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Abstract

The choice network revenue management (RM) model incorporates customer purchase be-
havior as customers purchasing products with certain probabilities that are a function of the of-
fered assortment of products, and is the appropriate model for airline and hotel network revenue
management, dynamic sales of bundles, and dynamic assortment optimization. The underlying
stochastic dynamic program is intractable and even its certainty-equivalence approximation, in
the form of a linear program called Choice Deterministic Linear Program (CDLP ) is difficult
to solve in most cases. The separation problem for CDLP is NP-complete for MNL with just
two segments when their consideration sets overlap; the affine approximation of the dynamic
program is NP-complete for even a single-segment MNL. This is in contrast to the independent-
class (perfect-segmentation) case where even the piecewise-linear approximation has been shown
to be tractable. In this paper we investigate the piecewise-linear approximation for network RM
under a general discrete-choice model of demand. We show that the gap between the CDLP and
the piecewise-linear bounds is within a factor of at most 2. We then show that the piecewise-
linear approximation is polynomially-time solvable for a fixed consideration set size, bringing it
into the realm of tractability for small consideration sets; small consideration sets are a reason-
able modeling tradeoff in many practical applications. Our solution relies on showing that for
any discrete-choice model the separation problem for the linear program of the piecewise-linear
approximation can be solved exactly by a Lagrangian relaxation. We give modeling extensions
and show by numerical experiments the improvements from using piecewise-linear approxima-
tion functions.

1 Introduction and literature review

Revenue management is the control of the sale of a limited quantity of a resource (hotel rooms for a
night, airline seats, advertising slots etc.) to a heterogenous population with different valuations for
a unit of the resource. The resource is perishable, and for simplicity sake, we assume that it perishes
at a fixed point of time in the future. The firm has to decide what products to offer (at a given
price for each product), the tradeoff being selling too much at too low a price early and running
out of capacity, or, rejecting too many low-valuation customers and ending up with excess unsold
inventory.
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In industries such as hotels, advertising and airlines, the products consume bundles of different
resources (multi-night stays, bundles of ad slots, multi-leg itineraries) and the decision to accept or
reject a particular product at a certain price depends on the future demands and revenues for all the
resources used by the product and indirectly, on all the resources in the network. Network revenue
management (network RM) is control based on the demands for the entire network. Chapter 3 of
Talluri and van Ryzin [21] contains the necessary background on network RM.

RM incorporating more realistic models of customer behavior as customers choosing from set
of offered products have recently become popular, initiated in Talluri and van Ryzin [20] for the
single-resource problem. Bodea, Ferguson, and Garrow [3] for instance use choice data from a large
hotel chain and empirically study the suitability of choice models. Vulcano, van Ryzin, and Chaar
[24] and Newman, Ferguson, Garrow, and Jacobs [15] and Talluri [19] study estimation of choice
models from sales data.

The choice network RM problem can be formulated as a stochastic dynamic program with expo-
nentially large state and action spaces (exponential in the number of products). Since the dynamic
programming formulation is computationally intractable, many approximation methods have been
proposed starting with Gallego, Iyengar, Phillips, and Dubey [5] and Liu and van Ryzin [12], who
formulate the choice deterministic linear program (CDLP ) and show that it gives an upper bound
on the value function. Since CDLP has an exponential number of decision variables it has to be
solved using column generation and Liu and van Ryzin [12] show that this can be done in polynomial
time for the MNL model of choice when the consideration sets of the different customer segments
are disjoint. However, generating the columns is NP-complete when the segment consideration sets
overlap even under the MNL model with just two segments (Bront, Méndez-Dı́az, and Vulcano [4],
Rusmevichientong, Shmoys, Tong, and Topaloglu [16]). Kunnumkal and Talluri [10] show that the
affine approximation of the dynamic program is NP-hard even for a single-segment MNL model.
These negative results show us the limits of tractability just for the MNL model, leaving little hope
for general discrete choice models.

Kunnumkal and Topaloglu [11] and Zhang and Adelman [25] study decomposition procedures
and an affine relaxation of the dynamic program. In the same vein, Meissner and Strauss [14] look
at time-sensitive bid-price controls based on a decomposition procedure. All these methods yield
upper bounds on the value function that are provably tighter than the CDLP upper bound but
intractable even for a single-segment MNL model of choice ([10]). Recently Vossen and Zhang [23]
study the affine approximation using Dantzig-Wolfe decomposition ideas.

The difficulty of approximations for choice network RM is in contrast to the perfect segmenta-
tion case (also called the independent-class assumption) where both the affine and piecewise-linear
approximations to the dynamic program are tractable (Tong and Topaloglu [22], Kunnumkal and
Talluri [9]). So choice network RM appears to be significantly more difficult, even for restricted
MNL choice models.

In this paper we study the piecewise-linear approximation of the dynamic program for gen-
eral discrete choice models. In this approximation, the value functions are replaced by separable
piecewise-linear functions that are more flexible and general than the affine approximations consid-
ered previously. We show that the gap between the CDLP and the piecewise-linear bounds is within
a factor of at most 2. We note that this is not an asymptotic-type bound, relying on demand and
capacity scaling, and that it holds for any choice model; as far as are aware, it is the first known
constant-factor bound for this problem.

Now, since we work with general discrete-choice models, we expect all the negative complexity
results for the MNL model and affine approximation to carry over for the piecewise-linear approxi-
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mation. So naturally we have to make some assumptions or restrict our realm of applicability: we
assume that the choice set is not very large so that one could possibly enumerate all the subsets of
the choice set.

The main theoretical result of this paper is the following: If r1i is the initial capacity of resource i,
and τ the number of time periods, and |J | the size of the consideration set, then the linear program
representing the piecewise-linear approximation has O(2|J |τ

∏
i r

1
i ) constraints (and the separation

problem of this linear program is NP-complete, even for MNL). We show that the piecewise-linear
approximation linear program is equivalent to a linear program with O(2|J |τ

∑
i r

1
i ) constraints.

So the complexity is reduced from
∏
i r

1
i to a

∑
i r

1
i factor, a significant reduction and for a fixed

|J | gives a polynomial-time complexity to the approximation. This result holds for any general
discrete-choice model.

We show that the reduced linear program can be alternatively viewed as a Lagrangian relaxation
of the network RM dynamic program that uses O(2|J |τ) multipliers. The Lagrangian relaxation
method we propose is new and is attractive since it decomposes the network problem into a number
of single resource problems which are computationally much more tractable. Furthermore, we show
that the optimal set of Lagrange multipliers can be obtained by solving a convex optimization
problem.

The result has practical implications whenever the size of the consideration sets are small (say
no more than 20). Small consideration sets can be justified in the airline setting where a segment’s
consideration set consists of choices (on one airline) for travel between an origin and destination, and
typically there are only a few alternatives on a given date (Talluri [18]). For hotels, as the product
consists of a multi-night stay and most customers arrive with a fixed duration of stay in mind, the
consideration set consists of the types of rooms and products, usually not a very large number.
Empirical studies in the marketing literature also motivate our assumption of small consideration
sets; Hauser and Wernerfelt [7] report average consideration set sizes of 3 brands for deodorants, 4
brands for shampoos, 2.2 brands for air fresheners, 4 brands for laundry detergents and 4 brands
for coffees. (Note that the study is for brands rather than choices of sizes or colors.) Furthermore,
another line of marketing research finds great value in deliberately limiting customer choices to a
small number (Iyengar and Lepper [8]).

To obtain tractability in optimization one can potentially model demand as consisting of multiple
segments, each with a small consideration set. We therefore extend the relaxation to multiple
segments with distinct small consideration sets. Our numerical results show significant improvements
over the benchmark CDLP method and even the affine relaxation—for some examples, we tighten
the upper bound on the dynamic program by nearly 20% compared to the CDLP and 10% compared
to the affine relaxation. Our theoretical results also provide a basis for the Lagrangian relaxation and
its relation to the dynamic program, along the lines first proposed in Meissner and Strauss [14]. Going
back further, decomposing the problem to obtain tractability is quite classical (§6.4.2 of Bertsekas
[2]; Maglaras and Meissner [13] in a related context) and this paper bridges the decomposition and
approximation approaches to difficult stochastic dynamic programs.

From a technical viewpoint, while many possible approximations (polynomials, trignometric
functions, Lyapunov functions) to difficult stochastic dynamic programs can be considered (and
indeed, been proposed), few of them can be shown to be tractable. This is especially true for the
choice network revenue management where even with a simple MNL model, the affine relaxation
is NP-hard. Our research sheds light on the modeling tradeoffs involved in obtaining solvability of
good approximations, such as with piecewise-linear functions.

The remainder of the paper is organized as follows: In §2 we describe the network choice RM
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model, the notation, and the stochastic dynamic program and the linear-programming based ap-
proximations we consider in this paper, the CDLP , affine and piecewise-linear relaxations. In §3 we
describe the Lagrangian relaxation approach and in §4, we show the connection between piecewise-
linear and Lagrangian relaxation approaches. In §5 we perform numerical experiments to determine
the performance of the piecewise-linear approximation compared to the CDLP and the affine relax-
ation.

2 Model and notation

A product is a specification of a price and the set of resources that it consumes. For example, a
product could be an itinerary-fare class combination for an airline network, where an itinerary is a
combination of flight legs; in a hotel network, a product would be a multi-night stay for a particular
room type at a certain price point.

Time is discrete and assumed to consist of τ intervals, indexed by t. The booking horizon begins
at time t = 1 and ends at t = τ ; all the resources perish instantaneously at time τ +1. We make the
standard assumption that the time intervals are fine enough so that the probability of more than one
customer arriving in any single time period is negligible. The underlying network has m resources
which are indexed by i, and n products which are indexed by j. We index resources by i or l, and
products by j, and time periods by t. We refer to the set of all resources as I and the set of all
products as J . A product j uses a subset of resources Ij ⊆ I and similarly, a resource i is used by
a subset Ji ⊆ J of products.

We use superscripts on vectors to index the vectors. For example, we write the resource capacity
vector associated with time period t as rt. We use subscripts to indicate components. For example,
rti represents the capacity on resource i in time period t. We use �[·] as the indicator function, 1 if
true and 0 if false.

We let r1 =
[
r1i
]
represent the initial capacity on the resources and rt = [rti ] denote the remaining

capacity on resource i at beginning of time period t. The remaining capacity rti takes values in the
set Ri =

{
0, . . . , r1i

}
and R =

∏
iRi represents the state space.

2.1 Demand model

In each time period the firm offers a subset S of its products for sale, called the offer set. A customer
arrives with probability α and given an offer set S, an arriving customer purchases a product j in
the set S or decides not to purchase. The no-purchase option is indexed by 0 and is always present
for the customer. We let Pj(S) denote the probability that the firm sells product j given that a
customer arrives and the offer set is S. Clearly, Pj(S) = 0 if j /∈ S. The probability of no sale given
a customer arrival is P0(S) = 1 −∑

j∈S Pj(S). We assume that the choice probabilities are given
by an oracle, as the model represents a general discrete-choice model; they could be conceivably be
calculated by a simple formula as in the case of the Multinomial Logit (MNL) model.

2.2 Choice dynamic program

The dynamic program (DP) to determine optimal controls is as follows. Let Vt(r
t) denote the

maximum expected revenue to go, given remaining capacity rt at the beginning of period t. Then
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Vt(r
t) must satisfy the Bellman equation

Vt(r
t) = max

S⊂Q(rt)

⎧⎨⎩∑
j∈S

αPj(S)

⎡⎣fj + Vt+1

⎛⎝rt −
∑
i∈Ij

ei

⎞⎠⎤⎦+ [αP0(S) + 1− α]Vt+1

(
rt
)⎫⎬⎭ , (1)

where
Q(r) =

{
j |�[j∈Ji] ≤ ri, ∀i

}
represents the set of products that can be offered given the capacity vector r and ei is a vector with
a 1 in the ith position and 0 elsewhere. The boundary conditions are Vτ+1(r) = Vt(0) = 0 for all
r and for all t, where 0 is a vector of all zeroes. V DP = V1(r

1) denotes the optimal expected total
revenue over the booking horizon, given the initial capacity vector r1.

For brevity of notation, we assume that α = 1 in the remaining part of the paper. We note that
this is without loss of generality since this is equivalent to letting P̃j(S) = αPj(S) and P̃0(S) =

αP0(S) + 1− α, and working with the choice probabilities
{
P̃j(S) | ∀j, S

}
.

2.3 Linear programming formulation of the dynamic program

The value functions can, alternatively, be obtained by solving a linear program, following Schweitzer
and Seidmann [17]. The linear programming formulation of the network choice RM dynamic program
has a decision variable Vt(r) for each state vector r in each period t and is as follows:

V DP = min
V

V1(r
1)

s.t.

(DP ) Vt(r) ≥
∑
j

Pj(S)

⎡⎣fj + Vt+1

⎛⎝r −
∑
i∈Ij

ei

⎞⎠− Vt+1(r)

⎤⎦+ Vt+1(r) (2)

∀r ∈ R, S ⊂ Q(r), t

Vt(r) ≥ 0

with the boundary condition that Vτ+1(·) = 0. Both the dynamic program (1) and linear program
DP are computationally intractable, but the linear program DP turns out to be useful in devel-
oping value function approximation methods. In the following sections, we describe methods to
approximate the value function.
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2.4 Choice-based deterministic linear program

The choice-based deterministic linear program proposed in Gallego et al. [5] and Liu and van Ryzin
[12] is given by

V CDLP = max
h

∑
t

∑
S

R(S)hS,t

s.t

(CDLP )
∑
t

∑
S

⎡⎣∑
j∈Ji

Pj(S)

⎤⎦hS,t ≤ r1i ∀i (3)

∑
S

hS,t = 1 ∀t (4)

hS,t ≥ 0 ∀t, S,

where

R(S) =
∑
j

Pj(S)fj (5)

is the expected revenue associated with offer set S. In the above linear program, we interpret the
decision variable hS,t as the frequency with which set S is offered at time period t. The objective
function measures the total expected revenues, while the first set of constraints ensure that the total
expected capacity consumed on each resource does not exceed its available capacity. The second set
of constraints ensures that the total frequencies add up to 1.

