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Abstract

We extend the model of risk sharing with limited commitment (Kocherlakota, 1996) by

introducing both a public and a private (non-contractible and/or non-observable) stor-

age technology. Positive public storage relaxes future participation constraints and may

hence improve risk sharing, contrary to the case where hidden income or effort is the

deep friction. The characteristics of constrained-efficient allocations crucially depend

on the storage technology’s return. In the long run, if the return on storage is (i) mod-

erately high, both assets and the consumption distribution may remain time-varying;

(ii) sufficiently high, assets converge almost surely to a constant and the consumption

distribution is time-invariant; (iii) equal to agents’ discount rate, perfect risk sharing is

self-enforcing. Agents never have an incentive to use their private storage technology,

i.e., Euler inequalities are always satisfied, at the constrained-efficient allocation of our

model, while this is not the case without optimal public asset accumulation.

Keywords: risk sharing, limited commitment, hidden storage, dynamic contracts

JEL codes: E20

⇤We thank Andy Atkeson, Hugo Hopenhayn, Yang K. Lu, Alessandro Mennuni, Nicola Pavoni, Raffaele
Rossi, and seminar and conference participants at SAET in Faro, Central Bank of Hungary, ESEM in Oslo,
Universitat Autònoma de Barcelona, UCLA, University of Bonn, Institut d’Anàlisi Econòmica (IAE-CSIC),
RES PhD Meeting in London, Universitat Pompeu Fabra, Paris School of Economics, Cardiff Business School,
Federal Reserve Bank of St. Louis, University of Rochester, University of Edinburgh, SED in Limassol, the
Symposium on Economics and Institutions in Anacapri, CEF in Prague, NBER Summer Institute, EEA in
Málaga, Barcelona GSE Trobada, University of Girona, SITE in Stockholm, and University of Amsterdam
for useful comments and suggestions. All errors are our own.

†European University Institute, Department of Economics, Villa San Paolo, Via della Piazzuola 43, 50133
Firenze (FI), Italy. Email: arpad.abraham@eui.eu.

‡Institut d’Anàlisi Econòmica (IAE-CSIC) and Barcelona GSE, Campus UAB, 08193 Bellaterra,
Barcelona, Spain. Email: sarolta.laczo@iae.csic.es.

1

arpad.abraham@eui.eu
mailto:sarolta.laczo@iae.csic.es


1 Introduction

The literature on incomplete markets either exogenously restricts asset trade, most promi-
nently by allowing only a risk-free bond to be traded (Huggett, 1993; Aiyagari, 1994), or
considers a deep friction which limits risk sharing endogenously. With private information
as the friction, a few papers (Allen, 1985; Cole and Kocherlakota, 2001; Ábrahám, Koehne,
and Pavoni, 2011) have integrated these two strands of literature by introducing a storage
technology. This paper considers limited commitment (Kocherlakota, 1996), and makes a
similar contribution by introducing both a public and a private storage technology.

Storage potentially affects the constrained-efficient allocation through several channels.
First, it allows the social planner to shift resources intertemporally. Second, it makes agents’
outside option more attractive as it serves as an instrument to smooth consumption in au-
tarky. Third, if storage is not observable (and/or not contractible), it increases considerably
the agents’ set of possible deviations. We provide a thorough analytical characterization
of an environment where risk sharing arrangements are subject to limited commitment and
both public and private storage are available.1

In several economic contexts where the model of risk sharing with limited commitment
has been applied, agents are likely to have a way to transfer resources intertemporally. In
the context of village economies (Ligon, Thomas, and Worrall, 2002), households may keep
grain or cash around the house for self-insure purposes, and there also exist community
grain storage facilities. Households in the United States (Krueger and Perri, 2006) may keep
savings in cash or ‘hide’ their assets abroad. Spouses within a household (Mazzocco, 2007)
accumulate both joint assets and savings for personal use. Partners in a law firms have both
common and private assets. Countries (Kehoe and Perri, 2002) may also have joint savings
(in a stability fund, such as the European Stability Mechanism, for example) in addition to
their individual asset balances. Consequently, when we study self-enforcing risk sharing in
these environments, we need to take into account private and public technologies which make
it possible to transfer resources from today to the future. The insights we derive in this paper
can be useful for all these applications.

Our starting point is the two-sided lack of commitment framework of Kocherlakota (1996),
which we often refer to as the basic model. Agents are infinitely lived, risk averse, and ex-

1In the existing models of risk sharing with limited commitment, only public and/or observable and
contractible individual intertemporal technologies have been considered (Marcet and Marimon, 1992; Ligon,
Thomas, and Worrall, 2000; Kehoe and Perri, 2002; Ábrahám and Cárceles-Poveda, 2006; Krueger and Perri,
2006). Moreover, the above papers do not provide a thorough analysis of the effects of storage opportunities
on the constrained-efficient allocation.
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ante identical. They receive a risky endowment each period. We assume that there is no
aggregate uncertainty in the sense that the aggregate endowment is constant. Agents may
make transfers to each other in order to smooth their consumption. These transfers are
subject to limited commitment, i.e., each agent must be at least as well off as in autarky at
each time and state of the world. The storage technology we introduce allows the planner
and the agents to transfer resources from one period to the next and earn a net return r,
�1  r  1/� � 1, where � is agents’ subjective discount factor.

We first introduce only public storage. We assume that agents are excluded from the
returns of the publicly accumulated assets, a(n endogenous) Lucas tree, when they default,
as in Krueger and Perri (2006). This implies that the higher the level of public assets is, the
lower the incentives for default are in this economy. We show that public storage is used in
equilibrium as long as its return is sufficiently high and risk sharing is partial in the basic
model. The characteristics of constrained-efficient allocations, such as long-run asset and
consumption dynamics, will crucially depend on the return on storage. We show that, in
the long run, if the return on storage is moderately high, assets remain stochastic and the
consumption distribution varies over time. If the return on storage is sufficiently high, assets
converge almost surely to a constant and the consumption distribution is time-invariant. Risk
sharing remains partial as long as the storage technology is inefficient, i.e., r < 1/� � 1, and
perfect risk sharing is self-enforcing in the long run if the return on storage is equal to agents’
discount rate.

To understand how public storage matters, note that limited commitment makes markets
endogenously incomplete, i.e., individual consumptions are volatile over time. This market
incompleteness triggers precautionary saving/storage motives for the agents and the plan-
ner. This motive is stronger when cross-sectional income and consumption inequality are
higher. At the same time, higher public assets reduce default incentives, thereby reducing
consumption dispersion and the precautionary motive for saving. Further, agents would like
to front load consumption as long as �(1 + r) < 1, i.e., if they are impatient relative to the
return on storage. Optimal asset accumulation is determined by these conflicting forces.
If �(1 + r) = 1, it is optimal for the planner to fully complete the market by storage in
the long run. This is because the trade-off between imperfect insurance and an inefficient
intertemporal technology is no longer present.

The introduction of public storage has new qualitative implications for the dynamics of
consumption predicted by the model when assets are stochastic in the long run. First, the
amnesia property, i.e., the property that the consumption allocation only depends on the
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current income of the agent with a binding participation constraint and is independent of the
past history of shocks whenever a participation constraint binds (Kocherlakota, 1996), does
not hold. Second, the persistence property of the basic model, i.e., that the consumption
allocation does not change for ‘small’ changes in the income distribution, does not hold either.
There is a common intuition behind these results: the past history of shocks affects current
consumptions through aggregate assets. Data on household income and consumption support
neither the amnesia, nor the strong persistence property of the basic model (see Broer, 2012,
for an extensive analysis). Hence, these differences are steps in the right direction for the
limited commitment framework to explain consumption dynamics.

We also show that constrained-efficient allocations can be decentralized as competitive
equilibria with endogenous borrowing constraints (Alvarez and Jermann, 2000) and a com-
petitive financial intermediation sector which runs the storage technology (Ábrahám and
Cárceles-Poveda, 2006). In this environment, equilibrium asset prices take into account the
externality of aggregate storage on default incentives. In this sense, our paper provides a
joint theory of endogenous borrowing constraints and endogenously growing (and shrinking)
asset/Lucas trees in equilibrium.

We then consider hidden (non-contractible and/or non-observable) storage as well. Access
to hidden storage not only changes the value of autarky, but it may also enlarge the set of
possible deviations along the equilibrium path. That is, agents could default and store in
every period either simultaneously or subsequently. This implies that, in principle, we need
to consider a model where agents’ incentive to default on transfers and their incentive to
store, as well as their incentive to store in autarky, are taken into account. Indeed, we
show that whenever the return on storage is high enough and the basic limited commitment
model exhibits relatively little risk sharing, the constrained-efficient allocation in the basic
model without public storage is not incentive compatible if agents have access to hidden
storage.2 This is because the constrained-efficient level of consumption dispersion triggers
a precautionary saving motive whenever an agent has high consumption and the return on
storage is high enough.

In contrast to the basic model, at the constrained-efficient allocation in our model with
public storage agents no longer have an incentive to store. In other words, with optimal public
asset accumulation the social planner can preempt the agents’ storage incentives, or, hidden
storage no longer matters. This is true because the planner has more incentive to store than
the agents. First, the planner stores for the agents, because she inherits their consumption

2Note that this result does not hinge on how agents’ outside option is specified precisely: they may or
may not be allowed to store in autarky, and they may or may not face additional punishment for defaulting.
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smoothing preferences. Second, storage by the planner makes it easier to satisfy agents’
participation constraints in the future. In other words, the planner internalizes the positive
externality generated by accumulated assets on future risk sharing.

This result means that the characteristics of constrained-efficient allocations in a model
with both public and private storage and a model with only public storage are the same. They
correspond exactly as long as agents’ outside option is the same. This result also means that in
our model with limited commitment and public storage agents’ Euler inequalities are always
satisfied. The Euler inequality cannot be rejected in micro data from developed economies,
once labor supply decisions and demographics are appropriately accounted for (Attanasio,
1999). Therefore, we bring limited commitment models in line with this third observation
about consumption dynamics as well.

Public and private storage have been considered in a private information environment
with full commitment by Cole and Kocherlakota (2001). They show that public storage is
never used and agents’ private saving incentives are binding in equilibrium, eliminating any
risk sharing opportunity beyond self-insurance.3 When the deep friction is limited commit-
ment as opposed to private information, the results are very different: first, public storage is
used in equilibrium, and second, private storage incentives do not bind. The main difference
between the two environments is that in our environment more public storage helps to re-
duce the underlying limited commitment friction, while with private information public asset
accumulation would make incentive provision for truthful revelation more costly.

We finally ask: what is the overall effect of access to storage on consumption dispersion
and welfare? This crucially depends on the return on storage. The availability of storage
increases the value of autarky, which increases consumption dispersion and reduces welfare,
while accumulated public assets decrease consumption dispersion and increase available re-
sources, hence improve long-run welfare. When the return on storage is sufficiently high,
there are welfare gains in the long run, because the economy gets close to perfect risk sharing
and aggregate consumption is higher than in the basic model. When the return on storage
is lower, the negative effect of a better outside option dominates the positive effect of public
assets on welfare. In the short run, public asset accumulation also has costs in terms of fore-
gone consumption. Hence, it is a quantitative question whether access to storage improves
welfare taking into account the transition from the moment storage becomes available. For
this reason, we propose an algorithm to solve the model numerically, and present some com-
puted examples to illustrate the effects of the availability of storage and its return on asset

3See also Allen (1985) and Ábrahám, Koehne, and Pavoni (2011).
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accumulation, risk sharing, and welfare. For the parametrizations we have considered, the
short-term losses dominate the long-run gains for all returns on storage. However, given
private storage, public asset accumulation always improves welfare.

The rest of the paper is structured as follows. Section 2 introduces and characterizes
our model with public storage. Section 3 shows that agents’ hidden storage incentives are
eliminated under optimal public asset accumulation. We also show that this is not the case
in the basic model. Section 4 presents some computed examples. Section 5 concludes.

2 The model with public storage

We consider an endowment economy with two types of agents, i = {1, 2}, each of unit mea-
sure, who are infinitely lived and risk averse. All agents are ex-ante identical in the sense
that they have the same preferences and are endowed with the same exogenous random
endowment process. Agents in the same group are ex-post identical as well, meaning that
their endowment realizations are the same at each time t.4 Let u() denote the utility func-
tion. We assume that it is characterized by harmonic absolute risk aversion (HARA), i.e.,
u

0
(c) = (a + c)

��, where a � 0 and � > 0.5 Note that HARA utility functions satisfy
prudence, i.e., u000

() > 0. We further assume that inverse marginal, 1
/u

0(), is convex, that is,
� � 1.6 The common discount factor is denoted by �.

