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Abstract

Scheduling jobs of decentralized decision makers that are in competition will usually
lead to cost inefficiencies. This cost inefficiency is studied using the Price of Anarchy
(PoA), i.e. the ratio between the worst Nash equilibrium cost and the cost attained
at the centralized optimum. First, we provide a tight upperbound for the PoA that
depends on the number of machines involved. Second, we show that it is impossible
to design a scheduled-based coordinating mechanism in which a Nash equilibrium
enforces the centralized or first best optimum. Finally, by simulations we illustrate
that on average the PoA is relatively small with respect to the established tight
upperbound.

keywords: Sequencing situations; outsourcing; first best solution; game theory;
price of anarchy; coordinating mechanism

1 Introduction

Companies that produce advanced products in-house completely are becoming more and
more scarce. Hence, apart from management of their own production facilities, companies
have an increasing need to tightly control outsourced operations. Specialized suppliers
may well be capable of providing high-quality parts that meet all product specifications.
Interfering factors usually include the presence of multiple suitable suppliers, who all pos-
sibly serve other clients as well. One could think of multiple companies that produce cell
phones and outsource the production of an essential chip to chip suppliers. In this paper
we study such outsourcing decisions in a setting with multiple companies and multiple
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suppliers. In doing so, we acknowledge that outsourcing decisions are made locally by
companies and that these companies are wary of long waiting times in the outsourcing
process. We analyze the impact of decentralized decision making on performance vis--
vis the centralized (first-best) solution and on the possibility to mitigate the difference.
We model this situation by a sequencing problem with multiple decision makers, corre-
sponding to the companies, who execute their (outsourcing) jobs on multiple machines,
corresponding to the suppliers.

The importance of this type of problem in industrial and service organizations is
evident and has been the driving force for significant progress in its analysis. Traditionally,
the presence of multiple decision makers is neglected and the focus is on finding schedules
that optimize a common goal. For an overview on sequencing problems with one decision
maker and its applications we refer to Lawler et al. (1993) and Pinedo (2002).

The presence of multiple decision makers is not restricted to a setting with multiple
companies, but appears for example in companies with multiple profit centers as well.
Independently of the setting under consideration, decision makers can aim for coordination
in favor of a common goal or each decision maker can focus on its own performance. Even
though we take the second approach, the first approach has its relevance, for example in
case binding agreements can be made. This cooperative approach has led to an established
line of research that started with Curiel et al. (1989). They introduced one machine
sequencing situations in which each job belongs to a different decision maker that has to
be processed on a single machine. Each job has its own specific processing time and its
costs are linear in completion time. Starting with a prescribed initial order, not necessarily
optimal with respect to the weighted sum cost criterion, optimal orders are established
for each coalition of players, which defines in a natural way the corresponding cooperative
sequencing game. Several core stable allocation rules of the grand coalition are proposed.
This model has been extended in different ways by considering restrictions on jobs such as
ready times (Hamers et al. (1995)), different cost criteria (Curiel et al. (1994)), multiple
machines such as job shop (van den Nouweland et al. (1992), multiple jobs owned by
a player (Fernandez et al. (2008)), and multiple rearrangements (Slikker (2006)). This
line of research is applied in industrial and service management by Cai and Vairaktarakis
(2012) and Aydinliyim and Vairaktarakis (2010) who use this cooperative approach in a
setting where coordination of outsourced operations plays a central role and by Hall and
Liu (2010) in a setting where allocation and scheduling issues are combined in supply
chains.

Coordinated decision making can have important benefits but it does not seem natural
in all instances. For example, if binding agreements are not enforceable (or not allowed by
competition law) or if the implementation of a coordinating policy is labor-intensive and
therefore costly. The role of individual decision makers has, despite its evident importance,
received increased attention in the last decade only.

One stream in this recent non-cooperative literature assumes complete information.
More precisely, it is assumed that there is complete information about all the inputs of
the scheduling problem. In this setting Bukchin and Hanany (2007) study the decentral-
ization costs, i.e. the ratio between the best Nash equilibrium cost (or, equivalently, the
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Nash equilibrium with lowest cost) and the cost attained at the centralized optimum, of
a dispatching-sequencing problem. Each decision maker has a set of jobs that can be
processed either in-house, which is less costly, or can be send to a subcontractor, which is
more costly. They provide bounds for the decentralization costs for an arbitrary number
of jobs and decision makers. Moreover, they introduce a scheduling-based coordinating
mechanism such that the centralized optimum is obtained in a Nash equilibrium. Bukchin
and Hanany (2011) consider a decentralized job shop scheduling system. Analyzing the
bounds of the decentralization costs they propose a mechanism to reduce these costs.
Vairaktarakis (2013) investigates scheduling situations in which a part of the workload
can be subcontracted to a so-called third party. He develops pure Nash equilibria sched-
ules for different production protocols. The Price of Anarchy (PoA) is the ratio between
the worst Nash equilibrium cost (or, equivalently, the Nash equilibrium with highest cost)
and the cost attained at the centralized optimum, and has been studied in parallel to
the decentralized costs (dealing with the best Nash equilibrium). Koutsoupias and Pa-
padimitriou (1999) introduce the PoA and show that the PoA is at most 3

2
if there are

two identical machines and the objective criterion is the makespan. Immorlica et al.
(2009) consider general multiple machine scheduling situations with objective criterion
the makespan. They provide mechanisms that minimize the PoA. Bounds for the PoA
in scheduling situations with objective criterion the weighted completion time criterion
are provided in Correa and Queyranne (2012) and Cole et al. (2013). For sequencing
situations with the minsum objective, i.e. the sum of completion times, bounds for the
PoA are provided in Hoeksma and Uetz (2012).

Another stream in the non-cooperative literature assumes there is incomplete infor-
mation. In such a setting, decision makers have private information about the processing
times of their jobs. An important goal in this literature is the design of mechanisms that
induce the revelation of private information. Given the complete information focus of the
current paper we only refer to Hain and Mitra (2004) who introduce a Vickrey-Clarke-
Groves mechanism that enforces the decision makers to tell their true processing time and
results in the centralized optimum, and to Heydenreich et al. (2006) who studies an online
machine scheduling problem. Surveys that cover both complete and incomplete informa-
tion literature are provided by Heydenreich et al. (2007) and Aydinliyim and Varaktarakis
(2011).

In the multiple machine scheduling problem of the current paper, we focus on the
comparison of the first-best outcome with a decentralized outcome as well. We do this by
considering the price of anarchy which is an established measure in many fields (see, e.g.,
in serial cost sharing Moulin (2008), in congestion situations Roughgarden (2006). The
multiple identical machine scheduling problems considered in this paper consist of a finite
number of identical machines and a set of decision makers who each own a different set of
jobs. Since the machines are identical, the processing times of the jobs are the same on
each machine. A schedule is a production plan of the jobs that assigns each job to precisely
one machine. The completion time of a job in a specific schedule indicates the cost of that
job in this schedule. The cost of a player according to a schedule is attained using the
minsum criterion. More precisely, the cost of a player is the sum of the completion times
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according to this schedule of the jobs that are owned by this player. Each player provides
an allocation of his jobs to the machines independently of the other players. After this
allocation on each machine the jobs are scheduled in order of shortest processing time.
In the noncooperative game formulation the pure strategies of a player are allocations of
his jobs to machines. The total cost, i.e. the sum of all player’s cost, corresponding to
a strategy profile is the sum of the player’s cost that correspond to the schedule that is
induced by the strategy profile. In this paper we identify a profile of mixed strategies that
constitutes a worst Nash equilibrium. Exploiting the specific structure of this profile we
show that an upperbound of the price of anarchy is 3m−1

2m
, where m denotes the number

of machines. In fact, we prove that this upperbound is tight.
The identification of the possible gap between the performance of individual and coor-

dinated decisions calls for an analysis to see whether this difference can be mitigated. In
doing so, however, it would be very unnatural to consider all mechanisms. In extremis, a
mechanism that penalizes all participants severely whenever they do not collectively end
up with a schedule that is optimal from a centralized point of view would do the job,
but does not seem a realistic mechanism. We therefore focus on mechanisms that satisfy
several basic assumptions. More precisely. we assume there is no idle time between jobs
and that the scheduling of a job does not depend on (the identity of) its owner. Addition-
ally, we only require that all machines schedule similarly (machine anonymity) and that
jobs are processed on the machines chosen by their owners (pre-schedule consistency).
Imposing these natural constraints on possible coordinating mechanisms leads to an im-
possibility: there is no mechanism that satisfies these requirements and guarantees the
existence of Nash equilibria that result in optimal schedules only. Hence, anarchy costs
cannot be avoided via any ”natural” mechanism.

Finally, we provide insight in the severity of the anarchy costs via a numerical ex-
periment. In our simulations we find that the price of anarchy is non-negligible, identify
instances close to the theoretical bound that are non-degenerate, and provide character-
istics of the simulated distributions of the price of anarchy (mean, median, and 2.5th
and 97.5th percentiles) that deviate significantly from both the theoretical upperbound
derived in this paper and the lowerbound (which is 1). Insights into the impact of number
of jobs, players, and machines are also provided.