Liu and van Ryzin [12] show that the optimal objective function value of the CDLP gives an
upper bound on the optimal expected revenue. That is, V1(r

1) ≤ V CDLP . Since CDLP has an
exponential number of decision variables it has to be solved using column generation. The column
generation procedure is intractable in general, NP-complete for MNL with just two segments (Bront
et al. [4] and Rusmevichientong et al. [16]). We use this method as our benchmark method for
numerical comparisons in §5.

2.5 Affine Approximation

The affine approximation replaces the value function Vt(r) by the affine function θt +
∑

i Vi,tri in
the linear program DP to obtain the following linear program

V AF = min
θ,V

θ1 +
∑
i

Vi,1r
1
i

s.t

(AF ) θt +
∑
i

Vi,tri ≥
∑
j

Pj(S)

⎡⎣fj − ∑
i∈Ij

Vi,t+1

⎤⎦+ θt+1 +
∑
i

Vi,t+1ri

∀r ∈ R, S ⊂ Q(r), t

θt, Vi,t ≥ 0.

Zhang and Adelman [25] show that the optimal objective function value of AF gives an upper bound
on the optimal expected revenue and this bound is tighter than the CDLP upper bound. While the
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number of decision variables in AF is manageable, the number of constraints is exponential both in
the number of resources as well as the products. Vossen and Zhang [23] show that AF has a reduced
formulation where the number of constraints is exponential only in the number of products. Still,
the problem has to be solved by constraint generation and the separation problem is intractable
even for the MNL choice model with a single segment (Kunnumkal and Talluri [10]).

2.6 Piecewise-linear approximation

The main object of study in this paper is the piecewise-linear approximation which approximates
the value function Vt(r) by

∑
i vi,t(ri) in DP . The resulting linear program is

V PL = min
v

∑
i

vi,1(r
1
i )

s.t

(PL)
∑
i

vi,t(ri) ≥
∑
j

Pj(S)

⎡⎣fj + ∑
i∈Ij

(vi,t+1(ri − 1)− vi,t+1(ri))

⎤⎦+
∑
i

vi,t+1(ri) (6)

∀r ∈ R, S ⊂ Q(r), t

vi,τ+1(·) = 0.

Since the piecewise-linear approximation uses a more refined approximation architecture than the
affine approximation, it is natural to expect that it obtains a tighter upper bound on the value
function. Meissner and Strauss [14] show V DP ≤ V PL ≤ V AF ≤ V CDLP .

Lemma 1 below shows that an optimal solution to PL satisfies certain monotonicity properties.
If we interpret vi,t(ri) as the value of having ri units of resource i at time period t, then vi,t(ri) −
vi,t(ri − 1) can be interpreted as the marginal value of the rith unit of the resource at time period
t. Part (i) of the lemma shows that the marginal value of capacity is decreasing in t keeping ri
constant; part (ii) of the lemma shows that the marginal value of capacity is decreasing in ri for a
fixed t; parts (iii) and (iv) show that the value of capacity is increasing in ri and decreasing in t.

Lemma 1. There exists an optimal solution v̂ = {v̂i,t(ri) | ∀t, i, ri ∈ Ri} to PL such that
(i) v̂i,t(ri)− v̂i,t(ri − 1) ≥ v̂i,t+1(ri)− v̂i,t+1(ri − 1) for all t, i and ri ∈ Ri\{0}.
(ii) v̂i,t(ri)− v̂i,t(ri − 1) ≥ v̂i,t(ri + 1)− v̂i,t(ri) for all t, i and ri ∈ Ri\

{
0, r1i

}
.

(iii) v̂i,t(ri) ≥ v̂i,t(ri − 1) for all t, i and ri ∈ Ri\{0}.
(iv) v̂i,t(ri) ≥ v̂i,t+1(ri) for all t, i and ri ∈ Ri.

Proof. Appendix.

The monotonicity properties described in Lemma 1 are intuitive and satisfied as well by the
single resource RM problem and the network RM problem with independent demands (Talluri and
van Ryzin [21] and Kunnumkal and Talluri [9]). So it is reassuring that the monotonicity properties
continue to hold for an approximation to the choice network RM. Also, by Lemma 1, we can add the
constraints described in parts (i)-(iv) of the lemma without affecting the optimal objective function
value of PL. This can potentially speed up its solution time (Zhang and Adelman [25]). The
monotonicity properties turn out to be useful in showing the equivalence between the piecewise-
linear approximation and a Lagrangian relaxation of the choice network RM problem, as we shall
see shortly. Finally, Lemma 1 is helpful in showing that the CDLP bound is no more than twice
the PL upper bound. We note that this is not an asymptotic-type relation, and does not require
any demand or capacity scaling. Moreover, it holds for a general discrete-choice model.
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Proposition 1. V CDLP ≤ 2V PL.

Proof. By associating dual variables γ = {γi | ∀i} and β = {βt | ∀t} with constraints (3) and (4) in
CDLP , respectively, we write the dual of CDLP as

V CDLP = min
β,γ

∑
t

βt +
∑
i

γir
1
i

s.t

(dCDLP )
∑
t

βt ≥ R(S)−
∑
i

�i(S)γi ∀i (7)

γi ≥ 0 ∀i,

where �i(S) =
∑
j∈Ji

Pj(S).

Let v̂ = {v̂i,t(ri) | ∀t, i, ri ∈ Ri} denote an optimal solution to PL, and consider β̂t =
∑
i[v̂i,t(r

1
i )−

v̂i,t+1(r
1
i )] and γ̂i = v̂i,1(r

1
i ) − v̂i,1(r

1
i − 1) (≥ 0 by Lemma 1, part (i)). We assume that r1i > 0 for

all i so that Q(r1) = J . We have

β̂t =
∑
i

[v̂i,t(r
1
i )− v̂i,t+1(r

1
i )]

≥ R(S)−
∑
i

�i(S)[v̂i,t+1(r
1
i )− v̂i,t+1(r

1
i − 1)]

≥ R(S)−
∑
i

�i(S)[v̂i,1(r
1
i )− v̂i,1(r

1
i − 1)]

= R(S)−
∑
i

�i(S)γ̂i

where the first inequality uses the fact that v̂ satisfies constraint (6) and the last inequality follows
from part (i) of Lemma 1, which implies that v̂i,1(r

1
i )− v̂i,1(r

1
i − 1) ≥ v̂i,t+1(r

1
i )− v̂i,t+1(r

1
i − 1).

Therefore, (β̂, γ̂) is feasible to dCDLP and V CDLP ≤ ∑
t β̂t+

∑
i γ̂ir

1
i =

∑
i v̂i,1(r

1
i )+

∑
i r

1
i [v̂i,1(r

1
i )−

v̂i,1(r
1
i − 1)]. On the other hand, part (ii) of Lemma 1 implies that v̂i,t(·) is concave. As a result

v̂i,1(r
1
i − 1) ≥ 1

r1i
v̂i,1(0) +

r1i − 1

r1i
v̂i,1(r

1
i ) ≥ v̂i,1(r

1
i )−

1

r1i
v̂i,1(r

1
i ),

where the last inequality holds since v̂i,t(0) ≥ 0 (Lemma 1, part (iv)). Therefore, v̂i,1(r
1
i ) ≥

r1i [v̂i,1(r
1
i )− v̂i,1(r

1
i − 1)], which implies that V CDLP ≤ 2

∑
i v̂i,1(r

1
i ) = 2V PL.

3 Piecewise-linear and the Lagrangian relaxation

The number of constraints in PL is exponential in the number of resources as well as the number
of products. So, it faces the same tractability issues as the affine approximation. In this section,
we consider the Lagrangian relaxation approach to approximate dynamic programming as a more
tractable alternative. We first show that a Lagrangian relaxation approach using product and time-
specific Lagrange multipliers is weaker than the piecewise-linear approximation. We then consider
a Lagrangian relaxation approach that uses Lagrange multipliers for every time period and offer set
and show that it obtains the same upper bound as the piecewise-linear approximation.

8



3.1 Lagrangian relaxation using product-specific multipliers

For the network RM problem with independent demands, it is known that the piecewise-linear ap-
proximation is equivalent to a Lagrangian relaxation approach that decomposes the network prob-
lem into a number of single resource problems by allocating the revenue of each product across
the resources that it uses (Kunnumkal and Talluri [9]). A natural extension of that Lagrangian
relaxation approach to choice network RM is to use product and time-specific Lagrange multipliers
λ = {λi,j,t |

∑
i∈Ij

λi,j,t = fj , ∀t, j} to decompose the network problem into a number of single re-
source problems. We interpret λi,j,t as the portion of fare of product j that is allocated to resource
i ∈ Ij , and the constraint

∑
i∈Ij

λi,j,t = fj ensures that the Lagrange multipliers correspond to a
valid fare allocation. Letting

Qi(ri) =
{
j |�[j∈Ji] ≤ ri

}
,

we solve the optimality equation

νλi,t(ri) = max
S⊂Qi(ri)

∑
j∈Ji

Pj(S)
[
λi,j,t + νλi,t+1(ri − 1)− νλi,t+1(ri)

]
+ νλi,t+1(ri) (8)

for resource i. It is possible to show that
∑

i ν
λ
i,t(ri) is an upper bound on Vt(r) (Kunnumkal and

Topaloglu [11]). So, we can find the tightest upper bound on the optimal expected revenue by solving

V LRp = min{
λ | ∑i∈Ij

λi,j,t=fj , ∀j,t
}
∑
i

νλi,1(r
1
i ).

In contrast to the independent demands setting, as the following example illustrates, we can have
V PL < V LRp.

Example 1: Consider a network revenue management problem with two products, two resources and
a single time period in the booking horizon. The first product uses only the first resource, while the
second product uses only the second resource, and we have a single unit of capacity on each resource.
Note that in the airline context, this example corresponds to a parallel flights network. The revenues
associated with the products are f1 = 10 and f2 = 1. The choice probabilities are given in Table
1. In the Lagrangian relaxation, since we have Lagrange multipliers only for j ∈ Ji, we have only
two multipliers λ1,1,1 and λ2,2,1. Moreover, the constraint

∑
i∈Ij

λi,j,t = fj implies that λ1,1,1 = f1
and λ2,2,1 = f2. Noting that there is only a single time period in the booking horizon and that
Qi(1) = J for i = 1, 2,

νλ1,1(1) = max
S⊂J

{P1(S)f1} = 5

and
νλ2,1(1) = max

S⊂J
{P2(S)f2} = 10/11

so that V LRp = 65/11.

On the other hand, the linear program associated with the piecewise-linear approximation is

V PL = min
v

v1,1(1) + v2,1(1)

s.t

v1,1(1) + v2,1(1) ≥ max{P1({1, 2})f1 + P2({1, 2})f2, P1({1})f1, P2({2})f2, 0}
v1,1(1) + v2,1(0) ≥ max{P1({1})f1, 0}
v1,1(0) + v2,1(1) ≥ max{P2({2})f2, 0}
v1,1(0) + v2,1(0) ≥ 0.
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S P1(S) P2(S)
{1} 1/2 0
{2} 0 10/11
{1, 2} 1/12 10/12

Table 1: Choice probabilities

Note that the first, second, third and fourth constraints correspond to the states vectors [1, 1], [1, 0], [0, 1]
and [0, 0], respectively. It is easy to verify that an optimal solution to PL is v1,1(1) = 5, v1,1(0) =
10/11, v2,1(1) = 0, v2,1(0) = 0 and we have V PL = 5 < V LRp.

3.2 Lagrangian relaxation using offer set-specific multipliers

Next, we consider a Lagrangian relaxation approach with an expanded set of multipliers. We intro-
duce some notation first.

For a resource i and offer set S, we let IS = {i | ∃j ∈ S with j ∈ Ji}. Therefore, IS consists of
the resources used by the products in S. We follow the convention that the empty set does not
use any resource. We also let Ci = {S | i ∈ IS} and note that i ∈ IS if and only if S ∈ Ci. Let
λi,S,t be the portion of the revenue associated with offer set S allocated to resource i ∈ IS and
λφ,S,t = R(S)−∑

i∈IS
λi,S,t denote the difference between the revenue associated with the offer set

and the allocations across the resources. Fixing the multipliers λ = {λφ,S,t, λi,S,t | ∀t, S, i ∈ IS} we
solve the optimality equation

ϑλi,t(ri) = max
S⊂Qi(ri)

⎧⎨⎩�[S∈Ci]λi,S,t +
∑
j∈Ji

Pj(S)
[
ϑλi,t+1(ri − 1)− ϑλi,t+1(ri)

]
+ ϑλi,t+1(ri)

⎫⎬⎭ (9)

for resource i, with the boundary condition that ϑλi,τ+1(·) = 0.

Define recursively

ϑλφ,t = max
S⊂J

{λφ,S,t}+ ϑλφ,t+1, (10)

with the boundary condition that ϑλφ,τ+1 = 0. Also define

Λ =

{
λ |λφ,S,t +

∑
i∈IS

λi,S,t = R(S), ∀S ⊂ J , t
}

(11)

and note that Λ is a convex set. Letting V λt (r) =
∑

i ϑ
λ
i,t(ri) + ϑλφ,t, Lemma 2 below shows that

the Lagrangian relaxation obtains an upper bound on the optimal expected revenue provided the
multipliers lie in the set Λ, and that this bound is potentially weaker than the piecewise-linear
bound.

Lemma 2.
V DP ≤ V PL ≤ V λ1 (r1) for λ ∈ Λ.

Proof. Appendix.

10



We find the tightest upper bound on the optimal expected revenue by solving

V LRo = min
λ∈Λ

V λ1
(
r1
)
.

The following proposition gives the subgradients of ϑλi,t(ri) and ϑ
λ
φ,t (thereby also showing they

are convex functions of λ). It follows that V λt (r) is also a convex function of λ and hence the above
optimization problem can be efficiently solved as a convex program.

We introduce some notation for this purpose. Let Sλi,t(ri) denote an optimal solution to prob-
lem (9) where the arguments emphasize the dependence of the optimal offer set on the Lagrange
multipliers and the remaining capacity on the resource. We define Sλφ,t in a similar manner for (10).

Also, for a given λ let Xλ
i,k denote the random variable which represents the remaining capacity on

resource i at time period k when we offer sets that maximize the right hand side of (9) at each time
period. We have the following result.

