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To understand whether retailers should consider consumer returns when merchandising, we study how

the optimal assortment of a price-taking retailer is influenced by its return policy. The retailer selects its

assortment from an exogenous set of horizontally differentiated products. Consumers make purchase and

keep/return decisions in nested multinomial logit fashion. Our main finding is that the optimal assortment

has a counterintuitive structure for relatively strict return policies: It is optimal to offer a mix of the most

popular and most eccentric products when the refund amount is sufficiently low, which can be viewed as

a form of risk sharing between the retailer and consumers. In contrast, if the refund is sufficiently high, or

when returns are disallowed, optimal assortment is composed of only the most popular products (a common

finding in the literature). We provide preliminary empirical evidence for one of the key drivers of our results:

more eccentric products have higher probability of return – conditional on purchase. In light of our analytical

findings and managerial insights, we conclude that retailers should take their return policies into account

when merchandising.

1. Introduction

Consumer return policies and product assortment are typically considered as separate realms of

the retailing business. Returns are often viewed as micro and more operational, and assortment

as strategic and more marketing related. This state of affairs leads to decisions in each area to be

made separately and independently of the other (Stock et al. 2006, Olavson and Fry 2006). We

counter this conventional thinking by proving that optimal assortment decisions are fundamentally

different when returns are taken into account.

Returns are financially important for retailers. The annual value of returned goods in the United

States was $194 billion in 2010, 8.12% of total retail industry sales (Anonymous 2010), and one

estimate puts the industry’s annual spending on reverse logistics for processing and disposition of

returns at more than $40 billion (Enright 2003). Ever-increasing product variety only serves to

1
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Table 1 Data for SONY Cyber-Shot DSC-W610 digital camera, as of May 3, 2012

Sony Target Best Buy Fry’s Amazon eCost Circuit City
Price $109.99 $109.99 $108.99 $109.99 $109.00 $109.99 $109.99
Restocking fee* ** No fee No fee 15% 15% 20% 25%
Refund fraction* ** 100% 100% 85% 85% 80% 75%
Refund ** $109.99 $108.99 $93.49 $92.65 $87.99 $82.49
Average open-box price $96.59
Net incremental value

** -$13.40 -$12.40 $3.10 $3.94 $8.60 $14.10
per unit returned
*Percentage of price. **Restocking fee not specified on the website.

make returns even more costly, as it increases the complexity of various processes used for returns

management (see Guide et al. 2006, pp. 1202-1203, and Stock et al. 2006, pp. 59-61).

In this paper we investigate how the product assortment decision of a price-taking retailer is

influenced by its return policy. We treat two basic operational environments, make-to-order (MTO)

and make-to-stock (MTS), that allow us to draw a sharp distinction between retail settings that

differ on the timing of supply decision. Under MTO (MTS), procurement of products happens after

(before) consumers make their purchase decisions. Our demand model is grounded on a nested

multinomial logit model of consumer choice behavior, in which consumers make purchase and

keep/return decisions in two stages with random utilities. On the supply side, the retailer makes

an assortment decision by choosing a subset of all potential product offerings that fall within a par-

ticular product line of horizontally differentiated items. Under MTS, the retailer also decides how

much inventory to hold for each product. Price is exogenous: retailers often act as price-takers in

numerous product categories or with particular brands, e.g., they use manufacturer suggested retail

price (MSRP). Products differ only in terms of their attractiveness. We call products with high

attractiveness popular, because a typical consumer is more likely to find them utility-maximizing,

and call those with low attractiveness eccentric. We focus on a single aspect of return policies:

refund amount. Both full and partial refunds are commonly observed in retailing (Shulman et al.

2009, p. 578). We term the percentage of price that the retailer refunds upon return refund fraction,

and presume that it is exogenous (driven perhaps by category- or store-wide considerations, which

are beyond the scope of our analysis).

To put our research in context, we collected some data on a digital camera recently released

by Sony and sold by many online retailers and Sony itself (Table 1). The camera was available

in several different colors and not all retailers carried all of them. Prices were almost identical

across retailers, suggesting that they mostly follow Sony’s MSRP. Their return policies included a
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restocking fee, a common practice for consumer electronics products. The restocking fees as well as

the net incremental value of returned units, estimated by deducting the refund amount from the

average of open-box prices we were able to observe at the time (at Amazon and Best Buy), exhibit

large variation among retailers. Note that a high enough restocking fee means that returns can be

a net benefit. Examples of this phenomenon have also been documented by Shulman et al. (2009,

p. 584). This leads us to the main research question we address in the paper: how does a retailer’s

return policy affect its assortment selection?

Our results establish that the retailer’s optimal assortment is structurally different depending

on how high or low the refund fraction is. Specifically, we show three results that apply to both

MTO and MTS environments. With a strict return policy — meaning, a sufficiently low refund

fraction — the retailer’s optimal assortment has a counterintuitive structure: it contains a mix of

the most popular and most eccentric products. On the other hand, with a lenient return policy,

or when returns are not allowed, the retailer offers some of the most popular products. Carrying

popular products in a retail assortment is consistent with common intuition, previous work (e.g.,

van Ryzin and Mahajan 1999, Aydın and Ryan 2000, Hopp and Xu 2005, Maddah and Bish 2007,

Cachon and Kök 2007), and industry practice (e.g., Cargille et al. 2005, Olavson and Fry 2006).

We find that considering returns in assortment planning can reverse this intuitive finding.

The main motive in offering an eccentric product as part of the optimal assortment is to profit

from the resale of returned items (with positive net incremental values as in Table 1). The lower the

refund fraction, as in strict return policies, the higher this benefit. This favors eccentric products,

because they have higher probability of return, a consequence of our choice model for which we

show preliminary empirical evidence in §3.2. Low refunds serve a risk-sharing purpose between the

retailer and consumers; they make eccentric products economically viable. (We conjecture in §5

and §6 that our rationale for carrying eccentric products would likely extend to endogenous price,

endogenous refund fraction, and multiple resale opportunities.) On the flip side, the reasons for

carrying popular products include: they minimize return probability, which becomes desirable when

every return is a net loss under a lenient return policy, and they have smaller demand variability

(as measured by coefficient of variation), which reduces the inventory risk under MTS.

Our contribution also includes: (1) showing that a more lenient return policy may not imply less

variety and (2) that the structure of optimal assortment sharply differs between MTO and MTS

environments when variety has negligible fixed cost; and (3) taking steps to verify the robustness
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of our findings to optimizing the refund fraction, to quantity-dependent salvage values, and to

reselling as a post-purchase alternative to returning.

In light of our analytical findings (§4) and managerial insights (§5), we conclude that retailers

should take their return policies into account when merchandising. We close the paper in §6 by

suggesting ideas for future research and listing three empirically testable implications of our work.

2. Literature Review

Planning and management of retail assortment (product variety) have enjoyed substantial research

attention from several different angles. A growing body of work explores relevant operational con-

cerns such as inventory (van Ryzin and Mahajan 1999, Smith and Agrawal 2000, Aydın and Ryan

2000, Gaur and Honhon 2006), joint inventory-pricing decisions (Maddah and Bish 2007), substitu-

tion upon stockout (Honhon et al. 2010), delivery leadtime (Alptekinoğlu and Corbett 2010), and

modularity in product design (Hopp and Xu 2005). Another line of research tackles strategic and

competitive aspects such as entry deterrence (Bayus and Putsis 1999), channel coordination (Aydın

and Hausman 2009), and competitive implications of consumer search (Cachon et al. 2008), basket-

shopping behavior (Cachon and Kök 2007), brand preference (Kök and Xu 2011) and product

satiation (Caro and Martinez-de-Albeniz 2012).

Consumers returning products is a widespread and well-accepted practice in retailing, and it

clearly complicates assortment planning, yet it has never been addressed in this literature (Ramdas

2003, Kök et al. 2009). In a companion paper (Anonymous 2009) we present a special case of

our base model and numerically explore three extensions (endogenous price, endogenous return

fraction, and multiple periods) that are analytically intractable. In this paper, we conduct an

analytical investigation of how product return policies influence optimal assortment selection. We

prove that the presence of product returns not only introduces sizable difficulties to assortment

decisions but also fundamentally changes them.

Product return policies were first studied in the context of retailer-to-supplier returns. For exam-

ple, Pasternack (1985) and Emmons and Gilbert (1998) analyze the virtues of accepting returns for

better channel coordination. We are interested in consumer-to-retailer returns. Under this umbrella,

Moorthy and Srinivasan (1995) explore the quality signalling aspect of return policies. Su (2009)

studies the impact of returns on supply chain coordination. Shulman et al. (2009) analyze the

fundamental question of how much to refund. In our work, we also focus on the refund amount as
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the key element of return policies, yet we are unique in exploring how return policies interact with

assortment planning.

3. Model

We consider a retailer that takes product assortment decisions in a single-period setting. Our

research objective is to explore the interactions between optimal assortment and return policy in

make-to-order (MTO) and make-to-stock (MTS) environments.

3.1. Product Assortment and Return Policy

Let N = {1,2, ..., n} denote a set of potential products that the retailer can choose from, and S

denote the retailer’s assortment — the subset of products that the retailer offers (S ⊆ N). The

retailer incurs a fixed cost f for each product included in S (for a discussion of what this fixed cost

may entail in retailing, see Smith and Agrawal 2000, p. 55).

