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Abstract

An affine asset pricing model in which agents have rational but heterogeneous expectations about future
asset prices is developed. We estimate the model using data on bond yields and individual survey re-
sponses from the Survey of Professional Forecasters and perform a novel three-way decomposition of
bond yields into (i) average expectations about short rates (ii) risk premia and (iii) a speculative compo-
nent due to heterogeneous expectations about the resale value of a bond. We prove that the speculative
term must be orthogonal to public information in real time and therefore statistically distinct from risk
premia. Empirically, the speculative component is quantitatively important, accounting for up to one
percentage point of US yields. Furthermore, estimates of historical risk premia from the heterogeneous
information model are less volatile than, and negatively correlated with, risk premia estimated using a

standard Affine Gaussian Term Structure model.
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A large part of the existing empirical literature analyzing the term structure of interest rates implicitly or
explicitly decomposes bond yields into risk premia and expectations about future risk-free interest rates.!
However, both casual observation and survey evidence suggest that there is a lot of disagreement about
future interest rates. In this paper, we ask how this fact should change our view about what components
make up bond yields. We present a flexible affine asset pricing framework in which agents have rational but
heterogeneous expectations about future bond yields. This framework is then used to argue that heteroge-
neous expectations about the resale value of a bond give rise to an empirically important third bond yield
component due to speculative behavior. We prove that the speculative component must be orthogonal to
public information and is therefore statistically distinct from both risk premia and expectations about future
risk-free interest rates.

In markets where assets are traded among agents who may not want to hold an asset until it is liquidated,
expectations about the resale value of an asset will matter for its current price. When rational agents have
access to different information about future fundamentals, the price of the asset deviates systematically
from the “consensus value” defined as the hypothetical price that would reflect the average opinion of the
(appropriately discounted) fundamental value of the asset (e.g. Allen, Morris and Shin 2006, Bacchetta and
van Wincoop 2006, Nimark 2012). These deviations from the consensus price occur because an individual
agent’s expectation about the resale value of an asset can with heterogeneous expectations be different
from what the individual agent would be willing to pay for the asset if he were to hold it until maturity.
Heterogeneous expectations then give rise to speculative behavior in the sense of Harrison and Kreps (1978),
who defined investors as exhibiting “speculative behavior if the right to resell a stock makes them willing to
pay more for it than they would pay if obliged to hold it forever (p.323)”.2

In this paper, we derive an affine pricing framework for empirically quantifying the type of speculative
behavior described above. The framework differs from most of the previous theoretical literature on asset
pricing with heterogeneously informed agents in that we do not specify utility functions, nor do we model

the portfolio decisions of agents explicitly.® Instead, we make an effort to stay as close as possible to the

'Some examples are Joslin, Singleton and Zhu (2011), Duffee (2002), Cochrane and Piazzesi (2008), Bauer, Rudebusch and
Wu (2012), Joslin, Priebsch and Singleton (2012).

Harrison and Kreps (1978) impose a short sales constraint on the agents in their model that implies that speculative behavior
always increases the price of the asset. In our framework, speculation can either increase or decrease the price of a bond.

3Some early examples of papers studying the theoretical implications of heterogeneous information on asset prices in a rational
setting are Grossman (1976), Hellwig (1980), Grossman and Stiglitz (1980), Admati (1985), Singleton (1987). More recent exam-
ples include Allen, Morris and Shin (2006), Bacchetta and van Wincoop (2006) and Nimark (2012). As we show in the Internet
Appendix associated with the paper, the affine model presented here nests the equilibrium model in Nimark (2012), in which agents
make explicit trading and portfolio decisions, as a special case.



large empirical literature that uses affine models to study asset prices. In the standard full information affine
no-arbitrage framework, variation across time in expected excess returns is explained by variation across
time in either the amount of risk or in the required compensation for a given amount of risk. Gaussian
models such as the Ag(N) models of Dai and Singleton (2000) or the model in Joslin, Singleton and Zhu
(2011) focus on the latter and identify the price of risk as an affine function of a small number of factors
that also determine the dynamics of the risk-free short rate. Similar to this approach, we specify a model
in which variation in expected excess returns across individual agents, in the absence of arbitrage, must be
accompanied by variation across agents in the required compensation for risk. The framework is flexible
and nests a standard affine Gaussian term structure model if the signals observed by agents are perfectly
informative about the state. This facilitates comparison of our results to the large existing literature on affine
term structure models. However, the framework is general and can also be used to price other classes of
assets.

The main empirical contribution of the paper is a novel three-way decomposition of bond yields. We
show that in addition to the classic components due to risk premia and expectations about future risk-free
short rates, heterogeneous information introduces a third term due to speculation. The speculative compo-
nent in bond yields is quantitatively important, accounting for up to a full percentage point of medium- to
long-maturity yields in the 1980s and up to 60 basis point of yields in the low nominal yield environment of
the last decade. The speculative term arises when individual agents’ expectations about the average expec-
tations about the resale value of a bond is different from their own best estimate. This difference between
an agent’s expectation and his expectation about the average expectation can equivalently be thought of as
a higher order prediction error, i.e. a prediction about the error in other agents’ forecasts. In the model, all
agents form rational, or model consistent, expectations and it is thus not possible for individual agents to
predict the error in the average expectation based on information that is also available to all other agents. The
speculative component must therefore be orthogonal to all public information available in real time which
makes it statistically distinct from traditional risk premia, which can be predicted conditional on publicly
available information such as bond prices.

Allowing for heterogeneous information also changes the cyclical properties of the common component
of risk premia, as compared to a full information model. Risk premia estimated from the model with
heterogeneous information is less volatile than, and negatively correlated with risk premia extracted using

the nested full information model of Joslin, Singleton and Zhu (2011).



When implementing the framework empirically, we treat the individual responses in the Survey of Pro-
fessional Forecasters as being representative of the bond yield expectations of agents randomly drawn from
the population of agents in the model. There is substantial dispersion of survey responses and the average
cross-sectional standard deviation of the one-year-ahead forecasts of the Federal Funds Rate is approxi-
mately 40 basis points. In reality, bond prices depend on many things, including monetary policy, current
attitudes towards risk and political, macroeconomic and financial market developments. There is thus a vast
amount of information available that could help predict future bond prices.

In the set-up presented here, different agents observe different signals with idiosyncratic noise com-
ponents about a vector of common latent factors. The agents use these signals to form rational, or model
consistent, expectations about future risk-free rates and risk premia. This set-up is a simple way to capture
the fact that, in practice, it is too costly for agents to pay attention to all available information that could
potentially help predict bond prices. With slightly different vantage points and historical experiences, agents
instead tend to observe different subsets of all available information. Since the signals contain information
about a common vector of latent factors, information sets will be highly correlated across agents, but not
perfectly so. Formally, the set-up is similar to the information structure in Diamond and Verrecchia (1981),
Admati (1985), Singleton (1987), Allen, Morris and Shin (2006) and Bacchetta and van Wincoop (2006).
Because the model is populated by a continuum of agents who have heterogeneous expectations about future
bond yields, it is possible to use individual survey responses of interest rate forecasts in combination with
likelihood based methods to estimate the parameters of the model. While other papers have used survey
data to estimate term structure models, we believe our paper is the first to use a model that can explain the
observed dispersion of survey forecasts.* Unlike papers that treat individual survey responses, or a mea-
sure of central tendency such as the mean or median survey, as a noisy measure of a single representative
agent’s forecast, we can use the full cross-section of survey responses to get sharper estimates of how much
information that is available to the agents that populate our model.

The information in the cross-section of survey forecasts clearly disciplines the parameters that directly
govern the precision of agents’ information. If the agent-specific signals are too precise or so noisy that
they will be disregarded, the model will fail to fit the cross-sectional dispersion of forecasts in the Survey

of Professional Forecasters. Less obviously, using the full cross-section of individual survey responses also

“See D’ Amico, Kim and Wei (2008), Chun (2011) and Piazzesi and Schneider (2011) for examples of studies who have used
survey data to estimate term structure dynamics.



restricts the dynamics of bond yields. If observing bond yields reveals the latent factors perfectly, agents will
also disregard their agent-specific signals. Parameterizations of the model that make the latent factors an
invertible function of bond yields will thus be rejected by the data, since too informative bond prices would
imply a counter-factually degenerate cross-sectional distribution of expectations. That the model is forced
to match the observed dispersion of yield forecasts thus empirically imposes restrictions that are similar to
the theoretical restrictions imposed in models with unspanned factors, e.g. Duffee (2011), Joslin, Priebsch
and Singleton (2010) and Barillas (2013).

The restrictions that the speculative term must be orthogonal to bond prices in real time and that bond
prices cannot be too revealing if we are to fit the cross-sectional dispersion of survey forecasts are both
consequences of that agents use the information in the endogenous bond prices to form model consistent
expectations. In models employing alternative assumptions about agents’ beliefs and where agents do not
need to filter from endogenous bond prices, such as the models in Xiong and Yan (2010) and Chen, Joslin
and Tran (2010, 2012), these restrictions would be absent. For example, in the model of Xiong and Yan
(2010), two groups of agents with heterogeneous beliefs take on speculative positions against each other.
The interaction between heterogeneous expectations and relative wealth dynamics in that model would to
an outside econometrician be indistinguishable from traditional time varying risk premia and not be orthog-
onal to bond prices. Unlike our model, Xiong and Yan (2010) thus proposes an alternative explanation to
the well-documented failure of the expectations hypothesis. Another difference between the two papers is
that in the equilibrium model of Xiong and Yan (2010), the interaction between heterogeneous beliefs and
relative wealth dynamics are important. Since we do not model the trading and portfolio decisions of agents
explicitly, our framework is silent on the empirical importance of this channel.

The next section derives a number of implications of heterogeneous information for stochastic discount
factor based asset pricing and defines the speculative component of a bond’s price in a general setting. There,
we formally prove that excess returns that are predictable based on agent-specific information, as well as
the aggregate speculative component in bond prices, must be orthogonal to public information in real time.
Section II then presents an operational affine framework for empirically modeling the term structure of
interest rates when agents observe different information relevant for predicting future bond prices. Section
III shows how the affine model can be used to decompose the term structure into the standard components,
i.e. risk premia and expectations about future short rates, as well as a speculative component driven by

information heterogeneity. Section IV describes in more detail the empirical specification and how the



model can be estimated. Section V presents the empirical results. Section VI concludes and the Appendix

contains an additional proof and detailed derivations of the affine model’s pricing equations.

I. Stochastic discount factors and heterogeneous information

A number of implications of information heterogeneity for asset pricing can be understood without
reference to a fully specified model. In this section we derive some results that can be framed simply in
terms of stochastic discount factors and excess returns. We first show that if agents disagree about future
bond prices, agents’ stochastic discount factors must also differ. We then demonstrate that the component of
expected excess returns that is due purely to information heterogeneity is statistically distinct from standard
sources of time varying risk premia because it must be orthogonal to public information in real time. In
this section we also define the speculative component of bond prices as the difference between the actual
price of a bond and the counterfactual price the bond would have if all agents shared the expectations of the
“average” agent and this fact was common knowledge. The section following this one presents an explicit
affine no-arbitrage model, featuring the properties discussed and derived here, that we will later use to
quantify the speculative term in bond prices. However, the results derived here are general and apply also to
equilibrium models of the term structure of interest rates where agents are heterogeneously informed, such

as the model in Nimark (2012).

