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Abstract

Calculating explicit closed form solutions of Cournot models where firms have pri-
vate information about their costs is, in general, very cumbersome. Most authors
consider therefore linear demands and constant marginal costs. However, within this
framework, the nonnegativity constraint on prices (and quantities) has been ignored
or not properly dealt with and the correct calculation of all Bayesian Nash equilibria is
more complicated than expected. Moreover, multiple symmetric and interior Bayesian
equilibria may exist for an open set of parameters. The reason for this is that linear
demand is not really linear, since there is a kink at zero price: the general “linear”
inverse demand function is P (Q) = max{a− bQ, 0} rather than P (Q) = a− bQ.
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1 Introduction

Cournot models with asymmetric information about demand or costs have been successfully
used to study the incentives and consequences of acquiring and sharing of information and
of the formation of cartels.1 Calculating explicit closed form solutions of Cournot models
where firms have private information is, in general, very cumbersome. Most authors consider
therefore linear demands, linear or quadratic costs and information structures that yield lin-
ear conditional expectations. An example of such an information structure is where both the
(demand or cost) parameter and the signals received are normally distributed. Within this
class of models equilibrium strategies are shown to be linear in the private signal and unique.
A problem with this approach is that the linearity of strategies and the unboundedness of
the support of the parameters and signals implies that demands, costs, quantities and prices
may be negative. This is recognized for example by Vives (1999) when he writes

The assumption of normality is very convenient analytically but has the drawback
that prices and quantities may take negative values.

but is then immediately excused when he goes on to state

However, the probability of this phenomena can be controlled by controlling the
variances of the random variables. Furthermore, [...] there are pairs of prior-
likelihood that yield the convenient linear conditional expectation property and
avoid the mentioned drawback.

Kirby (1988) makes almost the same observation. Examples of the prior-likelihood pairs
Vives and Kirby refer to are beta-binomial and gamma-Poisson. Li (1985) emphasizes the
importance of the fact that his results do not require the normality assumption as it allows
distributions that

... are especially appropriate here, because they may obey the nonnegativity con-
straints on the inverse demand or marginal costs.

It seems these arguments settle the case and the assumption of triple linearity (linear de-
mand, costs and conditional expectations) is both analytically convenient and conceptually
satisfactory (no negative quantities or prices) when the right assumptions are made about
the distributions. However, there seems to exist some confusion about what these necessary
and/or sufficient conditions for ignoring the nonnegativity price and quantity constraints
are. One may wonder whether the insights provided in the literature sofar are valid when
one rigourously accounts for these constraints.

The first ones to investigate this issue were Malueg and Tsutsui (1998). They consider a
duopoly model with uncertainty about the intercept of the (kinked) linear demand function
where each firm receives an imprecise signal about this intercept. They provide a numerical
example in which the intercept of demand can only take two possible values and show that
taking into account the nonnegativity of the price for all demand realizations can reverse
some well-known results about the effects of information sharing: information sharing can be
profitable for firms and detrimental for social welfare. More, recently, Lagerlöf (2007) studies
a more general oligopoly model in which n firms have symmetric but imperfect information
about the intercept of (kinked) linear demand. He confirms that taking into account the
nonnegativity constraint on price indeed can reverse the standard results and that social

1See for example Clarke (1983), Cramton and Palfrey (1990), Gal-Or (1985, 1986), Hauk and Hurkens
(2001), Hurkens and Vulkan (2001), Hwang (1993, 1995), Kirby (1988), Li (1985), Li, McKelvey and Page
(1987), Novshek and Sonnenschein (1982), Palfrey (1985), Sakai and Yamamoto (1989), Raith (1996), Shapiro
(1986), and Vives (1984, 1988, 1990, 2002).
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welfare is lower when firms are better informed. Moreover, he finds that taking into account
the nonnegativity constraint on price can give rise to multiplicity of equilibria, since the
expected inverse demand function is rendered (sufficiently) convex. Finally, Lagerlöf (2006)
provides a sufficient condition on the distribution of demand intercepts (from a continuum)
for which uniqueness is restored even when the nonnegativity of prices is taken into account.

In this paper I consider the Cournot model where each firm has perfect but private
information about its own constant marginal cost, rather than about the intercept of demand.
Inverse demand is known and linear, except for the kink at zero price: P (Q) = max{1−Q, 0}.
That is, I take the nonnegativity of price (as well as quantity) seriously. In this framework
one would expect to have the least chance of encountering problems as the ones described
before, as each firm has perfect information about demand and its own cost (and therefore,
about its own preference). The only uncertainty relevant for a firm concerns the output
of its rivals, which is of course the essence of the classic Cournot model. Lagerlöf (2007)
writes in the final part of his concluding section that his arguments should also apply in
the case of uncertainty about costs, as it renders the residual demand function stochastic
and taking the nonnegativity constraint on price into account may thus render the expected
residual demand sufficiently convex. He does not examine this issue in detail but rather
states that such an examination could yield further insights. This paper provides such an
analysis. In particular, multiple symmetric and interior Bayesian equilibria may exist for an
open set of parameters. I will show that the assumptions commonly made in the literature
to guarantee interior solutions (and thereby taking seriously that prices and quantities must
be nonnegative) do not suffice to guarantee uniqueness. In fact, such interior solutions may
not even be actual equilibria because of the possibility of large deviations to outputs which
sometimes lead to price zero. Moreover, the need to take care of nonnegativity constraints
becomes even more important as the number of firms increases.2

