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Abstract
We propose a residual-based augmented Dickey-Fuller (ADF) test statistic

that allows for detection of stationary cointegration within a system that may
contain both I (2) and I (1) observables. The test is also consistent under the
alternative of multicointegration, where �rst di¤erences of the I (2) observables
enter the cointegrating relationships. We �nd the null limiting distribution of
this statistic and justify why our proposal improves over related approaches.
Critical values are computed for a variety of situations. Additionally, building
on this ADF test statistic, we propose a procedure to test the null of no station-
ary cointegration which overcomes the drawback, su¤ered by any residual-based
method, of the lack of power with respect to some relevant alternatives. Fi-
nally, a Monte Carlo experiment is carried out and an empirical application is
provided as an illustrative example.
JEL Classi�cation: C12, C22, C32.
Keywords: I(2) systems; stationary cointegration; multicointegration; residual-

based tests.

1 Introduction

The concept of cointegration has received much attention in the last two decades.

Its importance stems from the fact that cointegration provides the link between the
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economic concept of (long-run) equilibrium and the statistical notions of nonstation-

arity and trending behavior: nonstationary variables may display relationships that

are representative of long-run equilibria, in that deviations from the equilibrium are

short-lasting. Since the seminal contributions of Engle and Granger (1987) and Jo-

hansen (1988), cointegration has been quite well studied both in uni-equation and

system I (1) settings, where the observables may behave like I (1) (I (0) after di¤er-

encing, where I (0) refers to covariance stationary after demeaning with nonzero and

bounded spectral density) or stationary variables. However, many observables (espe-

cially nominal variables such as price indexes) are smoother than what I (1) behavior

would suggest. For example, in�ation rates have a behavior close to that of an I (1)

variable which implies that (log)price indexes might be characterized as I (2), for

which twice di¤erencing is necessary to achieve I (0). Thus, structural models that

involve aggregate prices could be combining variables with di¤erent integration orders

(see Juselius, 1995, or Banerjee et al., 2001, for two di¤erent illustrations of such set-

tings). A similar rationale applies to nominal GDP and nominal wealth, which is the

result of the time-accumulation of nominal income. Further evidence supporting the

presence of I (2) trends in data sets can be found in Kongsted (2003, 2005), Kongsted

and Nielsen (2004), Bacchiocchi and Fanelli (2005) and Johansen et al. (2010).

The analysis of cointegration involving I (2) variables is also relevant with respect

to the issue of multicointegration (Granger and Lee, 1989, 1990, Lee, 1992), which is

a particular case of the so-called polynomial cointegration. In this situation, two I (1)

observables (�ow variables) cointegrate and the cumulated cointegrating error (I (1)

stock variable) cointegrates with at least one of the observables. Engsted and Jo-

hansen (1999) justi�ed that such phenomenon should be modelled as an I (2) system,

where multicointegration arises from cointegration between I (2) variables in levels

and �rst di¤erences (see also Engsted and Haldrup, 1999). Granger and Lee (1989)

applied the concept of multicointegration to the relationship between production and

sales (�ow variables) in a given industry, exploring also the possibility of cointegration

between the stock of inventories (accumulated change of inventory) and sales. This

setting was also studied by Banerjee and Mizen (2006). Other works explore the exis-

tence of multicointegration between housing starts, completions (�ow variables) and

housing units under construction (stock) (Lee, 1992), government spending, revenues

and debt (Leachman, 1996, Leachman and Francis, 2002, Leachman et al., 2005),

imports, exports and external debt (Leachman and Francis, 2000, 2002), or real per

capita private consumption expenditure, real per capita disposable income and stock

of consumer�s wealth (Siliverstovs, 2006).

As in the I (1) case, two di¤erent approaches have been developed to examine
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cointegration in I (2) systems. First, Johansen (1995a), Paruolo (1996), Rahbek et al.

(1999), Nielsen and Rahbek (2007), among others, proposed cointegration tests within

a vector autoregressive framework, which includes also the possibility of detecting

multicointegration (see also, Gregoir and Laroque, 1994, Juselius, 1995, Engsted and

Johansen, 1999). Alternatively, regression-based procedures have been also proposed.

This methodology extends the Phillips and Ouliaris (1990) residual-based tests for

cointegration to the I(2) setting; it has been pursued in uni-equation settings by

Haldrup (1994) and, in the particular case of multicointegration, by Engsted et al.

(1997).

Speci�cally, Haldrup (1994) developed a residual-based augmented Dickey-Fuller

(ADF) test for the null of I (1) versus the alternative of stationary cointegration

among a set of I (1) and I (2) observables. In Haldrup�s model, the I (2) observables

cointegrate (with rank one) to an I (1) cointegrating error, which under the null does

not further cointegrate with the I (1) observables. The test is carried out by regress-

ing an I (2) observable on the I (1) observables, the remaining I (2) series (which

are assumed to be non-cointegrated) and deterministic terms. In view of the results

of Haldrup�s (1994) Theorem 4, the null limiting distribution of the test essentially

depends on the number of I (1) and I (2) regressors. We �nd three empirically rele-

vant limitations to this test. First, and more importantly, the result appears to be

valid only if the coherence at frequency zero between the I (0) error input processes

generating the I (1) and I (2) components of the system, respectively, is zero. This

is a very stringent requirement, which is not in general satis�ed if, e.g., this I (0)

error is a vector autoregressive and moving average process. Therefore, in general,

the null limiting distribution of Haldrup�s ADF test statistic is not free of nuisance

parameters. Second, the test assumes that the I (2) variables cointegrate with rank

exactly equal to one, which in systems with several I (2) observables might not be

the case. Finally, in Haldrup�s setting multicointegration is not allowed (although in

the discussion of his Lemma 2, he acknowledges that if polynomial multicointegration

is considered, a slight modi�cation of his theory is needed). However, Engsted et al.

(1997) applied Haldrup�s results to the multicointegration case in a simple bivariate

setting, and suggested that Haldrup�s (1994) critical values might be used. We, how-

ever, believe that this is not the case, given that, when multicointegration is present,

one I (2) observable appears as regressor both in levels and in �rst di¤erences, a cir-

cumstance which must a¤ect the limiting distribution of the test statistic, and which

is not captured by Haldrup�s (1994) framework. Other works which, either explicitly

applied Haldrup�s test, or refer to results derived from it, include Haldrup (1998),

Engsted and Haldrup (1999), Leachman and Francis (2000), Haldrup and Lildhold
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(2002), Leachman et al. (2005), Kia (2008) and Kugler and Kaufmann (2008).

Our aim in this paper is to propose a regression-based procedure which could be

generally applicable to detect stationary cointegration in I (2) settings. Speci�cally,

this procedure is based on an appropriately modi�ed version of Haldrup�s (1994)

residual ADF test statistic. Nicely, we �nd that allowing for nonzero coherence at

frequency zero requires implementing a correction which is intimately related to the

issue of multicointegration. In fact, the correction that leads to an ADF test statistic

with a pivotal null limiting distribution makes the test consistent to the alternative

of multicointegration, covering therefore the case of Engsted et al. (1997).

Additionally, building on this ADF test statistic, we propose a procedure to test

the null of no stationary cointegration which overcomes the drawback, su¤ered by any

residual-based method, of the lack of power with respect to some relevant alternatives.

In any residual-based cointegration testing method (including those proposed for the

I (1) setting) the choice of the left hand side variable is a critical issue. In particular,

the tests proposed by Phillips and Ouliaris (1990), Haldrup (1994) or Engsted et al.

(1997), do not have power if the chosen left hand side variable does not enter the

stationary relation with nonzero coe¢ cient. Our proposal sheds some light on how a

consistent test for any stationary alternative can be constructed.

