
 

 

 

 

 

 

 

 

Barcelona GSE Working Paper Series  

Working Paper nº 700 
 

Man-Bites-Dog Business Cycle  
Kristoffer P. Nimark  

This version: December 2013 
(December 2011) 



MAN-BITES-DOG
BUSINESS CYCLES

KRISTOFFER P. NIMARK

Abstract. The newsworthiness of an event is partly determined by how unusual it is
and this paper investigates the business cycle implications of this fact. In particular, we
analyze the consequences of information structures in which some types of signals are more
likely to be observed after unusual events. Such signals may increase both uncertainty and
disagreement among agents and when embedded in a simple business cycle model, can help
us understand why we observe (i) occasional large changes in macro economic aggregate
variables without a correspondingly large change in underlying fundamentals (ii) persistent
periods of high macroeconomic volatility and (iii) a positive correlation between absolute
changes in macro variables and the cross-sectional dispersion of expectations as measured
by survey data. These results are consequences of optimal updating by agents when the
availability of some signals is positively correlated with tail-events. The model is estimated
by likelihood based methods using individual survey responses and a quarterly time series
of total factor productivity along with standard aggregate time series. The estimated model
suggests that there have been episodes in recent US history when the impact on output
of innovations to productivity of a given magnitude was more than eight times as large
compared to other times.

1. Introduction

A well-known journalistic dictum states that “dog-bites-man is not news, but man-bites-
dog is news”. That is, unusual events are more likely to be considered newsworthy than
events that are commonplace. This paper investigates the business cycle implications of
this aspect of news reporting. Particularly, we will demonstrate that a single and relatively
simple mechanism can help us understand three features of business cycles. First, there can
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be large changes in aggregate variables like CPI inflation and GDP growth, but without an
easily identifiable change in fundamentals of comparable magnitude. Second, there appear
to be persistent episodes of increased macroeconomic volatility in the data. Third, measures
of uncertainty as well as measures of cross-sectional dispersion of expectations are positively
correlated with absolute magnitudes of changes in macro economic aggregates. These fea-
tures can be explained by Bayesian agents optimally updating to signals that are more likely
to be available about unusual events. The model can also help us understand a type of
“crisis mentality” in which an intense media focus on the economy causes an increase in
both agents’ uncertainty and sensitivity to new information.

Conceptually, information about the current state of the world can be divided into at least
three categories. What we may call local information is information that agents observe
directly through their interactions in markets, e.g. through buying and selling goods or
through participating in the labor market. A second type of information is what we may
call statistics. Statistics are collected and summarized by (often government) organizations
and made available to a broader public through web sites and printed media. Statistics
are normally reported regardless of the realized values of the variable that they refer to and
often according to a pre-specified schedule. A third type is information provided by the news
media, such as newspapers and television programs. News media may be the main source
of information for a large section of the general population (e.g. Blinder and Krueger 2004).
One service that the news media provides is to select what events to report. This editorial
function of the news media is necessary since it is simply not possible for a newspaper or a
television news program to report all events that have occurred on a given day or during a
given week. The man-bites-dog dictum referred to above suggests that more unusual events
are more likely to be selected for dissemination and more unusual events are thus more
likely to become news. This makes news different from statistics since whether an outcome
of an event is available as news depends on the realized outcome of the event. In order
to have a terminology that is distinct from the one used by the literature studying how
information about future productivity affect the economy today (e.g. Beaudry and Portier
2006 and Jaimovich and Rebelo 2009) “news” in the sense meant here will be referred to as
man-bites-dog signals.

A prime example of man-bites-dog news reporting is the Movers segment on Bloomberg
Television. In a typical segment, the price movements of a few stocks are reported along with
short statements on the probable causes of these movements. The stocks in question are a
small sub-sample of all stocks traded and are selected on the basis of having had the largest
price movements during the day. Unusually large price movements are thus more likely to
be reported than more common price movements. Because of the way that stock prices are
selected for inclusion in the Movers segment, the variance of a stock’s price conditional on it
being mentioned in the Movers segment is thus clearly larger than its unconditional variance.

The example of the Movers segment illustrates a more general point. When the availability
of a signal depends on the realized value of the variable of interest, the availability of the
signal is in itself informative. Below, we will prove this more formally in a general setting
where agents want to form an estimate of a latent variable. There, it will be shown that
man-bites-dog news selection introduces a form of conditional heteroscedasticity. From the
agents’ perspective, it is as if the variable is drawn from a distribution with relatively more
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probability mass in the tails when the man-bites-dog signal is available, compared to the
variable’s unconditional distribution. Since whether the man-bites-dog signal is available or
not is a discrete event, this mechanism effectively splits the unconditional distribution of the
latent variable into two distinct conditional distributions.

When signals are noisy, the information contained in the availability of a man-bites-dog
signal will in general affect both the mean and variance of agents’ posterior beliefs. Using a
simple static setting, it can be shown that agents’ conditional expectations about a latent
variable respond more strongly to a man-bites-dog signal relative to a standard signal of the
same precision. The intuition is straightforward: The availability of a man-bites-dog signal
suggests that tail realizations are relatively more likely. This makes agents more willing
to move their expectations about the latent variable further from their prior mean. When
agents’ optimal actions depend on these expectations, actions will also respond more strongly
to a man-bites-dog signal than to a standard signal of the same precision.

Perhaps more surprising, observing a man-bites-dog signal can potentially make agents
more uncertain about the latent variable. To understand this result, note that a man-
bites-dog signal affects agents’ posterior uncertainty through two different channels that
work in opposite directions. The fact that the signal is available means that agents should
redistribute probability mass towards the tails of the distribution since unusually large real-
izations are conditionally more likely when the man-bites-dog signal is available. This effect
increases agents’ uncertainty. But the signal also contains information about the realized
value of the variable which decreases uncertainty. When the signal is sufficiently noisy, the
increase in uncertainty from the first effect dominates and agents’ posteriors beliefs have a
higher variance when the man-bites-dog signal is available compared to when the signal is
not available.

In a dynamic setting, a larger posterior uncertainty in period t translates into a larger prior
uncertainty in period t+1. By embedding a man-bites-dog information structure in a simple
business cycle model similar to that of Lorenzoni (2009), we show that the propagation of
uncertainty through time endogenously generates periods of persistently higher volatility
in output and inflation. The mechanism is the following. Agents in the model need to
solve a dynamic filtering problem in order to make optimal consumption and price setting
decisions. In a given period, the weight agents put on new information is inversely related to
the precision of their priors. Since a man-bites-dog signal in period t can increase the prior
uncertainty in period t+1, agents may put more weight on all signals in period t+1 relative
to the case when there was no man-bites-dog signal available in period t. The increased
sensitivity to new information can persist for several periods and implies that the impact
of exogenous disturbances of a given magnitude can also be larger than usual for several
periods. The mechanism can thus generate periods of higher volatility of macro economic
aggregates as observed in the data and documented by Engle (1982), Stock and Watson
(2003), Primiceri (2005) and Fernandez-Villaverde and Rubio-Ramirez (2010) among others.
In related work, Gali and Gambetti (2009) document that the response of hours worked
to a productivity shock is time-varying. This evidence is consistent with the mechanism
of the model presented here. With labor as the sole input into production, the impact on
output of a productivity shock can only be time-varying if the response of hours worked to
a productivity shock is also time-varying.
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Bloom (2009) and Bloom, Floetotto and Jaimovich (2011) analyze models in which firms
respond to increased uncertainty by adopting a wait-and-see approach to capital investment
and recruiting so that an increase in the second moment of the exogenous shocks generates
a fall in output. These papers thus provides a story for how firms respond to increased
uncertainty and where uncertainty has a direct effect on the level of output. By contrast,
the man-bites-dog mechanism provides a story for how economic agents come to understand
that conditional uncertainty has increased. In the model presented here, a large shock in
levels is more likely to generate a man-bites-dog signal and thus more likely to lead to an
increase in the conditional uncertainty. In related work, Bachmann and Moscarini (2011)
propose an alternative mechanism that also implies that causality runs from realizations of
first moment shocks to conditional uncertainty. In their paper, imperfectly informed firms
tend to be more likely to experiment with prices after a large negative shock. This behavior
allows firms to get a better estimate of the demand elasticity of the good that they are
producing, but increases the conditional variance of profits in the short run.

As mentioned above, observing a man-bites-dog signal can increase the posterior uncer-
tainty relative to the case when no man-bites-dog signal is observed. The same parameter
restrictions that ensure that the posterior variance increases after a man-bites-dog signal also
imply that the cross-sectional dispersion of expectations increases. This holds even if the
signal is public (in the strong common knowledge sense of the word). In the data, we observe
a positive correlation between the cross-sectional dispersion of forecasts (as measured by the
Survey of Professional Forecasters) and the absolute magnitudes of changes in macro aggre-
gates. Interpreted through the lens of the model, this suggest that the empirically relevant
specification of the model may be one where the increase in uncertainty from conditioning
on the availability of a man-bites-dog signal is dominating the increased precision due to the
content of the signal.

In order to quantify the importance of the man-bites-dog aspect of news reporting I esti-
mate the model on US data. In addition to standard macro variables like GDP, CPI inflation
and the Federal Funds rate, I also use the quarterly time series of Total Factor Productivity
constructed by John Fernald (2010) as well as individual survey responses from the Survey
of Professional Forecasters. Using individual survey responses, i.e. the entire cross-section
of individual survey responses rather than a mean or median response, has at least two ad-
vantages. First, and as documented by Mankiw, Reis and Wolfers (2004), there is significant
time-variation in the dispersion of forecasts reported by survey respondents. Since the model
can potentially fit this fact, individual survey responses can be exploited when estimating
the model, allowing for a sharper inference about the precision of signals observed by agents
and the timing of man-bites-dog events in the sample period. The second advantage of using
individual survey responses rather than a median or mean expectation stems from the fact
that the number of survey respondents varies over time. For instance, the number of respon-
dents forecasting nominal GDP growth and CPI inflation varies between 9 (1990:Q2) and 50
(2005:Q4) in a sample that covers the period 1981:Q3 to 2010:Q4. Using individual survey
responses and likelihood based estimation methods naturally incorporates that we have a
(presumably) more representative sample of the population with 50 observations than with
9.
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Most existing macro models imply that the cross-sectional dispersion of expectations is
either zero, as in the full information rational expectations models, or non-zero but constant
as in models with private but time-invariant information structures, e.g. Lorenzoni (2009),
Mackowiak and Wiederholt (2009), Graham and Wright (2009), Nimark (2008, 2011) An-
geletos and La’O (2009, 2010) or Melosi (2011). One exception is the sticky information
models of Mankiw and Reis (2002) and Reis (2006a, 2006b). In sticky information models,
only a fraction of agents update their information in each period and those who update, all
observe the state perfectly. Because of this feature, the cross-sectional distribution of expec-
tations implied by sticky information models is a mixture of degenerate distributions, with
relative weights decreasing with the vintage of information that the forecasts are based on.
It is because the implied cross-sectional dispersion of expectations in the model presented
here is time-varying but continuous that it is possible to estimate the structural parameters
of the model using likelihood based methods and individual survey responses. One method-
ological contribution of the paper is to demonstrate how dynamic models with time-varying
information structures can be solved and estimated. This may be of independent interest to
some readers.

In addition to the benchmark specification, I also estimate several closely related models.
A Bayesian model comparison reveals that both time-variation in volatility and the number
of periods in which the public signal about productivity is available generally improve the fit
of the model. The benchmark man-bites-dog model thus fits better than a more restricted
model with no public signals. However, the best fitting specification is a model with time-
varying exogenous volatility in which the public signal about productivity is available in every
period. This result may cast some doubt on the empirical relevance of the man-bites-dog
mechanism. However, a closer analysis suggests that allowing for a public signal in periods of
high volatility is more important than in periods of low volatility, which lends some qualified
support for the mechanism presented here. Of course, a less favorable interpretation is that
the time-varying volatility and cross-sectional dispersion observed in the data is explained
by a mechanism unrelated to man-bites-dog news reporting.