A. Stochastic discount factors and expectations about future bond prices

In standard common information models, the price P;* of a zero-coupon, no-default bond with n periods
to maturity is given by

Pl = E [My P3| Q4 (1)

where (2, is the common information set in period ¢ and M, is the stochastic discount factor. In the absence
of arbitrage, this relationship has to hold for all maturities n. In a model with heterogeneous information
a similar relation holds, except that the SDF is now agent-specific so that for all agents j € (0, 1) and all
maturities 7 the relationship

Pl =E | M, P3| 9 @)



must hold. Here Q{ is the information set of agent j in period ¢. All agents observe the current price for
bonds so the left hand side of (2) is common to all agents. However, agent-specific information sets in-
troduce heterogeneity in expectations of P/\";". For (2) to continue to hold when expectations about ﬁHl
differ across agents, the stochastic discount factor M J 1 must also be agent-specific. There is thus a close
relationship between heterogeneity in expectations about future prices and heterogeneity in stochastic dis-
count factors. Any SDF based framework that incorporates heterogeneity in expected returns must therefore
allow for heterogeneity in stochastic discount factors as well. As a consequence, the model presented in

Section II features agent-specific state variables. These state variables determine both an individual agents’

expectation about future bond prices as well as the agent’s required compensation for risk.

B.  Excess returns and public information

In equilibrium models with heterogeneously informed agents such as those of Hellwig (1980), Admati
(1985) or Singleton (1987), agents with more optimistic views about the return on a risky asset will hold
more of it in their portfolios. In equilibrium, the higher excess return that optimistic agents expect to earn
relative to pessimistic agents is compensation for holding a riskier portfolio. A positive excess return that
is predictable based on agent-specific information is thus similar to a positive expected excess return that
arise from standard sources in that it can only be earned as compensation for risk. However, it is possible
to demonstrate that the component of expected excess return that is due to heterogeneous information has a
distinct characteristic: It must be orthogonal to public information in real time.

Start by defining agent j’s expected one-period excess return TLI?Z ; on a zero-coupon bond with n periods

to maturity as

ray; = E [pH_ll | QJ} py =1y 3)

where p}’ is the log price of an n-period bond and 7 is the one period risk-free rate. If agents have hetero-
geneous expectations about future bond prices, definition (3) implies that there will also be heterogeneity
in expected excess returns. The difference between agent j’s expected excess return and the cross-sectional

average expected excess return is given by

rafy — /Tﬂ?&di [pt+11 | QJ /E pt—i—l t] di 4)



In general, this quantity will not coincide with agent j’s subjective view of the same quantity. Taking the

expectation of (4) conditional on agent j’s information set and denoting this quantity by s;’; gives

sgj = rxgj —F {/ rxgidi | Qg] ®)

which by (3) can be expressed as

51;,] [(ptﬂ /E pt+11 | Ql Z) |Qg} . (6)

so that s’ is the difference between the return that agent j’s expects to earn on holding an n-period bond for
one period and what he thinks the average agent expects to earn. That is, s’ ; can be understood as a second
order prediction error, i.e. agent j’s prediction about the error other agents are making in period ¢ when
predicting what the price of the bond will be in the next period. When all agents form rational expectations,
it is not possible for individual agents to predict the errors that other agents are making by conditioning on
public information, which by definition is available to all agents. The term s;’; must thus be orthogonal to

public information in real time. We now prove this more formally.

PROPOSITION 1: The term si'; is orthogonal to public information in real time, i.e.
E (sfjw) =0:V w €y )

where )y is the public information set at time t defined as the intersection of agents’ period t information

sets

N o (8)

J€(0,1)

Proof. The law of iterated expectations states that for a random variable X
E[EX |QQ] =FE[X|]

if ' C Q. Taking expectations of s;.; conditional on the public information set €2, gives

E[S%\Qt]—E< Kpm / E [y | 9] )!QJ} !Qt> )



The definition of the public information set (8) implies that 2; C Qg for all j. Applying the law of iterated

expectations to the right hand side of (9) then gives

Elst; 1] = B Q) - B @)y | ) (10)

= 0

which completes the proof. O

That expected excess returns due to heterogeneous information must be orthogonal to public information
in real time makes 53’ ; statistically distinct from classical time varying risk premia. There is a large literature
that documents that excess returns on nominal bonds can be predicted by conditioning on public information.
Notable examples using term structure variables include Fama and Bliss (1987), Duffee (2002), Dai and
Singleton (2002, 2003) and Cochrane and Piazzesi (2005). There are also papers that document that non-
term structure variables, such as macroeconomic indicators, may help predict excess returns, e.g. Ludvigson
and Ng (2009) and Joslin, Priebsch and Singleton (2012).

Even though excess returns due to information heterogeneity are statistically distinct from the pre-
dictable excess returns documented in these papers, introducing heterogeneous information into an SDF
based asset pricing model does not require modifications to the specification of agents’ required compen-
sation for risk. In the next section we will demonstrate how the risk premia associated with heterogeneous
expectations about future bond prices can be parsimoniously parameterized in an affine model that nests the

standard full-information model as a special case.

C. Bond prices and higher order expectations

Harrison and Kreps (1978) defined speculative behavior as when the right of reselling an asset before
maturity changes its equilibrium price. In the model presented here, we implicitly assume that long maturity
bonds are traded in every period and that agents are price takers. Individual agents therefore need to predict
what other agents will be willing to pay for a bond at the next trading opportunity. Since the price other
agents will be willing to pay for a bond in the future depends on their future risk adjusted and discounted
expectations of bond prices further into the future, individual agents need to form higher order expectations

about these quantities to predict the next period bond price.



It is well known that higher order expectations are distinct from first order expectations when agents
have heterogeneous information (e.g. Allen, Morris and Shin 2006 and Bacchetta and van Wincoop 2006).
It is thus possible that individual agents believe that other agents will be willing to pay more (or less) for a
bond in the future than they would be willing to pay themselves if they were to hold on to the bond until it
matures. Heterogeneous information thus introduces what Allen, Morris and Shin (2006) call a “Keynesian
beauty contest” into asset markets, where heterogeneously informed agents need to “forecast the forecast of
others”.

To make this argument more formally, it will be useful to restrict our attention to jointly log-normal
processes for prices and stochastic discount factors. We will also assume that conditional variances are
deterministic and common across agents. (The latter assumption is not crucial for any of the results, but

helps simplifying the notation.) We can then write the no-arbitrage condition (2) in log terms as
. , 3 . 1 . 3 A
v = E |miy, |94 + B ot 1 9] + 5Var (mly +picl | 0F) an

The assumption that individual agents are price takers means that when we evaluate the no-arbitrage condi-
tion (11) for agent j, we replace the expectation of the next period price p?ﬁl by agent j’s expectation of
what other agents will be willing to pay for the bond in the next period. Leading the no-arbitrage condition

(11) and using it to substitute out p?Jr_ll from agent j’s expectation above gives

o= E|mi |9 (12)
+E [E (mi+2 | Qiﬂ) | Qﬂ +FE [E (p?;22 | Qf‘:+1) | Qﬂ

1 . _ ; 1 ; - ]
+§Va7“ (mi—i—l +pi | Qg) T §Va7« (miso + s | Q%in)

where the superscript ¢ is used to indicate any agent ¢ such that ¢  j. In this paper, agent j does not have any
information relevant for predicting the expectations and stochastic discount factors of any other particular
agent. Agent j’s expectations of any other agent’s expectation then coincide with agent j’s expectation
about the average expectation. That is, agent j's expectation about agent 7’s future expectation about bond

prices and discount factors coincide with agent j's expectations about the future cross-sectional average



expectation about the same quantities. We can thus substitute in

E (B[ 10ia] 19]) (/E pt+22|Qt+1]dz|Q) (13)

and

E (E [mige | Qga] | Qj = (/E Miyo | Q] di| )

into (12). Since the resulting expressions hold for each agent j, and thus also for the average agent, the log

price of an n period bond can be written as

/ B [mi, |94 d (14)

/ K/E Mo | ] di+ /E [Pis | Qi) di) | Q{] dj

—|—§Var (mHl + ol | Qj) + V‘”’ (mive + 03 | Q1)

The price of a bond with n periods to maturity in period ¢ is thus partly a function of the average expectation
in period ¢ of the average expectation in period ¢ 4 1 of the price of the same bond in period ¢ + 2 when
it has n — 2 periods left to maturity. If all agents shared the same information set, we could apply the
law of iterated expectations and replace this second order expectation of the price p;’,; 2 with the common
expectation. However, with heterogeneous information sets, the law of iterated expectations does not apply
and agents second order expectations, i.e. their expectations about other agents’ expectations about p;" +2
may differ from their own expectations about the price.

We can continue to recursively substitute out expectations about future prices from equation (11) and
express the log price of a bond as the sum of higher order expectations about future stochastic discount

factors

/E[m{+1|9ﬂ dj (15)
+/E[/E[m§+2|9§+l]di9{} dj + ...

e[l el o]

1+ :
5 Z Var <m§+1+s + o | Qt+s>
s=0
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where we used that the conditional variance terms are the same for every agent to simplify the sum of the
conditional variance terms. In the equilibrium model of Nimark (2012), the price of an n-period bond can
be written as a function of a random supply shock and higher order expectations about future risk-free short
rates. That model is a restricted special case of the more general framework presented here where we allow

for both time-discounting and risk-adjustment to influence the rate at which future pay-offs are discounted.’

D. The speculative component in bond prices

We will define the speculative component in the price of a bond as the difference between the actual
price p} and the counterfactual “consensus” price p;'. As in Allen, Morris and Shin (2006), the consensus
price is the hypothetical price a bond would have if by chance, all agents’ higher order expectations about
future discount rates coincided with the current first order expectations of the average agent (while hold-
ing conditional variances fixed). Iterating the price equation (11) forward under this assumption gives the

consensus price of a bond as a sum of the average agent’s first order expectations about future discount rates

n n—
B : 11 .
Py = E /E [mi+s | Qﬂ dj + B § Var (mi+1+s + P | Qt+s) (16)
s=0

By subtracting the consensus price (16) from the actual price (15) we can write the speculative term pi* — p}

as a sum of higher order prediction errors about future discount factors

B = /E iy =l | Q] dj (17)
_/E[mgm /E mt+2|Qt+1]dZ’Q:|d]_

el o] ol ]

Stochastic discount factors generally have a time discount and a risk adjustment component and the price
of the asset depends negatively on both. This means that the speculative component (17) will be positive if
individual agents, on average, think that other agents underestimate either future risk-free interest rates or
future risk premia.

Since the speculative term is caused by individual agents believing that other agents either over- or

>The Internet Appendix contains a brief description of the equilibrium model of Nimark (2012) and exactly how that models
maps into the affine framework presented in Section II.
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underestimate future discount rates, it must also be orthogonal to public information in real time. That is, it
is not possible for individual agents to predict other agents’ forecast errors using public information. This

result is stated more formally in Proposition 2.

PROPOSITION 2: The speculative term py — py is orthogonal to public information in real time, i.e.

E([pf —pflwe) =0:V wp € (18)

where )y is the public information set defined as in Proposition 1.
Proof. In the Appendix. 0

As in Proposition 1, the proof follows directly from taking expectations of (17) conditional on the public
information set {2; and using that {}; C Qg ¢ forevery j and s > 0.

So far, we have derived some general results that should hold in any SDF based asset pricing model with
heterogeneously informed agents that form model consistent expectations. In particular, we have shown
that both the component of an agent’s expected excess return that is due to information heterogeneity and

the speculative component in bond prices must be orthogonal to public information in real time. The next

section develops an explicit affine no-arbitrage model with these properties.

II. An affine term structure model with heterogeneous information

This section describes an operational framework for arbitrage-free asset pricing where agents have het-
erogeneous information relevant for predicting future bond returns. The basic set-up follows a large part of
the affine term structure literature (see Duffie and Kan 1996 and Dai and Singleton 2000) and posits that the
short rate r; is an affine function of a vector of exogenous state variables.

Allowing for heterogeneously informed agents necessitates two changes in terms of how the model is
specified and solved relative to the standard full information set-up. The first is that we need to specify a
functional form for the individual agents’ SDFs that allows for heterogeneity in expected returns. Below we
propose a form that is analogous to the standard formulation under full information and, indeed, nests the
standard formulation when signals reveal the exogenous state perfectly. This strategy allows for a flexible

empirical specification while nesting more restricted equilibrium models such as the model in Nimark (2012)

12



as a special case.