The rest of this paper is organized as follows. The next section discusses the problems
associated with the standard analysis of ignoring or not dealing properly with the nonneg-
ativity constraints on price and quantity. In particular, it provides a simple (but somewhat
special) example to illustrate the possibility of multiple equilibria. Section 3 then provides
necessary conditions on the parameters of the model under which the standard analysis leads
indeed to the true (unique) solution. It is also shown that an assumption sometimes made
in the literature (namely that for any realization of costs, all firms produce a positive equi-
librium quantity in the corresponding Cournot model with perfect information) does in fact
not always satisfy these necessary conditions. Section 4 provides then the main example of
an oligopoly with four firms. This example shows (i) that for a range of parameters multiple
interior equilibria exist and (ii) that even the strong necessary conditions provided in sec-
tion 3 are not always sufficient to guarantee that the solution found by using the standard
analysis of ignoring the constraints on price an quantity, is indeed an equilibrium, even if
the found solution exhibits strictly positive prices and quantities. Section 5 concludes.

2 Problems of ignoring that prices cannot be negative

Example 1. Suppose inverse demand is P (Q) = max{1 − Q, 0}. There are three firms
and each firm has marginal cost either equal to zero or to one. The probability of any firm
having zero cost is 3/5 and is independent of the cost realization of its rivals. Obviously,
any firm that has marginal cost of one must produce zero in any equilibrium. Hence, any
symmetric equilibrium will be characterized by the quantity x produced by a low cost firm.

2Instead, Lagerlöf (2007) finds that in the case of uncertainty about the demand intercept the multiplicity
of equilibria disappears as the number of firms increases.
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I claim that both x = 5/16 and x′ = 4/11 characterize a Bayesian equilibrium. I will prove
this claim below. Note that in the first candidate equilibrium total output is at most 15/16
so that price is at least 1/16 and thus strictly positive. In the second candidate equilibrium
total output could reach 12/11 so that price may hit the boundary of zero.

Given the strategy x for the other two firms, firm 1 will either choose a quantity x ≤
1 − 2 × (5/16) = 3/8 or he will choose a quantity x ∈ [3/8, 1/2]. (Obviously, he will never
want to produce more than the monopoly quantity 1/2.) In the first case his payoff equals
x(1 − x − 2µ) where µ = (3/5)(5/16) is the expected quantity produced per firm. The
optimal quantity is thus x = (1− 6/16)/2 = 5/16 < 3/8. His payoff will be equal to (5/16)2.
If the firm chooses a quantity x ≥ 3/8 then his expected profit equals

2× 3

5
× 2

5

(
x(1− x− 5

16
)

)
+ (

2

5
)2 (x(1− x)) ,

which takes into account the zero price and profit in case both rivals happen to have low
cost as well. Hence, this profit equals (−64x2 + 49x)/100 which can be shown to be at most
equal to 2401/25600 < (5/16)2. This completes the proof that x constitutes an equilibrium.

Now consider the strategy x′. Given this strategy for the other two firms, firm 1 will either
choose a quantity below 1−2×(4/11) = 3/11 or he will choose a quantity x ∈ [3/11, 1/2]. In
the first case his payoff equals x(1−x−2µ′) where µ′ = (3/5)(4/11) is the expected quantity
produced per firm. This profit is strictly increasing for x ≤ 3/11. Hence, it is optimal for
him to choose a quantity x ≥ 3/11 and his expected profit equals

2× 3

5
× 2

5

(
x(1− x− 4

11
)

)
) + (

2

5
)2 (x(1− x)) ,

which takes into account the zero price and profit in case both rivals happen to have low
cost as well. Hence, this profit equals (−176x2 + 128x)/275 which attains its maximum at
4/11. This completes the proof that x′ constitutes an equilibrium.

It may come as a surprise to some readers that multiple symmetric Bayesian equilibria in
pure strategies exist in this model. Symmetry often seemed to imply uniqueness in these kind
of models. The difference between the two equilibria of the example is rather substantial.
In the second equilibrium low cost firms produce almost 12% more, profits are thus lower
and consumer and total welfare are higher. Hence, policy analysis with respect to entry
or collusion, for example, based on the first equilibrium would be inadequate if the second
equilibrium were to be played, and vice-versa.

The standard approach in the literature has been to ignore the maximum operator in
the inverse demand function and find the equilibrium of the pseudo-game where negative
prices are allowed. (In this way one would have found only the first equilibrium x in the
above example.) If it turns out that all prices are nonnegative given these strategies, one
would think that one was fully justified to ignore the nonnegativity constraint on the price.
This method is quite similar to the one of ignoring the constraints in maximization (or
minimization) problems that are expected to be non-binding and then afterwards verifying
that one was justified to do so. For example, it is common to ignore the nonnegativity
constraints on quantities in Cournot models and afterwards verify that they are satisfied.
However, Example 1 demonstrates that ignoring the nonnegativity constraint on the price
is of a different nature, as it affects the objective function and not the constraints on the
endogenous choice variables.

There are several problems with the standard approach.
First of all, in the best of cases, the standard approach will give us one equilibrium, but

no guarantee of uniqueness, as is the case in Example 1. Additional assumptions and further
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analysis would be required to guarantee uniqueness. Uniqueness of equilibrium has been
claimed, among others, by Li (1985, Prop. 6), Shapiro (1986, p. 438) and Vives, (2002,
Prop. 1).3

Second, the standard approach may yield strategies that are such that for some realization
of costs total output is higher than the intercept of demand. In the calculation of the profits
in the standard approach negative price results from such outputs. If a firm would realize
that price cannot drop below zero, it would in fact always prefer to be more aggressive in its
output choice when it has low cost. Hence, the strategies found by means of the standard
approach are then certainly not equilibrium strategies in the model where the nonnegativity
constraint on price is taken seriously.

Finally, a third problem arises in case the standard approach yields strategies that are
such that prices and quantities are in fact always strictly positive. It is then clear that no
firm would like to deviate from the strategy by a marginal increase or decrease. However, a
firm that realizes that price will not drop below zero may want to increase by a relatively
big amount its output. Taking seriously the nonnegativity constraint may render the profit
function non-concave, so that first order conditions are not sufficient. One should check
whether there are profitable deviations of this type. I will show later (in Example 2 in section
4) that this problem can indeed arise which implies that the unique interior solution found
by the standard method may not be an equilibrium of the true model where nonnegativity
constraints on price (and quantity) are taken seriously.

It should be noted that the example in this section is somewhat special in the sense
that firms with high cost do not produce at all. That is, for these firms the nonnegativity
constraint on their quantity is binding. Many authors make assumptions that (are supposed
to) guarantee interior solutions. Now it could be the case, at least hypothetically, that the
assumptions that guarantee nonnegative quantities for all firms, at the same time guarantee
strictly positive prices. If that were the case, then of course nothing is lost by ignoring the
possibility of prices that hit the boundary and the established results remain valid. In the
remainder of the paper I will investigate this issue.

I will show that with two or three firms, a common assumption that guarantees positive
quantities also guarantees strictly positive prices. However, I also show by means of an
example (Example 2) with four firms that this does not hold in general. Finally, it is
shown that in models with a large number of firms both quantities and prices must hit the
boundary for a set of cost realizations that has strictly positive probability. This is relevant
when studying the asymptotic properties of the equilibrium when the number of firms tends
to infinity. For example, Li (1985) and Vives (1988, 2002) are interested in those limit
properties. It is also important in the study of free entry, where the number of firms is
determined endogenously by a zero profit condition and entry cost is low. (See again Vives,
2002). For example, suppose parameters are such that Cournot equilibria in which quantities
and prices are always strictly positive exist only in case of n ≤ 10 firms. Suppose moreover
that with 10 firms, each firm still makes strictly positive net profit. Then one is forced
to consider a Cournot oligopoly with 11 firms, and thus one has to take the nonnegativity
constraints seriously.

3Of course, these claims are correct when the nonnegativity constraint on the price (and quantity) are
ignored. However, the assumptions that Li (1985) makes about the distributions and the assumptions that
Vives (2002) and Shapiro (1986) make to “guarantee” interior solutions, at the very least, suggest that their
claims are valid even when the nonnegativity constraints are taken into account.
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3 Model and Analysis

There are n > 1 firms competing in quantities in a market for a homogeneous good with
inverse demand function P (Q) = max{1−Q, 0}. Each firm i draws a constant marginal cost
ci from a distribution F over the interval [c, c̄] ⊆ [0, 1) where c < c̄. The draws for different
firms are assumed to be independent. Each firm is only informed about its own marginal cost
and the distribution function F , and this is common knowledge. A pure strategy for firm i
is a mapping xi : [c, c̄] → [0,∞), that is, for each realization of its cost, the firm determines
a nonnegative output. Given strategies xj(·) and cost realizations cj, firm i’s profit equals
xi(ci)[P (

∑
j xj)− ci]. Firms maximize expected profit.

In the remainder of this section I will first replicate the standard analysis of the “quasi-
model” where the nonnegativity constraint on the inverse demand function is ignored. Then
I will introduce an obvious necessary (but not yet sufficient) condition for the equilibrium
of the quasi-model to be an equilibrium of the true model. I will show that the common
explicit assumption made in the literature that firms produce strictly positive quantities for
any realization of costs, does not imply this necessary condition. I will then show that in
the case of duopoly the solution of the quasi-model is the unique solution of the true model
under a mild assumption.

The standard analysis of the model goes as follows. First ignore the maximum operator
and solve the model in which payoffs are given by

πi(x) = xi(1− xi −
∑

j 6=i

xj − ci), (1)

where xk denotes the output of firm k and x denotes the vector of outputs. This yields for
all i

xi(ci) = max{(1−
∑

j 6=i

µj − ci)/2, 0}, (2)

where µj = E[xj(cj)] =
∫ c̄

c
xj(cj)dF (cj) denotes expected or average quantity of firm j.

To proceed one needs to focus on either interior solutions or on symmetric solutions. I
will start with the interior solutions.

Interior solution

Assuming an interior solution (i.e., xi(ci) > 0 for all i and ci), it follows that

µi = (1−
∑

j 6=i

µj − c̃)/2 (3)

where c̃ =
∫ c̄

c
cjdF (cj) denotes average marginal cost. It follows immediately that for all i,

µi = 1−∑n
j=1 µj − c̃ and thus

µi =
1− c̃

n + 1
. (4)

Substituting (4) back into (2) yields finally

xi(ci) =
2 + (n− 1)c̃− (n + 1)ci

2(n + 1)
. (5)

Note that the symmetry of the solution follows from the assumed symmetry of the firms and
the assumption of an interior solution, it does not have to be assumed. To ensure existence
of an interior solution one needs that xi(c̄) > 0, that is, one needs to assume that

2 + (n− 1)c̃− (n + 1)c̄ > 0. (6)
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Most authors recognize this and make the adequate assumptions to guarantee the nonnega-
tivity of equilibrium quantities. (See for example Shapiro (1986) and Vives (2002).)

Symmetric constrained solution

Others do not assume an interior solution and allow for firms to produce zero (for some
realizations of cost).4 In this case, one can solve for a solution by assuming symmetry and
differentiability of the distribution function F .5 Let f = F ′ denote the density function. In
this case there must exist a cutoff value ĉ such that xi(ci) = 0 if ci ≥ ĉ and xi(c) = (ĉ− ci)/2
otherwise. By equation (2), ĉ = 1−∑

j 6=i µj must hold. By integration of (2) one finds

µi =

∫ ĉ

c

((ĉ− c)/2)dF (c)

=

∫ ĉ

c

((ĉ− c)/2)f(c)dc

=

[
ĉ− c

2
F (c)

]ĉ

c

+
1

2

∫ ĉ

c

F (c)dc =
1

2

∫ ĉ

c

F (c)dc.

The cutoff value ĉ is thus uniquely defined by

2(1− ĉ) = (n− 1)

∫ ĉ

c

F (c)dc, (7)

whenever 2(1 − c̄) ≤ (n − 1)
∫ c̄

c
F (c)dc = (n − 1)

(
[cF (c)]c̄c −

∫ c̄

c
cf(c)dc

)
= (n − 1)[c̄ − c̃].

That is, whenever there is no interior solution there exists a symmetric solution in which
firms do not produce for high enough costs.

We summarize the findings in a Lemma.

Lemma 1 (i) If (6) is satisfied, the quasi-model has a unique equilibrium, which is sym-
metric and linear, and is given by

xi(ci) =
2 + (n− 1)c̃− (n + 1)ci

2(n + 1)
.

(ii) If (6) is not satisfied, the quasi-model has a unique symmetric equilibrium, which is
given by

xi(ci) = max{(ĉ− ci)/2, 0}
where ĉ is implicitly defined by (7).

We conclude that the quasi-model has in any case a unique symmetric equilibrium. The
question is now whether this same strategy profile does also constitute an equilibrium of the
true model, and if so, whether it will be the unique symmetric equilibrium of the true model.

A necessary condition for an affirmative answer to the first question is that price is always
nonnegative when these strategies are used, that is,

∑n
j=1 xj(c) ≤ 1. Namely, suppose on the

contrary that
∑n

j=1 xj(c) > 1, that is, there is a positive probability that price is negative
in the quasi-model when a firm has the lowest possible cost. Since the strategy profile is an
equilibrium in the quasi-model, it means that an infinitesimal increase of one firm’s output
above xi(c) has no net effect on the payoff. That is, such output expansion would cause a

4See for example Cramton and Palfrey (1990).
5For some distributions of costs there may exist additional, asymmetric equilibria.
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decrease in payoff in the cases where price is negative (as output increases and price becomes
even more negative) which is exactly offset by the increase in payoff when price is positive.
However, in the true model, the first negative effect is not present (as price cannot drop
below zero) and thus there is a strictly positive net gain from increasing the output.

Hence, we obtain immediately

Lemma 2 (Necessary Conditions)

(i) If (6) is satisfied, a necessary condition for the unique interior solution of the quasi-
model to be an equilibrium of the true model is that

(n− 1)c̃− (n + 1)c ≤ 2/n, (8)

(ii) If (6) is not satisfied, a necessary condition for the unique symmetric constrained so-
lution of the quasi-model to be an equilibrium of the true model is that

n(ĉ− c) ≤ 2. (9)

Note that in the case of a duopoly these conditions are in fact always satisfied since
c̃ ≤ c̄ < 1 and also ĉ ≤ c̄ ≤ 1. Of course, in a duopoly situation none of the firms will
produce more than 1/2, the monopoly quantity of a firm with zero cost, so that total output
never exceeds one and price will always be strictly positive. This then also implies that in a
linear duopoly with private information about constant marginal costs that satisfy (6) the
equilibrium is unique. It can also be shown that (in the case of duopoly) when (6) is not
satisfied, and thus no interior equilibria exist, that then the equilibrium is unique (as long
as the distribution function F is differentiable).

Lemma 3 (Sufficient Conditions Duopoly)
In case of a duopoly the true model has a unique equilibrium. whenever (6) is satisfied or F
is differentiable with F ′(c) > 0 for all c ∈ [c, c̄]. Moreover, this equilibrium is the same as
the one of the quasi-model.

Proof. As no firm will produce more than (1− c)/2 price will never drop below zero in
the quasi-model and therefore both models have the same equilibria. In case (6) is satisfied,
uniqueness of the equilibrium has already been established. If it is not and F is differentiable,
then it has been established before that equilibrium strategies must be of the cutoff type,
but with possibly different cutoff values ĉ1 6= ĉ2. Hence x1(c) = max{(ĉ1 − c)/2, 0} and

x2(c) = max{(ĉ2 − c)/2, 0} where ĉi = 1− ∫ ĉj

c
(ĉj − c)/2dF (c) = 1− 1

2

∫ ĉj

c
F (c)dc and j 6= i.

Suppose that ĉ1 < ĉ2. Then

0 > 2(ĉ1 − ĉ2) =

∫ ĉ2

ĉ1

F (c)dc > 0

The contradiction shows that only symmetric equilibria will exist and it has already been
established that there is only one symmetric equilibrium.

Remark 4 For oligopolies with more than 2 firms, (8) is not always true. For example,
with n = 3 the condition reads c̃ ≤ 2c + 1

3
which is not satisfied in case c = 0, c̄ = 1/2

and c̃ = 3/8. Notice that in this case the standard assumption (6) is satisfied. Hence the
(interior) equilibrium of the quasi-model is in this case not an equilibrium of the true model.
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Remark 5 If n = 3 and cost is uniformly distributed on [0, 3/4], (6) is not satisfied and
the quasi-model has only an equilibrium with cutoff strategies. However, in this case one can
calculate the cutoff value ĉ from (7) to be equal to the positive root of 2y2 +3y− 3 = 0 which
is strictly larger than 2/3. Hence, (9) is violated and the strategies xi(c) = max{(ĉ− c)/2, 0}
are not optimal for small values of c in the true model. Hence, the (symmetric constrained)
equilibrium of the quasi-model is in this case not an equilibrium of the true model.

A common assumption explicitly made in the literature is that firms would always be
willing to produce a positive output.6 This means that if one firm has the highest possible
cost c̄ and the remaining n− 1 firms all have the lowest cost c, and all of this is known, the
high cost firm will still produce. This assumption is equivalent to

1 + (n− 1)c− nc̄ > 0, (10)

which is easily seen to imply (6), so that only the interior solution is an equilibrium of the
quasi-model.7 For n = 3 it also implies (8) (as c̃ ≤ c̄ < (1 + 2c)/3 so that 2c̃ − 4c <
(2− 8c)/3 ≤ 2/3). This means that there is some hope that, at least in the case of tri-opoly,
the equilibrium strategies calculated for the quasi-model are also equilibrium strategies for
the true model. It is not guaranteed though, as one would have to check whether a firm
would prefer to deviate to a much higher quantity that would provoke price to fall to zero in
some circumstances. I will not pursue this investigation here. Namely, for n > 3 assumption
(10) does certainly not guarantee (8). Consider, for example, the case with n = 4, c = 0,
c̄ = 1/5 and c̃ > 1/6. Assumption (10) holds but necessary condition (8) does not.

Hence, the assumptions usually made in the literature are not yet sufficient to guarantee
that the strategies calculated above are really equilibrium strategies. In fact, when (8) is not
satisfied, these strategies are certainly not equilibrium strategies and some other equilibrium
must exist (taking existence of equilibrium for granted). And even when (8) is satisfied, one
cannot yet conclude that the strategies are equilibrium strategies as one has to check for
deviations that yield the price equal to zero in some circumstances. That is, condition (8)
is necessary but not sufficient. I present an example in the next section where condition (8)
is satisfied but the strategies calculated above do not constitute an equilibrium. But even if
the parameters of the model are such that the strategies calculated are indeed equilibrium
strategies, it is feasible (under some parameter conditions) that additional symmetric equi-
libria exist. Hence the claimed uniqueness is not achieved! Again, I will demonstrate this
by means of an example in the next section.

Before I come to the example, let me notice that for large enough n, neither (6) nor
(9) will hold (whenever F (c) = 0).8 This means that for large n, the equilibrium cannot
be interior and the nonnegativity constraint of the quantities will necessarily bind for some
(high) cost parameters. Also, the nonnegativity constraint on prices will necessarily bind for
some (low) cost parameters. This implies that a thorough analysis of free entry equilibria
must either assume high fixed costs of entry (to keep the number of firms that enter down)
or is forced to calculate and use the correct equilibrium strategies taking into account both
nonnegativity constraints on prices and quantities. The latter also applies for studies of the
competitive limit of oligopoly markets.

6For example, Shapiro (1986, p. 436) and Vives (2002, p. 364) make this assumption.
7Clearly, (10) is violated in Example 1.
8It is clear that (6) does not hold for large n as the left-hand side of the inequality is linear and strictly

decreasing in n. To see that (9) does not hold for large n is more involved, as the cutoff value ĉ is determined
implicitly by (7) and depends on n. However, it is easy to see that (9) holds if and only if 2(1− ( 2

n + c)) ≤
(n− 1)

∫ c+2/n

c
F (c)dc. In the limit as n tends to infinity the left-hand side converges to 2(1− c) > 0, while

the right-hand side converges to 2F (c).
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4 Leading example

In this section I present a family of examples of an oligopoly with four firms who can have
either low or high marginal cost. The family of examples is parameterized by the probability
ρ of having low marginal cost. I will calculate all symmetric pure strategy Nash equilibria
of these examples. The key points that are demonstrated through this exercise are (1) for
an open set of parameters there exist multiple pure, symmetric, and interior equilibria; (2)
for an open set of parameters the unique interior solution of the quasi-model fails to be an
actual equilibrium of the true model, because large deviations are profitable; (3) for an open
set of parameters the unique constrained solution of the quasi-model fails to be an actual
equilibrium of the true model, because large deviations are profitable. The observation that
drives these results is that the probability that price is zero jumps discontinuously when a
firm’s output passes certain thresholds. This yields the global profit function non-concave
and first order conditions only yield local, but not necessarily global profit maximizing
outputs.

Example 2. Let n = 4 and assume the marginal cost can take only two values, c = 0
and c̄ = 1/5. Let ρ denote the probability of zero marginal costs. For any ρ > 0, condition
(10) is satisfied, and thus also the necessary condition for positive quantities (6) is satisfied.
The necessary condition for nonnegative prices (8) is satisfied if and only if ρ ≥ 1/6.

This does not mean that for ρ ≥ 1/6 the strategies calculated in (5) are in fact equilibrium
strategies. This is most easily seen for the case ρ = 1/6. For this parameter value, equation
(5) yields the strategies xi(0) = 0.25 and xi(1/5) = 0.15. As guaranteed by the conditions,
all quantities and prices are nonnegative. In particular, when all four firms have zero cost
the prevailing price will be exactly equal to 0. But it is clear that it is not optimal to
produce 0.25 when having low cost when we take into account that price cannot become
negative. Namely, 0.25 would be optimal when payoffs are really given by equation (1). An
infinitesimal increase of this quantity would yield a negative price (and payoff) in the case
that all rivals have low cost which would be exactly offset by the increase of payoff in the
other cases. When we take into account that price cannot drop below zero, the negative
effect disappears while the positive effect remains. This means that a firm would in fact
prefer to produce a bit more than 0.25 when it has low cost. It is shown below that the
unique symmetric Bayesian equilibrium in this case is given by xi(0) = 119

475
≈ 0.250526 and

xi(1/5) = 641
4275

≈ 0.149942.
I will now characterize all symmetric Bayesian equilibria in pure strategies. Let x(ρ)

denote the quantity of the low cost firm and let x̄(ρ) denote the quantity of the high cost
firm in a symmetric Bayesian equilibrium. For brevity I will sometimes omit the argument
ρ when no confusion can result. The low cost firm will produce more than the high cost firm
so x(ρ) > x̄(ρ). It will be convenient to distinguish six different cases.

Case I 0 < 1− 4x

Case II 1− 4x ≤ 0 < 1− 3x− x̄

Case III 1− 3x− x̄ ≤ 0 < 1− 2x− 2x̄

Case IV 1− 2x− 2x̄ ≤ 0 < 1− x− 3x̄

Case V 1− x− 3x̄ ≤ 0 < 1− 4x̄

Case VI 1− 4x̄ ≤ 0

9



Clearly, cases V and VI cannot occur as it would imply that the low cost firm always faces a
price of zero in equilibrium. Case IV cannot occur either. Namely, in this case the low cost
firm would only face a positive price in the case all other firms have high cost and choose x̄.
The optimal quantity for the low cost firm would therefore be to produce (1−3x̄)/2. Hence,
x = (1 − 3x̄)/2. But then 1 − 2x − 2x̄ = x̄ > 0, which is impossible in case IV. The other
cases are more involved and I will study them in turn. Note that in case I price will always
be positive, whereas in case II price is positive only if at least one of the four firms has high
cost. In case III price is positive only if at east two firms have high cost.

CASE I: 1− 4x(ρ) > 0. In this case the equilibrium candidate strategies must be given
by9 (5). That is

xI(ρ) =
13− 3ρ

50
(11)

and

x̄I(ρ) =
8− 3ρ

50
. (12)

Clearly, one necessary condition is that ρ > 1/6 so that x(ρ) < 0.25 and x̄(ρ) < 0.15.
Note that the expected payoff to a low cost firm will be equal to x(ρ)2.

I need to verify that the low cost firm will not want to deviate to a quantity x ∈ (1 −
3x, 1 − 2x − x̄). The payoff function for the low cost firm for quantities x in this interval
equals

π1(x) = 3ρ2(1− ρ)x(1− x− 2x− x̄) + 3ρ(1− ρ)2x(1− x− x− 2x̄)

+(1− ρ)3x(1− x− 3x̄). (13)

This function is concave in x and attains its maximum at

x1 =
3ρ2(1− 2x− x̄) + 3ρ(1− ρ)(1− x− 2x̄) + (1− ρ)2(1− 3x̄)

2(3ρ2 + 3ρ(1− ρ) + (1− ρ)2)

=
1 + ρ + ρ2 − 3x̄− 3ρ(1 + ρ)x

2(1 + ρ + ρ2)
(14)

=
26 + 20ρ + 20ρ2 + 9ρ3

100(1 + ρ + ρ2)
.

Note that x1 > 1 − 3x(ρ) if and only if ρ < 0.169194. The payoff obtained from using this
quantity equals (1 − ρ3)(x1)

2 which is less than or equal to x(ρ)2 if and only if ρ ≥ ρ̂ ≈
0.167902 where ρ̂ is the real root in (0, 1) of (1 − ρ3)x2

1 = x(ρ)2. Hence, for ρ ≥ ρ̂ the low
cost firm will not want to deviate to any x ∈ (1− 3x, 1− 2x− x̄).

Next I need to verify that the low cost firm will not want to deviate to a quantity
x ∈ (1 − 2x − x̄, 1 − x − 2x̄). The payoff function for the low cost firm for quantities x in
this interval equals

π2(x) = 3ρ(1− ρ)2x(1− x− x− 2x̄) + (1− ρ)3x(1− x− 3x̄). (15)

This function is concave in x and decreasing at x = 1 − 2xI − x̄I . Hence, such a deviation
will not be optimal. It is then also not optimal for the low cost firm to deviate to an even
higher quantity above 1− x− 2x̄ since the profit function is then also strictly decreasing.

9For later reference I use superscripts to refer to the case at hand.
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It remains to be verified that the high cost firm will not want to deviate to a quantity
above 1 − 3x. The payoff function for the high cost firm for quantities x in the interval
(1 − 3x, 1 − 2x − x̄) equals πH

1 (x) = π1(x) − x/5. It is readily verified that this function is
strictly decreasing for x > 1 − 3xI , for any ρ. Hence, the high cost firm will not want to
deviate to quantities in this interval. It is then also not optimal for the high cost firm to
deviate to an even higher quantity since the profit function is then also strictly decreasing.

I conclude that the strategies in (11) and (12) constitute an equilibrium if and only if
ρ ≥ p̂ ≈ 0.167902.

CASE II: 1− 4x(ρ) ≤ 0 and 1− 3x(ρ)− x̄(ρ) > 0.
In this case the low cost firm’s best reply x must be in the interval (1−3x, 1−2x− x̄). As

seen before, for quantities x within this interval the firm’s profit function is given by π1(x)
in (13). Thus, by (14) it follows that

x =
1 + ρ + ρ2 − 3x̄− 3ρ(1 + ρ)x

2(1 + ρ + ρ2)
. (16)

The high cost firm will have the reaction function derived in equation (2) and thus

x̄ = (1− 3ρx− 3(1− ρ)x̄− 1/5)/2. (17)

The candidate equilibrium is thus the solution of the system of equations (16) and (17) which
gives

xII(ρ) =
13 + 10ρ + 10ρ2 − 15ρ3

25(2 + 2ρ + 2ρ2 − 3ρ3)
(18)

x̄II(ρ) =
8 + 5ρ + 5ρ2 − 15ρ3

25(2 + 2ρ + 2ρ2 − 3ρ3)
. (19)

A necessary condition for xII(ρ) ≥ 1/4 is ρ ≤ 0.176991. For any ρ we have that 1−3xII(ρ)−
x̄II(ρ) > 0.

I have to check that the low cost firm does not want to deviate to a quantity below
1−3x(ρ). The best of such low quantities would be equal to x′ = (1−3(ρx(ρ)+(1−ρ)x̄(ρ))/2.
This is less than 1 − 3x(ρ) only for ρ > 0.173746. So for ρ < 0.173746 the low cost firm
will certainly not deviate in this fashion. For intermediate values of ρ I have to compare the
payoffs. Deviating yields no more than sticking to x(ρ) if (x′)2 ≤ (1− ρ3)x(ρ)2. That is, for
ρ ≤ ρ̃ ≈ 0.175322 where ρ̃ is the real root in (0, 1) of (x′)2 = (1− ρ3)x(ρ)2.

I also have to check that the low cost firm does not want to deviate to a quantity
x ∈ (1−2x− x̄, 1−x−2x̄). For such quantities the firm’s profit function is equal to π2(x) as
defined in (15). This function is concave in x and decreasing at x = 1− 2xII − x̄II . Hence,
such deviations are not optimal. It follows that deviating to an even higher quantity is not
optimal either.

It remains to be shown that the high cost firm will not want to deviate to a quantity
above 1 − 3x. The payoff function for the high cost firm for quantities x in the interval
(1 − 3x, 1 − 2x − x̄) equals πH

1 (x) = π1(x) − x/5. It is readily verified that this function is
strictly decreasing for x > 1 − 3xII , for any ρ. Hence, the high cost firm will not want to
deviate to quantities in this interval. It is then also not optimal for the high cost firm to
deviate to an even higher quantity since the profit function is then also strictly decreasing.

I conclude that the strategies in (18) and (19) constitute an equilibrium if and only if
ρ ≤ ρ̃ ≈ 0.175322.

CASE III: 1− 3x− x̄ ≤ 0 < 1− 2x− 2x̄
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Around the equilibrium strategies profit for the low cost firm is given by π2(x) while the
profit for the high cost firm is given by π1(x) − x/5. It follows that an equilibrium in this
case is characterized by

x =
1 + 2ρ− 3(ρ + 1)x̄− 3ρx

2(1 + 2ρ)

x̄ =
4− 5ρ3 − 15(1− ρ)x̄− 15(ρ− ρ3)x

10(1− ρ3)

from which I find

xIII(ρ) =
13 + 23ρ− 30ρ2 + 5ρ3 − 5ρ4

25(1− ρ)(2 + 6ρ + ρ3)

x̄III(ρ) =
8 + 13ρ− 30ρ2 + 5ρ3 − 5ρ4

25(1− ρ)(2 + 6ρ + ρ3)
.

Now x̄III(ρ) ≥ 0 implies that ρ < 0.8 while 1 − 3xIII(ρ) − x̄III(ρ) ≤ 0 implies that
ρ > 0.75. However, it can be verified that the low cost firm has an incentive to deviate
downward to a quantity below 1− 2xIII(ρ)− x̄III(ρ). Namely, for such quantities its profit
function is given by π1(x) which is maximized at

x̃(ρ) =
26 + 72ρ− 18ρ2 − 19ρ3 − 60ρ4 − 10ρ6

50(1− ρ3)(2 + 6ρ + ρ3)
.

For 0.75 < ρ < 0.8, it can be verified that this deviation is profitable. Hence, there exists no
equilibrium in this case.

I summarize the findings:

Lemma 6 Let ρ̃ ≈ 0.175322 and ρ̂ ≈ 0.167902.

1. For ρ > ρ̂, the strategies in (11) and (12) constitute an equilibrium.

2. For ρ < ρ̃, the strategies in (18) and (19) constitute an equilibrium.

3. No other symmetric pure Bayesian Nash equilibrium exists for any 0 < ρ < 1.

ρ

x(ρ)

ρ̃ρ̂

0.25

Figure 1: Multiple pure and interior equilibria.

Fig. 1 illustrates nicely the results obtained. The horizontal axis represents the proba-
bility ρ of having low cost. The vertical axis represents the quantity produced by the low
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cost firm. The lower graph corresponds to the solution of the quasi-model where prices
can become negative (i.e., xI(ρ)). The upper graph corresponds to the solution under the
hypothesis that price will be zero in case all other firms have low cost as well (i.e., xII(ρ)).
The analysis above has shown that the solution of the true model is given only by the solid
parts of both graphs. In particular, for ρ ∈ (ρ̂, ρ̃) there are multiple interior equilibria. Also
note that at the extremes of this interval xI(ρ̂) < 0.25 and xII(ρ̃) > 0.25. Moreover, observe
that xI(ρ) and xII(ρ) are decreasing in ρ and that xII(ρ) > xI(ρ).

5 Conclusion

The linear Cournot model with private information about costs is widely used in the lit-
erature. Usually boundary conditions are either ignored or assumed away. However, the
assumptions made only concern the nonnegativity constraints for quantities. In this note I
have shown that also the nonnegativity constraint for price has to be taken into account.
The main example shows that multiple pure, symmetric and interior Bayesian Nash equi-
libria exist for some parameters. Moreover, it shows that solving the model by ignoring the
constraints and afterwards verifying that the constraints do not bind is no guarantee to find
a true solution. Furthermore, it has been shown that in the case of many firms, the assump-
tion that all firms will produce strictly positive quantities cannot hold in any equilibrium.
This is especially relevant for studies of free entry, of information aggregation, information
acquisition and information sharing, and of the study of collusion.
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