Assortment decision S is for a horizontally differentiated product line with variants that differ

only on a certain taste attribute, e.g., color or finish of a fashion good. Consistent with this, we

assume that all products in N have identical unit procurement cost c, unit retail price p, and unit

salvage values vo and vn for open-box (returned) and new-and-never-sold items (excess inventory

that occurs only under MTS), respectively. Products differ only by their attractiveness (a’s defined

in §3.2). To ensure that the retailer’s quantity decision is worth investigating – that it is risky – we

assume that returns and leftovers can be sold below cost in a secondary market, i.e., vo ≤ vn < c< p.

Salvage values are independent of quantity (§5.3.2 relaxes this).

We assume that price is exogenous. Endogenizing the price would be clearly interesting, yet

analytically quite challenging (see Maddah and Bish (2007) who model price as a decision variable

in an MNL-choice-based assortment problem, in which inventory is also a decision, but returns are

ignored). van Ryzin and Mahajan (1999) note that there are “realistic cases in which a retailer’s

pricing flexibility is quite limited” (p. 1498). Following their lead, we also limit our analysis to a

setting where the retailer has minimal or no control over prices and simply uses MSRP pricing.

(We discuss potential consequences of endogenizing price in §6.)

We consider an exogenous return policy, characterized by the fraction of price refunded by the

retailer. Let α denote the refund fraction (0≤ α ≤ 1). We assume that the same refund fraction

is valid for all products in S, so the refund amount for a return is αp. Note that this assumption

reflects the typical practice in retailing, particularly for a given product line. If the retailer incurs
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a unit reverse logistics cost (for sorting, repackaging, and restocking activities), this figure can

be subtracted from vo without loss of generality, except the following minor caveat. We still need

vo > 0 for returns to exist at all. Otherwise, if salvage value was smaller than the reverse logistics

cost, the retailer would be better off asking customers who want to return a product to just keep

it, which is hardly ever the case in practice.

Also, we disregard the option of product exchange. This is in alignment with current practice

in online retailing. Customers wanting to exchange a product with another item in the same

product line are typically asked to place a new order. Leaving exchanges beyond the scope of our

analysis still limits the generality of our results. Because, those new orders would be associated with

subsequent periods, which we do not explicitly model. (We state the consequences of extending

our model to multiple periods in §6.) Besides, some retail stores do allow exchanges. Analytically

speaking, however, exchanges are analogous to dynamic substitution: consumers may eventually

buy a product other than their first choice, which poses substantial analytical difficulties even if

product returns were ignored (Honhon et al. 2010).

Disposition of returned products in retailing takes many forms: (1) restocking, in which case the

item is resold by the retailer either “as-new” at full price or as “open-box” at a discount, and the

latter may occur in a different channel (e.g., Nordstrom Rack); (2) liquidation, in which case the

item is sold to a third party, sometimes through intermediaries such as Genco that handles many

aspects of returns management for their retailer clients (Hindo 2007); (3) disposal, which tends

to happen more with defective or fraudulent returns (Shlachter 2010). We assume in our model a

simple version of either the first or the second form, and ignore the third form altogether. In §5.3.2

we explore an alternative disposition scenario.

3.2. Individual Consumer Choice Behavior and Aggregate Demand

When making a purchase decision, a consumer has in mind all the products in S along with the

outside option of not buying any of those products, denoted by 0. We use a nested multinomial

logit (N-MNL) model to represent the consumer’s choice among S ∪ {0} and her post-purchase

decision to either keep or return the product.

In the N-MNL framework, choice is viewed as a sequential process in which the consumer first

chooses a product in S or the outside option with probability P S
i , i∈ S∪{0}. Then, conditional on

this first choice, she chooses to keep or return her purchase (if any) with respective probabilities
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Pkeep|i and Preturn|i for i ∈ S. Hence, the joint probability of choosing i ∈ S and t ∈ {keep, return}

is P S
it = P S

i Pt|i. We now describe this two-stage choice process in more detail.

Stage 2. At this stage consumers make their post-purchase decisions to keep or return the

product given their decision to purchase a product i ∈ S in the first stage. Let ai be the attrac-

tiveness of product i. Without loss of generality label products such that a1 ≥ a2 ≥ · · · ≥ an. Let

ui,keep = ai − p+ εi + ϵi,keep and ui,return =−d− (1−α)p+ εi + ϵi,return be the utilities associated

with keeping and returning product i, respectively. Here, d is the disutility of returning an item

(e.g., making an extra trip to the store), εi are independent and identically distributed (iid) Gum-

bel random variables with zero mean and 1/µ1 scale parameter (µ1 > 0) that represent consumers’

pre-purchase (stage 1) uncertainty, and ϵi,keep and ϵi,return are iid Gumbel random variables with

zero mean and 1/µ2 scale parameter (µ2 > 0) that represent consumers’ post-purchase (stage 2)

uncertainty. Note that the expected utility of buying and keeping product i, E[ui,keep], is the attrac-

tiveness net of price, and the expected utility of buying and returning product i, E[ui,return], is

the disutility of returning and foregoing the non-refundable portion of the price. (If shopping itself

involved a fixed cost or disutility for the consumer, subtracting a positive constant from both ui,keep

and ui,return would account for it, and this would not change any of our results.)

At stage 2 consumers choose between keep and return options, whichever maximizes their idiosyn-

cratic utility, having observed the realizations of all random terms. Therefore, the conditional

probability of a typical consumer returning product i given purchase is

Preturn|i ≡Pr{ui,return >ui,keep | i}=
[
1+ exp

(
ai+ d−αp

µ2

)]−1

(See Anderson et al. (1992) for generic derivations of this and other N-MNL formulas.) In addition,

Pkeep|i = 1−Preturn|i. If the consumer chooses the outside option at the first stage, then there is no

second-stage decision.

Stage 1. At this stage consumers make their purchase decisions not knowing for certain if

they would return the product or not. Typical of N-MNL models, this is captured by the con-

sumers’ inability to observe post-purchase random utility terms associated with stage 2 (ϵi,keep

and ϵi,return). Each consumer wanting to make a purchase decision assesses the utility of choos-

ing nest i ∈ S ∪ {0} as Ui = Ai + εi, where the expected utility of buying product i ∈ S is Ai ≡

E [max (ai− p+ ϵi,keep,−d− (1−α)p+ ϵi,return)] = µ2 ln [exp (ai/µ2)+ exp((αp− d)/µ2)] − p, and
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the expected utility of the outside option is A0 = 0 (without loss of generality). Then the probability

of a typical consumer choosing nest i∈ S ∪{0} in the first stage is given by

P S
i ≡Pr

{
Ui = max

j∈S∪{0}
Uj

}
=

exp(Ai/µ1)

1+
∑

j∈S exp (Aj/µ1)
=

ωi
1+

∑
j∈S ωj

where ωi ≡ exp (Ai/µ1) denotes the preference of product i (a term adopted from van Ryzin and

Mahajan 1999), and P S
0 is the probability of not purchasing (preferring the outside option). By

assumption, ω0 = 1.

Let us now review some basic properties of this choice model. More generous return policies

with higher refunds (i.e., higher refund fraction, α) result in higher conditional return probability

(Preturn|i), higher expected utility (Ai) and higher purchase probability (P S
i ) for all products. More

variety (i.e., larger assortment, S) implies lower demand for an existing product and higher total

demand. Whether it implies higher or lower (unconditional) return probability depends on how

the assortment is expanded. Finally, a product with higher attractiveness (ai) experiences higher

probability of purchase (P S
i ) and lower conditional probability of return (Preturn|i).

This is a two-stage random utility model. From an empirical standpoint, random terms capture

consumer heterogeneity. Specifically, εi reflect consumers’ pre-purchase preferences; heterogeneity

in stage 1 stems from consumers’ varying preferences for products and return policies, reasons

for needing the product, information states, etc. Similarly, ϵi,keep and ϵi,return reflect consumers’

post-purchase preferences; heterogeneity in stage 2 comes from how consumers consider the keep

and return options after a purchase decision. For example, customers may be swayed one way

or another depending on feedback from their spouses on a piece of apparel. Larger µ1 and µ2

indicate higher variance, hence more heterogeneity. We need µ1 >µ2 for technical integrity of the

N-MNL model (Anderson et al. 1992). This is reasonable in our modeling framework; consumers’

pre-purchase heterogeneity is usually higher than their post-purchase heterogeneity. Consumers

who buy the same product will differ less from each other due to their shared experience with, and

understanding of, that one particular product.

While independence of the random terms may at first appear like a major limitation, many

economists – taking an empirical stance – argue otherwise in sequential choice settings similar to

ours. Train (2009), for example, views it as “the ideal rather than a restriction” (pp. 35-36). A

well-specified empirical model, he reasons, must capture all observed utilities in deterministic com-

ponents and what remains must be purely idiosyncratic differences from one consumer to another
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at each stage. To the extent that the two choice stages involve distinct sources of heterogeneity,

independence across stages also seems plausible. We consider pre-purchase heterogeneity as infor-

mational, driven by marketing mix variables like advertising and packaging; and post-purchase

heterogeneity as hedonic, driven by experiential factors such as aesthetic fit and feel.

We presume that unhappy consumers are captive; they have no option but to return unwanted

products to the retailer. This is not a real limitation, as all of our analytical results can be extended

to a model with consumers having an option to resell, say on eBay (see §5.3.3).

Product Popularity versus Returns. High and low values of attractiveness point to a seman-

tic distinction between products. A product with higher attractiveness has a higher expected utility

for the ‘purchase and keep’ option, hence a higher probability of purchase. By the principle of

utility maximization every consumer buys what she considers to be the “best” product. That is, ai

does not really determine the ‘attractiveness’ of product i in colloquial sense, but rather the pur-

chase probability of product i. Hence, we refer to products with high attractiveness as popular, and

those with low attractiveness as eccentric. Recall that we sort products in N in decreasing order

of attractiveness, which makes lower-indexed products more popular and higher-indexed products

more eccentric.

An interesting implication of our consumer choice model and – it turns out – a key driver of our

results is that eccentric products have higher return probability (i.e., Preturn|i is higher for products

with lower attractiveness, ai). Datasets that we obtained from a major department store and Sena

Cases (a maker and retailer of leather cases for mobile devices) offer preliminary empirical evidence

for this. See Figures 1 and 2 for plots of relative sales volume (as % of total sales) versus return

rate (as % of SKU sales) in the online channel for 21 bath towels from the department store and 18

iPhone cases from Sena. Both product lines are horizontally differentiated; SKUs within them differ

by color only. Consistent with our choice model, SKUs with lower sales volume – those that are

more eccentric – tend to have a higher return rate. Each data plot exhibits a statistically significant

fit (with p-values 3.58% and 2.33% for towels and cases, respectively) to a downward-sloping power

function, our theoretical prediction based on the N-MNL model. A more detailed description of

the data and our statistical analysis is in Appendix A.

Aggregate Demand. Next, we state how the individual choice behavior results in an aggregate

demand for each product i∈ S. Let λ be the average number of consumers. Following suit with the

existing literature (e.g., van Ryzin and Mahajan 1999), we assume that consumer choice depends
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Figure 1 Bath Towels from a Major Department

Store, Sales versus Returns for 21 SKUs,

June–November 2010

Figure 2 Ultraslim for iPhone 3G/3GS from Sena

Cases, Sales versus Returns for 18 SKUs,

March 2009 – November 2010

solely on the set S, and is insensitive to the specifics of the retailer’s operational context such as

MTO/MTS, supply leadtime, inventory policy, etc. We model the aggregate product i demand as

a normal random variable Di with mean λP S
i and standard deviation σ (λP S

i )
β
, where σ > 0 and

0 ≤ β < 1. Secondly, we model the aggregate product i returns as a normal random variable Ri

with mean λP S
i,return and standard deviation σ

(
λP S

i,return

)β
. In a realistically calibrated model, the

probability of realizations with Ri >Di will be so low that they can be safely ignored. In fact, this

possibility is eliminated completely by Poisson demands and returns, which is a special case of our

aggregate demand model (with σ= 1, β = 1/2, and normal approximation to Poisson).

3.3. Supply Process and the Timing of Events

We consider two operational environments – MTO and MTS – and use these terms in a broader

sense than their traditional use in the literature; the firm in our model does not necessarily ‘make’

what it is selling. MTO refers to retailing environments where the quantity decision is made after

the realization of demand; the retailer does not stock the item but requests it from a supplier once

an order is placed by a consumer. In the case of MTS, the quantity decision is made before the

realization of demand. In both cases, we disregard any capacity limitations, assuming no limits on

order quantities for the products in S.

MTO Environment. Orders are placed after demand is observed. So matching supply with

demand is simple: the order quantity for each product must be equal to the observed demand, as

any excess inventory would be salvaged incurring a unit loss of (c− vn). In this setting, the only
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quantity risk associated with the supply decision is due to returns: Some products will be returned

and will have to be salvaged at a value below cost (vo < c).

Hence, the expected profit for the MTO case is given by:

ΠMTO (S) =
∑
j∈S

E [(p− c)Dj − (αp− vo)Rj]− f |S|=
∑
j∈S

[
p− c− (αp− vo)Preturn| j

]
λP S

j − f |S|

The terms within expectation are the sales revenue, procurement cost, and net cost of returns,

respectively. The last term is the fixed cost of the assortment. Note that returns can only be

salvaged. A more general model could allow reselling of returned items in the store, which would

require a multiple-period modeling approach (more on that in §6).

MTS Environment. Orders are placed prior to observing the demands. The supply decision

here is riskier as the retailer might over-stock or under-stock each product in S. Let xj denote

product j inventory ordered and received in advance of demand realizations.

When a stockout occurs, (1) the retailer can receive an emergency replenishment at a unit

cost of e (c < e < p), and (2) the consumer agrees to wait for her most preferred product in the

assortment rather than substituting for another one that may be currently in stock. In retailing,

emergency replenishments are prevalent. For example, Famous Footwear promises a free delivery,

if it turns out that a store does not have the desired size or color of a particular product. Not every

consumer would go along with this obviously. This assumption lets us simplify the problem and

concentrate on the influence of return policies on optimal assortment. Furthermore, if we were to

model dynamic substitution in a stockout situation (where a consumer may switch from her most

preferred product that is not in stock to a different one in stock), our model would be substantially

more complex and most likely intractable. In fact, assortment and inventory optimization with an

explicit consideration of stockout based substitution is a difficult problem in its own right, even

without considering returns (Gaur and Honhon 2006, Honhon et al. 2010).

The expected profit under MTS is given by

ΠMTS (S) =
∑
j∈S

max
xj≥0

{
E
[
pDj − cxj − e(Dj −xj)

+ − (αp− vo)Rj + vn(xj −Dj)
+
]}

− f |S|

where (y)+ = y if y > 0, and 0 otherwise, for any real number y. The terms within expectation are

revenue from sales, cost of regular supply, cost of emergency replenishment, net cost of returns,

and salvage revenue from excess inventory, respectively. If the retailer incurs a holding cost for each
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unit of excess inventory, this figure can be deducted from vn without loss of generality. Again, the

last term is the fixed cost of the assortment.

Given normally distributed demands, and using a well-known newsvendor result, the optimal

order quantity for product j is x∗
j = λP S

j +z∗σ(λP S
j )

β for all j ∈ S, where z∗ =Φ−1((e−c)/(e−vn)),

and Φ(·) denotes the cumulative distribution function of a standard normal random variable.

Plugging the optimal order quantities back into the above profit expression, we obtain

ΠMTS (S) =
∑
j∈S

[
p− c− (αp− vo)Preturn| j

]
λP S

j − (e− vn)σϕ(z
∗)(λP S

j )
β − f |S| (1)

where ϕ (·) is the probability density function of a standard normal random variable.

Backlogging of excess demand through emergency orders, a standard assumption in the inventory

management literature to gain analytical tractability, is a crucial compromise. Lost sales case, with

consumers walking away upon stockout, is much more difficult: the newsvendor critical fractile (z∗)

would then depend on P S
j , and thus on the assortment decision.

Timing of Events. Having a return policy with an exogenous refund fraction α, the retailer

seeks for an optimal assortment S that maximizes the expected profit, ΠMTO (S) or ΠMTS (S).

Under MTO, the retailer observes the demand first, and then orders the demand quantity for all

j ∈ S. Under MTS, the retailer orders x∗
j for all j ∈ S first, and then observes the demand. The

purchase decisions consumers take in stage 1 of the N-MNL model drives the demand process

(§3.2). If MTS is in effect, emergency orders are placed and delivered to those consumers whose

most preferred item is not in stock. Then, the return process is driven by the keep-return decisions

taken in stage 2 of the N-MNL model by those consumers who make a purchase in stage 1. At the

end the retailer salvages returns along with excess inventory (if any).

Determining the optimal refund fraction is an interesting problem in its own right. It inevitably

requires a store-wide consideration of multiple product lines, which is beyond the scope of our

current analysis. Even for a single product line and a given S, it is analytically intractable in our

modeling framework. From a practical standpoint, however, optimizing α is in some sense the easy

problem. Refund fractions in practice are usually round numbers, so one can always compute the

expected profit for α= 0%, 1%, 2%, . . ., 100%, to find the near-optimal refund fraction for a given

assortment (see §5.3.1). What is difficult is to find the optimal assortment because there are 2n−1

different possibilities. We present structural results in the next section that can save significant

time and effort in search of optimality.
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4. Structure of the Optimal Assortment

In this section, we provide an analytical characterization of the optimal assortment S∗ (used with

a subscript, where appropriate, to indicate the operational environment). Recall that, without loss

of generality we sort products in N in decreasing order of attractiveness (ai); lower indices refer

to more popular products, and higher indices to more eccentric products. Since ωi is increasing

in Ai, and Ai is increasing in ai, this same ordering applies to preference values as well, i.e.,

ω1 ≥ ω2 ≥ · · · ≥ ωn. (All proofs are in Appendix B.)

4.1. MTO Environment with Returns

Consider a retailer that operates in MTO environment and allows returns. In an effort to formally

characterize the optimal assortment for such a retailer, we first consider an intermediate question:

To an existing assortment S ⊂N , which product (if any) would be the most profitable to add? To

this end, we need to (i) investigate how the expected profit for the new assortment behaves as a

function of δ, the preference of a hypothetical product, so that we can identify the best product to

add to S, and (ii) determine if adding a particular product to S improves the expected profit or

not. (We note that Theorem 1 of van Ryzin and Mahajan (1999) uses a similar proof technique.)

Lemmas 1 and 2 below address (i) and (ii), respectively. Let Preturn|δ be the conditional return

probability for a product with preference δ (allowing a slight abuse of notation).

Lemma 1. Let hMTO(δ) for δ ∈
[
minj∈N\S(ωj),maxj∈N\S(ωj)

]
be the expected profit function

when a product with preference δ is added to an existing assortment S ⊂N under MTO. That is,

hMTO(δ) = g(δ)/γ(δ)− f (|S|+1), where γ(δ) = 1+
∑

j∈S ωj + δ and

g(δ) =
∑
j∈S

λ
[
p− c− (αp− vo)Preturn|j

]
ωj +λ

[
p− c− (αp− vo)Preturn|δ

]
δ

If α≥ vo/p, then hMTO(δ) is quasiconcave and non-decreasing. Else, if α< vo/p, then hMTO(δ) is

quasiconvex.

The additional product considered in Lemma 1 can be thought of as a hypothetical product

with attractiveness level a such that its preference ω= exp(A/µ1) is equal to δ. When δ coincides

with the preference ωi of one of the products i ∈N \S potentially considered for inclusion in the

assortment, then hMTO(δ) represents the resulting profit, i.e., hMTO(ωi) =ΠMTO(S ∪{i}).

Studying the behavior of hMTO(·) lets us establish a local optimality result on which product

to add, if we must, to an existing assortment S. Lemma 1 essentially says that: for a sufficiently
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lenient return policy with refund fraction α≥ vo/p, the best product to add is the most popular

of the remaining products in N \ S; whereas, for a strict return policy with α < vo/p, it must be

either the most popular or the most eccentric product in N \S.

We now take step (ii). Let Mj ≡ p− c− (αp− vo)Preturn|j be the expected profit margin per unit

sales of product j. Note that, since Preturn|j is decreasing in aj, α≥ vo/p implies Mj ≥Mj+1, and

α< vo/p implies Mj ≤Mj+1 for j = 1, . . . , n− 1.

Lemma 2. Adding product i ∈ N \ S to an existing assortment S ⊂ N improves the expected

profit under MTO, i.e., ΠMTO(S ∪{i})≥ΠMTO(S), if and only if

Mi ≥
∑
j∈S

P S
j Mj +

f

λP
S∪{i}
i

Lemma 2 shows that, for product i to be included in an existing assortment S, its expected

profit margin must be greater than or equal to the expected profit margin of the current set plus a

fixed cost term. Rules of thumb similar in nature to this result have been documented in practice

(e.g., Cargille et al. 2005, Olavson and Fry 2006).

These two lemmas provide ammunition for finding the globally optimal assortment. Define A0 =

Z0 = ∅, Ai = {1, ..., i} as the set of i most popular products in N , and Zj = {n− j+1, ..., n} as the

set of j most eccentric products in N , for all positive integers i and j between 1 and n.

Theorem 1. For a retailer operating in MTO environment, the optimal assortment is composed

of (a) some number of most popular products from N , i.e., S∗
MTO =Ak for some k ∈ {0,1, ..., n}, if

the return policy is sufficiently lenient so that α≥ vo/p, or (b) some number of most popular and

some number of most eccentric products from N , i.e., S∗
MTO =Aj ∪Zk−j for some j ∈ {0, ..., k} and

k ∈ {0,1, ..., n}, if the return policy is sufficiently strict so that α< vo/p.

Return policy has a fundamental impact on optimal assortment. If the retailer adopts a lenient

return policy, by using a sufficiently large refund fraction, the optimal assortment includes only

the most popular products. This intuitive result concurs with those of van Ryzin and Mahajan

(1999) and others cited in §1. A larger refund fraction renders product returns more costly to the

retailer. Consequently, the retailer becomes more averse to returns and lines up the assortment

with popular products, which are less likely to be returned.

In contrast, if the retailer adopts a strict return policy, by using a relatively small refund fraction

(α < vo/p), the optimal assortment is a combination of the most popular and the most eccentric
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products. Inclusion of eccentric products enables higher profits, mainly because an item that is

sold and returned nets a profit of (p− c−αp+ vo), but an item sold and kept only (p− c). This

favors eccentric products, because they are more likely to be returned. On the other hand, having

a higher probability of purchase favors popular products, because there is a per-product fixed cost

for offering variety. Depending on whether the net incremental benefit from returns dominates the

fixed cost effect, the retailer chooses one extreme (the most popular product) or the other (the

most eccentric) when constructing its optimal assortment.

Hence the retailer may offer eccentric products if returned items have a positive net incremental

value. We argue that this occurs often in practice. See Table 1 for a consumer electronics example.

Shulman et al. (2009, p. 584) and Xie and Gerstner (2007, pp. 18–19) cite other examples ranging

from antiques, to jewelry, and to service cancelations. Typically retailers set return policies for

entire stores or product categories for ease of implementation and consumer relations reasons.

Once a retailer decides to charge a restocking fee for a certain category, some product lines in that

category will likely fall within the strict policy region. What we show is that whenever the return

policy for a specific product line is in the strict region, the retailer has incentive to offer some of

the most eccentric products in that product line. Our paper takes return policy as exogenous and

does not delve into reasons for why retailers select strict return policies. But once they do, a strict

return policy allows them to share the risk of carrying an eccentric product with consumers.

4.2. MTS Environment with Returns

Consider a retailer that operates in MTS environment and allows returns. The analysis starts with

a thought experiment similar to the one employed in §4.1. We first find a necessary condition

for when adding a product to an existing assortment S is profit-improving (Lemma 4), and then

consider the question of which product (if any) should be added (Lemma 5).

Let M̃S
j ≡ p− c− (αp− vo)Preturn|j − (e− vn)σϕ(z

∗)(λP S
j )

β−1 be the expected profit margin per

unit sales of product j under MTS. Note that, unlike the MTO case, the expected profit margin

now depends on S; it decreases as the assortment becomes broader with the addition of more

products, because (P S
j )

β−1 < (P
S∪{i}
j )β−1, which follows from P S

j >P
S∪{i}
j and β < 1. Consequently,

the inventory cost term, (e− vn)σϕ(z
∗)(λP S

j )
β−1, increases as demand is dispersed among more

products – weakening the effect of inventory pooling.
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Lemma 3. Adding product i ∈ N \ S to an existing assortment S ⊂ N improves the expected

profit under MTS, i.e., ΠMTS(S ∪{i})≥ΠMTS(S), if and only if

M̃
S∪{i}
i ≥

∑
j∈S

P S
j M̃

S∪{i}
j +

∑
j∈S

[
M̃S

j − M̃
S∪{i}
j

] P S
j

P
S∪{i}
i

+
f

λP
S∪{i}
i

Lemma 3 gives a necessary and sufficient condition for identifying a profitable addition to an

existing assortment. It seems difficult to interpret, yet leads us to a simpler and more intuitive

necessary condition that proves useful in determining the structure of the optimal assortment.

Lemma 4. A necessary condition for product i∈N \S to improve the expected profit when added

to an existing assortment S ⊂N is given by:

M̃
S∪{i}
i >

∑
j∈S

P
S∪{i}
j

1−P
S∪{i}
i

M̃
S∪{i}
j

Therefore, if adding product i to an existing assortment S is profitable, then its expected profit

margin must exceed a threshold. That threshold, the right-hand-side above, is the new expected

profit margin of existing products in S, conditional on the consumer not buying product i. A

weaker necessary condition would be M̃
S∪{i}
i >

∑
j∈S P

S∪{i}
j M̃

S∪{i}
j .

We now turn to the question of which product to add to S.

Lemma 5. Let hMTS(δ) for δ ∈
[
minj∈N\S(ωj),maxj∈N\S(ωj)

]
be the expected profit function

when a product with preference δ is added to an existing assortment S ⊂N under MTS. That is,

hMTS(δ) = [g(δ)+ g̃(δ)]/γ(δ), where γ(δ) = 1+
∑

j∈S ωj + δ and

g(δ) =
∑
j∈S

λ
[
p− c− (αp− vo)Preturn|j

]
ωj +λ

[
p− c− (αp− vo)Preturn|δ

]
δ

g̃(δ) =−(e− vn)σλ
βϕ(z∗)

(∑
j∈S

ωβj + δβ

)
(γ(δ))

1−β

If α ≥ vo/p, then hMTS(δ) is increasing in δ for all δ that is profit-improving. Else, if α < vo/p,

then hMTS(δ) is quasiconvex.

In the lenient case the result is subject to the existence of a profit-improving product. This

is innocuous; if no profit-improving product existed, the firm obviously would not add any more

products to the current assortment, which would render this entire thought experiment unnecessary.

Theorem 2. For a retailer operating in MTS environment, the optimal assortment is composed

of (a) some number of most popular products from N , i.e., S∗
MTS =Ak for some k ∈ {0,1, ..., n}, if
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the return policy is sufficiently lenient so that α≥ vo/p, or (b) some number of most popular and

some number of most eccentric products from N , i.e., S∗
MTS =Aj ∪Zk−j for some j ∈ {0, ..., k} and

k ∈ {0,1, ..., n}, if the return policy is sufficiently strict so that α< vo/p.

The operational environment amplifies our counterintuitive result for strict return policies; the

result continues to hold despite the fact that having to carry inventory favors popular products.

Under MTS, the ordering decision for each product runs an inventory risk, which is proportional to

the standard deviation of demand for the product (see equation 1). The operational risk of including

a product in the assortment can thus be gauged by the coefficient of variation, standard deviation /

mean demand. In our modeling framework, more attractive products are more likely to be purchased

and have lower coefficients of variation. Hence, a retailer operating in MTS environment with

a strict return policy has conflicting preferences (1) for popular products to capitalize on their

lower demand variability and lower overhead that stems from the fixed cost of variety, and (2) for

eccentric products to profit from their resale. The optimal assortment structure is a product of

this tension. When a lenient return policy is in effect, however, the retailer clearly prefers popular

products; they have lower demand variability and they are less likely to be returned.

It is apparent that eccentric (popular) products having higher (lower) return probability is a

key driver of our results under both environments. We offer preliminary empirical evidence for this

implication of our choice model in §3.2.

4.3. MTO and MTS Environments with No Returns

The retailer accepting no returns is a special case. By imposing infinite hassle on returns (d=+∞),

both of our models can capture the case of consumers never returning products in stage 2 of the

choice process. This renders the N-MNL model equivalent to the standard MNL model.

Theorem 3. When the retailer accepts no returns, the optimal assortment in both operational

environments – MTO and MTS – is composed of some number of most popular products from N ,

i.e., S∗ =Ak for some k ∈ {0,1, ..., n}.

We skip the proof for this special case. Theorem 3 echoes a structural result by van Ryzin and

Mahajan (1999) in an MTS setting with lost sales and no returns. In conjunction with Theorems

1 and 2, it reveals that retailers need to explicitly take product returns into account when making

assortment decisions, particularly if they adopt a strict return policy.
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4.4. Solution Procedure and a Numerical Example

Our analytical results contain all the necessary ingredients for efficiently constructing the optimal

assortment in MTO and MTS environments with or without returns. The greedy algorithm that

starts with the empty set and adds one product at a time (in the lenient return policy and no-

returns cases, the most popular of the remaining products, and in the strict return policy case,

either the most popular or the most eccentric of the remaining products) until the expected profit

stops improving (Lemmas 2 and 3) need not find the globally optimal assortment. Except for two

special cases, finding the optimal assortment generally involves checking all subsets that has the

structure shown in Theorems 1, 2, and 3. This means evaluating n, n(n + 1)/2, and n subsets

(ignoring the empty set) in the lenient return policy, strict return policy, and no-returns cases,

respectively. Still, from an algorithmic standpoint, the value of our structural results is immense:

they reduce the worst-case computational complexity of the assortment planning problem from

exponential-time (complete enumeration of 2n− 1 possible assortments) to polynomial-time.

The following result spells out the two happy exceptions.

Proposition 1. The greedy algorithm is optimal in MTO environment with a sufficiently lenient

return policy (α≥ vo/p) and in MTO environment with no returns.

Hence, the greedy algorithm may terminate in less than n iterations; one need not always evaluate

all n possibilities to find the global optimum in these two environments. In contrast, van Ryzin

and Mahajan (1999) discover that it generally fails to find the optimal assortment in their model.

Due to shelf-space or storage limitations retailers may sometimes place a hard constraint on the

size of an assortment. Suppose a retailer can carry at most K products and wishes to find the best

possible assortment. All of our structural results would still apply. Let k∗ be the optimal number

of products to offer. By the same reasoning used in the proofs of Theorems 1 and 2, it would be

optimal to either offer the min(K,k∗) most popular products under a lenient return policy or a

mix of min(K,k∗) popular and eccentric products under a strict return policy.

We close our analysis by illustrating the array of solutions that one may see in MTO and MTS

environments with a strict or a lenient return policy. Table 2 displays an example set of parameter

values, along with the attractiveness levels for 10 potential products, and the optimal assortment

under MTO and MTS with refund fraction α set to various values. In this example the critical

refund fraction that differentiates strict and lenient return policies is vo/p= 0.8.
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Table 2 Base parameter values and the corresponding optimal assortment (indicated by shaded cells) for a

10-product problem instance at various refund fraction values.

Product, i ai Parameter Value
1 6.00 λ 50
2 5.44 p 4
3 4.89 e 3.8
4 4.33 c 3.6
5 3.78 vn 3.4
6 3.22 vo 3.2
7 2.67 d 0.2
8 2.11 µ1 1
9 1.56 µ2 0.5
10 1.00 σ 1

β 0.5
f 0.1

α
i 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

MTO

1
2
3
4
5
6
7
8
9
10

MTS

1
2
3
4
5
6
7
8
9
10

As Table 2 illustrates, the results in Theorems 1b and 2b are tight. There exist problem instances

in the strict region for which the optimal assortment is composed of most eccentric products only,

some most eccentric and some most popular products, or most popular products only ({1,2,3,4}

and {1,2} are optimal under MTO and MTS, respectively, for α= 0.79< 0.80 = vo/p).

To exemplify how the greedy algorithm fails to find the optimal assortment, take the MTO case

with α= 0.70. Starting with an empty set, the greedy algorithm first adds product 1 for an expected

profit of 17.54 (adding product 10 instead would yield 7.78). The second step adds product 2 (the

remaining most popular item), and the next five steps add products 10, 9, 8, 7 and 6. Then the

algorithm stops, as adding one more product would not increase the expected profit. The resulting

set {1,2,6,7,8,9,10} is a local optimum with an expected profit of 18.29, lower than 19.64 obtained

from the globally optimal solution (seven most eccentric products) reported in Table 2.

5. Insights and Discussion

In this section we provide managerial insights and robustness checks by a mix of analytical and

computational means. All numerical observations reported in this section appear to be robust;

equivalent experiments with different sets of parameters yield qualitatively similar results.

5.1. Does more lenient return policy mean less variety?

Intuitively speaking, more lenient return policies with higher refund fractions must lead to less

variety. Because, higher refunds are costly, and they will induce the retailer to be more careful



Alptekinoğlu and Grasas
20 When to Carry Eccentric Products? Optimal Retail Assortment under Consumer Returns

about expanding its assortment and thereby increasing the total volume of returns. In fact, in

MTO environment with negligible variety cost, we can provide a mild sufficient condition for a

more lenient return policy to always result in a reduction in optimal variety.

Proposition 2. Suppose the retailer is operating under MTO environment with negligible fixed

cost for variety (f ≈ 0) and all potential products yield positive expected utility (if kept), i.e., ai ≥ p

for all i∈N . For all lenient return policies with α≥ vo/p, the cardinality of the optimal assortment

|S∗
MTO| is decreasing in refund fraction α.

In order to probe this further, we plot in Figure 3 the cardinality of the optimal assortment under

both operational environments as a function of α (ranging from 0 to 1 with 0.01 increments). Base

parameter values in Table 2 apply except that we set f = 0 to better isolate the effect of α. Numbers

in brackets next to each decimal data point show the composition of the optimal assortment, e.g.,

[2,3] indicates the assortment with two most popular and three most eccentric products.

Higher refund fraction leads to less variety for a sufficiently high α. Yet there is also a range of

α values for which the variety is increasing in α; that is, more lenient return policies result in more

variety. This range typically includes the highest and lowest α values within the strict return policy

region (0≤ α≤ vo/p). As α goes from 0 to vo/p, there is first a decrease and then an increase in

MTO variety. Whereas for MTS, variety increases with α in most of the strict policy region.

The managerial take-away from this experiment is that more lenient return policies can require

assortments with higher variety. This effect occurs when the refund fraction is below a critical level

(vo/p). The typical reason is the incentive to offer eccentric products under strict return policies.

For product categories with strong secondary markets (vo ≈ p) then, this insight is more salient.

5.2. What if variety was free? (The case of negligible fixed cost for variety)

If the fixed cost for variety is zero, or negligible, our analysis produces a sharper prescription on

which products to offer under MTO. Further, this prescription differs from the one for MTS, so

the operational environment moderates the fundamental impact of returns on optimal assortment.

Proposition 3. Suppose the retailer incurs no fixed cost for variety, i.e., f = 0.

(a) For a sufficiently lenient return policy (α≥ vo/p), the optimal assortment under both MTO and

MTS environments is composed of some number of most popular products from N , i.e., S∗
MTO =Ak

and S∗
MTS =Ak′ for some k,k′ ∈ {0,1, ..., n}.
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Figure 3 Optimal assortment versus refund fraction

(α) in MTO and MTS environments with

zero fixed cost per product (f = 0)

Figure 4 Optimal expected profit versus refund frac-

tion (α) in MTO and MTS environments

(NR indicates no-returns)

(b) For a sufficiently strict return policy (α < vo/p), the optimal assortment under MTO is com-

posed of some number of most eccentric products from N , i.e., S∗
MTO =Zj for some j ∈ {0,1, ..., n}.