Given that likelihood-based procedures for analysis of I(2) systems have been de-

veloped (Johansen, 1995a, Paruolo, 1996, Rahbek, Kongsted and Jørgensen, 1999,

Nielsen and Rahbek, 2007), it is warranted that we motivate the usefulness of our

proposal. We �nd three main justi�cations. First, many economic models lead to

equilibrium equations which might contain both I(1) or I(2) variables. In particular,

some models deliver one single equilibrium condition or several, but one of them is

of special interest to the researcher. Examples of these are the analyses of money

demand equations (which involve possible I(2) variables such as nominal money and

price indices, and variables with I(1) behavior, such as interest rates or real output:

see, e.g., Stock and Watson, 1993, Haldrup, 1994, Bae and DeJong, 2007), structural

models of the exchange rate (which lead to an expression of the exchange rate as a

function of the di¤erentials between domestic and foreign variables: some of these

�exchange rate fundamentals�might be I(2), such as money or prices, and some are

possibly I(1), such as real output or interest rates; see, e.g., Mark and Sul, 2001,

Rapach and Wohar, 2002, Rossi, 2006) or purchasing power parity (PPP) models

of the exchange rate (which postulate a relationship between domestic and foreign

price indices, possibly I(2), and the exchange rate, typically I(1); see, e.g., Rogo¤,

1996, Caner and Kilian, 2001, Pedroni, 2004, Bacchiocchi and Fanelli, 2005). The

researcher may be interested in testing these equilibrium relationships, without nec-
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essarily attempting to give a full description of the cointegrating structure of the

complete system.

Second, as pinpointed by Gomez-Biscarri and Hualde (2014) (Remark 6), even

for I (1) systems, Johansen�s methodology to infer the cointegrating rank is subject

to sequentiality issues, which could arise in a more exacerbated way in I (2) sys-

tems. Note that this sequentiality is a very relevant issue in the determination of the

cointegration indexes (see, e.g., Nielsen and Rahbek, 2007). Using regression-based

techniques, Gomez-Biscarri and Hualde (2014) proposed an alternative way to deal

with this sequentiality problem which appears to be a fair competitor to Johansen�s

methodology in I (1) settings. It is beyond the scope of the present paper to present

a complete procedure to determine cointegration indexes in I (2) systems, but this

can be achieved by extending the method in Gomez-Biscarri and Hualde (2014) ap-

propriately. This extension would require the use of the test statistic proposed in the

present paper.

Finally, as demonstrated by Gonzalo and Lee (1998) for the I (1) cointegrated

setting, regression-based methods appear to be more robust than system methods

under various circumstances. In an I (1) scenario, Gomez-Biscarri and Hualde (2014)

showed situations where system approaches might show poor behaviour in small sam-

ples. In particular, regression-based methods to determine cointegration might be

more parsimonious than full system maximum likelihood approaches, where estima-

tion of a very large number of parameters might be required. We provide further

evidence here along these lines.

The outline of the rest of the paper is as follows. In Section 2 we present an

I (2) model and a residual-based ADF test statistic, and we derive its null asymptotic

distribution. Section 3 comments on two important issues regarding the empirical

implementation of this test statistic, namely, power properties and feasibility. Section

4 presents the results of a Monte Carlo experiment where we compare the performance

of our procedure with that of a system method. An illustrative empirical example

is discussed in Section 5, and we conclude in Section 6. Proofs are provided in the

Appendix.

2 The ADF test: model, assumptions and proper-

ties

Before presenting our I (2) model we introduce some terminology. Formally, we say

that a scalar or vector process �t is I (0) if �t � E (�t) is covariance stationary with
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nonzero and bounded spectral density at all frequencies. Then a scalar or vector �t is

I (1) if ��t is I (0), where � = 1�L, L being the lag operator. Similarly, �t is I (2) if
�2�t is I (0). Note that if a vector is I (d), d = 1; 2, our de�nition implies that at least

one of its individual components must be I (d). The rest of the components might also

be I (d) or, alternatively, they might have a smaller integration order. In this sense,

our de�nition is similar to that of Johansen (1995b). Note also that this de�nition

does not preclude the existence of components of an I(d) vector which are fractional

processes (I (c), c being a real number smaller than d), but the model proposed

below will exclude this possibility. Next, we de�ne cointegration for an I (d), d = 1; 2,

process. Given a p�1 process zt � I (d), zt is cointegrated if there exists a p�1 vector

 6= 0 such that 
0zt � I (c), with c < d, prime denoting transposition. Again, this
de�nition permits the existence of fractional linear combinations of the observables,

but our model below excludes this possibility. Our de�nition of cointegration is

similar to that of Johansen (1995b) and it is signi�cantly more general than the

standard notion of Engle and Granger (1987), where all observables are required

to have identical integration orders. Note that according to our de�nition some of

the cointegrating vectors might be unit vectors, just indicating that a particular

observable has an integration order smaller than the order of the vector. As usual,

the cointegrating rank among the elements of zt is the number of linearly independent

cointegrating vectors, and the space generated by these vectors will be denoted as

cointegrating space.

As in Haldrup (1994), our purpose is to introduce an ADF statistic to test the

null hypothesis of no stationary cointegration among the elements of a p-dimensional

cointegrated I (2) vector of observables zt. We assume that the cointegrating rank of

zt is r, where 0 < r < p. Under the null, zt is assumed to be generated by the model 
Ir B

0 Ip�r

!
(zt � �t) = �t,

 
�Ir 0

0 �2Ip�r

!
�t = �t; (1)

where Is is the s-rowed identity matrix, �t is a zero-mean I (0) vector process whose

spectral density is �nite and nonsingular at all frequencies, B is an r� (p� r) matrix
and �t collects deterministic terms. Throughout, for any p-dimensional arbitrary

vector �t, �(1)t will be the vector collecting the �rst r components of �t, while �(2)t
collects the rest, so that �t = (�

0
(1)t; �

0
(2)t)

0. Thus, (1) could alternatively be written as

z(1)t +Bz(2)t = �(1)t +B�(2)t + �(1)t;

z(2)t = �(2)t + �(2)t;
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where the individual components of z(2)t are I (2) and do not cointegrate. Model (1)

captures a variety of situations where the cointegrating rank of zt is r. If none of the

rows of B is identically zero, all individual observables in zt are I (2). Alternatively,

if B = 0, the r individual components in z(1)t are I (1). In this case, the r cointegrat-

ing relations are trivial. The situation where there are some I (1) components and

the I (2) individual components cointegrate, is also covered by (1), whenever some

(but not all) of the rows of B are identically zero. Note also that there is no loss of

generality in the representation (1). If zt cointegrates with rank r, a trivial extension

of Theorem 1 of Gomez-Biscarri and Hualde (2014) (GBH hereinafter) ensures the

existence of a (p� r)-dimensional subvector of zt (say z(2)t) whose individual com-
ponents are I (2) and do not cointegrate. These variables represent a set of common

trends in the system. Also, collecting the rest of the observables in z(1)t, by the same

theorem, there exists an r � (p� r) matrix B such that z(1)t +Bz(2)t � I (c), c < 2.
Haldrup (1994) considers the case where there are r� 1 I (1) observables, and the

p� r + 1 I (2) observables cointegrate with rank one, so the cointegrating rank in zt
is r. Thus, in his setting, z(1)t is composed of the r� 1 I (1) and one of the I (2) vari-
ables (the one which is not part of the common trends). His ADF test is based on the

(ordinary least squares, OLS) regression of the I (2) variable in z(1)t on the rest of the

observables and deterministic terms. The null limiting distribution of this statistic is

basically dependent on a vector of both nonintegrated and integrated Brownian mo-

tions, arising from the I (1) observables and the single cointegrating relation among

the I (2) observables and from the I (2) common trends (z(2)t), respectively. However,

unless these two types of Brownian motions are mutually independent (due for ex-

ample to a zero coherence at frequency zero between the I (0) error input processes

generating the I (1) and I (2) components, respectively), the typical decomposition

(see, e.g., the proof of Lemma 2 in Haldrup, 1994) leading to standard (and mutually

independent) nonintegrated and integrated Brownian motions is not valid. There-

fore, in general, the limiting distribution of Haldrup�s statistic is not free of nuisance

parameters.