Several papers in the aforementioned literature overview are in some way related to
our paper, but they differ in at least one aspect different from our model. In many of the
previously mentioned papers the objective criterion is the makespan whereas we consider
the minsum. Moreover, in some papers the jobs have to be processed on all machines,
whereas in our paper the jobs have to be processed on precisely one machine. Bukchin
and Hanany (2007) and Hoeksma and Uetz (2012) are closest to the current paper. A key
difference with the models of Bukchin and Hanany (2007) is found in the processing times
of the jobs. They consider a single outsourcing machine on which the jobs have larger
processing times than on their in-house machines. In our model, the processing times
are all identical on each machine. Moreover, Bukchin and Hanany (2007) their focus is
on decentralization costs whereas we analyze on the PoA. In contrast to our model, in
their setting it is possible to find a coordinating mechanism. In the model of Hoeksma

4



and Uetz (2012) the same cost criterion is considered. However, they assume that each
decision maker owns exactly one job. In our setting, each decision maker may own a set
of jobs. Moreover, they consider machines with different processing speed, whereas we
assume that all machines have the same processing speed. Finally, they did not consider
the possible design of a coordinating mechanism.

The paper is organized as follows. In Section 2, our model is formally introduced and
some examples illustrate that there may not exist pure Nash equilibria or there may exist
pure Nash equilibria that do not support the centralized optimum. A tight upperbound for
the PoA is provided in Section 3. The impossibility theorem with respect to a scheduled-
based coordinating mechanism is presented in Section 4. The behavior of the PoA is
simulated in Section 5. Finally, Section 6 concludes.

2 Model

Let M = {1, . . . , |M |} be the finite set of (identical) machines with |M | ≥ 2. Let N be
the finite set of agents. Let Ji be the set of jobs owned by agent i. We assume that for
all i, j ∈ N with i 6= j, Ji∩Jj = ∅. Let J ≡ ∪iJi. We assume all jobs have non–preemptive
processing requirements. Each job j ∈ J has processing time pj > 0. To avoid degenerate
situations that require cumbersome notation we assume that for j, j′ ∈ J with j 6= j′, pj 6=
pj′ . A (scheduling) problem is a quadruple Λ = (M,N, (Ji)i∈N , (pj)j∈J). Whenever
there is no possible confusion we omit the set of machines M from the specification of the
scheduling problem.

A pre–schedule is an unordered assignment of the jobs to the machines. Formally,
a (deterministic) pre–schedule is a function π : J → M , where π(j) indicates the
machine on which job j is processed. Let Π be the set of pre–schedules. A schedule is
an ordered assignment of the jobs to the machines. Formally, a (deterministic) schedule
is a function σ : J → M × {1, . . . , |J |}, where σ(j) = (m, k) indicates that job j is
scheduled in position k of machine m. We assume that on each machine there is no idle
time between jobs nor before the first job. Given a schedule σ, job j’s predecessors are
the jobs P (σ, j) = {j′ ∈ J : σ1(j′) = σ1(j) and σ2(j′) < σ2(j)}. Then, job j’s completion
time can be written as

Cj(σ) = pj +

 ∑
j′∈P (σ,j)

pj′

 .

Each agent determines which of his jobs are processed on which machine. In other
words, each agent i chooses πi : Ji →M , where πi(j) indicates the machine on which job
j is processed. Then, the resulting pre–schedule is π : J →M with π(j) = πi(j) for each
i ∈ N and each job j ∈ Ji.

The central objective is to minimize the sum of completion times respecting the chosen
pre–schedule. Let π be a pre–schedule. A schedule σ respects pre–schedule π if for
all j ∈ J , σ1(j) = π(j). A schedule σπ is π–optimal if it respects π and for any other

5



schedule σ that respects π,∑
j∈J

Cj(σ
π) ≤

∑
j∈J

Cj(σ).

It is easy to see that σπ is π–optimal if and only if for each machine m, jobs π−1(m) are
scheduled in order of shortest processing time (SPT).

A schedule σ∗ is optimal if for any other schedule σ,∑
j∈J

Cj(σ
∗) ≤

∑
j∈J

Cj(σ).

The following algorithm can be used to find all optimal schedules.

Minimum Mean Flow Time1 (MFT) algorithm. (Horowitz and Sahni, 1976)
For each machine m, set lm ≡ 0. Set J∗ ≡ J . As long as J∗ 6= ∅, do Procedure.

Begin Procedure.
Let j∗ ∈ J∗ be such that pj∗ > pj for all j ∈ J∗. Let m ∈ M be a machine with lowest
lm. Set π∗(j∗) ≡ m and update lm ≡ lm + 1 and J∗ ≡ J∗\{j∗}.
End Procedure.

Let σ∗ be a π∗–optimal schedule.

Theorem 1. [Horowitz and Sahni, 1976] A schedule is optimal if and only if it can be
obtained from the minimum mean flow time (MFT) algorithm.

We associate with each scheduling problem (N, (Ji)i∈N , (pj)j∈J) a (non–cooperative)
scheduling game Γ = (N, (Πi)i∈N , (ci)i∈N), which is explained next. For each i ∈ N ,
the set of players is given by N . The set of (pure) strategies of player i, denoted Πi,
is the collection of functions πi : Ji → M . With a slight abuse of notation, a strategy
profile π = (πi)i∈N straightforwardly induces a pre–schedule π. Since all processing times
are distinct, π induces a unique π–optimal schedule σπ. Player i’s resulting “costs”
are given by the sum of completion times of his jobs in σπ. In other words, player i’s cost
function ci is given by

ci(π) ≡
∑
j∈Ji

Cj(σ
π).

Example 1.
Let M = {m1,m2} and N = {1, 2}. Let J1 = {a, c} and J2 = {b, d}. Suppose
(pa, pb, pc, pd) = (1, 2, 3, 4). Each player has 4 pure strategies: he can send both jobs
to m1, both jobs to m2, or different jobs to different machines (two ways). Table 1 con-
cisely depicts the scheduling game. Player 1 is the row player and each row indicates
which jobs are sent to m1 (the complement is sent to m2). Player 2 is the column player
and each column indicates which jobs are sent to m1. Next, we illustrate that each pair

1Minimum mean flow time and minimum sum of completion times are equivalent objectives.
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of numbers indicates the costs induced by the corresponding strategy–profile. Consider,
for instance, the pair ({a}, {b, d}), which corresponds with profile π = (πi)i=1,2 such that
π1(a) = π2(b) = π2(d) = m1 and π1(c) = m2. Then, jobs a, b, and d end up together
on m1 and job c on m2. The unique π–optimal schedule σπ satisfies σπ(a) = (m1, 1),
σπ(b) = (m1, 2), σπ(c) = (m2, 1), and σπ(d) = (m1, 3). Then, player 1’s costs equal
the sum of the completion times of his jobs a and c: Ca(σ

π) + Cc(σ
π) = 1 + 3 = 4.

Similarly, player 2’s costs equal the sum of the completion times of his jobs b and d:
Cb(σ

π) + Cd(σ
π) = (1 + 2) + (1 + 2 + 4) = 10. Hence, in this case the costs of the two

players are given by (4, 10).

1\2 ∅ {b} {d} {b, d}
∅ 7,13 5,10 7,7 5,8
{a} 6,11 4,10 6,7 4,10
{c} 4,10 6,7 4,10 6,11
{a, c} 5,8 7,7 5,10 7,13

Table 1: Table of Example 1

The boldfaced numbers in Table 1 are related to the concept of Nash equilibrium,
which is formally introduced next.

�

Let i ∈ N . A mixed strategy π̃i of player i is a probability distribution over all pure
strategies πi ∈ Πi. At mixed strategy π̃i, let Pr(πi|π̃i) be the probability assigned to pure
strategy πi ∈ Πi. Let π̃ = (π̃i)i∈N be a profile of mixed strategies. For any deterministic
pre–schedule π ∈ Π, let Pr(π|π̃) be the probability of π according to π̃. Then, player i’s
expected “costs” can be written as

c̃i(π̃) ≡
∑
j∈Ji

C̃j(π̃) =
∑
j∈Ji

(∑
π∈Π

Pr(π|π̃)Cj(σ
π)

)
,

where we denote the expected completion time of j ∈ J by

C̃j(σ
π̃) =

∑
π∈Π

Pr(π|π̃)Cj(σ
π).

A profile of mixed strategies is a Nash equilibrium if no player has a profitable devi-
ation. Formally, a profile of mixed strategies π̃ is a (Nash) equilibrium if there exists
no player i′ ∈ N with a strategy π̃′i′ such that

c̃i′(π̃
′) < c̃i′(π̃),

where π̃′ ≡ (π̃′i′ , (π̃i)i6=i′). Let E(Γ) be the set of Nash equilibria of game Γ.
The reason why we consider mixed strategies is that not all games have a Nash equi-

librium in pure strategies.
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Example 2. (No Nash equilibrium in pure strategies.)2

Consider again the scheduling game discussed in Example 1. The boldfaced numbers in
Table 1 indicate each player’s best responses to the other player’s strategies. For instance,
player 1’s strategy {c} is the unique best response to player 2’s strategy {d} since any
other strategy of player 1 yields higher costs for player 1: ∅ gives costs 7, {a} gives costs
6, and {a, c} gives costs 5, but {a} gives costs 4.