The paper is structured as follows. The next section first defines the concept of a man-
bites-dog signal formally and derives some general results. It then describes how a tractable
man-bites-dog information structure can be constructed and analyzes how agents’ beliefs
are affected by a man-bites-dog information structure using a specific example where agents
solve a filtering problem but make no economic decisions. In Section 3, beliefs are linked with
decisions by the embedding of a man-bites-dog information structure in the static beauty
contest game of Morris and Shin (2002). There, it is demonstrated that average actions
respond more strongly to both fundamentals and noise shocks when there is a man-bites-dog
signal available compared to the responses to a standard signal of the same precision. Section
4 presents a simple dynamic business cycle model similar to that of Lorenzoni (2009), but
with a man-bites-dog information structure. This model is the main vehicle for the empirical
part of the paper. Section 5 discusses how the business cycle model is solved and how the
parameters are estimated. Section 6 contains the main empirical results. Section 7 briefly
discusses three closely related alternative specifications and their in-sample fit relative to the
benchmark model. Section 8 concludes.
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2. Signals and unusual events

This section introduces the concept of man-bites-dog signals formally and contains the
main theoretical results of the paper. We will start by being intentionally nonspecific about
distributions and derive some general properties of man-bites-dog information structures that
hold under minimal assumptions. A signal y about a latent variable x will be called a man-
bites-dog signal if it is more likely to be available when the realization of x is more unusual
in the sense of having a lower unconditional probability of occurring. When the availability
of the signal y depends on the realized value of x, the availability of y by itself carries
information about x independently of the particular realized value of the signal y. Bayes’
rule then implies that it is as if the latent variable x is drawn from a different distribution
when the signal y is available compared to when it is not. In particular, conditional on the
signal y being available, the relative probability of unusual events increases. This section
draws out the implications of this fact for how Bayesian agents update their beliefs in response
to man-bites-dog signals.

2.1. Signal availability and conditional distributions. Denote the unconditional prob-
ability density function of the latent variable of interest x as p(x). An unusual realization of
x is thus a realization for which p(x) is small. We are interested in information structures
in which the probability of observing the signal y about x is larger for relatively unusual
realizations of x. To help distinguish between a particular realization of the signal y and the
event that the signal y is available, the indicator variable S is defined to take the value 1
when the signal y about x is available and 0 otherwise. We can then define a man-bites-dog
signal as follows.

Definition 1. The signal y is said to be a man-bites-dog signal if for any two realizations
of x denoted x′ and x′′ such that

p(x′) < p(x′′) (2.1)

the inequality

p(S = 1 | x′) > p(S = 1 | x′′) (2.2)

holds.

The first inequality in the definition simply establishes that x′ is a more unusual realization
than x′′. The second inequality formalizes the notion that a more unusual realization of x is
considered more newsworthy than a more common realization. Because the signal y is more
likely to be available for some realized values of x than for others, the availability of the
signal y is in itself informative about the distribution of x. More specifically, using Bayes’
rule, the next proposition shows that conditional on the event that the signal y is available,
the probability of more unusual realizations of x increases.

Proposition 1. The more unusual realization x′ is relatively more likely when the signal y
is available, i.e.

p (x′ | S = 1)

p (x′′ | S = 1)
>
p (x′)

p (x′′)
(2.3)
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Proof. Dividing Bayes’ rule for conditional probabilities

p (x | S = 1) p (S = 1) = p (S = 1 | x) p (x) (2.4)

for x′ by the same expression for x′′ gives

p (x′ | S = 1)

p (x′′ | S = 1)
=
p(S = 1 | x′)
p(S = 1 | x′′)

p (x′)

p (x′′)
(2.5)

The proof then follows directly from the fact that the inequality (2.2) in Definition 1 implies
that

p(S = 1 | x′)
p(S = 1 | x′′)

> 1 (2.6)

�

Proposition 1 states that the relative probability of the more unusual realization x′ com-
pared to the more common realization x′′ is larger conditional on the signal y being available.
The availability of a man-bites-dog signal thus implies that probability mass should be re-
distributed away from unconditionally more likely outcomes towards relatively less likely
outcomes. By a completely symmetric argument we have

p (x′ | S = 0)

p (x′′ | S = 0)
<
p (x′)

p (x′′)
(2.7)

so that the absence of a man-bites-dog signal implies that probability mass should be redis-
tributed towards relatively more likely outcomes. Because the availability of the signal y is
a discrete event, whether y is available or not thus effectively splits the unconditional distri-
bution p(x) into the two distinct conditional distributions p (x | S = 1) and p(x | S = 0).

2.2. Unimodal symmetric distributions. While the implications of a man-bites-dog in-
formation structure derived above hold for any distribution p(x), from here on we will restrict
our attention to unimodal symmetric distributions centered around a zero mean. The prob-
ability density function p(x) then takes a small value when the absolute value of x is large
since realizations of x further out in the tails of p(x) are more unusual than realizations
closer to the mean.

Figure 1 illustrates a man-bites-dog information structure for a unimodal and symmet-
ric distribution p(x) (solid line). The dashed line illustrates the probability of observing
the signal y conditional on different realizations of x. At the mean, there is approximately
a 40% chance of observing the signal y. As realizations of x further from the mean are
considered, the conditional probability of observing a signal increases towards 1 so that a
signal y is available almost surely when the realization of x is far enough away from the
mean. Graphically, that the conditional probability of observing y satisfies the definition of
a man-bites-dog signal is implied by the fact that the slope of the dashed line and the solid
line are of opposite signs (or both zero) for all values of x.

The distribution of x conditional on y being available can be backed out from p (x) and
the conditional probability of observing y by using Bayes’ rule

p (x | S = 1) =
p (S = 1 | x) p (x)

p (S = 1)
. (2.8)
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Figure 1. Unconditional distribution of x, conditional probability of observing

the signal y and the implied conditional distribution of x.

if the unconditional probability of observing y is known. By construction, the conditional
probability of observing y is increasing in the absolute value of x. Since the conditional
distribution on the left hand side of (2.8) is proportional to the product of the unconditional
distribution p(x) and the conditional probability p (S = 1 | x) , the conditional distribution
p (x | S = 1) must have more probability mass in tails of the distribution relative to the
unconditional distribution p(x). This is illustrated by the dotted line in Figure 1.

Bayes’ rule can also be used to plot the conditional distribution of x when y is not available.
From the inequality (2.7) we know that it must have less probability mass in the tails
than p(x) (not shown). A man-bites-dog information structure thus introduces a form of
conditional heteroscedasticity in the distribution of x. From the agents’ perspective, it is
as if the latent variable x is drawn from a more dispersed distribution when the signal y is
available compared to when it is not. It is important to note that this is true even when the
signal content of y is not specifically about the variance, or second moment of, x. It is also
important to keep in mind that the indicator variable S is a modeling device that we use to
describe the event that the signal y is available and not a separate signal that agents can
observe directly and independently of y.

2.3. Reverse engineering a tractable man-bites-dog information structure. So far,
little has been assumed about the signal y apart from how the probability of observing it
depends on the realized value of x. In order to describe a complete filtering problem of an
economic agent, we need to be more specific not only about the exact nature of the signal y
but also about other potential sources of information.

Throughout the rest of this section as well as in the next, agents indexed by j ∈ (0, 1)
want to form an estimate of x conditional on all available information. There are two types
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of signals. Agent j can always observe the private signal xj which is the sum of the true x
plus an idiosyncratic noise term

xj = x+ εj : εj ∼ N
(
0, σ2

ε

)
∀ j. (2.9)

where the variance of the idiosyncratic noise term εj is common across agents. There also
exists a public signal y

y = x+ η : η ∼ N
(
0, σ2

η

)
. (2.10)

that may not always be available. As before, the indicator variable S takes the value 1 when
y is available and 0 otherwise. The fact that all agents observe y when it is available is
common knowledge (though this does not really matter until later).

To make y a man-bites-dog signal, we need to specify how the availability of y depends
on the realized value of x. One approach would be to directly write down a parameterized
functional form for the conditional probability p(S = 1 | x) that conforms to the definition
of a man-bites-dog signal. That approach is feasible, but will in general not be sufficient
to deliver tractable expressions for agents’ posterior beliefs. Instead, we will use that the
agents in the model always know whether the signal y is available or not. The agents thus
never need to evaluate the unconditional distribution p(x). When agents observe the signals
xj and y they instead update their beliefs from the conditional, “prior” distribution p(x | S).
We ensure tractability by specifying these conditional distributions to be conjugate to the
distributions of the signals. By applying the results of Proposition 1 “in reverse”, these
conditional distributions can be parameterized to ensure that the inequalities in Definition
1 are satisfied so that we indeed have a man-bites-dog information structure.

2.3.1. A tractable class of conditional distributions. Updating normally distributed priors to
normally distributed signals results in normally distributed posteriors, i.e. normal distribu-
tions are self-conjugate. A good choice given the signal structure (2.9) - (2.10) is thus to
make the distributions p(x | S) conditionally normal. To this end, specify x conditional on
S as

p (x | S = 0) = N
(
0, σ2

)
(2.11)

p (x | S = 1) = N
(
0, γσ2

)
(2.12)

so that the unconditional distribution p(x) is a mixture normal

x ∼ (1− ω)N
(
0, σ2

)
+ ωN

(
0, γσ2

)
(2.13)

The parameter ω then determines how often the signal y is observed in the unconditional
sense, i.e. ω ≡ p(S = 1).

2.3.2. Verifying Definition 1. The distributional assumptions (2.11) - (2.12) ensures tractabil-
ity of agents’ posterior beliefs. To make y a man-bites-dog signal, we need to parameterize
these distributions so that the probability of observing y is larger for values of x that are
relatively less likely under the unconditional distribution (2.13). The probability density
function of a mixture of two normals both centered at zero is decreasing in the absolute
value of x. Larger realizations of x are thus more unusual, so for y to be a man-bites-dog
signal we need the probability p (S = 1 | x) to be increasing in the absolute value of x.
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The distributional assumptions above together with Bayes’ rule imply that the conditional
distribution p (S = 1 | x) satisfies the equation

p (S = 1 | x)

1− p (S = 1 | x)
=

ω

(1− ω)

1
√
γ
e(1−γ−1) x2

2σ2 . (2.14)

The term (1− γ−1) in the exponent on the right hand side of (2.14) is positive if γ > 1.
Imposing this restriction on γ thus ensures that the conditional probability p (S = 1 | x) of
observing the signal y is increasing in the absolute value of x. It is also clear from the expres-
sion that setting γ = 1 makes the probability of observing y independent of x. (Expression
(2.14) is derived in the Appendix.)

2.3.3. Manipulating the probability of observing y. Choosing ω, γ and σ2 let us manipulate
the shape of the conditional probability of observing the signal y. For instance, a large value
for γ implies that the probability of observing the signal y is low for values of x close to its
mean. Similarly, observing y can be made an unconditionally rare event by setting ω close to
zero. While manipulating the parameters ω and γ we may want to treat the unconditional
variance of x as a primitive that we want to keep fixed. For all values of ω and γ this is
always possible since the variance of the mixture normal distribution (2.13) is given by

σ2
x = ωγσ2 + (1− ω)σ2 (2.15)

and thus provides sufficient flexibility to hold σ2
x fixed by scaling σ2.

2.4. Posterior beliefs. Given the definitions (2.9) and (2.10) of the signals xj and y and the
distributional assumptions (2.11) - (2.12), agent j′s conditional expectations of x are then
given by standard formulas for multiple signals with independent Gaussian noise processes.
Denoting agent j’s information set Ω0

j when S = 0 and Ω1
j when S = 1, the respective

conditional expectations are then given by

E
(
x | Ω0

j

)
=

σ−2
ε

σ−2
ε + σ−2

xj (2.16)

and

E
(
x | Ω1

j

)
=

σ−2
ε

σ−2
ε + σ−2

η + γ−1σ−2
xj +

σ−2
η

σ−2
ε + σ−2

η + γ−1σ−2
y (2.17)

The weights on the signals are determined by the relative precision of the individual signals
and the respective conditional distribution. The posterior variances are also given by the
standard formulas

E
[
x− E

(
x | Ω0

j

)]2
=
(
σ−2
ε + σ−2

)−1
(2.18)

or

E
[
x− E

(
x | Ω1

j

)]2
=
(
σ−2
ε + σ−2

η + γ−1σ−2
)−1

. (2.19)

depending on wether the signal y is available or not.
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2.5. Properties of conditional expectations with man-bites-dog signals. The ex-
pressions for agents’ posterior beliefs allow us to prove three results.

