 , ...,

p⋃

jp−k=1
jp−k �=i1,...,ip−k−1

AHi1,...,ip−k−1,jp−k ,

p⋂

jp−k+1=1
jp−k+1 �=i1,...,ip−k

RHi1,...,ip−k,jp−k+1,

p−k⋂

h=1

{ch = ih}


 (56)

≤ Pr
g




p⋂

jp−k+1=1
jp−k+1 �=i1,...,ip−k

RHi1,...,ip−k,jp−k+1 ,

p−k⋂

h=1

{ch = ih}


 (57)

noting again that the residual-based test statistics τ̂ i1,...,ip−k ,jp−k+1 are well constructed

because zi1,t, ..., zip−k,t, are true common trends. Then, by Theorem 1, if r < k, there

exists (al least) a particular l (i1, ..., ip−k) such that H
i1,...,ip−k,l(i1,...,ip−k) is true, so the
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right hand side of (57) is bounded by

Pr
g

({
τ̂
i1,...,ip−k,l(i1,...,ip−k) < νp−k+1 (α)

}
,

p−k⋂

h=1

{ch = ih}

)

≤ Pr
g

({
τ̂
i1,...,ip−k ,l(i1,...,ip−k) < νp−k+1 (α)

})
, (58)

so, again, the result follows by (9) by taking limits on the right hand side of (58) and

noting that the second term on the right hand side of (55) is clearly o (1) by Theorem

2.

Next we show (44) for r < p. By the law of total probability

Pr
g

(
r̂(g) = r

)
=

p∑

k1=1

p∑

k2=1
k2 �=k1

...

p∑

kp−r=1
kp−r �=k1,...,kp−r−1

Pr
g

(
r̂(g) = r, c1 = k1, c2 = k2, ..., cp−r = kp−r

)

= Pr
g

(
r̂(g) = r,

p−r⋂

h=1

{ch = ih}

)

+
∑

....
∑

(k1,...,kp−r)�=(i1,...,ip−r)

Pr
g

(
r̂(g) = r,

p−r⋂

h=1

{ch = kh}

)
. (59)

First, let r > 0. Then, the first term on the right hand side of (59) equals

Pr
g




p⋃

j1=1

AHj1 , ...,

p⋃

jp−r=1
jp−r �=i1,...,ip−r−1

AHi1,...,ip−r−1,jp−r ,

p⋂

jp−r+1=1
jp−r+1 �=i1,...,ip−r

RHi1,...,ip−r ,jp−r+1 ,

p−r⋂

h=1

{ch = ih}




= Pr
g




p⋃

j1=1

{τ̂ j1 ≥ ν1 (α)} , ...,

p⋃

jp−r=1
jp−r �=i1,...,ip−r−1

{
τ̂ i1,...,ip−r−1,jp−r ≥ νp−r (α)

}

,

p⋂

jp−r+1=1
jp−r+1 �=i1,...,ip−r

{
τ̂ i1,...,ip−r,jp−r+1 < νp−r+1 (α)

}
,

p−r⋂

h=1

{ch = ih}


 , (60)

noting again that the residual-based test statistics τ̂ j1 , τ̂ i1,j2 , ..., τ̂ i1,...,ip−r,jp−r+1 are

well constructed because zi1,t, ..., zip−r ,t, are true common trends. Then, given that the
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cointegrating rank is r, by Theorem 1 there exist particular l, l (i1), l (i1, i2) , ..., l (i1, ..., ip−r−1)

such that the hypothesis Hl, Hi1,l(i1), Hi1,i2,l(i1,i2), ..., Hi1,...,ip−r−1,l(i1,...,ip−r−1) are true.

Thus, (60) is bounded below by

= Pr
g

(
{τ̂ l ≥ ν1 (α)} ,

{
τ̂ i1,l(i1) ≥ ν2 (α)

}
, ...,

{
τ̂ i1,...,ip−r−1,l(i1,...,ip−r−1) ≥ νp−r (α)

}
,

p⋂

jp−r+1=1
jp−r+1 �=i1,...,ip−r

{
τ̂ i1,...,ip−r ,jp−r+1 < νp−r+1 (α)

}
,

p−r⋂

h=1

{ch = ih}




≥ Pr
g
(τ̂ l ≥ ν1 (α)) + Pr

g

(
τ̂ i1,l(i1) ≥ ν2 (α)

)
+ ...+ Pr

g

(
τ̂ i1,...,ip−r−1,l(i1,...,ip−r−1) ≥ νp−r (α)

)

+Pr
g




p⋂

jp−r+1=1
jp−r+1 �=i1,...,ip−r

{
τ̂ i1,...,ip−r ,jp−r+1 < νp−r+1 (α)

}



+Pr
g

(
p−r⋂

h=1

{ch = ih}

)
− (p− r + 1) . (61)

Clearly, by (9) the limits of the first p − r terms in the right hand side of (61) are

bounded below by 1− α, so (44) follows on showing that as n→∞,

Pr
g




p⋂

jp−r+1=1
jp−r+1 �=i1,...,ip−r

{
τ̂ i1,...,ip−r ,jp−r+1 < νp−r+1 (α)

}

→ 1, (62)

and also that Prg

(⋂p−r

h=1
{ch = ih}

)
→ 1. First, this latter result holds immediately

by Theorem 2. Next, the left hand side of (62) is bounded below

p∑

jp−r+1=1
jp−r+1 �=i1,...,ip−r

Pr
g

(
τ̂ i1,...,ip−r,jp−r+1 < νp−r+1 (α)

)
− (r − 1) ,

noting that the intersection in (62) involves r events, so (62) holds by (10) because

by Theorem 1 all null hypotheses Hi1,...,ip−r,,jp−r+1 are false.