It is easy to verify that for no strategy–profile each player plays a best response to the
other player’s strategy. Hence, there is no Nash equilibrium in pure strategies.

There is a unique Nash equilibrium in mixed strategies. To see this, note that for
player 1 it is always strictly better to play {a} than ∅, and it is always strictly better
to play {c} than {a, c}. Similarly, for player 2 it is always strictly better to play {b}
than ∅, and it is always strictly better to play {d} than {b, d}. Therefore, in any Nash
equilibrium, strategies ∅ (for both players), {a, c} (for player 1), and {b, d} (player 2)
receive probability 0. Applying standard game–theoretic tools one can easily show that
the strategy–profile in which each of the remaining strategies receives probability 1/2
constitutes the unique Nash equilibrium π̃− in mixed strategies. One easily verifies that
the costs induced by the unique Nash equilibrium are c̃1(π̃−) + c̃2(π̃−) = 13.5, while the
optimal costs are 13. �

The next example shows that even if Nash equilibria in pure strategies exist, it is
possible that none of them induces an optimal schedule.

Example 3. (Nash equilibria in pure strategies exist but induce sub–optimal
schedules.)
Let M = {m1,m2} and N = {1, 2}. Let J1 = {a, e} and J2 = {b, c, d}. Let (pa, pb, pc, pd,
pe) = (1, 2, 4, 6, 8). One easily verifies that (πi)i=1,2 with π1(a) = π2(d) = m1 and π1(e) =
π2(b) = π2(c) = m2 is a Nash equilibrium in pure strategies. The sum of completion times
of the optimal π-respecting schedule σπ is

[Ca(σ
π) + Cd(σ

π)] + [Cb(σ
π) + Cc(σ

π) + Ce(σ
π)] = [1 + 7] + [2 + 6 + 14] = 30.

Using MFT it follows that the sum of completion times of any optimal schedule equals
29. In Table 2 we give a profitable deviation for each profile of pure strategies that results
in an optimal schedule. (We omit any schedule that is obtained from some listed schedule
by switching all jobs on one machine with all jobs on the other machine.) For instance,
consider the first row, which deals with profile (πi)i=1,2 such that π2(b) = π2(d) = m1

and π1(a) = π1(e) = π2(c) = m2. The second column indicates the resulting π–optimal
schedule σπ. The third column gives a player i′ that can profitably deviate. The fourth
column provides the costs ci′(π) of player i′ in the original profile π. The fifth column
exhibits the pre–schedule π′ after a deviation of player i′. The sixth column indicates the
resulting π′–optimal schedule σπ

′
. The last column provides the costs ci′(π

′) of player i′ in
profile π′, showing that the deviation is indeed profitable (i.e. player i′’s costs are lower).

2Examples 3 and 3 are not knife–edge in the sense that the processing times can slightly be varied
without losing its features.
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π σπ i′ ci′(π) π′ σπ
′

ci′(π
′)

b, d→ m1 m1 : b, d 1 1 + (1 + 4 + 8) a, b, d→ m1 m1 : a, b, d 1 + (4 + 8)
a, c, e→ m2 m2 : a, c, e = 14 c, e→ m2 m2 : c, e = 13
c, d→ m1 m1 : c, d 1 1 + (1 + 2 + 8) a, c, d→ m1 m1 : a, c, d 1 + (2 + 8)

a, b, e→ m2 m2 : a, b, e = 12 b, e→ m2 m2 : b, e = 11
a, b, d→ m1 m1 : a, b, d 2 (1 + 2) + (1 + 2 + 6) + 4 a, d→ m1 m1 : a, d (1 + 6) + 2 + (2 + 4)
c, e→ m2 m2 : c, e = 16 b, c, e→ m2 m2 : b, c, e = 15

a, c, d→ m1 m1 : a, c, d 2 (1 + 4) + (1 + 4 + 6) + 2 a, d→ m1 m1 : a, d (1 + 6) + 2 + (2 + 4)
b, e→ m2 m2 : b, e = 18 b, c, e→ m2 m2 : b, c, e = 15

Table 2: Table of Example 3

We conclude that the above scheduling problem induces a game that has Nash equilibria
in pure strategies but they do not induce an optimal schedule. �

Examples 2 and 3 show that Nash equilibria in pure strategies need not exist, and
that if they do exist there still can be a performance loss with respect to the situation in
which there would be a central authority.

3 Price of Anarchy

In this section, we first show that for any scheduling game there is a Nash equilibrium
in mixed strategies. Then, we study the price of anarchy which is a worst-case measure
of the inefficiency of selfish behavior. More precisely, the price of anarchy is the ratio
between the highest costs across all Nash equilibria and the optimal costs. Formally, for
a game Γ, the price of anarchy is defined as

PoA(Γ) =
maxπ̃∈E(Γ)

∑
j∈J C̃j(σ

π̃)∑
j∈J Cj(σ

∗)
,

where σ∗ is an optimal schedule.
We now show that for any scheduling game Γ, E(Γ) 6= ∅. We do this by the construction

of a Nash equilibrium in mixed strategies in two steps. In the first step, we find an
optimal schedule for each individual player (assuming the other players are not present).
In the second step, we define a mixed strategy for each player by randomly permuting
his partition of jobs from the first step, i.e. switching partition elements between the
machines (using a uniform distribution).

Let (N, (Ji)i∈N , (pj)j∈J) be a scheduling problem. Let i ∈ N . Player i’s individual
scheduling problem ({i}, Ji, (pj)j∈Ji) is the scheduling problem obtained from the orig-
inal scheduling problem by omitting all agents different from i and their corresponding
jobs. Let σi∗ be an optimal schedule for player i’s individual scheduling problem. For
each m ∈M , define Jim ≡ {j ∈ Ji : σi∗1 (j) = m}. Let π̃−i be the mixed strategy of player
i that puts the same positive probability3 on each pure strategy π−i such that for each

3If |Ji| ≥ |M | − 1, then this probability is 1
|M |! .
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m ∈M and each pair of jobs j, j′ ∈ Ji,

π−i (j) = π−i (j′)⇐⇒ j, j′ ∈ Jim.

Let π−i be a pure strategy that receives positive probability in π̃−i . By construction of

σi∗, the π−i –optimal schedule σπ
−
i for ({i}, Ji, (pj)j∈Ji) is optimal for ({i}, Ji, (pj)j∈Ji).

We call π̃− = (π̃−i )i∈N the uniformly distributed profile (obtained from the

individually optimal schedules σi∗).
Before we show that π̃− is a worst Nash equilibrium, we establish the following lemma,

which is used in the proof of Theorem 2.

Lemma 1. For any pure strategy π◦1 of player 1, any j ∈ J1, and any j′ ∈ J\J1,∑
π∈Π:π(j′)=π◦1(j)

Pr(π|(π◦1, (π̃−i )i∈N\{1})) =
1

|M |
. (1)

Similarly, for any mixed strategies (π̃◦i )i∈N\{1} of players N\{1}, any j ∈ J1, and any
j′ ∈ J\J1,∑

π∈Π:π(j′)=π(j)

Pr(π|(π̃−1 , (π̃◦i )i∈N\{1})) =
1

|M |
. (2)

Proof. From the construction of the mixed strategies (π̃−i )i∈N\{1} of the players in N\{1}
it follows that for any pure strategy of player 1 and any job of player 1, any job of any
other player ends up on the same machine as player 1’s job with probability 1/M . This
proves the first statement. The second statement follows from similar arguments.

We now show that the uniformly distributed profile π̃− = (π̃−i )i∈N is a Nash equilib-
rium. In fact, Theorem 2 states that π̃− is a particularly interesting Nash equilibrium:
for each player, the expected costs in the constructed Nash equilibrium is higher than
those in any other Nash equilibrium. In other words, the constructed Nash equilibrium
is a worst Nash equilibrium for all players.

Theorem 2. Let Γ = (N, (Π)i∈N , (ci)i∈N) be a scheduling game. Then,
(i) π̃− ∈ E(Γ);
(ii) π̃ ∈ E(Γ) =⇒ c̃i(π̃

−) ≥ c̃i(π̃) for each i ∈ N .

