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Abstract

We consider two–sided many–to–many matching markets in which each worker may work

for multiple firms and each firm may hire multiple workers. We study individual and group

manipulations in centralized markets that employ (pairwise) stable mechanisms and that

require participants to submit rank order lists of agents on the other side of the market.

We are interested in simple preference manipulations that have been reported and studied

in empirical and theoretical work: truncation strategies, which are the lists obtained by

removing a tail of least preferred partners from a preference list, and the more general

dropping strategies, which are the lists obtained by only removing partners from a preference

list (i.e., no reshuffling).

We study when truncation/dropping strategies are exhaustive for a group of agents on

the same side of the market, i.e., when each match resulting from preference manipulations

can be replicated or improved upon by some truncation/dropping strategies. We prove that

for each stable mechanism, dropping strategies are exhaustive for each group of agents on the

same side of the market (Theorem 1), i.e., independently of the quotas. Then, we show that

for each stable mechanism, truncation strategies are exhaustive for each agent with quota

1 (Theorem 2). Finally, we show that this result cannot be extended neither to individual

manipulations when the agent’s quota is larger than 1 (even when all other agents’ quotas

equal 1 – Example 1), nor to group manipulations (even when all quotas equal 1 – Example 2).
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José de Caldas.
§Institute for Economic Analysis (CSIC) and Barcelona GSE, Spain. The first draft of this paper was written

while F. Klijn was visiting Universidad del Rosario. He gratefully acknowledges the hospitality of Universidad

del Rosario and financial support from CSIC/Colciencias through grant 2010CO0013 and the Spanish Ministry

of Economy and Competitiveness through Plan Nacional I+D+i (ECO2011–29847) and the Severo Ochoa Pro-

gramme for Centres of Excellence in R&D (SEV-2011-0075).

1



Keywords: matching, many–to–many, stability, manipulability, truncation strategies, dropping strategies.

JEL–Numbers: C78, D60.

1 Introduction

In part–time labor markets and some professional entry–level labor markets a worker may be

employed by a number of different firms. An important example of the latter are British entry–

level medical labor markets which involve graduating medical students and teaching hospitals.

Each student seeks two residency positions: one for a medical program and one for a surgical

program. Roth (1991) modeled the British entry–level medical labor markets as many–to–two

matching markets.

In this paper, we consider many–to–many matching markets in which each worker may work

for multiple firms and each firm may hire multiple workers. Agents have preferences over subsets

of potential partners.1 An assignment between workers and firms is called a matching. A central

concept in the matching literature is (pairwise) stability. A matching is called stable if all agents

are matched to an acceptable subset of partners and there is no unmatched worker–firm pair who

both would prefer to match (and possibly dismiss some current partners). Roth (1984a) studied a

general many–to–many model and showed that if the agents’ preferences satisfy substitutability

then the set of stable matchings is non–empty.2

In many–to–many matching markets, the set of stable matchings might be different from the

core (Blair, 1988) and also there might be stable matchings that can be blocked by coalitions

of more than two agents (Roth and Sotomayor, 1990). Sotomayor (1999b) studied the stronger

concept of setwise stability and showed that in the many–to–many model the set of stable

matchings, the core, and the set of setwise stable matchings do not coincide. However, potential

larger blocking coalitions in complex real–life settings might have more difficulties to organize

themselves. In fact, Roth (1991, page 422) suggested that for many–to–many markets such as

the British entry–level medical labor markets, stability is still of primary importance.

Many real–life matching markets employ a centralized mechanisms to match workers to

firms and the only information that the matchmaker asks from the participating agents are

their preferences over the other side of the market. In particular, we assume that the agents’

quotas (i.e., the number of available slots) are commonly known by the agents (because, for

instance, the quotas are determined by laws).3 In practice, agents are only allowed to submit

ordered lists of individual partners (potential partners that are not listed are assumed to be

unacceptable). Presumably the agents’ preferences over sets of potential partners are responsive