As explained in Section I, heterogeneous information sets make it necessary for agents to “forecast the
forecasts of others”, e.g. Townsend (1983). The exogenous factors are then no longer a complete description
of the state of the model. Instead, we need to expand the state vector to also include higher order expectations
of the factors, i.e. expectations about other agents’ expectations about the factors. The law of motion for
the higher order expectations of the factors has to be determined jointly with bond prices since agents use
the information contained in bond prices to form expectations about the unobservable factors and about the
expectations of other agents. Heterogeneous information thus introduces an additional step in deriving a
process for bond prices that is not present in the full information set-up with only exogenous state variables.
To solve the model, we employ the approximation method proposed in Nimark (2011).

The end product of this section is an equation that describes the price of an n-period bond as a function
of the state of the model. To get there, we start by defining the state and by conjecturing a functional form
for the bond price equation. We then describe the law of motion of the state and how it is determined partly
by the information sets available to agents. Taking the law of motion of the state and the conjectured bond
price equation as given, it is straightforward to determine the risk associated with holding bonds. This risk

can then be priced by the specified stochastic discount factor.

A. The conjectured processes for bond prices and the state

Following the affine term structure literature, the one period risk-free rate 7; is an affine function of the
state variables x

re = 0g + 5;1‘1‘/ (19)

The d-dimensional vector x; follows a first order vector auto regression
zp1 = pt + FPai 4+ Ceppq 641 ~ N(0,1). (20)

In a full information setting, we would normally proceed by specifying a functional form for the stochastic
discount factor that would allow us to derive the price of a bond of any maturity as an affine function of the
factors x;. In our heterogeneous information set-up the factors determining the short rate are not directly

observable by the agents. Instead, agents observe the signal vector a:{ , which is the sum of the true vector

13



z; and an idiosyncratic noise component
w} =z +Quf sl ~ N (0,1) 2D

where the noise shocks ng are independent across agents. The vector x{ is the source of agent-specific
information about the unobservable exogenous state x;. The precision of the signals a;‘Z is common across
agents and determined by the matrix (). Apart from the dimensionality of the vector x;, this specification
of agents’ private signals is completely analogous to those in for instance Admati (1985), Singleton (1987)
and Allen, Morris and Shin (2006).

Agents cannot by direct observation distinguish between idiosyncratic noise shocks ng and the common
factors xy. This implies that an innovation to x; is partly attributed to idiosyncratic sources so that on average,
agents under-react to innovations to the factors. The presence of the idiosyncratic shocks thus changes the
responses of expectations and bond prices to innovations in z;, even though they average to zero in the
cross-section.

As explained in Section I, agents’ expectations about future bond prices depend on their expectations
about other agents’ future expectations about other agents’ discount rates further into the future. These
higher order expectations of future discount rates can be reduced to higher order expectations about the
current latent factors x¢. The relevant state of the model can be shown to be the hierarchy of higher order

expectations X; defined as

Lt
e
X = (22)
oA
where the average k order expectations xgk) is defined recursively as
2P = / E [xg’“‘” | Q{} dj. (23)

The integer k is the maximum order of expectations considered. Nimark (2011) demonstrates that a finite &

is sufficient to approximate the equilibrium dynamics accurately.
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We will conjecture (and later verify) that the state X follows a first order vector auto regression
Xip1 =px + FXe + CUt+1 U1~ N(O, I) 24)

where w41 1S a vector containing all aggregate shocks, i.e. those shocks that either affect the true state x;
or the average (higher order) expectations of x;. If the variance of the idiosyncratic noise shocks 77{ is zero,
the signal vector :z:i will reveal the factors z; perfectly. The higher order expectations in the hierarchy X,
then coincide with the true factors x; and each element of X; then follows the law of motion (20) of the
exogenous factors.

The price of a bond with maturity n is conjectured (and later verified) to be an affine function of the

state Xy plus a maturity specific disturbance v}
Pl = Ay + By X + v (25)

That is, bond prices depend on the exogenous factors x; as well as on the average higher order expectations
of these factors. The maturity specific disturbance v;* prevents bond prices from revealing the expectations
of other agents. The shocks v} thus play a similar role as the random supply shocks arising from noise
traders in Admati (1985). Since all agents use prices to extract information about the state X;, the maturity
specific shocks affect the average expectation about the state vector. The maturity specific shocks are thus
part of the vector w41 in (24).

In equilibrium models where agents solve an explicit portfolio problem, a positive supply shock makes
the price of an asset fall since a higher expected excess return is necessary to convince risk averse agents
to absorb the additional supply into their portfolios (e.g. Admati 1985 and Singleton 1987). The higher
expected excess return due to the increased supply is thus compensation that agents require for holding a
riskier portfolio with a larger share of the risky asset. The SDF based framework presented here is consis-
tent with this interpretation of the maturity specific disturbances v}*, though we do not model the portfolio
decisions of agents explicitly.®

It is perhaps worth pointing out here that even though the state vector is high dimensional, this by itself

will not increase our degrees of freedom in terms of fitting bond yields. The fact that the endogenous

%1n the Internet Appendix we demonstrate that the equilibrium model in Nimark (2012) is a special case of the affine framework
derived here in which supply shocks enter the equilibrium price in exactly the same way as the maturity specific shocks v in (25).
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state variables xgk) are rational expectations of the lower order expectations in J:Ekfl) disciplines the law

of motion (24) and the matrices F and C are completely pinned down by the parameters of the process
governing the true exogenous factors x; and the parameters that govern how precise agents’ signals about

x4 are. How to find the matrices F and C in practice is described in Appendix C.

B. Agents’ filtering problem

To form expectations about future bond prices, agents need to form an estimate of the current aggregate
state X;. Agents know the law of motion of the state X; as well as how the state maps into the vector of
observable variables and since the model is linear with Gaussian shocks, the Kalman filter delivers optimal
state estimates. In each period agents observe the short rate r;, a vector of current bond yields with maturity
upton

as well as the agent-specific signals xi . The variables observable to agent j can be collected in the vector zg

defined as

d=1 @7
Yt
Through observing equilibrium bond yields, agents extract information about the unobservable state of the
economy which partly consists of the expectations of other agents. This contrasts with difference-in-beliefs
models where agents “agree to disagree”. When agents agree to disagree, the beliefs of all agents are
common knowledge and from the agents’ perspective, there is no additional information about other agents’
beliefs in the endogenous yields.

Agents do not forget and the information set of agent j is the filtration defined by
of = {.9_,} (28)

The law of motion of the state (24) and the definition of the observables (27) then let us describe the filtering
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problem of agent j as a standard state space system

Xiv1 = px +FXi + Cupgq (29)
j th

2l = u,+DX;+R ' (30)
j
Ur

The vector of constants y, and the matrices D and R in the measurement equation (30) are defined in
Appendix C. Given the state space system (29) - (30), agent j’s state estimate evolves according to the

Kalman filter updating equation
E[X|9]] = (I- KD)FE [X, 1| 9] + K4 31)

where K is the Kalman gain. Since bond yields are part of the observation vector zf , the matrix D in the
measurement equation (30) is partly a function of the vectors B,, in the conjectured bond price equation
(25). This implies that we have to solve simultaneously for the filtering problem and the pricing equation
(25).

By the definition (22) of the state X, the state is partly made up of the cross-sectional average of the
expectation of the state, i.e. by the cross-sectional average of the update equation (31). The Kalman filter
thus plays a dual role in the model: It determines both agents’ expectations about the state as well as the law

of motion (24) of the very same state that the agents form expectations about.

C. The stochastic discount factor of agent j

Agents want to be compensated for the risk associated with holding bonds. The conjectured bond price
equation (25) implies that this risk arises from uncertainty about future states X; and from future realizations
of the maturity specific shocks vj'. Here we specify the agents’ stochastic discount factors that will be used
to price this risk.

The stochastic discount factor of agent j is denoted MtjJrl In the absence of arbitrage, the relationship

Pt = log E [Mg;lptzlmg] (32)
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must be satisfied for each agent j and maturity n. Following the full information affine asset pricing literature

closely, we specify the logarithm of agent j’s stochastic discount factor to follow
. 1 . . o .
mg+1 =Tt = §A§'EQA§ - A{’aiﬂ : aiH ~ N(0,%q) (33)

The vector ag 41 18 defined to span the conditional one-period-ahead forecast errors of agent j for each
maturity n. That is, for each maturity n, agent j's forecast error can be written as a linear function of the
vector a{ 11

Pt = B o 19] = Yorad, (34)

and the vector a‘g 1 thus spans the risk that agent j requires compensation for. Given the conjectured bond
price equation (25), agent j’s forecast in period ¢ of a bond price in period ¢ + 1 can be incorrect ex post
either because his forecast of the state X; 1 was incorrect or because of a maturity specific shock vy, |
(which by construction is unpredictable based on period ¢ information). Both the state forecast error and the

maturity specific shocks thus need to be included in the vector a{ 41

. X1 — B(Xi41|9)
al,, = ' (35)

Vt+1

where

Ut:|:vt2 'Z);L:| (36)

Given these definitions, the row vector v, that maps the vector a{ 41 into agent j’s one period ahead

forecast error of the price of an n — 1 period bond is given by

wlz[gg 0] (37)

if n = 2 (since there is no maturity-specific shock in the risk-free one period bond’s price) and

n—2

Yno1 = [ B, ¢ ] (38)

if n > 2. The vector e,, has a one in the nt” element and zeros elsewhere.
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The vector of risk prices A{ in agent j’s stochastic discount factor (33) is assumed to be an affine function

of the agent-specific state th and the maturity specific shocks v

A = Ao+ Ax X] + Aoy (39)

The agent-specific state Xg consists of the vector of agent j specific exogenous factors z; as well as of agent

j's expectations (up to order k ) about the latent vector x;

(40)

23,
I

B a0 0] |

The vector th determines both agent j’s required compensation for risk as well as his expectations about

future bond prices.

D. The bond price recursions

We now have all the ingredients needed to find A,, and B,, in the conjectured bond price equation (25).

Start by substituting in the expressions (33) for the SDF into the no-arbitrage condition (32) to get
1 . . o B ,
PP =logE [eXp <—7‘t = A S = Aad + p;";ll) yﬂg] A1)

We will substitute out the price p;ﬂ:ll from (41) via three intermediate steps. First, use the definition (34) to

write pfgll as the sum of agent j’s expectations about the price and his forecast error
o i .
Pt = B [ 104] + Yorady, (42)

Second, note that the conjectured price equation (25) and the law of motion of the state (24) together with

rational expectations imply that agent j’s expectation of the next period price can be expressed as a function

19



of his expectations about the current state, i.e.
B | 190] = Aner + Bl ypux + Bl FE [ X9 43)
Third, agent j’s expectation of the current state can by definition (40) be written as
E [Xt | Q{} — HX] (44)
where H is the average expectations operator H : RA(k+1) _y Ra(k+1)

0 I
H= dk (45)
0 o0
The matrix H increases each order of expectation in a hierarchy by annihilating the zero order expectation
and replacing it with the first order expectation and by replacing the first order expectation with the second
order expectation, and so on.

The expressions (42) - (44) can then be used in reverse order to substitute out p?_[ll from (41). After

simplifying the resulting expression we get

PP = —ri+An1+B, ux+ B, | FHX] (46)

1 .
+§¢nf12a%_1 - d}nfl EaAg .