Whereas, under MTS, it is optimal to carry some number of most popular and some number of

most eccentric products from N , i.e., S∗
MTS =Aj ∪Zk−j for some j ∈ {0, ..., k} and k ∈ {0,1, ..., n}.

We omit the proof as it exactly mirrors our previous analyses. Proposition 3 establishes that a

retailer’s optimal assortment critically depends on the operational environment when variety is free

and the return policy is strict. In particular, the retailer carries only the most eccentric products

in the MTO case, but a mix of popular and eccentric products in the MTS case (see Figure 3).

Note that, even when variety is free under MTO, it is not necessarily optimal for the retailer

to offer all products in N . Returns are the central reason. The more popular a product, the less

the relative rate of returns. This makes expected profit margins unequal despite uniform prices,

e.g., if the return policy is lenient, more popular products have higher expected profit margins.

Thus, fearing cannibalization, the retailer may not offer all potential products in N even if there is

no fixed cost per product. Secondly, the eccentric-product result under MTO must be interpreted

with caution. One of the assumptions we make is that all returned items and excess inventories

can be cleared at a certain salvage value in the secondary market. This puts a limitation on the

kind and breadth of products we can admit in N . Proposition 3b is not to suggest that a retailer

operating in MTO environment must offer the most objectionable products it can find. Rather, it

recommends eccentricity in retail assortments within the bounds of our modeling assumptions.
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5.3. Robustness of our main finding

We now demonstrate the robustness of our main insight – sufficiently strict return policies call for

hybrid popular-eccentric assortments – to three factors that may possibly work against it.

5.3.1. What if the retailer optimized the refund fraction? We present numerical exam-

ples for which the optimal refund fraction falls in the strict policy region, i.e., α∗p≤ vo. Using the

base parameter values (Table 2), we plot in Figure 4 the optimal expected profit for all practically

relevant values of refund fraction, from 0% to 100% with 1% increments. In the process, we take

advantage of our structural results in §4 for optimizing the assortment at each data point. The

peak of each curve represents the globally optimal refund fraction for the corresponding opera-

tional environment. We also include the no-returns cases (denoted by NR) as benchmark. Figure

4 suggests that our strict return policy results are not an artifact of refund fraction being exoge-

nous. (Anonymous (2009) present a similar example with a different parameter set and numerically

explore other interesting aspects of endogenizing the refund fraction.)

5.3.2. What if salvage values were quantity-dependent? During clearance sales, retail-

ers often charge lower prices for items with higher inventory. Such quantity-dependent salvage

values would weaken the rationale for carrying eccentric products, because while they are more

likely to be returned, they may also be less valuable once returned. We take our single-period MTO

scenario and incorporate a salvage value vi(Ri) for each product that depends on the realized num-

ber of returns. For simplicity, we model the demand for returned products during clearance using an

additive demand model of the form Di(vi) =φ−ψvi (φ> 0, ψ > 0) (à la Petruzzi and Dada 1999),

and assume that the retailer clears all returned items by setting vi = (φ−Ri)/ψ. The expected

profit using the new salvage value is ΠMTO (S) =
∑

j∈SE
[
(p− c)Dj −

(
αp− φ−Rj

ψ

)
Rj

]
− f |S|, or

∑
j∈S

{[
p− c−

(
αp− φ

ψ

)
Preturn|j

]
λP S

j − 1

ψ

[(
λP S

j,return

)2
+σ2

(
λP S

j,return

)2β]}− f |S|

The optimal assortment is analytically intractable, so we proceed by numerical means. Using the

same base parameter values (Table 2), and setting φ= 18 and ψ= 5, which ensure positive salvage

values strictly less than c= 3.6, we compute the optimal assortment by complete enumeration for

different values of α. We observe that the optimal assortment is most-eccentric only for α= 0.6, a

mix of most popular and most eccentric for α= 0.7, and most-popular only for α= 0.8 and above.

This numerical example (and many others we experimented with using different sets of parameters)
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suggest that the structure of the optimal assortment coincides with our main result: a sufficiently

strict return policy results in a hybrid popular-eccentric assortment.

5.3.3. What if consumers could resell instead of return? One valid criticism of our

choice model is that unhappy consumers are captive: if they are not happy with a product, they

have no option but to return it to the retailer. All of our structural results extend to the case with

consumers having an option to resell to a third part, say to another consumer through eBay.

The new choice model functions as follows. Besides keep and return, the second stage of the N-

MNL model has a third option, sell, with utility ui,sell = vs−ds−p+ϵi,sell. The deterministic portion

is the revenue vs that the consumer obtains by reselling, minus the cost or disutility ds of reselling,

minus the original selling price p that the consumer foregoes. The random component ϵi,sell is

again a Gumbel random variable with mean zero and scale 1/µ2, independent of ϵi,keep and ϵi,return.

Reselling gives consumers an extra post-purchase option, which increases the expected utility of

each product: Ai ≡E [max (ui,keep, ui,return, ui,sell)] = µ2 ln
[
exp

(
ai
µ2

)
+exp

(
αp−d
µ2

)
+exp

(
vs−ds
µ2

)]
−

p. Possibility of reselling diminishes both the probability of returning and keeping.

The new probabilities are: Preturn|i =
[
1+ exp

(
ai+d−αp

µ2

)
+exp

(
vs−ds+d−αp

µ2

)]−1

, Psell|i =[
1+ exp

(
αp−d−vs+ds

µ2

)
+exp

(
ai−vs+ds

µ2

)]−1

, and Pkeep|i = 1−Preturn|i−Psell|i.

Despite these changes our structural results apply identically. In particular, our counterintuitive

result for strict return policies continue to hold. The reason is quite intuitive. Reselling option

enhances all products; their expected utility increases by a positive constant. Although this con-

stant may differ among products (due to the logarithmic expression in the expected utility), the

popularity ranking of products remains unaffected. In other words, these ‘product improvements’

are technically equivalent to higher attractiveness values for each product.

6. Concluding Remarks

We believe that this paper highlights an interesting interaction between product assortment and

return policy. The optimal assortment is composed of the most popular products if the return

policy is lenient (if it imposes a sufficiently low restocking fee, meaning a high refund fraction). On

the other hand, the optimal assortment has a distinct and counterintuitive structure if the return

policy is sufficiently strict: a mix of the most popular and the most eccentric products. These

results hold for pure MTO and pure MTS environments; they can also be extended to a hybrid

environment where the firm is able to choose between MTO and MTS for every product that it
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offers (we omit this extension). When the fixed cost for variety is negligible, MTO environment

differs from MTS in the strict return policy case; the optimal assortment is then composed of

most eccentric products only. Our results underscore the need to consider consumer returns and

operational environment in making retail assortment decisions.

Evident from the many unexpected implications we observe of returns on optimal assortment,

endogenizing the refund fraction (α) would be a useful extension. Likewise, endogenizing the price

(p) could also reveal some interesting insights. We note that either of these directions is likely

to bolster the counterintuitive results we obtain for strict return policies. Lower refund fractions

are likely to require lower prices, which together make the condition α < vo/p more likely to be

satisfied. Anonymous (2009) provide numerical experiments that indeed support this idea.

Another important direction could involve multiple periods, allowing for a more comprehensive

treatment of inventory control and return management issues. For a finite planning horizon, opti-

mizing the assortment appears analytically intractable even if the assortment decision was static

(i.e., made just once prior to the beginning of the planning horizon). However, in multiple-period

settings, inclusion of eccentric products in the optimal assortment would be further justified as there

would be multiple resale opportunities for returned items. So multiple periods can only reinforce

our result on strict return policies, a point supported numerically by Anonymous (2009).

We close with three implications of our theory that seem empirically testable:

• H1: Stricter return policies in the form of higher restocking fees imply a larger propensity of

retail assortments including eccentric products. This follows from Theorems 1 and 2, and holds

for both operational environments.

• H2: If a retailer allows returns and actively considers them when taking merchandising decisions,

then the retailer is more likely to offer eccentric products. Ignoring returns in assortment decisions

(extant literature), or disallowing them altogether (Theorem 3), results in optimal assortments

with popular products only. In contrast, by Theorems 1 and 2, offering a mix of popular and

eccentric products can be optimal when returns are taken into account.

• H3: If offering variety is cheap, in that it imposes on retailers a negligibly small fixed cost per

product, then H1 holds more strongly in MTO environments than in MTS environments. This

is due to Proposition 3; for sufficiently strict return policies, it is optimal to offer only eccentric

products under MTO, but a mix of popular and eccentric products under MTS.
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Appendix A: Empirical Evidence on How Returns are Linked to Popularity

Here we provide empirical evidence for the following aspect of our choice model: eccentric products have

a higher conditional probability of return, i.e., Preturn|i is decreasing in ai. We obtained data from online

channels of two retailers on product lines that approximately fit our research context.