Proof. Consider π̃−. We first prove (i). Without loss of generality we show that player 1
has no profitable deviation. Let π−1 ∈ Π1 be such that Pr(π−1 |π̃−1 ) > 0, i.e. player 1 plays
π−1 with positive probability at mixed strategy π̃−1 . Let π′1 be a pure strategy of player 1.
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Let π̃′ = (π′1, (π̃
−
i )i∈N\{1}). Then,

c̃1(π̃′) =
∑
j∈J1

C̃j(σ
π̃′)

=
∑
j∈J1

(∑
π∈Π

Pr(π|π̃′)Cj(σπ)

)

=
∑
j∈J1

∑
π∈Π

Pr(π|π̃′)

pj +
∑

j′∈P (σπ ,j)

pj′


=

∑
j∈J1

pj +
∑
π∈Π

Pr(π|π̃′)
∑

j′∈P (σπ ,j)

pj′


=

∑
j∈J1

pj +
∑
π∈Π

Pr(π|π̃′)

 ∑
j′∈J1∩P (σπ ,j)

pj′ +
∑

j′∈(J\J1)∩P (σπ ,j)

pj′


=

∑
j∈J1

pj +

∑
π∈Π

Pr(π|π̃′)
∑

j′∈J1∩P (σπ ,j)

pj′

+

∑
π∈Π

Pr(π|π̃′)
∑

j′∈(J\J1)∩P (σπ ,j)

pj′


=

∑
j∈J1

pj +
∑

j′∈J1∩P (σπ
′
1 ,j)

pj′

+
∑
j∈J1

∑
π∈Π

Pr(π|π̃′)
∑

j′∈(J\J1)∩P (σπ ,j)

pj′



=
∑
j∈J1

pj +
∑

j′∈J1∩P (σπ
′
1 ,j)

pj′

+
∑
j∈J1

∑
π∈Π

Pr(π|π̃′)
∑

i∈N\{1}

∑
j′∈Ji∩P (σπ ,j)

pj′



=
∑
j∈J1

pj +
∑

j′∈J1∩P (σπ
′
1 ,j)

pj′

+
∑
j∈J1

∑
i∈N\{1}

∑
π∈Π

Pr(π|π̃′)
∑

j′∈Ji∩P (σπ ,j)

pj′



=
∑
j∈J1

pj +
∑

j′∈J1∩P (σπ
′
1 ,j)

pj′

+
∑
j∈J1

∑
i∈N\{1}

∑
π∈Π

Pr(π|π̃′)
∑

j′∈Ji: pj′<pj ,π(j′)=π(j)

pj′



=
∑
j∈J1

pj +
∑

j′∈J1∩P (σπ
′
1 ,j)

pj′

+
∑
j∈J1

∑
i∈N\{1}

 ∑
j′∈Ji: pj′<pj

 ∑
π∈Π:π(j′)=π(j)

Pr(π|π̃′)

 pj′



=
∑
j∈J1

pj +
∑

j′∈J1∩P (σπ
′
1 ,j)

pj′

+
∑
j∈J1

∑
i∈N\{1}

 ∑
j′∈Ji: pj′<pj

 ∑
π∈Π:π(j′)=π′1(j)

Pr(π|π̃′)

 pj′


(a)
=

∑
j∈J1

pj +
∑

j′∈J1∩P (σπ
′
1 ,j)

pj′

+
∑
j∈J1

 ∑
i∈N\{1}

∑
j′∈Ji:pj′<pj

pj′

|M |
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(b)

≥
∑
j∈J1

pj +
∑

j′∈J1∩P (σπ
−
1 ,j)

pj′

+
∑
j∈J1

 ∑
i∈N\{1}

∑
j′∈Ji:pj′<pj

pj′

|M |


(c)
= c̃1(π−1 , (π̃

−
i )i∈N\{1}).

Equality (a) follows from (1) with π◦1 = π′1. Inequality (b) follows from the fact that by

construction σπ
−
1 is optimal for ({1}, J1, (pj)j∈J1). Equality (c) follows from arguments

similar to those applied to establish all previous equalities and (1) with π◦1 = π−1 .
Since c̃1 is linear, it follows that

c̃1(π′1, (π̃
−
i )i∈N\{1}) = c̃1(π̃′)

≥
∑
π−1 ∈Π1

Pr(π−1 |π̃−1 ) c̃1(π−1 , (π̃
−
i )i∈N\{1})

= c̃1(π̃−1 , (π̃
−
i )i∈N\{1})

= c̃1(π̃−),

which shows that deviation π′1 is not profitable. Hence, π̃− is a Nash equilibrium. This
completes the proof of (i).

Next, we prove (ii). Without loss of generality we show that player 1 has higher costs
at π̃− than at any other Nash equilibrium. Let π̃ be a Nash equilibrium. Then,

c̃1(π̃) ≤ c̃1(π̃−1 , (π̃i)i∈N\{1})

(d)
=

∑
π−1 ∈Π1

Pr(π−1 |π̃−1 )
(
c̃1(π−1 , (π̃i)i∈N\{1})

)

=
∑
π−1 ∈Π1

Pr(π−1 |π̃−1 )

∑
j∈J1

pj +
∑

j′∈J1∩P (σπ
−
1 ,j)

pj′


+

∑
π−1 ∈Π1

Pr(π−1 |π̃−1 )

∑
j∈J1

 ∑
i∈N\{1}

∑
j′∈Ji:pj′<pj

∑
π∈Π:π(j′)=π−1 (j)

Pr(π|(π−1 , (π̃i)i∈N\{1}))pj′


=

 ∑
π−1 ∈Π1

Pr(π−1 |π̃−1 )
∑
j∈J1

pj +
∑

j′∈J1∩P (σπ
−
1 ,j)

pj′


+

∑
j∈J1

 ∑
i∈N\{1}

∑
j′∈Ji:pj′<pj

∑
π∈Π:π(j′)=π(j)

Pr(π|(π̃−1 , (π̃i)i∈N\{1}))pj′
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(e)
=

 ∑
π−1 ∈Π1

Pr(π−1 |π̃−1 )
∑
j∈J1

pj +
∑

j′∈J1∩P (σπ
−
1 ,j)

pj′


+

∑
j∈J1

 ∑
i∈N\{1}

∑
j′∈Ji:pj′<pj

pj′

|M |


=

∑
π−1 ∈Π1

Pr(π−1 |π̃−1 )

∑
j∈J1

pj +
∑

j′∈J1∩P (σπ
−
1 ,j)

pj′

+
∑
j∈J1

 ∑
i∈N\{1}

∑
j′∈Ji:pj′<pj

pj′

|M |




(f)
=

∑
π−1 ∈Π1

Pr(π−1 |π̃−1 )
(
c̃1(π−1 , (π̃

−
i )i∈N\{1})

)
(g)
= c̃1(π̃−).

Here, the inequality follows from the fact that π̃ is a Nash equilibrium. Equalities (d) and
(g) follow from the linearity of c̃1. Equality (e) follows from (2) with π̃◦i = π̃i, i ∈ N\{1}.
Equality (f ) follows from (c). Therefore, for any player the expected costs at π̃− are
higher than those at any other Nash equilibrium π̃. This completes the proof of (ii).

Remark 1. Any choice of individually optimal schedules (σi∗)i∈N induces a uniformly
distributed profile π̃− = (π̃−i )i∈N which by Theorem 2 is a Nash equilibrium of the schedul-
ing game. Even though different choices of (σi∗)i∈N can induce different Nash equilibria,
again by Theorem 2, for each player all these Nash equilibria yield the same associated
expected costs. �

Let i ∈ N . Denote Ji = {ji1, . . . , jini}. We denote the processing time of job jil by
pil and assume that pi1 < · · · < pini . In view of our objective to determine the price of
anarchy, we henceforth conveniently assume that for each i ∈ N , σi∗ is such that for each
m ∈M = {1, . . . , |M |},

Jim = {j ∈ Ji : σi∗1 (j) = m} = {j ∈ Ji : j = jil with (l − 1)mod|M | = m− 1}.

As an illustration, suppose player 1 has 7 jobs, i.e. J1 = {j1,1, . . . , j1,7}. If there are
|M | = 3 machines, then J1,1 = {j1,1, j1,4, j1,7} are the jobs assigned to machine 1, J1,2 =
{j1,2, j1,5} are the jobs assigned to machine 2, and J1,3 = {j1,3, j1,6} are the jobs assigned
to machine 3.

For j ∈ J , let o(j) denote the owner of job j, i.e. o(j) = i where i ∈ N is such that
j ∈ Ji. For j ∈ J , define

λj ≡ |{j′ ∈ J : pj′ > pj}| and

κj ≡ |{j′ ∈ J : pj′ > pj and o(j′) = o(j)}|.

The next lemma provides a convenient expression for the sum of expected costs induced
by the worst Nash equilibria in terms of (κj, λj)j∈J and the processing times (pj)j∈J .
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Lemma 2. The sum of expected costs induced by a worst Nash equilibrium π̃− is given
by 4

∑
j∈J

C̃j(π̃
−) =

∑
j∈J

pj

(
1 +

λj − κj
|M |

+

⌊
κj
|M |

⌋)
.