Proposition 2. The (cross-sectional) average expectation of x responds more strongly to x
when y is available.

Proof. In the Appendix. �

The proof of Proposition 2 simply entails verifying that the sum of the coefficients on the
two signals is larger when S = 1 than the coefficient on the single private signal when S = 0.
The weights agents put on y and xj are inversely related to the precision of the conditional
distributions p(x | S) and the sum of these weights thus go up unambiguously when y is
available. Intuitively, agents are willing to update their expectations further when they know
that a tail realization is more likely to have occurred, but part of the stronger response of
expectations is simply due to the fact that agents have more information when the man-
bites-dog signal is available. However, in the next section we show in simple static game
that both expectations and aggregate actions also respond more strongly to a man-bites-dog
signal than to a standard public signal of the same precision.

Proposition 2 above holds regardless of parameter values. The next two results derive
conditions on the parameters of the model for when the stronger response of expectations to
a man-bites-dog signal will be associated with an increase in uncertainty and cross-sectional
dispersion of expectations.

Proposition 3. The posterior uncertainty about x is larger when the signal y is observed
relative to when it is not if the inequality

σ2
η >

σ2

(1− γ−1)
(2.20)

holds.

Proof. From (2.18) and (2.19) it is clear that the posterior variance is larger when y is
available if the inequality

σ−2
ε + σ−2 > σ−2

ε + σ−2
η + γ−1σ−2 (2.21)

holds. The proof follows by rearranging (2.21) into the inequality in the proposition. �

That posterior uncertainty may increase when an additional signal is observed may at
first appear counterintuitive but is in fact a natural consequence of Proposition 1. The event
that the signal y is available make agents redistribute probability mass towards the tails of
the distribution. This increases uncertainty. But observing the contents of the signal y is
informative about the location of x which decreases uncertainty. Clearly, this second effect
will be weaker when the signal is very noisy. When y is sufficiently noisy for the inequality
(2.20) to hold, the former effect dominates and the posterior variance is larger than it would
be if y was not available.

For a fixed variance of the noise in the signal y, the inequality in the proposition will also
hold if γ is sufficiently large. A large γ implies that only very unusual realizations of x are
significantly more likely to generate the signal y. The distribution p(x | S = 1) then has
lot more probability mass in the tails relative to the unconditional distribution p(x) and the
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signal y does not have to be very noisy for this effect to dominate. However, since the right
hand side of (2.20) has a minimum of σ2 when γ →∞ , that σ2

η > σ2 is a necessary condition
for the uncertainty to be larger when y is available.

Since uncertainty may increase after observing y, one may think that risk-averse agents
would be better off if the signal y was never available. This is not the case. It can be shown
that even when the private signal xj is uninformative, the unconditional expectation of the
posterior variance of agents’ beliefs is strictly smaller than the unconditional variance σ2

x

as long as the man-bites-dog signal is not infinitely noisy. This is related to a result from
information theory stating that, in general, it is possible that some realizations of signals
may increase entropy, though on average entropy must decrease when conditioning on more
information (see Theorem 2.6.5 of Cover and Thomas 2006).1

Corollary 1. When the inequality

σ2
η >

σ2

(1− γ−1)
(2.22)

holds, the cross sectional dispersion of expectations about x is larger when y is observed
compared to when it is not.

The proof follows directly from the fact that the denominator in the weight agents put
on the private signal in (2.16) and (2.17) is the same as the denominator in the posterior
variances (2.18) and (2.19). The cross sectional dispersion is increasing in the weight on the
private signal (holding the variance of the idiosyncratic noise constant). The same conditions
that deliver a higher posterior variance thus also deliver more weight on the private signal
and the intuition is also similar. If the public noise variance is high and the conditional
probability of a tail event is high, agents will put more weight on other (e.g. private) sources
of information.

This result can be contrasted to that of Kondor (2012). He shows that in a setting where
two classes of agents are constrained in what type of private information they can acquire,
a public signal may increase the dispersion between first and second order expectations.
In the model presented here, a man-bites-dog signal decreases dispersion between different
orders of expectation (not shown) but increases the cross-sectional dispersion of first order
expectations.

3. Man-bites-dog signals in a beauty contest game

Above, the implications of a man-bites-dog information structure for agents’ beliefs about
the latent variable x were analyzed in some detail, but there were no economic decisions made
by the agents. Here we introduce the information structure presented above into the beauty
contest model of Morris and Shin (2002). This simple model will help us build intuition for
the how a man-bites-dog information structure affects economic decisions that carries over
to the dynamic business cycle model of the next section. Below, the main components of
Morris and Shin’s model are presented, though some derivations are relegated to the Online
Appendix.

1I am indebted to Mirko Wiederholt for pointing out this link to me.
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3.1. A beauty contest model. The model of Morris and Shin (2002) consists of a utility
function Uj for agent j

Uj = − (1− r) (aj − x)2 − r
(
Lj − L

)
(3.1)

where aj is the action taken by agent j. The terms Lj and L are defined as

Lj ≡
∫

(ai − aj)2 di, L ≡
∫
Lidi (3.2)

Maximizing the expected value of the utility function (3.1) results in a first order condition
for agent j given by

aj = (1− r)E [x | Ωj] + rE [a | Ωj] (3.3)

where a is the cross-sectional average action

a ≡
∫
aidi (3.4)

For a positive value of r, agent j thus wants to take an action that is close to the true value
of x as well as close to the average action taken by other agents. The relative weights of these
two objectives are determined by the parameter r. This basic structure is identical to that
of the model in Morris and Shin (2002). As shown by Angeletos, Iovino and La’O (2011),
agent j′s first order condition (3.3) is isomorphic to that of a firm in a simple business cycle
model with monopolistic competition and dispersed information. In that setting, the action
aj corresponds to the optimal level of firm j′s output and the parameter r is a composite
function of the parameters governing the curvature of the utility function and the elasticity
of substitution between differentiated goods.

3.2. The average action as a function of higher order expectations. The expectation
about the average action of other agents can be eliminated from agent j′s first order condition
by repeated substitution. Taking averages of the resulting expression allows us to rewrite
the average action a as a weighted average of higher order expectations about x

a = (1− r)
∞∑
k=1

rk−1x(k) (3.5)

where the average k order expectation x(k) is defined recursively as

x(k) ≡
∫
E
[
x(k−1) | Ωj

]
dj (3.6)

starting from the convention that x(0) ≡ x. The expression for the average action (3.5) holds
regardless of the assumed information structure. A man-bites-dog information structure will
thus imply a different average action a compared to the original model only to the extent that
such an information structure will imply that higher order expectations in the two models
differ.
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3.3. Higher order expectations and signals. We can now embed the information struc-
ture defined in Section 2.3 into the model described above. Given the signal structure (2.9)
and (2.10) and the distributional assumptions (2.11) - (2.12) the average k order expectation
about x is given by

x(k) = gk0x (3.7)

when agents only observe xj and by

x(k) = gyy + gkx (x− gyy) (3.8)

when the signal y is also available. The coefficients g0, gx and gy are given by

g0 ≡
σ−2
ε

σ−2
ε + σ−2

, gx ≡
σ−2
ε

σ−2
ε + σ−2

η + γ−1σ−2
, gy ≡

σ−2
η

σ−2
η + γ−1σ−2

(3.9)

From the expression for the k order expectation (3.8) we can see that

lim
k→∞

x(k) = gyy (3.10)

since 0 < gx < 1. Thus, just as in Morris and Shin’s model, higher order expectations tend to
be dominated by the public signal y (when available) as the order of expectation increases.2

3.4. Aggregate responses to shocks and man-bites-dog signals. In order to determine
how the average action a is affected by the man-bites-dog structure, substitute the expres-
sions for the higher order expectations (3.7) and (3.8) into the average action expression
(3.5). After simplifying, the average action is given by

a =
(1− r) g0

1− rg0

x (3.11)

when the signal y is not available and

a =
(1− r) gx
1− rgx

x+

(
1− (1− r) gx

1− rgx

)
gyy (3.12)

when it is. We can then prove the following.

Proposition 4. The response of the average action a to a given value of x is stronger when
the signal y is available.

Proof. In the Appendix. �

As in Proposition 2 above, proving the proposition entails verifying that the coefficient
on x in (3.11) is always smaller than the sum of the coefficients on x and y in (3.12).
The proposition holds for all parameter values, including when γ = 1 and is thus true
partly because expectations (of all orders) simply respond more strongly when there are
more signals available. Perhaps more interestingly, the next proposition establishes that
conditional on the public signal being available, the average action responds more strongly
to a man-bites-dog signal than to a standard public signal of the same precision.

2In the original model of Morris and Shin (2002), the unconditional variance of x (or θ in their notation)
is left undefined. Yet, the original model is a special case of the set-up here. The equilibrium is identical for
the two models if we impose the parameter restrictions γ = ω = 1 and by letting σ2

x (which then equals σ2)
tend to infinity.
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Proposition 5. The average action responds more strongly to a change in x when a man-
bites-dog signal is available, compared to the response of the average action when the public
signal about x is always available (holding the precision of the signal and the unconditional
variance of x fixed).

Proof. In the Appendix. �

The proof of Proposition 5 uses the following two features of the model. First, the average
action in (3.5) is an increasing function of all orders of expectations. Second, all orders of
expectations respond more strongly to a given x when y is man-bites-dog signal compared to
when it is not. To understand the second part, note that when γ > 1 so that y is a man-bites-
dog signal, by (2.15) the conditional variance var(x | S = 1) is larger than the unconditional
variance, while if y is always available the unconditional and the conditional variance are
by construction the same. Since agents are willing to update their first order expectations
further when the conditional variance is large, first order expectations will respond more
strongly to a change in x when y is man-bites-dog signal. This in turn implies that the
conditional variance of first order expectations is higher when y is a man-bites-dog signal.
By the same argument, agents are then willing to update their expectations about other
agents’ expectations further as well. Second order expectations thus also respond more to a
given change in x, and so on.

A man-bites-dog information structure also changes how noise in the signal y affects the
average action relative to the case when y is always available. Since y = x+ η the coefficient
on y in (3.12) determines how big an impact the noise shock η has on the average action
a. For the same reason that the average action responds more strongly to the fundamental
x when a man-bites-dog signal is available, the impact of a noise shock in a man-bites-dog
signal is also stronger than the impact of a noise shock in a standard signal. Of course, with
a man-bites-dog information structure, the noise shock can only affect the average action
when the signal y is available. This limits how much of the unconditional variance that can
be explained by a noise shock.

This ends the theoretical part of the paper. Before turning to the estimated business
cycle model we can sum up what has been demonstrated up to this point. First, conditional
expectations and average actions respond more strongly when a man-bites-dog signal is
available. Second, the stronger responses of expectations and actions when a man-bites-dog
signal is available may be accompanied by either more or less posterior uncertainty and
dispersion of expectations. We showed that uncertainty and expectation dispersion increase
when the precision of the signal is low or when the parameter γ is large.

4. A business cycle model

This section presents a simple business cycle model, following closely that of Lorenzoni
(2009), but with a man-bites-dog information structure. As in the model by Lorenzoni,
there are informationally separated islands that are subject to both common and island
specific productivity shocks that cannot be distinguished by direct observation. Instead,
island inhabitants need to form an estimate of the common component of productivity in
order to make optimal consumption and price setting decisions. In the model, there is both
island specific and public information and the man-bites-dog signal is specified as a public
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signal about aggregate productivity. This means that information about large changes to
productivity will be more correlated across agents than information about small changes.