The first dataset is from a major department store. It contains SKU-level monthly sales and returns (in

units and in dollars, June-November, 2010) for a bath towel in 21 different colors. Except for their color

all SKUs were identical, including prices (any change in prices applied to all SKUs uniformly), and the

assortment stayed the same. Our base analysis was to aggregate the sales and returns over 6 months for each

SKU, calculate their relative sales volume (units sold as % of total sales) and return rate (units returned as

% of units sold), and then run a nonlinear regression to estimate return rates from relative sales volumes.

Our theoretical prediction based on the N-MNL model is that the return rate must be a power function

of the relative sales volume. In particular, the product of conditional return probability and a power of

normalized purchase probability is a constant, i.e., Preturn|i

[
ωi/(

∑
j∈S

ωj)
]B

=C for all i∈ S, where B and

C are positive constants for a given assortment S. It would be consistent with the N-MNL model then to

observe a relationship of the sort: log y = −B logx+ logC, with y representing the return rate, and x the

relative sales volume. This is indeed born by the data; significance level of the nonlinear regression model is

3.58%. Figure 1 shows a scatter plot and the power function that best fits the data.

The second dataset is from Sena Cases, a maker and retailer of leather cases for mobile devices. It contains

transaction-level data for a popular case purposely designed for iPhone 3G/3GS, called Ultraslim. The current

Ultraslim offering has 18 colors (as of January 22, 2011), available since March 11, 2009. As with the previous

analysis, we first aggregated the data for each SKU. We considered the sales transactions from March 11, 2009

to November 30, 2010, and the corresponding returns, if any, up until December 31, 2010 (this allows enough

time for returns to occur, as Sena has a 30-day limit). We then conducted a similar regression analysis; the

theoretical model explains the data at 2.33% significance level. Figure 2 shows a scatter plot of the data and

the power function that best fits it.
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The results provide sufficient evidence for product popularity and return rates to be inversely related:

eccentric products, which capture a lower market share, tend to have a higher return rate. One possible

complication is the effect of variation in prices over time on return rates. In both cases, however, controlling

for price does not change the basic conclusion.

Appendix B: Proofs

[Throughout the appendix we use the shorthand notation Pr|i for Preturn|i.]

Proof of Lemma 1

We first show that hMTO(δ) is quasiconcave when α ≥ vo/p, and quasiconvex when α < vo/p. We use the

following result from Mangasarian (Nonlinear Programming, 1969. McGraw-Hill, New York, p.148): The

function h(·) = g(·)
γ(·) is quasiconcave (quasiconvex) on a set Γ⊂Rn if g(·) is concave (convex) on Γ, γ(·)> 0

on Γ, and γ(·) is linear on Rn.

We show concavity (convexity) of g(δ) by examining its second derivative: g′′(δ) = −λ(αp −

vo)
[
2P ′

r|δ + δP ′′
r|δ

]
where P ′

r|δ =−µ1

µ2
Pr|δδ

−1 and P ′′
r|δ =

µ1

µ2

(
µ1

µ2
+1
)
Pr|δδ

−2. The term in brackets simplifies

to 2P ′
r|δ + δP ′′

r|δ =
µ1

µ2

(
µ1

µ2
− 1
)
Pr|δδ

−1 > 0 (since µ1 ≥ µ2). We can therefore state that g(δ) is concave when

α≥ vo/p, and convex when α< vo/p. Since γ(δ) is strictly positive and linear in δ, it follows that hMTO(δ)

is quasiconcave when α≥ vo/p, and quasiconvex when α< vo/p.

Next, we show that hMTO(δ) is non-decreasing when α≥ vo/p. To do so, we evaluate the first derivative

of hMTO(δ). For convenience, let Ŝ = S ∪{δ}.

h′
MTO(δ) =−λP Ŝ

0

∑
j∈S

MjP
Ŝ
j +λP Ŝ

0 Mδ

(∑
j∈S

P Ŝ
j +P Ŝ

0

)
−λ(αp− vo)P

Ŝ
δ P

′
r|δ (2)

It is easy to see that Mδ = p− c− (αp− vo)Pr|δ is increasing in δ since Pr|δ is decreasing in δ. Therefore,

there must exist some δ̂ such that Mδ̂ ≥Mj , ∀j ∈ S. Then, for all δ≥ δ̂, the first term in h′
MTO(δ) is always

less than the second term, and their sum is therefore positive. The last term is always nonnegative since

P ′
r|δ < 0. Hence, we can conclude that in the interval [δ̂,∞), h′

MTO(δ) is positive, or hMTO(δ) is increasing

when α≥ vo/p.

On the other hand, for δ < δ̂, we can show by contradiction that the function hMTO(δ) is non-decreasing.

Let δL and δH be two values of δ such that δL < δ̂ < δH , and assume that hMTO(δ) is decreasing for δ < δ̂.

Then, hMTO(δL)>hMTO(δ̂), and hMTO(δ̂)<hMTO(δH).

Furthermore, by the definition of quasiconcavity: hMTO(∆δL + (1−∆)δH)≥min{hMTO(δL), hMTO(δH)},

with ∆∈ [0,1]. Since δL < δ̂ < δH , there exists ∆̂∈ [0,1] such that ∆̂δL+(1−∆̂)δH = δ̂. Using the definition of
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quasiconcavity for ∆= ∆̂, we obtain hMTO(δ̂)≥min{hMTO(δL), hMTO(δH)}, which contradicts hMTO(δL)>

hMTO(δ̂), or hMTO(δ̂)< hMTO(δH). Hence, when α≥ vo/p, we conclude that hMTO(δ) is non-decreasing for

δ < δ̂ as well.

Proof of Lemma 2

Product i∈N \S should be added to the current assortment S iff ΠMTO(Ŝ)≥ΠMTO(S), where Ŝ = S∪{i},

or λ
(
P S
0 −P Ŝ

0

)
Mi ≥

∑
j∈S

λ
(
P S

j −P Ŝ
j

)
(Mj −Mi)+ f . This inequality states that the profit gain made by

the additional market share captured by adding product i should be larger than the potential profit loss due

to cannibalization plus the fixed cost. Using the N-MNL purchase probabilities, we rewrite it as follows:[
1

1+
∑

k∈S
ωk

− 1

1+
∑

k∈Ŝ
ωk

]
Mi ≥

∑
j∈S

[
ωj

1+
∑

k∈S
ωk

− ωj

1+
∑

k∈Ŝ
ωk

]
(Mj −Mi)+ f/λ

The result follows from this inequality by further algebraic manipulations.

Proof of Theorem 1

Part (a), the lenient return policy case. The proof is by construction. Suppose the optimal

assortment S∗
MTO has cardinality k, with k ∈ {1, ..., n− 1}. (The theorem holds trivially for |S∗

MTO|= 0 and

|S∗
MTO|= n.) Take any subset S of N with cardinality k. Let na =max{i | Ai ⊆ S , i∈ {0,1, ..., k}} be the

number of most popular products of N that belong to S. Clearly na cannot be strictly larger than k. If

na < k, then there must exist some product j ∈ S such that j > na + 1. Since hMTO(δ) is non-decreasing

due to Lemma 1, product j can be replaced with product na +1 without decreasing the profit. Proceeding

recursively with such profit-improving replacements, na = k will in the end be satisfied, which implies that

S∗
MTO =Ak.

Part (b), the strict return policy case. The proof is by construction. Suppose the optimal

assortment S∗
MTO has cardinality k ∈ {1, ..., n− 2}. (The theorem holds trivially for |S∗

MTO| = 0, |S∗
MTO| =

n−1 and |S∗
MTO|= n.) Take any subset S of N with cardinality k. Let na =max{i | Ai ⊆ S , i∈ {0,1, ..., k}}

be the number of most popular products of N that belong to S; and nz =max{j | Zj ⊆ S , j ∈ {0,1, ..., k}}

be the number of most eccentric products of N that belong to S. Clearly na + nz cannot be strictly larger

than k. If na+nz <k, then there must exist some product i∈ S such that na+1< i< n−nz. Since hMTO(δ)

is quasiconvex due to Lemma 1, product i can be replaced with product na + 1 or with product n − nz

without decreasing the profit. Proceeding recursively with such profit-improving replacements, na + nz = k

will in the end be satisfied, which implies that S∗
MTO =Aj ∪Zk−j for some j ∈ {0,1, ..., k}.
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Proof of Lemma 3

Product i∈N \S should be added to the current assortment S iff ΠMTS(Ŝ)≥ΠMTS(S), where Ŝ = S ∪{i},

or
∑

j∈S λP
Ŝ
j M̃

Ŝ
j + λP Ŝ

i M̃
Ŝ
i − f (|S|+1) ≥

∑
j∈S λP

S
j M̃

S
j − f |S|. Rearranging the terms and dividing by

λ, we get P Ŝ
i M̃

Ŝ
i ≥

∑
j∈S

[
P S

j M̃
S
j −P Ŝ

j M̃
Ŝ
j

]
+ f/λ. This is equivalent to P Ŝ

i M̃
Ŝ
i ≥

∑
j∈S

M̃ Ŝ
j

[
P S

j −P Ŝ
j

]
+∑

j∈S

[
M̃S

j − M̃ Ŝ
j

]
P S

j +f/λ. Substituting the purchase probabilities into the first term of the right-hand-side,

and dividing both sides by P Ŝ
i , we obtain the desired inequality.