Let s

t

denote the state of the world realized at time t and s

t the history of endowment
realizations, that is, st = (s1, s2, ..., st). Given s

t

, agent 1 has income y(s

t

), while agent 2

has income equal to (Y � y(s

t

)), where Y is the aggregate endowment. Note that there is
no aggregate uncertainty in the sense that the aggregate endowment is constant. However,
the distribution of income varies over time. We further assume that income has a discrete
support with N elements, that is, y(s

t

) 2
�

y

1
, . . . , y

j

, . . . , y

N

 

with y

j

< y

j+1, and is inde-
pendently and identically distributed (i.i.d.) over time, that is, Pr (y(s

t

) = y

j

) = Pr (y

j

) = ⇡

j,
8t. The assumptions that there are two types of agents and no aggregate uncertainty im-
pose some symmetry on both the income realizations and the probabilities. In particular,
y

j

= Y � y

N�j+1 and ⇡

j

= ⇡

N�j+1. The i.i.d. assumption can be relaxed, we only need weak
positive dependence, i.e., that expected future lifetime utility is weakly increasing in current
income.

4We will refer to agent 1 and agent 2 below. Equivalently, we could say type-1 and type-2 agents, or
agents belonging to group 1 and group 2.

5Note that relative risk aversion is constant for a = 0, and we get exponential utility with a = 1 and �

approaching infinity.
6Some of our results hold under weaker assumptions.
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Suppose that risk sharing is limited by two-sided lack of commitment to risk sharing
contracts, i.e., insurance transfers have to be voluntary, or, self-enforcing, as in Thomas and
Worrall (1988), Kocherlakota (1996), and others. Each agent may decide at any time and
state to default and revert to autarky. This means that only those risk sharing contracts
are sustainable which provide a lifetime utility at least as great as autarky after any history
of endowment realizations for each agent. We assume that the punishment for deviation is
exclusion from risk sharing arrangements in the future. This is the most severe subgame-
perfect punishment in this context. In other words, it is an optimal penal code in the sense
of Abreu (1988) (Kocherlakota, 1996).

We introduce a storage technology, which makes it possible to transfer resources from
today to tomorrow. Assets stored earn a net return r, with �1  r  1/� � 1. Note that if
r = �1 we are back to the basic limited commitment model of Kocherlakota (1996). In this
section we only allow for public storage, to which defaulting agents do not have access (as
in Krueger and Perri, 2006). In Section 3 we also allow agents to store both in autarky and
potentially in equilibrium in a hidden way.

The constrained-efficient risk sharing contract is the solution to the following optimization
problem:

max

ci(st)

2
X

i=1

�

i

1
X

t=1

X

s

t

�

t

Pr

�

s

t

�

u

�

c

i

�

s

t

��

, (1)

where �

i

is the (initial) Pareto-weight of agent i, Pr (s

t

) is the probability of history s

t

occurring, and c

i

(s

t

) is the consumption of agent i at time t when history s

t has occurred;
subject to the resource constraints,

2
X

i=1

c

i

�

s

t

�


2
X

i=1

y

i

(s

t

) + (1 + r)B

�

s

t�1
�

� B

�

s

t

�

, B

�

s

t

�

� 0, 8st, (2)

where B (s

t

) denotes public storage when history s

t has occurred, with B (s

0
) given; and the

participation constraints,
1
X

r=t

X

s

r

�

r�t

Pr

�

s

r | st
�

u (c

i

(s

r

)) � U

au

i

(s

t

) , 8st, 8i, (3)

where Pr (s

r | st) is the conditional probability of history s

r occurring given that history s

t

occurred up to time t, and U

au

i

(s

t

) is the expected lifetime utility of agent i when in autarky
if state s

t

has occurred today. In mathematical terms,

U

au

1 (s

t

) = u (y(s

t

)) +

�

1� �

N

X

j=1

⇡

j

u

�

y

j

�

(4)
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and

U

au

2 (s

t

) = u (Y � y(s

t

)) +

�

1� �

N

X

j=1

⇡

j

u

�

y

j

�

.

The above definition of autarky assumes that agents cannot use the storage technology
in autarky. Note, however, that the qualitative results remain the same under different
outside options as long as the strict monotonicity of the autarky value in current income is
maintained. For example, agents could save in autarky (as in Krueger and Perri, 2006 and in
Section 3), or they might endure additional punishments from the community for defaulting
(as in Ligon, Thomas, and Worrall, 2002).

2.1 Characterization

We focus on the characteristics of constrained-efficient allocations. Our characterization
is based on the recursive Lagrangian approach of Marcet and Marimon (2011). However,
the same results can be obtained using the promised utility approach (Abreu, Pearce, and
Stacchetti, 1990).

Let �

t

Pr (s

t

)µ

i

(s

t

) denote the Lagrange multiplier on the participation constraint, (3),
and let �

t

Pr (s

t

) � (s

t

) be the Lagrange multiplier on the resource constraint, (2), when
history s

t has occurred. The Lagrangian is

L =

1
X

t=1

X

s

t

�

t

Pr

�

s

t

�

(

2
X

i=1



�

i

u

�

c

i

�

s

t

��

1

2

+µ

i

�

s

t

�

 1
X

r=t

X

s

r

�

r�t

Pr

�

s

r | st
�

u (c

i

(s

r

))� U

au

i

(s

t

)

!#

+�

�

s

t

�

 

2
X

i=1

�

y

i

(s

t

)� c

i

�

s

t

��

+ (1 + r)B

�

s

t�1
�

� B

�

s

t

�

!)

,

with B (s

t

) � 0. Using the ideas of Marcet and Marimon (2011), we can write the Lagrangian
in the form

L =

1
X

t=1

X

s

t

�

t

Pr

�

s

t

�

(

2
X

i=1

⇥

M

i

�

s

t

�

u

�

c

i

�

s

t

��

� µ

i

�

s

t

�

U

au

i

(s

t

)

⇤

+�

�

s

t

�

 

2
X

i=1

�

y

i

(s

t

)� c

i

�

s

t

��

+ (1 + r)B

�

s

t�1
�

� B

�

s

t

�

!)

,

where M

i

(s

t

) = M

i

(s

t�1
) + µ

i

(s

t

) and M

i

(s

0
) = �

i

.
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The necessary first-order condition7 with respect to agent i’s consumption when history
s

t has occurred is
@L

@c

i

(s

t

)

= M

i

�

s

t

�

u

0 �
c

i

�

s

t

��

� �

�

s

t

�

= 0. (5)

Combining such first-order conditions for agent 1 and agent 2, we have

x

�

s

t

�

⌘ M1 (s
t

)

M2 (s
t

)

=

u

0
(c2 (s

t

))

u

0
(c1 (s

t

))

. (6)

Here x (s

t

) is the temporary Pareto weight of agent 1 relative to agent 2.8 Defining

�

i

�

s

t

�

=

µ

i

(s

t

)

M

i

(s

t

)

and using the definitions of x (st) and M

i

(s

t

), we can obtain the law of motion of x as

x

�

s

t

�

= x(s

t�1
)

1� �2 (s
t

)

1� �1 (s
t

)

. (7)

The planner’s Euler inequality, i.e., the optimality condition for B (s

t

), is

�

�

s

t

�

� �(1 + r)

X

s

t+1

Pr

�

s

t+1|st
�

�

�

s

t+1
�

, (8)

which, using (5), can also be written as

M

i

�

s

t

�

u

0 �
c

i

�

s

t

��

� �(1 + r)

X

s

t+1

Pr

�

s

t+1 | st
�

M

i

�

s

t+1
�

u

0 �
c

i

�

s

t+1
��

.

Then, using (6) and (7), the planner’s Euler becomes

u

0 �
c

i

�

s

t

��

� �(1 + r)

X

s

t+1

Pr

�

s

t+1|st
�

u

0
(c

i

(s

t+1
))

1� �

i

(s

t+1
)

, (9)

where 0  �

i

(s

t+1
)  1, 8st+1

, 8i. Given the definition of �
i

(s

t+1
) and equation (7), it is easy

to see that (8) represents exactly the same mathematical relationship for both agents.
Equation (9) determines the choice of public storage, B (s

t

). It is clear that, first, the
higher the return on storage is, the more incentive the planner has to store. Second, when-
ever we do not have perfect risk sharing, that is, c

i

(s

t+1
) varies over s

t+1 for a given s

t, the
planner has a precautionary motive for storage, a typical motive for saving in models with

7Under general conditions, these conditions are also sufficient together with the participation and resource
constraints.

8To reinforce this interpretation, notice that if no participation constraint binds in history s

t for either
agent, i.e., µ1 (s

⌧
) = µ2 (s

⌧
) = 0 for all subhistories s

⌧ ✓ s

t, then x (s

t
) = �1/�2, the initial relative Pareto

weight of agent 1.
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(endogenously) incomplete markets. Third, the new term compared to standard models is
1/ (1� �

i

(s

t+1
)) � 1. This term is strictly bigger than 1 for states when agent i’s participa-

tion constraint is binding. Hence, future binding participation constraints amplify the return
on storage. This is the case, because higher storage will make the participation constraints
looser in the future by reducing the relative attractiveness of default. The planner internalizes
this effect when choosing the level of public storage.

Next, we introduce some useful notation and show more precisely the recursive formu-
lation of our problem. This recursive formulation is going to be the basis for both the
analytical characterization and the numerical solution procedure. Let c and y denote the
current consumption and income, respectively, of agent 1, and V () denote his value function.
The following system is recursive with X = (y, B, x) as state variables:

x

0
(X) =

u

0
(Y + (1 + r)B � B

0
(X)� c(X))

u

0
(c(X))

(10)

x

0
(X) = x

1� �2(X)

1� �1(X)

(11)

u

0
(c(X)) � �(1 + r)

X

y

0

Pr (y

0
)

u

0
(c(X

0
))

1� �1(X
0
)

(12)

u (c(X)) + �

X

y

0

Pr (y

0
)V (X

0
) � U

au

(y) (13)

u (Y + (1 + r)B � B

0
(X)� c(X)) + �

X

y

0

Pr (y

0
)V (Y � y

0
, B

0
(X), 1/x

0
(X)) � U

au

(Y � y)

(14)
B

0
(X) � 0. (15)

The first equation, (10), where we have used the resource constraint to substitute for c2(X),
says that the ratio of marginal utilities between the two agents has to be equal to the current
relative Pareto weight. Equation (11) is the law of motion of the co-state variable, x. Equa-
tion (12) is the social planner’s Euler inequality, which we have derived above. Equations
(13) and (14) are the participation constraints of agent 1 and agent 2, respectively. Finally,
equation (15) makes sure that storage is never negative.

Given the recursive formulation above, and noting that the outside option U

au

() is mono-
tone in current income and takes a finite set of values, the solution can be characterized
by a set of state-dependent intervals on the temporary Pareto weight. This is analogous to
the basic model, where public storage is not considered (see Ljungqvist and Sargent, 2004,
for a textbook treatment). The key difference is that these optimal intervals on the relative
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Pareto weight depend not only on current endowment realizations but also on B. The fol-
lowing lemma will be useful for specifying the optimal state-dependent intervals, and hence
for characterizing the dynamics of our model.

Lemma 1. c (ỹ, B, x̃) = c (ŷ, B, x̂), B

0
(ỹ, B, x̃) = B

0
(ŷ, B, x̂), and V (ỹ, B, x̃) = V (ŷ, B, x̂)

for all (ỹ, x̃), (ŷ, x̂) such that x

0
(ỹ, B, x̃) = x

0
(ŷ, B, x̂). That is, for determining consump-

tions, public storage, and agents’ expected lifetime utility, the current relative Pareto weight, x0,
is a sufficient statistic for the current income state, y

j, and last period’s relative Pareto
weight, x.

Proof. Once we know x

0, equations (10) and (12), which do not depend on x, give c and B

0.
Then, the left hand side of (13) gives V .

Lemma 1 implies that, with some abuse of notation, we can express consumptions, storage,
and agents’ lifetime utility in terms of accumulated assets and the current Pareto weight.
That is, we can write c(B, x

0
), B0

(B, x

0
), and V (B, x

0
).

The following conditions define the lower and upper bound of the optimal intervals in
state y

j as a function of B:

V (B, x

j

(B)) = U

au

�

y

j

�

and V

✓

B,

1

x

j

(B)

◆

= U

au

�

Y � y

j

�

. (16)

Hence, given the inherited Pareto weight, x
t�1, and accumulated assets, B, the updating rule

is

x

t

=

8

<

:

x

j

(B) if x

t�1 > x

j

(B)

x

t�1 if x

t�1 2
⇥

x

j

(B), x

j

(B)

⇤

x

j

(B) if x

t�1 < x

j

(B)

. (17)

The ratio of marginal utilities is kept constant whenever this does not violate the participation
constraint of either agent. When the participation constraint binds for agent 1, the relative
Pareto weight moves to the lower limit of the optimal interval, just making sure that this
agent is indifferent between staying and defaulting. Similarly, when agent 2’s participation
constraint binds, the relative Pareto weight moves to the upper limit of the optimal interval.
Thereby, it is guaranteed that, ex ante, as much risk sharing as possible is achieved while
satisfying the participation constraints.