Proof. From equalities (f ) and (g) in the proof of Theorem 2 it follows that∑
j∈J

C̃j(σ
π̃−) =

∑
i∈N

c̃i(π̃
−)

=
∑
i∈N

∑
π−i ∈Πi

Pr(π−i |π̃
−
i )

∑
j∈Ji

pj +
∑

j′∈Ji∩P (σπ
−
i ,j)

pj′

+
∑
j∈Ji

 ∑
i′∈N\{i}

∑
j′∈Ji′ :pj′<pj

pj′

|M |




=
∑
i∈N

∑
π−i ∈Πi

Pr(π−i |π̃
−
i )

∑
m∈M

∑
j∈Jim

pj +
∑

j′∈Ji∩P (σπ
−
i ,j)

pj′


+

∑
i∈N

∑
π−i ∈Πi

Pr(π−i |π̃
−
i )

∑
j∈Ji

∑
i′∈N\{i}

∑
j′∈Ji′ :pj′<pj

pj′

|M |



=
∑
i∈N

∑
m∈M

∑
j∈Jim

pj +
∑

j′∈Jim:pj′<pj

pj′

+
∑
i∈N

∑
j∈Ji

∑
i′∈N\{i}

∑
j′∈Ji′ :pj′<pj

pj′

|M |

=
∑
i∈N

∑
m∈M

∑
j∈Jim

pj +
∑

j′∈Jim:pj′>pj

pj

+
∑
i∈N

∑
j∈Ji

∑
i′∈N\{i}

∑
j′∈Ji′ :pj′>pj

pj
|M |

=
∑
i∈N

∑
m∈M

∑
j∈Jim

pj(1 +
∑

j′∈Jim:pj′>pj

1)

+
∑
i∈N

∑
j∈Ji

pj
|M |

 ∑
i′∈N\{i}

∑
j′∈Ji′ :pj′>pj

1


=

∑
j∈J

pj

(
1 +

⌊
κj
|M |

⌋)
+
∑
j∈J

pj
|M |

(λj − κj)

=
∑
j∈J

pj

(
1 +

λj − κj
|M |

+

⌊
κj
|M |

⌋)
,

which proves the desired equality.

The next lemma shows that for a given set of jobs the price of anarchy is maximal when
all jobs are owned by different players. Let Λ = (N, (Ji)i∈N , (pj)j∈J) be a scheduling prob-
lem. We define its associated simple scheduling problem by Λ′ ≡ (N ′, (Ji)i∈N ′ , (pj)j∈J)
where N ′ is such that |N ′| = |J | and each agent in N ′ owns exactly one job in J , i.e. for
each i ∈ N ′, |Ji′ | = 1.

4For x ∈ R, bxc denotes the largest integer n with n ≤ x.
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Lemma 3. Let Γ be the game associated with a scheduling problem Λ. Let Γ′ be the game
associated with the corresponding simple schedule problem Λ′. Then, PoA(Γ) ≤ PoA(Γ′).

Proof. Let σ∗ be an optimal schedule (for both Λ and Λ′). Let π̃− be a worst Nash
equilibrium for Λ, and let τ̃− be a worst Nash equilibrium for Λ′. Then,∑

j∈J

C̃j(σ
π̃−) =

∑
j∈J

pj

(
1 +

λj − κj
|M |

+

⌊
κj
|M |

⌋)
≤

∑
j∈J

pj

(
1 +

λj
|M |

)
=

∑
j∈J

C̃j(σ
τ̃−),

where the two equalities follow from Lemma 2. Therefore,

PoA(Γ) =

∑
j∈J C̃j(σ

π̃−)∑
j∈J Cj(σ

∗)
≤
∑

j∈J C̃j(σ
τ̃−)∑

j∈J Cj(σ
∗)

= PoA(Γ′),

which completes the proof.

The following lemma provides a convenient expression for the optimal sum of costs
(as if there were a central authority).

Lemma 4. For any optimal schedule σ∗, the associated (optimal) sum of costs equals∑
j∈J

Cj(σ
∗) =

∑
j∈J

pj

(
1 +

⌊
λj
|M |

⌋)
.

Proof. Let π∗ be the pre–schedule such that for each j ∈ J , π∗(j) = m where m =
(|J |−λj−1)mod|M | = m−1. One easily verifies that π∗ can be obtained using the MFT
algorithm. Therefore, the π∗–optimal schedule σ∗ is optimal, and its associated sum of
costs equals∑

j∈J

Cj(σ
∗) =

∑
j∈J

∑
j′∈J :
pj′>pj ,

π∗(j′)=π∗(j)

pj

=
∑
j∈J

pj |{j′ ∈ J : pj′ > pj, π
∗(j′) = π∗(j)}|

=
∑
j∈J

pj

(
1 +

⌊
λj
|M |

⌋)
.
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Remark 2. Obviously, the optimal costs are independent of the owners of the jobs.
Also, in case there is a unique player, the costs associated with any Nash equilibrium are
optimal. Therefore, Lemma 4 can be obtained from Lemma 2 by assuming that there is
a unique player (and hence, κj = λj for all j ∈ J). �

Finally, in the proof of our second main result we will use the following inequality.

Lemma 5. For all integers k ≥ 0,

1 + k + |M |−1
2|M |

1 + k
≤ 1 +

|M | − 1

2|M |
. (3)

Proof. The proof is by induction on k. For k = 0, inequality (3) is in fact an equality.
Suppose that (3) holds for some k = k′ ≥ 0. Then,

1 + (k′ + 1) + |M |−1
2|M |

1 + (k′ + 1)
=

1 +
(

1 + k′ + |M |−1
2|M |

)
1 + (1 + k′)

≤ 1 +
|M | − 1

2|M |
,

where the inequality follows from the fact that for any β, δ > 0 and any α, γ, ε ∈ R, we
have [ α

β
, γ
δ
≤ ε =⇒ α+γ

β+δ
≤ ε ]. Hence, (3) also holds for k = k′ + 1.

Now we can state and prove our second main result.

Theorem 3. For the game Γ associated with a scheduling problem,

PoA(Γ) ≤ 3|M | − 1

2|M |
.

Proof. Let Λ = (N, (Ji)i∈N , (pj)j∈J) be a scheduling problem. Let Γ be the game associ-
ated with Λ. By Lemma 3, we may assume that for each i ∈ N , |Ji| = 1. With a slight
abuse of notation, let J = N = {1, . . . , n}. Without loss of generality we assume that

p1 > · · · > pn. Let K = b |J ||M |c. We assume K 6= |J |
|M | since the case K = |J |

|M | follows from

similar (but easier) arguments.
From Lemma 2, for the sum of expected costs induced by a worst Nash equilibrium

π̃− we have∑
j∈J

C̃j(σ
π̃−) =

∑
j∈J

pj

(
1 +

λj − κj
|M |

+

⌊
κj
|M |

⌋)
=

∑
j∈J

pj(1 +
λj
|M |

)

=
∑

k=0,...,K−1

∑
l=1,...,|M |

p(k|M |+l) (1 + k +
l − 1

|M |
) +
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(
p(K|M |+1)(1 +K +

0

|M |
) + · · ·+ p|J |(1 +K +

|J | −K|M | − 1

|M |
)

)
≤

∑
k=0,...,K−1

∑
l=1,...,|M |

p(k|M |+l) (1 + k +
|M | − 1

2|M |
) +(

p(K|M |+1)(1 +K +
|M | − 1

2|M |
) + · · ·+ p|J |(1 +K +

|M | − 1

2|M |
)

)

=
∑

k=0,...,K−1

(
1 + k +

|M | − 1

2|M |

) ∑
l=1,...,|M |

p(k|M |+l)

 + (4)

(
1 +K +

|M | − 1

2|M |

)(
p(K|M |+1) + · · ·+ p|J |

)
.

Here, the inequality follows from the identity∑
l=1,...,|M |

l − 1

|M |
=
|M | − 1

2

and the redistribution of this sum in such a way that the jobs with longer (shorter)
processing times have larger (smaller) coefficients on the right hand side than on the
left hand side of the inequality. (For the case k = K, the sum of coefficients is even
augmented.)

From Lemma 4, for the minimal sum of costs induced by an optimal schedule σ∗ we
have ∑

j∈J

Cj(σ
∗) =

∑
j∈J

pj

(
1 +

⌊
λj
|M |

⌋)

=
∑

k=0,...,K−1

(1 + k)

 ∑
l=1,...,|M |

p(k|M |+l)

+ (5)

(1 +K)
(
p(K|M |+1) + · · ·+ p|J |

)
.

Let k = 0, . . . , K − 1. Then, from Lemma 5,(
1 + k + |M |−1

2|M |

)(∑
l=1,...,|M | p(k|M |+l)

)
(1 + k)

(∑
l=1,...,|M | p(k|M |+l)

) ≤
(

1 +
|M | − 1

2|M |

)
. (6)

Similarly,(
1 +K + |M |−1

2|M |

) (
p(K|M |+1) + · · ·+ p|J |

)
(1 +K)

(
p(K|M |+1) + · · ·+ p|J |

) ≤
(

1 +
|M | − 1

2|M |

)
. (7)
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From (4), (5), (6), (7) and the fact that for any β, δ > 0 and any α, γ, ε ∈ R, [ α
β
, γ
δ
≤

ε =⇒ α+γ
β+δ
≤ ε ] it follows that

PoA(Γ) =

∑
j∈J C̃j(σ

π̃−)∑
j∈J Cj(σ

∗)
≤
(

1 +
|M | − 1

2|M |

)
=

3|M | − 1

2|M |
,

which completes the proof.