Proposition 2. Let λ and λ̂ be two sets of Lagrange multipliers. Then,

1. ϑλi,t(ri) ≥ ϑλ̂i,t (ri) +
∑τ
k=t

∑
S �[S∈Ci] Pr{Sλi,t(Xλ

i,k) = S |Xλ
i,t = ri}

[
λ̂i,S,k − λi,S,k

]
.

2. ϑλφ,t ≥ ϑλ̂φ,t +
∑τ

k=t

∑
S �[Sλ

φ,k
=S][λ̂φ,S,k − λφ,S,k].

Proof. Appendix.

We note that besides showing that V λ1 (r) is a convex function of λ, Proposition 2 also gives an
explicit expression for its subgradient. This allows us to use subgradient search to find the optimal
set of Lagrange multipliers (Bertsekas [2]). We show in the following section, that by doing this, we
in fact obtain the piecewise-linear bound.

4 Solving piecewise-linear approximation by Lagrangian re-
laxation

In this section we show that the upper bounds obtained by the piecewise-linear relaxation and the
Lagrangian relaxation using offer-set specific multipliers coincide. Hence we can solve the latter
instead of the former. The Lagrangian relaxation approach certain advantages: given a set of
Lagrange multipliers, the problem decomposes into a number of single resource dynamic programs,
which are relatively more tractable compared to the network DP. Furthermore, we can find the
optimal set of Lagrange multipliers by subgradient search.

11



The Lagrangian bound can alternatively be obtained by solving the linear program

V LRo = min
λ,v

∑
i

vi,1(r
1
i ) + vφ,1

s.t.

(LRo) vi,t(ri) ≥ �[S∈Ci]λi,S,t +
∑
j∈Ji

Pj(S) [vi,t+1(ri − 1)− vi,t+1(ri)]

+vi,t+1(ri) ∀t, i, ri ∈ Ri, S ⊂ Qi(ri)

vφ,t ≥ λφ,S,t + vφ,t+1 ∀t, S∑
i∈IS

λi,S,t + λφ,S,t = R(S) ∀t, S

vi,τ+1(·) = 0, vφ,τ+1 = 0.

Note that while the linear program LRo resembles PL, the number of constraints is reduced from a
factor of

∏
i r

1
i to

∑
i r

1
i .

While computing V LRo using the subgradient search algorithm is typically more efficient than
solving the linear programLRo, the linear programming formulation LRo is helpful when we compare
the Lagrangian bound V LRo with the piecewise-linear approximation bound V PL.

Now we state the main result of the paper that makes the connection between LRo and PL.

Proposition 3.
V PL = V LRo.

The proof of this proposition is quite intricate so we first give a simpler (and non-rigorous)
explanation using only calculus in §4.1. In the subsequent §4.2 we follow up with the rigorous proof.

4.1 An intuitive explanation for tractability of the piecewise-linear relax-
ation

In this section we give a simple calculus-based explanation for the equivalence of the Lagrangian re-
laxation and the piecewise-linear approximation. Besides providing intuition, it also gives a heuristic
method for initializing the Lagrange multipliers, that turns out to be useful from a computational
standpoint.

Since PL has an exponential number of constraints, we have to solve it by generating constraints
on the fly. The separation problem for PL is, for each period t, given values of {vi,t(ri) | ∀t, i, ri ∈ Ri},
to check if

Φt(v) = max
r∈R,S⊂Q(r)

∑
j∈S

Pj(S)

⎡⎣fj + ∑
i∈Ij

[vi,t+1(ri − 1)− vi,t+1(ri)]

⎤⎦ +
∑
i

[vi,t+1(ri)− vi,t(ri)] (12)

is greater than or equal to zero. If yes, constraint (6) is satisfied at time period t for all r and
S ⊂ Q(r). Otherwise, we find a violated constraint and add it to the linear program. Recall that
R(S) =

∑
j Pj(S)fj is the expected revenue from offering set S. Letting �i(S) =

∑
j∈Ji

Pj(S),
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ψi,t+1(ri) = vi,t+1(ri) − vi,t+1(ri − 1) and Δi,t(ri) = vi,t+1(ri) − vi,t(ri), Φt(v) can be equivalently
written as

Φt(v) = max
r∈R,S⊂Q(r)

R(S)−
∑
i

ψi(ri)�i(S) +
∑
i

Δi,t(ri).

Note that �i(S) is the expected capacity consumed on resource i when set S is offered, while ψi,t+1(ri)
is the marginal value of capacity at time period t+ 1. The key part of the proof relies on showing
that Φt(v) is equivalent to the optimization problem

Πt(v) = min
λ∈Λ

{∑
i

Πi,t(v, λ) + Πφ,t(v, λ)

}
.

where Πi,t(v, λ) = maxri∈Ri,S⊂Qi(ri){�[S∈Ci]λi,S,t − ψi,t+1(ri)�i(S) + Δi,t(ri)} and Πφ,t(v, λ) =
maxS⊂J {λφ,S,t}. That is, Φt(v) can be decomposed into a number of single resource problems
by allocating the revenues associated with each offer set across the resources using the Lagrange
multipliers {λi,S,t, λφ,S,t | ∀i ∈ IS , S}. Once we establish this result, the rest of the proof proceeds
by noting the correspondence between Πt(v) and the constraints in LRo.

Here we give a heuristic argument to provide intuition behind the result. Using binary variables
{hS | ∀S}, Φt(v) can be written as

Φt(v) = max
r

max
h

∑
S

[
R(S)−

∑
i

ψi,t+1(ri)�i(S)

]
hS +

∑
i

Δi,t(ri)

s.t �[S∈Ci]hS ≤ ri, ∀i (13)∑
S

hS = 1

hS ∈ {0, 1}.

Now, for a fixed integer r the inner maximization problem (over the hS variables) is an integer linear
programming problem. However, note that as the constraint set has a totally unimodular structure
(if we write the second set of constraints as −∑

S hS = −1, each column has exactly one +1 and one
−1). Therefore, for any integer r we can ignore the integrality requirements on hS without affecting
the optimal objective function value. For any fixed integer integer r, let σ∗

t denote the optimal dual
variable associated with the constraint

∑
S hS = 1 (σ∗

t are hence functions of r, but we suppress the
dependence for brevity) and we can write the problem as

Φt(v) = max
r∈R

∑
S

[
R(S)−

∑
i

ψi,t+1(ri)�i(S)− σ∗
t

]+

+
∑
i

Δi,t(ri) + σ∗
t

where [x]+ = max{x, 0} and we use the facts that ψi,t+1(0) = ∞, and hS = 1 ifR(S)−∑i ψi(ri)�i(S)−
σ∗
t > 0 and hS = 0 otherwise.

Moreover, from our argument on total modularity, the dual variable σ∗
t is such that exactly

one set S has R(S) −∑
i ψi(ri)�i(S) − σ∗

t > 0 and this is a necessary and sufficient condition for
optimality for the inner maximization problem of (13).

By Lemma 1 ψi,t+1(·) is non-increasing. Assuming (this is non-rigorous) it to be strictly decreas-
ing and hence an invertible function of ri, we can optimize over ψdi := ψi,t+1(ri) instead of ri, where
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the superscript indicates that ψdi takes on discrete values since ri is integer. We can write Φt(v)
equivalently as

Φt(v) = max
{ψd |ψd

i ≥ψi,t+1(r1i ), ∀i}

∑
S

[
R(S)−

∑
i

ψdi �i(S)− σ∗
t

]+

+
∑
i

Δi,t(ψ
d
i ) + σ∗

t .

Note that σ∗
t are now functions of ψdi via the inverse map.

We interpolate ψdi with a continuous piecewise-linear function ψi and obtain a relaxation of Φt(v)
in the following manner. Letting Δ̄i,t(·) and σ̄∗

t denote linear interpolations of Δi,t(·) and σ∗
t , we

write a relaxed problem as

Φ̄t(v) = max
{ψ |ψi≥ψi,t+1(r1i ), ∀i}

∑
S

[
R(S)−

∑
i

ψi�i(S)− σ̄∗
t

]+
+
∑
i

Δ̄i,t(ψi) + σ̄∗
t

=
∑
S

[
R(S)−

∑
i

ψ∗
i �i(S)− σ̄∗

t

]+

+
∑
i

Δ̄i,t(ψ
∗
i ) + σ̄∗

t ,

where ψ∗ = {ψ∗
i | ∀i} is an optimal solution to the above maximization problem. Φ̄t(v) is a relaxation

since we optimize over a continuous space instead of a discrete grid.

Now assume that ψ∗ is an interior optimal solution (again non-rigorous), so that it satisfies the
first order set of conditions

−
∑
S∈Ci

�[R(S)−∑
i ψ

∗
i 	i(S)−σ̄∗

t>0]�i(S) + Δ̄
′
i,t(ψ

∗
i ) = 0 ∀i ∈ I (14)

where Δ̄
′
i,t(·) represents the first derivative of Δ̄i,t(·), we use the fact that �i(S) = 0 for S /∈ Ci, and

we invoke the envelope theorem to treat the optimal multipliers σ̄∗
t as constants,.

Next, we look at Πt(v). Introducing variables {hi,S | ∀S} we can write Πi,t(v, λ) equivalently as

Πi,t(v, λ) = maxri,hi

∑
S∈Ci

[�[S∈Ci]λi,S,t − ψi,t+1(ri)�i(S)]hi,S +Δi,t(ri)

s.t �[S∈Ci]hi,S ≤ ri∑
S hi,S = 1

ri ∈ Ri, hi,S ∈ {0, 1}.
Relaxing the constraint

∑
S hi,S = 1, we get

Π̄i,t(v, λ) = maxri,hi

∑
S∈Ci

[�[S∈Ci]λi,S,t − ψi,t+1(ri)�i(S)]hi,S +Δi,t(ri)

s.t �[S∈Ci]hi,S ≤ ri

ri ∈ Ri, hi,S ∈ {0, 1},
and Πi,t(v, λ) ≤ Π̄i,t(v, λ). Similarly, introducing variables {hφ,S | ∀S} we can write Πφ,t(v, λ) as

Πφ,t(v, λ) = maxhφ

∑
S λφ,S,thφ,S

s.t
∑

S hφ,S = 1

hφ,S ∈ {0, 1}.
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Relaxing the constraint
∑

S hφ,S = 1 by associating σ̄∗
t as the corresponding multiplier, we get

Π̄φ,t(v, λ) = maxhφ,S∈{0,1}
∑
S [λφ,S,t − σ̄∗

t ]hφ,S + σ̄∗
t , and Πφ,t(v, λ) ≤ Π̄φ,t(v, λ). Letting

Π̄t(v) = minλ∈Λ

{∑
i Π̄i,t(v, λ) + Π̄φ,t(v, λ)

}
,

we have Πt(v) ≤ Π̄t(v). Applying the same heuristic arguments as before to Π̄i,t(v, λ), we have

Π̄i,t(v, λ) = max
{ψi |ψi≥ψi,t+1(r1i )}

∑
S∈Ci

[
�[S∈Ci]λi,S,t − ψi�i(S)

]+
+ Δ̄i,t(ψi), (15)

and an interior optimal solution satisfies the first order condition

−
∑
S∈Ci

�[λi,S,t−ψi	i(S)>0]�i(S) + Δ̄
′
i,t(ψi) = 0. (16)

Now, consider the Lagrange multipliers λ̂ =
{
λ̂i,S,t | ∀S, i ∈ IS

}
with

λ̂i,S,t =
ψ∗
i �i(S)[R(S)− σ̄∗

t ]∑
l∈IS

ψ∗
l �l(S)

, i ∈ IS and λ̂φ,S,t = σ∗
t , ∀S. (17)

Note that λ̂i,S,t − ψ∗
i �i(S) = ψ∗

i �i(S)
R(S)−∑

l∈IS
ψ∗

l 	l(S)−σ̄∗
t∑

l∈IS
ψ∗

l 	l(S)
. Therefore, ∀i

�[λ̂i,S,t−ψ∗
i 	i(S)>0] = �[

R(S)−∑
l∈IS

ψ∗
l 	l(S)−σ̄∗

t>0
].

Consequently ψ∗
i satisfies the first order optimality condition (16) of the inner maximization problem

of the relaxed Lagrangian problem. Moreover as S is the unique set with �[λ̂i,S,t−ψ∗
i 	i(S)>0], we

achieve optimality.

So we have

Π̄i,t(v, λ̂) =
∑
S

[
�[S∈Ci]λ̂i,S,t − ψ∗

i �i(S)
]+

+ Δ̄i,t(ψ
∗
i ).

From this we can conclude

Π̄t(v) ≤
∑
i

Π̄i,t(v, λ̂) + Π̄φ,t(v, λ̂)

=
∑
i

∑
S

[�[S∈Ci]λ̂i,S,t − ψ∗
i �i(S)]

+ +
∑
i

Δ̄i,t(ψ
∗
i ) + σ̄∗

t

=
∑
S

∑
i∈IS

ψ∗
i �i(S)

[R(S)−∑
l∈IS

ψ∗
l �l(S)− σ̄∗

t ]
+∑

l∈IS
ψ∗
l �l(S)

+
∑
i

Δ̄i,t(ψ
∗
i ) + σ̄∗

t

=
∑
S

[R(S)−
∑
l∈IS

ψ∗
l �l(S)− σ̄∗

t ]
+ +

∑
i

Δ̄i,t(ψ
∗
i ) + σ̄∗

t

= Φ̄t(v)

where the inequality follows since λ̂ is feasible to Π̄t(v). Putting everything together, Φt(v) ≤
Πt(v) ≤ Π̄t(v) ≤ Φ̄t(v), where the first inequality holds since Πt(v) is a relaxation of Φt(v)
(Lemma 2).

At first glance, it is a bit surprising that we are able to show a strong duality result (Φt(v) =
Φ̄t(v)) for an optimization problem on integers. Next, we outline the reason for this.
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Figure 1: Shape of the relaxed (continuous) Lagrangian value function for a fixed λ for piecewise-
linear functions ψ(r) and Δ(r) with integer breakpoints. The function need not be convex or concave,
but is piecewise-linear and convex between integer breakpoints. The maximizer therefore happens
at an integer r and can be found by a simple search over r as it is a one-dimensional function.