Fortunately, a simple correction can be carried out in the regression, so a proper

orthogonalization can be achieved in general circumstances. Our proposed test sta-

tistic is based on residuals (but) arising from the regression of z1t on z�1;t, �z(2)t and

deterministic terms (ct), where z1t is the �rst component of zt (which obviously co-

incides with the �rst component of z(1)t) and z�1;t collects the rest of elements of

zt. The inclusion of the extra regressors �z(2)t (�rst di¤erences of the I (2) common

trends) is what distinguishes our proposal from Haldrup�s (1994). This simple modi-

�cation leads to a pivotal null limiting distribution and, additionally, makes the test
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consistent under the alternative of multicointegration (see Theorem 2 below).

We should comment on several crucial issues here. First, the test requires a choice

for the variables in z(2)t. In Section 3 we explain how this, along with r, can be inferred

from the data. Second, as in Haldrup (1994), we account for deterministic terms by

including a d� 1 vector of deterministic components ct in the possible cointegrating
regression. Although more general structures could have been allowed for, we focus

on deterministic polynomial trends by letting ct =
�
1; t; :::; td�1

�0
. Then we assume

there exist r � d, (p� r)� d matrices A1, A2, respectively, such that

�(1)t +B�(2)t = �A1ct, �(2)t = �A2ct (2)

(so it immediately follows that ��(2)t = �A3ct, for a corresponding (p� r)�d matrix
A3). Note that (2) just implies that the deterministic components characterizing the

observables are general polynomial trends which are captured by ct, the most relevant

cases being ct = 1; (1; t)
0 ; (1; t; t2)

0. Note also that de�ning D = diag
�
1; n; :::; nd�1

	
,

D�1c[ns] ! f (s), as n!1, where [�] denotes integer part and f (s) =
�
1; s; :::; sd�1

�0
:

Next, the null limiting distribution of our proposed test statistic is invariant to

the choice of left hand side variable on the regression from which the residuals but =
(1;�b�0)(z0t;�z0(2)t; c0t)0 (where b� is the OLS estimator in this regression) are derived,
as long as this choice is taken from z(1)t. However, as in any residual-based test for

cointegration, the choice of left hand side variable in the regression is important for

power considerations and, again, we will address this issue in Section 3. Additionally,

this null limiting distribution is also invariant to B, Ai, i = 1; 2; 3. The reason is that

de�ning

T =

0BBBB@
Ir B 0 A1

0 0 Ip�r A3

0 Ip�r 0 A2

0 0 0 Id

1CCCCA ;
then but = (1;�b�0)T�1T (z0t;�z0(2)t; c0t)0 = (1;�b�0)vt; (3)

where vt =
�
�0(1)t;��

0
(2)t; �

0
(2)t; c

0
t

�0
(see (1)), and b� is the OLS estimator of v1t on v�1;t

(where v1t is the �rst component of vt, and v�1;t collects the rest of elements of vt).

Noting (1), vt is just a simple transformation of �t, ct, which does not depend on B

or Ai, i = 1; 2; 3:

We introduce some assumptions which are similar to those in Chang and Park

(2002). When applied to matrices, denote by k�k the norm kAk = supkxk�1 kAxk,
whereas k�k applied to vectors is the usual Euclidean norm. Notice that if aij denotes
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the (i; j)-th element of a p� p matrix A, kAk2 � �pi=1�
p
j=1a

2
ij:

Assumption 1. The process �t in (1) has representation

�t = A (L) "t, where A (u) = Ip +
1X
j=1

Aju
j;

and the Aj are p� p matrices such that:

(i) det (A (u)) 6= 0, juj = 1;

(ii) A
�
ei�
�
is di¤erentiable in � with derivative in Lip (�), � > 1=2;

(iii) ("t;Ft) is a martingale di¤erence sequence with some �ltration (Ft) such that
E ("t) = 0, E ("t"0t) = �, � is positive de�nite, n

�1�nt=1"t"
0
t !p �, E k"tku < K

with u � 4, where K is some constant that depends only upon u:

Assumption 1 implies that �t is a fairly general linear process with martingale

di¤erence innovations. Note that (ii) implies the summation condition �1j=1j kAjk <
1, so (ii) and (iii) imply that �t is weakly stationary, whereas (iii) holds under suitable
mixing conditions. In addition, Assumption 1 enables us to apply the multivariate

invariance principle

1p
n

[ns]X
t=1

�t ) B (s) ; (4)

where B (s) is a p-vector Brownian motion with covariance matrix 
 = A (1)�A (1)0

and �)�denotes weak convergence.
Given the previously de�ned residuals but, the ADF test statistic is the t-ratio cor-

responding to the coe¢ cient of but�1 in the regression of �but on but�1, �but�1; :::�but�q.
We will denote this t-ratio by tn, and give its null limiting distribution in Theorem

1 below. As is well known (see, e.g., Phillips and Ouliaris, 1990), it is necessary in

general to let q increase with n, for which we impose the following condition.

Assumption 2. Let q !1 and q = o
�
n1=3

�
as n!1:

This condition guarantees the consistency of the estimators of autoregressive para-

meters in a particular autoregressive approximation (see, e.g., Berk, 1974, Chang and

Park, 2002), which is a required step when calculating the null limiting distribution

of our test statistic.

Before presenting the main result we introduce some additional notation. For a

vector process G (s), G1 (s) denotes its �rst component and G�1 (s) the subvector

resulting from omitting this �rst component. Also, given an arbitrary Brownian

motion G (s), de�ne the integrated Brownian motion G (s) =
R s
0
G (l) dl.
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Let W (s) be a p-dimensional standard Brownian motion, let W(2) (s) be the sub-

vector made of the last p�r components ofW (s) and let V (s) = (W 0 (s) ;W
0
(2) (s) ; f

0 (s))0.

Finally, let Q (s) = �0V (s), where

� =

0B@1;� 1Z
0

V1 (s)V
0
�1 (s) ds

0@ 1Z
0

V�1 (s)V
0
�1 (s) ds

1A�1
1CA
0

:

Theorem 1. Let zt be generated by (1) and Assumptions 1 and 2 hold. Then, as
n!1,

tn ) � (p; r) �

1Z
0

Q (s) dQ (s)

0@ 1Z
0

Q2 (s) ds

1A
1
2  
�0

 
Ip 0

0 0

!
�

! 1
2

: (5)

The proof is provided in the Appendix. The distribution of the ADF test statistic

tn is free of nuisance parameters, but it depends on p, r and the deterministic com-

ponents ct included in the regression that generated but. Additionally, it can be easily
shown that this test is consistent under particular alternatives of stationary cointegra-

tion, namely those where z1t appears with nonzero coe¢ cient in the stationary linear

combination, including also any type of multicointegration (see Theorem 2 below) a

possibility which is not contemplated by Haldrup�s (1994) setting. Speci�cally, like

other residual-based statistics, tn diverges to �1 as n ! 1. We have calculated
the simulated quantiles of � (p; r) for series of length n = f50; 100; 250; 500; 50; 000g,
200,000 replications and di¤erent (p; r) combinations. In particular, we generated the

vector of observables zt for cases p = 2; :::; 6, r = 1; :::; p � 1, choosing �t to be a p-
dimensional zero mean normal innovation with covariance matrix Ip and independent

over time. We computed the ADF statistic from the auxiliary regression

�but = �but�1 + 't;
where but are residuals corresponding to three di¤erent characterizations of ct, namely
ct = 1; (1; t)0 ; (1; t; t2)

0 (corresponding simulated quantiles are reported in Tables 1,

2, 3, respectively).
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3 Implementing the test in practice: power con-

siderations and feasibility

From a practical point of view our test requires knowledge of the cointegrating rank r

(which characterizes the null limiting distribution (5)) and the identi�cation of a valid

set of p�r I (2) common trends. Let us assume for the moment that this information
is known to the researcher. Thus, given a set of observables zt = (z0(1)t; z

0
(2)t)

0, where

z(1)t is r � 1 and z(2)t collects a valid set of p � r I (2) common trends, the question
is how to design a test for the null of no stationary cointegration among levels and

(possibly) �rst di¤erences of the observables zt (say H0) which is consistent under the

alternative of stationary cointegration (say H1). As mentioned before, the problem

arises because any of the r components in z(1)t can be potentially chosen as the left

hand side variable in the regression from which residuals but are generated, but the
corresponding test statistic only has power against alternatives where the chosen left

hand side variable appears with nonzero coe¢ cient in the stationary relation. This

is in fact a problem su¤ered by any residual-based method for testing cointegration.