The following theorem shows that the bound in Theorem 3 is tight.

Theorem 4. The bound for the price of anarchy in Theorem 3 is tight. That is, for any
ρ < 3|M |−1

2|M | there is a scheduling problem such that for its associated game Γ, PoA(Γ) ≥ ρ.

Proof. Let n = |M |. Let 0 < p1 < p2 < · · · < pn−1 < pn be such that

p1

pn

(
3n− 1

2n

)
≥ ρ. (8)

Let Λ = (N, (Ji)i∈N , (pj)j∈J) be the scheduling problem for which

• |J | = |N | = |M |;
• J = {1, . . . , n};
• for each i ∈ N , |Ji| = 1; and
• for each j ∈ J , the processing time of job j equals pj.

From Lemma 2, for the sum of expected costs induced by a worst Nash equilibrium
π̃− we have∑

j∈J

C̃j(σ
π̃−) =

∑
j=1,...,n

pj

(
1 +

n− j
n

)
. (9)

Obviously, the minimal sum of costs induced by an optimal schedule σ∗ equal∑
j∈J

Cj(σ
∗) =

∑
j=1,...,n

pj. (10)
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From (9) and (10) it follows that for the game Γ associated with Λ we have

PoA(Γ) =

∑
j∈J C̃j(σ

π̃−)∑
j∈J Cj(σ

∗)

=

∑
j=1,...,n pj

(
1 + n−j

n

)∑
j=1,...,n pj

≥
∑

j=1,...,n pj +
∑

j=1,...,n pj
(
n−j
n

)
npn

≥
np1 + p1

∑
j=1,...,n

(
n−j
n

)
npn

=
np1 + p1

(
n−1

2

)
npn

=
p1

(
n+ n−1

2

)
pnn

=
p1

pn

(
n+ n−1

2

n

)
=

p1

pn

(
3n− 1

2n

)
≥ ρ,

where the last inequality follows from (8).

4 Mechanism Design

In this section we show that there is no “reasonable” mechanism such that optimal sched-
ules can always be implemented in Nash equilibria. We will first introduce the properties
that a “reasonable” mechanism should satisfy. Then, we will state and prove our impos-
sibility result.

Let Λ = (M,N, (Ji)i∈N , (pj)j∈J) be a scheduling problem. We denote the set of optimal
schedules for Λ by Σ∗(Λ). We associate with Λ a (non–cooperative) scheduling game
Γ(Λ, ϕ), which is explained next. The set of players is N . For each i ∈ N , the set of
(pure) strategies of player i, denoted Πi, is the collection of functions πi : Ji →M . With
a slight abuse of notation, a strategy profile π = (πi)i∈N straightforwardly induces a pre–
schedule π. The mechanism ϕ assigns each pre–schedule π to a schedule ϕπ = (ϕπ1 , ϕ

π
2 ).

Player i’s resulting “costs” are given by the sum of completion times of his jobs in ϕπ. In
other words, player i’s cost function ci is given by

ci(π) ≡
∑
j∈Ji

Cj(ϕ
π).
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Remark 3. The definition of a mechanism as a function from the set of pre–schedules to
the set of schedules involves two implicit assumptions. First, we assume No Idle Time
(NIT). More precisely, in view of our definition of schedule, we exclude from our analysis
functions that can associate with a pre–schedule some assignment of jobs to machines
that involves idle time. Second, we assume Owner Anonymity (OA), i.e. for each
pre–schedule the associated schedule does not depend on the owner of any of the involved
jobs. �

We consider that the following two additional properties should be satisfied by any “rea-
sonable” mechanism ϕ. First, since all machines are identical, any reasonable mechanism
should satisfy machine anonymity, which we explain next. Suppose a pre–schedule π′ is
obtained from some other pre–schedule π by permuting complete batches of jobs. Then,
(a) the schedule ϕπ

′
is obtained from schedule ϕπ by applying the same permutation to

complete batches of jobs and (b) there is no change in the order in which the jobs are
processed. Formally, ϕ satisfies

• Machine Anonymity (MA) if for any π ∈ Π, any permutation ρ : M →M , any
j ∈ J ,

ϕ ρ◦π
1 (j) = (ρ ◦ ϕπ1 )(j) and (11)

ϕ ρ◦π
2 (j) = ϕπ

2 (j), (12)

where ◦ denotes composition.

Second, any reasonable mechanism should associate with each pre–schedule a schedule
that is consistent with the former. In other words, if a job is pre–scheduled on some
machine, then the mechanism should schedule the job on that machine. Formally, ϕ
satisfies

• Pre–schedule Consistency (PC) if for any j ∈ J and any π ∈ Π, π(j) = m =⇒
ϕπ1 (j) = m.

Let M be the class of mechanisms that satisfy NIT, OA, MA, and PC. Note that
mechanism σ from Section 2 (which assigns each pre–schedule π to its π–optimal schedule)
satisfies NIT, OA, MA, and PC.

Let i ∈ N . A mixed strategy π̃i of player i is a probability distribution over all pure
strategies πi ∈ Πi. At mixed strategy π̃i, let Pr(πi|π̃i) be the probability assigned to pure
strategy πi ∈ Πi. Let π̃ = (π̃i)i∈N be a profile of mixed strategies. For any deterministic
pre–schedule π ∈ Π, let Pr(π|π̃) be the probability of π according to π̃. Then, player i’s
expected “costs” can be written as

c̃i(π̃) ≡
∑
j∈Ji

C̃j(ϕ
π̃) =

∑
j∈Ji

(∑
π∈Π

Pr(π|π̃)Cj(ϕ
π)

)
,

where we denote the expected completion time of j ∈ J by C̃j(ϕ
π̃) =

∑
π∈Π Pr(π|π̃)Cj(ϕ

π).
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A profile of mixed strategies is a Nash equilibrium if no player has a profitable devi-
ation. Formally, a profile of mixed strategies π̃ is a (Nash) equilibrium if there exists
no player i′ ∈ N with a strategy π̃′i′ such that

c̃i′(π̃
′) < c̃i′(π̃),

where π̃′ ≡ (π̃′i′ , (π̃i)i6=i′). Let E(Γ(Λ, ϕ)) be the set of Nash equilibria of game Γ(Λ, ϕ).
A mechanism ϕ ∈M implements optimal schedules if for each scheduling problem

Λ = (M,N, (Ji)i∈N , (pj)j∈J), there exists some Nash equilibrium π̃ ∈ E(Γ(Λ, ϕ)) such that

{ϕπ : π ∈ Π, P r(π|π̃) > 0} ⊆ Σ∗(Λ). (13)

Remark 4. Equivalently, a mechanism ϕ implements optimal schedules if for each schedul-
ing problem Λ = (M,N, (Ji)i∈N , (pj)j∈J), there exists some Nash equilibrium π̃ ∈ E(Γ(Λ, ϕ))
such that for some (or equivalently, all) σ∗ ∈ Σ∗(Λ),

c̃i(π̃) =
∑
j∈J

C̃j(ϕ
π̃) =

∑
j∈J

Cj(σ
∗). (14)

�

We now state and prove our impossibility result.

Theorem 5. There is no mechanism that satisfies NIT, OA, MA, and PC and that
implements optimal schedules.

Proof. Let ϕ ∈ M. Let ΛJ1 = (M,N, (J1, J2), (pj)j∈J) be such that M = {m1,m2},
N = {1, 2}, J = {a, b, c} with processing times (pa, pb, pc) = (1, 2, 3), and J1, J2 ⊆ J such
that J1 ∪ J2 = J and J1 ∩ J2 = ∅. We will later specify J1 (and thus J2 as well), i.e.
choose the owner of each job later in order to create a convenient scheduling game. Table
3 depicts the four optimal schedules, i.e. Σ∗(ΛJ1) = {α, β, γ, δ}.

optimal schedule

α m1 : a, b
m2 : c

β m1 : a, c
m2 : b

γ m1 : c
m2 : a, b

δ m1 : b
m2 : a, c

Table 3: Optimal schedules for J = {a, b, c} with processing times (pa, pb, pc) = (1, 2, 3).

Since mechanism ϕ satisfies MA and PC, it follows that for any 2 jobs x, y ∈ {a, b, c},
x 6= y, if they are the only jobs sent to some machine, then they are processed on that
machine and their order is uniquely determined by ϕ, i.e. independently of the identity
of the machine and the identity of the owners of any of the jobs. Therefore, we can write
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[x, y] or [y, x] to indicate that order. We first distinguish between the two orders of jobs
b and c. The analysis of [b,c] is subsequently split dependent on the order between jobs
a and b, while the analysis of [c,b] is subsequently split dependent on the order between
jobs a and c. So, we distinguish among the following four cases.

Case I: ϕ yields [b, c] and [a, b].

Let J1 = {a, c} and J2 = {b}. Assume there exists some Nash equilibrium π̃ ∈ E(Γ(Λ{a,c}, ϕ))
with

{α, β} ⊆ {ϕπ : π ∈ Π and Pr(π|π̃) > 0}. (15)

In α, job b is processed on machine m1 and in β it is processed on machine m2. Similarly,
in α, job c is processed on machine m2 and in β it is processed on machine m1. From (15)
and the fact that ϕ satisfies PC it follows that player 2 (player 1) sends his job b (his job
c) to either machine with positive probability. Since jobs b and c are owned by different
players, it follows that with positive probability the two jobs end up being processed on
the same machine. Hence, (13) is violated. Similarly, assuming that any of the sets {α, γ},
{δ, β}, or {δ, γ} is a subset of {ϕπ : π ∈ Π and Pr(π|π̃) > 0} leads to a violation of (13).
Therefore, for each Nash equilibrium π̃ ∈ E(Γ(Λ{a,c}, ϕ)),

{α, β}, {α, γ}, {δ, β}, {δ, γ} 6⊆ {ϕπ : π ∈ Π and Pr(π|π̃) > 0}. (16)

Now assume that there exists some Nash equilibrium π̃ ∈ E(Γ(Λ{a,c}, ϕ)) with

{ϕπ : π ∈ Π and Pr(π|π̃) > 0} ⊆ {α, δ}.

Then, player 2 uses the pure strategy of sending his job b to m1. Suppose that in fact
{ϕπ : π ∈ Π and Pr(π|π̃) > 0} = {α}. Then, player 1’s mixed strategy is in fact the pure
strategy of sending job a to m1 and job c to m2. Since mechanism ϕ yields [b, c], player 2
would be better off by sending his job to machine m2 instead. However, this contradicts
π̃ ∈ E(Γ(Λ{a,c}, ϕ)). Hence, δ ∈ {ϕπ : π ∈ Π and Pr(π|π̃) > 0}. As δ results with positive
probability we conclude that ϕ has to yield [a, c]. So, with positive probability, say qδ > 0,
player 1’s costs equal (1+(1+3)) = 5 as φ yields [a, c],, and with probability 1−qδ, player
1’s costs equal 1 + 3 = 4. But then, since ϕ yields [a, b], player 1 would be better of by
playing the pure strategy that consists of sending job a to m1 and job c to m2: it would
give (with probability 1) the lower costs 1 + 3 = 4. This contradicts π̃ ∈ E(Γ(Λ{a,c}, ϕ)).
Similarly, assuming that {ϕπ : π ∈ Π and Pr(π|π̃) > 0} ⊆ {β, γ} leads to a contradiction
with π̃ ∈ E(Γ(Λ{a,c}, ϕ)). Therefore, for each Nash equilibrium π̃ ∈ E(Γ(Λ{a,c}, ϕ)),

{ϕπ : π ∈ Π and Pr(π|π̃) > 0} 6⊆ {α, δ}, {β, γ}. (17)

We now prove that for each Nash equilibrium π̃ ∈ E(Γ(Λ{a,c}, ϕ)), and any subset
Σ ⊆ Σ∗(Λ{a,c}),

{ϕπ : π ∈ Π, P r(π|π̃) > 0} 6⊆ Σ. (18)
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If |Σ| ≥ 3, 4, then (18) follows from (16). If |Σ| = 1, then (18) follows from (17). If
|Σ| = 2, then (18) follows from (16) together with (17). From (18) it immediately follows
that for Λ = Λ{a,c} we have that each Nash equilibrium π̃ ∈ E(Γ(Λ, ϕ)) does not satisfy
(13).

Case II: ϕ yields [b, c] and [b, a].

Let J1 = {b, c} and J2 = {a}. Let Λ = Λ{b,c}. Assume there exists some Nash equilibrium
π̃ ∈ E(Γ(Λ, ϕ)) that satisfies (13). Since ϕ yields [b, a],

{ϕπ : π ∈ Π and Pr(π|π̃) > 0} ⊆ {β, δ}. (19)

As β or δ results we conclude that ϕ has to yield [a, c]. Suppose {ϕπ : π ∈ Π and Pr(π|π̃) >
0} = {β, δ}. In β, job a is processed on machine m1 and in δ it is processed on machine
m2. Similarly, in β, job b is processed on machine m2 and in δ it is processed on ma-
chine m1. From (19) and the fact that ϕ satisfies PC it follows that player 1 (player 2)
sends his job b (his job a) to either machine with positive probability. Since jobs a and
b are owned by different players, it follows that with positive probability the two jobs
end up being processed on the same machine. Hence, (19) is violated. Therefore, either
{β} = {ϕπ : π ∈ Π and Pr(π|π̃) > 0} or {δ} = {ϕπ : π ∈ Π and Pr(π|π̃) > 0}.

Assume, without loss of generality, that {β} = {ϕπ : π ∈ Π and Pr(π|π̃) > 0}. Then,
both players use a pure strategy and player 1’s costs equal 2 + (1 + 3) = 6 as ϕ yields
[a, c]. However, player 1 would be better off by playing the strategy that consists of
sending job b to m1 and job c to m2 as it would yield the lower costs of 2 + 3 = 5.
This contradicts π̃ ∈ E(Γ(Λ{b,c}, ϕ)). Therefore, for Λ = Λ{b,c} we have that each Nash
equilibrium π̃ ∈ E(Γ(Λ, ϕ)) does not satisfy (13).

Case III: ϕ yields [c, b] and [a, c].

Let J1 = {a, b} and J2 = {c}. Let Λ = Λ{a,b}. Applying the same arguments as in the
first part of Case I it follows again that for each Nash equilibrium π̃ ∈ E(Γ(Λ, ϕ)),

{α, β}, {α, γ}, {δ, β}, {δ, γ} 6⊆ {ϕπ : π ∈ Π and Pr(π|π̃) > 0}. (20)

Now assume that there exists some Nash equilibrium π̃ ∈ E(Γ(Λ{a,b}, ϕ)) with

{ϕπ : π ∈ Π and Pr(π|π̃) > 0} ⊆ {α, δ}. (21)

Then, player 2 uses the pure strategy of sending his job c to m2. Suppose that in fact
{ϕπ : π ∈ Π and Pr(π|π̃) > 0} = {δ}. Then, player 1’s mixed strategy is in fact the pure
strategy of sending job a to m2 and job b to m1. Since mechanism ϕ yields [c, b], player 2
would be better off by sending his job to machine m1 instead. However, this contradicts
π̃ ∈ E(Γ(Λ{a,b}, ϕ)). Hence, α ∈ {ϕπ : π ∈ Π and Pr(π|π̃) > 0}. As α results with
positive probability we conclude that ϕ has to yield [a, b]. So, with positive probability,
say qα > 0, player 1’s costs equal (1 + (1 + 2)) = 4 as ϕ yields [a, b], and with probability
1 − qα, player 1’s costs equal 1 + 2 = 3. But then, since ϕ yields [a, c], player 1 would
be better of by playing the pure strategy that consists of sending job a to m2 and job
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b to m1: it would give (with probability 1) the lower costs 1 + 2 = 3. This contradicts
π̃ ∈ E(Γ(Λ{a,b}, ϕ)). Similarly, assuming that {ϕπ : π ∈ Π and Pr(π|π̃) > 0} ⊆ {β, γ}
leads to a contradiction with π̃ ∈ E(Γ(Λ{a,b}, ϕ)). Therefore, for each Nash equilibrium
π̃ ∈ E(Γ(Λ{a,b}, ϕ)),

{ϕπ : π ∈ Π and Pr(π|π̃) > 0} 6⊆ {α, δ}, {β, γ}. (22)

We now prove that for each Nash equilibrium π̃ ∈ E(Γ(Λ{a,c}, ϕ)), and any subset
Σ ⊆ Σ∗(Λ{a,c}),

{ϕπ : π ∈ Π, P r(π|π̃) > 0} 6⊆ Σ. (23)

If |Σ| ≥ 3, 4, then (23) follows from (20). If |Σ| = 1, then (23) follows from (22). If
|Σ| = 2, then (23) follows from (20) together with (22). From (23) it immediately follows
that for Λ = Λ{a,b} we have that each Nash equilibrium π̃ ∈ E(Γ(Λ, ϕ)) does not satisfy
(13).

Case IV: ϕ yields [c, b] and [c, a].

Let J1 = {b, c} and J2 = {a}. Let Λ = Λ{b,c}. Assume there exists some Nash equilibrium
π̃ ∈ E(Γ(Λ, ϕ)) that satisfies (13). Since ϕ yields [c, a],

{ϕπ : π ∈ Π and Pr(π|π̃) > 0} ⊆ {α, γ}. (24)

As α or γ results we conclude that ϕ has to yield [a, b]. Suppose {ϕπ : π ∈ Π and Pr(π|π̃) >
0} = {α, γ}. In α, job a is processed on machine m1 and in γ it is processed on machine
m2. Similarly, in α, job c is processed on machine m2 and in γ it is processed on ma-
chine m1. From (24) and the fact that ϕ satisfies PC it follows that player 1 (player 2)
sends his job c (his job a) to either machine with positive probability. Since jobs a and
c are owned by different players, it follows that with positive probability the two jobs
end up being processed on the same machine. Hence, (24) is violated. Therefore, either
{α} = {ϕπ : π ∈ Π and Pr(π|π̃) > 0} or {γ} = {ϕπ : π ∈ Π and Pr(π|π̃) > 0}.