The Lagrangian relaxation has a rather peculiar property: it so turns out that all local maxima
of the Lagrangian occur at integers! To see this, consider (15) for a fixed λ and the shape of the
function between two adjacent integer points: the first term in the objective is a convex function
of ri (via ψi which decreases as ri increases as ψ(r) is a decreasing function; hence the slope of
the first term increases with increasing ri) while the second term is a linear function (Δ̄i,t(·) being
a piece-wise linear function with breakpoints at adjacent integer values of ri). Consequently, the
objective function is convex between adjacent breakpoints of the piecewise-linear functions and the
maximum value must occur at an integer; see Figure 1.

So the implication of the form seen in Figure 1 is that all the optima happen only at integer
points so it gives us Φt(v) = Φ̄t(v), which implies that Φt(v) = Πt(v).

The simple calculus-based reasoning provides some intuition behind Proposition 3. Moreover,
equation (17) also gives us a way of initializing the Lagrange multipliers. This turns out to be useful
in our computational study. We emphasize that the arguments in this section constitute heuristic
reasoning; in the next section we give a rigorous combinatorial proof of Proposition 3.

4.2 Proof of Proposition 3

We give a formal proof of Proposition 3. Lemma 2 implies that V PL ≤ minλ∈Λ V
λ
1 (r1) = V LRo. So

it only remains to show the more difficult part: V PL ≥ V LRo. The proof proceeds by considering
the PL separation problem (12), which can be written as

Φt(v) = max
r∈R,S⊂Q(r)

∑
j

Pj(S)

⎡⎣fj − ∑
i∈Ij

ψi,t+1(ri)

⎤⎦+
∑
i

Δi,t(ri),

where we recall that ψi,t+1(ri) = vi,t+1(ri)− vi,t+1(ri − 1) and Δi,t(ri) = vi,t+1(ri)− vi,t(ri). Using
(5) and the facts that Pj(S) = 0 for j /∈ S, and �[S∈Ci] = 1 for j ∈ S and i ∈ Ij , we can write Φt(v)
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as

Φt(v) = max
r∈R,S⊂Q(r)

R(S)−
∑
j∈S

Pj(S)
∑
i∈Ij

�[S∈Ci]ψi,t+1(ri) +
∑
i

Δi,t(ri). (18)

Now consider the following Lagrangian relaxation of Φt(v), where for each time period t, we use
offer set-specific multipliers to allocate the revenue associated with each offer set across the different
resources and solve the optimization problem

Πt(v) = min
λ∈Λ

⎧⎨⎩∑
i

max
ri∈Ri,S⊂Qi(ri)

⎧⎨⎩�[S∈Ci]λi,S,t −
∑
j∈Ji

Pj(S)ψi,t+1(ri) + Δi,t(ri)

⎫⎬⎭+max
S⊂J

{λφ,S,t}
⎫⎬⎭

We show below that Φt(v) = Πt(v) and use this result to show that V PL ≥ V LRo. We begin with
some preliminary results.

Lemma 3. Φt(v) ≤ Πt(v).

Proof. The proof is similar to that of Lemma 2. Let r∗, S∗ be an optimal solution to Φt(v). Since
S∗ ⊂ Q(r∗) ⊂ Qi(r

∗
i ), we have

max
ri∈Ri,S⊂Qi(ri)

⎧⎨⎩�[S∈Ci]λi,S,t −
∑
j∈Ji

Pj(S)ψi,t+1(ri) + Δi,t(ri)

⎫⎬⎭ ≥ �[S∗∈Ci]λi,S∗,t −
∑
j∈Ji

Pj(S
∗)ψi,t+1(r

∗
i )

+Δi,t(r
∗
i ).

Therefore, for any λ ∈ Λ, we have

∑
i

max
ri∈Ri,S⊂Qi(ri)

⎧⎨⎩�[S∈Ci]λi,S,t −
∑
j∈Ji

Pj(S)ψi,t+1(ri) + Δi,t(ri)

⎫⎬⎭+max
S⊂J

{λφ,S,t}

≥
∑
i

⎡⎣�[S∗∈Ci]λi,S∗,t −
∑
j∈Ji

Pj(S
∗)ψi,t+1(r

∗
i ) + Δi,t(r

∗
i )

⎤⎦ + λφ,S∗,t

=
∑
i∈IS∗

λi,S∗,t + λφ,S∗,t −
∑
j

Pj(S
∗)
∑
i∈Ij

ψi,t+1(r
∗
i ) +

∑
i

Δi,t(r
∗
i )

= R(S∗)−
∑
j

Pj(S
∗)
∑
i∈Ij

ψi,t+1(r
∗
i ) +

∑
i

Δi,t(r
∗
i ) = Φt(v).

It follows that Φt(v) ≤ Πt(v).

It remains to show that Φt(v) ≥ Πt(v). The following lemma shows that we can restrict ourselves
to sets in Ci = {S | i ∈ IS} when solving the optimization problem for resource i.

Lemma 4.

max
ri∈Ri,S⊂Qi(ri)

⎧⎨⎩�[S∈Ci]λi,S,t −
∑
j∈Ji

Pj(S)ψi,t+1(ri) + Δi,t(ri)

⎫⎬⎭
= max

⎧⎨⎩Δi,t(0), max
ri∈{1,...,r1i },S∈Ci

{λi,S,t −
∑
j∈Ji

Pj(S)ψi,t+1(ri) + Δi,t(ri)}
⎫⎬⎭ .
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Proof. Note that if S ⊂ Qi(0), then j /∈ i for all j ∈ S and we have S /∈ Ci. Therefore,
maxS⊂Qi(0){�[S∈Ci]λi,S,t−

∑
j∈Ji

Pj(S)ψi,t+1(0)+Δi,t(0)} = Δi,t(0). For ri ∈ {1, . . . , ri,1}, Qi(ri) =
J = Ci ∪ Cci . We have

max
S⊂J

⎧⎨⎩�[S∈Ci]λi,S,t −
∑
j∈Ji

Pj(S)ψi,t+1(ri) + Δi,t(ri)

⎫⎬⎭
= max

⎧⎨⎩max
S∈Ci

⎧⎨⎩λi,S,t − ∑
j∈Ji

Pj(S)ψi,t+1(ri) + Δi,t(ri)

⎫⎬⎭ ,max
S∈Cc

i

{Δi,t(ri)}
⎫⎬⎭

= max

⎧⎨⎩max
S∈Ci

⎧⎨⎩λi,S,t − ∑
j∈Ji

Pj(S)ψi,t+1(ri) + Δi,t(ri)

⎫⎬⎭ ,Δi,t(ri)

⎫⎬⎭ .

Putting everything together

max
ri∈Ri,S⊂Qi(ri)

{�[S∈Ci]λi,S,t −
∑
j∈Ji

Pj(S)ψi,t+1(ri) + Δi,t(ri)}

= max

⎧⎨⎩Δi,t(0), max
ri∈{1,...,r1i }

⎧⎨⎩max
S∈Ci

⎧⎨⎩λi,S,t − ∑
j∈Ji

Pj(S)ψi,t+1(ri) + Δi,t(ri)

⎫⎬⎭ ,Δi,t(ri)

⎫⎬⎭
⎫⎬⎭

= max

⎧⎨⎩Δi,t(0), max
ri∈{1,...,r1i },S∈Ci

⎧⎨⎩λi,S,t − ∑
j∈Ji

Pj(S)ψi,t+1(ri) + Δi,t(ri)

⎫⎬⎭
⎫⎬⎭

where the last equality follows from Δi,t(·) being a decreasing function (part (i) of Lemma 1), which
implies that Δi,t(0) dominates Δi,t(ri).

Lemma 4 implies that we can write Πt(v) as the linear program

Πt(v) = min
λ,w

wφ,t +
∑
i

wi,t

s.t.

(LPΠt(v)) wi,t ≥ Δi,t(0) ∀i (19)

wi,t ≥ λi,S,t −
∑
j∈Ji

Pj(S)ψi,t+1(r) + Δi,t(r) ∀i, r ∈ {1, . . . , r1i }, S ∈ Ci (20)

wφ,t ≥ λφ,S,t ∀S (21)

wφ,t ≥ 0 (22)

λφ,S,t +
∑
i∈IS

λi,S,t = R(S) ∀S. (23)

In the following, we analyze the structure of a particular optimal solution to LPΠt(v) that allows
us to construct a feasible solution to Φt(v), which in turn shows that Φt(v) ≥ Πt(v). We introduce
some notation that will be useful for this purpose. Given a solution (λ,w) to LPΠt(v), let

ξi,S,t(r) = wi,t −
⎡⎣λi,S,t − ∑

j∈Ji

Pj(S)ψi,t+1(r) + Δi,t(r)

⎤⎦
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denote the slack in constraint (20) for resource i, offer set S ∈ Ci and r ∈ {1, . . . , r1i }. Let

Bi,S(λ,w) =
{
r ∈ {1, . . . , r1i } | ξi,S,t(r) = 0

}
denote the set of capacity levels for which constraint (20) is binding for resource i and offer set S.
We use the arguments (λ,w) emphasize the dependence of the set of binding constraints on the given
solution. Observe that if Bi,S(λ,w) is empty, then wi,t > λi,S,t−

∑
j∈Ji

Pj(S)ψi,t+1(r) +Δi,t(r) for
all r ∈ {1, . . . , ri,1}.

From now on, we use a concept of optimal solutions with minimal set of binding constraints.
The linear program (LPΠt(v)) has a finite optimal solution and possibly multiple ones. Naturally,
any optimal solution has a set of binding constraints out of (19)–(23). Given any optimal solution,
we can look for another optimal solution whose set of binding constraints is a strict subset of those
of the previous optimal solution. If there is no such optimal solution, we consider that as having a
minimal set of binding constraints. We have the following lemma.

Lemma 5. Let (λ̂, ŵ) be an optimal solution to LPΠt(v) with a minimal number of binding con-
straints. Fix a set S. Either
(i) Bi,S(λ̂, ŵ) is nonempty for all i ∈ IS and ŵφ,t = λ̂φ,S,t, or

(ii) Bi,S(λ̂, ŵ) is empty for all i ∈ IS and ŵφ,t > λ̂φ,S,t.

Proof. Suppose that the statement of the lemma is false. First consider the case where Bi,S(λ̂, ŵ)

is nonempty but Bl,S(λ̂, ŵ) is empty for i, l ∈ IS . Let ε = minr∈{1,...,r1l }{ξl,S,t(r)} > 0. Let (λ̃, w̃)

be given by λ̃ = λ̂− δei,S,t + δel,S,t and w̃ = ŵ for some δ ∈ (0, ε), where ei,j,k is a vector with a 1

in component (i, j, k) and zeroes everywhere else. Note that (λ̃, w̃) is identical to (λ̂, ŵ) except that

λ̃i,S,t = λ̂i,S,t − δ and λ̃l,S,t = λ̂l,S,t + δ. We show that (λ̃, w̃) is an optimal solution with a strictly
fewer number of binding constraints which gives us a contradiction.

Notice that we only need to check constraint (20) for resources i and l and offer set S as all
other resources and offer sets continue to have the same λ’s and w’s as before. For resource i, since
Bi,S(λ̂, ŵ) is nonempty, there exists r ∈ {1, . . . , r1i } such that ŵi,t = λ̂i,S,t−

∑
j∈Ji

Pj(S)ψi,t+1(r) +
Δi,t(r). We have

w̃i,t = ŵi,t = λ̂i,S,t −
∑
j∈Ji

Pj(S)ψi,t+1(r) + Δi,t(r) > λ̃i,S,t −
∑
j∈Ji

Pj(S)ψi,t+1(r) + Δi,t(r),

which means that the number of binding constraints (20) for resource i and offer set S decreases

by at least one. For resource l and offer set S, w̃l,t − [λ̃l,S,t −
∑

j∈Jl
Pj(S)ψl,t+1(r) + Δl,t(r)] =

ŵl,t − [λ̂l,S,t −
∑

j∈Jl
Pj(S)ψl,t+1(r) + Δl,t(r)] − δ > 0, for all r ∈ {1, . . . , r1l }, where the inequality

follows from the definition of δ. Therefore, all constraints (20) continue to be nonbinding for resource

l and offer set S. Overall, (λ̃, w̃) has strictly fewer binding constraints than (λ̂, ŵ), which gives a
contradiction.

The above arguments imply that either Bi,S(λ̂, ŵ) is nonempty for all i ∈ IS or Bi,S(λ̂, ŵ) is

empty for all i ∈ IS . Suppose the Bi,S(λ̂, ŵ) is nonempty for all i ∈ IS but ŵφ,t > λ̂φ,St. In this

case, pick a resource i ∈ IS and let λ̃ = λ̂ − δei,S,t + δeφ,S,t and w̃ = ŵ, where δ ∈ (0, ε) and

ε = ŵφ,t − λ̂φ,S,t. It can be verified that the number of binding constraints (20) for resource i and

offer set S strictly decreases from (λ̂, ŵ) to (λ̃, w̃), while the number of binding constraints (21)
remains unchanged, leading to a contradiction. This proves part (i) of the lemma.
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On the other hand, if Bi,S(λ̂, ŵ) is empty for all i ∈ IS but ŵφ,t = λ̂φ,S,t. Pick a resource i ∈ IS .
Since Bi,S(λ̂, ŵ) is empty, we have ε = minr∈{1,...,r1i }{ξi,S,t(r)} > 0. Let λ̃ = λ̂ + δei,S,t − δeφ,S,t,
where δ ∈ (0, ε), and w̃ = ŵ. It can be verified that the number of binding constraints (20) for

resource i and offer set S is exactly the same for (λ̂, ŵ) and (λ̃, w̃), while the number of binding

constraints (21) decreases by one (w̃φ,t = ŵφ,t = λ̂φ,S,t > λ̃φ,S,t). As a result, (λ̃, w̃) has strictly fewer

binding constraints than (λ̂, ŵ), which gives a contradiction. This proves part (ii) of the lemma.

In the remainder, we focus on an optimal solution to LPΠt(v) with a minimal number of binding

constraints. Letting (λ̂, ŵ) denote such a solution, we define

Ĉi =
{
S ∈ Ci |Bi,S(λ̂, ŵ) is nonempty

}
,

Ĉφ =
{
S ⊂ J | ŵφ,t = λ̂φ,S,t

}
,

and
Î+ = {i | ŵi,t > Δi,t(0)} ,

where theˆon the sets is to remind the reader of the dependence on (λ̂, ŵ).