1Note that agents only have preferences over potential partners on the other side of the market and not over

their colleagues.
2An agent has substitutable preferences if the agent continues to want to be partners with an agent even if

other agents become unavailable. Note that substitutability excludes complementarities. Substitutability was

introduced by Kelso and Crawford (1982) to show the existence of stable matchings in a many–to–one model with

money.
3In particular, quotas cannot be manipulated (cf. Sönmez, 1997).
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(Roth, 1985a): for each agent i, the convenience to match with an additional potential partner

j by possibly replacing some partner k only depends on the individual characteristics of j and

k (and whether the quota is reached). Throughout the current paper we focus on mechanisms

that only demand ordered lists of potential individual and acceptable partners and keep the

responsiveness assumption.4 A mechanism is stable if for each reported profile of ordered lists it

produces a matching that is stable with respect to the reported profile. Two important examples

of such mechanisms are the so–called worker–optimal and firm–optimal stable mechanisms which

are based on the deferred acceptance algorithm (introduced by Gale and Shapley, 1962, for the

one–to–one case and adapted by Roth, 1984a, to the many–to–many case).

Even though there is evidence that clearinghouses that employ stable mechanisms often per-

form better than those that employ unstable mechanisms,5 no stable mechanism is immune to

preference manipulation (Dubins and Freedman, 1981, and Roth, 1982). This fact immediately

triggers a question: What types of strategies should a strategic agent consider? In the present

paper, we focus on two types of “simple” preference manipulations that have been reported and

studied in empirical and theoretical work. The first class of preference manipulations is that

of truncation strategies (Roth and Vande Vate, 1991). A truncation strategy is a list that is

obtained from an agent’s true preference list by removing a tail of its least preferred acceptable

partners. Truncation strategies have been observed in practice, for instance, in the sorority rush

(Mongell and Roth, 1991). The second class of preference manipulations consists of dropping

strategies (Kojima and Pathak, 2009). A dropping strategy is a list that is obtained from an

agent’s true preference list by removing acceptable partners (i.e., no reshuffling). Obviously,

each truncation strategy is also a dropping strategy. Roth and Rothblum (1999) studied the

firm–optimal stable mechanism in the many–to–one model. They showed that if a worker’s in-

complete information is completely symmetric, then it might only gain by reporting a truncation

strategy. Ehlers (2008) obtained a similar result for all so–called priority and linear program-

ming mechanisms. Coles and Shorrer (2012) examined truncation strategies in the one–to–one

model. They established that also in settings with asymmetric incomplete information about

the strategies submitted by the other agents, workers can truncate lists with little risk of ending

up unmatched, but with the potential to see large gains. Ma (2010) studied truncation strategies

and the equilibrium outcomes induced by the worker–optimal stable mechanism in one–to–one

and many–to–one matching markets. For one–to–one, he found that if in equilibrium each firm

uses a truncation strategy, then the equilibrium outcome is the firm–optimal matching. For

many–to–one, he found that if in equilibrium each firm uses a truncation strategy, then the

equilibrium outcome is either the firm–optimal matching or an unstable matching with respect

to the true preferences. Ashlagi and Klijn (2012) studied effects of manipulations in the direct-

revelation game based on the worker–optimal stable mechanism in one–to–one and many–to–one

matching markets. For one–to–one, they showed that under the worker–optimal stable mecha-

nism, any weakly successful group manipulation by firms is weakly beneficial to all other firms

4Responsiveness implies substitutability, and hence the existence of a stable matching.
5See, for instance, Roth (1991).
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and weakly harmful to all workers and any truncation strategy of a firm is weakly beneficial

to all other firms and weakly harmful to all workers. They showed that neither of the results

above extends in an appropriate way to many–to–one: a firm can have dropping strategies and

successful manipulations that strictly harm some other firm and strictly benefit some worker.

Taking the stability requirement for a mechanism to perform well as granted, we study

stable mechanisms, but do not restrict ourselves to the firm–optimal stable mechanism (as in

Roth and Rothblum, 1999, and Coles and Shorrer, 2012). On the other hand, we assume

a complete information environment. We consider the point of view of an individual worker

while keeping the other agents’ strategies fixed. In view of our analysis it is convenient to

introduce the truncation/dropping correspondence that assigns to each preference relation the

set of truncation/dropping strategies obtained from the induced list over individual agents. In

one–to–one markets, the truncation correspondence is exhaustive (Roth and Vande Vate, 1991,

Theorem 2) in the sense that for each strategy, the induced match can be replicated or improved

upon by some truncation of the list induced by the agent’s true preference relation.6 Kojima

and Pathak (2009, Lemma 1) proved that the dropping correspondence is exhaustive for a firm

in the many–to–one model (where workers’ quotas equal one).7 However, their result does not

say anything about possible joint manipulations by a group of workers or a group of firms, nor

deals with the possibility of workers having a quota larger than one.8 We show that for each

stable mechanism, the dropping correspondence is exhaustive for each group of agents on the

same side of the market (Theorem 1).