That is, the price of an n-period bond is a function of the risk-free interest rate 7, a number of constants and
terms specific to agent j. The no-arbitrage condition (32) has to hold for all agents at all times. This implies
that we could choose any agent j’s state Xg as being the state variable that bond prices are a function of.
However, the most convenient choice from a modeling perspective is to let bonds be priced by the SDF of

the fictional agent whose state X; is defined to coincide with the cross-sectional average state so that
X; = / X7 dj (47)

The identity of the average agent will change over time as idiosyncratic shocks change an individual agent’s

relative position in the cross-sectional distribution. However, the identity of the average agent is of no
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consequence and the advantage of letting the average agent’s SDF price bonds is that it allows us to write
log bond prices in the conjectured form (25), i.e. as a function of the average state X;. We can thus substitute
in X; for Xg in (39) and (46). The last step required to find the conjectured form of the bond price equation

is to use the process for the short rate (19) to replace r; in (46). After simplifying, we get

1
pi = =00+ A1+ B, _jux + 51!}117121177[);1—1 — PYn—13alo (48)
—O0x X} + B;Lfl./THXt — Y125 A: X3

_wn—lzaAvvt

where
Oy = [ g 0 ]

The bond price recursions for A,, 1 and B, in the bond price equation (25) are thus given by
1
An1 = =00+ An + Bypix + 56nZatn — nZalo 49)

and

B, 1 =—0x + B,FH — XA, (50)

As in a full information set-up, the recursions (49) and (50) can be started from

A = —d (5D

By = —d% (52)

where p} = —7r.7

Readers familiar with the standard affine model will recognize that the recursive expressions for A,, and
B!, above are completely analogous to the corresponding expressions in the standard full information model.

Replacing ¥, by CC’, FH by F¥ and v,,_; by B/, _, delivers the standard expressions. The interpretation

"Appendix B contains a step-by-step derivation of the bond price recursions. By recursive substitution of (50) it is possi-
ble to also express the price of an n period bond as an explicit function of higher order expectations, i.e. as p; = A, —
Sx "0 (FH)® Xt — thne1-sYale 3."—2 (FH) X;. When multiplied by the state vector X;, the matrix ' H moves expecta-
tions one period forward in time and one step up in order of expectations so that the term —dx Z?:_Ol (FH)® Xy is the cumulative
sum of higher order expectations about future short rates and the term ¢, 1 3o Az Z:;OQ (FH) X, is the cumulative sum of
higher order expectations about future risk premia.
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of the corresponding matrices are also the same. Both 3, and C'C” are the covariance of the vector of risk
that agents require compensation for. The only difference is that in the model presented here, the risk of
holding bonds arises not only from innovations to the true factors x; but also from current state uncertainty,
future innovations to higher order expectations and maturity specific shocks. Similarly, both FH and F'*’
are matrices that agents use to form expectations about the next period’s state, conditional on the current
state. Finally, both 1,,_1 and B],_, are vectors that translate innovations to the respective risk vector ag 41

and C'eyy1 into innovations to bond prices.

E. Restricting \]

In the conjectured bond price equation (25) the maturity specific shock v;* enters the price function with

a unit coefficient. In Appendix B we show that setting

Ao =~ (U2, (53

where (+) ;; ne denotes the (right) one-sided inverse of a matrix and

(]
U = : (54

Yr—1
ensures that the price equation (48) above is consistent with the conjectured price equation. Specifying

A, as in (53) has the additional advantage that letting A{ depend on v}* does not introduce additional free

parameters relative to the standard model without maturity specific shocks.

F. Solving the model

Solving the model implies finding the matrices F and C in (24) and A,, and B, in (25). Since the law
of motion of the state depends on the bond price equation through the filtering problem of the agents and
because the bond price equation in turn depends on the law of motion of the state, it is necessary to solve

for (24) and (25) simultaneously. Appendix C describes how the method proposed in Nimark (2011) can be

22



adapted to find a fixed point of this mapping.

III. Speculation in the affine model

Section I derived some general implications of heterogeneous information for the relationship between
stochastic discount factors, agents’ expectations and asset prices. There, the speculative component in a
bond’s price was defined as the difference between the actual price, which depends on higher order expec-
tations about future bond prices (or discount factors), and the counterfactual price a bond would have if
these higher order expectations coincided with the average first order expectation. In order to quantify the
speculative component using the affine model, we thus need to operationalize the counterfactual consensus

price.

A. The counterfactual consensus price

In the affine model presented above, the forecasting problem of predicting other agents’ future expec-
tations about bond prices and discount factors can be reduced to forming expectations about other agents’
expectations about the current state X;. The state summarizes all information that is possible to know about
future states, so perceived agreement about the current state implies perceived agreement about expected
future states. This means that if, by chance, an individual agent’s first and higher order expectations about
the state x; coincide, the agent believes that other agents share his predictions about future bond prices.
There will then be no speculative motive for trade, since the agent then believes that other agents will only
be willing to pay as much for the bond in the future as he expects himself to be willing to pay, were he to
hold on to the bond until maturity.

We can thus specify the counterfactual consensus price p} as the price of an n period bond that would

prevail if average first and higher order expectations about the latent state x; coincided. It can computed as

P =A,+ B HX, + v (55)
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where the matrix H is what we call the consensus operator H : R4F+1) s RUF+1) defined so that

Tt Tt
xgl) o 551(51)
- H (56)
EAN

That is, H is a matrix that takes a hierarchy of expectations about x; and equates higher order expectations

with the first order expectation.

B.  The speculative component in bond prices

We can use H to decompose the current n period bond price into a component that depends only on the
average first order expectation and a speculative component that is the difference between the actual price
and the counterfactual consensus price p}’. By adding and subtracting the consensus price (55) to the right

hand side of the bond price equation (25) we get the expression

Py = Ay + B HX; + B, (I — H) X; + o (57)
—_———
speculative term

since

pf—Pf=B,(I-H)X; (58)

The price of an n-period bond can thus be written as a sum of commonly known components and a simple
expressions capturing the difference between the actual price and the answer you would get if you asked the
“average” agent what he thinks the price would be if all agents, by chance, had the same state estimate as he
did (while holding conditional uncertainty constant).®

It follows from Proposition 2 that the speculative component must be orthogonal to public information
in real time and the intuition is straightforward: By construction, (I — F) X, is a vector of higher order
predictions errors, i.e. a vector of differences between first and higher order expectations about the latent

state x4. Since it is not possible to predict other agents’ errors using publicly available information, any

$Bacchetta and van Wincoop (2006) refers to the equivalent object in their model as the “higher order wedge”.
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linear function of (I — F) X must be orthogonal to public information in real time.

If signals are noisy, differences between agents’ first and higher order expectations about the current
state translate into differences between first and higher order expectations about future states. That is, if an
individual agent believes that other agents have a different estimate of the current state than he does, then it
is rational to believe that other agents will also have different expectations from himself in the future, unless
future signals are expected to perfectly reveal the state. It is also rational for an individual agent to expect
other rational agents’ expectations to be revised in the future when more signals are observed towards what
the individual agent thinks is a better prediction about the future states. That is, second (and higher) order
expectations are not martingales, but are predicted to be revised towards an agent’s best prediction, i.e. his
first order expectation, which for the usual reasons is a martingale.

It is the fact that differences between first and higher order expectations are expected to be persistent
that induces speculative behavior in the model. If, for instance, it was common knowledge that everybody
would observe a perfect signal about the state in the next period, there would be no motive to speculate since
it would also be common knowledge that all agents would share the same valuation of the asset in the next

period.

C. A three-way decomposition of the yield curve

Below, we will quantify the importance for bond yield dynamics of the speculative component derived
above. While much of the focus in this paper is on the speculative component itself, it is also of interest to
investigate how allowing for heterogeneous information may change our estimates of the classical compo-
nents of the yield curve, i.e. short rate expectations and risk premia. To compare the implied estimates of
(first order) short rate expectations and risk premia from our model to those produced by a standard affine
common information model, we need to decompose the non-speculative component in (57) further. What

we want is a decomposition of the form

pi=AP+BFX + A, +BXy + B, (I—-H)X;+v}. (59)
N—_———— N——— D e
classic risk premia short rate expectations speculative term

The classic risk premia terms can be found by subtracting the average first order expectations about future

short rate expectations from the non-speculative component in (57). This implies that the scalar A;” and the
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vector Byl in (59) are given by

AP = A, — A", B'" = B'H — B"

where A7 and Bj, that determine the average first order expectations about future short rates are given by

n—1 n—1
A;z—n(éo—l-(sxux)—(sxz]ﬁ,ux, Bg:—dxz}—sH.
s=0 s=0

The first two terms in (59) thus corresponds to the classic terms of the yield curve decomposition in Cochrane
and Piazzesi (2008) and Joslin, Singleton and Zhu (2011) and are independent of any discrepancy between
first and higher order expectations. In the limit with perfectly precise signals, the speculative term tend to
zero since both first and higher order expectations about x; then coincide with the true factors. The two

classical terms, together with the maturity specific shocks, would then determine bond yields completely.

IV. Empirical specification

In order to make the model presented in Section II operational we will need to be specific about some
of the details that up until this point have been presented at a more general level. Here, we describe how the
factor processes are normalized and how the prices of risk can be parameterized parsimoniously when higher
order expectations enter as state variables. In this section we also describe how the cross-sectional dispersion
of the individual responses in the Survey of Professional Forecasters can be exploited in likelihood based

estimation of the model’s parameters.

A. Exogenous factor dynamics and the risk-free interest rate

The first choice to be made is to decide how many factors to include in the exogenous vector z;. In the
estimated specification, x; is a three dimensional vector so that in the special case with perfectly informed
agents and no maturity specific shocks, the model collapses to a standard three factor affine Gaussian no-
arbitrage model. Since the factors are latent we need to normalize their law of motion. We follow Joslin,

Singleton and Zhu (2011) and let the risk neutral dynamics of the factors follow a first order vector autore-
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gressive process

w1 = p@ + FOry + O, (60)

with the restrictions that 49 = 0 and that the matrix F% is diagonal with the factors ordered in descending
degree of persistence under the risk neutral dynamics. Furthermore, C' is restricted to be lower triangular.
Finally, d, in the short rate equation (19) is a vector of ones. These restrictions ensure that all parameters

are identified in the special case of perfectly informed agents and no maturity specific shocks.

B.  Parameterizing the prices of risk

Following the full information affine literature as closely as possible, we specify agent j’s vector of risk

prices as an affine function of the agent-specific state X f
A = Ao+ Ax X] + Ayuy (61)

The state vector Xf is high dimensional and, as a consequence, leaving Ay and A x completely unrestricted
would result in a very large number of free parameters. To avoid an over-parameterized model we therefore

restrict Ag and A x as follows
. . 0 .
A = + X7 + Ay (62)

where Ag is a 3 x 1 vector and )\, is a 3 x 3 matrix. Restricting A{ this way also implies that the model nests
the standard specification if agents’ signals are perfectly precise and the variance of v; equals zero. The
matrix A, does not contain any freely estimated parameters and is given by (53). The number of estimated
parameters in A{ is thus the same as in the price of risk specification in a standard gaussian full information
three-factor model, e.g. Duffee (2002) and Joslin, Singleton and Zhu (2011).

The empirical specification is parameterized by the matrices F'® and C' which govern the processes
of the latent factors x;, the diagonal matrix () which specifies the standard deviation of the idiosyncratic
noise in the agent-specific signals about x;, the constant dy in the risk-free short rate equation (19), o, the
standard deviation of the maturity specific disturbances v;® (specified so that y/var (v') = no, , i.e. so that

the standard deviation of the impact on yields is constant across maturities) and the vector \g and matrix A,
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which govern risk premia. The model has 28 parameters in total and relative to a canonical full information
three-factor affine model, the only additional parameters are the three diagonal elements of () that govern

the precision of the agent-specific signals.

C. Implied physical dynamics

The physical dynamics of the factors are implicitly defined by the combination of the risk neutral dy-
namics (60) and the prices of risk vector (61). The vector ,uP and the coefficient matrix F¥ in (20) are given
by

p =p@ +0C' N, FP=FC+CC'\, (63)

In the limit with perfectly precise signals, the risk neutral and physical dynamics of the affine model have
the usual interpretation: While the latent factors follow the physical dynamics, bonds can be priced as if
agents were risk neutral and the factors followed the risk neutral dynamics. The physical dynamics then

also completely determine the law of motion of the extended state X;.