Lemma 6. Let (λ̂, ŵ) be an optimal solution to LPΠt(v) with a minimal number of binding con-
straints.

(i) Ĉi is nonempty for all i ∈ Î+.
(ii) If S ∈ Ĉi, then S ∈ Ĉφ (note that by definition the empty set does not consume any resources

and so ∅ /∈ Ĉi).

Proof. For part (i), for i ∈ Î+, ŵi,t > Δi,t(0). Since (λ̂, ŵ) is optimal there exists S ∈ Ci and

r ∈ {
1, . . . , r1i

}
such that ŵi,t = λ̂i,S,t −

∑
j∈S Pj(S)ψi,t+1(r) +Δi,t(r) > Δi,t(0) (otherwise, we can

reduce ŵi,t contradicting optimality). Therefore Bi,S(λ̂, ŵ) is nonempty and so S ∈ Ĉi and Ĉi is
nonempty.

For part (ii), S ∈ Ĉi implies that i ∈ IS . So we have a set S with Bi,S(λ̂, ŵ) nonempty. By

Lemma 5, ŵφ,t = λ̂φ,S,t and so S ∈ Ĉφ.
Lemma 7. Let (λ̂, ŵ) be an optimal solution to LPΠt(v) with a minimal number of binding con-

straints. If Î+ is nonempty, then ∩i∈Î+ Ĉi is nonempty.

Proof. If |Î+| = 1, then the statement holds trivially by part (i) of Lemma 6. Consider the case
|Î+| > 1. If ∩i∈Î+ Ĉi is empty, then this implies the following: Fix a resource i ∈ Î+. Part (i) of

Lemma 6 implies that Ĉi is nonempty. Then for every S ∈ Ĉi there exists l ∈ Î+ such that S /∈ Ĉl.
Note that since l ∈ Î+, ŵl,t > Δl,t(0).

So let i ∈ Î+, Ŝ ∈ Ĉi and l ∈ Î+ with Ŝ /∈ Ĉl. If Ŝ /∈ Ĉl, there are two possibilities. First, Ŝ ∈ Cl
but Bl,Ŝ(λ̂, ŵ) is empty. But since Ŝ ∈ Ĉi, Bi,Ŝ(λ̂, ŵ) is nonempty, which this contradicts part (i) of
Lemma 5.

The other possibility is that Ŝ /∈ Cl. Let

ε = min

{
ŵl,t −Δl,t(0), min

S∈Cl\Ĉl,r∈{1,...,r1l }
{ξl,S,t(r)}

}
> 0
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where we define the minimum over an empty set to be infinity (the second term could be empty).

Let δ ∈ (0, ε) and (λ̃, w̃) be given by λ̃ = λ̂−δ∑S∈Ĉl
el,S,t+δ

∑
S∈Ĉl

eφ,S,t and w̃ = ŵ−δel,t+δeφ,t.
Therefore, we have λ̃l,S,t = λ̂l,S,t − δ, λ̃φ,S,t = λ̂φ,S,t + δ for all S ∈ Ĉl. Similarly, w̃l,t = ŵl,t − δ and
w̃φ,t = ŵφ,t + δ. All other terms remain the same.

We check that (λ̃, w̃) is feasible and look at the set of binding constraints associated with this
solution. We look at the constraints in LPΠt(v) one by one and compare the the number of binding

constraints in (λ̂, ŵ) with the number in (λ̃, w̃).

Constraints (22) and (23): Since w̃φ,t > ŵφ,t, constraint (22) continues to hold for (λ̃, w̃) and the

number of binding constraints do not increase. By construction (λ̃, w̃) satisfies constraint (23).

Constraints (19): Note that we need to check constraints (19) and (20) only for resource l. For
resource l, we have w̃l,t = ŵl,t − δ > Δl,t(0) and so constraint (19) continues to be nonbinding.

Constraints (20): For S ∈ Cl\Ĉl and r ∈ {1, . . . , r1l }, we have w̃l,t = ŵl,t − δ > ŵl,t − ξl,S,t(r) =

λ̂l,S,t −
∑

j∈Ji
Pj(S)ψl,t+1(r) +Δl,t(r) = λ̃l,S,t −

∑
j∈Ji

Pj(S)ψl,t+1(r) +Δl,t(r). Note that the last

equality holds by definition of λ̃. So constraint (20) remains nonbinding.

For S ∈ Ĉl and r ∈ {1, . . . , r1l }\Bl,S(λ̂, ŵ), w̃l,t = ŵl,t − δ > λ̂l,S,t −
∑

j∈Ji
Pj(S)ψl,t+1(r) +

Δl,t(r) − δ = λ̃l,S,t −
∑

j∈Ji
Pj(S)ψl,t+1(r) + Δl,t(r). Therefore, constraint (20) continues to be

nonbinding. For S ∈ Ĉl and r ∈ Bl,S(λ̂, ŵ), w̃l,t = ŵl,t−δ = λ̂l,t−δ−
∑
j∈Ji

Pj(S)ψl,t+1(r)+Δl,t(r) =

λ̃l,t −
∑

j∈Ji
Pj(S)ψl,t+1(r) + Δl,t(r). So constraints (20) are binding for all such S and r. Note

that these constraints, by definition, were also binding in (λ̂, ŵ). So, (λ̃, w̃) satisfies constraints (19)

and (20) for resource l and the number of binding constraints is exactly the same as in (λ̂, ŵ).

Constraint (21): For S ∈ Ĉl, by definition Bl,S(λ̂, ŵ) is nonempty. Part (i) of Lemma 5 implies that

ŵφ,t = λ̂φ,S,t, which means that constraint (21) is binding. We have w̃φ,t = ŵφ,t + δ = λ̂φ,St + δ =

λ̃φ,S,t and so constraint (21) holds and continues to be binding. For S /∈ Ĉl, λ̃l,S,t = λ̂l,S,t. Therefore,

w̃φ,t = ŵφ,t + δ ≥ λ̃l,S,t. So constraint (21) holds and the number of binding constraints do not
increase.

Now we argue that the number of binding constraints (21) strictly decreases from (λ̂, ŵ) to (λ̃, w̃).

For the set Ŝ, since Ŝ ∈ Ĉi, Bi,Ŝ(λ̂, ŵ) is nonempty. By, part (i) of Lemma 5, ŵφ,t = λ̂φ,Ŝ,t and

so the constraint is binding in (λ̂, ŵ). But w̃φ,t = ŵφ,t + δ > λ̂φ,Ŝ,t = λ̃φ,Ŝ,t and the constraint is

nonbinding in (λ̃, w̃). Overall, (λ̃, w̃) has strictly fewer number of binding constraints (21) and they

are a subset of the set of binding constraints of (λ̂, ŵ) contradicting minimality.

Since ŵφ,t +
∑

i ŵi,t = w̃φ,t +
∑
i w̃i,t, (λ̃, w̃) is optimal and this gives a contradiction.

We are now ready to show that Φt(v) ≥ Πt(v).

Proposition 4. Φt(v) ≥ Πt(v).

Proof. Let (λ̂, ŵ) be an optimal solution to LPΠt(v) with a minimal number of binding constraints.
We consider two cases.

Case 1: Suppose that Ĉi is empty for all i. This means that for all S ∈ Ci, Bi,S(λ̂, ŵ) is empty.
It follows that ŵi,t = Δi,t(0) for all i (otherwise we can reduce ŵi,t contradicting optimality).
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Part (ii) of Lemma 5 implies that ŵφ,t > λ̂φ,S,t for all S. It follows that ŵφ,t = 0. Therefore,
Πt(v) =

∑
iΔi,t(0). Note that r = 0 and S = ∅ is feasible for Φt(v) and the objective function value

associated with this solution is
∑
iΔi,t(0). Therefore Φt(v) ≥

∑
iΔi,t(0) = Πt(v).

Case 2: Suppose that Ĉi is nonempty for some i. We consider two subcases.
Case 2.a. Î+ is empty. We choose a resource l such that Ĉl is nonempty and choose Ŝ ∈ Ĉl such
that Bl,Ŝ(λ̂, ŵ) is nonempty. By part (i) of Lemma 5, Bi,Ŝ(λ̂, ŵ) is nonempty for all i ∈ IŜ and

ŵφ,t = λ̂φ,Ŝ,t. So, for all i ∈ IŜ , we have ŵi,t = λ̂i,Ŝ,t −
∑

j∈Ji
Pj(Ŝ)ψi,t+1(r̂i) + Δi,t(r̂i), where

r̂i ∈ Bi,Ŝ(λ̂, ŵ). Note that r̂i ≥ 1 for all i ∈ IŜ . On the other hand, since Î+ is empty. we have

ŵi,t = Δi,t(0) for all i. In particular, ŵi,t = Δi,t(0) for all i /∈ IS . Putting everything together,

Πt(v) = ŵφ,t +
∑
i∈IŜ

ŵi,t +
∑
i/∈IŜ

ŵi,t

= λ̂φ,Ŝ,t +
∑
i∈IŜ

⎡⎣λ̂i,Ŝ,t − ∑
j∈Ji

Pj(Ŝ)ψi,t+1(r̂i) + Δi,t(r̂i)

⎤⎦+
∑
i/∈IŜ

Δi,t(0)

= R(Ŝ)−
∑
j∈S

∑
i∈Ij

�[Ŝ∈Ci]Pj(Ŝ)ψi,t+1(r̂i) +
∑
i∈IŜ

Δi,t(r̂i) +
∑
i/∈IŜ

Δi,t(0)

≤ Φt(v)

where the last equality follows since (λ̂, ŵ) satisfies constraint (23) and∑
i∈IS

∑
j∈Ji

Pj(S)ψi,t+1(ri) =
∑
i

∑
j∈Ji

�[i∈IS]Pj(S)ψi,t+1(ri) =
∑
j

∑
i∈Ij

�[i∈IS]Pj(S)ψi,t+1(ri)

=
∑
j∈S

∑
i∈Ij

�[S∈Ci]Pj(S)ψi,t+1(ri).

The inequality follows from (18) by noting that Ŝ and r, where ri = r̂i for i ∈ IŜ and ri = 0

otherwise, is feasible to Φt(v). To see this, observe that for all j ∈ Ŝ, if �[i∈Ij ] = 1, then i ∈ IŜ and

so ri = r̂i ≥ 1. Therefore, for all j ∈ Ŝ, �[i∈Ij ] ≤ ri for all i and so Ŝ ⊂ Q(r).

Case 2.b. Î+ is nonempty. Let Ŝ = ∩i∈Î+ Ĉi, which by Lemma 7 is nonempty. Note that Ŝ ∈ Ĉi ⊂ Ci
for all i ∈ Î+. Now every i ∈ Î+ satisfies ŵi,t > Δi,t(0). Therefore if i /∈ IŜ then ŵi,t = Δi,t(0).

Since Ŝ ∈ Ĉl for some l, BlŜ(λ̂, ŵ) is nonempty. Part (i) of Lemma 5 implies that Bi,Ŝ(λ̂, ŵ) is

nonempty for all i ∈ IŜ and that ŵφ,t = λ̂φ,Ŝ,t. Since Bi,Ŝ(λ̂, ŵ) is nonempty for i ∈ IŜ , there exists
r̂i ∈

{
1, . . . , r1i

}
such that ŵi,t = λ̂i,Ŝ,t −

∑
j∈Ji

Pj(Ŝ)ψi,t+1(r̂i) + Δi,t(r̂i) (r̂i need not be unique,

we can pick any r ∈ Bi,Ŝ(λ̂, ŵ)). We have

Πt(v) = λ̂φ,Ŝ,t +
∑
i∈IŜ

⎡⎣λ̂i,Ŝ,t − ∑
j∈Ji

Pj(Ŝ)ψi,t+1(r̂i) + Δi,t(r̂i)

⎤⎦+
∑
i/∈IŜ

Δi,t(0)

= R(Ŝ)−
∑
j∈Ŝ

Pj(Ŝ)
∑
i∈Ij

�[Ŝ∈Ci]ψi,t+1(r̂i) +
∑
i∈IŜ

Δi,t(r̂i) +
∑
i/∈IŜ

Δi,t(0)

≤ Φt(v)

where the inequality follows from (18) by noting that Ŝ and r is feasible to Φt(v) where ri = r̂i ≥ 1
for i ∈ IŜ and ri = 0 otherwise.
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Lemma 3 and Proposition 4 together imply that Φt(v) = Πt(v). We are now ready to show that
V PL ≥ V LRo. Note that we can write PL as V PL = minv

∑
i vi,1(r

1
i ) subject to 0 ≥ Φt(v) for all t

with the boundary condition that vi,τ+1(·) = 0. Letting V = minv
∑

i vi,1(r
1
i )+

∑
tΦt(v) subject to

0 ≥ Φt(v) for all t with the same boundary condition, it follows that V PL ≥ V . Using the fact that
Φt(v) = Πt(v) together with the linear programming formulation LPΠt(v), of Πt(v), we can write V
as

V = min
v

∑
i

vi,1(r
1
i ) +

∑
t

(
wφ,t +

∑
i

wi,t

)
s.t

wi,t + vi,t(ri) ≥ max
S⊂Qi(ri)

⎧⎨⎩�[S∈Ci]λi,S,t +
∑
j∈Ji

Pj(S) [vi,t+1(ri − 1)− vi,t+1(ri)] + vi,t+1(ri)

⎫⎬⎭
∀t, ri ∈ Ri

wφ,t ≥ max
S⊂J

{λφ,S,t} ∀t
wφ,t ≥ 0

λφ,S,t +
∑
i∈IS

λi,S,t = R(S) ∀t, S ⊂ J

vi,τ+1(·) = 0.

With the change of variables ϑi,t(ri) = vi,t(ri) +
∑τ
s=t wi,s and ϑφ,t =

∑τ
s=t wφ,s, we can write the

above linear program as

V = min
ϑ

∑
i

ϑi,1(r
1
i ) + ϑφ1

s.t

ϑi,t(ri) ≥ max
S⊂Qi(ri)

⎧⎨⎩�[S∈Ci]λi,S,t +
∑
j∈Ji

Pj(S)[ϑi,t+1(ri − 1)− ϑi,t+1(ri)] + ϑi,t+1(ri)

⎫⎬⎭
∀t, ri ∈ Ri

ϑφ,t ≥ max
S⊂J

{λφ,S,t}+ ϑφ,t+1 ∀t

λφ,S,t +
∑
i∈IS

λi,S,t = R(S) ∀t, S ⊂ J

ϑi,τ+1(·) = 0.

which is exactly LRo. Therefore, V PL ≥ V LRo

We conclude this section with a comment on the number and form of the Lagrange multipliers.
Requiring

∑
i∈IS

λi,S,t = R(S) can be overly restrictive and we do not necessarily have V PL = V LRo

if we impose this constraint on the Lagrange multipliers. We give an example below which illustrates
this. Therefore, the Lagrange multipliers have to be chosen carefully in order to make the Lagrangian
relaxation equivalent to the piecewise linear approximation.