However, there is a simple way to construct a test procedure forH0 which is consistent

against any alternative of stationary cointegration (incidentally, the idea behind this

testing procedure is also applicable in similar settings, such as the I (1) case). Denote

by t(i)n , i = 1; :::; r, the test statistic derived from residuals arising from the OLS

regression of zit on the rest of the observables, �z(2)t and deterministic components,

where we denote by �it the ith component of an arbitrary vector �t. Note that for

any � 2 (0; 1), (5) implies that there exist real numbers vi (�), i = 1; :::; r, such that,
under H0;

Pr
�
t(i)n < vi (�)

�
! �, as n!1:

Note that we allow for di¤erent critical values vi (�), i = 1; :::; r, corresponding to

(possibly) di¤erent speci�cations of the determinist components in each of the esti-

mated regressions. Our proposed test is to reject H0 if t
(i)
n < vi (�=r) for at least one

of the i�s, where i = 1; :::; r. As shown below, this test has asymptotic level � and is

consistent under H1. First, under H0;

lim
n!1

Pr (Reject H0) = lim
n!1

Pr

 
r[
i=1

�
t(i)n < vi (�=r)

	!
�

rX
i=1

lim
n!1

Pr
�
t(i)n < vi (�=r)

�
� �:

Under H1, at least one of the components of z(1)t must appear with nonzero coe¢ cient

in the stationary linear combination. Say, e.g., that such component is zjt for j 2
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f1; :::; rg. Then,

lim
n!1

Pr (Reject H0) � lim
n!1

Pr
�
t(j)n < vj (�=r)

�
= 1;

because, as mentioned before, t(j)n diverges (to �1) as n!1.
There is an additional point of concern regarding power: given that in the coin-

tegrating regression we include �rst di¤erences of a particular set of common trends

(z(2)t) and noting that there might be alternative sets of valid common trends, we

might wonder whether other multicointegrating relations (apart from those assessed

by the test) are possible. Fortunately, Theorem 2 below rules out the existence of

these alternative relations: if there are multicointegrating stationary relations, these

must arise from combinations between zt and �z(2)t:

Theorem 2. Let zt be a p-dimensional cointegrated I (2) vector, with cointegrating
rank r, where 0 < r < p. De�ne two subspaces R, T of the cointegrating space (C)

in the following way:

i. Given a p-dimensional vector �, � 2 R � C if there exists a p-dimensional

vector � (�) such that �0zt + �
0 (�)�zt is stationary;

ii. Given a p-dimensional vector �, � 2 T � C if there exists a (p� r)-dimensional
vector � (�) such that �0zt + �0 (�)�zt is stationary, where zt is an arbitrary

(p� r)-dimensional subvector of zt with I (2) and not cointegrated individual
components.

Then, R and T are identical subspaces (R = T ), that is, they contain the same

elements.

The proof of Theorem 2 is given in the Appendix. Note that this result is parallel

to that in Johansen (1995a), where multicointegration is tested with �rst di¤erences

of the common trends, which, in his setting, are particular linear combinations of the

observables. Alternatively, we identify the common trends by the p � r dimensional
vector of observables z(2)t.

Next we address the issue of feasibility of the test. As anticipated, in practice, r

and a correct choice for the I (2) common trends are unknown. In some cases, however,

this might not be an issue of concern if the researcher were willing to make some

assumptions based on generally accepted evidence. For example, in PPP analyses

it is standard to look for a stationary relationship between a (log)exchange rate et
and two (log)price levels pt and p�t . As said before, these two prices might well be

characterized as I (2) variables, whereas et is usually taken as I (1). In addition,

12



in many cases it is well established that in�ation rates of di¤erent countries are

cointegrated, which implies that corresponding price levels also cointegrate. If this

evidence is true, then r = 2 and either of the two prices could act as the common

trend. In this setting, Bacchiocchi and Fanelli (2005) derive an equilibrium PPP

condition which, interestingly, includes, apart from the exchange rate and the two

price levels, an in�ation rate and the di¤erential of the two in�ation rates. Thus, due

to the inclusion of the in�ation rate, the equilibrium condition that Bacchiocchi and

Fanelli (2005) use in their paper mimics the regression from which our test statistic

would have been derived. In fact, our proposal allows for testing the stationarity of

this equilibrium condition without resorting to a fully-�edged system method.

If the researcher does not want to work under such assumptions, or if there is

no clear cut evidence from which such assumptions can be derived, we could infer r

and the choice of common trends by a slight modi�cation of the GBH procedure. In

an I (1) setting, GBH proposed a sequential approach which relies on the residual-

based ADF test of Phillips and Ouliaris (1990). This method leads to an estimator

of r and to the identi�cation of a set of common trends. The intuition behind their

proposal is the following. First, if all pairs of observables are cointegrated, then

necessarily r = p � 1. If not, there is at least a pair of non-cointegrated observables
(common trends), and the next step is to test whether all trios containing this pair

are cointegrated. If they are, r = p� 2, while if they are not, the next step is carried
out. The procedure is �nalized when all corresponding groups of observables are

cointegrated, or, alternatively, when in the last possible step, cointegration among all

observables is checked.

Nicely, the GBH method can be equally applied to infer the cointegrating rank

in I(2) systems. There is however an important di¤erence, because under the null

of no cointegration, the residuals of the di¤erent cointegrating regressions are linear

combinations of non-cointegrated I(2) variables. Hence, the critical values of Phillips

and Ouliaris (1990) are not applicable. More importantly, the test based on these

residuals is not consistent under the alternative of I(1) cointegration. However, per-

forming the standard ADF test on �rst di¤erences of these residuals sorts out this

latter problem, although it is necessary to modify slightly the proof arguments of

Phillips and Ouliaris (1990) in order to �nd the appropriate null limiting distribution

of this ADF statistic (which di¤ers from that in Phillips and Ouliaris, 1990; this is

available from the authors upon request). In any case, this modi�ed GBH procedure

leads to an estimator of the rank r (say br) and, as a by-product, to the identi�cation
of a set of p�br common trends. Thus a feasible version of the test to detect stationary
cointegration consists on estimating r, making a data-based choice of a set of I (2)
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common trends and, based on that choice, performing the test as in the infeasible

situation. We explore the behaviour of such feasible procedure in the next section.

4 Monte Carlo evidence

We investigate the �nite sample performance of our test by means of a Monte Carlo

experiment. We �x p = 4, and in all cases the analysis is based on 10,000 replications

of series of lengths n = 100, 200, 500, 1,000. We generated "t as a Gaussian white noise

with E ("t) = 0, V ar ("t) = I4, and examine two di¤erent DGPs for the innovation

vector �t (de�ned in Assumption 1): A (L) = I4 (WN), A (L) = (1� 0:8L)�1 I4
(AR). We simulated 15 di¤erent models for zt which can be classi�ed according to

their cointegrating rank and the type of cointegration. In all cases 
Ir B

0 Ip�r

!
zt = wt;

where:

r = 3: B = (�1;�1;�1)0, �2w4t = �4t, and

Model 1: wit = � it, i = 1; 2; 3 (three I (0) relations, no multicointegration);

Model 2: wit = �z4t + � it, i = 1; 2; 3 (three I (0) multicointegration relations);

Model 3: wit = � it, i = 1; 2, �w3t = �3t (two I (0) relations, no multicointegration);

Model 4: wit = �z4t + � it, i = 1; 2, �w3t = �3t (two I (0) multicointegration rela-

tions);

Model 5: w1t = �1t, �wit = � it, i = 2; 3 (one I (0) relation, no multicointegration);