4.1. Preferences and technology. The set up is a stationary version of the island economy
described in Lorenzoni (2009). There is a continuum of islands indexed by j ∈ (0, 1) and
on each island there is a continuum of firms indexed by i ∈ (0, 1) producing differentiated
goods. On each island there is a representative household that consumes goods and supplies
labor Nj,t to the firms on the island. Households are thus also indexed by j ∈ (0, 1) and a
household on island j maximizes

E
∞∑
s=0

βs

[
exp(dj,t) lnCj,t −

N1+ϕ
j,t

1 + ϕ
| Ωj,t

]
(4.1)

where Ωj,t is the information set of inhabitants of island j and Cj,t is the consumption bundle
consumed by island j households defined as

Cj,t =

(∫
Bj,m

∫ 1

0

C
(δ−1)/δ
i,m,j,t di dm

)δ/(1−δ)
(4.2)

As in Lorenzoni (2009), households only consume goods from a subset Bj,m ⊆ (0, 1) of islands.
The set Bj,m is drawn by nature in each period. The shock dj,t

dj,t = dt + ζj,t : ζj,t ∼ N
(
0, σ2

ζ

)
(4.3)

is a demand disturbance that is correlated across islands and the common component dt
follows an AR(1) process

dt = ρddt−1 + udt : udt ∼ N
(
0, σ2

d

)
(4.4)

The demand disturbance dt is not present in the original model by Lorenzoni (2009) but is
needed here in order to avoid stochastic singularity when the model is estimated. Firm i on
island j produce good i, j using the technology

Yi,j,t = exp (aj,t)Ni,j,t (4.5)

(The log of) productivity aj,t is the sum of a common component at and the island specific
component εj,t

aj,t = at + εj,t : εj,t ∼ N
(
0, σ2

ε

)
∀ j, t. (4.6)

The common productivity component at follows an AR(1) process

at = ρaat−1 + uat (4.7)

The innovation to common productivity uat is distributed as a mixture normal and is specified
in detail below. Firms on island j are owned by island j households and set prices Pj,t to
maximize discounted expected profits Πj,t

E

[
∞∑
s=t

θsβs
Cj,t
Cj,t+s

Πj,t+s | Ωj,t

]
= E

[
∞∑
s=t

θsβs
Cj,t
Cj,t+s

(Pj,t+sYj,t+s −Wj,t+sNj,t+s) | Ωj,t

]
(4.8)
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where θ is the probability of not changing the price of a given good in a given period. The
intertemporal budget constraint of households on island j equates expenditure with income

Bj,t+1

Rt

+

∫
Bj,m

∫
Pi,j,tCj,mdi dm = Bj,t +Wj,tNj,t +

∫
Πi,j,tdi. (4.9)

Rt is the nominal one period interest rate which (in logs) follows a Taylor rule

rt = φππt + φyyt + φrrt−1 + urt : urt ∼ N
(
0, σ2

r

)
(4.10)

and Bj,t are households on island j′s holdings of nominal bonds that pay one dollar in period
t.

4.2. Linearized equilibrium conditions. The model presented above can be log linearized
around a non-stochastic steady state, yielding the following equilibrium conditions. (i) An
Euler equation determining the optimal intertemporal allocation of consumption

cj,t = E [cj,t+1 | Ωj,t]− rt + E [πBj,t+1 | Ωj,t] + dj,t (4.11)

where πBj,t+1 is the inflation of the goods basket consumed on island j in period t+ 1. (ii) A
labor supply condition equating marginal disutility of labor supply with the marginal utility
of consumption multiplied by the real wage

wj,t − pBj,t = cj,t + ϕnj,t. (4.12)

(iii) A demand schedule for good j depending on the relevant relative price of good j

yj,t =

∫
C,j,t

cm,tdm− δ
(
pj,t −

∫
C,j,t

pm,tdm

)
(4.13)

where
∫
C,j,t pm,tdl is the log of the relevant price sub index for consumers from other islands

buying goods from island j. (iv) An island j Phillips curve relating inflation on island j to
the nominal marginal cost on island j and expected future island j inflation

pj,t − pj,t−1 = λ
(
pBj,t + cj,t − pj,t − aj,t

)
+ λϕ (yj,t − aj,t) (4.14)

+βE (pj,t+1 − pj,t | Ωj,t)

where pBj,t is the relevant price subindex for consumers on island j and λ = (1−θ)(1−θβ)/β.
The steps required to arrive at the linearized equilibrium conditions (4.11) - (4.14) are
identical to those described in Lorenzoni (2009).

4.3. Local information. The inhabitants of each island observe their own productivity
and demand disturbances aj,t and dj,t. Since these contain a component that is common
across islands, these local variables are informative about the aggregate state. In addition
to these exogenous local signals, firms and households can also extract information about
the aggregate state from observing the demand for their own good yj,t and the price of
the goods basket that they purchase. Lorenzoni (2009) assumes that the islands visited by
the inhabitant of island j while shopping are drawn so that the price index of the goods
basket consumed by island j inhabitants is equal to the aggregate price level plus a normally
distributed island j specific shock. We will make a similar assumption, with an adjustment
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to the mean of the normally distributed shock such that the signal is conditionally stationary.
That is, the set Bj,t is drawn such that

pBj,t = pt + ξpj,t : ξpj,t ∼ N(pj,t−1 − pt−1, σ
2
ξp) (4.15)

Since pj,t−1 is observable by the inhabitants of island j the price index of the good purchased
by island j inhabitant is thus a noisy measure of aggregate inflation pt − pt−1, rather than
of the aggregate price level as in Lorenzoni (2009). Reformulating the signal structure this
way does not change anything substantial in the model but simplifies the representation of
agents’ filtering problems since all other variables except for the price level are stationary.
Similarly, we assume that the set of islands Cj,t is drawn such that (4.13) takes the form

yj,t = yt − δ (pj,t − pt) + ξyj,t : ξyj,t ∼ N(δ [pj,t−1 − pt−1] , σ2
ξy) (4.16)

Again, the adjustment of the mean of the disturbance relative to Lorenzoni (2009) is made
in order to keep signals stationary. As in Lorenzoni’s original model, the shocks ξpj,t and ξyj,t
are introduced in order to prevent local interactions from perfectly revealing the aggregate
state.

4.4. The joint distribution of signals and shocks. The man-bites-dog signal structure
is embedded in the business cycle model in a similar way as in the static setting discussed
in Section 2 and 3. The unobservable variable of interest is the common component of
productivity at. The joint distribution of the indicator variable st and the innovations uat in
(4.7) are specified such that a man-bites-dog signal is more likely to be generated when there
has been a large (in absolute terms) innovation to the common productivity process at. The
indicator variable st takes the value 1 when a man-bites-dog signal is generated in period t
which occurs with unconditional probability ω. Similar to the static setting of Section 2, a
mixture normal density for uat will be used to keep the filtering problem tractable

uat ∼ (1− ω)N
(
0, σ2

a

)
+ ωN

(
0, γσ2

a

)
. (4.17)

with γ > 1. The unconditional variance of the productivity innovations uat is then given by

E (uat )
2 = (1− ω)σ2

a + ωγσ2
a (4.18)

To complete the description of the joint distribution of innovations and signals, it is further
assumed that when st = 1 all households observe an additional public signal za,t given by

za,t = at + ηt : ηt ∼ N
(
0, σ2

η

)
(4.19)

The signal zat is thus a man-bites-dog signal and the vector of observables zj,t available to
households and firms on island j in period t then is

zj,t =
[
aj,t dj,t yj,t pj,t rt st

]′
(4.20)

if st = 0 and

zj,t =
[
aj,t dj,t yj,t pj,t rt st zat

]′
(4.21)

if st = 1. The information set Ωj,t of firms and households on island j evolves as

Ωj,t = {zj,t,Ωj,t−1} (4.22)



MAN BITES DOG 19

This completes the description of the model. It is perhaps worth noting that the original
model of Lorenzoni (2009) is nested in the model presented here by setting ρa = ω = γ = 1
and σ2

d = 0.

5. Solving and estimating the model

There are two features of the model presented above that make standard solution methods
for linear rational expectations models inapplicable. First, there is island specific information
about variables that are of common interest to all islands. Natural state representations then
tend to become infinite, due to the well-known problem of the infinite regress of expectations
that arises when agents need to “forecast the forecasts of others” (see Townsend 1983 and
Sargent 1991). Second, the precision of agents’ information is a function of the realized
history of st and thus varies over time. This section briefly outlines how the solution method
proposed in Nimark (2011) can be modified to solve a model with a time-varying information
structure. Focus is on aspects of the solution method that help intuition for how time-
varying information sets translate into time-varying equilibrium dynamics but a complete
description of the solution algorithm is provided in the Online Appendix. The section ends
with a description of how a posterior estimate of the parameters of the model and the history
of st can be constructed using the Multiple-Block Metropolis-Hastings algorithm described
in Chib (2001).

5.1. Rationality and the dynamics of higher order expectations. Nimark (2011) pro-
poses an approximation method to solve linear rational expectations models with privately
informed agents. Conceptually, the solution method has two components. The first is to
put structure on higher order expectations, i.e. agents’ expectations about other agents’
expectations, by assuming that it is common knowledge that all agents form model consis-
tent expectations. The second part is to use that the impact of higher order expectations
on inflation and output is decreasing in the order of expectation. This second part is some-
what involved, and interested readers are referred to the original reference for more details.
Here we briefly describe how common knowledge of model consistent expectations helps put
structure on the dynamics of higher order expectations.

Let xt denote a vector containing the exogenous state variables at and dt so that

xt ≡
[
at
dt

]
. (5.1)

With island specific information, the state of the model needs to be expanded relative to the
full information case to also include average higher order expectations of current productivity
at and the common demand shock dt. The state can then be represented by the vector Xt

defined as

Xt ≡
[

x′t x
′(1)
t · · · x

′(k)
t

]′
(5.2)

where

x
(k+1)
t ≡

∫
E
[
x

(k)
t | Ωt(j)

]
dj. (5.3)

The constant k is the maximum order of expectation considered.
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To solve the model we need to find the law of motion for the vector Xt. The law of motion of
xt, i.e. the first component ofXt, is given by (4.4) and (4.7). As usual in rational expectations

models, first order expectations x
(1)
t are optimal, i.e. model consistent estimates of the actual

exogenous state vector xt. The knowledge that other traders form model consistent estimates
allow traders to treat average first order expectations as a stochastic process with known
properties when they form second order expectations. Imposing this structure on all orders
of expectations allows us to find the law of motion for the hierarchy of expectations Xt as a
function of the structural parameters of the model.

The agents inhabiting the islands of the model use the Kalman filter to form an estimate
of all the average higher order expectations in the state vector Xt. Island j’s estimate of Xt

follows the update equation

E [Xt | Ωj,t]︸ ︷︷ ︸
posterior

= (I −KtDt)E [Xt | Ωj,t−1]︸ ︷︷ ︸
prior

+Kt zj,t︸︷︷︸
signal

(5.4)

where Kt is the Kalman gain and Dt is a matrix that maps the state into the observable
vector zj,t. The Kalman filter thus plays a dual role. It is used by individual agents to form
an estimate of the state vector. But since the aggregate state vector Xt is made up of the
cross-sectional average of individual state estimates determined by (5.4), the Kalman update
equation above also determines the law of motion of the aggregate state Xt.

5.2. Time-varying state dynamics. The Kalman update equation (5.4) describes how
agents combine prior beliefs with period t signals. When signals are very precise or when
the prior is very uncertain, agents will put more weight on the signals and less weight
on the prior. For the same reasons that expectations respond more strongly in the static
example of Section 2, agents’ expectations about productivity will respond more strongly to
a productivity innovation of a given size when a man-bites-dog signal is available.

A man-bites-dog event may also have persistent effects on the relative weight on the prior
and the signals in agents’ update equation. The reason is that if, for example, there is a
man-bites-dog episode in period t that increases the posterior uncertainty in period t, then
this will translate into an increase in prior uncertainty in period t + 1. A larger posterior
uncertainty in period t thus translates into more weight being put on signals observed in
period t+ 1. Through this channel, the economy may become more responsive to shocks for
several periods after a man-bites-dog event.