Example 2: Consider a network revenue management problem with two products, two resources and
a single time period in the booking horizon. The first product uses only the first resource, while the
second product uses only the second resource, and we have a single unit of capacity on each resource.
Note that in the airline context, this example corresponds to a parallel flights network. The revenues
associated with the products are f1 = 99 and f2 = 101. The choice probabilities are given in Table
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S P1(S) P2(S)
{1} 50/99 0
{2} 0 51/101
{1, 2} 1/2 1/2

Table 2: Choice probabilities

2. Letting S1 = {1}, S2 = {2} and S3 = {1, 2}, we have R(S1) = 50, R(S2) = 51 and R(S3) = 100,
IS1 = {1}, IS2 = {2} and IS3 = {1, 2}. If we impose the constraint

∑
i∈IS

λi,S,t = R(S) on the
Lagrange multipliers, then we have λ1,S1,1 = 50, λ2,S2,1 = 51 and λ1,S3,1 + λ2,S3,1 = 100. We have
ϑλ1,1(1) = max{50, λ1,S3,1} and ϑλ2,1(1) = max{51, λ2,S3,1}. It can be verified that

min
λ |λ1,S1,1=50,λ2,S2,1=51,λ1,S3,1+λ2,S3,1=100

ϑλ1,1(1) + ϑλ2,1(1) = 101 > 100 = V PL.

5 Computational experiments

In this section, we compare the upper bounds obtained by the Lagrangian relaxation using offer-set
specific multipliers with the upper bounds obtained by other benchmark solution methods. Our test
problems are drawn from Meissner and Strauss [14]. In all of the test problems, we have multiple
customer segments and within each segment, choice is governed by the MNL model.

We begin by describing the MNL choice model with multiple customer segments and explain
how we modify our Lagrangian-based approach for the case of multiple customer segments. We then
describe the different benchmark solution methods and the experimental setup.

5.1 MNL choice model with multiple customer segments

We consider the case where the total demand is comprised of demand from multiple customer
segments with each customer segment being interested only in a small subset of the products. There
are g = 1, . . . , G customer segments, each with distinct purchase behavior. In each period, we have
exactly one customer arrival and an arriving customer belongs to segment g with probability αg.
Since the total arrival rate is 1, we have

∑
g α

g = 1. Customer segment g has a consideration set
J g ⊂ J of products that it considers for purchase. A segment g customer is indifferent to a product
outside its consideration set, in the sense that the customer’s choice probabilities are not affected by
products offered outside its consideration set. We assume that the consideration sets of the different
customer segments are known to the firm by a previous process of estimation and analysis. As we
mentioned in the Introduction, we also assume that the consideration sets of the different segments
are small enough for its power set to be enumerable.

Within each segment choice is according to the MNL model. The MNL model associates a
preference weight ωgj with product j that is in the consideration set of segment g. Similarly it
associates a preference weight ωg0 with a segment g arrival not purchasing anything. The probability
that a segment g arrival purchases product j when S is the offer set is (Ben-Akiva and Lerman [1])

P gj (S) =
ωgj

ωg0 +
∑

k∈S∩J g ω
g
k

,
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while the probability it purchases none of the offered products is

P g0 (S) =
ωg0

ωg0 +
∑

k∈S∩J g ω
g
k

.

Note that since the customer is indifferent to products outside its consideration set, we have P gj (S) =
P gj (S ∩J g) = P gj (S

g), where Sg = S ∩J g. Letting Rg(S) = Rg(Sg) =
∑

j∈Sg fjP
g
j (S

g) denote the
expected revenue from offering set S given a segment g arrival, we have R(S) =

∑
g α

gRg(Sg).

5.2 Modification of piecewise-linear approximation for multiple segments

We modify the Lagrangian relaxation approach for the case with multiple customer segments by
associating multipliers with every subset Sg of each segment’s consideration set J g. Letting λ =
{λgφ,Sg,t, λ

g
φ,Sg ,t | ∀t, g, Sg ⊂ J g, i ∈ ISg} denote the set of Lagrange multipliers, we solve the opti-

mality equation

ϑλi,t(ri) =
∑
g

αg max
{Sg⊂Qi(ri) |Sg⊂J g}

⎧⎨⎩�[Sg∈Ci]λ
g
i,Sg ,t +

∑
j∈Ji

P gj (S
g)
[
ϑλi,t+1(ri − 1)− ϑλi,t+1(ri)

]⎫⎬⎭
+ϑλi,t+1(ri), (24)

for resource i, with the boundary condition that ϑλi,τ+1(·) = 0. We solve the optimality equation

ϑλφ,t =
∑
g

αg max
Sg⊂J g

{λgφ,Sg,t}+ ϑλφ,t+1 (25)

for “resource” φ with the boundary condition that ϑλφ,τ+1 = 0. We refer to this modification as the
segment-based Lagrangian relaxation (sLRo). Many of the results from §3 carry over to the segment-
based Lagrangian relaxation. In particular, Vt(r) =

∑
i ϑ

λ
i,t(ri) + ϑλφ,t gives us an upper bound on

the value function for every set of Lagrange multipliers that satisfy λgφ,Sg ,t+
∑

i∈ISg
λgi,Sg ,t = Rg(Sg)

for all t, g and Sg ⊂ J g. We find the tightest upper bound by solving

V sLRo = min{
λ |λg

φ,Sg,t
+
∑

i∈ISg
λi,Sg,t=Rg(Sg), ∀Sg ,g,t

}V λ1 (r1). (26)

V λt (r) is a convex function of λ and an expression for its subgradient can be derived in a manner
analogous to Proposition 2; we omit the details. Therefore, we can solve the above minimization
problem using subgradient search. However, unlike in Proposition 3, it is not the case that sLRo
is equivalent to PL and we can have V PL < V sLRo. Although sLRo can be weaker than PL,
an advantage of the segment-based approach is computational tractability. Note that solving PL
through LRo requires O(2|J |) Lagrange multipliers which quickly gets intractable. On the other
hand, sLRo requires O(

∑
g 2

|J g |) Lagrange multipliers, a much more manageable number provided
the consideration sets for each segment are small. Moreover, in our computational experiments, we
find that sLRo tends to generate upper bounds that are quite close to the PL upper bounds.

5.3 Benchmark methods

Choice Deterministic Linear Program (CDLP) This is the solution method described in Section 2.4.
Since customer choice is according to the MNL model, we use the sales based formulation of CDLP
described in Gallego, Ratliff, and Shebalov [6] and solve it as a compact linear program.
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Affine Approximation (AF) This is the solution method described in Section 2.5. We use the
reduced formulation described in Vossen and Zhang [23] to solve AF . For the MNL choice model,
the separation problem of AF can be solved as a linear mixed integer program (Zhang and Adelman
[25]).

Piecewise-linear Approximation (PL) This is the solution method described in Section 2.6. Meissner
and Strauss [14] refer to PL as the time-and-inventory-sensitive approach with complete disaggre-
gation (TISA− C).

Time and Inventory Sensitive Approach with Aggregation (TISA-K) This solution method is pro-
posed by Meissner and Strauss [14] as a more tractable alternative to PL. TISA − K essentially
divides the capacity of each resource into K ranges and assumes that the marginal value of capacity
remains the same in each range. The number of ranges K is an input to the solution method. If
K = 1, then the marginal value of capacity remains the same across all capacity levels and the
method reduces to the affine approximation. On the other hand, if the number of ranges is the same
as the number of units of capacity, we have a different marginal value for each unit of capacity and
the method becomes PL.

Segment-based Lagrangian Relaxation (sLRo) This is the solution method described in Section 5.2,
where we associate Lagrange multipliers with each subset of a customer segment’s consideration set.
In our computational experiments, we use subgradient search to solve problem (26). We use a step
size of 5000/

√
k at iteration k of the subgradient algorithm. We run the subgradient search algorithm

for a maximum of 3000 iterations. If the norm of the subgradient at any iteration is less than 0.1,
we terminate the algorithm. Although, our step size selection does not guarantee convergence, it
provided good solutions and stable performance in our test problems.

5.4 Hub-and-Spoke Network A

We have a network with a single hub serving two spokes. There is one flight from each spoke to
the hub and one flight from the hub to each spoke, so that there are four flights in total. Note
that the flight legs correspond to the resources in our network RM formulation. There are six
origin-destination pairs in total (two spoke-to-hub, two hub-to-spoke and two spoke-to-spoke pairs).
There are two fare products associated with each origin-destination pair, of which one is a low-fare
product and the other is a high-fare product. We assoicate a customer segment with each origin-
destination pair and each customer segment is only interested in the fare products connecting the
origin-destination pair that it is associated with. As mentioned, within each segment, customer
choice is governed by the MNL model. Meissner and Strauss [14] contains more details on the
network.

We measure the tightness of the leg capacities using the nominal load factor. Letting

Sg∗ ∈ argmax Sg⊂J gRg(Sg) (27)

be the offer set that maximizes expected revenues from segment g when there is ample capacity on
all the flight legs, the nominal load factor is

ζ =

∑
t

∑
i

[∑
g α

g[
∑

j∈Ji
P gj (S

g∗)]
]

∑
i r

1
i

.

The number of time periods in our test problems is κτ̂ , while the initial resource capacities are given
by κr̂1, where τ̂ = 20 and r̂1 = [2, 4, 4, 2] and κ represents the factor by which we scale τ̂ and r̂1 to
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obtain different test problems. We label the test problems by the pair (ζ, κ) where ζ ∈ {1.0, 1.2, 1.6}
and κ ∈ {1, 2, 4}, which gives us a total of nine test problems.

Table 3 compares the upper bounds obtained by the different solution methods. The first
column in the table describes the problem characteristics by using (ζ, κ). The second to fifth
columns, respectively, give the upper bounds obtained by CDLP,AF, PL, T ISA − K and sLRo.
The last four columns, respectively, give the percentage gap between the upper bounds obtained by
CDLP,AF, PL and TISA−K with respect to sLRo. We use the compact formulation of CDLP
and solve it to optimality. On the other hand, the reduced formulation of AF has an exponential
number of constraints. We solve AF using constraint generation and stop when we are within 1% of
optimality. We use the upper bounds reported in Meissner and Strauss [14] for PL and TISA−K.
As mentioned, PL corresponds to TISA − C in Meissner and Strauss [14]. Meissner and Strauss
[14] use a value of K = 2 for TISA − K. That is, the capacity of each resource is split into two
equal ranges and the marginal value of capacity is assumed to be the same across each range. We
note that Meissner and Strauss [14] use column generation of solve PL and TISA − K and stop
when the solution is within 1% of optimality.

sLRo obtains significantly tighter upper bounds that CDLP and AF . The average gap between
the upper bounds obtained by CDLP and sLRo is around 12%, while that between AF and sLRo
is around 7%. The sLRo upper bounds are on average around 3% tighter than the TISA − K
upper bounds. We observe one instance where the sLRo bound is weaker than the TISA − K
bound. However since the gap is less than the 1% optimality stopping criterion for TISA−K, it is
not immediately possible to conclude whether this gap is meaningful. Compared to PL, the sLRo
bounds are slightly weaker. The average gap between the PL and sLRo bounds is around -0.7%.

Problem Upper Bound % Gap with sLRo
(ζ, κ) CDLP AF PL TISA−K sLRo CDLP AF PL TISA−K
(1.0, 1) 925 851 766 775 772 19.73 10.12 -0.83 0.34
(1.0, 2) 1,850 1,803 1,661 1,788 1,669 10.80 8.01 -0.50 7.10
(1.0, 4) 3,699 3,654 3,488 3,653 3,502 5.64 4.35 -0.39 4.32
(1.2, 1) 1,077 961 864 877 872 23.53 10.20 -0.89 0.60
(1.2, 2) 2,154 2,051 1,878 2,026 1,889 14.03 8.58 -0.58 7.26
(1.2, 4) 4,308 4,220 3,953 4,214 3,976 8.35 6.15 -0.57 5.99
(1.6, 1) 1,200 1,086 997 1,008 1,010 18.89 7.60 -1.24 -0.15
(1.6, 2) 2,400 2,322 2,153 2,299 2,173 10.49 6.88 -0.90 5.82
(1.6, 4) 4,801 4,745 4,529 4,738 4,558 5.32 4.09 -0.64 3.95

Table 3: Comparison of the upper bounds on the optimal expected total revenue for the first hub-
and-spoke network.

5.5 Hub-and-Spoke Network B

We have a network with a single hub serving two spokes (from Meissner and Strauss [14] again).
Now, there are two flights from the first hub to the spoke and two flights from the hub to the second
spoke, so that there are four flights in total. There are four fare products connecting the first spoke
to the hub, four connecting the hub to the second spoke and eight fare products connecting the first
spoke to the second one. Half of the fare products are high-fare products while the remaining are
low-fare products. We have a customer segment associated with each origin-destination pair and
each customer segment is only interested in the fare products connecting the origin-destination pair
that it is associated with. We label our test problems using (ζ, κ) ∈ {1.0, 1.2, 1.6}× {1, 2, 4} so that
we have a total of nine test problems.
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Table 4 compares the upper bounds obtained by the different solution methods. The columns
have the same interpretation as before. sLRo continues to obtain significantly tighter upper bounds
than CDLP . The average gap between the CDLP and sLRo upper bounds is around 2%. The
gaps with AF , TISA−K and PL are smaller compared to the previous set of hub-and-spoke test
problems. The average gap between the upper bounds obtained by AF and sLRo is around 0.6%,
while that between TISA−K and sLRo is around 0.2%. The gaps tend to increase with the load
factor ζ. The sLRo bound is again slightly weaker than the PL bound and the average gap between
the two is around -0.6%.