D. Agents’ information sets

Agent j observes the factors xi as defined in (21) which is the source of agent j’s heterogeneous in-
formation about the common factors x;. Each agent also observes the risk-free short rate r;. In addition
to these exogenous signals, all agents can observe all bond yields up to maturity n, where 7 is the largest
maturity used in the estimation of the model. Here, the longest maturity yield that we will use in estimation

is a 10 year bond implying that @ = 40 with quarterly data.

E. Choosing the maximum order of expectation k

In Nimark (2011) it is demonstrated that, under quite general conditions, it is possible to accurately
represent the dynamics of an infinite horizon model with heterogeneously informed agents by a finite di-
mensional state vector, despite of the infinite regress of “forecasting the forecasts of others” that arises
in models where heterogeneously informed agents need to predict the future actions of other agents (e.g.

Townsend 1983). In our set-up, bonds are finitely lived so the price of a bond depends only on a finite
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number of higher order expectations about future discount rates. It is possible to use this fact to write down
an exact representation of the equilibrium dynamics in which agents’ higher order expectations about future
discount rates make up the state of the model. However, it is more tractable to let the state be a hierarchy of
a finite number of higher order expectations about the current exogenous factors x; as in (22). What “finite”
means in practice has to be checked on a case by case basis. In the final specification used for estimation,
we set the maximum order of expectation k equal to 40. This is more than sufficient as most of the dynamics
are captured by the first five orders of expectations.

In this paper, we model agents as explicitly forming higher order expectations, i.e. expectations about
other agents’ expectations and the equilibrium representation can be interpreted as a literal description of
agents’ behavior. Given the prevalence of quotes of Keynes’ beauty contest metaphor in the finance liter-
ature it appears that many people find the related intuition appealing. However, it may strain credulity to
think that agents form expectations beyond two or three orders and here we solve the model by assuming

that agents form up to the 40"

order of expectations. An alternative interpretation is to view the equilibrium
representation simply as a convenient recursive functional form to model agents who have access to hetero-
geneous information and condition on the entire history of observables to predict next period bond yields.

The main advantage of the method is then to deliver a tractable and time invariant recursive representation

of the equilibrium dynamics of the model.

F. Estimating the model using bond yields and survey data

The parameters of the model can be estimated by likelihood based methods. We use quarterly data
on bond yields with one, five and ten years to maturity with the sample spanning the period 1971:Q4 to
2011:Q4. The zero-coupon yield data is taken from the Gurkaynak, Sack and Wright (2007) data set avail-
able from the Federal Reserve Board. In addition to bond yields we also use one quarter ahead forecasts of
the T-Bill rate and the 1 quarter ahead forecasts of the 10 year bond rate from the Survey of Professional
Forecasters (SPF). The individual survey responses are collected in the vectors yt1 1t and yf‘gl' ;- In the
model, the cross-sectional distribution of agents’ one-period-ahead forecasts of the risk-free short rate is

Gaussian with mean and variance given by

E [rm | Q{} ~ N (A, + Bjux + BiFHX,, B|F%,F B)) (64)
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where X35 is the cross-sectional covariance of expectations about the current state, i.e.
. . /
Y, =E [H (xf - x) (7 - x) H’] (65)

As econometricians, we can thus treat the individual survey responses of T-Bill rate forecasts as noisy
measures of the average expectation of the short rate r; where the variance of the “noise” is determined by
the model implied cross-sectional variance of short rate expectations.” The corresponding distribution for

the one-period-ahead forecast of the 10 year yield is
By 10f] ~ N L Mo+ = Blojix + = BiFHX, —BloFS;F Bio— (66)
R 40 40 40 " 40 ! 40

The deviations of individual agents’ forecasts from the average forecasts are caused by idiosyncratic shocks
that are independent across agents. The covariance of the cross-sectional “measurement errors” in yt1 1)t and
yﬁ” , can thus be specified as the scalars B} F;F'B; and 41*034/10]'— ¥, F B4oﬁ multiplied by an identity

matrix.

G. The likelihood function

Given the model and the data, the log likelihood function
1 [ - -
log L (1) = {Z or dim(%,) + log ‘Eﬂt—l‘ n z;zﬂt_lzt} 67)
t=1

can be evaluated by computing the Kalman filter innovations

=%z — F [?t ‘ Et_l] (68)

from the state space system
Xy = px +FXiq1+Cuy (69)
Ze = [ + DXy + Ryug : g ~ N(0,1) (70)

The Appendix contains details of how to compute the cross-sectional variance ¥; in practice.
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where Z; is the vector of observables

2=y vy v Yy (71
and flﬂt_l is the covariance of the innovations z;. The vector i7 and the matrices D; and R; in the mea-
surement equation (70) are defined in the Appendix.

The number of survey responses varies over time and surveys are not available at all for the period before
1981:Q3. Therefore, the dimensions of 17, D; and R; are also time-varying. This fact may influence the
precision of our estimates of the state, i.e. we will have more precise estimates of the latent state X; when
there is a large number of survey responses available. Using individual survey responses and likelihood
based methods also naturally incorporates that we have more precise information about the cross-sectional
average expectations of agents when there are 50 responses (the sample maximum) compared to when
there are only 9 responses (the sample minimum). This information is lost when using measures of central

tendency like a mean or median forecast.

H. Estimation procedure

The next section will present empirical results based on the heterogeneous information model described
above as well as the nested full information model without maturity specific shocks of Joslin, Singleton and
Zhu (2011). To obtain parameter estimates for the full information model we first estimate a model without
using survey data following the procedure in Singleton et al (2011) which reliably finds the maximum of
the likelihood in a model estimated using only yields. Subsequently, we proceed to estimate the same full
information model with both survey data and bond yields, taking the estimates from the yields-only estimates
as starting values. The maximum likelihood estimates of the surveys plus yields model are found by first
using a numerical optimizer and then the Metropolis-Hastings algorithm.' To incorporate the surveys into
the full information model we treat the individual responses as noisy measures of the model implied common
expectation about future yield as in Kim and Orphanides (2005) and Chernov and Muller (2012).

The parameters of the heterogeneous information model is estimated using Bayesian methods with (im-

proper) uniform priors so that the posterior mode coincides with the maximum likelihood estimates and the

0We experimented with a number of alternative starting values and optimization routines. Of these alternatives, the procedure
reported here resulted in the highest posterior likelihood.
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posterior density is proportional to the likelihood function. We take 1,000,000 draws from a Metropolis-
Hastings algorithm (e.g. Geweke 2005) with the maximum likelihood estimates of the full information
model as starting values for the parameter vector. The modes and the probability intervals presented in the

next section are based on the last 500 000 draws.

V. Empirical Results

This section contains the main empirical results of the paper. Here, we first present the parameter esti-
mates and discuss how these are influenced by the fact that individual survey responses are used in estima-
tion. This is followed by a decomposition of historical bond yields into risk premia, first order expectations
about the risk-free short interest rate and a speculative component driven by differences between first and
higher order expectations. In this section we also compare estimates of historical risk premia and short
rate expectations from our heterogeneous information model with estimates of the same quantities from the
nested full information model of Joslin, Singleton and Zhu (2011). The section ends by quantifying the
total effect of information imperfections and an assessment of how useful the agent-specific signals are for

predicting excess returns.

A. Parameter estimates and the dispersion of survey responses

Table 1 presents the posterior modes along with 95% probability intervals (in square brackets). Since
the factors are latent and have no particular economic interpretation, most of the estimated parameter values
are of no particular interest when viewed in isolation. However, using the individual survey responses in
estimation has interesting implications for those parameters in the model that govern how informed agents
are about the latent factors. Before discussing these implications, we first note that the model does a good
job of fitting the cross-sectional dispersion in the survey data. The model implied dispersion of the one-
quarter-ahead forecasts of the short interest rate has a cross-sectional standard deviation of 43 basis points,
compared to the 40 basis points sample average in the survey data. The model implied dispersion of the
one-quarter-ahead forecasts of the 10 year yield is 27 basis points versus 40 basis points in the data. The
model thus fits the cross-sectional dispersion in the survey data well.

The model also provides a good fit of bond prices. The standard deviation of the maturity specific shocks

is 50 basis points which is comparable to the 37 basis points standard deviation of the pricing errors in the
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full information model estimated using the same yileds and survey data. The model implied unconditional
yields are within a few basis points of the sample averages. The model is thus sufficiently flexible to explain

both the dispersion in survey forecasts and bond yields well.

Using the full cross-section of surveys to estimate the parameters of the model will clearly influence
the estimates of the parameters that determine the precision of the agent-specific signals. However, the
relationship between the precision of the agent-specific signals and the model implied dispersion is non-
monotonic. When the agent-specific signals are very precise, the cross-sectional dispersion is close to zero
and the dynamics of bond yields will be close to those of the full information model. When the agent-specific
signals are very imprecise, agents attach little weight to them, and again, the cross-sectional dispersion will
be close to zero. To match the substantial dispersion observed in the survey responses, intermediate values
for the parameters that govern the precision of the agent-specific signals are required. The estimates of
Q1, Q2 and Q3 that govern the precision of the private signals thus cannot be neither too large, nor too
small relative to the estimates of C7, C'y and C'5 that govern the standard deviation of the innovations to the
latent factors. At the posterior mode, the variance of the idiosyncratic noise in the agent-specific signals are
between 2.5 to 4 times as large as the innovations to the true factors.

Less obviously, the cross-sectional dispersion in surveys will also discipline the dynamics of bond prices
more generally. In our model, depending on the parameters, bond prices may or may not reveal the state per-
fectly. If bond prices are too revealing about the latent exogenous factors x;, the cross-sectional dispersion
will be too low relative to the dispersion in the survey data, regardless of the precision of the agent-specific
signals. How informative bond yields are depends on how different the persistence of each factor is un-
der the risk-neutral dynamics. The intuition is straightforward: If there is only one factor that is persistent
enough under the risk neutral dynamics to move the long end of the yield cure, a change in long maturity
yields can only be caused by a change in the high persistence factor. Similarly, if there is only one factor
with very low persistence under the risk neutral measure, a change that is exclusive to the short end of the
yield curve can only be caused by a change to the low persistence factor. More generally, observing bond
yields will be very informative about the latent factors if each factor has a very different implication for the
shape of the yield curve.

If simply observing the yield curve would be enough to get very precise estimates of the latent factors,

agents would put little or no weight on their private signals. The cross-sectional dispersion of expecta-
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Table I

Parameter estimates for the heterogeneous information model

The table reports parameter estimates for the affine heterogeneous information model obtained from the last 500,000 draws of a
Metropolis Hastings algorithm.
ter ahead individual survey forecasts of the 3 month treasury bill rate and the 10-year yield. The sample period is from 1971:Q2
The table reports the posterior mode for each parameter along with 95% probability intervals (in square brackets)

to 2011Q4.