Since Roth and Vande Vate’s (1991) model is one–to–one, their result would not apply to

most real–life matching markets.9 We extend Roth and Vande Vate’s (1991) result by showing

that for each stable mechanism, the truncation correspondence is exhaustive for each agent with

quota 1 (Theorem 2). the truncation/dropping correspondence is exhaustive for a group of

agents on the same side of the market. We complement our second result with two examples to

show that it cannot be generalized in the following two ways. The truncation correspondence is

� neither necessarily exhaustive for an agent with quota larger than 1 even when all other

agents’ quotas equal 1 (Example 1);

6Roth and Vande Vate (1991) studied random stable mechanisms. We rephrase their Theorem 2 to fit it for

our framework.
7In fact, Kojima and Pathak (2009) also considered strategic manipulation by underreporting quotas. We focus

on manipulation via preference lists, and aim to establish “exhaustiveness results” (of truncation and dropping

strategies) for different classes of quota vectors.
8Note that we only focus on (pairwise) stability and do not consider larger blocking coalitions than worker–firm

pairs. This is not a conceptual contradiction to our study of joint manipulations, since larger blocking coalitions

would involve agents from both sides of the market, while the joint manipulations we study only deal with groups

of agents on the same side of the market. It seems more likely that a group of agents on the same side of the

market can carry out a group manipulation that is actually binding on its members.
9For each many–to–one market, there is a one–to–one correspondence between its stable matchings and those

of a related one–to–one market. Hence, many properties of the set of stable matchings in the one–to–one model

carry over to the many–to–one model. Yet, with respect to strategic issues, Roth (1985a) showed that the two

models are not equivalent.
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� nor necessarily exhaustive for a group of agents on the same side of the market even when

all quotas equal 1 (Example 2).

Our results suggest that if workers and firms are aware of the exhaustiveness of truncation or

dropping correspondences, we can expect them to reveal truthful information regarding the rela-

tive rank order of the listed potential partners. To put our paper in perspective, we briefly men-

tion some of the most closely related papers on many–to–many matching markets (apart from

the already mentioned work by Roth, 1984a, and Sotomayor, 1999b). Alkan (1999,2001,2002),

Bäıou and Balinski (2000), Blair (1988), Fleiner (2003), Roth (1985b), and Sotomayor (1999a)

provided important insights into the lattice structure of the set of stable matchings in different

(many–to–many) models. Mart́ınez et al. (2004) presented an algorithm to compute the full set

of stable matchings when preferences are substitutable. Sotomayor (2004) provided a mecha-

nism that implements the set of stable matchings when preferences are responsive. Klijn and

Yazıcı (2012) studied the number and the set of filled slots in stable matchings when prefer-

ences are substitutable and weakly separable. Finally, Echenique and Oviedo (2006), Klaus and

Walzl (2009), Konishi and Ünver (2006), and Sotomayor (1999b) analyzed the relation between

various solution concepts different from (pairwise) stability on several domains of preferences.

The remainder of the paper is organized as follows. In Section 2, we introduce the model.

In Section 3, we present and prove our results. Section 4 concludes.

2 Model

There are two finite and disjoint sets of agents: a set of workers W and a set of firms F . Let

I � W 8 F be the set of agents. We denote a generic worker, firm, and agent by w, f , and i,

respectively. For each agent i, there is an integer quota qi C 1. Worker w can work for at most

qw firms and firm f can hire at most qf workers. Let q � �qi�i>I .

Let i > I. The set of potential partners of agent i is denoted by Ni. If i >W , Ni � F and if

i > F , Ni � W . A subset of potential partners N b Ni is feasible (for agent i) if SN S B qi. Let

N �Ni, qi� � �N b Ni � SN S B qi� denote the collection of feasible subsets of potential partners.