Model 6: w1t = �z4t+�1t,�wit = � it, i = 2; 3 (one I (0)multicointegration relation);

Model 7: �wit = � it, i = 1; 2; 3 (no I (0) cointegration);

r = 2: B =

 
�1 �1
�1 �1

!
, �2wit = � it, i = 3; 4, and

Model 8: wit = � it, i = 1; 2 (two I (0) relations, no multicointegration);

Model 9: wit = �z3t +�z4t + � it, i = 1; 2 (two I (0) multicointegration relations);

Model 10: w1t = �1t, �w2t = �2t (one I (0) relation, no multicointegration);

Model 11: w1t = �z3t+�z4t+�1t, �w2t = �2t (one I (0) multicointegration relation);

Model 12: �wit = � it, i = 1; 2 (no I (0) cointegration);
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r = 1: B = (�1;�1;�1), �2wit = � it, i = 2; 3; 4, and

Model 13: w1t = �1t (one I (0) relation, no multicointegration);

Model 14: w1t = �z2t +�z3t +�z4t + �1t (one I (0) multicointegration relation);

Model 15: �w1t = �1t (no I (0) cointegration);

Models 7, 12, 15 are generated under the null H0 (there is no stationary cointe-

gration), whereas the rest are generated under the alternative H1, multicointegration

being present in Models 2, 4, 6, 9, 11, 14. There are two parts to our experiment.

First, we examine the power and size properties of our test statistic by presenting

results for the infeasible version of the procedure presented in Section 3. By infeasi-

ble we mean that the cointegrating rank r and the correct choice of common trends

are taken as known. Note that although the observables have been generated with

zero mean, a constant is included in the di¤erent (possibly) cointegrating relations.

Three di¤erent signi�cance levels � = f:10; :05; :01g and asymptotic critical values
were used in the tests, and, in all cases, the number of lags in the ADF tests is chosen

according to the BIC. Proportion of rejections are reported in Table 4. Overall, the

performance is very satisfactory. Results for WN are in general superior to those for

AR, especially when n = 100, where under AR the procedure exhibits oversizing and

lack of power. However, as n increases, the rejection proportions behave as theory

predicts, its performance being adequate for n = 200 and excellent when n � 500.
In the second part of the experiment we compare the feasible procedure described

in Section 3 with Johansen�s I (2) method (as in Paruolo, 1996). Speci�cally we

use the 0Q statistic introduced by Paruolo (1996), where in all cases the number

of lags in the vector autoregression is set to the corresponding true value. This

statistic is used in a sequential manner, and for each replication we record in Table

5 the proportion of cases where the sequential testing determines that there exists

stationary cointegration. In our procedure the number of lags in the ADF tests is

chosen according to the BIC. Also, when the estimated rank was br = 0, the null is not
rejected, whereas if br = 4, then the GBH method for rank estimation in I(1) systems
is applied: here, if there is evidence of cointegration, the null is rejected. Results

are presented in Table 6. For the WN case, Paruolo�s (1996) procedure is superior

in terms of power (especially when the number of I (0) relations is small), although

di¤erences are small and our proposal displays comparable size behaviour (which

improves as n increases). The picture changes substantially under the AR scenario,

where our methods seems to be superior in most circumstances: here, Paruolo�s (1996)

approach displays bad size performance (although this is somewhat corrected as n
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increases), our method performing substantially better, with results comparable to

those of the infeasible alternative. In any case, our results are quite remarkable,

given that our design favours Johansen�s approach, for which we have used the true

lag length (contrary to our procedure, where this choice is data-based).

Note �nally that our Monte Carlo focuses on triangular representations of coin-

tegrated systems. However, alternative speci�cations like those in Paruolo (1996)

(vector autoregressive processes of order 2), present a similar picture.

5 An empirical application: markups and in�ation

Banerjee et al. (2001) (BCR, hereafter) analyze a model of the markup of prices

for a closed economy to show that there is a long run negative relationship between

the markup of prices over cost and in�ation. This implies that the real wage may

respond positively to in�ation. As a consequence, real activity (and unemployment)

would be related in the long run to in�ation, making the long run Phillips curve not

vertical. Also, �rm�s pro�tability (and stock returns) would be negatively correlated

with in�ation.

In order to justify the empirical analysis, BCR setup a model which delivers a

solution for the long-run markup of the form

mu � p� �ulc� (1� �)pm = !0 + !1x� !2�p; (6)

where �, !0, !1, !2, are parameters,mu denotes the markup, p, ulc, and pm are prices,

unit labor costs and import prices, respectively, and x captures shifts in the bargaining

position of labor and �rms. In particular, x includes variables that characterize the

�rm�s competitive environment. The relationship (6) expresses a long-run equilibrium

among the variables involved. Under certain assumptions, BCR simplify the equation

above by assuming that the competitive environment of the �rm (variables in x) is

constant. Thus, they express the long-run markup as a function of the in�ation rate

exclusively. The long-run markup equation (6) is then estimated using quarterly

Australian data that run from 1970:1 to 1995:2, proxying the core variables, pt, ulct
and pmt, with the private consumption de�ator, the Australian Treasury�s measure

of non-farm unit labor costs and the imports implicit price de�ator, respectively.

BCR suggest that the three core variables are I(2), so they consider scenarios

where these variables cointegrate to I(1) or to stationarity or present multicointe-

gration, as implied by the presence of �p in (6). Thus, the setup of their long-run

analysis is an adequate context for the test proposed in the present paper. BCR�s
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setting assumes that the variables in x are all stationary, i.e., they are only present

as determinants of short-run deviations from the long-run markup. Speci�cally, these

variables include the unemployment rate, a measure of tax rates, oil prices and a

measure of the number of labor strikes. There is evidence that the �rst three of these

variables are I(1), so BCR include them in �rst di¤erences in the analysis. However,

there seems to be no theoretical reason to omit the variables in x from the analysis

of cointegration, which could, in principle, allow for a long run relation that involves

the six nonstationary variables in the dataset.

We �rst carry out the BCR analysis by testing for an stationary relationship among

the three core variables. First, our feasible procedure must infer from the data r and

a set of common trends. As said before, a slight modi�cation of the GBH procedure

for I(1) systems can be applied here. This method, similarly to Johansen�s analysis,

starts by assuming a maximum possible integration order of the system, two in our

case. Then we test for unit roots on �rst di¤erences of the three observables: if all

tests reject, then the system is not I(2) and we can apply an I(1) methodology. Our

results, however, support the I(2) condition of the system, although, interestingly, we

found no evidence of I(2) behavior in ulct or pmt (BCR themselves acknowledge that

this evidence is weak; see their footnote 19). In any case, we conclude that the vector

of observables is I (2) and next we choose a common trend. GBH proposed a statistic

which can be used for this choice, although, for space reasons, we omit this discussion.

The chosen variable is pt, which aligns with the output of previous unit root tests.

Then, evidence of cointegration between ulct and pt and also between pmt and pt is

assessed. This is carried out by ADF tests applied to �rst di¤erences of residuals

obtained from the corresponding regressions (where an intercept was included). The

ADF statistics took values -11.37 and -9.50, respectively, both signi�cant at 1%,

showing in both cases strong evidence of (possibly trivial) cointegration. Thus, the

GBH procedure leads to br = 2 and to the choice of pt as common trend. Given this,
we carried out the test for stationary cointegration. In particular we estimated by

OLS the regressions

ulct = �0 + �1pt + �2�pt + �3pmt + ut;

pmt = �0 + �1pt + �2�pt + �3ulct + vt:

Following the procedure described in Section 3, the individual tests should be per-

formed with size �=2, and if either of them rejects, we would reject H0, therefore

�nding evidence of a stationary markup. The corresponding ADF test statistics take

values -2.98, -2.03 (the 5% critical value is -4.24), so H0 is not rejected (even at the
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10% level). Hence the data do not support the existence of a stationary markup.

As done by BCR, an alternative approach would have been to analyze the pos-

sibility of cointegration in the (likely) I (1) system formed by the three observables

pt � ulct, pt � pmt, �pt. Again, our results (available upon request) do not support

the existence of a stationary markup.

As hinted before, if we were willing to consider that the competitive environment

may not be constant in the long-run, then some of the variables in x may enter the

equilibrium relationship. Thus, we extend our exercise by including oil prices (pett),

unemployment rate (uet) and a tax rate (taxt) in the cointegration analysis. If any

of these three variables enters a stationary cointegrating relationship, the resulting

cointegrating error may be interpreted as the markup net of persistent shocks and

in�ation. Following the same steps as before, we conclude that br = 5 and, again, pt
is the chosen common trend. Then our test is carried out by estimating �ve di¤erent

relations where all observables but pt are regressed on the rest of observables and �pt
(we also include an intercept). The ADF test statistics derived from the regressions

where ulct, pmt, pett, uet, taxt are the left hand side variables are -6.09, -3.11, -2.63,

-4.08, -7.24, respectively. These numbers must be compared with appropriate critical

values, which in this case are given by -5.56 (2%), -5.82 (1%), -6.37 (0.2%) (note that

the individual tests have to be performed with �=5 signi�cance level). Thus, even at

1%, we reject H0, suggesting that there exists stationary cointegration among these

six variables.

Combining the results from both analyses, we could say that there is evidence of

a persistent markup, even accounting for the e¤ect of in�ation; however, the markup

net of shocks to the competitive environment appears to be stationary. The two

estimated equations for possible stationary relations among the variables are

culct = 2:36
(0:12)

+ 0:94
(0:04)

pt + 3:00
(0:37)

�pt + 0:03
(0:05)

pmt � 0:03
(0:03)

pett + 0:10
(0:01)

uet � 0:23
(0:06)

taxt;

ctaxt = 2:86
(0:31)

+ 0:51
(0:16)

pt + 2:07
(0:73)

�pt � 0:57
(0:15)

ulct + 0:20
(0:07)

pmt + 0:14
(0:05)

pett + 0:01
(0:03)

uet;

where standard errors are given in parenthesis. Signs and magnitudes are aligned

with what theory would suggest.

6 Conclusions

Our main interest in the paper is the analysis of long run relationships that involve

I (2) and, possibly, I (1) observables. The objective was to detect linear combina-

tions of these observables that lead to stationary cointegrating errors. Cointegrating
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regressions that combine the I (2) and I (1) observables can be used to test for this

possibility, but care has to be exercised to make sure that these regressions are well

speci�ed. In particular, we show that a correction must be implemented in those

regressions, which consists of including as additional regressors the �rst di¤erences

of non-cointegrated I (2) observables that characterize a set of common trends of the

system.

Once this correction has been implemented, traditional ADF tests can be applied

to the residuals from this cointegrating regression in order to test the null hypothesis

of no stationary cointegration. We have derived the asymptotic distribution of the

proposed ADF test and show that it depends on the number of observables p and on

the number of I (2) common trends (p � r) (or, alternatively, on the cointegrating
rank of the system, r). We have tabulated the critical values of this distribution for

a number of cases. Also, based on this ADF test statistic, we propose a procedure to

test the null of no stationary cointegration which overcomes the drawback, su¤ered

by any residual-based method, of the lack of power with respect to some relevant

alternatives. We have compared the behavior of this test with that of a system

alternative and show that it performs satisfactorily. Finally, we have illustrated the

use of the test by means of an empirical analysis of markups and in�ation.

Appendix
Proof of Theorem 1. Using similar notation to that of Phillips and Ouliaris (1990),
the ADF statistic is

tn =
bU 0�1QXq�bU�bU 0�1QXq bU�1� 1

2 b� ; (7)

whereQXq = In�q�1�Xq

�
X 0
qXq

��1
X 0
q,Xq = (xq;q+2; :::; xq;n)

0, xq;t = (�but�1; :::;�but�q)0,bU�1 = (buq+1; :::; bun�1)0, �bU = (�buq+2; :::;�bun)0 ;
b�2 = 1

n� q � 1
X
t

 
�but � b�0but�1 � qX

j=1

b�j�but�j!2 ;
where �t = �nt=q+2 and b�j, j = 0; :::; q, are the ordinary least squares coe¢ cients in
the regression of �but on but�1, �but�1; :::;�but�q. First, noting that but = �1;�b�0� vt,
de�ne

b� =
0B@ Ip 0 0

0 nIp�r 0

0 0 n�1=2D

1CA 1

�b�
!
:
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By (4) and the continuous mapping theorem

b� ) � �

0B@1;� 1Z
0

X1 (s)X
0
�1 (s) ds

0@ 1Z
0

X�1 (s)X
0
�1 (s) ds

1A�1
1CA
0

; (8)

where X (s) =
�
B0 (s) ; B

0
(2) (s) ; f

0 (s)
�0
, B(2) (s) being the subvector made of the last

p� r components of B (s). We will stress the dependence of the ADF statistic on b�
by de�ning tn(b�) � tn. Theorem 1 follows on showing that, as n!1, q !1;

tn(b�)� tn(�) = op (1) ; (9)

tn(�) ) � (p; r) ; (10)

where tn(�) is as tn(b�), just replacing b� by �. We show (10) �rst. The proof will
be based on the following result. Under our assumptions, n�1=2

X[nr]

t=1
�t is a mixing

sequence (see, e.g., Rootzén, 1976, Phillips and Durlauf, 1986, Phillips and Ouliaris,

1990), so tn(b�) is also mixing. Then, if (9) holds, by Lemma 2.6 of Rootzén (1976)
tn (�) is also a mixing sequence, so conditioning on � does not a¤ect the analysis of

the limiting distribution of tn(�). Thus, we would act as if � were �xed. Noting that

by (3)

�but = �1;�b�0�
0B@ �t

��(2)t

�ct

1CA = b�0
0B@ �t

n�1��(2)t

n1=2D�1�ct

1CA ;
de�ne ut and xq;t as but and xq;t, respectively, but replacing b� by � in these latter
expressions. There is a slight abuse of notation here because

�ut = �
0

0B@ �t

n�1��(2)t

n1=2D�1�ct

1CA ;
so, strictly speaking, a more appropriate (but more cumbersome) notation would be

ut;n, given that this is a triangular array.

First, we show that as q !1 and n!1; 
1

n

X
t

xq;tx
0
q;t

!�1
= Op (1) ; (11)

1

n

X
t

ut�1xq;t = Op

�
q
1
2

�
: (12)
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Let � = (�0a; �
0
b; �

0
c)
0, where �a, �b, �c, are p � 1, (p� r) � 1, d � 1, subvectors of �,

respectively. Then xq;t = aq;t + bq;t + cq;t, where

aq;t = (�0a�t�1; :::; �
0
a�t�q)

0, bq;t = n�1(�0b��(2)t�1; :::; �
0
b��(2)t�q)

0,

cq;t = n
1
2 (�0cD

�1�ct�1; :::; �
0
cD

�1�ct�q)
0:

In order to show (11), note that

1

n

X
t

xq;tx
0
q;t = Cn +Rn;

where

Cn = (Iq 
 �0a)E

0BB@
0BB@
�t�1
...

�t�q

1CCA�� 0t�1; :::; � 0t�q�
1CCA (Iq 
 �a) = (Iq 
 �0a) �q (Iq 
 �a)

where 
 denotes the Kronecker product,

�q =

0BBBB@
� (0) � (1) � � � � (q � 1)
� (�1) � (0) � � � � (q � 2)
...

...
. . .

...

� (1� q) � (2� q) � � � � (0)

1CCCCA ;

with � (j) = E(�t�
0
t�j), and Rn collects remaining terms. First we show that kRnk =

Op
�
qn�1=2

�
, which by Assumption 2 is op (1). This result follows because it can be

shown that under our conditions, uniformly in i, j;

E






X
t

�t�i��
0
(2)t�j







2

= O
�
n2
�
, E






X
t

�t�i�c
0
t�jD

�1







2

= O (1) ,

E






X
t

��(2)t�i��
0
(2)t�j
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= O
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n4
�
, E






X
t

��(2)t�i�c
0
t�jD
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2

= O (n) ,




X
t

D�1�ct�i�c
0
t�jD
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= O
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X
t

(�t�i�
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2
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Then by the properties of the norm
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so it immediately follows that kRnk = Op
�
qn�1=2

�
. Next kC�1n k = Op (1) because �q

is positive de�nite and Iq 
 �a is a full rank qp� q matrix. Then, given that
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noting that kC�1n k = Op (1), kRnk = op (1), 1 � kRnk kC�1n k > 0 with probability

approaching one, so that
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to conclude the proof of (11). Next, (12) follows by similar arguments noting that,

uniformly in j;
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Then we deal with U
0
�1QXq

U�1, where U�1, QXq
, are de�ned as bU�1, QXq , replacing
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but, xq;t, by ut, xq;t, respectively. This is one of the components of the denominator of
tn (�) (see (7)), and by (11), (12),

1

n2
U
0
�1QXq

U�1 =
1

n2

X
t

u2t�1 +Op

� q
n

�
: (13)

Partitioning
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21 
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!
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�
B0(1) (s) ; B

0
(2) (s)

�0
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�122 0 0

0 Ip�r 0 0
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First, note that

S
�
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0
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�1�0(2)t�1; n
1=2c0t�1D

�1� = �w0t;��0(2)t; n�1�0(2)t; n1=2c0t�1D�1�0 ;
where here wt = �(1)t�
12
�122��(2)t is an I (1) process such that the coherence at fre-
quency zero between�wt and�2�(2)t is zero. De�ne Z (s) =

�
B0(1:2) (s) ; B

0
(2) (s) ; B

0
(2) (s) ; f

0 (s)
�0
,

B(1:2) (s) = B(1) (s) � 
12
�122 B(2) (s), noting that B(1:2) (s) and B(2) (s) are indepen-
dent Brownian motions and B(1:2) (s) has covariance matrix � = 
11 � 
12
�122 
21.
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Then, by (4) and the continuous mapping theorem
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because
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As in Phillips and Ouliaris (1990), let

� =

 
�11 �12

�21 �22

!
= L0L, where L =

 
l11 0
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!
;

where �11, �12, �22, are 1 � 1, 1 � (r � 1), (r � 1) � (r � 1), matrices, respectively,
�21 = �

0
12, and l11 =
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Then, by (13), (14) and obvious manipulations
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Next
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noting that �ut = �
0
t�a+n

�1��0(2)t�b+n
1=2�c0tD

�1�c. First, by similar arguments to

those in the proofs of (11), (12), it is simple to show that
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which implies that (17) equals
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We concentrate on the fourth term of (18). First, we show that
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where eq is a q-dimensional vector of ones. The mth element of the row vector on the

left of (19) equals

� 1
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X
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which can be easily shown to be Op (qn�1) uniformly in m, so




 1nX
t

ut�1b
0
q;t �

1

n2

X
t

ut�1��
0
(2)t�be

0
q







2

= Op

�
q3

n2

�
;

to conclude (19). Next we show that
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The mth element of the row vector on the left of (20) equals
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Then the sum of the second and fourth terms of (18) becomes

1

n2

X
t

ut�1��
0
(2)t�b

0@1� e0q
 X

t

aq;ta
0
q;t

!�1X
t

aq;t�
0
t�a

1A+ op (1) ; (21)

whereas that of the third and �fth terms of (18) becomes
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Next, as in Phillips and Ouliaris (1990), denote �t = �

0
a�t, which (conditional on �a)

has an autoregressive representation

d (L) �t = 
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where the sequence dj is absolutely summable and 
t is a zero-mean orthogonal
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where �bdj is the estimated coe¢ cient corresponding to �t�j, j = 1; :::; q, in the

regression of �t on �t�1; :::; �t�q. As in Lemma 3.4 of Chang and Park (2002),
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Then, by (18), (19), (21),
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t�a. The second, third and fourth

terms on the right side of (22) can be easily shown to be op (1), whereas the �rst one

can be analyzed by identical transformations to those employed in the proof of (16),

so that
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so

�0a
�a = l
2
11�

0

 
Ip 0

0 0

!
�;

by identical transformations to the ones employed before, to conclude the proof of

(10).

Finally, we show (9). Clearly

tn(b�)� tn(�) = tn(b�)� t(b�)� (tn(�)� t(�)) + t(b�)� t(�);
where t (�) is like tn (�), but with the normalized summations replaced by the respective
limits in distribution. First, t(b�)� t(�) = op (1), by (8) and the continuous mapping
theorem. Also, noting that b� = Op (1), tn(b�) � t(b�) = op (1) by tedious but simple

calculations, showing that the di¤erence between the individual components of tn(b�)
with the corresponding ones in t(b�) is op (1). For identical reasons, tn(�) � t(�) =
op (1), to conclude (9), and therefore complete the proof of Theorem 1.

Proof of Theorem 2. Let zt be an arbitrary (p� r)-dimensional subvector of zt
with I (2) and noncointegrated components (given that zt is cointegrated with rank

r, at least one of such subvectors exists). Collect the rest of components of zt in the

r � 1 vector zt. Then there exists a r � (p� r) matrix A such that zt + Azt has

a smaller integration order than 2. Without loss of generality set zt = (z0t; z
0
t)
0. If

zt + Azt is stationary, the theorem holds trivially because R = T = C. The proof

for the zt + Azt � I (1) situation is as follows. Let � 2 T . Then � 2 R, by setting
� (�) = (00r; �

0 (�))0, where 0r denotes a r-dimensional vector of zeroes. Alternatively,

if � 2 R, there exists � (�) such that �0zt + �0 (�)�zt is stationary or, equivalently,

�0zt + �
0 (�)�zt + �

0
(�)�zt (23)

is stationary, where � (�) = (�0 (�) ; �
0
(�))0 is partitioned according to zt. From the

cointegrating relations

�0 (�)�zt + �
0 (�)A�zt

is stationary. Then adding and subtracting �0 (�)A�zt to (23), necessarily

�0zt +
�
�
0
(�)� �0 (�)A

�
�zt

is stationary and, consequently, � 2 T , to conclude the proof.
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Table 4. Proportion of rejection of the null of no stationary cointegration for the di¤erent
models (infeasible tests)

n = 100 n = 200 n = 500 n = 1000
�t Modeln� .10 .05 .01 .10 .05 .01 .10 .05 .01 .10 .05 .01
WN 1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
3 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
4 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
5 .993 .990 .983 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
6 .993 .988 .981 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
7 .173 .113 .037 .116 .075 .021 .094 .052 .012 .086 .044 .009
8 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
9 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
10 .992 .988 .982 1.00 1.00 .999 1.00 1.00 1.00 1.00 1.00 1.00
11 .992 .987 .981 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
12 .199 .125 .046 .136 .082 .026 .109 .057 .013 .100 .051 .010
13 .992 .987 .979 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
14 .992 .989 .978 1.00 1.00 .999 1.00 1.00 1.00 1.00 1.00 1.00
15 .209 .127 .045 .141 .082 .023 .111 .055 .014 .103 .054 .011