The data are a panel of yields with maturities of one- five- and ten-year as well as one quar-

Factor processes and private signal standard deviations

P 0.9984 O -0.0014
[0.9969 0.9986] [-0.0032 0.0020]
Fg, 0.75629 Ca -0.0134
[0.7483 0.7669] [-0.0161 -0.0104]
Fgy 0.75624 o -0.0935
[0.7479 0.7664] [-0.1010 -0.0874]
Ch 0.0080 Q1,1 0.0321
[0.0078 0.0086] [0.0317 0.0333]
Co 0.1088 Q2,2 0.2661
[0.1031 0.1196] [ 0.2087 0.3167]
Cs 0.0128 Q3,3 0.0397
[0.0119 0.0140] [0.0307 0.0440]
Maturity specific disturbances Short rate constant 7
o 0.0050 do 0.2415
[0.0047 0.0055] [0.0369 0.7846]
Risk Premia Parameters
Ao,1 -221.3 Az,21 41.98
[-234.8 -122.3] [31.46 51.21]
0,2 -15.12 Az,22 -697.5
[-25.95 22.23] [-713.6 -630.0]
0,3 -77.11 Az,23 -664.4
[-85.35 -44.62] [-674.6 -602.4]
Az11 97.78 Az,31 48.84
[66.92 123.5] [36.79 60.54]
Az,12 -1415 Az,32 -796.8
[-1457 -1065] [-829.6 -735.0]
Az,13 -1431 Az,33 -774.8
[-1468 -1073] [-799.9 -720.2]
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tions would be then be too concentrated relative to the survey data. Estimating the model using the full
cross-section of survey responses thus imposes strong restrictions on the risk-neutral dynamics and these
restrictions are binding in practise: The posterior estimates of the second and third eigenvalue of the factor
process under the risk neutral dynamics, i.e. FQ% and Fg%, are very similar, i.e. 0.75629 and 0.75624. This
means that it is virtually impossible for the agents in the model to disentangle the individual effects of the
second and third factor on the yield curve, even when the variance of the maturity specific shocks is small.

The restrictions on the risk neutral dynamics that ensures that there is room for disagreement is similar
to those that ensures that some factors are unspanned, e.g. Joslin, Priebsch and Singleton (2012), Duffee
(2011) and Barillas (2013). An unspanned factor is by definition not priced, i.e. does not affect current
bond yields. The flip side of this definition is that an unspanned factor cannot be extracted from the yield
curve by inverting the bond price function. Yet, Joslin et al (2012) and Duffee (2011) demonstrate that
unspanned factors can help forecast future interest rates even after conditioning on the current yield curve.
The restriction imposed on our model by fitting the cross-section of survey forecasts is thus similar to
imposing an unspanned factor structure: Only parameterizations that ensures that the state is not an invertible
function of bond yields will leave room for the agent-specific signals to play a role. Parameterizations that
imply that the state is almost perfectly revealed by bond yields will be rejected by the data.

An alternative strategy to use the survey data is to treat individual responses as noisy measures of a
common expectation held by all agents as in Kim and Orphanides (2005) and Chernov and Mueller (2012).
This is also the strategy that we follow when estimating the full information model with survey data. Others
have used a measure of central tendency from the surveys, like a mean or median, to represent a noisy mea-
sure of the expectations of a representative agent (see Piazzesi and Schneider (2011)). In these alternative
strategies, the information in the cross-sectional variance of survey responses does not directly restrict the

dynamics of bond prices.

B. Historical decompositions

We can use the estimated model to measure how large the speculative term has been historically. From
Proposition 2 we know that the speculative term must be orthogonal to public information available to all
agents in real time, such as bond prices. However, as econometricians we have access to the full sample of
data and can use information from period ¢ 4+ 1,7 + 2, ..., T, to form an estimate of the speculative term in

period ¢. The Kalman smoother (see for instance Durbin and Koopman 2002) can be used to back out an
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10-year Yield Decomposition
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Figure 1 Decomposition of the 10-year yield. This figure plots the 10-year yield along with estimates of average
short rate expectations, common risk premia and the speculative component at the posterior mode. The sample is
1971Q2 to 2011Q4.

estimate of the state X; conditional on the entire history of observables. Since the speculative components
of the term structure are linear functions of the state, the smoothed state history £ [X | ET] can be used to
perform the decomposition of historical bond yields as described by (59).

Figure 1 plots the history of the 10 year yield together with a decomposition, splitting the yield into the
terms based on average expectations about future short rates, classical risk premia and the speculative term.
Most of the variation in yields is driven by variation in average first order expectations about the short rate.
The standard deviation of the second most important term, classical risk premia, is 43 basis points, making
it somewhat more volatile than the speculative term which has a standard deviation of 34 basis points. In
absolute terms, the speculative component is largest around 1980 when it accounts for about a (negative) 1
percentage point of the 10 year yield. The speculative component’s contribution as a fraction of the total
yield is largest in the low yield environment of the last decade, accounting for up to 60 basis points at a time

when the 10 year yield was only 4 percent.
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Figure 2 Speculative component across maturities. This figure plots estimates of the speculative component
in the 1- 5- and 10-year yield at the posterior mode. The sample is 1971Q2 to 2011Q4.

Speculative dynamics are present at all maturities n > 2, but are quantitatively more important in
medium- to long-maturity bonds. This is illustrated in Figure 2, where the estimated speculative components
in the 1- 5- and 10-year yields are plotted. These speculative components are almost perfectly correlated
across maturities and thus appear to have a one-factor structure. The speculative term is most volatile in
the 10-year bond yield, but only marginally more so than for the 5-year bond. In comparison, the standard
deviation of the speculative term in the 1-year bond is substantially lower at 9 basis points, and it never
accounts for more than 25 basis points of the 1 year yield in the sample.

In the equilibrium model of Nimark (2012), agents form higher order expectations only about future risk-
free short rates and there are no classical sources of time varying risk-premia. The speculative component
extracted from the data using that model have qualitative properties similar to the speculative component
extracted here, but is generally more volatile and peaks at around 3.5 percentage points in the early 1980s.
The more flexible specification presented here that allows also for classical sources of time varying risk
premia thus reduces the importance of the speculative component relative to the more restrictive model in

Nimark (2012).
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C. Comparison to a full information model

Gaussian affine term structure models have been used, for instance, by Cochrane and Piazzesi (2005)
and Joslin, Priebsch and Singleton (2011) to decompose the term structure into risk premia and expected
future short rates. Allowing for speculative dynamics may potentially change our estimates of historical risk
premia and short rate expectations. In the bottom panel of Figure 3 we have plotted the posterior estimate
of the risk premia in the 10-year bond extracted using our model with heterogeneously informed agents
together with the risk premia extracted using the full information model of Joslin et al (2011), which our
model nests as a special case. The full information model is estimated using the same bond yields (i.e.
1-, 5- and 10 year) and the same individual survey responses about the one quarter ahead forecasts for the
T-Bill 3 month yield and 10 year bond yield as observables. Since the full information model implies that all
agents share the same expectations about future bond yields, we treat the survey data as noisy measures of a
common expectation held by all agents as in Kim and Orphanides (2005) and Chernov and Mueller (2012).
Figure 3 shows that the speculative term appears to partially “crowd out” the time varying risk premium. The
standard deviation of the risk premium is 126 basis points in the full information model but only 43 basis
points in the model with heterogeneous information. Allowing for heterogeneous information also changes
the cyclical properties of risk premia qualitatively: The correlation between the common risk premia term
in the heterogeneous information model and the risk premia extracted using the full information model is
—0.62.

The two models imply different interpretations of recent historical episodes. For instance, the full infor-
mation model interprets the Volcker disinflation period in the early 1980s as a time when risk premia were
unusually high. As can be seen in the top panel of Figure 3, the heterogeneous information model instead
attributes more of the high yields of that period to first order expectations about short interest rates and
records a much smaller movement in risk premia. The early 1980s is also the period when the speculative
term is the largest. In the second quarter of 1980, the speculative term contributed negatively to the 10 year
bond yield by about 1 percentage point. Thus, according to the model, this was a period when individual
agents believed that other agents underestimated future bond yields. The speculative component switches

sign in 1982 and contributes positively to bond yields in the later part of the Volcker disinflation.
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Figure 3 Average short rate expectations and common risk premia for the 10-year yield in the private
and full information model This figure plots estimates of average short rate expectations and risk premia for the
10-year yield for the full information model and the private information model. Both estimates are obtained at the
posterior mode (MLE estimates). The sample is 1971Q2 to 2011Q4.

D. Short rate and risk premia speculation

The speculative component defined by (59) and derived above is the sum of higher order prediction
errors about average future stochastic discount factors. These discount factors are made up both of a time-
discount component and risk adjustment component. We can decompose the speculative term in (59) further
in order to separate speculation related to future short rates from speculation about future risk premia.

To do so, note that by recursive substitution in (50) the row vector B, can be decomposed into a term
that captures higher order expectations about the short rate and a term that captures higher order expectations

about future risk adjustments. The total speculative term in (59) can then be decomposed as

n—1 n—2
B,(I-H)X, =—6xY (FH)(I-H)X;—tn1-s5A Y (FH) (I-H) X, (72)
—_——— — —
total speculative term s=0 s=0
short rate speculation risk premia speculation
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Figure 4 Speculative Component Decomposition for the 10-year yield This figure plots the speculative
component decomposition for the 10-year yield into the speculative component attributed to speculation about future
short rates and the speculative component related to common risk premia. Estimates are obtained at the posterior mode
(MLE estimates). The sample is 1971Q2 to 2011Q4.

Figure 4 displays the posterior estimates of the two terms that make up the speculative component in the
10-year yield. The term capturing speculation about future short rates is substantially more volatile than the
total speculative term. At times, speculation about short rates contributed up to as much as 1.5 percentage
points to the 10 year yield. However, speculation about short rates is negatively correlated with speculation
about future risk premia. When individual agents think that other agents overestimate future risk-free rates,
they thus also tend to think that other agents underestimate future risk premia. This negative correlation
explains why the total speculative component is less volatile than the component capturing only speculation

about future short rates.
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E. The total effect of information imperfections

The speculative term quantified above is a function of perceived disagreement between individuals’ first
and higher order expectations. The speculative term would thus be identically zero if all agents could observe
the state perfectly. Yet, the speculative term does not capture the total effect of information imperfections in
the model. Independently of the speculative term, agents may have incorrect first order expectations about
the latent factors. Like the speculative component, these expectation errors would be identically zero if
agents’ signals were perfectly precise. In general, agents’ first order expectations will not coincide with the
true factors and we can use the estimated model to quantify the historical importance of this discrepancy.

To this end, define the counterfactual full information price p;'* as the price that would prevail if agents
first and higher order expectations coincided with the true factors, that is if xgk) = xz; for every k. The
total effect of information imperfections is then captured by the difference between the actual price and the
counterfactual full information price. In Figure 5 we have plotted the difference between the actual 10 year
bond yield and the counterfactual full information bond yield, i.e. n=! (p? — p*) alongside the speculative
component.

The estimated total effect of information imperfections on historical bond yields is quite large, at times
accounting for up to 2.5 percentage points of 10 year bond yields and it is almost perfectly correlated with
the speculative component (which makes up part of the total effect). The difference between the total effect
and the speculative component is due to agents’ incorrect first order expectations about the latent factors.

Agents’ incorrect first order expectations are thus quantitatively at least as important for bond yields as the

speculative component.!!

F. What drives speculative dynamics?

In order to address the question of what drives speculative dynamics we can decompose the variance of
the speculative terms into four orthogonal sources: The three innovations to the exogenous factors in z; and

the maturity specific disturbances v;. Table 2 displays variance decompositions of the 1-, 5- and 10 year

"These estimates of the importance of incorrect first order expectations about the latent factors are conditional on treating
the heterogeneous information model as the data generating process. Estimating an otherwise similar model but with a single
imperfectly informed representative agent suggests that information imperfections are quantitatively unimportant. The reason for
this difference is that a representative agent model cannot explain the cross-sectional dispersion observed in the survey data. The
the cross-sectional variance of the survey data can then also not be used to discipline the parameters of the model that determine
the precision of the representative agent’s information set.
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Figure 5 Total effect of information imperfections and the speculative component for the 10-year yield
This figure plots the speculative component for the 10-year yield along with the counterfactual yield (Info Term) that
would prevail if all order of expectations coincided with the true factors. Estimates are obtained at the posterior mode
(MLE estimates). The sample is 1971Q2 to 2011Q4.

yields, the speculative components in the 1-, 5- and 10 year yields and the first three principal components.
Shocks to the first factor explain more than 97 per cent of the variance of all yields and the variance of the
first principal component. It also accounts for about 75 per cent of the of the variance of the speculative
component. Shocks to the third and second factor explain little of the variance of yields, but are important
drivers of the second and third principal component.