The element g > N �Ni, qi� denotes “being unmatched” or some outside option. Agent i has a

complete, transitive, and strict preference relation ii over N �Ni, qi�. For each N,N � > N �Ni, qi�,

we write N ki N
� if agent i finds N at least as good as N �, i.e., N ii N

� or N � N �. Let Pi

i

be the set of all preference relations for agent i. Let i� �ii�i>I . For A b I, let iA� �ii�i>A and

i�A� �ii�i>I�A.

Let Pi be the restriction of ii to ��j� � j > Ni� 8 �g�, i.e., individual partners in Ni and

being unmatched. For j, j� > Ni 8 �g�, we write j Pi j
� if j ii j

�, and j Ri j
� if j ki j

�.10 Let Pi

be the set of all such restrictions for agent i. Agent j > Ni is an acceptable partner for agent i if

j Pig. Let P � �Pi�i>I . For A b I, let PA � �Pi�i>A and P�A � �Pi�i>I�A.

We also represent an agent i’s preferences Pi as an ordered list of the elements in Ni 8 �g�.

10With some abuse of notation we often write x for a singleton �x�.
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For instance, Pw � f3 f2g f1 . . . f4 indicates that w prefers f3 to f2, f2 to being unmatched, and

being unmatched to any other firm.

We assume that for each agent i, ii is a responsive extension of Pi (or responsive for short)11

such that (r1) as long as an agent’s quota is not reached, it prefers to fill a position with an

acceptable partner rather than leaving it unfilled and (r2) an agent if faced with two sets of

potential partners that differ only in one partner, it prefers the set of partners containing the

more preferred partner, i.e., for all N > N �Ni, qi�,

(r1) if j > Ni�N and SN S @ qi, then N 8 j ii N if and only if j Pig; and

(r2) if j > Ni�N and k > N , then �N�k� 8 j ii N if and only if j Pi k.

A (many–to–many matching) market is given by �W,F,i, q� or, when no confusion is possible,

�i, q� for short.12

Let �W,F,i, q� be a market. A matching is a function µ � I � 2I such that (m1) each agent

is matched to a feasible subset of potential partners and (m2) an agent is matched to a partner

if and only if the partner is matched to the agent, i.e.,

(m1) for all i > I, µ�i� > N �Ni, qi�; and

(m2) for all w >W and f > F , f > µ�w� if and only if w > µ�f�.

Let µ be a matching. Let i, j > I. If j > µ�i� then we say that i and j are matched to one another

and that they are mates in µ. The set µ�i� is agent i’s match.

Next, we describe desirable properties of matchings. First, we are interested in a voluntary

participation condition over the matchings. Formally, a matching µ is individually rational if

for each i > I and each j > µ�i�, j Pi g.13

Second, we aim to avoid particular blocking pairs that would render a matching unstable.

A worker–firm pair �w, f� is a blocking pair for µ if (b1) a worker w and a firm f are not mates

in µ, (b2) w would prefer to add f or replace another firm by f , and (b3) f would prefer to add

w or replace another worker by w, i.e.,

(b1) w ~> µ�f�;

(b2) [ Sµ�w�S @ qw and f Pw g � or [ there is f � > µ�w� such that f Pw f � ]; and

(b3) [ Sµ�f�S @ qf and w Pf g � or [ there is w� > µ�f� such that w Pf w
� ].14

A matching is (pairwise) stable if it is individually rational and there are no blocking pairs. Let

S�i, q� be the set of stable matchings for market �i, q�. Roth (1984a) showed that the set of

stable matchings is always non–empty. In fact, he showed that for each market �i, q�, there

is a (worker–optimal) stable matching µW that is weakly preferred by all workers to any other

stable matching in S�i, q�. Formally, for each w > W and each µ > S�i, q�, µW �w� kw µ�w�.

11See Roth (1985a) and Roth and Sotomayor (1989) for a discussion of this assumption.
12A many–to–one matching market is a market where each agent on one given side of the market has quota 1.

A one–to–one or marriage market is a market where each agent has quota 1.
13Alternatively, by responsiveness condition (r1), a matching µ is individually rational if no agent would be

better off by breaking a match, i.e., for each i > I and each j > µ�i�, µ�i� ii µ�i��j.
14By responsiveness conditions (r1) and (r2), (b2) is equivalent to [ �Sµ�w�S @ qw and µ�w� 8 f iw µ�w� � or

[there is f � > µ�w� such that �µ�w� � f �� 8 f iw µ�w� � ]. A similar equivalent statement holds for (b3).
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Similarly, there is a (firm–optimal) stable matching µF that is weakly preferred by all firms to

any other stable matching in S�i, q�. Note that stability does not depend on the particular

responsive extensions of the agents’ preferences over individual acceptable partners.15 Hence,

we can denote the set of stable matchings for �i, q� by S�P, q�.

In many–to–one matching markets, the set of stable matchings coincides with the core defined

by weak domination. In addition, ruling out blocking pairs is sufficient for ruling out blocking

coalitions that involve more than two agents. This is not true in many–to–many matching

markets. Not only might the set of stable matchings be different from the core, but also there

might be stable matchings that can be blocked by coalitions of more than two agents (see

Sotomayor, 1999b). However, Roth (1991, page 422) suggested that for certain many–to–many

markets, stability is still of primary importance.

A mechanism assigns a matching to each market. We assume that quotas are commonly

known by the agents (because, for instance, the quotas are determined by law).16 Therefore,

the only information that the mechanism asks from the agents are their preferences over the

other side of the market. Many real–life centralized matching markets employ mechanisms that

only ask for the ordered lists P � �Pi�i>I of individual partners, i.e., they do not depend on the

particular responsive extensions. Throughout the paper we focus on this class of mechanisms.

Hence, a mechanism ϕ assigns a matching ϕ�P, q� to each pair �P, q�.17 We often denote agent

i’s match ϕ�P, q��i� by ϕi�P, q�. A mechanism ϕ is stable if for each �P, q�, ϕ�P, q� > S�P, q�.

Two important examples of such mechanisms are the worker–optimal stable mechanism ϕW and

the firm–optimal stable mechanism ϕF which assign to each market its worker–optimal stable

matching and firm–optimal stable matching, respectively.

An important question is whether stable mechanisms are immune to preference manipulations

by strategic agents. A strategy is an (ordered) preference list of a subset of potential partners.18

More precisely, for each agent i, Pi is the set of strategies. Dubins and Freedman (1981) and

Roth (1982) showed that there is no stable mechanism that is strategy–proof.19 Formally,

for each stable mechanism, ϕ, there is a market �i, q� in which some agent i can submit a

preference list P �

i different from its true preference list Pi and obtain a better match, i.e.,

ϕi�P �

i , P�i, q� ii ϕi�P, q�.

Next, we provide the formal definition of two important classes of strategies that have been

studied in the literature. A truncation strategy of a worker w is an ordered list P �

w obtained from

Pw by making a tail of acceptable firms unacceptable (Roth and Vande Vate, 1991). Formally,

for a worker w with preferences Pw over individual firms, P �

w is a truncation strategy if for

15In fact, the set of stable matchings does not depend on the agents’ orderings of the (individual) unacceptable

partners either.
16In particular, quotas cannot be manipulated (cf. Sönmez, 1997).
17We do not suppress the notation q since the quotas play a role in the definition of stability. Moreover, our

results are also conditional on the values of the quotas.
18The listed potential partners are interpreted as the acceptable potential partners. The other potential partners

are unacceptable and, since we focus on stable mechanisms, their relative ordering is irrelevant.
19However, some stable mechanisms are strategy–proof for one side of the market if each agent on that side of

the market has quota 1 (Roth, 1982, Theorem 5).
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any firms f, f � > F , (a) [if f R�

w f
�R�

w g then f Rw f
�Rw g], and (b) [if f P �

w g and f � Pw f then

f � P �

w g]. We define a truncation strategy of a firm similarly.

A dropping strategy of a worker w is an ordered list P �

w obtained from Pw by removing some

acceptable firms, i.e., not necessarily a tail of least preferred firms (Kojima and Pathak, 2009).

Formally, for a worker w with preferences Pw over individual firms, P �

w is a dropping strategy if

for any firms f, f � > F , [f R�

w f
�R�

w g implies f Rw f
�Rw g]. We define a dropping strategy of a

firm similarly.

A strategy space reductor for i is a correspondence Σ that maps each preference relation ii

to a subset of the set of strategies. Formally, a strategy space reductor is a correspondence

Σ � Pi

i � Pi such that for each ii> P
i

i , the (non–empty) reduced strategy space Σ�ii� is a

subset of Pi. We focus on two strategy space reductors: the truncation correspondence and the

dropping correspondence. The truncation correspondence τ associates each preference relation

ii with the set of truncation strategies obtained from the corresponding restriction Pi. Similarly,

the dropping correspondence δ associates each preference relation ii with the set of dropping

strategies obtained from the corresponding restriction Pi.

We next define the exhaustiveness of a strategy space reductor for an individual agent, i.e.,

when a strategy space reductor is rich enough to replicate or improve upon any possible match.

Let q be a quota vector, ϕ be a mechanism and Σ be a strategy space reductor. The strategy

space reductor Σ is ϕ–exhaustive for agent i if for each ii, each P �

i , and each P�i, there exists

Qi > Σ�ii� such that ϕi�Qi, P�i, q� ki ϕi�P �

i , P�i, q�.

When groups of agents on the same side of the market can jointly carry out strategic manipu-

lations, we extend the previous definition as follows. Let q be a quota vector, ϕ be a mechanism,

and A� b A be a group of agents on the same side of the market A > �W,F�. A (common)

strategy space reductor Σ is ϕ–exhaustive for group A� if for each iA� , each P �

A� , and each P�A� ,

there exists QA� >Li>A� Σ�ii� such that for each i > A�, ϕi�QA� , P�A� , q� ki ϕi�P �

A� , P�A� , q�.

Note that ϕ–exhaustiveness for a group of agents implies ϕ–exhaustiveness for an agent, but

the reverse is not true (see, for instance, Theorem 2 and Example 2).

3 Results

In this section, we present and prove our results. Recall that the quotas �qi�i>I are fixed and

cannot be manipulated. We first consider the dropping correspondence and seek to determine

when it is exhaustive.

Kojima and Pathak (2009) considered a many–to–one matching model where for each w >W ,

qw � 1. Their Lemma 1 implies that for each stable mechanism ϕ, the dropping correspondence

is ϕ–exhaustive for each firm f > F . We extend this result by showing that for each stable

mechanism ϕ, the dropping correspondence is ϕ–exhaustive for a group of agents on the same

side of the market, independently of the vector of the quotas. The proof parallels that of Kojima

and Pathak (2009, Lemma 1). The main difference with their proof is that we need to show

that during the procedure to get a stable matching only firms with vacant positions can be part
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of blocking pairs.

The constructive proof of Theorem 1 works as follows: For each stable mechanism ϕ, each

group of workers W �, and each worker w >W �, (1) take any strategy P �

w, (2) find the matching

under this strategy for ϕ, (3) suppose that w reported the acceptable firms that he was matched

to under P �

w in the same relative order, (4) prove that w is matched to these firms in some stable

matching and that stable mechanism matches him to the same mates.

Theorem 1. Let ϕ be a stable mechanism. The dropping correspondence δ is ϕ–exhaustive for

a group of agents on the same side of the market.20

Proof. Let ϕ be a stable mechanism. Let �i, q� be a market. Let P be the restriction of i to

individual partners and being unmatched. Without loss of generality, let A �W . Let W � bW .

Let P �

W � � �P �

i �i>W � be a strategy–profile for W �. Let µ � ϕ�P �

W � , P�W � , q�. For each w >W �,

let Iµ�w� � �f � f > µ�w� and f Pw g� be the set of firms matched to w at µ and that are

acceptable for w with respect to Pw. For each w >W �, let Qw > δ�iw� be the dropping strategy

obtained from Pw by ranking the firms in Iµ�w� according to the true relative ordering and

making all other firms unacceptable. We need to show that for all w >W �, ϕw�QW � , P�W � , q� kw

ϕw�P �

W � , P�W � , q�. Note that by (r1) in the definition of responsiveness it is sufficient to show

that for each w >W �, ϕw�QW � , P�W � , q� � Iµ�w�.

For each w >W , let

µ�0�w� �
¢̈
¨
¦
¨̈
¤

Iµ�w� if w >W �;

µ�w� if w ¶W �.