Problem Upper Bound % Gap with sLRo
(ζ, κ) CDLP AF PL TISA−K sLRo CDLP AF PL TISA−K
(1.0, 1) 1,293 1,254 1,235 1,243 1,244 3.95 0.77 -0.75 -0.10
(1.0, 2) 2,587 2,554 2,523 2,548 2,541 1.80 0.50 -0.71 0.27
(1.0, 4) 5,174 5,146 5,109 5,140 5,137 0.71 0.17 -0.55 0.05
(1.2, 1) 1,495 1,450 1,430 1,440 1,440 3.81 0.69 -0.69 0.00
(1.2, 2) 2,990 2,945 2,917 2,939 2,934 1.90 0.37 -0.58 0.17
(1.2, 4) 5,980 5,935 5,897 5,930 5,926 0.90 0.15 -0.49 0.07
(1.6, 1) 1,816 1,751 1,715 1,736 1,728 5.12 1.31 -0.75 0.46
(1.6, 2) 3,633 3,587 3,537 3,573 3,558 2.10 0.82 -0.59 0.42
(1.6, 4) 7,266 7,226 7,170 7,220 7,208 0.80 0.25 -0.52 0.17

Table 4: Comparison of the upper bounds on the optimal expected total revenue for the second
hub-and-spoke network.

Problem Upper Bound % Gap with sLRo
(β, (ωH

0 , ωL
0 )) CDLP AF TISA−K sLRo CDLP AF TISA−K

(0.6, (1,5)) 36,187 35,811 35,775 35,677 1.43 0.38 0.27
(0.6, (5, 10)) 33,158 32,745 32,728 32,483 2.08 0.81 0.75
(0.6, (10, 20)) 29,960 29,556 29,531 29,316 2.20 0.82 0.73
(0.8, (1,5)) 43,202 42,780 42,862 42,688 1.21 0.22 0.41
(0.8, (5, 10)) 38,900 38,530 38,551 38,469 1.12 0.16 0.21
(0.8, (10, 20)) 34,678 34,431 34,403 33,848 2.45 1.72 1.64
(1.0, (1,5)) 48,822 48,440 48,496 48,531 0.60 -0.19 -0.07
(1.0, (5, 10)) 43,767 43,446 43,417 43,262 1.17 0.42 0.36
(1.0, (10, 20)) 35,103 35,103 35,101 34,939 0.47 0.47 0.46
(1.2, (1,5)) 53,564 53,241 53,238 53,388 0.33 -0.27 -0.28
(1.2, (5, 10)) 44,690 44,690 44,637 44,454 0.53 0.53 0.41
(1.2, (10, 20)) 35,103 35,103 35,102 35,101 0.01 0.01 0.00
(1.4, (1,5)) 55,257 55,161 55,084 54,770 0.89 0.71 0.57
(1.4, (5, 10)) 44,690 44,690 44,640 44,690 0.00 0.00 -0.11
(1.4, (10, 20)) 35,103 35,103 35,102 35,103 0.00 0.00 0.00

Table 5: Comparison of the upper bounds on the optimal expected total revenue for the small airline
network.

5.6 Small Airline Network

We consider an airline network consisting of seven flights that connect three spokes with a hub.
There are 22 fare products, of which half are high-fare products whereas the remaining are low-fare
products. Each origin-destination pair is associated with two customer segments. The first segment
is interested only in the high-fare products connecting the origin-destination pair, while the second
segment is interested only in the low-fare products connecting the same origin-destination pair. All
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problem parameters are the same as in Meissner and Strauss [14]. Let ωH0 and ωL0 denote the no-
purchase preference weights associated with the customer segments interested in the high-fare and
low-fare products, respectively. We vary the no-purchase preference weights and scale the flight leg
capacities by a parameter β to obtain different test problems. We label our test problems by the
tuple (β, (ωH0 , ω

L
0 )) ∈ {0.6, 0.8.1.0, 1.2, 1.4}×{(1, 4), (5, 10), (10, 20)}. This gives us a total of 15 test

problems.

Table 5 compares the upper bounds obtained by the different solution methods. We do not include
the PL upper bounds as they are not reported in Meissner and Strauss [14]. As for TISA−K, the
level of aggregationK depends on the flight leg and varies from 1 to 4; we refer the reader to Meissner
and Strauss [14] for details. sLRo provides a small but consistent improvement over CDLP , AF
and TISA−K. On average it obtains upper bounds that are 0.9% tighter than CDLP and around
0.4% tighter than AF and TISA−K. We observe test problems where the improvements over the
CDLP , AF and TISA−K upper bounds can be as high as 2.45%, 1.72% and 1.64%, respectively.
The improvements in the upper bounds tend to be larger when the flight leg capacities are somewhat
scarce. If there is ample capacity, as in the case where β = 1.4, all solution methods tend to perform
roughly the same.

Since we solve sLRo using subgradient search, it becomes important to have a good starting
solution. To this end, we consider the following four ways of initializing the Lagrange multipliers.
First, we consider the initialization where λgφ,Sg ,t = Rg(Sg) and λgi,Sg ,t = 0 for all i ∈ ISg and Sg.
That is, we allocate all the revenue associated with an offer set to the resource φ and allocations on
the remaining resources are set to zero. We refer to this initialization as IN-1. Next, we consider
the initialization where λgφ,Sg,t = 0 and λgi,Sg ,t = Rg(Sg)/|ISg |. That is, we allocate the revenue
associated with an offer set equally among all the resources i ∈ ISg and allocate nothing to resource
φ. We refer to this initialization as IN-2. Third, we consider the allocationλgφ,Sg,t = λgi,Sg ,t =
Rg(Sg)/(1+ |ISg |), where we allocate the revenue equally across all the resources including resource
φ. We refer to this initialization as IN-3. Finally, we consider an initial solution that builds on the
heuristic arguments in §4.1. We initialize the Lagrange multipliers according to equation (17), where
we approximate ψ∗ by the optimal dual values corresponding to constraints (3) in CDLP and σ∗

t

by the optimal dual value corresponding to constraint (4) for time period t in CDLP . We refer to
this initialization as IN-4.

Figure 2 shows how the upper bounds obtained by the four initializations compare with upper
bound obtained by the optimal Lagrange multipliers on the different test problems. We observe
that although no initialization uniformly dominates the others, IN-1 and IN-4 typically tend to
work well. If capacity is scarce, the initialization based on the CDLP dual solution, IN-4, tends
to work well. As the overall capacity increases, IN-1, which allocates all of the revenue to the
resource φ, tends to be better. In some cases, IN-1 essentially gives us the optimal solution. We
provide some intuition for this. Suppose there is so much capacity that the capacity constraint is
never binding. In this case, the solution to the network revenue management dynamic program DP
is V DP = τ

∑
g α

gRg(Sg∗), where Sg∗ is given by (27). Now consider initialization the Lagrange

multipliers according to IN-1. Since λgi,Sg ,t = 0, we have ϑλi,t(·) = 0 for all i and t. On the other

hand, we have ϑλφ,t =
∑

g α
gmaxSg⊂J g{λgφ,Sg,t} + ϑλφ,t+1 =

∑
g α

gmaxSg⊂J g{Rg(Sg)} + ϑλφ,t+1 =∑
g α

gRg(Sg∗) + ϑλφ,t+1. Consequently, we have V λ1 (r1) = τ
∑

g α
gRg(Sg∗) = V DP and it follows

that IN-1 gives the optimal set of Lagrange multipliers. In our computational experiments, we
compare the upper bounds obtained by the four initializations and choose the initialization which
gives the tightest upper bound as the starting solution for the subgradient search algorithm.

Table 6 gives the CPU seconds required by CDLP , AF and sLRo to solve the different test
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Figure 2: Comparison of the upper bounds obtained by the different initializations of the Lagrange
multipliers.

Problem CPU secs.
(β, (ωH

0 , ωL
0 )) CDLP AF sLRo

(0.6, (1,5)) 0.1 15 122
(0.6, (5, 10)) 0.1 17 129
(0.6, (10, 20)) 0.1 8 137
(0.8, (1,5)) 0.1 10 164
(0.8, (5, 10)) 0.1 7 170
(0.8, (10, 20)) 0.1 3 178
(1.0, (1,5)) 0.1 7 204
(1.0, (5, 10)) 0.1 4 210
(1.0, (10, 20)) 0.1 1 224
(1.2, (1,5)) 0.1 4 241
(1.2, (5, 10)) 0.1 1 251
(1.2, (10, 20)) 0.0 1 1
(1.4, (1,5)) 0.1 2 276
(1.4, (5, 10)) 0.1 1 1
(1.4, (10, 20)) 0.1 1 1

Table 6: CPU seconds for CDLP,AF and sLRo for the small airline network test problems.
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problems. We do not include the running times for TISA−K reported in Meissner and Strauss [14]
in Table 6 since the running times depend on the implementation as well as the computer hardware.
All the computational experiments are carried out on a Pentium Core 2 Duo desktop with 3-Ghz
CPU and 4-GB RAM. We use CPLEX 12.1 to solve all the linear programs. CDLP runs in a
fraction of a second, while the running time of AF is in seconds and that of sLRo in minutes. We
observe some instances where sLRo terminates in a second. These correspond to test problems
with relatively large flight leg capacities, where IN-1 essentially gives the optimal set of Lagrange
multipliers. Consequently, the norm of the subgradient turns out to be small and the algorithm
terminates almost immediately. We note that the implementations of CDLP and AF exploit the
functional form of the MNL choice probabilities. On the other hand, sLRo is agnostic to the choice
model and we do not expect the running times to vary significantly for different choice models.

6 Conclusions

In this paper we showed that the piecewise-linear relaxation problem for network revenue manage-
ment under a general discrete-choice model can be solved as a linear program with O(2|J |τ

∑
i r

1
i )

constraints. This is opposed to an original formulation with O(2|J |τ
∏
i r

1
i ) constraints (and whose

separation problem is NP-complete). Moreover, by showing that it can be solved as a Lagrangian
relaxation problem, we are able to use convexity and subgradient search as an alternative to linear
programming. This makes the problem tractable for small consideration sets, with practical impli-
cations, as there are many operational situations that can be modeled as customers considering only
a small set of products. We show by numerical experiments that our ability to solve the piecewise-
linear relaxation provides significant benefits. Finally, our results apply to general discrete-choice
models. It would be interesting to see if improvements in complexity can be obtained by specializing
to specific models such as MNL or nested logit.
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Appendix

Proof of Lemma 1

We introduce some notation to simplify the expressions. Fixing a resource l, we let Rl(rl) = {x ∈
R |xl = rl} be the set of capacity vectors where the capacity on resource l is fixed at rl. Given a
separable piecewise-linear approximation v = {vi,t(ri) | ∀t, i, ri ∈ Ri}, we let

εl,t(rl, v) = min
r∈Rl(rl),S⊂Q(r)

⎧⎨⎩∑
i

vi,t(ri)−
∑
j

Pj(S)

⎡⎣fj + ∑
i∈Ij

[vi,t+1(ri − 1)− vi,t+1(ri)]

⎤⎦
−
∑
i

vi,t+1(ri)

}

where the argument v emphasizes the dependence on the given approximation. Note that if v =
{vi,t(ri) | ∀t, i, ri ∈ Ri} is feasible to (PL), then εi,t(ri, v) ≥ 0 for all t, i and ri ∈ Ri. We begin with
a preliminary result.

Lemma 8. There exists an optimal solution v̂ = {v̂i,t(ri) | ∀t, i, ri ∈ Ri} to (PL) such that for all
t, i and ri ∈ Ri, we have εi,t(ri, v̂) = 0.

Proof. Let v = {vi,t(ri) | ∀t, i, ri ∈ Ri} be an optimal solution to problem (PL). Let s be the largest
time index such that there exists a resource l and rl ∈ Rl with εl,s(rl, v) > 0. Since v is feasible,
this means that εi,t(ri, v) = 0 for all t > s, i and ri ∈ Ri. We consider decreasing vl,s(rl) alone by
εl,s(rl, v) leaving all the other components of v unchanged. That is, let v̂ = {v̂i,t(ri) | ∀t, i, ri ∈ Ri}
where

v̂i,t(x) =

{
vi,t(x) − εl,s(rl, v) if i = l, t = s, x = rl
vi,t(x) otherwise.

(28)

Note that since v̂i,t(ri) ≤ vi,t(ri) for all t, i and ri ∈ Ri, we have
∑
i v̂i,1(ri,1) ≤

∑
i vi,1(ri,1). Next,

we show that v̂ is feasible. Since v̂ differs from v only in one component, we only have to check
those constraints where v̂l,s(rl) appears. Observe that v̂l,s(rl) appears only in the constraints for
time periods s− 1 and s. For time period s− 1, we have

∑
j

Pj(S)

⎡⎣fj + ∑
i∈Ij

v̂i,s(ri − 1)

⎤⎦+
∑
i

⎡⎣1− ∑
j∈Ji

Pj(S)

⎤⎦ v̂i,s(ri)
≤
∑
j

Pj(S)

⎡⎣fj + ∑
i∈Ij

vi,s(ri − 1)

⎤⎦+
∑
i

⎡⎣1− ∑
j∈Ji

Pj(S)

⎤⎦ vi,s(ri)
≤
∑
i

vi,s−1(ri)

=
∑
i

v̂i,s−1(ri)

for all r ∈ R and S ⊂ Q(r), where the first inequality follows since v̂i,s(ri) ≤ vi,s(ri) and∑
j∈Ji

Pj(S) ≤ 1, the second inequality follows from the feasibility of v and the equality follows
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from (28). For time period s, v̂l,s(rl) appears only in constraints corresponding to r ∈ Rl(rl). For
r ∈ Rl(rl), we have∑

i

v̂i,s(ri)

=
∑
i

vi,s(ri)− εl,s(rl, v)

≥
∑
j

Pj(S)

⎡⎣fj + ∑
i∈Ij

vi,s+1(ri − 1)− vi,s+1(ri)

⎤⎦+
∑
i

vi,s+1(ri)

=
∑
j

Pj(S)

⎡⎣fj + ∑
i∈Ij

v̂i,s+1(ri − 1)− v̂i,s+1(ri)

⎤⎦+
∑
i

v̂i,s+1(ri)

for all S ⊂ Q(r), where the inequality follows from the definition of εl,s(rl, v) and the last equality
follows from (28). Therefore v̂ is feasible, which implies that εi,t(ri, v̂) ≥ 0 for all t, i and ri ∈ Ri.
Next, we note from (28) that εi,t(ri, v̂) = 0 for all t > s, i and ri ∈ Ri. For time period s, since
v̂i,s(ri) ≤ vi,s(ri) and v̂i,s+1(ri) = vi,s+1(ri), it follows that εi,s(ri, v̂) ≤ εi,s(ri, v). Therefore, if
εi,s(ri, v) was zero, then εi,s(ri, v̂) is also zero. Moreover, εl,s(rl, v̂) = 0 < εl,s(rl, v).

To summarize, v̂ is an optimal solution with εi,t(ri, v̂) = 0 for all t > s, i and ri ∈ Ri and
| {εi,s(ri, v̂) | εi,s(ri, v̂) > 0} | < | {εi,s(ri, v) | εi,s(ri, v) > 0} | . We repeat the above procedure finitely
many times to obtain an optimal solution v̂ with εi,t(ri, v̂) = 0 for all t ≥ s, i and ri ∈ Ri. Repeating
the entire procedure for time periods s− 1, . . . , 1 completes the proof.

We are ready to prove Lemma 1. By Lemma 8, we can assume without loss of generality that the
optimal solution v̂ = {v̂i,t(ri) | ∀t, i, ri ∈ Ri} satisfies εi,t(ri, v̂) = 0 for all t, i and ri ∈ Ri. The proof
proceeds by induction on the time periods. It is easy to see that statements hold for time period τ .
Assuming that the statements hold for all time periods s > t, we show below that the statements
hold for time period t as well.

Lemma 9. Assume that statements (i)-(iv) of Lemma 1 hold for time periods t > s, then statement
(i) holds for time period t.

Proof. Fix a resource l. For rl > 1, Lemma 8 implies that there exists x ∈ Rl(rl− 1) and S ⊂ Q(x)
such that

v̂l,t(rl − 1) +
∑
i�=l

v̂i,t(xi)

=
∑
j

Pj(S)

⎡⎣fj +∑
i�=l

�[i∈Ij ] [v̂i,t+1(xi − 1)− v̂i,t+1(xi)] + �[l∈Ij ] [v̂l,t+1(rl − 2)− v̂l,t+1(rl − 1)]

⎤⎦
+v̂l,t+1(rl − 1) +

∑
i�=l

v̂i,t+1(xi). (29)

Now consider the capacity vector y with yi = xi for i �= l and yl = rl. Since x ≤ y, Q(x) ⊂ Q(y)
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and it follows that S ⊂ Q(y). Since v̂ is feasible, we have

v̂l,t(rl) +
∑
i�=l

v̂i,t(xi)

≥
∑
j

Pj(S)

⎡⎣fj +∑
i�=l

�[i∈Ij ] [v̂i,t+1(xi − 1)− v̂i,t+1(xi)] + �[l∈Ij ] [v̂l,t+1(rl − 1)− v̂l,t+1(rl)]

⎤⎦
+v̂l,t+1(rl) +

∑
i�=l

v̂i,t+1(xi). (30)

Subtracting (29) from (30), we get

v̂l,t(rl)− v̂l,t(rl − 1)

≥
∑
j

Pj(S)�[l∈Ij] [2v̂l,t+1(rl − 1)− v̂l,t+1(rl)− v̂l,t+1(rl − 2)] + v̂l,t+1(rl)− v̂l,t+1(rl − 1)

≥ v̂l,t+1(rl)− v̂l,t+1(rl − 1)

where the last inequality follows from the induction assumption that 2v̂l,t+1(rl − 1) − v̂l,t+1(rl) −
v̂l,t+1(rl − 2) ≥ 0. The case rl = 1 can be shown to hold in a similar manner. Therefore, part (ii) of
Lemma 1 holds for time period t.

Lemma 10. Assume that statements (i)-(iv) of Lemma 1 hold for time periods t > s, then statement
(ii) holds for time period t.

Proof. For rl ∈ Rl\{0, r1l }, Lemma 8 implies that there exists x ∈ Rl(rl + 1) and S ⊂ Q(x) such
that

v̂l,t(rl + 1) +
∑
i�=l

v̂i,t(xi)

=
∑
j

Pj(S)

⎡⎣fj +∑
i�=l

�[i∈Ij ] [v̂i,t+1(xi − 1)− v̂i,t+1(xi)] + �[l∈Ij ] [v̂l,t+1(rl)− v̂l,t+1(rl + 1)]

⎤⎦
+v̂l,t+1(rl + 1) +

∑
i�=l

v̂i,t+1(xi). (31)

Now consider the capacity vector y with yi = xi for i �= l and yl = rl. Since, rl ≥ 1, Q(y) =
{j |�[j∈Ji] ≤ yi, i �= l;�[j∈Jl] ≤ rl} = {j |�[j∈Ji] ≤ xi, i �= l;�[j∈Jl] ≤ rl + 1} = Q(x). Therefore,
S ⊂ Q(y) and since v̂ is feasible

v̂l,t(rl) +
∑
i�=l

v̂i,t(xi)

≥
∑
j

Pj(S)

⎡⎣fj +∑
i�=l

�[i∈Ij ] [v̂i,t+1(xi − 1)− v̂i,t+1(xi)] + �[l∈Ij ] [v̂l,t+1(rl − 1)− v̂l,t+1(rl)]

⎤⎦
+v̂l,t+1(rl) +

∑
i�=l

v̂i,t+1(xi). (32)
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Subtracting (32) from (31), we get

v̂l,t(rl + 1)− v̂l,t(rl)

≤
∑
j

Pj(S)�[l∈Ij] [2v̂l,t+1(rl)− v̂l,t+1(rl − 1)− v̂l,t+1(rl + 1)] + v̂l,t+1(rl + 1)− v̂l,t+1(rl)

≤ 2v̂l,t+1(rl)− v̂l,t+1(rl − 1)− v̂l,t+1(rl + 1) + v̂l,t+1(rl + 1)− v̂l,t+1(rl)

= v̂l,t+1(rl)− v̂l,t+1(rl − 1)

≤ v̂l,t(rl)− v̂l,t(rl − 1),

where the second inequality follows from the induction assumption that v̂l,t+1(rl)− v̂l,t+1(rl − 1) ≥
v̂l,t+1(rl + 1) − v̂l,t+1(rl) and the fact that

∑
j Pj(S)�[l∈Ij ] ≤ 1. The last inequality follows from

Lemma 9. Therefore, part (iii) of Lemma 1 holds for time period t.

Lemma 11. Assume that statements (i)-(iv) of Lemma 1 hold for time periods t > s, then statement
(iii) holds for time period t.

Proof. By the induction assumption, v̂i,t+1(ri) ≥ v̂i,t+1(ri − 1) for r ∈ Ri\{0}. The result now
follows from Lemma 9.

Lemma 12. Assume that statements (i)-(v) of Lemma 1 hold for time periods t > s, then statement
(iv) holds for time period t.

Proof. We first show that v̂i,t(0) ≥ v̂i,t+1(0). Suppose there exists l with v̂l,t(0) < v̂l,t+1(0). Since v̂
is feasible, it satisfies constraint (6) for the state vector r = 0 and S = ∅. That is

v̂l,t(0) +
∑
i�=l

v̂i,t(0) ≥ v̂l,t+1(0) +
∑
i�=l

v̂i,t+1(0)

where we use Pj(∅) = 0 for all j. This implies there exists k with v̂k,t(0) > v̂k,t+1(0). Letting
δ = min{v̂l,t+1(0)− v̂l,t(0), v̂k,t(0)− v̂k,t+1(0)} > 0 and

v̄i,s(x) =

⎧⎨⎩
v̄i,s(x) + δ if i = l, s = t, x ∈ Rl

v̄i,s(x) − δ if i = k, s = t, x ∈ Rk

v̂i,s(x) otherwise,

it can be verified that v̄ is also an optimal solution to (PL). Moreover, since v̂ satisfies properties (i)-
(iii) for time periods s ≥ t, so does v̄. If v̄l,t(0) < v̄l,t+1(0), then by repeating the above arguments,
there exists a resource k′ with v̄k′,t(0) > v̄k′,t+1(0). Repeating the above procedure finitely many
times, we obtain an optimal solution v̄ with v̄i,t(0) ≥ v̄i,t+1(0) for all i.

Now assume that v̂i,t(ri − 1) ≥ v̂i,t+1(ri − 1). Lemma 9 implies that v̂i,t(ri) ≥ v̂i,t+1(ri).

Proof of Lemma 2

The first inequality follows from [14]. So, we only show the second inequality. For λ ∈ Λ, let
v̄i,t(ri) = ϑλi,t(ri) + ϑλφ,t/m for all t, i and ri ∈ Ri, where m is the total number of resources and
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ϑλi,t(·) and ϑλφ,t are given by (9) and (10), respectively. For r and S ⊂ Q(r)∑
i

v̄i,t(ri) =
∑
i

[
ϑλi,t(ri) + ϑλφ,t/m

]
≥
∑
i

⎡⎣�[S∈Ci]λi,S,t +
∑
j∈Ji

Pj(S)
[
ϑλi,t+1(ri − 1)− ϑλi,t+1(ri)

]
+ ϑλi,t+1(ri) + λφ,S,t/m+ ϑλφ,t+1/m

⎤⎦
= R(S) +

∑
j

∑
i∈Ij

Pj(S)
[
ϑλi,t+1(ri − 1)− ϑλi,t+1(ri)

]
+
∑
i

[
ϑλi,t+1(ri) + ϑλφ,t+1/m

]

=
∑
j

Pj(S)

⎡⎣fj + ∑
i∈Ij

v̄i,t+1(ri − 1)− v̄i,t+1(ri)

⎤⎦+
∑
i

v̄i,t+1(ri)

where the inequality holds since S ⊂ Q(r) ⊂ Qi(ri) for all i, from (9) and (10), and the fact that
λ ∈ Λ. The second equality holds since λ ∈ Λ, and the last equality follows from (5). Therefore,
v̄ is feasible for PL and its objective function value is

∑
i v̄i,1(r

1
i ) =

∑
i ϑ

λ
i,1(r

1
i ) + ϑλφ,1 = V λ1 (r1).

Therefore, V PL ≤ V λ1 (r1).

Proof of Proposition 2

We show the results by induction over the time periods. We begin with the first part of the propo-
sition. It is easy to show the result for the last time period. So we assume that the result holds for
time period t+ 1 and show that it holds for time period t. We have

ϑλ̂i,t(ri) ≥ �[Sλ
i,t(ri)∈Ci]λ̂i,Sλ

i,t(ri),t
+

∑
j∈Ji

Pj(S
λ
i,t(ri))

[
ϑλ̂i,t+1(ri − 1)− ϑλ̂i,t+1(ri)

]
+ ϑλ̂i,t+1(ri)

≥ �[Sλ
i,t(ri)∈Ci]λi,Sλ

i,t(ri),t
+ �[Sλ

i,t(ri)∈Ci]

[
λ̂i,Sλ

i,t(ri),t
− λi,Sλ

i,t(ri),t

]
+
∑
j∈Ji

Pj(S
λ
i,t(ri))

[
ϑλi,t(ri − 1) +

τ∑
k=t+1

∑
S

�[S∈Ci] Pr{Sλi,k(Xi,k) = S |Xi,t+1 = ri − 1}
[
λ̂i,S,k − λi,S,k

]]

+

⎡⎣1− ∑
j∈Ji

Pj(S
λ
i,t(ri))

⎤⎦[ϑλi,t+1(ri) +

τ∑
k=t+1

∑
S

�[S∈Ci] Pr{Sλi,k(Xi,k) = S |Xi,t+1 = ri}
[
λ̂i,S,k − λi,S,k

]]

= ϑλi,t(ri) +

τ∑
k=t

∑
S

�[S∈Ci] Pr{Sλi,k(Xi,k) = S |Xi,t = ri}
[
λ̂i,S,k − λi,S,k

]
,

where the first inequality holds since Sλi,t(ri) is a feasible solution to problem (9) when the Lagrange

multipliers are λ̂. The second inequality holds by the induction assumption, while the last equality
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follows by noting that

Pr
{
Sλi,k(Xi,k) = S |Xi,t = ri

}
=

Pr
{
Sλi,k(Xi,k) = S |Xi,t = ri, Xi,t+1 = ri

}
Pr {Xi,t+1 = ri |Xi,t = ri}

+Pr
{
Sλi,k(Xi,k) = S |Xi,t = ri, Xi,t+1 = ri − 1

}
Pr {Xi,t+1 = ri − 1 |Xi,t = ri}

= Pr
{
Sλi,k(Xi,k) = S |Xi,t+1 = ri

}
Pr {Xi,t+1 = ri |Xi,t = ri}

+Pr
{
Sλi,k(Xi,k) = S |Xi,t+1 = ri − 1

}
Pr {Xi,t+1 = ri − 1 |Xi,t = ri}

= Pr
{
Sλi,k(Xi,k) = S |Xi,t+1 = ri

}⎡⎣1− ∑
j∈Ji

Pj(S
λ
i,t(ri))

⎤⎦
+Pr

{
Sλi,k(Xi,k) = S |Xi,t+1 = ri − 1

} ∑
j∈Ji

Pj(S
λ
i,t(ri)).

This concludes the proof of the first part of the proposition.

The proof of the second part proceeds in a similar fashion. We assume that the result holds for
time period t+ 1 and show that it holds for time period t. We have

ϑλ̂φ,t ≥ λ̂φ,Sλ
φt,t

+ ϑλ̂φ,t+1

≥ λφ,Sλ
φ,t,t

+
[
λ̂φ,Sλ

φ,t,t
− λφ,Sλ

φ,t,t

]
+ ϑλφ,t+1 +

τ∑
k=t+1

∑
S

�[Sλ
φ,t

=S]

[
λ̂φ,S,k − λφ,S,k

]
= ϑλφ,t +

τ∑
k=t

∑
S

�[Sλ
φ,k=S]

[
λ̂φ,S,k − λφ,S,k

]
,

where the first inequality holds because Sλφ,t is feasible but not necessarily optimal for problem

(10) when the Lagrange multipliers are λ̂ and the second inequality follows from the induction
assumption.
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