Since a period t realization of the indicator variable st may have persistent effects on
the dynamics of the state Xt we need to keep track of the history of st (which we denote
st) to determine period t equilibrium dynamics. However, as long as the filtering errors of
agents follow a stable process, i.e. do not accumulate over time, we do not need to keep
track of the entire history of st but only its most recent realizations. How far back in time
the realizations of st matter depends on the eigenvalues of the process that propagates the
variance of agents’ filtering errors through time. If the underlying processes are not very
persistent, or if information is very accurate, filtering errors do not tend to be long lived and
only a few of the past realizations of st influence current dynamics. In general, how many
lags of st that are relevant for period t dynamics depends on the parameters of the model
and needs to be checked on a case-by-case basis.
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The strategy we follow is to specify a maximum lag of st, say st−T , where T should be large
enough so that the Kalman gain Kt in agents’ update equation (5.4) is invariant to changes
in the histories of st up to period t − T . That is, setting T = 4 is an appropriate choice if
the changes in the Kalman gain Kt depending on whether st−T −1, st−T −2, ...etc equals 1 or
0 are so small that it does not justify the increased computational burden of including one
more lag of st. With 2 different exogenous regimes (i.e. st ∈ {0, 1}) there will be 2T relevant
different histories st and 2T different Kalman gains Kt in the update equation (5.4).3

The equilibrium law of motion of Xt is a vector autoregression of the form

Xt = M(st)Xt−1 +N(st)ut : ut ∼ N(0, I) (5.5)

where the dependence of the matrices M and N on st is a consequence of the dependence
of the law of motion of the state on the Kalman gain Kt in (5.4). There are thus also 2T

different laws of motion, or endogenous regimes, for Xt.

5.3. Aggregate inflation and output. Taking averages of the consumption Euler equation
(4.11) and the Phillips curve (4.14) and collecting the resulting expressions in vector form
gives the vector Euler equation[

πt
yt

]
= A

∫
E

([
πt+1

yt+1

]
| Ωj,t

)
+ (B + C)Xt +Grrt−1 (5.6)

linking current inflation and output to the average expectation of the same variables in the
next period. To solve out the expectations term we conjecture (and verify) that inflation
and output can be expressed as linear functions of the state Xt with period t parameters
depending on the history of man-bites-dog events st[

πt
yt

]
= G(st)Xt +Guut +Grrt−1 (5.7)

The matrices Gu and Gr capture the direct effect of the monetary policy shock and lagged
interest rate respectively. Since the interest rate is observable these matrices do not depend
on st.4 When forming expectations about period t+ 1 inflation and output agents will need
to take into account the probability that there will be a man-bites-dog signal available in
the next period. Expectations of output and inflation thus depend on the probability ω that
st+1 will take the value 1. The time-varying matrix G(st) can be computed by noting that
for a given conjectured law of motion (5.5) and the linear function (5.7), we can express
current inflation and output as[

πt
yt

]
= ωAG

(
st+1

1

)
M
(
st+1

1

)
HXt (5.8)

+ (1− ω)AG
(
st+1

0

)
M
(
st+1

0

)
HXt

+ (B + C)Xt +Guut +Grrt−1

3It is perhaps worth pointing out here that while we truncate the history of st used to compute the
Kalman gain Kt, agents still condition on the entire history of observables zj,t.

4There is also an indirect affect of a monetary policy shock on inflation and output since such a shock
will affect the higher order expectations in Xt. This effect is time-varying and works through the matrices
N(st) and G(st).
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where st+1
n denotes the history st+1 with st+1 = n. The matrix H is defined so that∫

E [Xt | Ωj,t] dj = HXt (5.9)

That is, H moves a vector of average higher order expectations one step “up” in orders of
expectations and is used in (5.8) to compute the average expectation in (5.6). Equating
coefficients in (5.7) and (5.8) implies

G
(
st
)

= ωAG
(
st+1

1

)
M
(
st+1

1

)
H (5.10)

+ (1− ω)AG
(
st+1

0

)
M
(
st+1

0

)
H

+ (B + C)

The matrices G (st) depend on the law of motion (5.5) through M (st+1) in (5.10). At the
same time, the matrices M (st) and N (st) in the law of motion for the state Xt depend
on G (st). This dependence arises because how informative the signal vector zt,j is about
the state Xt is partly a function of G (st) . The Online Appendix describes a fixed point
algorithm that can be used to find the equilibrium dynamics of the model for each of the 2T

relevant histories of st.

5.4. Estimating the model. The solved model is a state space system and standard like-
lihood based methods are applicable to estimate its parameters. In addition to the 19
structural parameters, which we denote

Θ = {ρa, ρd, σa, σd, σr, σε, σζ , σξ1, σξ2, ση, δ, ϕ, φπ, φy, φr, θ, β, ω, γ} (5.11)

we also want to construct a posterior estimate of the indicator variable st that keeps track
of whether there was a man-bites-dog signal available in period t or not. Below we describe
how this can be done by sampling from the two conditional distributions p

(
Θ | sT , ZT

)
and

p
(
sT | Θ, ZT

)
. Dividing the sampling from the joint posterior distribution of Θ and sT into

two conditional blocks lets us get around the problem that unlike the agents inside the model,
as econometricians we do not observe the regimes st directly. Conditional on a given history
sT , the model is linear-Gaussian and it is straightforward to evaluate the likelihood.

5.5. The data. The time series used to estimate the model are US CPI inflation, the Fed-
eral Funds rate, US real GDP, the quarterly time series of total factor productivity (TFP)
constructed by John Fernald (2010) and individual survey response data from the Survey of
Professional Forecasters (SPF). The data is quarterly and the sample ranges from 1981:Q3
to 2010:Q4. The start date is chosen based on the availability of survey data for inflation
forecasts and the end date is the date of the most recent data on real GDP and total factor
productivity. CPI inflation is de-trended using a linear trend and the same trend is taken
out of the Federal Funds rate. Real GDP is de-trended using the HP-filter with a smoothing
coefficient of 1600. The survey data used are the individual survey responses of one quarter
ahead forecasts of CPI inflation and nominal GDP growth taken from the Survey of Profes-
sional Forecasters available from the web site of the Federal Reserve Bank of Philadelphia.
Inflation forecasts are de-trended using the CPI inflation trend. Nominal GDP growth fore-
casts are de-trended by subtracting the inflation trend and the growth rate of the real GDP
(HP-filter) trend.
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We denote the vector of observables in period t as Zt. All elements in Zt have natural
counterparts in the model. Specifically, TFP will be taken as a noisy measure of the common
productivity component and the vector of survey forecasts f ′t are taken to be representative
of the expectations of the inhabitants of the islands in the model.

In the benchmark specification, the vector of observables are thus given by

Zt =
[
at πt yt rt f ′t

]′
(5.12)

and linked to the state of the model by the measurement equation

Zt = D(st)Xt +Drrt−1 +R(st)ut (5.13)

Due to the fact that the number of survey respondents is not constant in the sample, the
dimensions of both D and R are time-varying. The elements of D and R also vary over
time. The elements of the matrix D is time-varying since the function mapping the state
into endogenous variables is time-varying. The elements of the matrix R is time-varying
since the cross-sectional dispersion of forecasts is time-varying in the model.

Individual respondents can be tracked in the SPF. So while in theory, it is possible to
exploit a (limited) panel dimension in the SPF responses, it is not feasible to do so in
practise. This would require that in order to evaluate the likelihood, we as econometricians
would need to carry along an individual state for each respondent in the SPF, thereby
increasing the state dimension by a multiplier of 50. Instead, we treat individual survey
responses of inflation f jt,π and nominal GDP growth forecasts f jt,π+∆y as independent draws
from the distributions

f jt,π ∼ N

(∫
E [πt+1 | Ωj,t] dj, σ

2
fπ(st)

)
(5.14)

f jt,π+∆y ∼ N

(∫
E [∆yt+1 + πt+1 | Ωj,t] dj, σ

2
fπ+∆y(s

t)

)
(5.15)

The variances σ2
fπ(st) and σ2

fπ+∆y(s
t) are the model implied cross-sectional variances of

inflation and nominal GDP growth expectations. These are functions of the structural
parameters Θ as well as the history st and thus vary over time.

5.6. Priors. We will use uniform priors on all parameters governing the variances in the
model and on the parameters ω, γ and σ2

η, i.e the parameters that are directly linked to the
man-bites-dog information structure. We impose informative, but relatively diffuse, priors
on the remaining parameters in Θ. The priors are reported in the first column of Table 1.
The history of the indicator variable st is assigned a uniform prior, reflecting that we have
no prior information about the timing or frequency of man-bites-dog events in the sample.

5.7. Estimation Algorithm. The posterior distribution of Θ and sT are estimated using a
Multiple-Block Metropolis algorithm (see Chib 2001). It exploits the fact that, conditional
on a history of man-bites-dog regimes sT , the model is in linear-Gaussian state space form.
An outline of the algorithm is as follows:

(1) Specify initial values Θ0 and sT0 .
(2) Repeat for j = 1, 2, ...., J

(a) Block 1: Draw Θj from p
(
Θ | sTj−1, Z

T
)
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(b) Block 2: Draw sTj from p
(
sT | Θj, Z

T
)

(3) Return values {Θ0,Θ1,...,ΘJ} and {sT0 , sT1 ,...,sTJ }

The Multiple-block Metropolis algorithm is similar to (and nests as a special case) the
Gibbs sampling algorithm. In both algorithms, the parameters are divided into blocks to
exploit that it is simpler to sample from the conditional distributions p

(
Θ | sTj−1, Z

T
)

and

p
(
sT | Θj, Z

T
)

than from the joint posterior p
(
sT ,Θ | ZT

)
. However, here, both Step 2(a)

and 2(b) are executed using a Metropolis step rather than by drawing directly from the full
conditional distribution. The Online Appendix describes the algorithm in detail.

5.8. Posterior parameter estimates. The posterior mode and the 95 per cent probability
intervals for the parameters in Θ are reported in the column labeled Benchmark in Table 1.
The results are based on 2 600 000 draws from the Multiple-block Metropolis algorithm and
the Online Appendix contains diagnostic checks for convergence and plots of the posteriors
distributions. The mode refers to the parameter vector in the Markov chain that achieved
the highest posterior likelihood.

Most parameters appear to be well-identified, including those with uniform priors. The
two exceptions are the standard deviations of the island specific consumption demand shock
ζj,t and the shock to the demand for goods produced on an individual island ξyj,t. In the
absence of data on consumption and output on individual islands, these parameters will affect
the likelihood function only via the island inhabitants beliefs about common productivity
and demand. In the model, there are four island specific signals but only two unobserved
aggregate fundamentals. There is thus a redundancy of signals in the sense that there are
many different combinations of signal precisions that will result in the same posterior beliefs
about common productivity and demand shocks. This explains why the posterior estimates
of the standard deviations σξy and σζ are clearly bounded away from zero, but otherwise not
sharply identified. However, because of the redundancy of signals, this lack of identification
is also without consequences for the results presented in the next section.

The posterior estimates of the parameters governing the properties of the man-bites-dog
information structure suggest that the conditional variance when a man-bites-dog signal
is available is substantially larger compared to when the signal is not available. That is,
the posterior estimate of γ is large, with a posterior mode at 5.01. It is also relatively
precisely estimated, and clearly bounded away from 1. The posterior mode of ω suggest
that the unconditional probability of a man-bites-dog event is around 30 per cent. The
man-bites-dog signal is estimated to be rather noisy, but the standard deviation of the noise
ση is relatively precisely estimated. How these parameter estimates interact to determine
the dynamics implied by the man-bites-dog information structure is analyzed in the next
section.
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6. Estimated Man-bites-dog Dynamics

The estimated model can be used to quantify the contribution of the man-bites-dog mech-
anism to business cycle dynamics. This section describes how the propagation of shocks
changes when there is a man-bites-dog signal available and presents estimates of how the
probability of observing a man-bites-dog signal depends on the absolute size of the innova-
tion to productivity. We also present posterior estimates of the historical probabilities of
man-bites-dog events in the sample period and relate these estimates to a News Heard Index
from the Michigan Survey. The section ends with a quantitative assessment of the persistent
effects a man-bites-dog event has on the sensitivity of output to productivity shocks.

6.1. Impulse propagation with and without man-bites-dog signals. Figure 2 illus-
trates the impulse responses of inflation (left column) and output (right column) to 1 s.d.
innovation to productivity (top row), demand (middle row) and noise in the man-bites-dog
signal (bottom row). The dashed black lines describe the responses when there is no man-
bites-dog signal available in any period and the solid blue lines describe the responses when
there is a man-bites-dog signal available in the impact period but none before or after. The
dotted lines are the 95 per cent credible intervals.