Suppose µ�0 is stable with respect to �QW � , P�W � , q�. Let w > W �. Note that in µ�0 agent

w is assigned to all its acceptable partners (with respect to Qw). Hence, by Alkan (2002,

Proposition 6), for each stable matching ν > S�QW � , P�W � , q�, ν�w� � µ�0�w� � Iµ�w�.21 By

stability of ϕ, ϕw�QW � , P�W � , q� � Iµ�w�, which we needed to establish.

Suppose µ�0 is not stable with respect to �QW � , P�W � , q�. Before we apply an iterative pro-

cedure to transform µ�0 into a stable matching, we first establish a few properties of µ�0:

P1(µ�

0) µ�0 is individually rational with respect to �QW � , P�W � , q�.

P2(µ�

0) If �w, f� is a blocking pair for µ�0 with respect to �QW � , P�W � , q�, then w ¶W �.

P3(µ�

0) If �w, f� is a blocking pair for µ�0 with respect to �QW � , P�W � , q�, then Sµ�0�f�S @ qf .

Proof. P1(µ�0) and P2(µ�0) are immediate. Next, we show P3(µ�0). Suppose it is not the case.

Then, Sµ�0�f�S � qf . Since µ�0�f� b µ�f� and Sµ�f�S B qf , µ�0�f� � µ�f�. By P2(µ�0), w ¶ W �.

20The proof of Theorem 1 shows that any group of agents on the same side of the market only needs to

consider dropping strategies in which the number of acceptable firms they report is at most their quota. However,

they cannot only focus on dropping strategies in which the number of acceptable firms is equal to their quota

(Example 3). We would like to thank the associate editor for pointing out this fact. We refer to Section 4 for

further details.
21Proposition 6 in Alkan (2002) is an extension of part of a result that is known as the Rural Hospital Theorem

(Roth, 1984b) which states that each agent is matched to the same number of partners in every stable matching.
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Hence, µ�0�w� � µ�w�. So, �w, f� also blocks µ with respect to �P �

W � , P�W � , q�, which contradicts

the stability of µ with respect to �P �

W � , P�W � , q�. l

Set µ� �� µ�0. As long as µ� is not stable with respect to �QW � , P�W � , q�, apply the following

procedure.

Begin Procedure.

By P1(µ�), there is at least one blocking pair for µ� with respect to �QW � , P�W � , q�. Let f � be a

firm that is a

member of one such blocking pair. Among all workers w involved in blocking pairs �w, f ��

for µ� with respect to �QW � , P�W � , q�, let w� be the most preferred worker with respect to Pf � .

By P2(µ�), w� ¶W �. By P3(µ�), Sµ��f ��S @ qf � . Define

µ���w� �

¢̈
¨̈̈
¦
¨̈̈
¤̈

µ��w�� 8 f � if w � w� and Sµ��w��S @ qw� ;

�µ��w�� 8 f ���arg minPw�
�f � f > µ��w��� if w � w� and Sµ��w��S � qw� ;

µ��w� if w >W ��w��.

Then,

P1(µ��) µ�� is individually rational with respect to �QW � , P�W � , q�;

P2(µ��) If �w, f� is a blocking pair for µ�� with respect to �QW � , P�W � , q�, then w ¶W �; and

P3(µ��) If �w, f� is a blocking pair for µ�� with respect to �QW � , P�W � , q�, then Sµ���f�S @ qf .

Set µ� �� µ��.

End Procedure.

In each iteration, one worker w� ¶ W � gets a strictly better match (with respect to Pw�)

and all other workers keep their match. (This follows from the fact that firm f � has a vacant

position in µ�.) Therefore, the iterative procedure terminates after a finite number of steps.

The resulting matching µ� is stable with respect to �QW � , P�W � , q�. Let w > W �. Since in

each iteration of the procedure w keeps it match, µ��w� � µ�0�w� � Iµ�w�. Note that in µ�

agent w is assigned to all its acceptable partners (with respect to Qw). Hence, by Alkan (2002,

Proposition 6), for each stable matching ν > S�QW � , P�W � , q�, ν�w� � µ��w� � Iµ�w�. By

stability of ϕ, ϕw�QW � , P�W � , q� � Iµ�w�, which we needed to establish.