Interestingly, the maturity specific shocks, which explain less than 0.2 per cent of the variance of any
bond yield, explain between 14 and 17 per cent of the variance of the speculative term. The maturity specific
shocks also explain a substantial fraction of the second and third principal component, but virtually none of

the variance of the first.

The maturity specific shocks in the model are not formally equivalent to traditional “pricing errors”. An

innovation to v;® does not affect only ;" but also agents’ estimate of the state since y;* is part of agents’
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Table I1
Variance decomposition of yields, speculative components and principal component of yields

This table reports results of a variance decomposition or yields, speculative components and principal components of yields. These were computed at
the posterior mode (MLE estimates) of our model. The sample period is from 1971:Q2 to 2011Q4. In the first three columns we show the percentage
of the variance of the 1-, 5- and 10-year yield that is explained by the shocks of the model. The next three columns show related quantities for
the 1-, 5- and 10-year speculative component of yields. The last three columns report the results for the first three principal components of yields.

Yields Speculative Component Principal Components
(1) ) (10) (1) ) (10) 1 2 3
Yy ih i spec; spec; spec; pc; pe; e

e 973 977 978 719 74.9 75.5 97.7 15.1 27.4
g2 202 178 176  3.23 2.62 2.57 1.83 35.1 45.4
g 061 031 026 7.77 7.23 7.07 0.37 36.9 17.2
vy 008 0.15 0.18 17.1 15.2 14.8 0.04 128 9.90

observation vector zi . Through its effect on agents’ state estimates, it will also indirectly affect bond yields
of maturities other than n. Due to the persistence in agents’ estimates of the state, the effect on bond yields
of a single maturity specific shock will last for several periods after impact. Our specification is thus not
subject to the critique in Hamilton and Wu (2011) who argue that the independent white noise assumption
of classical pricing errors is testable and rejected by the data in standard affine term structure models.

It would be interesting to rotate the model into an equivalent representation where the states are the
principal components and analyze how each of the principal components affect the speculative term at
different maturities. However, except in the full information limit, no such equivalent representation exists.
Since the principal components are observable directly from the cross-section of yields, such a representation

could not capture the speculative dynamics since these are orthogonal to current bond prices.

G. How useful are the agent-specific signals for predicting excess returns?

We can use the estimated model to quantify how useful the agent-specific signals are in terms of helping
agents to forecast future bond prices and excess returns. For each maturity n we first compute the model

implied unconditional variance of quarterly excess returns defined as

_ 2
var(rzy) = E (p?Hl —py — rt) (73)
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We then compute the variance of expected excess returns conditional on the information set of agent j.
Dividing the latter by the former gives the model implied R? of excess returns for an n-period bond from
the perspective of an agent in the model.

The R? of excess returns from the agents perspective varies across maturities. It is largest for very short
and very long maturities at around 0.27. The R? is smallest for 1 year bonds at about 0.21. These estimates
of the model implied R? are somewhat smaller than suggested by simple predictability regressions on yields
only, but larger than the R? of the Sharpe-ratio constrained affine models in Duffee (2010).

Comparing the predictability of excess returns from the agents’ perspective with the R? of excess returns
conditional only on bond yields suggests that the agent-specific signals increase the R? of excess returns by

about 6 per cent, more or less uniformly across maturities.

VI. Conclusions

In this paper we have presented and estimated an affine no-arbitrage Gaussian model that can be used
to analyze the term structure of interest rates when agents have access to heterogeneous information and
form rational expectations. We showed that heterogeneous information introduces a speculative component
to bond yields that is orthogonal to public information in real time and is quantitatively important, at times
accounting for up to a percentage point of yields. The heterogeneous information model gives a different
interpretation of historical US bond yields relative to a nested full information affine term structure model.
In particular, the heterogeneous information model attributes less of the high bond yields during the Volcker
disinflation in the early 1980s to high risk premia and more to high average first order expectations about
future risk-free short rates. It may thus be important to control for speculative dynamics when extracting
information about interest rates expectations and risk premia from market prices of bonds.

Allowing for heterogeneous information also changes the qualitative properties of risk premia: The
risk premia component extracted using the model presented here is negatively correlated with risk premia
extracted using the full information model. Relaxing the assumption that all agents have access to the same
information may thus potentially change our view on what the economic forces are that drive time variation
in risk premia.

The speculative component in bond prices is orthogonal to public information in real time and is thus

not an invertible function of current bond yields. This makes the speculative component similar to an un-
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spanned factor and the results in Duffee (2011) suggest that the similarities do not stop there. That paper
demonstrates that even though there is strong evidence that unspanned factors would help predict future
bond prices if they could be observed, (yields-only) models with unspanned factors do not outperform lower
dimensional models with only spanned factors in out-of-sample forecasting. The lack of improved out-of
sample forecasting performance when dynamically filtering for the unspanned factors suggests that the un-
spanned factors are uncorrelated not only with current bond yields, but also with lagged bond yields just like
the speculative component in our model. These similarities between unspanned factors and the speculative
component are intriguing and, while outside the scope of the present paper, it would be interesting to analyze
the relationship between the two types of objects further.

Finally, the stochastic discount factor framework presented here is general and can also be used to price
other asset classes. In the present paper, we found that speculative dynamics were quantitatively important
in treasury markets even though the value at maturity of a zero-coupon default-free bond is known with
certainty, and the only source of uncertainty is future discount rates. The prices of other classes of assets
such as stocks and corporate bonds also depend on expectations about future discount rates, but are subject
to additional sources of uncertainty due to stochastic cash-flows and the probability of default. It seems
plausible that speculative dynamics could be even more important in those asset classes where prices depend

on a richer set of variables.

45



References

Admati, Anit R., (1985), “A noisy rational expectations equilibrium for multi-asset securities markets”,

Econometrica, Vol. 53, pp. 629-657.

Allen, F. S. Morris and H.S. Shin, (2006), “Beauty Contests and Iterated Expectations in Asset Markets”,
Review of Financial Studies, 19, pp719 —752.

Bacchetta, Phillippe and Eric van Wincoop, (2006) “Can Information Heterogeneity Explain the Exchange

Rate Determination Puzzle?”, American Economic Review vol 96, pp552-576.
Barillas, F (2013) “Can we Exploit Predictability in Bond Markets?”, Working Paper, Emory University.

Chernov, M and Mueller, P (2012), “The Term Structure of Inflation Expectations”, forthcoming in Journal

of Financial Economics.

Chun, A.L. (2011), Expectations, Bond Yields, and Monetary Policy, Review of Financial Studies, vol
24(1), pp208-47.

Cochrane, J. and M. Piazzesi, (2005), “Bond Risk Premia”, American Economic Review.
Cochrane, J. and M. Piazzesi, (2008), “Decomposing the Yield Curve”, mimeo University of Chicago.

Dai, Q and K. Singleton, 2000, “Specification Analysis of Affine Term Structure Models,” Journal of
Finance, vol. 55(5), pages 1943-78.

Diamond, D and R. Verrecchia, (1981), “Information Aggregation in a Noisy Rational Expectations Econ-

omy”, Journal of Financial Economics vol. 9, pages 221-235.

Duftee, Gregory (2002), “Term Premia and Interest Rate Forecasts in Affine Models,” Journal of Finance,

57, pp.405-443.
Duffee, Gregory, (2010), “Sharpe ratios in term structure models”, mimeo, Johns Hopkins University.

Duffee, Gregory, (2011), “Information in (and not in) the term structure of interest rates”, forthcoming,

Review of Financial Studies.

Duffie, Darrell and Rui Kan (1996), “Yield Factor Models of Interest Rates,” Mathematical Finance, 64,
pp-379-406.

46



Durbin, J. and S.J. Koopman, (2002), “A simple and efficient simulation smoother for state space time

series analysis”, Biometrica, 89, pp. 603-615.

Geweke, John, 2005, Contemporary Bayesian Econometrics and Statistics, Wiley-Interscience.

Grossman, Sanford, 1976, “On the Efficiency of Competitive Stock Markets Where Trades Have Diverse

Information”, Journal of Finance, Vol. 31, No. 2, Papers and Proceedings. pp. 573-585.

Grossman, S. and J. Stiglitz, (1980), “On the Impossibility of Informationally Efficient Markets”, American

Economic Review vol. 70(3), pages 393-408.

Gurkaynak, R. S., Sack, B., and Wright, J. H., (2007), “The U.S. treasury yield curve: 1961 to the present”,

Journal of Monetary Economics vol. 54, pages 2291-2304.

Harrison, J.M. and D. Kreps, (1978), “Speculative Behaviour in a Stock Market with Heterogeneous Ex-

pectations”, Quarterly Journal of Economics, pp323-336.

Hamilton, J and Wu, C (2011), “Testable Implications of Affine-Term-Structure Models”, forthcoming,

Journal of Econometrics.

Hellvig, Martin (1980), “On the aggregation of information in competitive markets,” Journal of Economic

Theory, 22, issue 3 pp.477-498.

Joslin, S., M. Priebsch and K. Singleton, (2010), “Risk Premiums in Dynamic Term Structure Models with

Unspanned Macro Risks,” working paper, Stanford University.

Joslin, S., K. Singleton and H. Zhu (2011), ”A New Perspective on Gaussian DTSMs”, forthcoming in the

Review of Financial Studies.

Kim, D. H., Orphanides, A., (2005). ”Term structure estimation with survey data on interest rate forecasts”

working paper, Board of Governors of the Federal Reserve System.

Ludvigson, S. and S. Ng, (2009), “Macro Factors in Bond Risk Premia”, Review of Financial Studies

22(12), 5027-5067.

Nimark, K., (2011), “Dynamic Higher Order Expectations”, working paper, Universitat Pompeu Fabra.

47



Nimark, K., (2012), “Speculative Dynamics in the Term Structure of Interest Rates”, working paper, Uni-

versitat Pompeu Fabra.
Piazzesi, M. and M. Schneider, (2011), “Trend and Cycle in Bond Premia”, unpublished manuscript.

Townsend, Robert M., (1983), Forecasting the Forecasts of Others, Journal of Political Economy, vol 91,

pp546-588.

Singleton, Kenneth J., (1987), “Asset prices in a time series model with disparately informed, compet-
itive traders”, in New Approaches to Monetary Economics, Eds. W.A. Burnett and K.J. Singleton,

Cambridge University Press.

Xiong, W. and H. Yan, (2010),“Heterogeneous Expectations and Bond Markets”, Review of Financial

Studies, vol. 23(4), pp. 1433-1466.

48



Appendix A. Proof of Proposition 2

We want to prove that the speculative term p;" — p}’ is orthogonal to public information in real time, i.e.
E(lpy —pflw) =0:V wp € (A.1)

where §2; is the public information set defined as in Proposition 1.

Start by taking expectations of p;’ — p}’ conditional on the public information set {2,

Epf —pi | %] = —E (/E [m 11— mip | Qﬂ dj | Qt) (A.2)
< [m tr2 — /E [mio | Q] dil Qi] dj | Qt) — ..

..—E(/E[m{+n—/ [/Emmmml} ]dz]Q}dj\Qt).

The definition of the public information set (8) implies that €2; C Qg 4 forall jand s > 0. Applying the

law of iterated expectations to the right hand side of (A.2) then gives

Blpp = 1] = B(miy | Q) ~ B (mly, | 2) (A3)
+E (m{m | Qt) - B (m{+2 | Qt) +
..+E(m{+n | Qt) 7E<m{+n ] Qt>

=0 (A4)
which completes the proof.