6.1.1. Productivity shocks. Inflation falls and output increases in a gradual, hump-shaped
pattern after a positive innovation to productivity whether a man-bites-dog signal is available
or not. The responses of inflation and output to a productivity shock of a given magnitude
are substantially larger if the shock coincides with the availability of a man-bites-dog signal.
The difference is particularly large for the response of output. At the posterior median, the
response of output in the impact period is about twice as large when there is a man-bites-dog
signal available compared to when there is no such signal. The peak response, at about 0.35
of a percentage point compared to 0.2 of a percentage point, is also substantially larger when
there is a man-bites-dog signal available. The fall in inflation is about 20 per cent larger
on impact when a man-bites-dog signal is available. Since the exogenous shock is the same
whether a man-bites-dog signal is available or not, the stronger responses must be caused
by expectations responding more strongly when a man-bites-dog signal is available.

In the static model of Section 3 above, the average action responded more strongly when a
man-bites-dog signal was available. This was so partly because expectations simply respond
more when there is more information available. However, in Section 3 it was also shown that
the aggregate response was stronger to a man-bites-dog signal compared to the response to
a standard public signal of the same precision. To quantify the relative importance of the
man-bites-dog and the more information effect, we can solve the model under the alternative
assumption that the availability of a man-bites-dog signal is uncorrelated with the magnitude
of the innovation to productivity. The result of this exercise is illustrated by the red dashed-
dotted lines in Figure 2. There, we can see that almost the entire difference between the
responses with and without a man-bites-dog signal is explained by the man-bites-dog effect.

6.1.2. Demand shocks. The middle row of Figure 2 shows that both inflation and output
increase after a demand shock. Neither of the responses depend substantially on there
being a man-bites-dog signal available or not. Both inflation and output respond with a
geometric decay after impact, with approximately the same persistence and shape as that of
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Figure 2. Posterior impulse response functions. Blue solid lines are for man-bites-

dog signal available in impact period and black dashed lines for no man-bites-dog

signal. Dotted lines show the 95 per cent posterior credible intervals. The dash-dot

red lines are the responses of inflation and output when the availability of the signal

zat is uncorrelated with the innovation to productivity.

the exogenous shock dt. This is so because relative to the variance of the innovations to dt,
agents have quite precise information about dt so that their (higher order) expectations of
the demand shock are close to the actual shock.

6.1.3. Noise shocks. The agents in the economy use all available information optimally. Nev-
ertheless, since the man-bites-dog signal is noisy, agents will sometimes inadvertently respond
to a pure noise shock. The effects such a response have on inflation and output are plotted
in the bottom row of Figure 2. Qualitatively, the initial responses of inflation and output to
a noise shock in the man-bites-dog signal are similar to the responses to a true innovation
to productivity. That is, inflation falls and output increases. The initial response of both
inflation and output is larger to a 1 s.d. pure noise shock than to a 1 s.d. actual productivity
shock. This is so because the estimated standard deviation of the noise shock is much larger
than the standard deviation of the true innovation to productivity. For shocks of the same
magnitude, the response is weaker to a pure noise shock.

Comparing the response to a noise shock in a man-bites-dog signal to the response when
the availability of the public productivity signal is uncorrelated with the underlying shock,
about half of the response to a noise shock is due to the more information effect. Of course,
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Figure 3. The probability of observing a man-bites-dog signal conditional on the

absolute size of the innovation to productivity.

when no signal is available, a noise shock cannot affect neither inflation nor output. This
explains why the black dashed lines in the bottom row of Figure 2 are flat at zero.

In the original model of Lorenzoni (2009), the responses to shocks in the public signal about
common productivity look like the responses to demand shocks discussed above (hence the
title of Lorenzoni’s paper). That is, both inflation and output increases in response to a
noise shock. The different prediction of the current model is not driven directly by the man-
bites-dog information structure. For instance, the model presented here also predicts that
noise shocks are inflationary if the Taylor rule coefficient on output, i.e. φy, is sufficiently
low (holding the other parameters fixed at their estimated posterior modes).5 That the
posterior estimates do not suggest inflationary noise shocks may be due to the fact that the
specification presented here includes “actual” demand shocks, i.e. the same type of shocks
Lorenzoni (2009) seeks to replace with noise shocks. By construction, they will absorb much
of the positive co-movement between inflation and output.

6.2. The conditional probability of observing a man-bites-dog signal. The probabil-
ity of generating a man-bites-dog signal is increasing in the absolute size of an innovation to
productivity when γ > 1. Above, we saw that when a productivity or a noise shock coincided
with a man-bites-dog signal, the responses of inflation and output are much stronger com-
pared to when no signal is available. This introduces a non-linearity in the model’s responses
to productivity shocks. Since large innovations to productivity are more likely to generate
the stronger responses, the man-bites-dog information structure makes both recessions and
booms sharper than they otherwise would be.

Figure 3 illustrates just how large innovations to productivity have to be to significantly
increase the probability of a man-bites-dog event. There, the posterior probability that
st = 1 (y-axis) is plotted as a function of the ratio of the absolute value of an innovation and
the unconditional standard deviation of innovations (x-axis). For innovations close to the

5The role of the monetary policy in determining whether the response to noise shocks is more supply-like
or demand-like is analyzed in more detail in Rousakis (2013).
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mean, the probability of observing a man-bites-dog signal is about 10 per cent. Innovations
larger than 1.5 unconditional standard deviation generate a man-bites-dog signal and the
stronger responses of inflation and output almost surely.

6.3. Historical man-bites-dog episodes. The top panel of Figure 4 displays the posterior
probabilities of man-bites-dog events for the benchmark specification. The shaded areas are
the NBER dated recessions. In addition to the NBER dated recessions, there are several
episodes, particularly in the 1980s and 2000s, that are assigned a high probability of being
man-bites-dog episodes. In comparison, the 1990s have much fewer periods with a substantial
probability of having been man-bites-dog events.
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Figure 4. Posterior historical probability of st = 1 and Michigan Survey News

Heard indices.

As suggested by the theory, the quarters that are assigned a high probability of being a
man-bites-dog episode are also quarters with larger than average (in absolute terms) pro-
ductivity innovations. The standard deviation of the innovations in the quarters assigned
a probability larger than 90 per cent is 0.0076 compared to 0.0064 for the full sample. To
ensure that this result is not an artefact of the structure imposed on the data by the model,
the innovations were computed from a separate univariate AR(1) model for the TFP series.6

6The numbers are very similar when the innovations from the full model are used, though the TFP process
is then estimated to be more persistent compared to the estimates from the separate TFP model.
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6.4. News media and historical man-bites-dog episodes. In the introduction, the
Movers segment on Bloomberg Television was given as an example of man-bites-dog news
reporting. It seems unlikely that individual events, perhaps with the exception of the 1987
stock market crash, directly cause what is identified as man-bites-dog episodes by the model.
An alternative interpretation of these episodes at the macro level is that, at certain times, the
economy for various reasons becomes one of the main sources of news stories, dominating
network news and newspaper front pages. According to the man-bites-dog dictum, this
should be more likely to happen when macro economic developments are in some sense
unusual.

One way to check more directly whether what the model interprets as man-bites-dog events
are indeed related to the intensity of news coverage is to compare the posterior probabilities
that st = 1 with the fraction of respondents in the Michigan Survey that have heard either
unfavorable or favorable news “during the last months”. This data was not used in estimation
and thus provides an independent check on how reasonable the estimates produced by the
model are. The bottom panel of Figure 4 contains an index of the number of respondents that
have heard any news about the economy (black solid line). The bottom panel also includes
indices for the fraction of respondents that have heard any unfavorable (red dashed line) or
any favorable (green dotted line) news about the economy.7 It is clear that the unfavorable
news heard index increases around recessions and around the stock market crash in 1987:Q4.
The biggest spike in the good news index is in the early 1980s as the economy recovered
from the Volcker disinflation recession.

In addition to these large and easily identifiable events there are many smaller, high-
frequency movements in these indices. To analyze more formally how the Any News Heard
Index relates to what the model interprets as man-bites-dog episodes, we can compute the
posterior correlation between st and the index. For the benchmark specification this correla-
tion is 0.24. While the positive correlation between the timing of man-bites-dog events and
the Any News Heard Index does not provide a direct test of the causal link proposed in this
paper, it does provide evidence that what the model identifies as man-bites-dog episodes are
indeed periods associated with an increase in the news coverage on the economy.

6.5. Man-bites-dog events and the cross-sectional dispersion of expectations. Be-
cause of the man-bites-dog information structure, the precision of agents information sets
varies over time. This means that the weight agents put on island specific signals and, as
a consequence, the cross-sectional dispersion of expectations will also vary over time. Since
the cross-sectional dispersion of expectations in period t is a function of the history st, the
time-variation in the cross-sectional dispersion of survey responses is particularly useful for
identifying man-bites-dog episodes in the sample. This is illustrated in Figure 5, where the
cross-sectional standard deviation of survey responses is plotted together with the corre-
sponding fitted dispersion from the benchmark specification.

7The indices are constructed by computing the fraction of survey respondents that have heard either
favorable or unfavorable news. The fractions are re-normalized to have a minimum of 0 and a maximum of
1 to make them more easily comparable in a single graph. This normalization is an affine transformation
and does not affect the computed correlations.
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Figure 5. Historical and posterior model implied dispersion of survey responses.

Overall, the model does a good job at fitting both the average level and the time-variation
of the dispersion in both inflation and nominal GDP growth survey responses. Two ex-
ceptions are the periods with very high dispersion in the early 1980s and the current crisis
during which the model under-predicts the dispersion in the data. The model also somewhat
over-predicts the inflation forecast dispersion and under-predicts the nominal GDP growth
forecast dispersion following the stock market crash in 1987:Q4.

Comparing Figure 4 and 5, it is clear that most of the episodes to which the model
assigns a high probability of being man-bites-dog episodes are associated with an increase
in the dispersion of either the inflation forecasts or the nominal GDP growth forecasts. In
particular, the dispersion of survey forecasts are relatively flat in the 1990s when only a few
quarters were assigned a high probability of being man-bites-dog events.

6.5.1. Using the mean of survey responses. It is clear from the evidence presented above that
the time-variation in the dispersion of survey forecasts is important for identifying historical
man-bites-dog episodes. It may therefore be of interest to estimate the model without using
the information in the cross-section of survey responses. The second panel in Figure 4 shows
the posterior estimate for st when the mean of the inflation and nominal GDP growth survey
responses are used to estimate the model. Relative to the other specifications, there are fewer
quarters that are assigned a probability close to 1 of being a man-bites-dog event and there
are practically none where a man-bites-dog event is completely ruled out. That the posterior
is less precise is not surprising since less sample information was used in the estimation.
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Without individual survey responses, the model has to identify man-bites-dog episodes
from the movements of the aggregate variables and the mean of the surveys. Larger move-
ment of these variables are then required to provide strong evidence of a man-bites-dog event.
The standard deviation of the innovations in the quarters assigned a probability larger than
90 per cent is 0.0132 compared to 0.075 for the benchmark specification.

Relative to the specification using individual survey responses, the posterior correlation
between st and the Any News Heard Index drops to 0.13. That the Index is more strongly
correlated with the posterior estimate of st when the individual survey responses are used
in estimation provides further support for the model’s prediction that news media coverage
increases dispersion. The correlation is also much less precisely estimated and the 95 per
cent probability interval ranges from 0.05 to 0.29, compared to 0.19-0.34 for the benchmark
specification. Also, when no individual survey responses are used for estimation, the model
under predicts the dispersion in the survey responses by an order of magnitude.
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Figure 6. Impact multiplier persistence: Impact on output of 1 s.d. innovation

to productivity after single man-bites-dog event.

6.6. The cyclicality of dispersion and uncertainty. Bloom (2009) reports that the
cross-sectional dispersion in the GDP forecasts in the Survey of Professional Forecasters is
strongly correlated with standard measures of uncertainty, such as stock market volatility.
In the model presented here, there is a strong positive correlation between conditional un-
certainty and the dispersion of individual expectations. Bloom (2009) also documents that
uncertainty and cross-sectional dispersion tend to increases around recessions. The correla-
tion between growth rates of nominal GDP and the spread between the 25th and the 75th
percentile of nominal GDP growth survey responses is -0.06 over the sample period used
in this paper. The man-bites-dog model is symmetric and large positive and large negative
shocks are equally likely to trigger a man-bites-dog event. There is some support in the data
that the magnitude of shocks matters at least as much for dispersion as their sign. While
nominal GDP forecast dispersion is negatively correlated with nominal GDP growth rates,
the correlation between absolute growth rates of nominal GDP and dispersion is 0.31. Ab-
solute changes of the CPI are also more strongly correlated with the dispersion than actual
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changes. The correlation with the spread is 0.32 for actual changes in CPI and 0.37 for
absolute changes.