The proof of (44) for r = 0 is much simpler. By (45), Prg
(
r̂(g) = j

)
≤ α for all

j = 1, ..., p, which immediately implies that Prg
(
r̂(g) = 0

)
≥ 1− pα.

Finally, we show (46). First, let k = r − 1. By the law of total probability,
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Prg
(
r̂(g) = r − 1

)
equals

p∑

k1=1

p∑

k2=1
k2 �=k1

...

p∑

kp−r+1=1
kp−r+1 �=k1,...,kp−r

Pr
g

(
r̂(g) = r − 1, c1 = k1, c2 = k2, ..., cp−r+1 = kp−r+1

)

=

p∑

kp−r+1=1
kp−r+1 �=i1,...,ip−r

Pr
g

(
r̂(g) = r − 1,

p−r⋂

h=1

{ch = ih} , {cp−r+1 = kp−r+1}

)

+
∑

....
∑

(k1,...,kp−r)�=(i1,...,ip−r)

p∑

kp−r+1=1
kp−r+1 �=k1,...,kp−r

Pr
g

(
r̂(g) = r − 1,

p−r+1⋂

h=1

{ch = kh}

)
. (63)

First, by previous results, it is straightforward to show that the second term on the

right hand side of (63) is o (1). Next, the first term on the right hand side of (63) is

p∑

kp−r+1=1
kp−r+1 �=i1,...,ip−r

Pr
g




p⋃

j1=1

AHj1 , ...,

p⋃

jp−r=1
jp−r �=i1,...,ip−r−1

AHi1,...,ip−r−1,jp−r ,

p⋃

jp−r+1=1
jp−r+1 �=i1,...,ip−r

AHi1,...,ip−r ,jp−r+1 ,

p⋂

jp−r+2=1
jp−r+2 �=i1,...,ip−r ,kp−r+1

RHi1,...,ip−r ,kp−r+1,jp−r+2 ,

p−r⋂

h=1

{ch = ih} , {cp−r+1 = kp−r+1}




≤ pPr
g




p⋃

jp−r+1=1
jp−r+1 �=i1,...,ip−r

AHi1,...,ip−r ,jp−r+1




= p


1− Prg




p⋂

jp−r+1=1
jp−r+1 �=i1,...,ip−r

{
τ̂ i1,...,ip−r ,jp−r+1 < νp−r+1 (α)

}






so the required result follows by (62).

Next, we show (46) for a generic k = 0, ..., r − 2. First, by the law of total
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probability, Prg
(
r̂(g) = k

)
equals

p∑

k1=1

p∑

k2=1
k2 �=k1

...

p∑

kp−k=1
kp−k �=k1,...,kp−k−1

Pr
g

(
r̂(g) = k, c1 = k1, c2 = k2, ..., cp−k = kp−k

)

=

p∑

kp−r+1=1
kp−r+1 �=i1,...,ip−r

...

p∑

kp−k=1
kp−k �=i1,...,ip−r ,kp−r+1,...,kp−k−1

Pr
g

(
r̂(g) = k,

p−r⋂

h=1

{ch = ih} ,

p−k⋂

h=p−r+1

{ch = kh}

)

+
∑

....
∑

(k1,...,kp−r)�=(i1,...,ip−r)

p∑

kp−r+1=1
kp−r+1 �=k1,...,kp−r

...

p∑

kp−k=1
kp−k �=k1,...,kp−k−1

Pr
g

(
r̂(g) = k,

p−k⋂

h=1

{ch = kh}

)
.

(64)

Again, by previous results, it is straightforward to show that the second term on the

right hand side of (64) is o (1). Regarding the first term on the right hand side of

(64), by an almost identical analysis to that for the first term on the right hand side

of (63), it can be bounded by

pr−k


1− Prg




p⋂

jp−r+1=1
jp−r+1 �=i1,...,ip−r

{
τ̂ i1,...,ip−r,jp−r+1 < νp−r+1 (α)

}




 ,

so, again, the required result follows by (62), to conclude the proof of (46).

Finally, (28)-(30) are straightforwardly derived from (44)-(46) just noting that for

any k = 0, ..., p, by the law of total probability

Pr (r̂ = k) =

p!∑

g=1

Pr
g
(r̂ = k) Pr (o = g) ,

to conclude the proof of Theorem 3.
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Table 1. Performance of the GBH procedure - White noise error

r 4 3 2 1 0

r̂ n\
α .10 .05 .01 .10 .05 .01 .10 .05 .01 .10 .05 .01 .10 .05 .01

50 .851 .800 .692 .097 .053 .017 .013 .004 .001 .003 .001 .000 .001 .000 .000

100 .997 .993 .981 .091 .047 .011 .009 .002 .000 .002 .000 .000 .000 .000 .000

4 200 1.00 1.00 1.00 .092 .042 .009 .008 .002 .000 .001 .000 .000 .000 .000 .000

500 1.00 1.00 1.00 .091 .044 .008 .006 .002 .000 .001 .000 .000 .000 .000 .000

1000 1.00 1.00 1.00 .094 .044 .008 .008 .002 .000 .001 .000 .000 .000 .000 .000

50 .131 .171 .242 .752 .754 .706 .148 .080 .026 .027 .011 .001 .008 .002 .000

100 .003 .007 .019 .900 .938 .959 .125 .073 .018 .022 .007 .001 .005 .001 .000

3 200 .000 .000 .000 .908 .958 .990 .112 .061 .013 .015 .003 .000 .002 .000 .000

500 .000 .000 .000 .909 .956 .992 .101 .054 .010 .013 .003 .000 .002 .000 .000

1000 .000 .000 .000 .906 .956 .992 .091 .052 .011 .011 .003 .000 .002 .000 .000

50 .017 .027 .055 .132 .163 .221 .702 .741 .723 .239 .152 .054 .078 .029 .004

100 .000 .000 .000 .009 .015 .029 .855 .906 .943 .201 .126 .041 .045 .015 .001

2 200 .000 .000 .000 .000 .000 .001 .880 .936 .985 .161 .094 .027 .024 .009 .001

500 .000 .000 .000 .000 .000 .000 .893 .944 .990 .120 .067 .016 .016 .005 .000

1000 .000 .000 .000 .000 .000 .000 .901 .946 .989 .106 .056 .011 .016 .004 .000

50 .001 .002 .010 .017 .027 .049 .125 .160 .221 .644 .722 .787 .300 .226 .087

100 .000 .000 .000 .000 .000 .001 .011 .019 .039 .764 .848 .926 .255 .163 .054

1 200 .000 .000 .000 .000 .000 .000 .000 .001 .002 .823 .901 .970 .193 .116 .032

500 .000 .000 .000 .000 .000 .000 .000 .000 .000 .866 .930 .984 .137 .076 .017

1000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .882 .941 .989 .114 .057 .012

50 .000 .000 .001 .002 .003 .007 .012 .015 .029 .087 .114 .158 .613 .743 .909

100 .000 .000 .000 .000 .000 .000 .000 .000 .000 .011 .019 .032 .695 .821 .945

0 200 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .002 .003 .781 .875 .967

500 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .845 .919 .983

1000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .868 .939 .988

The cells show the proportion of 10,000 replications where the estimated rank is r̂, given

the correct rank r, obtained following the GBH procedure. Significance levels

α = {.10, .05, .01} were used in the tests. The number of lags in the ADF tests is chosen

using the BIC. The innovation vector ut is generated from uj,t = εj,t, j = 1, ..., 4, with

Gaussian εt such that E (εt) = 0, V ar (εt) = I4
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Table 2. Performance of Johansen’s trace test - White noise error
r 4 3 2 1 0

r̂ n\
α .10 .05 .01 .10 .05 .01 .10 .05 .01 .10 .05 .01 .10 .05 .01

50 .999 1.00 .999 .066 .031 .006 .008 .003 .000 .004 .002 .002 .005 .007 .002

100 1.00 1.00 1.00 .064 .031 .006 .007 .001 .000 .001 .000 .000 .000 .000 .000

4 200 1.00 1.00 1.00 .063 .033 .005 .006 .002 .000 .001 .000 .000 .000 .000 .000

500 1.00 1.00 1.00 .062 .033 .007 .005 .001 .000 .001 .000 .000 .000 .000 .000

1000 1.00 1.00 1.00 .066 .033 .006 .005 .002 .000 .000 .000 .000 .000 .000 .000

50 .000 .000 .001 .933 .963 .925 .048 .024 .006 .006 .003 .003 .003 .003 .004

100 .000 .000 .000 .936 .969 .994 .048 .024 .005 .002 .001 .000 .000 .000 .000

3 200 .000 .000 .000 .937 .967 .995 .050 .021 .005 .002 .001 .000 .000 .000 .000

500 .000 .000 .000 .938 .967 .993 .047 .025 .005 .003 .001 .000 .000 .000 .000

1000 .000 .000 .000 .934 .967 .994 .051 .024 .004 .002 .001 .000 .000 .000 .000

50 .001 .000 .000 .001 .006 .069 .920 .907 .729 .050 .021 .005 .004 .003 .002

100 .000 .000 .000 .000 .000 .000 .945 .975 .995 .042 .021 .005 .004 .001 .000

2 200 .000 .000 .000 .000 .000 .000 .944 .977 .995 .044 .021 .003 .004 .001 .000

500 .000 .000 .000 .000 .000 .000 .948 .974 .995 .038 .023 .004 .003 .001 .000

1000 .000 .000 .000 .000 .000 .000 .944 .974 .996 .041 .017 .004 .002 .000 .000

50 .000 .000 .000 .000 .000 .000 .024 .066 .265 .886 .860 .660 .059 .030 .008

100 .000 .000 .000 .000 .000 .000 .000 .000 .000 .955 .978 .994 .050 .023 .005

1 200 .000 .000 .000 .000 .000 .000 .000 .000 .000 .953 .978 .997 .040 .021 .003

500 .000 .000 .000 .000 .000 .000 .000 .000 .000 .958 .976 .996 .038 .019 .003

1000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .957 .982 .996 .040 .019 .002

50 .000 .000 .000 .000 .000 .000 .000 .000 .000 .054 .114 .330 .929 .957 .984

100 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .001 .946 .976 .995

0 200 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .956 .978 .997

500 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .959 .980 .997

1000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .958 .981 .998

The cells show the proportion of 10,000 replications where the estimated rank is r̂, given

the correct rank r, obtained following Johansen’s trace test. Significance levels

α = {.10, .05, .01} were used in the tests. The number of lags in the estimated VARs is

chosen using the BIC. The innovation vector ut is generated from uj,t = εj,t, j = 1, ..., 4,

with Gaussian εt such that E (εt) = 0, V ar (εt) = I4
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Table 3. Performance of the GBH procedure - Autoregressive error

r 4 3 2 1 0

r̂ n\
α .10 .05 .01 .10 .05 .01 .10 .05 .01 .10 .05 .01 .10 .05 .01

50 .109 .031 .001 .082 .047 .011 .015 .004 .001 .003 .001 .000 .001 .000 .000

100 .821 .592 .106 .061 .030 .006 .008 .002 .000 .001 .000 .000 .000 .000 .000

4 200 .999 .995 .970 .061 .026 .006 .006 .003 .000 .001 .000 .000 .000 .000 .000

500 1.00 1.00 1.00 .061 .029 .006 .008 .002 .000 .001 .000 .000 .000 .000 .000

1000 1.00 1.00 1.00 .069 .034 .006 .006 .002 .000 .001 .000 .000 .000 .000 .000

50 .091 .036 .003 .161 .084 .015 .054 .029 .005 .017 .005 .001 .009 .003 .000

100 .073 .110 .049 .683 .489 .150 .061 .031 .005 .011 .003 .000 .004 .001 .000

3 200 .001 .003 .014 .937 .967 .925 .065 .028 .005 .009 .003 .000 .002 .001 .000

500 .000 .000 .000 .939 .971 .994 .072 .032 .005 .007 .002 .000 .002 .001 .000

1000 .000 .000 .000 .931 .966 .994 .066 .030 .007 .009 .003 .000 .002 .000 .000

50 .196 .126 .025 .191 .117 .031 .211 .114 .027 .120 .065 .018 .072 .032 .004

100 .061 .117 .121 .169 .227 .141 .590 .413 .125 .095 .049 .011 .040 .014 .001

2 200 .000 .002 .012 .002 .007 .058 .923 .951 .847 .082 .039 .007 .026 .008 .000

500 .000 .000 .000 .000 .000 .000 .920 .966 .995 .075 .031 .006 .018 .004 .000

1000 .000 .000 .000 .000 .000 .000 .928 .968 .993 .071 .032 .007 .011 .005 .000

50 .306 .308 .178 .276 .263 .148 .338 .292 .148 .346 .265 .122 .288 .205 .074

100 .034 .110 .266 .065 .159 .251 .253 .334 .289 .606 .499 .230 .243 .158 .050

1 200 .000 .000 .003 .000 .000 .009 .006 .018 .127 .899 .927 .829 .175 .106 .030

500 .000 .000 .000 .000 .000 .000 .000 .000 .000 .917 .967 .994 .137 .075 .016

1000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .919 .965 .993 .109 .060 .014

50 .298 .499 .793 .290 .489 .795 .382 .561 .819 .514 .664 .859 .630 .760 .922

100 .011 .071 .458 .022 .095 .452 .088 .220 .581 .287 .449 .759 .713 .827 .949

0 200 .000 .000 .001 .000 .000 .002 .000 .000 .021 .009 .031 .164 .797 .885 .970

500 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .843 .920 .984

1000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .878 .935 .986

The cells show the proportion of 10,000 replications where the estimated rank is r̂, given

the correct rank r, obtained following the GBH procedure. Significance levels

α = {.10, .05, .01} were used in the tests. The number of lags in the ADF tests is chosen

using the BIC. The innovation vector ut is generated from uj,t = 0.8uj,t−1 + εj,t,

j = 1, ..., 4, with Gaussian εt such that E (εt) = 0, V ar (εt) = I4
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Table 4. Performance of Johansen’s trace test - Autoregressive error

r 4 3 2 1 0

r̂ n\
α .10 .05 .01 .10 .05 .01 .10 .05 .01 .10 .05 .01 .10 .05 .01

50 .017 .005 .001 .032 .022 .012 .106 .084 .044 .220 .177 .125 .379 .301 .236

100 .517 .245 .015 .038 .012 .001 .020 .004 .000 .018 .006 .000 .025 .006 .000

4 200 1.00 .997 .900 .096 .045 .004 .020 .005 .000 .010 .002 .000 .006 .002 .000

500 1.00 1.00 1.00 .102 .049 .011 .018 .006 .000 .006 .001 .000 .002 .001 .000

1000 1.00 1.00 1.00 .099 .052 .011 .017 .006 .000 .005 .000 .000 .001 .000 .000

50 .026 .010 .003 .037 .025 .023 .066 .049 .054 .093 .065 .066 .130 .092 .067

100 .189 .230 .097 .109 .049 .006 .050 .020 .003 .039 .017 .001 .055 .020 .002

3 200 .000 .003 .098 .728 .581 .214 .092 .045 .007 .026 .011 .000 .015 .004 .001

500 .000 .000 .000 .898 .951 .989 .094 .053 .011 .020 .007 .001 .006 .002 .000

1000 .000 .000 .000 .901 .948 .989 .095 .049 .011 .015 .006 .000 .004 .001 .000

50 .065 .032 .007 .115 .064 .020 .175 .122 .056 .199 .154 .066 .200 .182 .095

100 .135 .214 .196 .276 .209 .065 .189 .109 .026 .152 .091 .019 .143 .089 .023

2 200 .000 .000 .002 .169 .344 .597 .576 .449 .179 .141 .080 .020 .063 .026 .004

500 .000 .000 .000 .000 .000 .000 .888 .941 .987 .112 .067 .015 .026 .009 .001

1000 .000 .000 .000 .000 .000 .000 .888 .945 .989 .111 .053 .011 .015 .006 .001

50 .225 .160 .057 .433 .394 .256 .364 .337 .241 .302 .316 .242 .210 .271 .272

100 .108 .194 .337 .376 .409 .339 .421 .396 .221 .407 .351 .185 .351 .318 .173

1 200 .000 .000 .000 .007 .029 .172 .293 .457 .614 .597 .551 .317 .242 .176 .062

500 .000 .000 .000 .000 .000 .000 .000 .000 .002 .862 .925 .970 .144 .093 .026

1000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .869 .941 .989 .116 .071 .015

50 .667 .793 .932 .383 .495 .689 .289 .408 .605 .186 .288 .501 .081 .154 .330

100 .051 .117 .355 .201 .321 .589 .320 .471 .750 .384 .535 .795 .426 .567 .802

0 200 .000 .000 .000 .000 .001 .013 .019 .044 .200 .226 .356 .663 .674 .792 .933

500 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .014 .822 .895 .973

1000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .864 .922 .984

The cells show the proportion of 10,000 replications where the estimated rank is r̂, given

the correct rank r, obtained following Johansen’s trace test. Significance levels

α = {.10, .05, .01} were used in the tests. The number of lags in the estimated VARs is

chosen using the BIC. The innovation vector ut is generated from uj,t = 0.8uj,t−1 + εj,t,

j = 1, ..., 4, with Gaussian εt such that E (εt) = 0, V ar (εt) = I4
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Table 5