Proof of Lemma 4

We begin by noting that the last two terms of the condition given in Lemma 3 are strictly positive (M̃S
j > M̃

Ŝ
j ,

because P S
j >P

Ŝ
j and (P S

j )
β−1 < (P Ŝ

j )
β−1 for all j ∈ S). Therefore, if product i improves the expected profit

when added to S, it must satisfy M̃ Ŝ
i >

∑
j∈S

P S
j M̃

Ŝ
j . Now, multiplying the left-hand-side of this inequality

by
(∑

j∈S
P Ŝ

j +P Ŝ
0

)
and the right-hand-side by an equivalent term

(
1+

∑
j∈S ωj

1+ωi+
∑

j∈S ωj

)
, and applying further

algebraic manipulations, we obtain the result.

Proof of Lemma 5

We first show that hMTS(δ) is quasiconvex when α< vo/p using the same result due to Mangasarian (1969)

stated in the first part of the proof of Lemma 1. We already know from that proof that g(δ) is convex when

α< vo/p. We need to show that g̃(δ) is also convex when α< vo/p. Taking the first and second derivatives,

we verify below that this is indeed the case for any α.

g̃′(δ) = − (e− vn)σλ
βϕ(z∗)

[
βδβ−1γ(δ)1−β +

(∑
j∈S

ωβ
j + δβ

)
(1−β)γ(δ)−β

]

g̃′′(δ) = (e− vn)
β(1−β)σλβϕ(z∗)

γ(δ)β

δβ−2
(
1+

∑
j∈S ωj

)2
+
∑

j∈S ω
β
j

γ(δ)

> 0

Since both g(δ) and g̃(δ) are convex when α < vo/p, their sum is also convex; and, due to Mangasarian’s

result, hMTS(δ) is quasiconvex when α< vo/p.

Next, we show that hMTS(δ) is increasing when α≥ vo/p as long as δ is profit-improving. To do so, we let

Ŝ = S ∪{δ}, and evaluate the derivative of hMTS(δ):

h′
MTS(δ) = −λ(αp− vo)P

Ŝ
δ P

′
r| δ −λP Ŝ

0

∑
j∈S

[
p− c− (αp− vo)Pr|j − (e− vn)σϕ(z

∗)β
(
λP Ŝ

j

)β−1
]
P Ŝ

j

+λP Ŝ
0

[
p− c− (αp− vo)Pr|δ − (e− vn)σϕ(z

∗)β
(
λP Ŝ

δ

)β−1
](∑

j∈S

P Ŝ
j +P Ŝ

0

)
Note that the terms in square brackets are similar to the expected profit margin per unit sales, except for

the value of β multiplying the inventory cost term. Using the identity M̃ Ŝ
i =Mi − (e− vn)σϕ(z

∗)
(
λP Ŝ

i

)β−1

and applying a few algebraic manipulations:
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h′
MTS(δ) = λβ

[
−(αp− vo)P

Ŝ
δ P

′
r| δ −P Ŝ

0

∑
j∈S

M̃ Ŝ
j P

Ŝ
j +P Ŝ

0 M̃
Ŝ
δ

(∑
j∈S

P Ŝ
j +P Ŝ

0

)]

+λ(1−β)

[
−(αp− vo)P

Ŝ
δ P

′
r| δ −P Ŝ

0

∑
j∈S

MjP
Ŝ
j +P Ŝ

0 Mδ

(∑
j∈S

P Ŝ
j +P Ŝ

0

)]

Using the derivative of hMTO given in (2) and rearranging the terms, h′
MTS(δ) is:

h′
MTS(δ) = λβP Ŝ

0

[
M̃ Ŝ

δ

(∑
j∈S

P Ŝ
j +P Ŝ

0

)
−
∑
j∈S

M̃ Ŝ
j P

Ŝ
j

]
−λβ(αp− vo)P

Ŝ
δ P

′
r| δ +(1−β)h′

MTO(δ)

We know from Lemma 1 that h′
MTO(δ) is non-negative. The second term is also non-negative since P ′

r| δ < 0

and α≥ vo/p. Assuming that the new product with preference δ is profit-improving, thus using the necessary

condition stated in Lemma 4, the remaining term is also positive.

Proof of Theorem 2

Part (a), the lenient return policy case. The proof is by construction and analogous to the

proof of Theorem 1a. We only comment on the technical assumption of Lemma 5 that requires the new

product to be profit-improving for hMTS(δ) to be increasing. If no such product exists, then the current

assortment must be optimal. Else, it is easy to show that the product with maximum attractiveness (hence,

the maximum value of δ) also improves the expected profit (in fact, maximally so). Assume product i∈N \S

with preference δ= ωi improves the profit when added. The derivative of hMTS(δ) evaluated at ωi is positive

(by Lemma 5). Then a product with preference δ = ωi +∆, for any ∆> 0, would also be profit-improving

because hMTS(ωi +∆)> hMTS(ωi)>ΠMTS(S). We could repeat the same reasoning and keep increasing ∆

until ωi +∆=maxj∈N\S(ωj).

Part (b), the strict return policy case. Since the proof is analogous to the proof of Theorem 1b,

we only give a sketch of the argument. Due to the quasiconvexity of hMTS(δ) when α< vo/p, a fact provided

by Lemma 5, any assortment that does not conform to the structure stated in the theorem can be improved

by pairwise interchanges, and therefore cannot be optimal.

Proof of Proposition 1

Take an MTO environment with a lenient return policy, and suppose the most profitable assortment S has

cardinality k < n. By Theorem 1, S = Ak. So, for the greedy algorithm to produce the globally optimal

assortment, we need to establish that once the most popular of the remaining products fails to satisfy

the necessary condition in Lemma 2, no more products can be added and increase the expected profit.

Assume that product k+1 violates the necessary condition in Lemma 2, and therefore cannot be included
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in S to improve the profit. By Lemma 1, no product i with k + 1 ≤ i ≤ n improves the profit either, i.e.,

Mi <
∑

j∈S
P S

j Mj + f/
(
λP S∪{i}

i

)
. Is it possible then to add two or more products at once and increase the

profit? Let B ⊆N \S be this subset of products to add. If S ∪B improves the profit, then

∑
j∈S

λP S∪B
j Mj − f |S|+

∑
k∈B

λP S∪B
k Mk − f |B|>

∑
j∈S

λP S
j Mj − f |S|

∑
k∈B

λP S∪B
k Mk − f |B|>

∑
j∈S

λ
(
P S

j −P S∪B
j

)
Mj =

(∑
k∈B

P S∪B
k

)∑
j∈S

λP S
j Mj

Let i be the most popular product in B. The above inequality implies Mi >
∑

j∈S
P S

j Mj +

f |B|/
(
λ
∑

k∈B
P S∪B

k

)
. Also considering

∑
k∈B

P S∪B
k ≤ |B|P S∪B

i and P S∪{i}
i >P S∪B

i , we obtain

Mi >
∑
j∈S

P S
j Mj +

f |B|
λ
∑

k∈B
P S∪B

k

≥
∑
j∈S

P S
j Mj +

f

λP S∪B
i

>
∑
j∈S

P S
j Mj +

f

λP S∪{i}
i

which contradicts the initial premise that product i could not be added to S and improve the profit. MTO

environment with no returns is a special case with d=+∞.

Proof of Proposition 2

By Theorem 1a, S∗
MTO = Ak for some k ∈ {0,1, . . . , n}. In addition, by Lemma 2, when f = 0 the firm

adds product (i+1) to an existing assortment S =Ai iff
[
1+

∑
j∈S ωj

]
Mi+1 ≥

∑
j∈S ωjMj . Note that the

expected profit margin Mj is decreasing and preference ωj is increasing in α. Therefore, if Mi+1 decreases at

least as fast as Mj for all j ∈ S as α increases, the left-hand-side will be relatively smaller compared to the

right-hand-side. Equivalently: the above inequality will be less likely to be satisfied; a more lenient return

policy (higher α) within the lenient region (α ≥ vo/p) will lead to lower variety. For this to be true, it is

sufficient that
∣∣∣ ∂Mi+1

∂α

∣∣∣≥ ∣∣∣ ∂Mj

∂α

∣∣∣ for all j ∈ S. We have

∂Mj

∂α
=−

∂Pr| j

∂α
(αp− vo)− pPr| j = −pPr| j

[
1+

1

µ2

(αp− vo)(1−Pr| j)

]
where the last equality is obtained by substituting

∂Pr| j
∂α

= p

µ2
Pr| j(1−Pr| j).

Thus, the inequality
∣∣∣ ∂Mi+1

∂α

∣∣∣≥ ∣∣∣ ∂Mj

∂α

∣∣∣ is equivalent to
Pr| i+1 +Pr| i+1

1

µ2

(αp− vo)(1−Pr| i+1)≥ Pr| j +Pr| j
1

µ2

(αp− vo)(1−Pr| j).

Since Pr| i+1 ≥ Pr| j for all j ∈ Ai, the condition above is always satisfied if Pr| i+1 ≤ 0.5, or equivalently

ai+1 ≥ αp− d. Hence, the condition that ensures all products to have a positive expected utility, i.e., aj ≥ p

for all j ∈N , is sufficient for the above inequality to hold.
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