6.7. Endogenous persistence in volatility. The impulse response functions in the top
panel of Figure 2 traced out the responses of inflation and output to a single productivity
shock, i.e. there were no further impulses to productivity after the impact period. However,
a single man-bites-dog signal may affect how responsive the economy is to innovations to
productivity for several periods after the signal was observed. As explained in Section 5.2
above, if the posterior uncertainty about the state increases in period t, then this translates
into an increased prior uncertainty in period t + 1. Since how much weight agents put
on new information depends inversely on the precision of their prior, changes in posterior
uncertainty in period t will affect how responsive the economy is to shocks also in period
t+ 1. Figure 6 plots the output multiplier on a productivity shock the periods after a man-
bites-dog signal is observed. That is, Figure 6 plots the posterior estimate of the relevant
elements of G(st)N(st) from the model solution (5.5) - (5.7) for st = 1 in the impact period
and st = 0 in all other periods.

The impact multiplier is largest in the period when the man-bites-dog signal is observed.
A 1 s.d. innovation to productivity increases output by about 0.09 of a percentage point
when accompanied by a man-bites-dog signal. The impact multiplier then slowly converges
towards 0.004, which is the level associated with no man-bites-dog signals.

The persistence in the volatility of the endogenous variables is consistent with the evidence
from less structural models such as the GARCH model estimated on US real GDP growth by
Bhar and Hamori (2003). It is perhaps worth pointing out that the gradual and monotonic
decay of the impact multiplier after a man-bites-dog event is an empirical result and not
a necessary implication of the model. With a very precise man-bites-dog signal, posterior
uncertainty in period t decreases when a man-bites-dog signal is available, making agents less
sensitive to new information in period t+1. The impact multiplier in period t+1 would then
be lower than that associated with no man-bites-dog signals and we would have observed
a negative “overshooting” of the impact multiplier in the periods after the man-bites-dog
event occurred.

The effect on the sensitivity of inflation and output accumulates over time if there are
several man-bites-episodes occurring in close succession. This is illustrated in Figure 7
where the posterior estimate of the impact multiplier on output of a 1 s.d. innovation to
productivity is plotted. In the 1980s, to which the model assigns a high probability of several
man-bites-dog episodes, the impact multiplier is persistently above the level associated with
no man-bites-dog events. Only in the more tranquil 1990s does the impact multiplier decrease
to the level associated with no recent man-bites-dog events. At the peaks in the early 1980s
and during the recent financial crisis, the impact multiplier is about eight times as large as
it was in the mid 1990s.

These results are also related to the findings of Coibion and Gorodnichenko (2011). Using
survey data, they document that expectations are updated faster, in the sense that average
expectations in surveys respond more strongly, during periods of higher macroeconomic
volatility. Though Coibion and Gorodnichenko are looking at a partly different sample
period and focus on lower frequency movements, this is exactly the qualitative prediction
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Figure 7. Posterior estimate of historical impact on output of a 1 s.d. innovation

to productivity. Median and 2.5%-97.5% probability interval.

made by the model presented here: A man-bites-dog event increases the volatility of macro
aggregates because expectations are updated faster.

The man-bites-dog model predicts that the magnitude of the response of output to a
productivity shock of a given size varies over time. Given that the only variable input
into production is labor, the time-varying responses of output to productivity shocks must
be driven by time-varying responses of hours worked. Using a SVAR with time-varying
parameters, Gambetti (2006) and Gali and Gambetti (2009) identify the impulse responses
of hours worked to a permanent productivity shock using long-run restrictions. While the
focus of these papers is on the decline in overall volatility in the post-1984 period, it is evident
from their results that there are also higher frequency changes in the responsiveness of hours
worked to technology shocks. This provides further evidence in support of the mechanism
proposed here.

6.7.1. Time-varying volatility and other modeling approaches. The man-bites-dog informa-
tion structure shares some features with both ARCH-type and stochastic volatility models.
In ARCH (and related) models, the standard deviation of shocks is a function of the square
of past innovations. Large level shocks thus deterministically increase the standard deviation
of future shocks. With a man-bites-dog information structure, large shocks to the level of
productivity are more likely to generate a man-bites-dog event and a persistent increase in
the volatility of inflation and output. Unlike in ARCH-type models, here there is only a
probabilistic relationship between the magnitude of level shocks and the future volatility of
inflation and output.

In structural models with stochastic volatility, one can distinguish between shocks to the
level of the exogenous variables and a shock to the standard deviation of the exogenous
innovations. In non-linear models such as those in Bloom (2009), Bloom, Floetotto and
Jaimovich (2011) and Fernández-Villaverde, Guerron-Quintana and Rubio-Ramı́rez (2012),
a shock to the standard deviation has a direct first order effect on both the level and the
dynamics of the endogenous variables. In linearized models with stochastic volatility such
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as that of Justiniano and Primiceri (2008), a shock to the standard deviation affects neither
the level nor the propagation of the endogenous variables. The model presented here lies
somewhere in between these two model classes: A man-bites-dog signal that is not accompa-
nied by a shock to the level of the exogenous variables or to the noise in the man-bites-dog
signal does not perturb the economy from its steady state. However, a man-bites-dog signal
does change the propagation of level shocks and the dynamics by which the model returns
to that steady state.

In stochastic volatility models such as those of Justiniano and Primiceri (2008) and
Fernández-Villaverde et al (2012), an increase in the standard deviation of shocks has to
be inferred from the realized volatility of the macro economic aggregates. In the man-bites-
dog model estimated using survey data, we can also identify “false alarms”, i.e. periods
when the endogenous variables would have responded strongly to a shock to productivity if
such a shock would have occurred. One such example is the sharp spike in the impact mul-
tiplier plotted in Figure 7 after the stock market crash in 1987:Q4. The estimated increase
in the impact multiplier is driven entirely by the sharp increase in the dispersion of survey
responses after the stock market crash, since neither productivity, nor inflation nor output
had particularly large realizations in that quarter. This is also clear from inspecting the
time series for st in the middle panel of Figure 5, which does not have a spike in 1987:Q4.
The only thing that differs relative to the benchmark model is that st in the middle panel
was estimated using the mean of the surveys rather than the individual responses. Similarly,
other classes of models that infer the standard deviation of exogenous shocks from the real-
ized volatility of macro aggregates generally have a smoothly declining standard deviation
from 1984 onwards until around the early 1990s recession.

The man-bites-dog mechanism is more restrictive than many of the alternative approaches
in that there is a single discrete event that drives the time variation in volatility in all endoge-
nous variables. More flexible models such as those in Justiniano and Primiceri (2008) and
Fernández-Villaverde, Guerron-Quintana and Rubio-Ramı́rez (2010) allow for a continuum
of possible volatilities and that the volatilities of different shocks can vary independently of
each other.

7. Alternative specifications

The man-bites-dog mechanism implies that a single process determines both how the
information available to agents and how the conditional volatility of shocks varies over time.
In this section I investigate the implications of relaxing some of the restrictions implied
by this theory. In particular, I estimate the following three alternative specifications that
have reduced form representations that are either nested or are close to the benchmark
specification: (i) The public signal zat about common productivity is always available and is
thus not informative about the conditional variance of productivity, implying the restriction
γ = ω = 1. (ii) The signal zat is never available but the innovations to productivity are
drawn from the mixture normal distribution (4.17) with the regimes directly observable by
the agents. This specification is equivalent to imposing the restriction on the benchmark
model that the noise in the man-bites-dog signal has infinite variance, i.e. σ2

η =∞. (iii) The
signal zat is always available and the innovations to productivity are drawn from the mixture
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normal distribution (4.17). The log-likelihood evaluated at the posterior mode of the three
specifications as well as for the benchmark specification are listed in Table 2 below.

A simple way to compare the relative fit of different models that takes into account the
number of estimated parameters is to use the Schwarz approximation (see Schwarz 1978) to
the posterior odds ratio. It can be computed as

PO ≈ elogL(yT |ŝTB ,Θ̂B)−logL(yT |ŝT ,Θ̂)− 1
2

(dim ΘB−dim Θ) lnT (7.1)

where a B subscript denotes the benchmark specification and dim Θ denotes the number
of freely estimated parameters. The resulting relative probability of the benchmark model
compared to the alternatives are reported in the bottom row of Table 2.

Table 2
Benchmark (i) γ = ω = 1 (ii) σ2

η =∞ (iii) Pub. signal + regimes

logL
(
ZT | ŝT , Θ̂

)
3091.1 2999.0 2982.7 3097.4

PO 1 e96.9 e110.8 e−6.3

There appears to be overwhelming evidence against specifications (i), i.e. the model
without time-varying volatility, which is assigned a near zero posterior odds ratio relative to
the benchmark model. The time-variation in volatility and in the cross-sectional dispersion
of forecasts thus help to substantially improve the fit of the man-bites-dog model relative to
a model without these features.

To understand the relative fit of the three models that feature time-varying volatility, it is
useful to think of them as differing only in terms of the availability of the public signal about
productivity. In specification (ii) the public signal about productivity is never available.
This results in a fit that is worse than specification (i) without time-varying volatility. The
public signals is thus at least as important as time-varying volatility for explaining the data.
In the benchmark man-bites-dog model, the public signal is available only when the volatility
of the innovations to productivity is high. The benchmark model’s fit is substantially better
than specification (ii) which is assigned a near zero posterior odds ratio. In specification (iii)
the public signal about productivity is always available. This is the best fitting model. The
fit thus generally improves with the number of periods in which the public signal is available.
One reason for this is that the noise component in the public signal acts as an aggregate
shock, and the more periods in which this shock is active, the more flexibility the model
has to fit the data. That the best fitting specification is the one in which the public signal
is always available may cast some doubt on the empirical relevance of the man-bites-dog
mechanism. However, a closer analysis suggest an alternative interpretation that is more
favourable to the man-bites-dog mechanism.

In the sample, there are 117 periods and at the posterior mode of the benchmark model
30 of those are man-bites-dog episodes. The posterior odds ratio of specification (ii) and the
benchmark model implies that adding the public signals to these 30 high-volatility periods
increases the likelihood by 113.2 log points (i.e. 110.8 + 1

2
lnT ). Adding the public signal

also to the remaining 87 periods, i.e. going from the benchmark model to specification (iii),
increases the likelihood only by an additional 6.3 log points. This suggest that in terms
of fitting the data, the public signal is more important in periods with high volatility than
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in periods with low volatility, which lends some qualified support for the man-bites-dog
mechanism. Of course, the evidence presented here is also consistent with the interpretation
that there is some other mechanism, unrelated to the one proposed here, that explains the
time-variation in volatility and the cross-sectional dispersion of forecasts better than the
man-bites-dog mechanism.

8. Conclusion

News media perform an editorial service to its audience by selecting which events to report.
This paper has presented tools to analyze how beliefs and economic decisions are affected
if more unusual events are considered more newsworthy and therefore are more likely to be
reported. We defined a man-bites-dog signal to be a signal that is more likely to be available
after unusual realizations of a latent variable. Under general conditions, the availability of
a man-bites-dog signal then makes rational Bayesian agents redistribute probability mass
towards unconditionally less likely realizations. The absence of such a signal makes agents
redistribute probability mass towards unconditionally more likely realizations. Using an
explicit and tractable example, we showed that posterior uncertainty and the cross-sectional
dispersion of expectations can either increase or decrease after a man-bites-dog signal is
observed, but that conditional expectations always respond more strongly. In the context of
the beauty contest model of Morris and Shin (2002), we also demonstrated that the average
action responds more strongly to a man-bites-dog signal than to a standard signal of the
same precision.