Performance of GBH procedure with correlated errors - Correct rank estimation

r 4 3 2 1 0

n\
α .10 .05 .01 .10 .05 .01 .10 .05 .01 .10 .05 .01 .10 .05 .01

Panel A. Cov(εi,t, εj,t) = 0.4, i �= j

50 .853 .812 .688 718 .717 .668 .674 .699 .691 .632 .704 .764 .621 .760 .917

WN 100 .996 .993 .982 .890 .922 .943 .840 .880 .916 .755 .836 .896 .706 .825 .946

200 1.00 1.00 1.00 .912 .953 .988 .879 .933 .978 .822 .899 .962 .785 .885 .967

500 1.00 1.00 1.00 .904 .955 .992 .879 .945 .985 .859 .930 .984 .846 .925 .985

50 .138 .043 .002 .160 .079 .016 .179 .106 .022 .338 .243 .104 .634 .771 .923

AR 100 .832 .630 .150 .660 .477 .144 .570 .394 .115 .583 .476 .217 .712 .832 .947

200 .999 .997 .970 .931 .961 .918 .930 .950 .832 .910 .932 .818 .791 .883 .974

500 1.00 1.00 1.00 .929 .967 .995 .931 .969 .995 .923 .970 .996 .845 .922 .983

Panel B. Cov(εi,t, εj,t) = 0.8, i �= j

50 .880 .838 .758 .672 .662 .618 .580 .620 .609 .589 .650 .669 .632 .776 .920

WN 100 .996 .992 .984 .870 .905 .897 .743 .782 .797 .691 .760 .786 .714 .824 .947

200 1.00 1.00 1.00 .910 .951 .985 .827 .888 .920 .765 .842 .875 .781 .887 .970

500 1.00 1.00 1.00 .904 .958 .991 .853 .926 .983 .838 .911 .972 .845 .915 .985

50 .275 .130 .020 .159 .084 .020 .155 .085 .018 .285 .204 .077 .634 .770 .921

AR 100 .877 .724 .291 .643 .452 .135 .529 .340 .091 .522 .398 .176 .724 .831 .950

200 .999 .998 .976 .935 .962 .914 .923 .943 .811 .911 .925 .769 .785 .885 .972

500 1.00 1.00 1.00 .932 .970 .994 .925 .967 .996 .927 .972 .997 .850 .922 .983

Panel C. Cov(εi,t, εj,t) = −0.3, i �= j

50 .853 .800 .693 .778 .764 .717 .738 .748 .729 .670 .736 .791 .656 .799 .934

WN 100 .997 .991 .984 .920 .947 .965 .865 .916 .948 .767 .854 .933 .728 .845 .959

200 1.00 1.00 1.00 .924 .968 .992 .889 .942 .984 .838 .904 .973 .797 .892 .978

500 1.00 1.00 1.00 .907 .958 .994 .893 .948 .989 .866 .929 .984 .848 .928 .985

50 .319 .042 .002 .173 .085 .015 .211 .110 .028 .330 .247 .108 .653 .783 .933

AR 100 .825 .610 .141 .671 .473 .150 .582 .391 .124 .584 .470 .228 .728 .848 .957

200 .999 .998 .972 .924 .961 .923 .918 .943 .831 .896 .920 .812 .801 .897 .974

500 1.00 1.00 1.00 .931 .965 .993 .921 .965 .994 .915 .957 .994 .847 .922 .985

The cells show the proportion of 10,000 replications with estimated rank r̂ = r obtained

using GBH’s procedure for significance levels α = {.10, .05, .01}. Lag length of ADF tests

is chosen using the BIC. The innovation vector ut is generated as uj,t= εj,t (WN) and

uj,t= 0.8uj,t−1+εj,t (AR), j = 1, ..., 4, with Gaussian εt such that E (εt)= 0, V ar (εi,t)

= 1 and Cov(εi,t, εj,t)= 0.4 (panel A); = 0.8 (panel B); = −0.3 (panel C), i �= j
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Table 6

Performance of Johansen’s procedure with correlated errors - Correct rank

estimation
r 4 3 2 1 0

n\
α .10 .05 .01 .10 .05 .01 .10 .05 .01 .10 .05 .01 .10 .05 .01

Panel A. Cov(εi,t, εj,t)= 0.4, i �= j

50 1.00 1.00 .998 .940 .965 .949 .934 .943 .849 .931 .946 .890 .925 .960 .983

WN 100 1.00 1.00 1.00 .932 .968 .993 .945 .974 .995 .945 .977 .996 .951 .974 .994

200 1.00 1.00 1.00 .927 .964 .992 .937 .965 .993 .933 .961 .992 .921 .958 .991

500 1.00 1.00 1.00 .901 .949 .990 .899 .946 .990 .893 .940 .989 .876 .937 .986

50 .015 .004 .001 .042 .028 .024 .203 .151 .078 .297 .318 .241 .085 .152 .336

AR 100 .516 .237 .015 .118 .053 .008 .201 .117 .032 .408 .365 .203 .414 .561 .803

200 .998 .994 .865 .729 .597 .219 .593 .464 .193 .616 .561 .344 .676 .798 .933

500 1.00 1.00 1.00 .897 .950 .991 .889 .940 .968 .853 .917 .936 .802 .888 .968

Panel B. Cov(εi,t, εj,t)= 0.8, i �= j

50 .652 .471 .181 .401 .291 .095 .403 .320 .159 .463 .463 .343 .335 .434 .576

WN 100 .849 .693 .271 .195 .359 .107 .465 .353 .134 .567 .532 .369 .503 .622 .820

200 .999 .986 .826 .810 .749 .401 .690 .616 .337 .697 .694 .516 .672 .793 .927

500 1.00 1.00 1.00 .898 .951 .990 .880 .942 .987 .854 .927 .986 .832 .905 .976

50 .029 .012 .003 .118 .105 .077 .231 .216 .173 .158 .207 .283 .017 .031 .075

AR 100 .053 .013 .000 .061 .026 .003 .241 .168 .064 .351 .409 .399 .072 .123 .288

200 .491 .248 .022 .203 .102 .017 .286 .200 .069 .336 .364 .413 .159 .198 .284

500 1.00 1.00 .997 .899 .943 .865 .665 .720 .810 .291 .340 .441 .037 .053 .084

Panel C. Cov(εi,t, εj,t)= −0.3, i �= j

50 .998 .998 .992 .928 .956 .952 .926 .945 .871 .919 .954 .975 .896 .934 .971

WN 100 1.00 1.00 .999 .911 .958 .986 .907 .953 .972 .881 .941 .981 .854 .913 .977

200 1.00 1.00 1.00 .900 .948 .989 .886 .945 .983 .865 .929 .975 .826 .909 .976

500 1.00 1.00 1.00 .897 .946 .989 .889 .942 .986 .863 .928 .985 .829 .906 .979

50 .019 .004 .001 .048 .028 .022 .225 .170 .100 .308 .323 .248 .089 .162 .348

AR 100 .430 .186 .009 .129 .060 .009 .207 .132 .033 .416 .379 .206 .400 .552 .781

200 .965 .880 .424 .666 .505 .190 .499 .367 .132 .563 .524 .313 .584 .720 .894

500 1.00 1.00 .998 .908 .943 .889 .857 .866 .696 .803 .833 .727 .740 .848 .954

The cells show the proportion of 10,000 replications with estimated rank r̂ = r obtained