AR 1 .711 .559 .274 .999 .991 .898 1.00 1.00 1.00 1.00 1.00 1.00
2 .711 .561 .267 .998 .991 .896 1.00 1.00 1.00 1.00 1.00 1.00
3 .617 .479 .221 .990 .967 .799 1.00 1.00 1.00 1.00 1.00 1.00
4 .603 .467 .221 .989 .962 .792 1.00 1.00 1.00 1.00 1.00 1.00
5 .436 .329 .147 .916 .831 .577 1.00 1.00 1.00 1.00 1.00 1.00
6 .444 .324 .145 .912 .829 .564 1.00 1.00 1.00 1.00 1.00 1.00
7 .180 .113 .039 .123 .067 .019 .096 .052 .011 .085 .047 .010
8 .678 .538 .273 .989 .961 .792 1.00 1.00 1.00 1.00 1.00 1.00
9 .673 .524 .262 .990 .959 .778 1.00 1.00 1.00 1.00 1.00 1.00
10 .503 .372 .181 .910 .820 .557 1.00 1.00 1.00 1.00 1.00 1.00
11 .495 .376 .182 .908 .821 .550 1.00 1.00 1.00 1.00 1.00 1.00
12 .216 .142 .048 .141 .082 .023 .111 .061 .016 .098 .054 .011
13 .600 .465 .238 .942 .865 .606 1.00 1.00 1.00 1.00 1.00 1.00
14 .595 .463 .237 .937 .865 .599 1.00 1.00 1.00 1.00 1.00 1.00
15 .241 .156 .056 .156 .098 .025 .118 .062 .017 .113 .053 .010

10,000 replications were carried out for each sample size n. Three di¤erent signi�cance
levels � = f:10; :05; :01g were used in the tests. The number of lags in the ADF tests is

chosen according to the BIC. The innovation vector �t is generated as �jt = "jt,
j = 1; :::; 4 (WN) and �jt = 0:8�j;t�1 + "jt, j = 1; :::; 4 (AR) with Gaussian "t such that
E ("t) = 0, V ar ("t) = I4. Critical values from Table 1, p = 4, r = 3 (Models 1-7),
p = 4, r = 2 (models 8-12), p = 4, r = 1 (models 13-15). Models 7, 12 and 15 are the

models with no stationary cointegration.
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Table 5. Proportion of rejection of the null of no stationary cointegration for the di¤erent
models (tests of Paruolo, 1996)

n = 100 n = 200 n = 500 n = 1000
�t Modeln� .10 .05 .01 .10 .05 .01 .10 .05 .01 .10 .05 .01
WN 1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
3 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
4 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
5 .990 .973 .889 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
6 .999 .998 .983 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
7 .182 .108 .033 .149 .078 .020 .124 .064 .019 .114 .066 .017
8 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
9 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
10 .982 .947 .809 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
11 1.00 .997 .977 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
12 .183 .109 .028 .155 .083 .021 .135 .073 .016 .136 .069 .016
13 .958 .910 .717 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
14 .999 .997 .971 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
15 .187 .099 .025 .161 .081 .020 .144 .076 .020 .130 .071 .019

AR 1 .679 .531 .279 .993 .982 .915 1.00 1.00 1.00 1.00 1.00 1.00
2 .704 .558 .312 .997 .987 .932 1.00 1.00 1.00 1.00 1.00 1.00
3 .595 .446 .200 .931 .872 .660 1.00 1.00 1.00 1.00 1.00 1.00
4 .619 .472 .226 .951 .885 .698 1.00 1.00 1.00 1.00 1.00 1.00
5 .513 .369 .148 .714 .579 .323 .997 .991 .946 1.00 1.00 1.00
6 .551 .390 .168 .748 .616 .359 .998 .995 .963 1.00 1.00 1.00
7 .445 .305 .108 .409 .289 .115 .219 .131 .043 .160 .090 .027
8 .674 .521 .279 .903 .828 .574 1.00 1.00 1.00 1.00 1.00 1.00
9 .698 .560 .307 .920 .848 .621 1.00 1.00 1.00 1.00 1.00 1.00
10 .625 .490 .224 .709 .570 .299 .994 .979 .897 1.00 1.00 1.00
11 .669 .520 .258 .753 .617 .329 .997 .991 .938 1.00 1.00 1.00
12 .605 .449 .202 .452 .314 .115 .241 .147 .047 .179 .104 .033
13 .773 .645 .377 .723 .587 .316 .987 .966 .848 1.00 1.00 1.00
14 .795 .673 .408 .759 .634 .356 .995 .982 .909 1.00 1.00 1.00
15 .772 .644 .358 .513 .367 .159 .259 .166 .050 .188 .115 .026

10,000 replications were carried out for each sample size n. Three di¤erent signi�cance
levels � = f:10; :05; :01g were used in the tests. The number of lags in the VAR is set to
the true value of zero (WN) and one (AR). The innovation vector �t is generated as

�jt = "jt, j = 1; :::; 4 (WN) and �jt = 0:8�j;t�1 + "jt, j = 1; :::; 4 (AR) with Gaussian
"t such that E ("t) = 0, V ar ("t) = I4. Models 7, 12 and 15 are the models with no

stationary cointegration.
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Table 6. Proportion of rejection of the null of no stationary cointegration for the di¤erent
models (feasible tests)

n = 100 n = 200 n = 500 n = 1000
�t Modeln� .10 .05 .01 .10 .05 .01 .10 .05 .01 .10 .05 .01
WN 1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
3 1.00 .999 .997 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
4 .994 .993 .990 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
5 .957 .942 .920 .984 .980 .970 1.00 .999 .997 1.00 1.00 1.00
6 .890 .872 .827 .904 .893 .895 .937 .953 .958 .935 .968 .992
7 .190 .120 .037 .158 .092 .028 .122 .064 .017 .103 .056 .012
8 .999 .999 .997 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
9 .995 .993 .987 1.00 1.00 .999 1.00 1.00 1.00 1.00 1.00 1.00
10 .934 .954 .959 .990 .988 .979 1.00 1.00 .999 1.00 1.00 1.00
11 .876 .859 .785 .866 .867 .842 .934 .940 .911 .957 .978 .985
12 .184 .117 .043 .144 .092 .028 .116 .067 .018 .104 .057 .014
13 .981 .971 .947 .999 .998 .995 1.00 1.00 1.00 1.00 1.00 1.00
14 .899 .902 .868 .898 .906 .889 .939 .949 .945 .944 .975 .989
15 .195 .127 .039 .153 .091 .029 .128 .074 .020 .115 .063 .017

AR 1 .688 .534 .257 .997 .984 .864 1.00 1.00 1.00 1.00 1.00 1.00
2 .823 .696 .401 .999 .995 .950 1.00 1.00 1.00 1.00 1.00 1.00
3 .597 .461 .212 .986 .951 .762 1.00 1.00 1.00 1.00 1.00 1.00
4 .679 .550 .268 .988 .966 .852 1.00 1.00 1.00 1.00 1.00 1.00
5 .436 .318 .139 .908 .821 .553 1.00 .999 .997 1.00 1.00 1.00
6 .369 .255 .097 .836 .759 .506 .957 .980 .996 .950 .973 .996
7 .161 .085 .015 .118 .062 .018 .092 .046 .009 .080 .040 .009
8 .616 .485 .247 .976 .939 .729 1.00 1.00 1.00 1.00 1.00 1.00
9 .694 .559 .271 .991 .974 .875 1.00 1.00 1.00 1.00 1.00 1.00
10 .479 .352 .167 .899 .801 .533 1.00 1.00 .999 1.00 1.00 1.00
11 .351 .235 .087 .822 .716 .451 .974 .988 .997 .970 .986 .998
12 .167 .086 .017 .127 .075 .020 .094 .051 .014 .081 .043 .010
13 .582 .448 .229 .930 .847 .593 1.00 1.00 1.00 1.00 1.00 1.00
14 .326 .211 .054 .840 .728 .416 .964 .985 .997 .964 .983 .998
15 .174 .094 .023 .159 .101 .028 .109 .060 .018 .102 .048 .012

10,000 replications were carried out for each sample size n. Three di¤erent signi�cance
levels � = f:10; :05; :01g were used in the tests. The number of lags in the ADF tests is

chosen according to the BIC. The innovation vector �t is generated as �jt = "jt,
j = 1; :::; 4 (WN) and �jt = 0:8�j;t�1 + "jt, j = 1; :::; 4 (AR) with Gaussian "t such that
E ("t) = 0, V ar ("t) = I4. Critical values from Table 1, p = 4, r = 3 (Models 1-7),
p = 4, r = 2 (models 8-12), p = 4, r = 1 (models 13-15). Models 7, 12 and 15 are the

models with no stationary cointegration.
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