Note that, given that the value of autarky is strictly increasing in current income and
the value function is strictly increasing in the current Pareto weight, xj

(B) > x

j�1
(B) and

x

j

(B) > x

j�1
(B) for all N � j > 1 and B. It is easy to see that, unless autarky is the only

implementable allocation, we have that xj

(B) > x

j

(B) for some j.
Given the utility function, the income process, and B, the intervals for different states

may or may not overlap depending on the discount factor, �. The higher � is, the wider

11



these intervals are. By a standard folk theorem (Kimball, 1988), for � sufficiently high all
intervals overlap, that is, x1

(B) � x

N

(B), hence perfect risk sharing is implementable at the
given asset level. At the other extreme, when � is sufficiently low, agents stay in autarky.

As public assets are accumulated (or decumulated) these optimal intervals change. The
intervals are wider when B is higher. This is because a higher B means more resources while
in the risk sharing arrangement, and autarky utility is unchanged. This means that xj

(B) is
strictly increasing and x

j

(B) is strictly decreasing in B for all j, as long as the length of the
j-interval is not zero.

We can describe the dynamics of the model with similar optimal intervals and updating
rule on consumption as on the relative Pareto weight. Using (10), we can now implicitly
define the limits of the optimal intervals on consumption as

c

j

(B) : x

j

(B) =

u

0 �
Y + (1 + r)B � B

0
(x

j

(B), B)� c

j

(B)

�

u

0
�

c

j

(B)

�

and c

j

(B) : x

j

(B) =

u

0
(Y + (1 + r)B � B

0
(x

j

(B), B)� c

j

(B))

u

0
(c

j

(B))

. (18)

Symmetry implies that cj(B) = Y +(1 + r)B�B

0
(x

j

(B), B)�c

N�j+1
(B). Further, whenever

public assets are constant over time, B⇤ ⌘ B

0
= B, we can implicitly define the limits of the

optimal consumption intervals as

c

j

(B

⇤
) : x

j

(B

⇤
) =

u

0 �
Y + rB

⇤ � c

j

(B

⇤
)

�

u

0
�

c

j

(B

⇤
)

� and c

j

(B

⇤
) : x

j

(B

⇤
) =

u

0
(Y + rB

⇤ � c

j

(B

⇤
))

u

0
(c

j

(B

⇤
))

.

It is easy to see that consumption is monotone in the end-of-period relative Pareto weight
in the constant assets case, because aggregate resources are constant at Y +rB

⇤. However, in
general, aggregate consumption varies a (1 + r)B � B

0
(x

0
, B) varies of time, which depends

on x

0. Hence, an increase in the current relative Pareto weight may imply a sufficiently large
decrease in aggregate consumption so that agent 1’s consumption decreases. For the rest of
the analysis, we conjecture that this is generally not the case.

Conjecture 1. If x̃0
> x̂

0 then c (B, x̃

0
) > c (B, x̂

0
), 8B. That is, consumption by agent 1 is

strictly increasing in his current relative Pareto weight.

We prove Conjecture 1 in Appendix A for some but not all possible sets of parameter values.
In all numerical examples we have considered this property always holds.

In order to better understand some key characteristics of the dynamics of this model,
we now focus on the case where public storage is constant over time. Then, from the next
section, we study in detail the joint dynamics of consumption dispersion and assets. However,
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as we show later, under some conditions the economy will converge (almost surely) to a
constant level of public assets. Further, the basic model is a special case of this economy
with B

0
= B = 0.

We consider scenarios where the long-run equilibrium is characterized by imperfect risk
sharing. That is, we assume from now on that x

1
(B

⇤
) < x

N

(B

⇤
), or, equivalently, that

c

1
(B

⇤
) < c

N

(B

⇤
). We do this both because there is overwhelming evidence from several ap-

plications (households in a village or in the United States, spouses in a household, countries)
about less than perfect risk sharing, and because that case is theoretically not interesting, as
it is equivalent to the well-known (unconstrained-)efficient allocation of constant individual
consumptions over time. It is not difficult to see that for a constant B the law of motion
described by (17) implies that, in the long run, risk sharing arrangements subject to limited
commitment are characterized by a finite set of consumption values determined by the limits
of the optimal consumption intervals. It turns out that considering two scenarios is enough
to describe the general picture: (i) each agent’s participation constraint is binding only when
his income is highest, and (ii) each agent’s participation constraint is binding in more than
one state.9 Given this, to describe the constrained-efficient allocations in these two scenarios,
it is sufficient to consider three income states, i.e., N = 3. Hence, for all our graphical and
numerical examples, we set N = 3.

Consider an endowment process where each agent gets yh, ym, or yl units of the consump-
tion good, with y

h

> y

m

> y

l, with probabilities ⇡

h, ⇡

m, and ⇡

l, respectively. Symmetry
implies that y

m

= (y

h

+ y

l

)/2 and ⇡

h

= ⇡

l

= (1� ⇡

m

)/2.
Given constant assets in the long run, the consumption intervals become wider if either �

increases for a given B

⇤, as in the basic model, or B

⇤ increases for a given �. Both changes
make autarky less attractive. This is true in the former case because agents put higher
weight on insurance in the future, and in the latter because agents are excluded from the
benefits of more public assets upon default. If partial insurance occurs, there are two possible
scenarios depending on the level of the discount factor and public assets. For higher levels
of � and/or B

⇤, cm (B

⇤
) � c

h

(B

⇤
) > c

l

(B

⇤
) � c

m

(B

⇤
). This means that the consumption

interval for state y

m overlaps with both the interval associated with state y

h and the one
association with state y

l. This is the case where each agent’s participation constraint binds
for the highest income level only. Panel (a) in Figure 1 presents an example satisfying these
conditions.

Suppose that the initial consumption level of agent 1 is below c

h

(B

⇤
). When agent 1 draws

9It will become clear below that assets can only be optimally constant in this case if they are zero.
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Figure 1: Consumption dynamics in the long run
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Notes: In panel (a) the interval for state y

m overlaps with the intervals for state y

h and state y

l. In panel
(b) all three state-dependent intervals are disjunct.

a high income realization (which occurs with probability 1 in the long run), his consumption
jumps to c

h

(B

⇤
). Then it stays at that level until his income jumps to the lowest level.

At that moment, agent 2’s participation constraint binds, because he has high income, and
consumption of agent 1 drops to c

l

(B

⇤
). Then we are back to where we started from.

A very similar argument holds whenever agent 1’s initial consumption is above c

h

(B

⇤
).

This implies that consumption takes only two values, ch (B⇤
) and c

l

(B

⇤
), in the long run.

When consumption changes, it always moves between these two levels, and the past history
of income realizations does not matter. This is the amnesia property of the basic model
(Kocherlakota, 1996). When state y

m occurs after state y

h or state y

l, the consumption
allocation remains unchanged. That is, consumption does not react at all to this ‘small’
change in income. This is the persistence property of the basic model. Note that consumption
also remains unchanged over time if the sequence (h,m, h) or the sequence (l,m, l) takes place.

The key observation here is that, although individuals face consumption changes over
time, the consumption distribution is time-invariant. In every period, half of the agents
consume c

h

(B

⇤
) and the other half consume c

l

(B

⇤
). Finally, note that this happens for any

N as long as c

2
(B

⇤
) � c

N

(B

⇤
) > c

1
(B

⇤
) � c

N�1
(B

⇤
).

For lower levels of � and/or B

⇤, none of the three intervals overlap, i.e., c

h

(B

⇤
) >

c

m

(B

⇤
) > c

m

(B

⇤
) > c

l

(B

⇤
). Panel (b) in Figure 1 shows an example of this second case.

When all three intervals are disjunct, consumption takes four values in the long run. Notice
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that the participation constraint of agent 1 may bind for both the medium and the high
level of income. That is, whenever his income changes his consumption changes as well, and
similarly for agent 2.

In this second case, in state y

m the past history determines which agent’s participation
constraint binds, therefore consumption is Markovian. Current incomes and the identity of
the agent with a binding participation constraint fully determine the consumption allocation.
The dynamics of consumption exhibit amnesia in this sense here. Further, consumption
responds to every income change, hence the persistence property does not manifest itself.

The key observation for later reference is that the consumption distribution changes be-
tween {cm (B

⇤
) , c

m

(B

⇤
)} and

�

c

l

(B

⇤
) , c

h

(B

⇤
)

 

. That is, the cross-sectional distribution of
consumption is different whenever state y

m occurs from when an unequal income state, yh

or yl, occurs. If there are N > 3 income states, the cross-sectional consumption distribution
changes over time whenever c2 (B⇤

) < c

N

(B

⇤
) and c

1
(B

⇤
) < c

N�1
(B

⇤
).10

2.2 The dynamics of public assets and the consumption distribution

The next proposition provides a key property of the aggregate storage decision rule and
characterizes the short-run dynamics of assets. It shows how public storage varies with the
consumption and income distribution.

Proposition 1. B

0
(B, x

0
) is strictly increasing in x

0 for x

0 � 1 and B

0
(B, x

0
) > 0. That is,

the higher cross-sectional consumption inequality is, the higher public asset accumulation is.
B

0
(y

j

, B, x) � B

0
(y

k

, B, x), 8(B, x), where j � N/2 + 1, k � N/2, and j > k. The inequality
is strict, i.e., B

0
(y

j

, B, x) > B

0
(y

k

, B, x), if the optimal intervals for states y

j and y

k do
not overlap given B. That is, aggregate asset accumulation is weakly increasing with cross-
sectional income inequality.

Proof. In Appendix A.

The intuition for Proposition 1 is coming from two related observations. Higher inequality in
the current period implies higher expected consumption inequality/risk next period. Under
convex inverse marginal utility, the planner has a higher precautionary motive for saving
whenever she faces more risk tomorrow.11

10The number of income states and the number of states where a participation constraint binds determine
the possible number of long-run consumption levels, and consequently the persistence property may appear.

11Note that for log() utility, B0 is weakly increasing in x

0, i.e., in cross-sectional consumption inequality,
since 1

/u0 is linear in this case, while for CRRA utility functions with a coefficient of relative risk aversion
strictly greater than 1, the empirically more plausible range, 1

/u0 is strictly convex.
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We are now ready to characterize the long-run behavior of public assets and the consump-
tion distribution.

Proposition 2. Assume that � is such that agents obtain low risk sharing in the sense that
the consumption distribution is time-varying without public storage.

(i) There exists r1 such that for all r 2 [�1, r1], public storage is never used in the long
run.

(ii) There exists a strictly positive r2 > r1 such that for all r 2 (r1, r2), B remains stochastic
but bounded, and the consumption distribution is time-varying in the long run.

(iii) For all r 2 [r2, 1/� � 1), B converges almost surely to a strictly positive constant where
the consumption distribution is time-invariant, but perfect risk sharing is not achieved.

(iv) Whenever r = 1/� � 1, B converges almost surely to a strictly positive constant and
perfect risk sharing is self-enforcing.

If � is such that the consumption distribution is time-invariant without public storage, then
r1 = r2, hence only (i), (iii), and (iv) occur.

Proof. In Appendix A.

The intuition behind Proposition 2 is that the social planner trades off two effects of
increasing aggregate storage: it is costly as long as �(1 + r) < 1, but less so the higher r is,
and it is beneficial because it reduces consumption dispersion in the future. The level of public
assets chosen just balances these two opposing forces. The relative strength of these two
forces naturally depends on the return to storage, r. When the cross-sectional consumption
distribution is time-varying (case (ii)), the relative strength of the two forces determining
asset accumulation changes over time, as we have shown in Proposition 1. This implies that
assets cannot settle at a constant level in this case. When the return on storage is sufficiently
high (case (iii)), assets are accumulated so that participation constraints are only binding for
agents with the highest income in the long run, and the consumption distribution becomes
time-invariant. In this case, there is a constant level of assets which exactly balances the
trade-off between impatience and the risk sharing gains of storage. Finally, in the limiting
case of �(1 + r) = 1 (case (iv)), there is no trade-off in the long run, hence assets are
accumulated until the level where full insurance is enforceable.

We illustrate the dynamics of assets in our model on two figures. First, Figure 2 shows
the short-run dynamics of assets in the case where they converge to a constant in the long run
(case (iii) of Proposition 2). We assume further that we are already in the range of aggregate
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assets where the participation constraint binds only when an agent has the highest possible
income. The solid (blue) line represents B

0 �
B, x

N

(B)

�

, i.e., we compute B

0 assuming that
the relevant participation constraint is binding. It is easy to see from the figure that at
B = B

⇤ assets remain constant in the long run, since B

0
= B = B

⇤.
Now, we explain how assets converge to B

⇤. Suppose that state y

N occurs when inherited
assets are at the initial level B0 < B

⇤. Then public storage is B0 �
B0, x

N

(B0)
�

. Next period,
if any state y

j with j � 2 occurs, no participation constraint is binding, hence, according to
Proposition 1, assets are B

0 �
B, x

N

(B0)
�

> B

0 �
B, x

N

(B)

�

, because given B > B0 we have
x

N

(B) < x

N

(B0). The dynamics of asset in states yj with j � 2, i.e., when no participation
constraint binds, is represented by the dot-dashed (red) line. As long as state y

1 does not
occur, assets are determined by this line and would eventually converge to the level eB > B

⇤.
However, state y

1 occurs almost surely before eB is reached. If the level of assets when y

1

occurs is above B

⇤, then assets are determined by the solid (blue) line, and they have to
decline. If a participation constraint continues to bind, which happens in both state y

1 and
state y

N , assets converge to B

⇤ along the solid (blue) line. If no participation constraint
binds, then according to Proposition 1 assets decline even more. This may result in the asset
level dropping below B

⇤, but it remains above B0. Then the same dynamics start again
but in a tighter neighborhood around B

⇤. This argument implies that, although almost-sure
convergence is guaranteed, it does not happen in a monotone way generically.

Before describing the dynamics of assets when they are stochastic in the long run (case (ii)),
we characterize the bounds of the stationary distribution of assets. Let B

�

B

�

denote the
lower (upper) limit of the stationary distribution of assets. Let an upper index m refer to
the least unequal income state(s).12

Proposition 3. The lower limit of the stationary distribution of public assets, B, is either
strictly positive and is implicitly given by

u

0
(c

m

(B)) = �(1 + r)

N

X

j=1

⇡

j

u

0
(c (y

j

, B, x

m

(B)))

1� � (y

j

, B, x

m

(B))

, (19)

or is zero and (19) holds as strict inequality. The upper limit of the stationary distribution
of public assets, B, is implicitly given by

u

0 �
c

�

y

N

, B, x

N

(B)

��

= �(1 + r)

N

X

j=1

⇡

j

u

0 �
c

�

y

j

, B, x

N

(B)

��

. (20)

12Note that m refers to one state if N is odd, state y

N/2+1, and two states when N is even, y

N/2 and
y

N/2+1.
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Figure 2: Short-run asset dynamics when assets are constant in the long run

Proof. In Appendix A.
Figure 3 illustrates both the short- and long-run dynamics of public assets in the case

where they are stochastic in the long run. For simplicity, we consider three income states.
This means that there are two types of states: two with high income and consumption in-
equality (states yh and y

l) and one with low income and consumption inequality (state y

m).
The solid (red) line represents B

0 �
B, x

h

(B)

�

, i.e., storage in state y

h (or y

l) when the rel-
evant participation constraint is binding. Similarly, the dot-dashed (blue) line represents
B

0
(B, x

m

(B)), i.e., storage in state y

m when the relevant participation constraint is binding.
Starting from B0, if state y

m occurs repeatedly, assets converge to the lower limit of their
stationary distribution, B. The relevant participation constraint is always binding along this
path, because inherited assets keep decreasing.

The dashed (green) line represents the scenario where state y

h (or state y

l) occurs when
inherited assets are at the lower limit of the stationary distribution, B, and then the same
state occurs repeatedly. This is when assets approach the upper limit of their stationary
distribution, B. The relevant participation constraint is not binding from the period af-
ter the switch to y

h, therefore storage given inherited assets is described by the function
B

0 �
B, x

h

(B)

�

.
Finally, assume, without loss of generality, that state y

l occurred many times while ap-
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Figure 3: Asset dynamics when assets are stochastic in the long run

proaching B, and suppose that state y

h occurs when inherited assets are (close to) B. In
this case, x0

= x

h

�

B

�

< x

h

(B), and assets decrease. They then converge to a level eB from
above with the relevant participation constraint binding along this path. The same happens
whenever B >

e

B when we switch to state y

h (or y

l). eB is implicitly given by

u

0
⇣

c

h

⇣

e

B

⌘⌘

= �(1 + r)

X

j={l,m,h}

⇡

j

u

0
⇣

c

⇣

y

j

,

e

B, x

h

⇣

e

B

⌘⌘⌘

.

Note that as long as only state y

h and y

l occur, assets remain constant at eB, similarly as
in the previous figure. The key difference is that when the income distribution switches to
the most equal one (y

m

), a participation constraint binds, triggering a move in x toward 1,
hence assets drop according to Proposition 1.

2.3 The dynamics of individual consumptions

Having characterized assets, we now turn to the dynamics of consumption. One key property
of the basic model is that whenever either agent’s participation constraint binds (�1(X) > 0

or �2(X) > 0), the resulting allocation is independent of the preceding history. In our for-
mulation, this implies that x

0 is only a function of yj and the identity of the agent with a
binding participation constraint. This is often called the amnesia property (Kocherlakota,
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1996), and typically data do not support this pattern, see Broer (2012) for the United States
and Kinnan (2012) for Thai villages. Allowing for storage helps to bring the model closer to
the data in this respect.

Proposition 4. The amnesia property does not hold when public assets are stochastic in the
long run.

Proof. x

0 and hence current consumption depend on both current income and inherited
assets, B, when a participation constraint binds. This implies that the past history of income
realizations affects current consumptions through B.

Another property of the basic model is that whenever neither participation constraint
binds (�1(X) = �2(X) = 0), the consumption allocation is constant and hence exhibits an
extreme form of persistence. This can be seen easily: (11) gives x0

= x, and the consumption
allocation is only a function of x

0 with constant aggregate income. This implies that for
‘small’ income changes which do not trigger a participation constraint to bind, we do not
see any change in individual consumptions. It is again not easy to find evidence for this
pattern in the data, see Broer (2012). In our model, even if the relative Pareto weight
does not change, (10) does not imply that individual consumptions will be the same next
period as in the current period. This is because (1 + r)B � B

0
(X) is generically not equal to

(1 + r)B

0 � B

00
(X

0
) when assets are stochastic in the long run. The only exceptions are asset

levels B, eB, and B on Figure 3 with the appropriate income states occurring. However, the
probability that assets settle at these points in the stationary distribution is zero.

Proposition 5. The persistence property does not hold generically when public assets are
stochastic in the long run.

Proof. Even though x

0
= x, when neither participation constraint binds, consumption is only

constant if net savings are identical in the past and the current period. This is generically
not the case when B is stochastic.

The last two propositions imply that the dynamics of consumption in the our model are
richer and closer to the data than in the basic model in a qualitative sense. We leave the
study of the quantitative implications of storage on consumption dynamics to future work.

2.4 Welfare

It is clear that access to public storage cannot reduce welfare, because zero assets can always
be chosen. Along the same lines, if public storage is positive for at least the most unequal
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income state, then welfare strictly improves. Proposition 2 implies that this is the case
whenever the basic model does not display perfect risk sharing and the return on storage is
higher than r1 < 1/� � 1.

2.5 Decentralization

Ábrahám and Cárceles-Poveda (2006) show how to decentralize a limited commitment econ-
omy with capital accumulation and production. That economy is similar to the current one in
one important aspect: agents are excluded from receiving capital income after default. They
introduce competitive intermediaries and show that a decentralization with endogenous debt
constraints which are ‘not too tight’ (which make the agents just indifferent between partic-
ipating and defaulting), as in Alvarez and Jermann (2000), is possible. However, Ábrahám
and Cárceles-Poveda (2006) use a neoclassical production function where wages depend on
aggregate capital. This implies that there the value of autarky depends on aggregate capi-
tal as well.13 They show that if the intermediaries are subject to endogenously determined
capital accumulation constraints, then this externality can be taken into account, and the
constrained-efficient allocation can be decentralized as a competitive equilibrium.14

Public storage can be thought of as a form of capital, B units of which produce
Y + (1 + r)B units of output tomorrow and which fully depreciates. Hence, the results above
directly imply that a competitive equilibrium corresponding to the constrained-efficient allo-
cation exists. In particular, households trade Arrow securities subject to endogenous borrow-
ing constraints which prevent default, and the intermediaries also sell these Arrow securities
to build up public storage. The key intuition is that equilibrium Arrow security prices take
into account binding future participation constraints, as these prices are given by the usual
pricing kernel. Moreover, agents do not hold any ‘shares’ in public storage, hence their
autarky value is not affected. Finally, no arbitrage or perfect competition guarantees that
the intermediaries make zero profits in equilibrium. As opposed to Ábrahám and Cárceles-
Poveda (2006), capital accumulation constraints are not necessary, because in our model
public storage does not affect agents’ outside option.

13This is also the case in the two-country production economy of Kehoe and Perri (2004).
14Chien and Lee (2010) achieve the same objective by taxing capital instead of using a capital accumulation

constraint.
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3 The model with both public and private storage

So far, we have assumed that storage is available to the social planner, but agents can use it
neither in autarky nor while in the risk sharing arrangement. In this section, we allow agents
to use the same storage technology as the social planner. This both affects their autarky
value and enlarges the set of possible actions (and deviations). In practice, allowing for
private storage requires adding agents’ Euler inequalities as constraints to the problem given
by the objective function (1) and the constraints (2) and (3), and modifying the participation
constraints, (3).

The social planner’s problem becomes

max

{ci(st),B(st)}
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The objective function, the resource constraint and the non-negativity of storage restriction
remain the same as before. The participation constraints, (23), change slightly, since ˜
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(to be defined precisely below) is the value function of autarky when storage is allowed.
Agents’ Euler inequalities, equation (24), guarantee that agents have no incentive to deviate
from the proposed allocation by storing privately.

A few remarks are in order about this structure before we turn to the characterization of
constrained-efficient allocations. First, agents can store in autarky, but they lose access to
the benefits of the public asset.15 This implies that ˜
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where b denotes private savings. Since V

au

i

(y

j

, 0) is increasing (decreasing) in j for agent 1

(2), it is obvious that if we replace the autarky value in the model of Section 2 (or in the
basic model) with the one defined here, the same characterization holds.

15This is the same assumption as in Krueger and Perri (2006), where agents lose access to the benefits of
a tree after defaulting. In our model the ‘tree’ is endogenous.
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Second, we use a version of the first-order condition approach (FOCA) here. That is,
these constraints only cover a subset of possible deviations. In particular, we verify that the
agent is better off staying in the risk arrangement rather than defaulting and possible storing
(constraint (23), see also (25)), and that he has no incentive to store given that he does
not ever default (constraint (24), agents’ first-order condition). It is not obvious whether
these constraints are sufficient to guarantee incentive compatibility,16 because multiple and
multi-period deviations are not considered by these constraints. In particular, an agent can
store in the current period (to increase his value of autarky in future periods) and default in
a later period. For now, we assume that these deviations are not profitable given the contract
which solves Problem P1. We first characterize the solution under this assumption. Then,
in Section 3.4, we will show that agents indeed have no incentive to use these more complex
deviations.

Third, both the participation constraints, (23), and the Euler constraints, (24), involve
future decision variables. Given these two types of forward-looking constraints, a recursive
formulation using either the promised utilities approach (Abreu, Pearce, and Stacchetti,
1990) or the Lagrange multipliers approach (Marcet and Marimon, 2011) is difficult. Euler
constraints have been dealt with using the agent’s marginal utility as a co-state variable
in models with moral hazard and hidden storage, see Werning (2001) and Ábrahám and
Pavoni (2008). In our environment, this could raise serious tractability issues, since we
would need two more continuous co-state variables, in addition to the state variable to make
the participation constraints recursive.

In this paper, we follow a different approach that avoids these complications. In particular,
we show that the solution of a simplified problem where agents’ Euler inequalities are ignored
satisfies those Euler constraints. That is, instead of Problem P1, we consider the following
simpler problem:

max

{ci(st),B(st)}
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This is the problem we studied in Section 2, the only difference being that the autarky value
16In fact, Kocherlakota (2004) shows that in an economy with private information and hidden storage the

first-order condition approach can be invalid.
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is different. Now, we are ready to state the main result of this section.

Proposition 6. The solution of the model with hidden storage, P1, corresponds to the solu-
tion of the simplified problem, P2.