Assume, without loss of generality, that {α} = {ϕπ : π ∈ Π and Pr(π|π̃) > 0}. Then,
both players use a pure strategy and player 1’s costs equal (1 + 2) + 3 = 6 as ϕ yields
[a, b]. However, since ϕ yields [c, a], player 1 would be better off by playing the strategy
that consists of sending job b to m2 and job c to m1 as it would yield the lower costs of
2 + 3 = 5. This contradicts π̃ ∈ E(Γ(Λ{b,c}, ϕ)). Therefore, for Λ = Λ{b,c} we have that
each Nash equilibrium π̃ ∈ E(Γ(Λ, ϕ)) does not satisfy (13).

Remark 5. Inspection of the proof of Theorem 5 shows that we only need a weaker
version of Machine Anonymity. More precisely, it suffices to impose (11) and (12) for
permutations ρ that swap the pre–scheduled batches of two machines (and keep the pre–
schedule for all other jobs intact). �
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5 Simulations

In this section we investigate the behavior of PoA in relation with the tight bound of PoA
as described in Theorems 3 and 4. For this purpose we simulate four different classes of
scheduling problems that are classified by the number of players and jobs.

First, we report the settings of the simulations. The inputs for each simulation are
the number of players, the number of jobs per players, the processing time of each job
and the number of machines. We distinguish four different classes. The first class selects
randomly the number of players, i.e. |N |, from the set {2, 3, 4, 5}. The number of jobs for
player i, i.e. Ji, is randomly drawn from the set {1, 2, 3, 4, 5} and the processing times of
each job is randomly drawn from the interval (0, 1) of real numbers. Finally, a number
is randomly selected from the set {1, 2, ..., 10} that represents the number of machines.
The second class differs from the first one only by the set of jobs which is replaced by
{10, 11, 12, 13, 14, 15}. The third class differs from the first one only by the set of players
which is replaced by {5, 6, 7, 8, 9, 10}. Finally, the fourth class differs from the first one by
replacing the set of players by {5, 6, 7, 8, 9, 10} and the set of machines by {2, 3, ..., 50}.

For each class 10000 simulations are executed which results in the PoA for each sim-
ulated scheduling problem. The resulting numerical data is depicted by means of box
plots in Figure 1. In each box plot the central line is the median, the central circle is
the average, the edges of the box are the 25th and 75th percentiles, and the whiskers
extend to the 2.5th (or lower) and 97.5th (or upper) percentiles. We have also included
the graph of the function x 7→ 3x−1

2x
, which by Theorem 4 gives the tight bound of the

price of anarchy for any integer x ≥ 2 when there are x machines. Finally, in each box
plot, the medians are connected by the graph of a piecewise linear function.

Figure 1 a (b,c,d) represents the first (second, third, fourth) class of simulated schedul-
ing problems and allows us to make the following observations.

First, we consider the percentage loss of performance with respect to optimal schedules.
We observe that the average loss in performance is at most 23 %. This value is attained
in the fourth class with |M | = 16. Here, the average PoA ≈ 1.23. This is considerably
lower than the tight upperbound of PoA in this situation: 1.468, which reflects a loss
of performance of 46%. Moreover, the relative distance from the PoA averages to the
corresponding tight upper bounds is at least 15 %. This value is attained in the third
case with |M | = 10. If we consider the upper percentile of the PoA, then we observe that
this distance is at least 4%. However, in most situations it is more than 10%.

Second, taking the first class as starting point, we see that augmenting the number
of jobs per players (i.e. shifting from the first class to the second class), the average PoA
is reduced drastically. Moreover, the distance between the lower and upper percentiles is
very small in comparison with this distance in the first class. This seems counter intuitive,
but in these two cases we have only a few players. The difference between the two cases
are the number of jobs. In the second case we have more jobs. So, the probability to
obtain a bad schedule is smaller than in the case we have only a few jobs. Therefore,
the payoff of the worst Nash equilibrium in the second case is considerably lower than
the payoff of the worst Nash equilibrium in the first case. If the number of players is
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Figure (d)

Figure 1: Box plots of price of anarchy for uniformly distributed processing times

augmented (i.e. shifting from the first class to the third class) we observe that both the
average PoA and the distance between the lower and upper percentile slightly increase.

Third, if we augment the number of machines, the average PoA increases relatively
quickly. This implies that the optimal costs decrease more rapidly than do the costs asso-
ciated with the worst Nash equilibrium. After the PoA reaches a maximum it decreases
relatively slowly. In fact, we can argue that when the number of machines tends to infi-
nite (and all other parameters do not change), the price of anarchy tends to 1. This is an
immediate consequence of the fact that when there is a very large number of machines
any optimal schedule processes at most one job on each machine and the probability that
a worse Nash equilibrium assigns two jobs to the same machine tends to 0.

Fourth, we see that for small and large numbers of machines, the average price of
anarchy is located above the median price of anarchy. For intermediate values, the average
is below the median.

6 Concluding Remarks

This paper focused on the costs of outsourcing decisions being made individually rather
than cooperatively. We identified tight bounds for the price of anarchy and the impossibil-
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ity for a natural mechanism to enforce the existence of equilibria that result in first-best
schedules. Note that this impossibility implies that under natural assumptions on the
mechanism the gap between first-best and the worst Nash equilibrium cannot be avoided,
but also that the gap between first-best and the best Nash equilibrium cannot be avoided.
Hence, though our choice between a focus on the best or the worst Nash equilibrium (fo-
cus on decentralization costs or price of anarchy) may have seen arbitrary in favor of an
analysis using the PoA, the analysis of coordinating mechanisms is not affected by this
choice. Additionally, one might wonder what the impact of this choice would be on the
bounds, which is what we will analyze next.

Formally, for a game Γ, the decentralization cost is defined as

DC(Γ) =
minπ̃∈E(Γ)

∑
j∈J C̃j(σ

π̃)∑
j∈J Cj(σ

∗)
,

where σ∗ is an optimal schedule. Obviously, for any game Γ, 1 ≤ DC(Γ) ≤ PoA(Γ).
Assuming that there are |M | = 2 machines, in Example 4 we exhibit a series of

scheduling games Γε such that for any ρ < 5
4

= 3|M |−1
2|M | there is a game Γε(ρ) with

DC(Γε(ρ)) = PoA(Γε(ρ)) ≥ ρ. Therefore, since the bound in Theorem 3 is tight for
the price of anarchy (Theorem 4), the same bound is tight for the decentralized cost as
well.

Example 4. (Same tight bound for price of anarchy and decentralization cost.)
Let M = {m1,m2} and N = {1, 2}. Let J1 = {a, c} and J2 = {b, d}. Let ε ∈ (0, 1

4
).

Suppose (pa, pb, pc, pd) = (ε, 2ε, 1 − 2ε, 1 − ε). Note pa < pb < pc < pd. Consider the
associated game Γε. Similarly to the scheduling game discussed in Examples 1 and 2, each
strategy can fully be described by indicating which jobs are sent to m1 (the complement
is sent to m2). And, as before, there is a unique Nash equilibrium in mixed strategies.
For player 1 it is always strictly better to play {a} than ∅, and it is always strictly better
to play {c} than {a, c}. Similarly, for player 2 it is always strictly better to play {b} than
∅, and it is always strictly better to play {d} than {b, d}. So, in any Nash equilibrium,
strategies ∅ (for both players), {a, c} (for player 1), and {b, d} (player 2) receive probability
0. Hence, it suffices to restrict attention to the reduced game described in Table 4.

1\2 {b} {d}
{a} 1 − ε, 2 1 + ε, 1 + 2ε
{c} 1 + ε, 1 + 2ε 1 − ε, 2

Table 4: Table of Example 4

Applying standard game–theoretic tools one can readily show that the strategy–profile
in which each of the strategies {a}, {c}, {b}, and {d} receives probability 1/2 constitutes
the unique Nash equilibrium π̃− in mixed strategies. Hence, the costs induced by the
unique Nash equilibrium are

c̃1(π̃−) + c̃2(π̃−) = [
1

2
(1− ε) +

1

2
(1 + ε)] + [

1

2
(2) +

1

2
(1 + 2ε)] =

5

2
+ ε.
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For any optimal schedule σ∗ the associated costs equal

c1(σ∗) + c2(σ∗) = ε+ 2ε+ (ε+ 1− 2ε) + (2ε+ 1− ε) = 2 + 3ε.

Hence, from the unicity of the Nash equilibrium π̃− it follows that

DC(Γε) = PoA(Γε) =
5
2

+ ε

2 + 3ε
.

Note that limε→0 DC(Γε) = limε→0 PoA(Γε) = 5
4
, which for |M | = 2 coincides with the

tight bound established for the price of anarchy in Theorems 3 and 4. �

For more than two machines the tight bound for the PoA of the current paper is, of
course, a bound for the decentralization costs as well. An interesting open problem would
be the identification of a tight bound for the decentralization costs in case of more than
two machines.
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