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Abstract

We propose new methods for evaluating predictive densities. The methods include

Kolmogorov-Smirnov and Cramér-von Mises-type tests for the correct speci�cation of

predictive densities robust to dynamic mis-speci�cation. The novelty is that the tests

can detect mis-speci�cation in the predictive densities even if it appears only over

a fraction of the sample, due to the presence of instabilities. Our results indicate

that our tests are well sized and have good power in detecting mis-speci�cation in

predictive densities, even when it is time-varying. An application to density forecasts

of the Survey of Professional Forecasters demonstrates the usefulness of the proposed

methodologies.
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1 Introduction

Predictive densities provide a measure of uncertainty around mean forecasts, thus enabling

researchers to quantify the risk in forecast-based decisions. For example, predictive densities

are useful tools for central banks and policymakers, as they allow to take into account

forecast uncertainty in economic decisions. It is therefore important to have a framework

for evaluating whether predictive densities are correctly speci�ed. Diebold et al. (1998,

1999) introduced the probability integral transform (PIT, Rosenblatt, 1952) to economics

and �nance as a tool to test whether a predictive distribution matches that of the true (and

unobserved) distribution that generates the data. If the forecasting model is dynamically

correctly speci�ed, Diebold et al. (1998, 1999) show that the PITs based on the forecasts

are Uniform, independent and identically distributed. They propose to test two of these

implications, namely the uniformity and the serial correlation properties of the PITs, in

order to detect mis-speci�cation in density forecasts. Subsequent contributions extended the

PIT framework to account for parameter estimation error and dynamic mis-speci�cation.

The former requires an adjustment to the PIT to account for the uncertainty associated with

parameter estimation. Dynamic mis-speci�cation implies that the information available to

a researcher spans only a subset of the information the true model is in fact conditioned

upon. Among recent contributions, Bai (2003) proposes tests for correct speci�cation aimed

at correcting for parameter estimation error based on martingalization techniques. Hong and

Li (2005) suggest a non-parametric test robust to dynamic mis-speci�cation and parameter

estimation error using the generalized cross-spectrum. Corradi and Swanson (2006a), on

the other hand, propose tests robust to both parameter estimation error as well as dynamic

mis-speci�cation that have the advantage of a parametric rate of convergence. See Corradi

and Swanson (2006b) for an extensive overview of estimation and inference for predictive

densities, and Corradi and Swanson (2006c, 2007) for empirical applications. However, none

of these approaches has considered testing the "identical distribution" of the PITs; the latter

becomes especially important when the mis-speci�cation of the forecast density appears only

in a sub-sample, say, due to instabilities.

The main objective of this paper is to provide new methodologies for testing the correct

speci�cation of density forecasts that are robust to both dynamic mis-speci�cation as well as

instabilities. Regarding the robustness to instabilities, one of the important assumptions for

the validity of the tests proposed by Diebold et al. (1998, 1999), Bai (2003) and Corradi and

Swanson (2006a) is stationarity (i.e. absence of structural breaks), which we relax in this
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paper. In particular, we propose a speci�cation test robust to instabilities by extending the

PIT approach to test whether the predictive density is correctly speci�ed at each point in

time. Our proposed test detects distributional change in the predictive densities even if the

densities are mis-speci�ed by building on the framework proposed in Corradi and Swanson

(2006a,b), although we derive our tests not only within the Kolmogorov-Smirnov class of

tests that they consider, but also the Cramér-von Mises class. A special case of our test is a

test for the constancy of predictive densities over time, which we also analyze. We investigate

the small sample properties of our proposed tests in Monte Carlo simulation exercises. In

addition, we also show that the proposed tests have good power to detect mis-speci�cation

in the predictive distribution even when the mis-speci�cation a¤ects only a sub-sample.

Our approach is primarily related to Diebold et al. (1998, 1999) and especially to Corradi

and Swanson (2006a): we test the null hypothesis of correct speci�cation of density forecasts,

although in a way robust not only to the presence of dynamic mis-speci�cation and parameter

estimation error, but also time-varying mis-speci�cation in the conditional density over time.

Our approach is also related to Inoue (2001). Inoue (2001) develops techniques to test

whether the in-sample empirical distribution of a model is constant over time. There are

two important di¤erences between Inoue�s (2001) approach and ours: we focus on the out-

of-sample evaluation of densities (as opposed to in-sample tests) and our null hypothesis is

di¤erent: it involves testing whether the true predictive distribution matches that implied by

a model at each point in time (rather than whether the predictive distribution has changed

over time, as in Inoue, 2001). However, we also discuss a modi�ed statistic for testing

the constancy of the predictive density over time. Our approach is more distantly related to

Rossi (2005): she jointly tests the hypothesis of stability of the parameters as well as that the

parameters satisfy a certain restriction in-sample. The approach taken in this paper is similar

in that we focus on testing a joint null hypothesis of stability in the predictive distribution

as well as correct speci�cation of the predictive distribution. However, it is very di¤erent

for two reasons: �rst, because it focuses on prediction, which requires a di¤erent approach

than in-sample tests; second, because it focuses on predictive density tests, which are very

di¤erent from tests on parameters. Our approach is more distantly related to Amisano and

Giacomini (2007), who instead focus on density forecast tests of relative predictive ability

in a framework where parameter estimation error is maintained under the null; we instead

focus on tests of absolute predictive ability and we derive density forecast tests where the

asymptotic distribution is corrected for parameter estimation error.

We provide an empirical application of our proposed tests to the density forecasts pro-
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vided in the Survey of Professional Forecasters (SPF). Our test uncovers that the predictive

densities of both output growth and in�ation are mis-speci�ed and that there is evidence

of time variation in the mis-speci�cation. We detect instabilities in the correct speci�cation

of current year forecast (nowcasts) of in�ation and output growth in 1979:II and 1985:IV,

right at the onset of the Great Recession. The instability in the speci�cation of the current

year in�ation (for which we have the longest span of data available, among our data) co-

incides with the beginning of Volker�s chairmanship of the Federal Reserve, and suggests a

signi�cant change in the way forecasters formed in�ation expectations at the time of a major

change in monetary policy. For the one-year-ahead in�ation and output growth, the break

is in mid- to late-1990s, though statistically insigni�cant for the case of output growth. In

general, our results suggest that the densities have been mis-speci�ed both before and after

the estimated break dates, although the nature of the mis-speci�cation varies over time, an

empirical fact that we investigate in detail.

The paper is organized as follows. Section 2 introduces the notation and de�nitions.

Section 3 presents our test of correct speci�cation of the density forecasts robust to dynamic

mis-speci�cation in the presence of instabilities. Section 4 provides Monte Carlo evidence on

the performance of our test in small samples, and Section 5 presents the empirical results.

Section 6 concludes.

2 Notation and De�nitions

We �rst introduce the notation and discuss the assumptions about the data, the models and

the estimation procedure.

We are interested in the true but unknown h�step-ahead conditional predictive densities
for the scalar variable yt, denoted by �0 (:), where h is �xed and �nite.1 We assume that

the researcher has divided the available sample of size T + h into an in-sample portion of

size R and an out-of-sample portion of size P , and obtained a sequence of h�step-ahead
out-of-sample predictive densities, such that R + P � 1 + h = T + h, to evaluate at the

ex-post realizations. Let Ft be the true information set available at time t, however the
forecaster might observe only a subset of the information set, =t � Ft. Further, let Zt 2 =t
denote the predictors used in the conditional forecast exercise.