Conceptually, the information structure proposed here differs from the ex ante perspective
taken by most of the existing literature on rational inattention, e.g. Sims (1998, 2003) and
Mackowiak and Wiederholt (2009). In that literature, agents pay more attention to those
variables that are most useful on average. In contrast, here realizations of shocks matter for
what type of signals that are available. There is nothing inherent in the rational inattention
approach though that makes an ex ante perspective necessary. For instance, Matejka (2011)
develops a model of rational inattention in which it is optimal for agents to let the precision
of signals depend on the realization of shocks. The information structure in that paper thus
also depend on the realizations of shocks. However, the availability of signals in Matejka’s
model is constant and thus do not carry any additional information about the distribution
of the variables of interest.

In the second part of the paper, a simple business cycle model was presented and estimated
in which large innovations to productivity are more likely to generate a public signal. The
estimated model suggests that there have been episodes recent US history in which the
impact of an innovation to productivity on aggregate output was more than eight times
larger than at other times. The increased sensitivity of macro aggregates to productivity
innovations were found to be persistent, lasting about 2 years after a single man-bites-dog
event. The model thus captures aspects of a “crisis mentality” in which there is an intense
media focus on the economy and yet, while there is more information produced and broadcast
about the economy, uncertainty and sensitivity to new information appear to increase. We
also presented corroborative and independent evidence from the Michigan Survey that the
episodes identified by the model as man-bites-dog events were indeed associated with higher
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than normal news coverage of the economy. This correlation is stronger when individual
survey responses are used which provides further support for the mechanism in the model.

The model was estimated by likelihood based methods using both the quarterly total factor
productivity time series constructed by Fernald (2010) and individual survey responses from
the Survey of Professional Forecasters along with more standard macro indicators. Using a
time series of TFP as an observable variable has obvious advantages in terms of disciplining
the model, especially since one of the aims of the paper has been to quantify the extent of
time-variation in the impact of TFP shocks on other variables. Using the cross-section of
individual survey responses allowed us to incorporate the information in the time-variation in
the dispersion of survey responses into the posterior estimates of the parameters of the model.
Particularly, we showed that the cross-sectional dimension in the Survey of Professional
Forecasters is informative about the timing of man-bites-dog events. In order to exploit
the time variation in the cross-sectional dispersion of the survey data, it is necessary to
have a model that can fit this fact. The paper makes a methodological contribution by
demonstrating how a model with time-varying information sets can be solved and estimated.
This may be of separate interest to some readers.

The model presented here features a restricted form of stochastic volatility. In less re-
stricted models such as those of Justiniano and Primiceri (2008) and Fernandez-Villaverde,
Guerron-Quintana, and Rubio-Ramirez (2012), persistence in the volatility of endogenous
variables is caused by persistence in the volatility of the exogenous shocks. In the model pre-
sented here, the volatility of exogenous productivity is restricted to be an i.i.d. process but
the filtering problem of the agents generates persistence in the volatility of the endogenous
variables. To the extent that we can observe the exogenous shocks directly, this distinction
is a testable difference between the two approaches. Even though the model is conditionally
linear, changes in variances have first order effects on the propagation of shocks through
the filtering problem of the agents. This aspect of the model does not depend on the man-
bites-dog mechanism per se. The solution method proposed here could thus relatively easily
be extended to more general stochastic volatility specifications including specifications that
allow for persistence in the exogenous regimes.

This paper has argued that the man-bites-dog signals provide an intuitive and plausible
mechanism that can explain several features of the business cycle. However, we have not
presented a direct test of the causal link between the news media and the macro economy
implied by the theory. Peress (forthcoming) uses newspaper strikes to identify the effect of
news media on asset price volatility and stock market trading volume. While outside the
scope of the present paper, it would be interesting to use a similarly direct strategy to test
the predictions of the man-bites-dog mechanism.

Finally, one limitation of the framework presented here is that the availability of signals
depends only on the realized value of exogenous shocks. In practise, unusual developments
of endogenous variables are surely also considered newsworthy. However, modeling the avail-
ability of man-bites-dog signals as depending on the realized values of endogenous variables
is at the moment computationally unfeasible.
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Appendix A. Proof of Proposition 2

Proposition 2.The average expectation of x responds more strongly to x when S=1 than
when S=0.

Proof. We need to show that the sum of the coefficients on the private signal xj and the
public signal y in the conditional expectation

E
(
x | Ω1

j

)
=

σ−2
ε

σ−2
ε + σ−2

η + γ−1σ−2
xj +

σ−2
η

σ−2
ε + σ−2

η + γ−1σ−2
y (A.1)

when S = 1 is larger than the coefficient on the private signal

E
(
x | Ω0

j

)
=

σ−2
ε

σ−2
ε + σ−2

xj (A.2)

when S = 0. Simply comparing the expected average expectation conditional on x for S = 0∫
E
[
x | Ω0

j

]
dx =

∫
σ−2
ε

σ−2
ε + σ−2

xjdj (A.3)

=

(
1− σ−2

σ−2
ε + σ−2

)
x (A.4)

and S = 1

E

[∫
E
(
x | Ω1

j

)
dx | x

]
=

∫
σ−2
ε

σ−2
ε + σ−2

η + γ−1σ−2
xjdj +

σ−2
η

σ−2
ε + σ−2

η + γ−1σ−2
x(A.5)

=

(
1− γ−1σ−2

σ−2
ε + σ−2

η + γ−1σ−2

)
x (A.6)

means that the proposition is true if the inequality(
1− σ−2

σ−2
ε + σ−2

)
<

(
1− γ−1σ−2

σ−2
ε + σ−2

η + γ−1σ−2

)
(A.7)

holds. The last expression can with a little algebra be rearranged to

γ−1 < 1 + σ−2
η (A.8)

which is always true since γ > 1 and σ−2
η > 0. �

Appendix B. Deriving Expression (2.14) in Section 2.X

Start by dividing Bayes rule for conditional probabilities for p(S = 1 | x)

p(S = 1 | x) =
p(x | S = 1)p(S = 1)

p(x)
(B.1)

with the corresponding expression for p(S = 0 | x)

p(S = 0 | x) =
p(x | S = 0)p(S = 0)

p(x)
(B.2)
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to get
p(S = 1 | x)

p(S = 0 | x)
=
p(x | S = 1)

p(x | S = 0)

p(S = 1)

p(S = 0)
(B.3)

Substitute in the distributional assumptions for p(x | S = 1) and the unconditional proba-
bilities of observing y

p(S = 1 | x)

p(S = 0 | x)
=

1√
γσ
√

2π
e
− 1

2
x2

γσ2

1
σ
√

2π
e−

1
2
x2

σ2

ω

1− ω
(B.4)

Rearrange and simplify to get (2.14) from the main text

p(S = 1 | x)

1− p(S = 1 | x)
=

ω

1− ω
1
√
γ
e(1− 1

γ ) x2

2σ2 (B.5)

where we also used that p(S = 0 | x) = 1− p(S = 1 | x).

Appendix C. Proof of Proposition 4

Proposition 4 The response of the average action a to a given value of x is stronger
when the signal y is available.

Proof. We need to prove that

(1− r) g0

1− rg0

<
(1− r) gx
1− rgx

+

(
1− (1− r) gx

1− rgx

)
gy (C.1)

Divide everywhere by (1− r) to get

g0

1− rg0

<
gx

1− rgx
+

gy
1− r

− gxgy
1− rgx

(C.2)

and rearrange to get
g0

1− rg0

<
gx − gxgy
1− rgx

+
gy

1− r
(C.3)

Since 0 < gx < 1 it follows that
gy

1− rgx
<

gy
1− r

(C.4)

and it is thus sufficient to prove that

g0

1− rg0

<
gx − gxgy + gy

1− rgx
(C.5)

for the proposition to hold. Now if gx > g0 we have that

(1− r) g0

1− rg0

<
(1− r) gx
1− rgx

(C.6)

and the proof follows immediately since the term(
1− (1− r) gx

1− rgx

)
gy (C.7)
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on the right hand side of (C.1) is positive. On the other hand, if gx < g0 it is sufficient to
prove that

g0 < gx − gxgy + gy (C.8)

We know that the two expressions (2.17) and (3.8) must result in the same average first
order expectation implying that

gx − gxgy + gy =
σ−2
ε

σ−2
ε + σ−2

η + γ−1σ−2
+

σ−2
η

σ−2
ε + σ−2

η + γ−1σ−2
(C.9)

which can be rearranged to

gx − gxgy + gy =

(
1− γ−1σ−2

σ−2
ε + σ−2

η + γ−1σ−2

)
(C.10)

From (3.9) we know that

g0 =

(
1− σ−2

σ−2
ε + σ−2

)
(C.11)

so that the inequality (C.8) is equivalent to(
1− σ−2

σ−2
ε + σ−2

)
<

(
1− γ−1σ−2

σ−2
ε + σ−2

η + γ−1σ−2

)
(C.12)

which was demonstrated to hold generally in the proof of Proposition 2. �

Appendix D. Proof of Proposition 5

Proposition 5 The average action responds more strongly to a change in x when a man-
bites-dog signal is available, compared to the response of the average action when the public
signal about x is always available (holding the precision of the signal and the unconditional
variance of x fixed).

Proof. To prove the proposition, it is helpful to denote quantities associated with what we
may call the standard signal model with an asterisk (∗) . The standard public signal y∗ is
always available and defined as

y∗ = x+ η : η ∼ N
(
0, σ2

η

)
(D.1)

and thus have the same precision σ−2
η as the man-bites-dog signal. The information set of

agent j in the standard signal model is given by

Ω∗j = {xj, y∗} (D.2)

We want to compare the response of the average action a when a man-bites-dog signal is
available with the response of the average action a∗ in the standard signal model while
holding the unconditional variance of x fixed by imposing that σ∗2x = σ2

x.
The expression (3.5) for the average action a as a function of higher order expectations

shows that the average action is increasing in all orders of expectations about x and this
expression is valid regardless of which information structure we consider. To prove the
proposition, it is thus sufficient to show that all orders of expectation about x respond more
strongly when y is a man-bites-dog signal compared to in the standard model.
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The formula (3.8) for the k order expectation in the main text is convenient for deriving
the average action as a function of x and y, but is more cumbersome to manipulate for our
present purposes. We will therefore derive an alternative (but equivalent) expression for x(k)

here.
In the man-bites-dog model, the average first order expectation of x when y is available

is of the form

x(1) ≡
∫
E (x | xj, y) dj (D.3)

= cxx+ cyy (D.4)

Leaving the coefficients undefined for now, note that substituting in the expression for x(1)

into the definition of the second order expectation we get

x(2) ≡
∫
E
(
x(1) | xj, y

)
dj (D.5)

= cx (cxx+ cyy) + cyy (D.6)

and by repeated substitution we arrive at the general expression

x(3) = cx (cx (cxx+ cyy) + cyy) + cyy (D.7)

... (D.8)

x(k) = ckxx+
k∑
1

ck−1
x cyy (D.9)

Following the same steps, we can write the k order expectation in the standard model as

x∗(k) = c∗kx x+
k∑
1

c∗k−1
x c∗yy

∗ (D.10)

To prove the proposition, it is thus sufficient to show that the coefficients cx, cy, c
∗
x and c∗y

in (D.9) and (D.10) satisfy

cx > c∗x and cy > c∗y

Given the parameter restrictions on the standard signal model, the average first order
expectation about x is given by

x∗(1) ≡ σ−2
ε

σ−2
ε + σ−2

η + σ∗−2
x

x+
σ−2
η

σ−2
ε + σ−2

η + σ∗−2
x

y (D.11)

which corresponds to the expression (2.17) in the man-bites-dog model. Now, since γ > 1
and 0 ≤ ω < 1 the variance σ∗2 in the standard model is smaller than the conditional
variance γσ2 in the man-bites-dog model, i.e.

σ∗2x = σ2
x

= ωγσ2 + (1− ω)σ2

< γσ2.
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The coefficients cx and cy in (D.9) are then larger than the corresponding coefficients c∗x and
c∗y in (D.10) since σ∗2x < γσ2 implies that

cx =
σ−2
ε

σ−2
ε + σ−2

η + γ−1σ−2
>

σ−2
ε

σ−2
ε + σ−2

η + σ∗−2
x

= c∗x (D.12)

and

cy =
σ−2
η

σ−2
ε + σ−2

η + γ−1σ−2
>

σ−2
η

σ−2
ε + σ−2

η + σ∗−2
x

= c∗y (D.13)

which completes the proof. �


