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Abstract

This paper studies many–to–one matching markets where each student is assigned to a hos-
pital. Each hospital has possibly multiple positions and responsive preferences. We study the
game induced by the student-optimal stable matching mechanism. We assume that students
play their weakly dominant strategy of truth-telling.

Roth and Sotomayor (1990) showed that there can be unstable equilibrium outcomes. We
prove that any stable matching can be obtained in some equilibrium. We also show that the
exhaustive class of dropping strategies does not necessarily generate the full set of equilibrium
outcomes. Finally, we find that the so-called ‘rural hospital theorem’ cannot be extended to
the set of equilibrium outcomes and that welfare levels are in general unrelated to the set of
stable matchings. Two important consequences are that, contrary to one–to–one matching
markets, (a) filled positions depend on the particular equilibrium that is reached and (b)
welfare levels are not bounded by the student and hospital-optimal stable matchings (with
respect to the true preferences).
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1 Introduction

This paper studies two-sided many–to–one matching markets. We focus on centralized markets
that employ the student-optimal stable mechanism (SOSM), which is based on Gale and Shapley’s
(1962) deferred acceptance algorithm. The SOSM forms the basis of many matching mechanisms
used in practice. Two important instances are the New York City public school match and the
National Resident Matching Program (NRMP). The latter is an entry-level matching market for
hospitals and medical school graduates in the United States. In view of the NRMP, we call the
agents on one side students, and the agents on the other side hospitals (with possibly multiple
positions). We assume that hospitals have responsive preferences over students.1

Dubins and Freedman (1981) and Roth (1982) showed that under the SOSM students do not
have incentives to misrepresent their preferences. But hospitals typically do have incentives to do
so. Kojima and Pathak (2009) studied large many–to–one markets by considering sequences of
random markets with an increasing number of agents. They assumed (1) the length of students’
preference lists does not grow, (2) the number of hospital positions is bounded, (3) the number
of students does not grow “much faster” than the number of hospitals, and (4) the acceptability
of all students. One of their main results is that the expected proportion of hospitals that can
manipulate the SOSM when others are truthful goes to zero as the number of hospitals goes to
infinity. This paper aims to complement the study by Kojima and Pathak (2009). We consider
many–to–one markets that do not satisfy the assumptions in Kojima and Pathak (2009) or that
cannot be approximated by a sequence of infinitely growing markets. Following Kojima and Pathak
(2009), we assume that students play their weakly dominant strategy of truthtelling. We study
the equilibria of the matching game where the hospitals are the only strategic players.

A desirable property of a matching between students and hospitals is that it is stable with
respect to the true preferences. This means that there is no individual agent who prefers to
become unmatched or pair of agents who prefer to be assigned to each other (possibly disrupting
their match with other agents). The set of stable matchings has a lattice structure with remarkable
properties (see Roth and Sotomayor, 1990). In particular, the student-optimal stable matching
is the best (worst) stable matching for the students (hospitals). Similarly, the so-called hospital-
optimal stable matching is the best (worst) stable matching for the hospitals (students). Moreover,
the number of filled positions in each hospital and the set of matched students do not vary across
stable matchings. Nor does the set of matched students vary from one stable matching to another
for any hospital with some unfilled position.

For one–to–one markets, i.e., markets in which each hospital has one position, the set of equi-
librium outcomes coincides with the set of stable matchings (Gale and Sotomayor, 1985a and Roth,

1Loosely speaking, this means that for any hospital, (a) if faced with two sets of students that differ only in one
student, the hospital prefers the set of students containing the more preferred student and (b) as long as the hospital
has unfilled positions, it prefers to fill a position with an “acceptable” student rather than leaving it unfilled. We
give a formal definition in the next section.
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1984b). An important consequence is that the remarkable properties of the set of stable matchings
carry over to the set of equilibrium outcomes. Hence, the agents’ welfare in equilibria has (tight)
bounds that can directly be determined by the deferred acceptance algorithm. Moreover, the sets
(and hence, the numbers) of matched students and filled positions are invariable, i.e., they do not
depend on the particular equilibrium that is reached.

Most real-life applications of the SOSM are instances of many–to–one markets. For this reason
we aim to determine if the extraordinary features of the equilibria in the one–to–one setting carry
over to the many–to–one setting. A key difference with the one–to–one setting was established in
Roth and Sotomayor (1990, Corollary 5.17) through an example of a many–to–one market with
an unstable equilibrium outcome. We show that any stable matching is still the induced outcome
of some equilibrium (Proposition 1). Therefore, the set of stable matchings is a (possibly strict)
subset of the set of equilibrium outcomes. The fact that the two sets do not necessarily coincide
does not rule out a priori the possibility that the set of equilibrium outcomes satisfies important
structural properties as those described for the one–to–one setting. But unfortunately we show
that this is not the case. Our three results on the (absence of) structure of the set of equilibrium
outcomes can be summarized as follows.

Our first result is related to so-called dropping strategies (Kojima and Pathak, 2009). A
dropping strategy is obtained from a hospital’s true preference list by making some acceptable
students unacceptable, i.e., the order of any pair of students in the hospital’s submitted list is not
reversed with respect to its true preferences. Kojima and Pathak (2009, Lemma 1) showed that
the class of dropping strategies is strategically exhaustive: fixing the other hospitals’ strategies,
the match obtained from any strategy can be replicated or improved upon by a dropping strategy.
Surprisingly, we show that the class of dropping strategies does not necessarily generate the full
set of equilibrium outcomes (Example 1). Hence, contrary to the one–to–one setting, there can be
equilibrium outcomes that are not obtained in any equilibrium that consists of dropping strategies.
An important implication is that the computation of the set of equilibrium outcomes cannot be
simplified by focusing only on the relatively small class of dropping strategies.

Our second result is related to the number of filled positions in the equilibria. In Example 2,
we exhibit a many–to–one market in which the number of filled positions varies within the set of
equilibrium outcomes. This suggests that a maldistribution of students over hospitals can be due
to the particular equilibrium that is reached.

Our third result is related to the agents’ welfare in the equilibria. In Example 3, we provide
a many–to–one market with an equilibrium such that simultaneously for each side of the market
there is an agent that is strictly worse off and another agent that is strictly better off than in
any stable matching. Hence, relative to the set of stable matchings, none of the two sides of the
market is necessarily favored over the other side. But maybe more importantly, welfare levels in
equilibria are not bounded below nor above by the set of stable matchings. More precisely, lower
and upper bounds cannot be determined through the deferred acceptance algorithm. In short, our
equilibrium analysis shows that the SOSM exhibits substantial differences between the one–to–one
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and the possibly more interesting many–to–one settings.
Apart from the previously mentioned papers, our study is most closely related to the work by

Sotomayor (2008 and 2012) and Ma (2010). Below we comment on these papers.
Sotomayor (2008) considered many–to–one games based on stable matching mechanisms. She

assumed that the hospitals are truthful2 and that students are the only strategic agents. In-
terestingly, she showed that the hospital-optimal stable mechanism implements the set of stable
matchings in Nash equilibrium. She also showed that for other stable matching mechanisms the
strategic behavior of the students may lead to equilibrium outcomes that are not stable with re-
spect to the true preferences. Finally, she proved that for any stable matching mechanism there
is a strong Nash equilibrium that induces the student-optimal stable matching (under the true
preferences).

Sotomayor (2012) studied many–to–one matching games based on stable matching mechanisms.
She assumed that both students and hospitals are strategic agents. Her main results include a
general manipulability theorem and a general impossibility theorem (which shows that if there is
more than one stable matching, then some agent can profitably misrepresent its preferences). She
also proved that the set of equilibrium outcomes coincides with the set of matchings in which each
matched pair of agents is mutually acceptable (under the true preferences). Finally, she showed
that any equilibrium in which the hospitals reveal their preferences truthfully induces a stable
matching (under the true preferences).

We study the same game as Ma (2010), but our approach and, as a consequence, our findings are
very different from his. A key difference is that several of his results require additional assumptions
on the strategies that hospitals play in equilibrium. More precisely, Ma (2010, Theorem 6) showed
that equilibria in which all hospitals play so-called truncation strategies induce matchings that are
either unstable (with respect to the true preferences) or coincide with the true hospital-optimal
stable matching. This result is different from our Proposition 1. However, it is not clear whether
it is “reasonable” to assume that hospitals play truncation strategies when they have more than
one position. One reason is that the class of truncation strategies is in general not strategically
exhaustive in many–to–one markets (Kojima and Pathak, 2009). In Section 4, we discuss his
results in more detail.

The remainder of the paper is organized as follows. In Section 2, we describe the many–to–
one matching model with responsive preferences. Section 3, we present our results. Section 4
concludes.

2Assuming that the hospitals are truthful is not a trivial counterpart of our assumption that students are
truthful under the student-optimal stable mechanism. Indeed, Roth (1985, Proposition 2) showed that for any
stable mechanism, truthtelling is not a weakly dominant strategy for the hospitals. In particular, truthtelling is not
even a weakly dominant strategy under the hospital-optimal stable mechanism. Nonetheless, in applications such
as school choice, on which Sotomayor (2008) is based, the agents of the “many side” cannot act strategically by law.
Hence, in certain settings the assumption is natural.
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2 Model

There are two finite and disjoint sets of agents: a set of students S and a set of hospitals H .
Let I = S ∪H be the set of agents. We denote a generic student, hospital, and agent by s, h, and
i, respectively. For each hospital h, there is an integer quota qh ≥ 1 that represents the number
of positions it offers. Student s can work for at most one hospital and hospital h can hire at most
qh students. Let q = (qh)h∈H . For each i ∈ I, the set of potential partners of agent i is denoted by
Ni. If i ∈ S, Ni = H and if i ∈ H, Ni = S.

Each student s has a complete, transitive, and strict preference relation Ps over the hospitals
and the prospect of “being unmatched” (or some outside option), which is denoted by s. For
h, h′ ∈ H ∪ s,3 we write hPs h

′ if student s prefers h to h′ (h 6= h′), and hRs h
′ if s finds h at least

as good as h′, i.e., hPs h
′ or h = h′. If h ∈ H is such that hPss, then we call h an acceptable

hospital for student s. Let PS = (Ps)s∈S.
Let h ∈ H. A subset of students S ′ ⊆ S is feasible for hospital h if |S ′| ≤ qh. Let F(S, qh) =

{S ′ ⊆ S : |S ′| ≤ qh} denote the collection of feasible subsets of students for hospital h. The
element ∅ ∈ F(S, qh) denotes “being unmatched” (or some outside option). Hospital h has a
complete, transitive, and strict preference relation �h over F(S, qh). For S ′, S ′′ ∈ F(S, qh) we
write S ′ �h S ′′ if hospital h prefers S ′ to S ′′ (S ′ 6= S ′′), and S ′ �h S ′′ if hospital h finds S ′ at
least as good as S ′′, i.e., S ′ �h S ′′ or S ′ = S ′′. Let �= (�h)h∈H .

Let Ph be the restriction of �h to {{s} : s ∈ S} ∪ {∅}, i.e., individual students in S and being
unmatched. For s, s′ ∈ S ∪ {∅}, we write s Ph s

′ if s �h s′, and sRh s
′ if s �h s′. Let Ph be the

set of all such restrictions for hospital h. Agent s ∈ S is an acceptable student for a hospital h
with preference relation Ph if s Ph ∅. Let PH = (Ph)h∈H and P = (PS, PH). Finally, for H ′ ⊆ H,
let PH′ = (Ph′)h′∈H′ and P−H′ = (Ph)h∈H\H′ .

We assume that for each hospital h, �h is responsive, or more precisely, a responsive extension
of Ph,4 i.e., for each S ′ ∈ F(S, qh), (r1) if s ∈ S\S ′ and |S ′| < qh, then (S ′ ∪ s) �h S

′ if and only
if s Ph ∅ and (r2) if s ∈ S\S ′ and s′ ∈ S ′, then ((S ′\s′) ∪ s) �h S ′ if and only if s Ph s

′.
A (many–to–one) market is given by (S,H, PS,�H , q) or, when no confusion is possible,

(PS,�H) for short. Let (PS,�H) be a market. A matching is a function µ on the set S ∪H such
that each student is either matched to exactly one hospital or unmatched, i.e., for all s ∈ S, either
µ(s) ∈ H or µ(s) = s; each hospital is matched to a feasible set of students, i.e., for all h ∈ H,
µ(h) ∈ F(S, qh); and a student is matched to a hospital if and only if the hospital is matched to
the student, i.e., for all s ∈ S and h ∈ H, µ(s) = h if and only if s ∈ µ(h). Let µ be a matching
and i, j ∈ I. If j ∈ µ(i), then we say that i and j are matched to one another and that they are
mates in µ. The set µ(i) is agent i’s match.

Next, we describe desirable properties of matchings. First, we are interested in a voluntary
participation condition over the matchings. A matching µ is individually rational if neither a

3With some abuse of notation we often write x for a singleton {x}.
4See Roth (1985) and Roth and Sotomayor (1989) for a discussion about this assumption.
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student nor a hospital would be better off by breaking a current match. Formally, a matching µ is
individually rational if for each s ∈ S and each h ∈ H, if µ(s) = h, then hPss and sPh∅.5

Second, if a student s and a hospital h are not mates in a matching µ but s would prefer to be
matched to h and h would prefer to either add s or replace another student by s, then we would
expect this mutually beneficial adjustment to be carried out. Formally, a student-hospital pair
(s, h) is a blocking pair for µ if (b1) hPs µ(s), and (b2) [ |µ(h)| < qh and s Ph ∅ ] or [ there
is s′ ∈ µ(h) such that s Ph s

′ ].6 A matching is stable if it is individually rational and there
are no blocking pairs. It is well-known that in many-to-one matching with responsive preferences,
stability coincides with groupwise stability, which excludes the existence of any larger blocking
coalition as well (see Roth and Sotomayor, 1990, Lemma 5.5). Let Σ(P ) be the set of stable
matchings for market (PS,�H). Stability does not depend on the particular responsive extensions
of the agents’ preferences over individual acceptable partners.7

A mechanism assigns a matching to each market. We assume that quotas are commonly
known by the agents (because, for instance, the quotas are determined by law).8 Therefore, the
only information that the mechanism asks from the agents are their preferences over the other
side of the market. Many real-life centralized matching markets employ mechanisms that only
ask for the preferences P = (Pi)i∈I over individual partners, i.e., they do not depend on the
particular responsive extensions. Throughout the paper, we focus on this class of mechanisms.
Hence, a mechanism ϕ assigns a matching ϕ(P ) to each profile P . We often denote agent i’s
match ϕ(P )(i) by ϕi(P ). A mechanism ϕ is stable if for each P , ϕ(P ) ∈ Σ(P ). In this paper we
focus on a well-known stable mechanism that is employed in many real-life markets: the student-
optimal stable mechanism (SOSM) ϕS, which is based on Gale and Shapley’s (1962) deferred
acceptance algorithm.9 Let P = (PS, PH) be a profile (of preferences over individual agents).
Then, ϕS(P ) is computed as follows:

Step 1: Each student s proposes to the hospital that is ranked first in Ps (if there is no such
hospital then s remains unmatched). Each hospital h considers its proposers and tentatively
assigns its qh positions to these students one at a time following the preferences Ph. All other
proposers are rejected.

Step k, k ≥ 2: Each student s that is rejected in Step k−1 proposes to the next hospital in his list
Ps (if there is no such hospital then s remains single). Each hospital h considers the students that
were tentatively assigned a position at h in Step k − 1 together with its new proposers. Hospital
h tentatively assigns its qh positions to these students one at a time following the preferences Ph.

5Alternatively, by responsiveness condition (r1), a matching µ is individually rational if for each s ∈ S and each
h ∈ H, if µ(s) = h, then hPs s and µ(h) �h (µ(h)\s).

6By responsiveness conditions (r1) and (r2), (b2) is equivalent to [ |µ(h)| < qh and µ(h) ∪ s �h µ(h) ] or [ there
is s′ ∈ µ(h) such that (µ(h) \ s′) ∪ s �h µ(h) ].

7Note that the set of stable matchings does not depend on the agents’ orderings of the (individual) unacceptable
partners either.

8Contrary to Sönmez (1997), we assume that quotas cannot be manipulated.
9We refer to Roth (2008) for an account on the history and applications of the deferred acceptance algorithm.
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All other proposers are rejected.

The algorithm terminates when no student is rejected. Then, all tentative matches become final
and ϕS(P ) is the resulting matching.10 Gale and Shapley (1962, p.14) proved that ϕS(P ) is stable
with respect to P . Moreover, ϕS(P ) is called the student-optimal stable matching since it is the
best (worst) stable matching for the students (hospitals) with respect to P (Gale and Shapley,
1962, Theorem 2 and Roth and Sotomayor, 1990, Corollary 5.32).11

Under ϕS, it is a weakly dominant strategy for the students to reveal their true preferences
(Roth, 1985, Theorem 5∗). Since we focus on ϕS, we assume that students are truthful and that
hospitals are the only strategic agents. Henceforth we fix and suppress PS, which in particular
leads to the notation ϕS(PH) and Σ(PH).

A strategy is an (ordered) preference list of a subset of students.12 More precisely, for each
hospital h, Ph is the set of strategies and P ≡

∏
h∈H Ph is the set of strategy profiles. A game is

a quadruple (H,P , ϕS,�H) where H is the set of players, P is the set of strategy profiles, ϕS is
the outcome function, and the outcome is evaluated through the (true) preference relations �H .
A result due to Roth (1982, Theorem 3) implies that submitting its true preferences is in general
not a weakly dominant strategy for a hospital.

A dropping strategy of a hospital is an ordered list obtained from its true ordered list of
acceptable students by removing some acceptable students, i.e., the order of any pair of students
in the hospital’s submitted list is not reversed with respect to its true preferences (Kojima and
Pathak, 2009). Formally, for a hospital h with preferences Ph over individual students, P ′h is a
dropping strategy if for any students s, s′ ∈ S, [if sR′h s′R′h ∅, then sRh s

′Rh ∅]. Clearly, any
truncation strategy is a dropping strategy.

A profile of strategies Q is a (Nash) equilibrium of the game (H,P , ϕS,�H) if for each
hospital h and each strategy Q′h, ϕS

h(Q) �h ϕS
h(Q′h, Q−h). Let E(H,P , ϕS,�H) be the set of

equilibria. Finally, let O(H,P , ϕS,�H) = {µ ∈ M : µ = ϕS(Q) and Q ∈ E(H,P , ϕS,�H)} be
the set of equilibrium outcomes. When no confusion is possible, a game (H,P , ϕS,�H) and its
corresponding sets of equilibria and equilibrium outcomes are denoted by �H , E(�H), and O(�H),
respectively. A special case of many–to–one markets are marriage markets where for each h ∈ H,
qh = 1. In that case, the previous notation can be replaced by PH , E(PH), and O(PH), respectively.

10Note that the deferred acceptance algorithm does not depend on the particular responsive extensions.
11By switching the roles of students and hospitals in the deferred acceptance algorithm the hospital-optimal stable

mechanism ϕH is obtained. For each profile P , ϕH(P ) is called the hospital-optimal stable matching since it is the
best (worst) stable matching for the hospitals (students) with respect to P .

12The listed students are interpreted as the acceptable students. The other students are unacceptable and, since
we focus on stable mechanisms, their relative ordering is irrelevant.
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3 Results

We first discuss the relation of the set of stable matchings with the set of equilibrium outcomes.
It was shown by Gale and Sotomayor (1985a, Theorem 2) that for each marriage market PH , each
stable matching can be obtained in some equilibrium, i.e., Σ(PH) ⊆ O(PH). Gale and Sotomayor
(1985a, Theorem 3) and Roth (1984b, Theorem, p. 386) also showed the inverse inclusion, i.e.,
O(PH) ⊆ Σ(PH). Therefore, for any marriage market PH , O(PH) = Σ(PH).

The result of Gale and Sotomayor (1985a, Theorem 2) can be extended to many–to–one mar-
kets. To the best of our knowledge the extended result has not been mentioned in the literature.

Proposition 1. Let �H be a many–to–one market. Then, any stable matching is obtained in some
equilibrium that consists of dropping strategies. In particular, Σ(PH) ⊆ O(�H) and O(�H) 6= ∅.

Proof. Let µ ∈ Σ(PH). For each hospital h ∈ H, let Qh be the dropping strategy that only lists
the students in µ(h). Let Q = (Qh)h∈H . It is easy to check that ϕS(Q) = µ. It remains to verify
that Q ∈ E(�H). Suppose Q 6∈ E(�H). Let h ∈ H and Q′h be such that ϕS

h(Q′h, Q−h) �h ϕ
S
h(Q).

Let Q′ = (Q′h, Q−h).
Assume ϕS

h(Q′) ⊆ ϕS
h(Q). Then, since ϕS

h(Q) only contains acceptable students (with respect
to the true preferences), responsiveness condition r1 implies ϕS

h(Q) �h ϕ
S
h(Q′), which contradicts

the choice of Q′h. Hence, ϕS
h(Q′) \ϕS

h(Q) 6= ∅.
Let ∆ := ϕS

h(Q′) \ϕS
h(Q). Let s ∈ ∆. We prove that s ranks hospital h higher than ϕS

s (Q). If
ϕS
s (Q) = s, then from s ∈ ϕS

h(Q′) and the deferred acceptance algorithm applied to Q′ it follows
that s finds h acceptable (and hence s ranks h higher than ϕS

s (Q)). Suppose ϕS
s (Q) ∈ H. At

profile Q′ the only two hospitals that find s acceptable are h and ϕS
s (Q). Since hospital ϕS

s (Q)

plays the same strategy at Q and Q′, the number of students it finds acceptable at Q′ does not
exceed its quota. Therefore, the fact that s ∈ ϕS

h(Q′) implies that s ranks hospital h higher than
ϕS
s (Q).
We conclude that each agent i ∈ ∆∪{h} strictly prefers ϕS

i (Q′) to ϕS
i (Q) (according to its true

preferences). Moreover, the coalition ∆∪{h} can “enforce” matching ϕS(Q′) from matching ϕS(Q):
hospital h can accept the students in ∆ (by possibly breaking up with some other students), and
each student in ∆ can accept working for hospital h (by possibly breaking up with some other
hospital). Hence, ∆∪{h} is a blocking coalition (with respect to the true preferences) for matching
ϕS(Q). Then, from Roth and Sotomayor (1990, Lemma 5.5) it follows that ϕS(Q) = µ is not stable
(with respect to the true preferences), which contradicts µ ∈ Σ(PH). Hence, Σ(PH) ⊆ O(�H).
Since Σ(PH) 6= ∅, O(�H) 6= ∅.

Roth and Sotomayor (1990, Corollary 5.17) exhibited an example of a many–to–one market
�H with an unstable equilibrium outcome. Proposition 1 implies that for this market �H the set
of stable matchings is a strict subset of the set of equilibrium outcomes, i.e., Σ(PH) ( O(�H).13

13The market in Roth and Sotomayor (1990, Corollary 5.17) has a unique stable matching. The set of equilibrium
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It is well-known that the set of stable matchings can be computed in polynomial time (see for
instance, Gusfield and Irving, 1989). An important computational question is whether there is a
fast algorithm to compute the (possibly strictly larger) set of equilibrium outcomes as well. In fact,
it would be useful to be able to restrict equilibrium computations to a natural class of strategies.
A natural candidate is the class of dropping strategies: Kojima and Pathak (2009, Lemma 1)
showed that the class of dropping strategies is strategically exhaustive in the following sense. For
any hospital, fixing the other hospitals’ strategies, the match obtained from any strategy can be
replicated or improved upon by a dropping strategy.14 Surprisingly, in Example 1 we show that
the class of dropping strategies does not necessarily generate the full set of equilibrium outcomes.
Hence, contrary to the one–to–one setting, there can be equilibrium outcomes that are not obtained
in any equilibrium that consists of dropping strategies.15 Even though this result does not discard
the existence of a fast algorithm for finding all equilibrium outcomes, it does tell us that one cannot
simply restrict attention to the relatively small class of dropping strategies.

Example 1. (Dropping strategies.)
Consider a many–to–one market (PS,�H) with 4 students, 2 hospitals, and preferences over indi-
vidual partners P given by the columns in Table 1. For instance, Ph1 = s1, s2, s3, s4. The hospitals
have quota 2.

Students Hospitals
s1 s2 s3 s4 h1 h2

h2 h1 h1 h1 s1 s4

h1 h2 h2 h2 s2 s1

s3 s2

s3

Table 1: Preferences P in Example 1

One easily verifies that the unique stable matching for P is given by

h1 h2
ϕS(P ) : | |

{s2, s3} {s1, s4}

which is the boxed matching in Table 2.

outcomes consists of the stable matching and the unstable equilibrium outcome discussed in Roth and Sotomayor
(1990, Corollary 5.17). Calculations are available upon request.

14Jaramillo et al. (2012) proved that the class of dropping strategies is even exhaustive in many–to–many markets.
15Proposition 1 shows that any stable matching can be obtained in some equilibrium that consists of dropping

strategies. Hence, any equilibrium outcome that cannot be obtained through dropping strategies is unstable. But
not each equilibrium that consists of dropping strategies induces a stable outcome; see, for instance, Roth and
Sotomayor (1990, Corollary 5.17) or Examples 2 and 3.
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Consider the strategies Qh1 = s1, s2, s4, s3 and Qh2 = s4, s2, s3 for hospitals h1 and h2. Routine
computations16 show that Q = (Qh1 , Qh2) is an equilibrium and that it induces the matching

h1 h2
ϕS(Q) : | |

{s1, s2} {s3, s4}

which is the boldfaced matching in Table 1.
Clearly, Qh1 is not a dropping strategy. It is easy but cumbersome to check that matching ϕS(Q)

cannot be obtained in any equilibrium that consists of dropping strategies.17 Hence, dropping
strategies do not generate the full set of equilibrium outcomes. �

An important issue in many practical situations (such as the National Resident Matching
Program) is the number of matched students or, equivalently, the number of filled positions. In
order to study this question we relate it to the so-called “rural hospital theorem,” which for many–
to–one markets can be formally stated as follows.18 Let �H be a market and let M be a set of
matchings (discussed below).
Rural Hospital Theorem (forM). Let µ, µ′ ∈M. Then,
R1S. for each s ∈ S, µ(s) = s ⇐⇒ µ′(s) = s;
R1H. for each h ∈ H, |µ(h)| = |µ′(h)|;
R2. for each h ∈ H, |µ(h)| < qh =⇒ µ(h) = µ′(h).
For many–to–one markets with responsive preferences andM = Σ(PH), R1S and R1H were first
proved by Roth (1984a, Theorem 9) and Gale and Sotomayor (1985b, p. 225); R2 is due to Roth
(1986).19 Loosely speaking, these results imply that if all agents are truth-telling then neither
the number of matched agents (R1S and R1H) nor the set of students that take up positions
in “underdemanded” hospitals (R2) can be changed by switching from one stable mechanism to
another.

Unfortunately, in the SOSM truth-telling is not a weakly dominant strategy for all agents.
Therefore, a more interesting question would be whether it is possible to establish the rural hospital
theorem forM = O(�H). Such a result would imply that the number or set of matched students
and filled positions does not depend on the particular equilibrium that is reached.

For marriage markets, the question is immediately settled in the affirmative. This follows from
the above results on the rural hospital theorem withM = Σ(PH) and the fact that for any marriage
market PH , O(PH) = Σ(PH). Unfortunately, as the following example shows, the rural hospital

16From Kojima and Pathak (2009, Lemma 1) it follows that it suffices to only consider dropping strategies for
possible profitable deviations.

17Moreover, O(�H) = {ϕS(P ), ϕS(Q)}. Calculations are available upon request.
18The theorem owns its name to the perceived maldistribution of students over rural hospitals in the National

Resident Matching Program. See Roth (1986) for further details on this clearinghouse.
19One easily verifies that R2 implies R1H. We refer to Klijn and Yazıcı (2012) for an overview of results on the

rural hospital theorem in more general settings.
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theorem does not necessarily hold for M = O(�H) if hospitals have a quota larger than 1. An
important consequence is that the number of filled positions depends on the particular equilibrium
that is reached.

Example 2. (Filled positions.)
Consider a many–to–one market (PS,�H) with 4 students, 2 hospitals, and preferences over
individual partners P given by the columns in Table 2. The hospitals have quota 2. For in-
stance, Ph1 = s1, s2, s3 and student s4 is not acceptable for hospital h1. Moreover, assume that
{s1} �h1 {s2, s3}. Note that this assumption does not contradict the responsiveness of h1’s pref-
erences.20

Students Hospitals
s1 s2 s3 s4 h1 h2

h2 h1 h1 h2 s1 s2
h1 h2 h2 s2 s3

s3 s1

s4

Table 2: Preferences P in Example 2

One easily verifies that the unique stable matching for P is given by

h1 h2
ϕS(P ) : | |

{s2, s3} {s1, s4}
which is the boxed matching in Table 2.

Consider the dropping strategies Qh1 = s1 and Qh2 = s2, s3, s1, s4 for hospitals h1 and h2.
Routine computations show that Q = (Qh1 , Qh2) is an equilibrium and that it induces the matching

h1 h2
ϕS(Q) : | |

{s1} {s2, s3}
which is the boldfaced matching in Table 2.

Clearly, the number of filled positions at ϕS(P ) and ϕS(Q) is different: |ϕS
h1

(Q)| = 1 6= 2 =

|ϕS
h1

(P )|. In other words, R1S and R1H (and hence R2) do not hold forM = O(�H).21 �
20But it does play a crucial role in the number of filled positions in the equilibria.
21It is easy but cumbersome to verify that O(�H) = {ϕS(P ), ϕS(Q), µ̄}, where

h1 h2
µ̄ : | |

{s1, s2} {s3, s4}

is the third (unstable) equilibrium outcome. Calculations are available upon request.
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In Examples 1 and 2 and the example in Roth and Sotomayor (1990, Corollary 5.17) students are
weakly worse off in any unstable equilibrium outcome relative to any stable equilibrium outcome.
The next example shows that this is not true in general. More precisely, Example 3 shows that
there can even exist an equilibrium outcome such that simultaneously for each side of the market
there is an agent that is strictly worse off and another agent that is strictly better off than in any
stable matching. Obviously, this is only possible for many–to–one markets, since for any marriage
market PH , O(PH) = Σ(PH).

Example 3. (Welfare.)
Consider a many–to–one market (PS,�H) with 6 students, 3 hospitals, and preferences over indi-
vidual partners P given by the columns in Table 3. The hospitals have quota 2. Moreover, assume
that {s1, s4} �h2 {s5, s6}. Note that this assumption does not contradict the responsiveness of h2’s
preferences.

Students Hospitals
s1 s2 s3 s4 s5 s6 h1 h2 h3

h2 h∗
1 h1 h3 h∗2 h2 s∗1 s∗4 s5

h∗1 h∗3 h∗
2 h3 h∗

3 s∗2 s∗5 s∗6
s3 s6 s∗3

s1 s4

Table 3: Preferences P in Example 3

One easily verifies that the student-optimal stable matching µ := ϕS(P ) is given by

h1 h2 h3
µ : | | |
{s1, s2} {s5, s6} {s3, s4}

which is the boxed matching in Table 3. The only other stable matching in Σ(P ) is given by

h1 h2 h3
µ∗ : | | |

{s1, s2} {s4, s5} {s3, s6}

which is the matching marked with ∗ in Table 3. The difference between µ and µ∗ is in the matches
of students s4 and s6.

Consider the dropping strategies Qh1 = s2, s3, Qh2 = s4, s1, and Qh3 = s5, s6, s4 for hospitals
h1, h2, and h3. It is easy to verify that Q = (Qh1 , Qh2 , Qh3) is an equilibrium and that it induces
the matching

h1 h2 h3
µ′ := ϕS(Q) : | | |

{s2, s3} {s1, s4} {s5, s6}.
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which is the boldfaced matching in Table 3.
Consider the unstable equilibrium outcome µ′. It is easy to see that for each side of the market

there is an agent that is strictly worse off than in any stable matching and there is another agent
that is strictly better off than in any stable matching. Indeed, for the hospitals’ side we observe
that µ(h1) = µ∗(h1) �h1 µ

′(h1), but µ′(h3) �h3 µ
∗(h3) �h3 µ(h3). And similarly, for the students’

side we find that µ(s5) = µ∗(s5)Ps5 µ
′(s5), but µ′(s1)Ps1 µ(s1) = µ∗(s1). �

Relative to the set of stable matchings, the unstable equilibrium outcome in Example 3 does not
favor any of the two sides of the market. It also shows that welfare levels are no longer necessarily
bounded below nor above by the welfare levels obtained in the set of stable matchings. In other
words, unlike the one–to–one setting, welfare levels in equilibrium cannot be bounded through the
direct computation of the student and hospital-optimal stable matchings.

In summary, our equilibrium analysis shows that the widely used student-optimal stable mech-
anism exhibits substantial differences between the one–to–one and the possibly more interesting
many–to–one settings.

Remark 1. Hospital h’s responsive preference relation �h is additive if there is a utility function
u : {s ∈ S : sPh∅} → R such that for S ′, S ′′ ∈ F(S, qh) with S ′, S ′′ �h ∅, [ S ′ �h S ′′ if and only
if
∑

s∈S′ u(s) >
∑

s∈S′′ u(s) ]. One easily verifies that in each of our three examples the hospitals’
preference relations are additive. This strengthens our negative results since they even hold on the
strictly smaller domain of additive preference relations.22 �

4 Concluding Remarks

We have studied the same game as Ma (2010). He suggested that in an environment with low
information about the preferences of the other hospitals it is plausible that hospitals employ trun-
cation strategies. A truncation strategy of a hospital is an ordered list obtained from its true
ordered list of acceptable students by making a tail of acceptable students unacceptable (Roth and
Vande Vate, 1991). Formally, for a hospital h with preferences Ph over individual students, P ′h is a
truncation strategy if for any students s, s′ ∈ S, [if sR′h s′R′h ∅, then sRh s

′Rh ∅] and [if s′ P ′h ∅
and s Ph s

′, then s P ′h ∅].23 In the context of one–to–one markets, Roth and Vande Vate (1991,
Theorem 2) showed that the class of truncation strategies is strategically exhaustive. Ma (2010,
Theorem 4) proved that in one–to–one markets the set of outcomes induced by the equilibria that
consist of truncation strategies collapses to the true hospital-optimal stable matching.

Under some minor additional assumptions, Ma (2010, Theorem 6) extended his result to many–
to–one markets: the equilibria in which all hospitals play truncation strategies induce matchings

22Note that responsiveness does not imply additivity. For instance, consider S = {s1, s2, s3, s4, s5} and a hospital
h with quota 3. Then, there are responsive preference relations �h such that each of the students in S is acceptable,
{s1, s4} �h {s2, s3}, and {s2, s3, s5} �h {s1, s4, s5}. Any such �h is not additive.

23Clearly, any truncation strategy is a dropping strategy.
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that are either unstable (with respect to the true preferences) or coincide with the true hospital-
optimal stable matching. This result is very different from our Proposition 1. However, it is not
clear whether it is “reasonable” to focus on truncation strategies when hospitals’ quotas are larger
than 1. One argument is that the class of truncation strategies is in general not strategically
exhaustive in many–to–one markets (Kojima and Pathak, 2009, Example 1 and Footnote 18).

Kojima and Pathak (2009, Lemma 1) showed that the class of dropping strategies is strategically
exhaustive for many–to–one markets. Note that the equilibrium strategies in Proposition 1 and
Example 3 are dropping strategies. The equilibrium strategies in Example 2 even pertain to the
smaller class of truncation strategies. This observation strengthens the negative results established
in our Examples 2 and 3.24

Finally, Ma (2010, Theorem 9) additionally assumed that hospitals in the many–to–one setting
can be restricted to submit only truncation strategies and shows that (i) equilibria exist and (ii)
each hospital is weakly better off than at the true hospital-optimal stable matching. Our Example
3 shows that one cannot dispense with the truncation assumption: at the equilibrium outcome µ′,
hospital h1 is strictly worse off than at the true hospital-optimal stable matching µ∗.

An interesting but open question is a characterization of the set of equilibria or equilibrium
outcomes. One easily verifies that in general not any individually rational matching can be obtained
as an equilibrium outcome. Example 3 also shows that in general the set of equilibrium outcomes is
not a subset of the set of so-called hospital-quasi-stable or student-quasi-stable matchings (Blum,
Roth, and Rothblum, 1997, p. 377, and Sotomayor, 1996).25
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