Proof. We prove this proposition by showing that the allocation which solves P2 satisfies
agents’ Euler inequalities (24), the only additional constraints. Note that the planner’s
Euler, (9), is a necessary condition for optimality for P2. It is clear that the right hand side
of (9) is bigger than the right hand side of (24), for i = {1, 2}, since 0  �

i

(s

t+1
)  1, 8st+1.

Therefore, (9) implies (24).
This result implies that the characteristics of the constrained-efficient allocation of Prob-

lem P1 are the same as those of Problem P2, which is the problem we studied in Section 2.
Proposition 6 also means that private storage does not matter as long as public asset accu-
mulation is optimal.

The intuition behind this result is that the planner has more incentive to store than
the agents. She stores for the agents, because she inherits their consumption smoothing
preferences. Thereby she can eliminate the agents’ incentive to store in a hidden way. Fur-
ther, comparing (9) and (24) again, it is obvious that the planner has more incentive to
store than the agents in all but the most unequal states. In particular, the presence of
1/ (1� �

i

(s

t+1
)) > 1 in the planner’s Euler indicates how public asset accumulation helps

the planner to relax future participation constraints, and thereby improve risk sharing, or,
make markets more complete. In other words, the planner internalizes the positive externality
of public asset accumulation on future risk sharing.

Next, we relate the case with both private and public storage to the case with private
storage in autarky but without public storage. The following result follows from Proposi-
tion 6.

Corollary 1. The planner stores in equilibrium whenever an agent’s Euler inequality is
violated at the constrained-efficient allocation of the basic model with no public storage and
private storage only in autarky.

Corollary 1 says that whenever agents have private storage incentives in the basic model,
public storage is used in equilibrium. However, this result is only interesting if private
storage matters, i.e., agents’ Euler inequalities are violated, in the basic model under general
conditions. This is what we establish next.
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3.1 Does hidden storage matter in the basic model?

In this section, we identify conditions under which agents would store at the constrained-
efficient solution of the basic model without public storage. We assume that partial insurance
occurs at the solution, because otherwise it is trivial that private storage is never used. If
agents’ Euler inequalities are violated, the solution is not robust to deviations when private
storage is available. Further, Corollary 1 implies that public storage is going to be positive,
at least under some histories, whenever this technology is available.

We first consider the benchmark case where agents have access to an efficient intertempo-
ral technology, i.e., storage earns a return r such that �(1 + r) = 1. Afterwards, we study the
general case. We only examine whether agents would use the available hidden intertemporal
technology at the constrained-efficient allocation of the basic model. We do not make any
assumption about the number of income states, except that income may take a finite number
of values and the support of the income distribution is bounded.

Lemma 2. Suppose that partial insurance occurs and the hidden storage technology yields a
return r such that �(1 + r) = 1. Then agents’ Euler inequalities are violated at the constrained-
efficient allocation of the basic model.

Proof. We show that the Euler inequality is violated at the constrained-efficient alloca-
tion at least when an agent receives the highest possible income, y

N , hence his partici-
pation constraint is binding. By the characterization in Section 2.1, it is clear that for
all future income levels his consumption will be lower than his current consumption, i.e.,
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that is, the Euler inequality is violated.
It is obvious that if the return on storage is low, the constrained-efficient allocation of

the basic model satisfies agents’ Euler inequalities. The following proposition shows that for
all economies with partial insurance one can find a threshold return on storage above which
agents’ storage incentives bind in the basic model.

Proposition 7. There exists r̃ < 1/� � 1 such that for all r > r̃ agents’ Euler inequalities
are violated at the constrained-efficient allocation of the basic model.
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Proof. r̃ is defined as the solution to
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For r̃ close to �1, the right hand side is close to zero. By Lemma 2, the right hand side
is greater than the left hand side for r̃ = 1/� � 1. It is obvious that the right hand side is
continuous and increasing in r̃. Therefore, there is a unique r̃ that solves equation (26), and
agents’ Euler inequalities are violated for higher values of r.

The intuition behind this result is that whenever partial insurance occurs, the agent
enjoying high consumption in the current period faces a weakly decreasing consumption
path. Therefore, if a storage technology with sufficiently high return is available, the agent
uses it for self-insurance purposes. We can also show that the threshold r̃ in Proposition 7
can be negative. In particular, we have shown that agents would use a storage technology
with r = 0 under non-restrictive conditions. A necessary condition is that the consumption
distribution is time-varying in the long run. The proofs of these results are available upon
request.

3.2 The dynamics of individual consumptions revisited

We have shown in Section 2.3 that, introducing public storage, we overturn two counterfac-
tual properties of consumption dynamics in the basic model, the amnesia and persistence
properties. We can improve on the basic model with respect to a third aspect of the dy-
namics of consumption. In particular, the Euler inequality cannot be rejected in household
survey data from developed economies, once household demographics and labor supply are
appropriately accounted for (see Attanasio, 1999, for a comprehensive review of the litera-
ture). Since in our model with public storage agents’ Euler inequalities are satisfied, while
they are violated in the basic model, we bring limited commitment models in line with this
third observation as well.

3.3 Welfare revisited

In Section 2.4 we have argued that access to public storage unambiguously reduces consump-
tion dispersion and improves welfare. It is clear that hidden storage counteracts these benefits
of storage, because it increases the value of agents’ outside option, which in itself increases
consumption dispersion and reduces welfare. The overall effects of access to both public and
private storage are hence ambiguous in general, and depend on the return to storage, r. We
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first compare welfare at the long-run stationary distribution of our model with both public
and private storage and the basic model without storage. Afterwards, we discuss the effects
of the transition from the moment when storage becomes available.

In the following proposition we compare consumption dispersion and (equal-weighted)
social welfare in the long-run steady state in two economies. In the first economy neither
public nor private storage is available, in the second one both are available.

Proposition 8.

(i) There exists r̃1 such that for all r 2 [�1, r̃1] storage is not used even in autarky, therefore
access to storage leaves consumption dispersion unchanged and is welfare neutral.

(ii) There exists r̃2 > r̃1 such that for all r 2 (r̃1, r̃2] storage is used in autarky but not in
equilibrium, therefore consumption dispersion increases and welfare deteriorates as a
result of access to storage.17

(iii) There exists r̃3 > r̃2 such that for all r 2 (r̃2, r̃3) public storage is (at least sometimes)
positive, but access to storage is still welfare reducing and consumption dispersion is
higher than in the basic model without storage. Access to storage is welfare neutral in
the long run at the threshold r = r̃3.

(iv) There exists r̃4 > r̃3 such that for all r 2 (r̃3, r̃4) access to storage is welfare improving
in the long run, but consumption dispersion is still higher than in the basic model.
Consumption dispersion is the same at the threshold r = r̃4.

(v) For all r 2 (r̃4, 1/� � 1] access to storage is welfare improving in the long run, and
consumption dispersion is lower than in the basic model.

Proof. (i) It is easy to see that storage is never used when its return is close to -1, i.e., as long
as it is below some threshold r̃1. (ii) It is similarly easy to see that storage in equilibrium
implies storage in autarky. This follows from the fact that the planner’s and the agents’
saving incentives are the same when income inequality is highest, i.e., when the incentive to
store is highest, and agents’ Euler inequality is more stringent in autarky than in equilibrium
with some risk sharing. Then, if storage only takes place in autarky, the only effect of storage
is that the value of agents’ outside option increases, which reduces risk sharing and welfare.
(iii) As r further increases to above the threshold r̃2, according to Proposition 2 the planner
finds public storage optimal. However, by continuity, at this point the negative effect of the

17Nothing changes as long as perfect risk sharing is self-enforcing. This happens for r sufficiently small
when perfect risk sharing occurs without storage.
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increase in the value of autarky dominates the positive effect of the (small) stock of public
assets on risk sharing. Therefore, welfare still goes down as a result of access to storage.
(iv)-(v) If r = 1/� � 1, perfect risk sharing occurs and aggregate consumption is Y + rB

⇤

rather than Y , therefore welfare is strictly higher in the long run. Further, consumption
dispersion is zero. Then, for any r in a small neighborhood of 1/� � 1, the positive effect of
the increase in aggregate consumption dominates the negative effect of the increase in the
value of autarky, hence welfare improves. For such r, consumption dispersion is small. By
continuity there exists r̃2 < r̃3 < 1/� � 1 where the two welfare levels are equalized. At this
level of storage return, aggregate consumption has to be higher than in the basic model (at
least after some histories). Hence, welfare can be the same only if consumption dispersion
is higher than in the basic model. By continuity this should hold above r̃3 as well until the
threshold r̃4  1/� � 1.

Even when welfare improves in the long run, accumulating public assets has short-run
costs, since it reduces aggregate consumption in the short run. This implies that the total
gains (losses) from gaining access to storage are lower (higher) than those we have considered
in Proposition 8. However, it is not clear whether access to both private and public storage
will improves welfare. For this reason, we will explore this issue using numerical examples in
Section 4.

3.4 Validity of the first-order condition approach

Until now we have assumed that by introducing agents’ participation constraints and Euler
inequalities (equations (23) and (24), respectively) in Problem P1 we guarantee incentive
compatibility. In other words, we have assumed that the constrained-optimal allocation
can be obtained by checking that agents have no incentive to default given that they do
not have assets, and that they have no incentive to store given that they never default. In
principle, they may still find it optimal to use more complicated ‘double’ deviations involving
both storage and default, potentially in different time periods, given some history of income
shocks.

First, note that we have already considered contemporaneous joint deviations, i.e., when
the agent defaults and saves at the same time.18 In the participation constraint (23) we use
˜

U

au

i

(s

t

), the value of autarky when the agent can store (see equation (25)). Further, note
18In the literature with private information, a similar joint deviation, shirking (or reporting a lower income)

and saving, is the relevant deviation. Detailed discussion of these joint deviations can be found for the hidden
income case in Cole and Kocherlakota (2001), and for the hidden action (dynamic moral hazard) case in
Kocherlakota (2004) and Ábrahám, Koehne, and Pavoni (2011).
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that in autarky the agent is allowed to store whenever this makes him better off. Therefore,
the ‘default today and store later’-type of double deviations are already taken care of as well.
This implies that the only potentially profitable double deviations we still need to consider
are those which involve private asset accumulation in the current and default in a later period.

We demonstrate that the ‘store today and default later’-type of double deviations cannot
be profitable in the simplest possible case: only two consumption levels occur in the long
run, c

h

= c

N

(B

⇤
) and c

l

= c

1
(B

⇤
) with switching probability ⇡

e ⌘ ⇡

N

= ⇡

1. Part (iii) of
Proposition 2 implies that assets are constant in this case. We assume for simplicity that
we have already reached this level of assets. It is not difficult to generalize the argument to
more consumption levels and to cases where aggregate assets are changing over time. Let V h

denote the expected lifetime utility in the risk sharing arrangement of an agent who consumes
c

h today. Since c

h is pinned down by the binding participation constraint of agents when
their income reaches its highest level, we know that V h
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() is defined
in equation (25).

Now, we formally define the problem of an agent who is facing this consumption process
and has the option of storing today and defaulting later. We denote by W

h

(b) (W l

(b)) the
value function for an agent who is entitled to receive c

h (cl) in the current period, has b units
of assets accumulated, and decides not to default today. These value functions are defined
recursively as
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We define the solution of the above optimization problems as g

h

(b) and g

l

(b), respectively.

Lemma 3. g

h

(0) = 0. That is, the agent assigned to consume c

h today will not store, even
if defaulting later is an option.

Proof. In Appendix A.
In order to obtain some intuition behind this result, note that the optimal contract sat-

isfies the agents’ Euler as equality. Any deviation by storage would reduce current con-
sumption, and hence increase current marginal utility, but would increase future resources.
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However, given that the agent chooses storage optimally along these deviations as well, ex-
pected marginal utility next period must increase as well. Intuitively, given that there are
more resources available for the agent next period, and hence he can consume more, this
cannot be optimal. Clearly, agents do not want to store when they have low consumption
(they face a weakly increasing consumption path), so the validity of the first-order condition
follows.

Proposition 9. The first-order condition approach is valid.

Proof. The first-order condition approach is valid if g

h

(0) = g

l

(0) = 0, V

h

= W

h

(0), and
V

l

= W

l

(0). It is easy to see that gl(0) = 0. Lemma 3 shows that gh(0) = 0. Replacing these
solutions into (27) and (28), the first two conditions follow.

4 Computed examples

In this section we solve for the constrained-efficient allocation in economies with limited
commitment and access to public and private storage. As in Section 3, agents are allowed to
store in autarky. We describe the algorithm we have applied in more detail in Appendix B.
We show that aggregate storage can be significant in magnitude. We also illustrate how risk
sharing, welfare, and the dynamics of consumption are affected by the availability of storage
with different returns �1  r  1/� � 1.