Appendix B. Deriving the bond price equation

This Appendix demonstrates how to find the expressions for A,, and B/, in the conjectured bond price
equation

pp = A, + Bl X, + v (B.1)

49



The stochastic discount factor of agent j is denoted MtJJr1 and in the absence of arbitrage, the relationship
Pl = log B [Mgﬂptﬁlm{] (B.2)

must be satisfied for each agent j and maturity n. Following the full information affine asset pricing litera-

ture, we specify the logarithm of agent j’s SDF to follow
. 1 . . o .
my, = —r— 5Ag’za/\g —A'al, taly ~ N(0,%,). (B.3)

The vector a{ 1 spans the conditional one-period-ahead forecast errors of agent j for each maturity n. That

is, for each maturity n, agent j’s forecast error can be written as a linear function of the vector a{ 41
. i A
Piyr —E (p?+1 Iﬂi> = Yn-107,,. (B.4)

Given the conjectured bond price equation (B.1), agent j’s forecast in period ¢ of a bond price in period
t 4+ 1 can be (ex post) incorrect either because his forecast of the state X;,; was incorrect or because of a

maturity specific shock v, 1, i.e.
P - B (p?ﬁlmi) =B, (Xt+1 - E(Xt+1\Q§)) +u (B.5)
Both the state forecast error and the maturity specific shocks must therefore be included in the vector a{ 11

4 X1 — B(Xe41|9)
al,, = ! (B.6)

Vt+1

where

Vt = |:vt2 'Z);L:| . (B7)

Given these definitions, the row vector 1,1 that maps the vector a{ 1 Into forecast error is given by

Yn—1 = [ B, 0 } (B.8)
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if n = 2 (since there is no maturity-specific shock in the risk-free one period bond’s price) and

Y1 = [ Bl €, _, ] (B.9)

n

if n > 2 where e,, is a vector of conformable dimensions with a 1 in the n'" element and zeros elsewhere so

that eqv; = fuf, ey = v?, ceey En— 1V = U} etc.

Step-by-step derivation of bond price recursions

Start by substituting the stochastic discount factor (B.3) into the no-arbitrage condition (B.2)
py =logE [exp (—rt —~ %A{’Za/&{ —A'al,, + p?gf) \Qg} . (B.10)
Use the definition (B.4) of the forecast error to replace pf;f
P =log E [exp <—rt _ %A{’EGA{ Nl +E (py;f |Q{) + ¢n_1ag’+1> yﬂg] B.11)
Take the quantities known by agent j outside the expectation operator

1 . . .
o= AL+ B (1) (B.12)

+logE {exp ([wn,l — A{/] a{Jrl) ]Qﬂ
and use the fact that the term inside the bracket is log-normally distributed so that

1 . . .
o= -y — §Ag’zaAg +Ap1+Bl,_ux + B, FHX] (B.13)

L g ir\’
5 (¥n-1 = AY) Za (Vo1 - AY)
The expression (B.13) can be further simplified to

= —r+A, 1+ B, ux+B, | FHX] (B.14)

1 .
+§wn—12a¢;71 - wn—lzaAi .
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Finally, substituting in the expression for Ag and r; and expanding we get

Py = —8 —0xXy+ Ap1 + Bl_ux + B, FHX] (B.15)

1
+§¢n—12aw;—1

_wn—IEaAO - ¢n—12aAthj - wn—IEaAvvt-

Matching coefficients in the expression (B.15) for the average agent (defined so that X J = X}) and the

conjectured bond price equation (B.1)

A, + Bl Xy +v) = =8 —0xX¢+ Ap_1+ B),_ux + Bl,_FHX; (B.16)

1
+ 57/)117 1 an;— 1

*wnflzaAO - ¢n712anXt - wnflzaAv'Ut
gives the expressions for A,, and B},

1
An = =60+ An1+B)_jux + iwn—12a¢é—1 — Yn_18aMo (B.17)

Bn = —5X + B;_l.FH - ¢anEaA:v

Restricting A,

The last step that remains is to ensure that the maturity specific shocks v;® enter as conjectured in the

price function (B.1), i.e. we need to set A,, such that
U:L = — P18 Ayt (B.18)
for each n. Start by stacking the expression for each n on top of each other so that

Uy = —\I/ZaAvUt (B19)
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where

U1
v=| : |. (B.20)
Yr-1
Setting
Ay == (T0) o (B.21)

where (-);i;ht denotes the (right) one-sided inverse of a matrix then ensures that equation (B.18) holds for
each n. Letting the SDF depend on the maturity specific shocks thus do not introduce any additional free
parameters through A,,.

The (right) one-sided inverse of WY, exists as long as rank (V) = m — 1 where 7 is the maximum
maturity of any traded bond. This rank condition is likely to be satisfied in the model. To see why, note that

W can be written as

T - [ B I, ] (B.22)
where
By
B=| (B.23)
By 4

The covariance matrix 3, is in turn given by

) cv’
5, = | (B.24)
ve v/
where
. . /
Sepip =B (Xt+1 _E [Xm | QiD <Xt+1 _E [Xm | Q{D (B.25)
andV = F [vtvg]l/ %, The product ¥'Y, is then given by
vy, = [ (BEpqpe +VC) (BCV +VV') ] (B.26)

The right inverse of the matrix W3, exists as long as the square matrix BC'V' + V'V is of full rank. V'V’
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is a positive definite (and diagonal) matrix and is thus of full rank. The sum BC'V’ + V'V’ will also be of
full rank unless adding the BC'V’ cancels the independence of the rows of V'V’. There is nothing in the
model’s structure that suggest that this should happen and the rank condition on ¥}, can be checked on a

case-by-case basis.

Appendix C. Solving the model

Solving the model implies finding a law of motion for the higher order expectations of x; of the form

X1 = px + FX 4 Cupqq (C.D
where
o0
o0
Xt =
P

That is, to solve the model, we need to find the matrices F and C as functions of the parameters governing the
short rate process, the maturity specific disturbances and the idiosyncratic noise shocks. The integer k is the
maximum order of expectation considered and can be chosen to achieve an arbitrarily close approximation
to the limit as k — oo. Here, a brief overview of the method is given, but the reader is referred to Nimark
(2011) for more details on the solution method.

First, common knowledge of the model can be used to pin down the law of motion for the vector X;
containing the hierarchy of higher order expectations of x;. Rational, i.e. model consistent, expectations of

x; thus imply a law of motion for average expectations xgl) which can then be treated as a new stochastic

(2)
t

process. Knowledge that other agents are rational means that second order expectations x,” are determined

by the average across agents of the rational expectations of the stochastic process xgl). The average third or-

) is then the average of the rational expectations of the process x?), and so on. Imposing

der expectation x
this structure on all orders of expectations allows us to find the matrices F and C. Section A below describes
how this is implemented in practice.

Second, the method exploits that the importance of higher order expectations is decreasing in the order

54



of expectations. This result has two components:
(i) The variances of higher order expectations of the factors z; are bounded by the variance of the true
process. More generally, the variance of k£ + 1 order expectation cannot be larger than the variance of a k

order expectation

cov (mEkH)) < cov (:cﬁ’“)) (C2)

To see why, first define the average k + 1 order expectation error Ct(kH)

o) = Y (€3)

Since xikﬂ) is the average of an optimal estimate of xgk) the error Ct(kﬂ) must be orthogonal to xikﬂ) SO
that

cov (@Ek)) = cov <x§k+l)> + cov (Ct(kﬂ)) . (C4)

Now, since covariances are positive semi-definite we have that
cov (Ct(kﬂ)) >0 (C5)

and the inequality (C.2) follows immediately. (This is an abbreviated description of a more formal proof
available in Nimark 2011.)

That the variances of higher order expectations of the factors are bounded is not sufficient for an accurate
finite dimensional solution. We also need (ii) that the impact of the expectations of the factors on bond
yields decreases “fast enough” in the order of expectation. The proof of this result is somewhat involved

and interested readers are referred to the original reference.

The law of motion of higher order expectations of the factors

To find the law of motion for the hierarchy of expectations X; we use the following strategy. For given
F,C in (C.1) and BJ, in (50) we will derive the law of motion for agent j’s expectations of X;, denoted

X7

i = E [Xt | Q{ } . First, write the vector of signals zg as a function of the state, the aggregate shocks and
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the idiosyncratic shocks

Ly
j tt
Z=|r | = +DXi +R ' (C.6)
n
Yt
where p, and D are given by
_ . - ] ]
I; O
do
Bl
pe=| 14, |, D=| (@)
n1BL
73 B

and R can be partitioned conformably to the aggregate and the idiosyncratic shocks

R=| R R, | €8)

The matrix R, picks out the appropriate maturity specific shocks v;* from the vector of aggregate shocks u;

so that

0
R, = (C.9)
V

and R?,, adds the idiosyncratic shocks Qng to the exogenous state x; to form the agent j specific signal vector

J s
Ty, 1.e.

R, = “ (C.10)
0

Agent j’s updating equation of the state X J

e = E [XtH | Q{ } estimate will then follow

X}, =pux +FX]_y + K (zi — D(px + fXLHH» C.11)
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Rewriting the observables vector zg as a function of the lagged state and current period innovations and

taking averages across agents using that [ (;(j)dj = 0 yields

Xye = px +FXi_qi-1 (C.12)
+K (D (ux + FXy—1) + (DC + Ry) ug — D(pux + ]-"Xf_l‘t_l)) (C.13)
= px + (F— KDF) X,_1_1 + KDFX,_1 + K (DC + Ry) u, (C.14)

Appending the average updating equation to the exogenous state gives us the conjectured form of the law of

motion of xiO:E)
Lt Li—1
=pux +F + Cuy (C.15)
Xt Xi1jt-1
where F and C are given by
FF o 04xd 0 0
Fo— I + (C.16)
0 o 0 [F—-KDF]_ [KDF]_
C 0 0
C = + (C.17)
0 0 [K (DC + Ry)|_
where [-]_ indicates that the a last row or column has been truncated to make a the matrix [-] conformable,

i.e. implementing that xgk) =0:k > k. The Kalman gain K in (C.11) is given by

K = (S D' +CR,) (D D' + RR)™! (C.18)
Zt'i‘l‘t = f (Zt+1|t - (Et—‘rl‘tD/ + CRU) (th-‘rl‘tD/ + RR/)_l (Et—‘rl‘tD/ + CRU)/) .F, (C19)

+cc’

The model is solved by finding a fixed point that satisfies (50), (C.16), (C.17), (C.18) and (C.19).
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Appendix D. The matrices in the estimated state space system

The objects in the state space system left undefined in Section IV.G of the main text are given by

_ s ' ]
—3Ag —1Bl,
o= — 10440 , D= — LB, (D.1)
—Lnx1) X (A1 + Bipix) ~1(nx1) X B{FH
| — 45 Lmx1) X (A0 + Blpx) | | — 5L (mx1) X By FH |
, ]
Ov X | €d44-1 €4d+20-1 €d+40—1 0 0
R = 0 I, x BiFE} 0 (D-2)
0 0 I % 5B FSy?

where m is the number of survey responses available in period ¢ and e; is a vector with a one in the "

position and zeros elsewhere.

Appendix E. Computing the cross-sectional variance >,

The idiosyncratic noise shocks 77{ are white noise processes that are orthogonal across agents and to the
aggregate shocks v; and €;. This implies that the cross-sectional variance of expectations is equal to the part
of the unconditional variance of agent j’s expectations that is due to idiosyncratic shocks. This quantity
can be computed by finding the variance of the estimates in agent j’s updating equation (C.11), but with the

aggregate shocks v; and &; “switched off”. The covariance >J; of agent j’s state estimate due to idiosyncratic

shocks is defined as
S, =F (E [Xt | Qg] - /E (X, | Q1] dj) (E [Xt | Qg} - /E (X, | Q] dj) (B.1)
and given by the solution to the Lyapunov equation
Y;=-KD)FY;F (I - KD) + KR,R,K'. (E.2)

which can be found by simply iterating on (E.2).
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