Let the sequence of P out-of-sample estimated conditional predictive densities evaluated

1The true conditional forecast density may depend on the forecast horizon. To simplify notation, we omit

this dependence without loss of generality given that the forecast horizon is �xed.
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at the ex-post realizations yt+h be denoted by
n
�
�
yt+hj=t; b�t;R�oT

t=R
, which depend on the

in-sample parameter estimates, b�t;R, assumed to be a p � 1 vector. These parameters are
re-estimated over time using a sample including data indexed 1; :::; t (recursive scheme),

where t = R; :::; T . The latter mimics a forecasting environment where a researcher starts

estimating the model using a window of size R; and then progressively adds an additional

observation to the estimation sample in each subsequent time period as new data become

available.2

We consider the probability integral transform (PIT), i.e. the cumulative density function

corresponding to the density � (:) ; evaluated at the realized value yt+h:

zt+h =

Z yt+h

�1
�
�
uj=t; b�t;R� du � ��yt+hj=t; b�t;R� :

Let b�t+h (r) � �1n��yt+hj=t; b�t;R� � r
o
� r
�
; (1)

where r 2 [0; 1] denotes quantiles of the cumulative density function, 1 f:g denotes the
indicator function, and b�t+h (r) measures the distance between the empirical cumulative
distribution function and that of the uniform distribution (which is the 45-degree line, and

hence, r itself). We consider the out-of-sample partial sum of �̂t+h (r) ; de�ned as:

	P (�; r) � P�1=2
R+[�P ]X
t=R

b�t+h (r) ; (2)

and the full out-of-sample average:

	P (1; r) � P�1=2
TX
t=R

b�t+h (r) ; (3)

where � 2 � � (0; 1).
In order to derive the asymptotic distribution of the proposed tests we �rst describe

the asymptotic behavior of the empirical processes 	P (1; r) and 	P (�; r) above; then, we

describe our proposed tests and derive their asymptotic distributions. Finally, we describe

how to implement our proposed tests in practice using a detailed step-by-step procedure. In

what follows, jj.jj denotes the Euclidean norm, [�P ] denotes the integer of �P , !
p
denotes

convergence in probability, and ) denotes weak convergence in the space of D ([0; 1]�<)
under the Skorohod topology.

2Results can be generalized to the rolling window estimation scheme where the size of the window is a

�xed fraction of the total sample size.
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3 Predictive Density Speci�cation Tests in the Pres-

ence of Instabilities

This section discusses our proposed tests for the correct speci�cation of predictive densities

that allow for dynamic mis-speci�cation under the null hypothesis and that can detect mis-

speci�cation in the predictive density even if it arises only in a sub-sample.

3.1 Assumptions and Asymptotic Results

Let the parameter vector � be estimated recursively, such that:

b�t;R = argmax
�

1

t

tP
j=1

ln� (yjj=j�h; �) ; t = R;R + 1; :::; T:

Note that the parameter is estimated directly on h lags of the predictors (in order to obtain

a direct h-step-ahead forecast). Let qj (�) � r� ln� (yjj=j�h; �) be a p� 1 vector of scores.
Our interest lies in testing whether �t (yt+hj=t) = �0

�
yt+hj=t; �y

�
at any point in time t over

the out-of-sample portion of the data, that is:

H0 : �t (yt+hj=t) = �0
�
yt+hj=t; �y

�
for all t = R; :::; T; (4)

where �0
�
yt+hj=t; �y

�
� Pr

�
yt+h � yj=t; �y

�
and �y is the probability limit of b�t;R. Note

that, under H0, both the density and the parameters are constant.

We �rst consider the convergence properties of the empirical process 	P (�; r) de�ned in

(2). We derive our results under the following assumption:

Assumption 1.

Assumption 1a: (i) for � 2 �; � (yt+hj=t; �) is twice continuously di¤erentiable on the
interior of � � <p; � compact; (ii) each of the elements of E[sup�2� jr�� (yt+hj=t)j5+ ];
a (p� 1) vector, are bounded by a �nite constant, 0 <  < 1=2;

Assumption 1b: (i) �y = argmax
�2�

E [ln� (ytj=t�h; �)] is uniquely identi�ed; (ii) ln� (ytj=t�h; �)
is twice continuously di¤erentiable in � in the interior of � and, for some " > 0; supt�T;T�1
E sup� jjr�qt;T jj1+" < 1; (iii) V ar

h
1p
T

P[e�T ]
t=1 qt

�
�y
�i
! e�Sqq 8e� 2 � � (0; 1) for some

positive de�nite matrix Sqq; (iv) limT!1 T�1
P[e�T ]

t=1 E
�
�r�qt

�
�y
��
exists uniformly overe� 2 � � (0; 1) and equals e�A ��y��1, which has full rank; (v) sup� jjb�R+[�P ];R � �yjj !

p
0 for

some �y in the interior of �.
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Assumption 1c: P;R!1 as T !1; and lim
T!1

P
R
= �; 0 < � <1.3

Assumption 1d:
�
yt; Z

t�h� is a strong mixing (�-mixing) triangular array with mixing
coe¢ cients

1P
j=1

j2� (j)




+4 <1 for some 
 2 (0; 2).

Assumption 1e: Let qt � qt
�
�y
�
, r�qs � r�qs

�
�y
�
, (a p� p matrix), and

�t+h (r) � 1
�
�
�
yt+hj=t; �y

�
� r
	
� r: (5)

(i) For some & > 1; suptE
������hvec �r��

�
yt+hj=t; �y

��0
; �t+h (r)

0 ; q0t

i������4& <1;
(ii) [vec

�
r��

�
yt+hj=t; �y

�
� E

�
r��

�
yt+hj=t; �y

���0
; (�t+h (r)� E (�t+h (r)))

0 ; q0t] is strong

mixing with mixing coe¢ cients of size �3d= (d� 1);
(iii) under H0, [vec

�
r��

�
yt+hj=t; �y

��0
; �0t+h (r) ; q

0
t] is covariance stationary;

(iv) E[
1P

s=�1

�
1
�
�
�
yhj=0; �y

�
� r1

	
� r1

�
�
�
1
�
�
�
ysj=s�h; �y

�
� r2

	
� r2

�
] is positive de�-

nite.

Assumption 1f : For every M > 0, in some open neighborhood around �y, N
�
�y;M

�
,

sup�2��(0;1) supu;v2N(�y;M) jj
1
P

R+[�P ]P
t=R

r�� (�
�1(rj=t; u)j=t; v)�E

�
r��

�
��1(rj=t; �y)j=t; �y

��
jj

= op (1), where the op (1) term is uniform in r:

Notes to the Assumptions. Assumption 1a is similar to Corradi and Swanson�s (2006a)

Assumption A2, and imposes mild smoothness as well as moment restrictions on the cumu-

lative distribution function under the null hypothesis.

Assumption 1b is su¢ cient to obtain the weak convergence of the parameter estimate

based on the partial sum of moment conditions, and follows Andrews (1993). Assumption

1b(i) is similar to Corradi and Swanson�s (2006b, p.272) Assumption CS3(i) and guaran-

tees identi�cation of the parameter estimate; Assumption 1b(ii) is similar to Corradi and

Swanson�s (2006b, p. 272) Assumption CS3(ii) and imposes that the objective function is

su¢ ciently continuous; it also imposes that the gradient is su¢ ciently smooth, as in An-

drews (1993, Assumption 1f); 1b(iii,iv) are asymptotic covariance stationarity conditions, as

in Andrews (1993, Assumptions 1c and 1g); 1b(v) is necessary to prove weak convergence of

the estimator, and is adapted from Andrews (1993, Assumption 1d).

Assumptions 1c and 1e are adapted from West (1996, Assumptions 4,3,1, respectively)

and are necessary to describe the asymptotic behavior of parameter estimation error.

3Note that the contribution of parameter estimation error is negligible asymptotically when � = 0. See

West (1996).
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Assumption 1d is similar to Inoue�s (2001) Assumption A, and restricts the dependence

of the data. Note that Assumption 1d implies that
�
yt; Z

t�h� is near epoch dependent on an
�-mixing array of size &= (& � 2) ; & > 2 �see Inoue (2001, p. 177). The latter is the same
as Andrews�s (1993) Assumption 1(a).

Assumption 1f is adapted from Bai (2003) and ensures that certain terms in the mean

value expansion are negligible.

The following theorem derives the asymptotic distribution of 	P (�; r) under the null

hypothesis de�ned in (4).

Theorem 1 (Asymptotic Distribution of 	P (�; r)) Under Assumption 1 andH0 in (4):

(i) fzt+hgTt=R is U (0; 1); (ii) 	P (�; r) weakly converges (considered as variables in the space�
[0; 1]2 � R

�
to the Gaussian process 	(:; :), with mean zero and auto-covariance function:4

E [	 (�1; r1)	 (�2; r2)] = inf (�1; �2) 
 (r1; r2) ; where (6)


 (r1; r2) � S�� (r1; r2) (7)

+ 2�E
�
r��

�
�(r1)j=t; �y

��0
A
�
�y
�
SqqA

�
�y
�
E
�
r��

�
�(r2)j=t; �y)

��
� �E

�
r��

�
�(r1)j=t; �y

��0
A
�
�y
�
(Sq�(r1))� �S 0q�(r2)A

�
�y
�
E
�
r��

�
�(r2)j=t; �y

��
;

� = 1� ��1 ln (1 + �), A
�
�y
�
� E (�r�qs)

�1 ; �(r) = ��1(rj=t; �y); Sqq �
P1

d=�1E (q1q
0
d) ;

S�� (r1; r2) � E

� 1P
d=�1

�
1
�
�
�
yhj=0; �y

�
� r1

	
� r1

� �
1
�
�
�
ydj=d�h; �y

�
� r2

	
� r2

��
; and

Sq�(r) =
1P

d=�1
E
�
q1
�
1
�
�
�
yd+hj=d; �y

�
� r
	
� r
��
.

Note that the asymptotic distribution in the Theorem 1 is corrected for the presence of

parameter estimation uncertainty. The correction follows from the fact that the forecast den-

sities are evaluated at the probability limit of the parameter values under the null hypothesis

(4), as in Corradi and Swanson (2006b). Note that when parameter estimation error is neg-

ligible, i.e. when � = 0, the variance-covariance matrix of the limiting distribution in (7)

simpli�es to the �rst term on the right hand side, as in West (1996). The simpli�cation may

occur when the researcher has a much larger number of observations to estimate the model�s

parameters (R) than the number of observations used to evaluate the forecast densities out-

of-sample (P ). In the latter case, the parameters can be estimated with su¢ cient precision

4	(:; :) is a Kiefer process.
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and the contribution of parameter estimation error becomes asymptotically negligible. Also

note that, by construction, the results are robust to serial correlation and, hence, would also

apply for the case of multi-step-ahead forecasts, where serial correlation of order h � 1 is
built in the forecasts.

3.2 Test Statistics And Their Distributions

We next discuss the tests that we propose. Let

QP (�; r) � [RP (�)FP (�; r)]
0 [RP (�)FP (�; r)] ; (8)

where

FP (�; r) �

2664 P�1=2
R+[�P ]P
t=R

�
1
n
�
�
yt+hj=t; b�t;R� � r

o
� r
�

P�1=2
TP
t=R

�
1
n
�
�
yt+hj=t; b�t;R� � r

o
� r
�
3775 (9)

RP (�) =

"
1 ��
0 1

#
(10)

We consider two types of test statistics: the �rst is a weighted Kolmogorov-Smirnov-type

statistic and the second is a weighted Cramér-von Mises-type statistic:

�P � sup
�2�

sup
r2[0;1]

QP (�; r) (11)

CP �
R
�

R
r
QP (�; r) d�dr: (12)

The following Theorem describes the asymptotic distribution of the tests we propose.

Theorem 2 (Predictive Density Tests Robust to Instabilities) Under Assumption 1

and H0 in (4):

�P = sup
�2�

sup
r2[0;1]

QP (�; r) (13)

) sup
�2�

sup
r2[0;1]

�
	� (�; r)0	� (�; r) + 	 (1; r)0	(1; r)

	
;

and

CP �
R
�

R 1
0
QP (�; r) d�dr )

R
�

R 1
0

�
	� (�; r)0	� (�; r) + 	 (1; r)0	(1; r)

	
d�dr; (14)

where 	� (�; r) � 	(�; r) � �	(1; r) is a Gaussian process with zero mean and covariance

function E f	� (�1; r1)	� (�2; r2)g = [inf (�1; �2)� �1�2] 
 (r1; r2). Reject H0 at the � � 100%
signi�cance level if �P > ��;P and CP > C�;P :

9



For a given estimate of 
 (r1; r2), the critical values of �P and CP can be obtained

via Monte Carlo simulation. We suggest to estimate 
 (r1; r2) using a HAC covariance

matrix, such as the Newey and West (1987) HAC estimator with a Bartlett kernel.5 We

discuss this further in the next sub-section, where we describe a step-by-step procedure that

illustrates how to implement our tests in practice. We should emphasize that our tests are,

by construction, robust to dynamic mis-speci�cation. We demonstrate this property in our

Monte Carlo simulations as well. As previously discussed, our tests are also robust to the

presence of serial correlation in the PITs and can be applied for the case of multi-step-ahead

forecasts, h > 1; as well.

In addition, it might also be of interest to test for correct speci�cation in speci�c parts

of the distribution.6 For example, one might be interested in the tails of the distribution,

which correspond to outliers; for example the left tail, where r 2 [0; 0:25], or the right tail,
where r 2 [0:75; 1], or both: r 2 f[0; 0:25] [ [0:75; 1]g. Or, one might be interested in the
central part of the distribution, for example r 2 [0:25; 0:75]. Of course, this is possible in our
framework: it merely requires de�ning the appropriate grid for r when implementing (11)

and (12).

Our proposed tests di¤er from those existing in the literature in several ways. In par-

ticular, the test proposed by Corradi and Swanson (2006a) would be a special case of our

approach for RP (�) = RCS
P (�), where RCS

P (�) �
h
0 1

i
instead of (10) and for the case

of a Kolmogorov-Smirnov-type test implemented on the absolute value (rather than the

square) of RP (�)FP (�; r).7 Let �CSP and CCS
P be de�ned as in (11) and (12), where QP (�; r)

is constructed using RCS
P (�). Thus, the test proposed by Corradi and Swanson (2006a,b) is

equivalent to:

�CSP = sup
r2[0;1]

����� 1pP
TX
t=R

�
1
n
�
�
yt+hj=t; b�t;R� � r

o
� r
������ : (15)

The the main di¤erence between our tests and theirs is that we are concerned with testing

5HAC estimation is also suggested in Inoue (2001) as an alternative to the bootstrap he proposes. Inoue

(2001) discusses the computational challenges involved in using this type of procedure. With the increase

in computing power in the last decade, we �nd this constraint less binding. While it might be possible

to design a bootstrap methodology to use in this context along the lines of Inoue (2001) or Corradi and

Swanson (2006a), we leave this for future research. Preliminary Monte Carlo simulation results suggest that

a moving block bootstrap does not perform well in terms of size in our framework.
6See van Dijk and Franses (2003), Amisano and Giacomini (2007) and Diks et al. (2011) for a similar

idea in the context of point forecast and density forecast comparisons.
7Note that, by construction, the test built on jRP (�)FP (�; r) j and that built on [RP (�)FP (�; r)]0

[RP (�)FP (�; r)] are equivalent, and di¤er only in their critical values.
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for the correct speci�cation of the predictive density in the presence of instabilities whereas

they assume stationarity. In other words, we test the null hypothesis that the PIT is uniform

at each point in time; they test the null hypothesis that the PIT is uniform on average over

the out-of-sample portion of the data.

Note that our tests are also di¤erent from those proposed by Inoue (2001), who tests the

null hypothesis of constancy of in-sample densities over time, and does not address the issue

of correct speci�cation. While Inoue�s (2001) approach is designed for in-sample densities,

our approach is for out-of-sample forecast densities. At the same time, Inoue�s (2001) null

hypothesis in our out-of-sample context becomes a null hypothesis on the constancy of the

PITs over time, and one could consider tests for instabilities in the density forecasts inspired

by Inoue (2001). Thus, the out-of-sample version of Inoue�s (2001) test is another special

case of our approach with RP (�) = RI
P (�) ; where R

I
P (�) �

h
1 ��

i
instead of (10). Let

�IP and C
I
P be tests for the stability of the PITs de�ned as in (11) and (12), where QP (�; r)

is constructed using RI
P (�). The Kolmogorov-Smirnov test in Inoue (2001) can be rewritten

as:8

�IP = sup
�2�

sup
r2[0;1]

������ 1pP
R+[�P ]X
t=R

1
n
�
�
yt+hj=t; b�t;R� � r

o
� �p

P

TP
t=R

1
n
�
�
yt+hj=t; b�t;R� � r

o������
2

;

and the Cramér-von Mises test statistic is instead:

CI
P =

Z
�

Z 1

0

8<: 1p
P

R+[�P ]X
t=R

1
n
�
�
yt+hj=t; b�t;R� � r

o
� �p

P

TP
t=R

1
n
�
�
yt+hj=t; b�t;R� � r

o9=;
2

d�dr:

Note that our proposed �P and CP statistics focus on testing the joint null hypothesis of

constancy of forecast densities over time as well as their correct speci�cation, whereas �IP
and CI

P would only test constancy.

3.3 How to Implement the Proposed Tests

In this sub-section, we provide a step-by-step description of how to implement our proposed

tests in practice in the leading case of a linear forecast model,

yt = x0t�h� + "t;h; (16)

8Note that we take the square function of Inoue�s (2001) statistic dn(m=n; t) in the Kolmogorov-Smirnov

version of the test, whereas he considers its absolute value. As suggested previously, this will not a¤ect the

rejection frequency of the test statistic.
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where V ar ("t;hj=t�h) = �2 and the density used for evaluation is a Normal. Let � be a

(p� 1)� 1 vector of parameters, and � � [�0; �2]0, a vector of dimension p� 1.

1. Obtain the test statistics �p or CP as in equations (11) and (12) as follows:

1a. Recursively estimate the parameters fb�t;Rg of the conditional predictive distribu-
tion of the variable yt+h, for t = R; :::; T .

1b. Calculate the cumulative distribution function (cdf) �t
�
yt+hj=t; b�t;R� speci�ed

under H0 �in this example, a Normal distribution.

1c. Consider a discretized grid for r and � . For example, in our Monte Carlo we con-

sider r= [0:1; 0:2; :::; 0:9]0; of dimension (nr � 1) ; and �= [0:15; 0:16; :::; 0:85]0 � �;
of dimension (n� � 1). For every r 2r and � 2� , calculate 	P (�; r) as in equation
(2). The latter gives the �rst component in FP (�; r) in equation (9). The second

component in FP (�; r) is obtained similarly by setting � = 1.

2. Construct the critical values by simulating the limiting distribution that includes the

correction for parameter estimation error, as follows:

2a. First, estimate the various components of the variance 
 (r1; r2). Let 
 (r) be the

HAC estimate of the covariance of the ((nr + p)� 1) vector 1p
P

TP
t=R

 b�t+h (r)
qt(b�t;R)

!
,

where qt(b�t;R) is the (p� 1) vector of scores and b�t+h (r) is the (nr � 1) vector of
the distance between the empirical cumulative distribution of the PITs and the

uniform distribution evaluated at the vector r; also of dimension (nr � 1).9 In the
case of a Normal density and the linear regression model in equation (16), the

score is a p� 1 vector with the following elements

qt

�
�̂
�
=

"
(yt � x0t�h�̂t;R)x

0
t�h

�̂2
(yt � x0t�h�̂t;R)

2

2�̂4
� 1

2�̂2

#0
: (17)

Let S (r) �
 
S�� (r) Sq� (r)

0

Sq� (r) Sqq

!
be the HAC estimate of the covariance of b�t+h (r)

qt(b�t;R)
!
, for S�� (r) of dimension (nr � nr) and Sqq of dimension (p� p).

Note that S�� (r1; r2) is the (r1; r2)� th component of S�� (r).

9Note that qt(b�t;R) does not depend on r:
12



2b. Then, estimate the (nr � nr) matrix 
 (r) as �(r)

 
S�� (r) �S 0q� (r)

�Sq� (r) 2�Sqq

!
�(r)0,

where � = 1�
�
P
R

��1
ln
�
1 + P

R

�
and:

�(r) =

24Inr �
"
1

P

TX
t=R

r��
�
�(r)j=t; �̂t;R

�#0 " 1
P

TX
t=R

�
�r�qt

�
�̂t;R

��#�135 ;
where: the �rst element of the (nr � (nr + p)) vector �(r) is the (nr � nr) iden-

tity matrix, Inr ; the second element is the product of two components: the

�rst is the average gradient of the PIT, i.e. the average of r��
�
�(r)j=t; �̂t;R

�0
,

of dimension (1� p), stacked across the values for r into the (nr � p) matrix

r��
�
�(r)j=t; �̂t;R

�0
; and the second is the inverse of the average gradient of the

score, r�qt

�
�̂t;R

�
, of dimension (p� p). It is important to note that the gradient

of the PIT is evaluated not at the realized values of the data, but rather at the

values that would have yielded cumulative probabilities equal to the values of the

discretized grid of r. That is, the gradient is evaluated at �(r) = ��1(rj=t; �̂t;R).

For the Normal distribution, we have

r�qt

�
�̂t;R

�
=

26664
�
xt�hx

0
t�h

�̂2t;R
�
(yt � x0t�h�̂t;R)xt�h

�̂4t;R

�
(yt � x0t�h�̂t;R)xt

�̂4t;R

1

2�̂4t;R
�
(yt � x0t�h�̂t;R)

2

�̂6t;R

37775 ;

and thus the estimate of A
�
�y
�
is
h
� 1
P

PT
t=Rr�qt

�
�̂t;R

�i�1
.

Since in our examples we have used a Normal distribution for both the in-sample

estimation as well as for the out-of-sample evaluation, we can derive the following

formulas for the gradient of the PIT:

r��
�
�(r)j=t; �̂t;R

�
=
xt�h
�̂2t;R

E(uju � �(r))�(�(r)j=t; �̂t;R)�
x0t�h�̂t;Rxt

�̂2t;R
�(�(r)j=t; �̂t;R)

r�2�
�
�(r)j=t; �̂t;R

�
= � 1

2�̂2t;R
�(�(r)j=t; �̂t;R) +

1

2�̂4t;R
fE(u2ju � �(r))�(�(r)j=t; �̂t;R)� :::

2x0t�h�̂t;RE(uju � �(r))�(�(r)j=t; �̂t;R) +
�
x0t�h�̂t;R

�2
�(�(r)j=t; �̂t;R)g;

and r��
�
�(r)j=t; �̂t;R

�
=

�
r��

�
�(r)j=t; �̂t;R

�0
;r�2�

�
�(r)j=t; �̂t;R

��0
, which

is of dimension (p� 1) for any r 2r. In the above, E(uju � yt+h) and E(u2ju �

13



yt+h) are the conditional non-central moments for a truncated Normal distribu-

tion. Let ~yt+h = (yt+h � x0t�̂t;R)=�̂t;R, then for the truncated Normal distribution

we can write

E(uju � yt+h) = x0t�̂t;R � �̂t;R
�(~yt+h)

�(~yt+h)

V ar(uju � yt+h) = �̂2t;R

"
1� ~yt+h

�(~yt+h)

�(~yt+h)
�
�
�(~yt+h)

�(~yt+h)

�2#
�(~yt+h) being the standard normal distribution evaluated at ~yt+h and �(~yt+h) its

cumulative. Furthermore, E(u2ju � yt+h) = V ar(uju � yt+h)+ E(uju � yt+h)
2:

2c. Finally, for each Monte Carlo replication, we simulate the test statistics. Let �

be the matrix of n� row-replications of � , of dimension of n� � n� .10 Also, de�ne


� (� ; r) � (min (�;�0)� �� �0)

 (r), where � denotes the element by element
product of two matrices, which has dimension (n� � nr) � (n� � nr).11 Also let


� (� ; r)
1=2 denote its Cholesky factor, such that
� (� ; r) = 
� (� ; r)

1=2
� (� ; r)
1=20.

Let � be a vector of (n� � nr) � 1 draws from a standard normal distribution;

we generate e	� (� ; r) � 

1=2
� (� ; r) �, which corresponds to a simulation of the

vector 	� (� ; r) = � (r) 1p
P
[
R+[�P ]P
t=R

 
�t+h (r)

qt

!
� �

TP
t=R

 
�t+h (r)

qt

!
] directly over

time.12 We then reshape the latter into an (n� � nr) matrix, for convenience,

whose (�; r) � th component is the simulated value of 	� (�; r). We also gen-

erate the (nr � 1) vector e	(1; r) � 
 (r)1=2 �, where � is a (nr � 1) standard
normal, independent of �; whose r-th component is denoted by e	(1; r). The
latter is the simulated 	(1; r). Note that e	� (� ; r) and e	(1; r) correspond to
the components of the limiting distribution of the proposed tests, (11) and (12).

We then construct the test statistics, �P � sup�2� supr2r

he	� (�; r)2 + e	(1; r)2i
and CP �

P
�2�
P

r2r

he	� (�; r)2 + e	(1; r)2i : Repeat the simulations for a large
number of replications. The critical values at the 10; 5; and 1 percent signi�cance

levels correspond to the 90; 95; and 99 percentile values of the test statistics across

Monte Carlo simulations, respectively.
10For example, such set can be generated by the operation "[�;�0] = meshgrid (� ; �) " in Matlab.
11Each element of 
� corresponds to E [	� (�1; r1)	� (�2; r2)] de�ned in equation (6), over � and r:

12In fact, rather than generating the ((nr + p)� 1) vector
 
�t+h (r)

qt

!
; we focus on � (r)

 
�t+h (r)

qt

!
,

for � (r) de�ned in step 2b, and we generate it as e	0 (� ; r) � 
1=2� �, where � is an (n� � nr)� 1 vector.
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4 Monte Carlo Evidence

In this section we analyze the size and power properties of our proposed tests in small

samples for both correctly speci�ed and mis-speci�ed forecasting models. In our Monte

Carlo analysis, we compare the performance of the following tests: the test that we propose,

�P and CP de�ned in Theorem (2), which focus on testing whether a Normal predictive

density is correctly speci�ed at each point in time; the �CSP and CCS
P tests, which focus

on whether the Normal predictive density is correctly speci�ed on average over the out-of-

sample period (�CSP is Corradi and Swanson�s (2006a,b) test); the �IP and C
I
P tests, which

focus on testing whether the Normal predictive density is constant over time.

4.1 Size Analysis

To investigate the size properties of our tests we consider two Data Generating Processes

(DGPs). The forecasts are based on model parameters estimated recursively for t = R; :::; T+

h: We consider several values of R = [1000; 500; 200; 100] and P = [1000; 500; 200; 100] to

evaluate the performance of the proposed procedures in �nite samples for h = 1. The DGPs,

inspired by Corradi and Swanson (2006a), are the following:

DGP S1 (Autoregressive Model): Let yt = �yt�1 + "t; "t � iidN (0; 1) ; � = 0:2. The

estimated model is an autoregressive model with one lag: Etyt+1 = �yt.

DGP S2 (Lag Mis-speci�cation): The data generating process is yt = �1yt�1+�2yt�2+"t,

where "t � iidN (0; 1) and �1 = �2 = 0:2. The estimated model is: Etyt+1 = �yt.

The estimated model in DGP S1 is correctly speci�ed whereas that in DGP S2 is mis-

speci�ed. In all cases, the parameters are estimated by OLS using a recursive estimation

window scheme. The HAC bandwidth used to estimate the variances is one.

Table 1 shows the results. Panel A in Table 1 reports results for correct speci�cation

tests of the density forecasts robust to instabilities (�P ; CP ); panel B reports results for

tests for the traditional tests of correct speci�cation of the density forecast (�CSP ; CCS
P ); and

panel C reports tests for instabilities in the density forecasts over time (�IP ; C
I
P ). Table 1

shows that our tests perform very well in �nite samples, with mild over-rejections in the lag

mis-speci�cation case.

4.2 Power Analysis

To investigate the power properties of our tests, we consider three DGPs. The DGPs are:
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DGP P1 (Constant Mis-speci�cation). The data are generated as: yt = � + �1;t +

c
�
�22;t � 1

�p
2, where �1;t and �2;t are iidN (0; 1) and independent of each other, and � = 1.13

We report results for various values of c: The case c = 0 corresponds to the Normal density

case; when c is positive, the density becomes a convolution of a Normal and a �21 distribution,

where the weight on the latter becomes bigger as c increases.

DGP P2 (Parameter Instability). The data are generated as: yt = �t + �t"t, where

"t � iidN (0; 1) and �t = �1 = 1; �t = �1 = 1 for t = 1; 2; :::; R: Further, �t = (1 + c)�1;

�t = (1 + c)�1 for t = R + 1; :::T1, and �t = (1� c)�1; �t = (1� c)�1 for t = T1 + 1; :::; T ;

T1 = [0:8P ]. We report results for various values of c. The case c = 0 corresponds to the

constant parameter case; the larger c is, the more instability there is in the parameters.

DGP P3 (Time-varying Mis-speci�cation). The data are generated as: yt = � +�1;t

+�
�
�22;t=

p
2
�
�1 (t > T1), where �1;t and �2;t are iidN (0; 1), independent of each other, and

� = 1; � = 2. When T1 = T , the distribution of yt is Normal; as T1 decreases, a �21
distribution is added to the error term starting at time T1; as a consequence, the shape of

the distribution in the data changes over time.

The results are shown in Table 2. Recall that the mis-speci�cation tests evaluate whether

the predictive density is Normal. The table shows that, across all designs, our proposed

density tests robust to instabilities (�P ; CP ) have good power properties in detecting mis-

speci�cation, even when it only appears in parts of the sample. On the other hand, the other

tests may lack power: Panel A shows that the instability tests (�IP ; C
I
P ) have no power to

detect mis-speci�cation in the predictive density when the mis-speci�cation is constant over

time; the correct speci�cation tests (�CSP ; CCS
P ) do instead detect mis-speci�cation, and, by

construction, have higher power than the density forecast tests robust to instabilities. At

the same time, Panel B shows that the correct speci�cation tests have less power than our

proposed tests in detecting mis-speci�cation in the moments of the predictive distribution,

when the shape of the distribution is correctly speci�ed; in the case of time-varying parame-

ters, by construction the instability tests would detect the instabilities with a higher power

than our proposed density tests robust to instabilities. Similar results hold in the presence

of time-varying mis-speci�cation, as Panel C shows. Overall, our tests are more robust to

detecting possibly time-varying mis-speci�cation across all the designs than the other tests

which focus only on either time-variation or constant mis-speci�cation.

13Note that
�
�22;t � 1

�p
2 is a chi-squared distribution with zero mean and variance one, that is, it has the

same mean and variance as �1;t, although the shape is di¤erent.
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5 SPF Density Forecast Evaluation

The Survey of Professional Forecasters (SPF) collects information on density forecasts for

in�ation and output growth made by professional forecasters in the U.S. The forecasters

assign a probability value (over pre-de�ned intervals) to the year-over-year in�ation and

output growth rates for the current calendar year (nowcast) and the following year (one-

year-ahead forecast). The forecasters update their probabilities for the nowcast and the

one-year-ahead forecasts on a quarterly basis, and over the course of the year the survey

obtains several forecast values for the same target variable.

Diebold et al. (1999) are among the �rst to evaluate whether the SPF density forecasts

of in�ation are correctly speci�ed. In particular, they assess whether realized in�ation rates

are consistent with the empirical distribution of the mean probability forecasts of the survey.

Interestingly, they note the presence of time variation in density forecasts, and emphasize

that, in their sample, the distribution has shifted from over-estimating a large negative shock

to over-estimating large shocks of either sign. While the Diebold et al. (1999) �nding of time

variation is empirically very interesting, it is based on an ad-hoc choice of sub-sample periods.

However, it is not necessarily the case that sub-samples chosen with an ad-hoc procedure

identify when the forecast distribution has indeed shifted or become more mis-speci�ed. In

addition, if the sub-samples were chosen using information from the data, this should be

taken into account when evaluating the presence of mis-speci�cation in sub-samples. Our

procedure can detect mis-speci�cation even if it appears only in a sub-sample of the data

and the researcher does not need to pre-specify the sub-sample; rather, the data will let the

procedure detect it. We therefore proceed to test the correct speci�cation for the SPF density

forecasts by using our test. In addition to in�ation (the variable considered in Diebold et

al., 1999), we also investigate the conditional density forecasts of output growth.

We obtain the mean probability forecasts from the Survey of Professional Forecasters,

which are publicly available from the Federal Reserve Bank of Philadelphia. We focus on

real GNP/GDP and the GNP/GDP de�ator as measures of output and prices. The realized

values of in�ation and output growth are based on the real-time data set for macroeconomists,

also available from the Federal Reserve Bank of Philadelphia.14 The SPF dataset presents

several challenges since the questionnaire has changed over time in various dimensions: there

have been changes in the de�nition of the variables, the intervals over which probabilities

have been assigned, as well as the forecast horizon. The most important change in the

14The data are available at http://www.philadelphiafed.org/research-and-data/real-time-center.
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density forecast evaluation process is the switch from GNP to GDP in 1992:I. However,

since the change in the de�nition of the forecasted variable a¤ects both the forecast and

the target values simultaneously, we do not consider it as a major impediment. On the

other hand, the probability forecasts for output growth are in terms of nominal GNP, as

opposed to real GNP, prior to 1981:III. Even though we do have probability forecasts for

in�ation for the same period of time, it is unclear how to derive an implied probability for

the joint dynamics of nominal output and prices in order to estimate the density for real

output. To mitigate this problematic issue, we truncate the data set and only consider

the mean probability distribution forecasts of GNP/GDP for the period 1981:III-2011:IV.

For the GNP/GDP price de�ator, however, we use the full sample of data on probability

forecasts, available for 1968:IV-2011:IV. We should also note that, in the sample period we

consider, both nowcasts and one-year-ahead forecasts are available for the output growth.

For in�ation, the one-year-ahead forecasts become available only starting 1981:III. Thus,

the sample sizes for the various forecast densities that we consider di¤er depending on the

availability of the data, which might a¤ect the empirical results. We deal with the fact that

the intervals over which forecasters historically provided probability forecasts has changed

over time by considering, for each period of time, a normal approximation to the discrete

forecast density distribution provided by the SPF.15

We use the year-over-year growth rates of output growth and in�ation calculated from

the �rst quarterly vintage of real GNP/GDP and the GNP/GDP de�ator in each year to

evaluate the density forecasts. For instance, in order to obtain the growth rate of real

output for 1981, we take the 1982:I vintage of data and calculate the growth rate of the

annual average level of GNP/GDP from 1980 to 1981. We consider the annual-average

over annual-average percent change (as opposed to fourth-quarter over forth-quarter percent

change) in output and prices to make it comparable with the de�nition of the variables that

SPF forecasters provide probabilistic predictions for.

Table 3 reports the empirical results. The table has three panels. Panel A considers

the tests of correct speci�cation robust to instabilities proposed in this paper (the �P ; CP
tests); Panel B focuses on the Corradi and Swanson (2006a,b) test (�CSP ; CCS

P ). Both tests

evaluate whether the Normal density is an appropriate speci�cation for the SPF density

nowcasts and one-year-ahead forecasts of output growth and in�ation. Panel C reports

15Note that the use of a normal interpolation would be problematic in case our empirical evidence did

not reject the correct speci�cation of the density forecasts, as the latter might be caused by the Normal

interpolation. However, we reject the correct speci�cation notwithstanding the Normal interpolation.
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results of tests for instability in density forecasts (the �IP ; C
I
P tests). The test statistics

consistently reject the respective null hypotheses of correct speci�cation at each point in time,

correct speci�cation on average, and stability at 5% signi�cance level for both in�ation and

output growth nowcasts and for one-quarter-ahead in�ation forecasts, suggesting both mis-

speci�cation and time-variation over the out-of-sample evaluation period. The evidence of

time-variation is consistent with Andrade et al. (2012), who also document time-variation in

the performance of individual-level SPF density forecasts, with an emphasis on the dynamics

of the inter-quantile ranges and skewness measures.

The value of R + [�P ] associated with the largest value of the �P statistic may provide

an indication regarding the date of a potential break in the mis-speci�cation of the density

forecasts.16 The date for in�ation and output growth nowcasts is around the beginning of

1980s, right at the onset of the Great Moderation. In particular, the date is 1979:II for

in�ation nowcasts, which coincides with the beginning of Volker�s disin�ation period. For

the one-year ahead in�ation and output growth, the date is closer to the late 1990s.17

Note that our proposed tests detect whether the correct speci�cation has been violated in

at least some part of the sample, but do not directly determine whether it has shifted from

being correctly calibrated to mis-speci�ed, or vice versa, or whether the mis-speci�cation

has changed over time. We shed further light on the proper calibration of the PITs by

plotting the density forecasts before and after the dates suggested by the �P test. Figure

1 reports the density forecasts of output growth and Figure 2 those of in�ation. In both

�gures, Panel A reports the density forecast estimated on average over the out-of-sample

period for the nowcast (on the left) and the one-year-ahead forecast (on the right). Panel

B reports density forecasts for the nowcast and Panel C reports one-year ahead density

forecasts, both depicted over the sub-samples determined by our procedure. The solid line

plots the expected value of a U(0; 1) over 10 bins (i.e. 0.1). Comparing Figures 1 and 2, it is

clear that the mis-speci�cation is worse for in�ation than for output growth. Interestingly,

the density forecast for the current year in�ation (in Figure 2, Panel B), suggests a shift

towards severe over-estimation of the tail risk after 1979:III. Note that, by looking at the

full out-of-sample period only (the left graph in Figure 2, Panel A), one would detect the

existence of mis-speci�cation on average but would miss that, before 1979, forecast densities

were substantially better calibrated. For the case of one-year-ahead in�ation, on the other

16The date is determined as R+ [��P ], where �� = arg sup�fsupr �P (�; r)g:
17The date is di¤erent if one only looks at the instability tests for output growth, which is 2004:I. Thus,

structural breaks in density forecasts do not necessarily match potential dates for mis-speci�cation.
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hand, the surveys have improved the estimation of the upper tail risk after 1996:I.

Our empirical results are important in the light of the �nding that survey forecasts are

reportedly providing the best forecasts of in�ation. For example, Ang et al. (2007) �nd that

survey forecasts outperform several competing forecasting models (including the Phillips

curve, the term structure and ARIMA models) and that, when combining forecasts, the

data assign the highest weight on survey information. Our results suggest that surveys are

still not providing a correct forecast for the whole distribution of in�ation, at least when

considering a Normal distribution.

6 Conclusions

This paper proposes new tests for predictive density evaluation. They are designed to be

robust to the presence of mis-speci�cation as well as instabilities in the mis-speci�cation. The

techniques are based on Kolmogorov-Smirnov and Cramér-von Mises-type test statistics. An

empirical application of the proposed methodologies to the SPF uncovers that both output

growth and in�ation density forecast are mis-speci�ed and �nds signi�cant evidence of time-

variation in the mis-speci�cation.
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7 Appendix A. Proofs

Below we prove Theorems 1 and 2.

Proof of Theorem 1. (i) That fzt+hgTt=R is U (0; 1) under H0 follows from Corradi and

Swanson (2006b, p. 213).

(ii) Note that:

	P (�; r) �
1p
P

R+[�P ]X
t=R

�
1
n
�
�
yt+hj=t; b�t;R� � r

o
� r
�

(18)

=
1p
P

R+[�P ]X
t=R

�
1
n
�
�
yt+hj=t; �y

�
� �

�
��1

�
rj=t; b�t;R� j=t; �y�o� r

�
(19)

=
1p
P

R+[�P ]X
t=R

�
1
n
�
�
yt+hj=t; �y

�
� �

�
��1

�
rj=t; b�t;R� j=t; �y�o� ����1 �rj=t; b�t;R� j=t; �y��

(20)

+
1p
P

R+[�P ]X
t=R

�
�
�
��1

�
rj=t; b�t;R� j=t; �y�� r

�
(21)

=
1p
P

R+[�P ]X
t=R

�
1
n
�
�
yt+hj=t; �y

�
� �

�
��1

�
rj=t; b�t;R� j=t; �y�o� ����1 �rj=t; b�t;R� j=t; �y��

(22)

� 1p
P

R+[�P ]X
t=R

r��
�
��1

�
rj=t; b�t;R� j=t; �t;R��b�t;R � �y

�
(23)

for �t;R 2
�b�t;R; �y�, where (19) follows from Assumption 1a(i),18 and the last passage follows

from a mean value expansion.19

We �rst show that

1p
P

R+[�P ]X
t=R

�
1
n
�
�
yt+hj=t; �y

�
� �

�
��1

�
rj=t; b�t;R� j=t; �y�o� ����1 �rj=t; b�t;R� j=t; �y��

=
1p
P

R+[�P ]X
t=R

�
1
�
�
�
yt+hj=t; �y

�
� r
	
� r
�
+ op (1) ; (24)

18In fact, note that (19) follows from �
�
yt+1j=t; b�t;R� � r implies yt+1 � ��1 �rj=t; b�t;R�, which in turn

implies that �
�
yt+1j=t; �y

�
� �

�
��1

�
rj=t; b�t;R� j=t; �y� :

19Following Corradi and Swanson (2006b, p. 276), we have: r � �
�
��1

�
rj=t; b�t;R� j=t; b�t;R� =

�
�
��1

�
rj=t; b�t;R� j=t; �y� +r�����1 �rj=t; b�t;R� j=t; �t;R��b�t;R � �y� :
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we then proceed showing that

1p
P

R+[�P ]X
t=R

r��
�
��1

�
rj=t; b�t;R� j=t; �t;R�0 �b�t;R � �y

�
= E

�
r��

�
��1

�
rj=t; �y

�
j=t; �y

��0 1p
P

R+[�P ]X
t=R

�b�t;R � �y
�
+ op (1) ; (25)

where the op (1) term holds uniformly in � and r: Recall �t+h (r) de�ned in (5).

Regarding (24), under H0, � (:) is a stationary strong mixing process given the fact

that r 2 [0; 1] and that the indicator function is bounded, as bounded functions of mixing
processes are mixing �White, 1984, p. 50) ; thus,

Pr

0@sup
�
sup
r2[0;1]

sup
r2:jr�r2j<�

������ 1pP
R+[�P ]X
t=R

[�t+h (r)� �t+1 (r2)]

������ > "

1A
= Pr

0@sup
�

p
� sup
r2[0;1]

sup
r2:jr�r2j<�

������ 1p
�P

[�P ]X
j=1

[�R+j+h (r)� �R+j (r2)]

������ > "

1A! 0

as � ! 0 using the fact that � is bounded between zero and one, and Corradi and Swanson

(2006a, p. 796, proof of eq. 12). Note that Assumptions 1b,d ensure that, for e� 2 � � (0; 1) ;
supe�2�

������
������
24� 1

T

[Te� ]X
j=1

r�qj
�
�t;R
�35�1 � e�A ��y�

������
������!p 0;

as in Andrews (1993, eq. A.8, p. 848), which implies that

sup
�2�

������
������
24� 1

R + [�P ]

R+[�P ]X
j=1

r�qj
�
�t;R
�35�1 � A

�
�y
�������
������!p 0; (26)

which guarantees that a condition similar to West�s (1996) Assumption 2(a) holds. Thus,

the latter also implies that suptjta
�b�t;R � �y

�
j !
p
0 for 0 � a < 1=2 by Assumption 1e and

Lemma A3 in West (1996), which also implies that suptjT a
�b�t;R � �y

�
j !

p
0. This latter

result and Assumptions 1a(ii) ensure that (24) holds following an argument similar to that

in Corradi and Swanson (2006a, p. 796, proof of eq. 13).20

20Corradi and Swanson (2006b) note that the argument in Corradi and Swanson (2006a) carries over

out-of-sample.
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Regarding (25):

P�1=2
R+[�P ]X
t=R

r��
�
��1
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= E
�
r��
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��0 1p
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��1
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��0 1p
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t=R

�b�t;R � �y
�
+ op (1) ; (30)

where (29) converges in probability to zero uniformly over time by Assumption 1f (cfr. Bai

(2003, eq. C5).

It follows from (18), (24) and (25) that:

	P (�; r) =
1p
P

R+[�P ]X
t=R

�
1
�
�
�
yt+hj=t; �y

�
� r
	
� r
�

(31)

� E
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r��

�
�(r)j=t�1; �y

��0 1p
P

R+[�P ]X
t=R

�b�t;R � �y
�
+ op (1) :

Let Qt � 1
t

tP
j=1

qj
�
�y
�
and, for simplicity, qj � qj

�
�y
�
. From the �rst order condition for

the estimation of the parameter and a mean value expansion, we have:

0 =
1

t

tX
j=1

qj
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1
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tX
j=1

r�qj
�
�t;R
� �b�t;R � �y

�
; thus,
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t=R
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A
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Qt
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+ P�1=2
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"
�1
t

tX
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r�qj
�
�t;R
�#�1

� A
�
�y
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where A
�
�y
�
is de�ned in Theorem 1. Given (26), the last term in (33) is op (1). By

noting that P�1=2
R+[�P ]P
t=R

�����1t tP
j=1

qj
�
�y
������ = Op (1), it follows from Assumption 1e andWest (1996,

Lemma A4(c)) that:
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R+[�P ]X
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�
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�
�y
� 1p
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R+[�P ]X
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1

t

tX
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qj + op (1) : (34)

It follows from (31) and (34) that:
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�t+h (r)

Qt

!
| {z }

�KP (�;r)

+ op (1) : (36)

The result will follow by a reasoning similar to Theorem 2.1 in Inoue (2001) if we show

that: (a) the sample covariance kernel converges to the speci�ed covariance kernel; and (b)

we establish convergence of the �nite dimensional distributions of 	P (�1; r1) to the �nite

dimensional distribution of 	(:; :) and tightness holds.

(a) First, we show that lim
T!1

E
�
KP (�1; r1)KP (�2; r2)

0� is absolutely convergent (which
implies that the limiting variance of KP (�; r) is absolutely convergent, since E [KP (�; r)] =

0). From (36):
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R+[�1P ]X
s=R

 
�t+h (r1)
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s
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Qt�s+h (r2) T�1

 
R+[�1P ]P
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! 
R+[�2P ]P
s=R

Q0s

!
1CCCA :

Let aR;j;� =
P[�P ]

k=j (R + k)�1 for j = 0; :::; [�P ] : Note that, since the parameter is esti-

mated via a recursive scheme,
R+[�P ]P
t=R

Qt = aR;0;� (q1 + :::+ qR) +aR;1;�qR+1+:::+aR;P�1;�qR+[�P ].21

21This follows from a reasoning similar to West (1996, p. 1081).
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Thus,
R+[�P ]P
t=R

Qt =
PR+[�P ]

t=1 bt;�qt where bt;� = aR;0;� for t = 1; :::; R and bt;� = aR;t�R;� for

t = R + 1; :::; R + [�P ]. Since fbt;�g is a sequence of deterministic bounded (by unity)
constants and qt is strong mixing, bt;�qt is mixing (White, 1984, Theorem 3.49). Thus,
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Also, let e�i+1 � 0 for i < R and e�i+1 � �i+1 for i � R; then, from a similar reasoning,
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is absolutely convergent since, by Theorem A5 in Hall and Heyde (1980), Assumption 1d
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Thus, lim
T!1

KP (�1; r1)KP (�2; r2)
0 is absolutely convergent.

From Lemma A1(c) in Inoue (2001), we have:
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Note that lim
T!1
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= 2�Sqq by Assumptions 1c and 1e and Lemma A5 in

West (1996). Note also that lim
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Hence, by combining (36), (37) and (38), we have:
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Thus, limP!1E [	P (�1; r1)	P (�2; r2)] = min (�1; �2) 
 (r1; r2) :

(b) follows from (a), Assumption 1 and Theorem 2.1 in Inoue (2001).