We assume that agents’ per-period utility function is of the CRRA form with a coefficient
of relative risk aversion equal to 1, i.e., u() = ln(). Income of both agents is i.i.d. over
time, and may take three values, {0.2, 0.5, 0.8}, with equal probabilities. Income is perfectly
negatively correlated across the two agents, hence aggregate income is 1 in all three states.
We consider two discount factors, low (� = 0.7) and high (� = 0.8). In the former case risk
sharing is partial without storage, however, the consumption distribution is time-invariant
(i.e., the participation constraint of each agent binds only for the highest income level). In
the latter case, perfect risk sharing occurs without access to storage. Note that this does
not imply that public and private storage cannot be relevant as access to private storage
increases the autarky values and may prevent full insurance with zero public assets. This
triggers public asset accumulation if the return on storage is sufficiently high. In turn, public
assets may bring the allocation close to perfect risk sharing again at a higher level of aggregate
consumption. At the limit, when the return is as high as the discount rate, perfect risk occurs
in the long run for any set of parameter values, see Proposition 2.

We present the simulation results on a few figures. First, let us look at the behavior of
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assets in the long run. Figure 4 shows the limits of the stationary distribution of assets,
the first panel for � = 0.7 and the second for � = 0.8. Note the difference in scales in the
two panels. Assets in the long run naturally increase with r. When the storage technology
is efficient (r = 1/� � 1), assets reach at least 35.7 (38.2) percent of aggregate (non-asset)
income in the long run when � = 0.7 (� = 0.8) (not represented). Depending on the history
of shocks, assets may reach a higher level even if their initial level is zero.19

When the discount factor is high (� = 0.8), the participation constraints in state y

m do
not bind in the long run, and assets always converge to a constant for any return on storage
(case (iii) in Proposition 2). Public storage is positive for r � 0.094. For example, with
r = 0.16 the planner’s savings amount to 18.21 percent of aggregate (non-asset) income,
while with r = 0.11 they are 5.49 percent.

When � = 0.7, for intermediate values of r the participation constraints bind in all three
states, and assets remain stochastic in the long run (case (ii) in Proposition 2). Public storage
is (sometimes) positive for r � 0.089. For example, with r = 0.14 public assets vary between
5.81 and 7.13 percent of aggregate (non-asset) income. When the interest rate is r = 0.095,
assets vary between 0 and 1.47 percent. This last example shows that 0 can be part of the
stationary distribution of assets when they are stochastic in the long run (see Proposition 3).

Figure 5 shows the possible long-run consumption values. Together with Figure 4, this
figure reflects the different cases described in Propositions 2 and 8. If � = 0.7 (� = 0.8) for
returns below r̃1 = �0.304 (r̃1 = �0.416) storage does not even affect the value of autarky
and hence it is not used in equilibrium either. In this case, the allocation is not affected by
the availability of storage. Given our parametrization, this implies that in the low patience
case (� = 0.7) the consumption distribution has two values, while in the high patience case
(� = 0.8) full risk sharing is enforceable. In fact, for � = 0.8, perfect risk sharing occurs in
the long run for r < �0.077. As long as r is below r̃2 = 0.089 (r̃2 = 0.094) for � low (high),
public storage is still not used, but storage increases the value of autarky, so consumption
dispersion increases with the rate of return on storage.20 For r � r̃2, as r and aggregate asset
accumulation increases, consumption dispersion declines until full risk sharing is achieved
when �(1 + r) = 1.

One important difference between the two cases is that with the low beta, at r = 0.01 the
19The lowest possible level of assets in the long run when r = 1/� � 1 is reached if x = 1. Depending on the

history of shocks, perfect risk sharing may occur at a different x, and the higher cross-sectional consumption
inequality is, the higher assets are in the long run. Assets reach the highest possible level if one of the
unequal income states, y

l or y

h, occurs in every period starting from zero assets till perfect risk sharing
becomes self-enforcing. This follows from Proposition 3.

20For � = 0.8, the autarky value is affected already for a lower storage return, however at these levels full
insurance is still enforceable.
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Figure 4: Assets in the long run
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Notes: The lower and upper limits of the stationary distribution of public assets. The two coincide when
� = 0.8. The aggregate endowment is 1 in each period. Note the difference in scales in the two panels.

autarky values become such that a participation constraint binds in state y

m as well. For this
reason, in Panel (a) of Figure 5, we see four consumption levels (as in Panel (b) of Figure 1)
as long as public storage is not used. As the return reaches r1 = r̃2 = 0.089 public storage is
used, and assets remains stochastic in the long run until r2 = 0.216 (case (ii) in Proposition
2). This implies that in this case, even in the long run, consumptions not only depend on
current income but also on the level of assets. For this reason, in Panel (a) of Figure 5,
we have displayed the maximum and minimum levels of consumption for a given income
state. Remember that in state y

m individual consumptions depend on which asymmetric
state occurred last. Notice that for this parametrization, the stochasticity of assets has small
effects on the levels and dispersion of consumption. At r = 0.216 the participation constraints
stop binding in state ym, and hence the consumption distribution becomes time-invariant and
assets converge to a constant level.

Figure 6 shows long-run welfare expressed in per-period consumption equivalents. We
have characterized long-run welfare in Proposition 8. When storage only increases the value
of autarky, it decreases welfare. However, when the return is high enough so that it is
used by the planner in equilibrium, it may increase welfare in the long run. When � = 0.7

the threshold return above which long-run welfare improves is r̃3 = 0.186, when � = 0.8

it is 0.122. Note that at these thresholds, consumption dispersion is higher than in the
case without storage, however aggregate consumption is also higher. As we approach the
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Figure 5: Consumption in the long run
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Notes: The lower and upper limits of the stationary distribution of consumption in different states. For
� = 0.7, the solid (blue) lines are the limits for state y

l, the dashed (green) lines are the limits for state y

m

when the last asymmetric state that occurred was state y

l (the difference between the lower and upper limit
is too small to be visible on this figure), the higher dashed (black) lines are the limits for state y

m when the
last asymmetric state that occurred was state y

h, and the dot-dashed (red) lines are the limits for state y

h.
For � = 0.8, assets are never stochastic in the long run and consumption may take two values at most for all
r. Note the difference in scales for the two panels.

efficient level of storage, consumption dispersion disappears, hence welfare is always higher
with than without storage in the long run. The welfare gain is equal to a 15 percent increase
in consumption when � = 0.7, and is close to a 10 percent increase when � = 0.8.

Finally, we compute average welfare from the moment the storage technology becomes
available. We do this to take into account the costs of asset accumulation. Figure 7 shows
the results. In these two examples, access to both public and private storage lowers welfare
for all r. The reason is that there are large welfare costs associated with the build-up of
aggregate assets, and in our two examples these costs dominate the long-run gains. It is
not clear how general this result is, and we leave this investigation to future work due to
high computational costs. We know, however, that if perfect risk sharing is self-enforcing
without private storage (as with � = 0.8), public storage is never positive even when it is
available. This implies that when we allow for private storage, the feasible set shrinks, and
hence welfare deteriorates. Panel (b) of Figure 7 confirms this. With � = 0.7 risk sharing
is partial without private storage. Here, public storage would be used and would surely
improve welfare if private storage were not allowed. However, private storage reduces risk
sharing by improving the outside options of agents. Hence, the overall effect could go either

33



Figure 6: Welfare in the long run

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4
0.48

0.49

0.5

0.51

0.52

0.53

0.54

0.55

0.56

0.57

0.58

r

w
el
fa
re

(a) � = 0.7

−0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2 0.25
0.49

0.5

0.51

0.52

0.53

0.54

0.55

r

w
el
fa
re

(b) � = 0.8

Notes: The solid (blue) line shows long-run welfare per period in consumption-equivalent terms with both
public and private storage. The dashed (black) line shows long-run welfare per period in consumption-
equivalent terms without storage for reference. Note the difference in scales in the two panels.

way. We do not see these results as a case against improving storage technologies. If we take
hidden private storage unavoidable, then our results in Section 2 indicate that public storage
certainly improves welfare.

Figure 7: Welfare including transition
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Notes: The solid (blue) line shows expected lifetime utility in per-period consumption-equivalent terms from
the moment when (both public and private) storage becomes available. The dashed (black) line shows
expected lifetime utility in per-period consumption-equivalent terms without storage for reference. Note the
difference in scales in the two panels.
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5 Concluding remarks

This paper has shown that some implications of the basic limited commitment model with
no private or public storage are not robust to hidden storage. When public storage is allowed
though, the incentive for private storage is eliminated in the constrained-efficient allocation.
The intertemporal technology is used in equilibrium even though the aggregate endowment
is constant and the return is lower than the discount rate, i.e., �(1 + r) < 1. Further, when
income inequality is not the highest, the planner has more incentive to store than the agents.
The reason for additional storage by the planner is that public assets relax future participation
constraints and hence improve risk sharing.

The effects of the availability of both public and private storage on asset accumulation,
consumption dispersion, and welfare depend on its return. In the long run, (i) for low r,
access to storage is welfare neutral, because it is not used, hence we are back to the basic
model of Kocherlakota (1996); (ii) for higher r, storage happens only in autarky, therefore,
consumption dispersion increases and welfare decreases, but storage does not matter other-
wise; (iii) for yet higher r, hidden storage matters in equilibrium in the basic model, public
storage is (sometimes) positive, stochastic, and depends positively on consumption inequality
as long as inverse marginal utility is convex, the consumption distribution is time-varying,
and many consumption values occur;21 (iv) for yet higher r, public storage becomes positive
and constant in the long run, and only two consumption levels occur, i.e., the consumption
distribution is time-invariant; (v) for r = 1/� � 1, public storage is positive and constant,
and perfect risk sharing occurs. Long-run welfare improves above some threshold return,
which is less than the discount rate. At the same time, there are short-run costs to accu-
mulating assets. However, given access to private storage, public asset accumulation always
reduces consumption dispersion and improves welfare.

The dynamics of individual consumptions are richer in our model compared to the basic
model when assets are stochastic in the long run. In particular, the amnesia and persistence
properties do not hold in general, which brings limited commitment models closer to the data
(Broer, 2012). Further, in our model agents’ Euler inequalities hold, which is consistent with
empirical evidence from developed countries (Attanasio, 1999).

Comparing our model with limited commitment and storage to models with hidden in-
come or effort and storage (Allen, 1985; Cole and Kocherlakota, 2001; Ábrahám, Koehne,
and Pavoni, 2011) points to some similarities and remarkable differences. In both models,
hidden storage reduces welfare by imposing tighter constraints on risk sharing. In private

21This third case only occurs for some set of parameter values.
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information models, public storage cannot mitigate this effect and hence it is never used
in equilibrium. In contrast, in our model public storage is used in equilibrium and welfare
improves if its return is sufficiently high. This is because in our model storage by the plan-
ner relaxes the incentive problem, by relaxing future participation constraints; while in the
hidden income/effort context aggregate asset accumulation makes incentive provision more
expensive.

Our model could be applied in several economic contexts. The model predicts that risk
sharing among households in villages can be improved by a public grain storage facility.
Cooperation among partners in a law firm, for example, can be facilitated by common assets
that someone quitting the partnership has no access to. Our model also provides a rationale
for marriage contracts to specify that some commonly held assets are lost by the spouse who
files for divorce. Finally, supranational organizations may help international risk sharing by
simply having a jointly held stock of assets. The European Stability Mechanism may serve
this purpose. Future work should study the quantitative implications of storage using some
of these applications.
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Appendix A – Proofs

Partial proof of Conjecture 1. If B

0
(B, x̃

0
)  B

0
(B, x̂

0
) then this is trivial from (10).

Consider now the case where B

0
(B, x̃

0
) > B

0
(B, x̂

0
). Given 1

/u

0 convex, by Proposition 1 this
can only happen if x̃0

> 1 and x̂

0
> 1/x̃

0. We first show that if c0 is weakly increasing in
x

00 next period, then c is strictly increasing in x

0 in the current period. Given x̃

0
> x̂

0, six
cases are possible in terms of the pattern of binding participation constraints next period in
a given income state. Depending on the number of income states, the width of the optimal
intervals, and x̃

0 and x̂

0, not all these types of states necessarily exist.

(i) The participation constraint of agent 1 is biding for both x̃

0 and x̂

0 in state y

0 next
period.22 Let x̃

00
(y

0
) ⌘ x

00
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0
, B

0
(B, x̃

0
) , x̃

0
), and similarly for x̂
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), x̃
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0
),

and x̂
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0
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0
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0
) > B

0
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0
), we know that 1 < x̃

0
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0
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x

y

0
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0
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0
)) < x

y

0
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0
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0
)) = x̂
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(y

0
), which implies y

0
> Y/2. Then, x̃

0
> x̂

0

and (11) imply that
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1� �1 (y
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) , x̃

0
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1� �1 (y
0
, B

0
(B, x̂

0
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,

because x has to increase more from x̂

0 to x̂

00 than from x̃

0 to x̃

00. Now, by symmetry,
there is also a state Y � y

0
< Y/2 next period, which occurs with the same probability

as state y

0. We will show that the consumption allocation next period for this pair of
states under current Pareto weight x̃

0 has a lower spread and a higher mean than the
allocation under current Pareto weight x̂

0. For this we have to consider whether PCs
bind in state Y � y

0 next period.

– First, assume that x̃

0
> x

Y�y

0
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0
)) and x̂

0
> x

Y�y

0
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0
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0
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ticipation constraint of agent 2 is binding in state Y � y

0 for both x̃

0 and x̂

0. Then,
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0  x
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), where the

second inequality holds because B
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0
) > B
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0
) and the optimal intervals are

wider when inherited assets are greater.
22Clearly, if x̃0 and x̂

0 are sufficiently high, there will be no such y

0.
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– Fourth, assume that x̃

0  x

Y�y

0
(B

0
(B, x̃

0
)) and x̂

0
> x

Y�y
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participation constraint of agent 2 is binding for x̂
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0. It follows that
x̃

00
(Y � y

0
) = x

Y�y

0
(B

0
(B, x̃

0
)) � x̃

0
> x̂

0
= x̂

00
(Y � y

0
).

In all four cases x̂
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(y

0
) � x̃

00
(y

0
) > x̃
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(Y � y

0
) � x̂

00
(Y � y

0
), hence the consumption

allocation given x̃

0 has a smaller spread across the states y

0 and Y � y

0. It also has
a higher mean, because of the higher level of inherited assets and a lower x

00, which
implies less storage next period by Proposition 1 as long as x̂00

(y

0
) � x̃

00
(y

0
) � 1, which

must be the case here. As the mean decreases, expected marginal utility increases.
What happens to expected marginal utility as a result of a higher spread? Under
prudence, the marginal utility function is decreasing and convex, therefore, expected
marginal utility is higher for the more risky process. Finally, the term 1/ (1� �1())

further increases the right hand side of (12) given x̂

0 relative to x̃

0, which implies that
c is strictly increasing in x

0 even if c0 is only weakly increasing in x

00.

(ii) The participation constraint of agent 1 is binding for x̂

0 but not for x̃

0 in state y

0 next
period. In this case, either x̃

00
(y

0
) � x̂

00
(y

0
) or x̃

00
(y

0
) < x̂

00
(y

0
). If x̃

00
(y

0
) � x̂

00
(y

0
)

consumption next period is higher for x̃0, because of a higher current Pareto weight and
more resources than for x̂

0. This implies a lower marginal utility tomorrow for x̃

0. In
addition, once again the term 1/ (1� �1()) further increases the right hand side of (12)
given x̂

0 relative to x̃

0. If x̃00
(y

0
) < x̂

00
(y

0
), then we can use the same argument as in

case (i). Since x̃

00
(y

0
) = x̃

0
> x

y

0
(B

0
(B, x̃

0
)), expected marginal utility next period is

yet lower given x̃

0 for this reason.

(iii) No participation constraint is binding for x̃0 or x̂0 next period. In this case, consumption
next period is strictly higher for x̃0 than for x̂0 because of a higher B0, so marginal utility
next period is strictly lower for x̃

0 than for x̂

0, and both 1/ (1� �1())s are 1.

(iv)-(vi) The participation constraint of agent 2 is binding for x̃0, or for x̂0, or for both next period.
In these cases, we can use similar arguments as above to show that x̃

00
(y

0
) > x̂

00
(y

0
),

and hence consumption next period is strictly higher for x̃

0 than for x̂

0.

In all six types of states (or pairs of states), the right hand side of (12) is strictly lower for
x̃

0 than for x̂

0, therefore the left hand side must be strictly lower as well. This means that c

must be strictly higher when x

0 is higher, given that c0 depends positively on x

00.
Proposition 2 shows that assets converge to a constant level in the long run almost surely

if r is higher than some threshold r2. That is, in the long run the characteristics of allocations
are the same as in the basic model (while aggregate consumption is Y + rB rather than Y ),
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in particular, c strictly increases with x

0. Then, moving backwards in time, c must strictly
increase with x

0 in all periods.
Now, consider an r < r2 in a small neighborhood of r2. Since c is strictly increasing in x

0

for r2, c must be at least weakly increasing in x

0 for r sufficiently close to r2 by continuity.
Then we know that in the previous period c is strictly increasing in x

0. Now if the original B is
part of the stationary distribution, then it will occur other times as well, so c must be strictly
increasing in x

0 there too. Similarly, we can consider r > r1 in a small neighborhood of r1,
where r1 is the threshold below which zero public storage is optimal. We then conjecture
that c is strictly increasing in x

0 for all r 2 (r1, r2) as well.

Proof of Proposition 1. We consider three income states for expositional reasons. General-
izing the proof to more income states is straightforward. Assume indirectly that B0
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We now detail what happens next period, so that we can compare the right hand side of (29)
for x̃

0 and x̂

0.

• If state y

h occurs, then the participation constraint of agent 1 is binding. Given that
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where we have combined (10) and (11).

• If state ym occurs, then no participation constraint is binding, hence the relative Pareto
weight does not change. For HARA utility functions, it can be shown using simple
algebra that each agent’s marginal utility grows at the rate ((2a+c

0
+c

0
2)/(2a+c+c2))

��,
hence we know that in this case
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• If state y

l occurs, then the participation constraint of agent 2 is binding. Given that B0
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– The participation constraint of agent 1 is binding for x̂0, but not for x̃0. Then c2 (B
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m. We have c (B

0
, x̂

0
) < c

m

(B

0
). This implies that

�3 (B,B

0
, x̃

0
, x̂

0
) =

u

0
(c

m

(B

0
))

u

0
(c (B, x̃

0
))

� u

0
(c (B

0
, x̂

0
))

u

0
(c(B, x̂

0
))

> 0.

Hence the same argument as in the previous case follows replacing �2 (B,B

0
, x̃

0
, x̂

0
) with

�3 (B,B

0
, x̃

0
, x̂

0
).

Since the problem is symmetric, to establish the relationship between B

0 and x

0  1, we
can consider 1

/x

0 � 1. This means that B0 increases as x0  1 decreases, i.e., as cross-sectional
consumption inequality increases.

From Lemma 1 we know that B0
(y

j

, B, x) = B

0
(B, x

0
). If j > k, and the optimal intervals

for these two states do not overlap given B, then x

0 must be higher in state y

j than in state
y

k, and we have already shown that assets depend positively on cross-sectional consumption
inequality. If the optimal intervals overlap given B, then there exists x for which x

0
= x in

both states y

j and y

k. Aggregate savings are identical in the two states in this case.

Proof of Proposition 2. Part (i). It is easy to see that r1 is implicitly defined by the
planner’s Euler, (12), with equality when agent 1 has the highest possible income. That is,
r1 is implicitly given by

u

0 �
c

�

y

N

, 0, x

N

(0)

��

= �(1 + r1)

X

j

⇡

j

u

0 �
c

�

y

j

, 0, x

N

(0)

��

1� �1 (y
j

, 0, x

N

(0))

,

If r > r1 public assets will be positive at least when income inequality is highest, while if
r  r1 public assets will be zero in the long run.

Next, we show that assets are bounded in the long run, which we need for parts (ii)-
(iv). It is easy to see that there exists a high level of inherited assets, denoted b

B, such that
perfect risk sharing is at least temporarily enforceable, that is, x1

⇣

b

B

⌘

� x

N

⇣

b

B

⌘

. Therefore,

if r < 1/� � 1, B0
(B, x

0
) < B for all B � b

B and x

1
(B) � x

0 � x

N

(B), i.e., assets optimally
decrease; and assets stay constant if r = 1/� � 1. This implies that assets are bounded above
in the long run.
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We now turn to parts (ii) and (iii). We first show that if the consumption distribution
is time-invariant, then there exists a unique constant level of assets, B⇤, such that all the
conditions of constrained-efficiency are satisfied. Afterwards, we show that assets converge
almost surely to B

⇤ starting from any initial level, B0. Then, we establish that assets remain
stochastic when the consumption distribution is time-varying (case (ii)). Finally, we show
that case (iii) occurs when the return on storage is high but less than the discount rate, while
assets remain stochastic when the return is below some threshold, denoted r2.

Recall that if aggregate assets are constant, the optimal intervals for the relative Pareto
weight are time-invariant. Given that each agent’s participation constraint binds only for
the highest income level in the long run, the optimality condition (10) and x

N

(B

⇤
) (x1

(B

⇤
))

uniquely determine cN (B

⇤
) (c1 (B⇤

)), the time-invariant high (low) consumption level. Then,
using the planner’s Euler, we can determine the unique level of B⇤ such that all optimality
conditions are satisfied. The planner’s Euler is

u

0 �
c

N

(B

⇤
)

�

= �(1 + r)

⇥

(1� ⇡

e

)u

0 �
c

N

(B

⇤
)

�

+ ⇡

e

u

0 �
c

1
(B

⇤
)

�⇤

,

where ⇡

e

= ⇡

N

= ⇡

1. Dividing both sides by u

0 �
c

N

(B

⇤
)

�

, we obtain

1 = �(1 + r)

"

(1� ⇡

e

) + ⇡

e

u

0 �
c

l

(B

⇤
)

�

u

0
(c

h

(B

⇤
))

#

= �(1 + r)

⇥

(1� ⇡

e

) + ⇡

e

x

N

(B

⇤
)

⇤

, (30)

where we have used (10). Note that xN

(B

⇤
) is monotone and continuous in B

⇤. Further, at
B

⇤
= 0 the right hand side of equation (30) is larger than 1 by assumption, and at B

⇤
=

b

B

the right hand side of (30) is smaller than 1, because x

N

(

b

B) = 1 and B

⇤
<

b

B. Therefore, we
know that there exists a unique B

⇤ where the planner’s Euler holds with equality by setting
B

0
= B = B

⇤.
Next, we show that assets converge almost surely to B

⇤ starting from any initial level, B0.
We already know that B

0
(B0, x

0
) < B0 for the ergodic range of x0 when B0 � b

B, i.e., when
perfect risk sharing is (temporarily) self-enforcing, and B

0
(0, x

0
) > 0 for some x0 in the ergodic

range of x

0, since r > r1 by assumption. Consider B

⇤
< B0 <

b

B first, and assume that
state y

N occurs and agent 1’s participation constraint is binding. This is without loss of
generality, because this happens with probability 1 in the long run, and the problem is
symmetric across the two agents. We know that the right hand side of (30) is smaller than 1,
because x

N

(B0) < x

N

(B

⇤
). Therefore, marginal utility tomorrow has to increase relative to

marginal utility today to satisfy the planner’s Euler, therefore B

0
(B0) < B0. What happens
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next period? The participation constraint will bind again even if the same state occurs.24

This is because B0
(B0) < B0 implies xN

(B

0
(B0)) > x

N

(B0). Then assets will decrease again.
What if some state yj with 2  j  N � 1 occurs? We know that the participation constraints
in these states are not binding for any B � B

⇤, because they are not binding for B

⇤. This
means that now x

0
= x = x

N

(B0) < x

N

(B

0
(B0)). Then, by Proposition 1, storage is lower

than when the participation constraint is binding. Note that if states y

2
, ..., y

N�1 occur
repeatedly, assets converge to a level below B

⇤. Then we are in the case where B0 < B

⇤,
which we now turn to.

Consider 0  B0 < B

⇤, and suppose again that state y

N occurs and agent 1’s partici-
pation constraint is binding. We know that x

N

(B0) > x

N

(B

⇤
) in this case. Using (30)

again, it follows that B

0
(B0) > B0. Now, if the same state occurs next period (in fact,

any state y

j with j � 2), then the participation constraint is slack. This means that now
x

0
= x = x

N

(B0) > x

N

(B

0
(B0)). Then, by Proposition 1, storage is higher than when the

participation constraint is binding. This also implies that if state y

1 does not occur for many
periods, assets converge to a level above B

⇤. Then once y

1 occurs, which happens with
probability 1 in the long run, we are back to the case B0 > B

⇤, and assets start decreasing.25

So far, we have shown that when B0 < B

⇤, assets increase. Unless we are on a path when
agents are get the highest income shock exactly in turns, assets converge towards a level
higher than B

⇤. We have also shown that whenever B0 > B

⇤ and an agent’s participation
constraint binds, asset decrease. Again, unless one of the agents always receives the highest
shock, assets converge to a value lower than B

⇤. This implies that assets oscillate around
B

⇤. Almost sure convergence is guaranteed because these oscillations shrink whenever a
participation constraint binds in the increasing and/or decreasing part. This happens with
probability one.

Part (ii). Consider the case where in the long run there is a third state in which a
participation constraint binds. In this case, each agent’s consumption takes at least four
different values in the long run. These have to satisfy an additional participation constraint,
an additional resource constraint, and an additional Euler, which is generically impossible
for constant B.

Finally, we have to show that case (ii) occurs if r1 < r  r2, while case (iii) occurs if
r2 < r < 1/� � 1. It is easy to see that B

⇤ is lower if r is lower, where B

⇤ can be computed
24Note that this never happens in the basic model.
25Participation constraints in more states may be binding when B is low, even if they only bind in states

y

1 and y

N for B

⇤. However, with probability 1 assets will reach a level where the participation constraints
of the other states are no longer binding.
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for any r ignoring the participation constraints of states y

j with 2  j  N � 1. However,
as assets decrease, the optimal intervals become narrower, and eventually c

2
(B) < c

N

(B)

and c

1
(B) < c

N�1
(B). Hence, r2 is implicitly given by (30) such that B

⇤ is such that
x

2
(B

⇤
) = x

N

(B

⇤
) (and x

1
(B

⇤
) = x

N�1
(B

⇤
)).

Part (iv). If �(1 + r) = 1, the only way to satisfy agents’ Euler inequalities in all states
is to provide them with a perfectly smooth consumption stream over time. Further, as long
as a participation constraint binds given B, the planner has an incentive to store more,
because she does not face a trade-off between improving risk sharing and using an inefficient
intertemporal technology.

Proof of Proposition 3. From Proposition 1 it is clear that B is approached if a least
unequal income state, denoted y

m, happens repeatedly, while B is approached with state y

N

(or y

1) happening many times in a row.
If B is part of the stationary distribution, then it must be that B � B. This means

that there are less and less resources available over time while assets approach B, hence the
relevant participation constraint always binds along this path. The planner’s Euler,

u

0
(c

m

(B))) � �(1 + r)

⇥

⇡

e

u

0 �
c

�

y

l

, B, x
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(B)

��

+ (1� 2⇡

e

)u

0
(c

m

(B))

+⇡

e

u

0 �
c

�

y

h

, B, x

m

(B)

��⇤

,

as equality defines B if B > 0. If at B = 0 this Euler is satisfied as a strict inequality, then
the lower bound is 0.

The upper limit of the stationary distribution, B, is approached from below, hence,
along that path, the highest shock (state y

N or y1) happens repeatedly and no participation
constraint binds. Let B1 denote the level of inherited assets when we switch to state y

N (or
y

1), and let eB denote the level of assets to where B converges. Note that along this path the
relative Pareto weight is constant at x

N

(B1). Given B1, eB is the solution to the following
system:

u

0
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⇣

y

N

,

e

B, x

N

(B1)
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u

0
⇣
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N

,

e

B, x

N
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= x

N
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c
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y

N

,

e

B, x

N

(B1)

⌘
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⇣

y

N

,

e

B, x

N

(B1)

⌘

= Y + r

e

B

u

0
⇣

c

⇣

y

N

,

e

B, x

N

(B1)

⌘⌘

= �(1 + r)

N

X

j=1

⇡

j

u

0
⇣

c

⇣

y

j

,

e

B, x

N

(B1)

⌘⌘

. (31)

We have to find B1 such that eB is equal to B, the upper limit of the stationary distribution.
Using Proposition 1, we know that B

0
(B, x

N

(B1)) is highest when x

N

(B1) is highest. In
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turn, xN

(B1) is highest when B1 is lowest, i.e., when B1 is equal to the lower limit of the
stationary distribution of assets, B. Then, replacing x

N

(B1) with x

N

(B) and e

B with B in
(31) gives (20).

Proof of Lemma 3. Assume indirectly that g

h

(0) > 0, that is, the agent stores in the
current period but does not default. Two cases are possible: either (i) the agent defaults in
some state(s) next period, or (ii) the agent does not default in any state next period but he
does so later.

In case (i), the agent must default if his income is the highest possible next period,
i.e., when he earns y

N . Let c

au

(y

j

, b) denote the consumption level chosen by the agent in
autarky given that his income is yj and he has accumulated b units of assets. Remember that
⇡

e

= ⇡

N

= ⇡

1. Storing g

h

(0) today and defaulting tomorrow if his income is y

N , the agent’s
Euler is

u
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��⇤

.

Next we show that the following three conditions hold:

c

au

�

y

N

, g

h

(0)

�

> c

h

, (33)

c

h

+ (1 + r)g

h
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h

�
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(0)

�
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h

, (34)

c

l

+ (1 + r)g

h

(0)� g

l

�

g

h

(0)

�

> c

l

. (35)

Conditions (34) and (35) hold because consumption cannot decrease in the agent’s ‘income,’
i.e., it cannot be that he chooses a consumption lower than c

j when he has access to c

j

+

(1+ r)g

h

(0) units of the consumption good rather than only c

j units. To see that (33) holds,
we first show that c

au

�

y

N

, 0

�

> c

h. Assume indirectly that this is not true. Given that the
participation constraint holds with equality when the agent’s income is yN , this implies that
the benefits of being in the risk sharing arrangement occur today while its costs occur in
the future relative to autarky. This in turn implies that risk sharing must increase when the
discount factor decreases. This contradicts the folk theorem (Kimball, 1988). Intuitively,
a higher � means a better enforcement technology in models of risk sharing with limited
commitment. Now, clearly, cau() is increasing in its second argument, therefore we also know
that c

au

�

y

N

, g

h

(0)

�

> c

h holds for any g

h

(0) � 0.
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Using (32), these three conditions imply that
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Given g

h

(0) > 0, this clearly contradicts the planner’s Euler equation,
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which is a necessary condition for this consumption allocation to be a solution of Problem P1.
A similar argument can be used if the agent would want to default in more states next period.

In case (ii), substituting in the future Euler equations, we can use an almost identical
argument as above. For example, take the case where the agent would save in periods 0

and 1 and default in the high state in period 2 only if the income delivered by the optimal
allocation, ch, remains high in both periods. The Euler equation in period 0 is
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If the agent gets c

h, the Euler equation in period 1 is
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If the agent gets c

l, it is
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Using equations (37) and (38) to substitute for the marginal utilities on the right hand side
of (36) gives the two-period Euler equation. Note that when the agent neither stores nor
defaults for two periods, the two-period Euler equation is
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Now, comparing the right hand sides of (36) after substitution and (39) term by term we can
use practically the same argument as above to show that g

h

(0) = 0.
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Appendix B – Computation

We use the recursive system given by equations (10)-(15) to solve the model numerically. We
discretize x and B (y is assumed to take a finite number of values). We have to determine x

0

and B

0 on a 3-dimensional grid on X = (y, B, x). The initial values for V (X

0
), c (X 0

), and
�1 (X

0
) are from the solution of a model where the participation constraints are ignored. We

iterate until the value and policy functions converge.
As we proceed, we use the characteristics of the solution. In particular, we know that if

agent 1’s participation constraint binds at x̃, it also binds at all x < x̃. Similarly, if agent
2’s participation constraint binds at x̂, it also bind at all x > x̂. At each iteration, at each
income state and for each B, we solve directly for the limits x̃ and x̂ using (13) and (14)
with equality, respectively, first assuming that B

0
= 0. Afterwards, we check whether the

planner’s Euler is satisfied at the limits. If not, we solve a 2-equation system of (12) and
(13) (or (14)), with unknowns B

0 and x

0. Finally, we solve for a new B

0 at points on the x

grid where neither participation constraint binds, i.e., at the interior of the optimal interval
for (y, B) of the current iteration.

47



References

Ábrahám, Á. and E. Cárceles-Poveda (2006). Endogenous Incomplete Markets, Enforcement
Constraints, and Intermediation. Theoretical Economics 1 (4), 439–459.

Ábrahám, Á., S. Koehne, and N. Pavoni (2011). On the First-Order Approach in Principal-
Agent Models with Hidden Borrowing and Lending. Journal of Economic Theory 146 (4),
1331 – 1361.

Ábrahám, Á. and N. Pavoni (2008). Efficient Allocations with Moral Hazard and Hidden
Borrowing and Lending: A Recursive Formulation. Review of Economic Dynamics 11 (4),
781 – 803.

Abreu, D. (1988). On the Theory of Infinitely Repeated Games with Discounting. Econo-
metrica 56 (2), 383–396.

Abreu, D., D. Pearce, and E. Stacchetti (1990). Toward a Theory of Discounted Repeated
Games with Imperfect Monitoring. Econometrica 58 (5), pp. 1041–1063.

Aiyagari, S. R. (1994). Uninsurable Idiosyncratic Risk and Aggregate Savings. Quarterly
Journal of Economics 109 (3), 659–684.

Allen, F. (1985). Repeated Principal-Agent Relationships with Lending and Borrowing.
Economics Letters 17 (1-2), 27 – 31.

Alvarez, F. and U. J. Jermann (2000). Efficiency, Equilibrium, and Asset Pricing with Risk
of Default. Econometrica 68 (4), 775–797.

Attanasio, O. P. (1999). Chapter 11 Consumption. Volume 1, Part 2 of Handbook of Macroe-
conomics, pp. 741 – 812. Elsevier.

Broer, T. (2012). The Wrong Shape of Insurance? Stationary Equilibrium Distributions in
Economies with Limited Enforcement of Contracts. Mimeo.

Chien, Y. and Y. Lee (2010). Externality Cost of Capital Investment in Limited Commitment.
Mimeo.

Cole, H. L. and N. R. Kocherlakota (2001). Efficient Allocations with Hidden Income and
Hidden Storage. Review of Economic Studies 68 (3), 523–542.

Huggett, M. (1993). The Risk-Free Rate in Heterogenous-Agent, Incomplete Insurance
Economies. Journal of Economic Dynamics and Control 17 (5–6), 953–969.

48



Kehoe, P. J. and F. Perri (2002). International Business Cycles with Endogenous Incomplete
Markets. Econometrica 70 (3), 907–928.

Kehoe, P. J. and F. Perri (2004). Competitive equilibria with limited enforcement. Journal
of Economic Theory 119 (1), 184–206.

Kimball, M. S. (1988). Farmers’ Cooperatives as Behavior toward Risk. American Economic
Review 78 (1), 224–232.

Kinnan, C. (2012). Distinguishing Barriers to Insurance in Thai Villages. Mimeo.

Kocherlakota, N. R. (1996). Implications of Efficient Risk Sharing without Commitment.
Review of Economic Studies 63 (4), 595–609.

Kocherlakota, N. R. (2004). Figuring Out the Impact of Hidden Savings on Optimal Unem-
ployment Insurance. Review of Economic Dynamics 7 (3), 541 – 554.

Krueger, D. and F. Perri (2006). Does Income Inequality Lead to Consumption Inequality?
Evidence and Theory. Review of Economic Studies 73 (1), 163–193.

Ligon, E., J. P. Thomas, and T. Worrall (2000). Mutual Insurance, Individual Savings, and
Limited Commitment. Review of Economic Dynamics 3 (2), 216–246.

Ligon, E., J. P. Thomas, and T. Worrall (2002). Informal Insurance Arrangements with
Limited Commitment: Theory and Evidence from Village Economies. Review of Economic
Studies 69 (1), 209–244.

Ljungqvist, L. and T. J. Sargent (2004). Recursive Macroeconomic Theory. MIT Press,
Cambridge, Massachusetts.

Marcet, A. and R. Marimon (1992). Communication, Commitment, and Growth. Journal of
Economic Theory 58 (2), 219 – 249.

Marcet, A. and R. Marimon (2011). Recursive Contracts. Mimeo.

Mazzocco, M. (2007). Household Intertemporal Behaviour: A Collective Characterization
and a Test of Commitment. Review of Economic Studies 74 (3), 857–895.

Thomas, J. and T. Worrall (1988). Self-Enforcing Wage Contracts. Review of Economic
Studies 55 (4), 541–554.

Werning, I. (2001). Repeated Moral Hazard with Unmonitored Wealth: A Recursive First-
Order Approach. Mimeo.

49


	Introduction
	The model with public storage
	Characterization
	The dynamics of public assets and the consumption distribution
	The dynamics of individual consumptions
	Welfare
	Decentralization

	The model with both public and private storage
	Does hidden storage matter in the basic model?
	The dynamics of individual consumptions revisited
	Welfare revisited
	Validity of the first-order condition approach

	Computed examples
	Concluding remarks