using Johansen’s trace test for significance levels α = {.10, .05, .01}. Lag length of VAR

is chosen using the BIC. The innovation vector ut is generated as uj,t= εj,t (WN) and

uj,t= 0.8uj,t−1+εj,t (AR), j = 1, ..., 4, with Gaussian εt such that E (εt)= 0, V ar (εi,t)

= 1 and Cov(εi,t, εj,t)= 0.4 (panel A); = 0.8 (panel B); = −0.3 (panel C), i �= j
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Table 7 Additional analyses

Panel A. Large systems with a mixture of I(1) and I(0) variables

r = 9 r = 8 r = 7 r = 6 r = 5

p1 = 6 p1 = 6 p1 = 7 p1 = 7 p1 = 8

α = .05 n GBH Joh GBH Joh GBH Joh GBH Joh GBH Joh

r̂= r 500 .953 .955 .943 .943 .948 .867 .947 .747 .946 .651

1000 .960 .950 .962 .948 .958 .942 .958 .935 .964 .921

r = 4 r = 3 r = 2 r = 1 r = 0

p1 = 8 p1 = 9 p1 = 9 p1 = 10 p1 = 10

α = .05 n GBH Joh GBH Joh GBH Joh GBH Joh GBH Joh

r̂= r 500 .946 .635 .939 .606 .925 .574 .914 .486 .794 .335

1000 .959 .902 .956 .875 .959 .823 .948 .780 .885 .709

Panel B. "Pitfalls" of Johansen’s procedure

B.1: Roots larger than 1 B.2: Fractional roots

GBH Joh GBH Joh

r̂ n\
α .10 .05 .01 .10 .05 .01 .10 .05 .01 .10 .05 .01

50 .309 .225 .095 .007 .06 .006 .218 .141 .046 .053 .051 .041

100 .269 .174 .057 .000 .000 .000 .129 .073 .025 .009 .006 .003

1 200 .203 .119 .031 .000 .000 .000 .055 .027 .007 .001 .002 .001

500 .156 .087 .024 1.00 1.00 .999 .022 .008 .001 .191 .152 .089

1000 .146 .096 .028 1.00 1.00 1.00 .009 .004 .000 .281 .246 .189

50 .609 .740 .901 .993 .994 .994 .743 .846 .953 .942 .947 .958

100 .682 .808 .942 1.00 1.00 1.00 .861 .924 .975 .991 .994 .997

0 200 .759 .868 .968 1.00 1.00 1.00 .942 .972 .993 .999 .998 .999

500 .769 .885 .973 .000 .000 .001 .977 .992 .999 .807 .847 .911

1000 .655 .816 .958 .000 .000 .000 .990 .996 1.00 .701 .740 .804

Panel A. System with p = 10 variables (p1of them are I(1)). The cells show the

proportion of replications (out of 10,000) where r̂ = r obtained by GBH and Johansen’s

trace (Joh) test procedures. Number of lags in GBH chosen by BIC and set to 1 in Joh.

uj,t= 0.8uj,t−1+εj,t, j = 1, ..., 10, with Gaussian εt, E (εt)= 0, V ar (εt)= I10. Panel

B: The cells show the proportion of replications (out of 10,000) where the estimated rank

is r̂= 0 (true rank) or r̂= 1 (spurious cointegration) applying the GBH and Johansen’s

(Joh) test procedures in two “pitfall” settings. Number of lags in GBH and Joh chosen by

BIC. Panel B.1: zj,t= 1.01zj,t−1+εj,t, j = 1, 2, 3, 4, with Gaussian εt, E (εt)= 0,

V ar (εt)= I4. Panel B.2: zj,t=(1− L)−1.4 {εj,t1 (t > 0)}, j = 1, 2, 3, 4, with Gaussian

εt such that E (εt)= 0, V ar (εt)= I4.
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Table 8. Cointegration in interest rates - GBH procedure test steps