Proof of Theorem 2. Eqs. (9) and (10) together with Theorem 1 imply:
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Thus, by the Continuous Mapping theorem and Theorem 1, [RP (�)FP (�; r)]
0 [RP (�)FP (�; r)])

	� (�; r)0	� (�; r) + 	 (1; r)0	(1; r) :
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8 Tables and Figures

Table 1. Size Properties

Panel A: Correct Speci�cation Tests Robust to Instabilities

DGP S1

�P CP

R P : 1000 500 200 100 1000 500 200 100

1000 0.05 0.04 0.04 0.05 0.04 0.04 0.04 0.05

500 0.04 0.03 0.04 0.04 0.05 0.02 0.02 0.05

200 0.05 0.04 0.04 0.03 0.05 0.04 0.04 0.03

100 0.05 0.05 0.04 0.05 0.05 0.04 0.04 0.04

DGP S2

�P CP

R P : 1000 500 200 100 1000 500 200 100

1000 0.09 0.08 0.08 0.10 0.09 0.09 0.08 0.12

500 0.08 0.07 0.08 0.09 0.08 0.07 0.07 0.08

200 0.07 0.08 0.08 0.07 0.08 0.08 0.08 0.08

100 0.09 0.08 0.06 0.09 0.08 0.08 0.08 0.10

Panel B: Correct Speci�cation Tests

DGP S1

�CSP CCSP

R P : 1000 500 200 100 1000 500 200 100

1000 0.06 0.05 0.04 0.05 0.05 0.04 0.03 0.06

500 0.06 0.03 0.04 0.04 0.04 0.02 0.03 0.05

200 0.05 0.04 0.04 0.03 0.06 0.04 0.04 0.02

100 0.05 0.05 0.05 0.06 0.04 0.04 0.04 0.04

DGP S2

�CSP CCSP

R P : 1000 500 200 100 1000 500 200 100

1000 0.09 0.07 0.07 0.11 0.08 0.08 0.08 0.12

500 0.07 0.05 0.07 0.09 0.08 0.07 0.07 0.08

200 0.07 0.07 0.07 0.07 0.08 0.08 0.08 0.08

100 0.09 0.07 0.07 0.08 0.09 0.08 0.08 0.09
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Panel C: Instability Tests

DGP S1

�IP CI
P

R P : 1000 500 200 100 1000 500 200 100

1000 0.03 0.03 0.05 0.03 0.04 0.03 0.05 0.03

500 0.03 0.03 0.03 0.03 0.02 0.03 0.05 0.04

200 0.04 0.02 0.03 0.02 0.04 0.03 0.04 0.02

100 0.03 0.02 0.02 0.03 0.03 0.02 0.03 0.03

DGP S2

�IP CI
P

R P : 1000 500 200 100 1000 500 200 100

1000 0.10 0.08 0.10 0.06 0.10 0.08 0.10 0.08

500 0.10 0.09 0.08 0.09 0.08 0.11 0.09 0.11

200 0.10 0.08 0.08 0.08 0.08 0.07 0.07 0.08

100 0.09 0.07 0.07 0.07 0.08 0.09 0.07 0.08

Note. The tab le rep orts empirica l rejection frequencies for the resp ective test statistics at the 5% nom inal size for various values of P

and R . The number of M onte Carlo rep lications is 500; critica l values are simulated w ith 100 rep lications; � = [0:15; 0:16; :::; 0:84; 0:85] and

r = [0:1; 0:2; :::; 0:8; 0:9].
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Table 2. Power Properties

Instability Robust Correct Correct Instability

Speci�cation Tests Speci�cation Tests Tests

Panel A: DGP P1

c �P CP �CSP CCS
P �IP CI

P

0 0.04 0.04 0.04 0.04 0.05 0.04

0.5 0.04 0.05 0.04 0.05 0.03 0.04

1 0.13 0.14 0.14 0.15 0.03 0.04

1.5 0.30 0.34 0.33 0.35 0.03 0.04

2 0.50 0.60 0.52 0.61 0.03 0.04

2.5 0.73 0.82 0.77 0.83 0.04 0.04

Panel B: DGP P2

c �P CP �CSP CCS
P �IP CI

P

0 0.04 0.04 0.04 0.04 0.05 0.04

0.25 0.16 0.14 0.12 0.12 0.19 0.24

0.5 0.66 0.47 0.52 0.33 0.88 0.85

0.75 0.97 0.92 0.93 0.75 1.00 1.00

1 1.00 1.00 1.00 0.99 1.00 1.00

1.25 1.00 1.00 1.00 1.00 1.00 1.00

Panel C: DGP P3

T1=T �P CP �CSP CCS
P �IP CI

P

600 0.04 0.04 0.04 0.04 0.05 0.04

580 0.27 0.29 0.21 0.24 0.33 0.41

560 0.78 0.78 0.63 0.68 0.72 0.79

540 0.96 0.97 0.94 0.96 0.69 0.75
Note. The tab le rep orts empirica l rejection frequencies for the resp ective test statistics under the alternatives of DGP P1, DGP P2, and DGP

P3. R = 500; P = 100. The number of M onte Carlo rep lications is 500; critica l values are simulated w ith 100 rep lications;

� = [0:15; 0:16; :::; 0:84; 0:85] and r = [0:1; 0:2; :::; 0:8; 0:9].
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Table 3: SPF�s Mean Probability Forecast Distribution

Series Name: GDP Growth GDP De�ator Growth

Panel A. Forecast Density Tests Robust to Instabilities

Horizon: �P CP Break �P CP Break

0 2.4038* 0.9451* 1985:IV 13.3484* 4.8776* 1979:II

1 0.6177 0.2175 1998:IV 11.3842* 5.0318* 1995:IV

Panel B. Correct Speci�cation Tests

�CSP CCS
P �CSP CCS

P

0 2.3134* 0.8760* - 12.4986* 4.7087* -

1 0.3692 0.1281 - 10.2736* 4.8199* -

Panel C. Instability Tests

�IP CI
P �IP CI

P

0 0.7476* 0.0691 2004:I 0.8581* 0.1689* 1982:II

1 0.5838 0.0894 1998:IV 1.7244* 0.2119* 1995:IV

Note. �*� ind icates rejections at 5% sign i�cance levels. The tests are implem ented w ith � 2 [0:15; 0:16; :::; 0:85] and r 2 [0:1; 0:2; :::; 0:9]. The

number of M onte Carlo rep lications used to obtain critica l values is 1000. The SPF data samples are as fo llow s: 1968:IV - 2011:IV for in�ation

nowcast (h=0), 1981:I I I-2011:IV for output grow th nowcast (h=0), 1981:I I I - 2010:IV for one-year-ahead in�ation (h=1), 1981:I I I-2010:IV for

one-year-ahead output grow th (h=1).
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Figure 1: Changes in the Density Forecasts of Output Growth

Panel A: Full Sample (1981:III-2011:IV, 1981:III-2010:IV)
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Panel B: Sub-sample Analysis for Nowcast (1981:III-1985:IV, 1986:I-2011:IV)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
PIT for output growth at h = 0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
PIT for output growth at h = 0

Panel C: Sub-sample Analysis for One-year-ahead Forecasts (1981:III-1998:IV, 1999:I-2010:IV)
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Note. The histogram s dep ict the PITS for ind icated sample p eriods. The solid line p lots the exp ected value of a U(0,1) over 10 b ins, i.e . 1/10 = 0.1 .
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Figure 2: Changes in the Density Forecasts of In�ation

Panel A: Full Sample (1968:IV-2011:IV. 1981:III-2010:IV)
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Panel B: Sub-sample Analysis for Nowcast (1968:IV-1979:II, 1979:III-2011:IV)
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Panel C: Sub-sample Analysis for One-Year-Ahead Forecast (1981:III-1995:IV, 1996:I-2010:IV)
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Note. The h istogram s dep ict the PITS for ind icated sample p eriods. The solid line p lots the exp ected value of a U(0,1) over 10 b ins, i.e . 1/10 = 0.1 .
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