Example 1: short-term maturities

i1 i3 i9 i12 i15

H(1) τ̂m -2.15 -2.24 -1.84 -2.64* -2.75

κ̂m .187 .166 .147 .143 .133

θ̂m 4.61 5.04 3.41 6.95 7.57

θ̂
∗

m .862 .837 .501 .994 1.01

H(2) τ̂ c1,m -3.97*** -3.50** -4.16*** -5.84*** —

Example 2: short and long-term maturities

i1 i3 i18 i48 i120

H(1) τ̂m -2.15 -2.24 -2.85* -3.11** -2.89**

κ̂m .187 .166 .126 .089 .072

θ̂m 4.61 5.04 8.13 9.68 8.34

θ̂
∗

m .862 .837 1.02 .862 .600

H(2) τ̂ c1,m -1.98 -1.04 -1.84 -2.08 —

κ̂c1,m .617 .552 .418 .358 —

θ̂c1,m 3.92 1.09 3.39 4.34 —

θ̂
∗

c1,m
2.42 .597 1.42 1.55 —

H(3) τ̂ c1,c2,m -9.57*** — -4.40*** -4.44*** —

* Significant at 10%; ** Significant at 5%; *** Significant at 1%. H(1) : τ̂m are ADF

tests for the null im,t∼ I(1). Automatic lag selection (BIC) in an ADF regression with

intercept. Critical values: —2.57 (10%) -2.86 (5%) -3.44 (1%). κ̂m is the inverse of the

variance ratio statistic for im,t, κ̂m= nΣnt=1(im,t−im)
2/Σnt=1

(
Σts=1(im,s−im)

)2
, where

im= n−1Σnt=1im,t. θ̂m=τ̂
2
m, θ̂

∗

m = θ̂mκ̂m. H(2) : τ̂ c1,m are ADF tests on residuals of the

regression im,t= am+bmc1,t+um,t ,where c1,t is the first variable chosen as common trend;

the ADF tests are computed with no intercept or trend and automatic lag selection (BIC).

Critical values from Phillips and Ouliaris (1990): —3.07 (10%) -3.37 (5%) -3.96 (1%). κ̂c1,m

is the inverse of the variance ratio statistic applied to the residuals of the regression;

θ̂c1,m = τ̂ 2c1,m, θ̂
∗

c1,m
= θ̂c1,mκ̂c1,m. H(3) : τ̂ c1,c2,m are ADF tests on residuals of the

regression im,t= am+bm,1c1,t+bm,2c2,t+um,t, where c2,t is the second variable chosen as

common trend; the ADF tests are computed with no intercept or trend and automatic lag

selection (BIC). Critical values from Phillips and Ouliaris (1990): —3.45 (10%) -3.77 (5%)

-4.31 (1%).
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Table 9. Cointegration in interest rates - Estimates of the cointegrating vectors

Example 1: only short maturities

âm b̂m

i1 OLS −0.22 (0.17) 0.89 (0.03)

DOLS −0.49 (0.26) 0.93 (0.05)

Johansen -0.49 (0.48) 0.94 (0.02)

i3 OLS −0.31 (0.12) 0.95 (0.02)

DOLS −0.54 (0.22) 0.99 (0.04)

Johansen −0.56 (0.40) 1.00 (0.06)

i9 OLS −0.23 (0.05) 0.99 (0.01)

DOLS −0.32 (0.10) 1.00 (0.02)

Johansen −0.30 (0.15) 1.00 (0.02)

i12 OLS −0.13 (0.03) 1.00 (0.01)

DOLS −0.18 (0.06) 1.00 (0.01)

Johansen −0.16 (0.09) 1.00 (0.01)

Example 2: short and long maturities

âm b̂m,3 b̂m,120

i1 OLS 0.16 (0.09) 1.00 (0.02) −0.06 (0.02)

DOLS 0.16 (0.13) 1.00 (0.02) −0.06 (0.02)

Johansen 0.25 (0.10) 1.00 (0.02) −0.07 (0.02)

i18 OLS −0.33 (0.10) 0.75 (0.02) 0.33 (0.02)

DOLS −0.14 (0.15) 0.78 (0.03) 0.29 (0.03)

Johansen −0.12 (0.22) 0.79 (0.04) 0.28 (0.04)

i48 OLS −0.33 (0.08) 0.36 (0.01) 0.71 (0.01)

DOLS −0.13 (0.15) 0.38 (0.03) 0.66 (0.03)

Johansen −0.05 (0.20) 0.40 (0.04) 0.64 (0.05)

OLS: OLS estimates from regressions of the form im,t= am+bmi15,t+um,t, m = 1, 3, 9, 12

(Ex1) and im,t= am+bm,3i3,t++ bm,120i120,t+um,t, m = 1, 18, 48 (Ex2); DOLS: dynamic

OLS estimates where four lags and leads of ∆i15,t (Ex1) and of ∆i3,t and ∆i120,t (Ex2)

are included as additional regressors (Stock and Watson, 1993). Regular (OLS) and

Newey-West (DOLS) standard errors in parentheses. Johansen: Likelihood-based

estimates of the (p× r) matrix of cointegrating vectors β in the reduced-rank system

∆zt= αa+Πzt−1+
∑4

j=1 Γj∆zt−j+ut, where zt=(i1,t, i3,t, i9,t, i12,t, i15,t)
′
(Ex1) and

zt=(i1,t, i3,t, i18,t, i48,t, i120,t)
′
(Ex2). Standard errors in parentheses. Cointegrating

vectors are normalized to have coefficient equal to one in the interest rate in the row and

the signs of the estimates are multiplied by (-1) to facilitate comparison with OLS and

DOLS estimates.
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