It only remains to show that in each iteration, µ�� is a matching that satisfies P1(µ��),

P2(µ��), and P3(µ��). We do this by induction. Suppose that in iteration 1 up to k � 1 the

resulting matching satisfies P1(.), P2(.), and P3(.). Let µ� be the matching at the beginning of

iteration k (and suppose it is not stable with respect to �QW � , P�W � , q�. Hence, P1(µ�), P2(µ�),

and P3(µ�) hold.) We will show that the matching µ�� that is obtained in iteration k satisfies

P1(µ��), P2(µ��), and P3(µ��).

Proof of P1(µ��). By the induction hypothesis, µ� is individually rational with respect to

�QW � , P�W � , q�. The only new mates in µ�� with respect to µ� are the pair �w�, f ��. Since �w�, f ��

is a blocking pair for µ� and since µ� is individually rational with respect to �QW � , P�W � , q�, it

immediately follows that w� and f � are mutually acceptable with respect to �QW � , P�W � , q�.

Therefore, µ�� is individually rational with respect to �QW � , P�W � , q�. l
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Proof of P2(µ��). Suppose w > W �. Since �w, f� blocks µ�� with respect to �QW � , P�W � , q�,

f ¶ µ���w�. By the induction hypothesis, in iterations 1 up to k, agent w has kept it original

match, i.e., µ���w� � µ�0�w�. Hence, w blocks µ�� together with f ¶ µ�0�w�. Recall that Qw is a

dropping strategy for which the firms in µ�0�w� are the only acceptable ones for w. This gives a

contradiction to (b2) in the definition of blocking pair and the individual rationality of µ�0 with

respect to �QW � , P�W � , q�, which was established in P1(µ�0). Hence, w ¶W �. l

Proof of P3(µ��). Let �w, f� be a blocking pair for µ�� with respect to �QW � , P�W � , q�. By

P2(µ��), w ~>W �. Suppose Sµ���f�S � qf . Then, by (b3) in the definition of blocking pair, wPf w̃

for some w̃ > µ���f�. We distinguish between two cases.

Case I. �w̃, f� was a blocking pair matched in some iteration l, l B k.

By the induction hypothesis, in iterations l � 1 up to k, worker w ~> W � either keeps its match

from iteration l or obtains a strictly better match by (possibly repeatedly) adding an acceptable

firm and/or replacing its least preferred mate by a more preferred firm (if its quota is reached).

Therefore, since �w, f� is a blocking pair for µ�� at the end of iteration k, w is also willing to block

(with f) the initial matching in iteration l and w and f are not mates at the initial matching

in iteration l. Since wPf w̃, firm f did not block with the best possible worker in iteration l,

which contradicts the definition of the procedure.

Case II. w̃ is matched to f in all matchings of iterations 1, . . . , k.

By the induction hypothesis, in iterations 1 up to k, worker w ~>W � either keeps its match µ�0�w�

or obtains a strictly better match by (possibly repeatedly) adding an acceptable firm and/or

replacing its least preferred mate by a more preferred firm (if its quota is reached). Therefore,

since �w, f� is a blocking pair for µ�� at the end of iteration k, w is also willing to block (with f)

matching µ�0 (with respect to Pw) and w ¶ µ�0�f�. Since wPf w̃ and (by assumption) w̃ > µ�0�f�,

�w, f� is a blocking pair for µ�0 with respect to �P �

W � , P�W � , q�. Since w ¶ W �, it follows from

the definition of µ�0 that µ�w̃� � µ�0�w̃�. Hence, �w, f� is a blocking pair for µ with respect to

�P �

W � , P�W � , q�, which contradicts the stability of µ � ϕ�P �

W � , P�W � , q�. l

Next, we consider the truncation correspondence and seek to determine when it is exhaus-

tive.22 Roth and Vande Vate (1991) studied a matching model making the following assumptions:

(1) SW S � SF S, (2) each agent is acceptable to all agents on the other side of the market, and (3)

for each i > I, qi � 1. Their Theorem 2 says that for each stable mechanism ϕ, the truncation

correspondence τ is ϕ–exhaustive for each agent. It can easily be seen that the first two assump-

tions can be disposed of. Below, we further extend the result by relaxing the third assumption

as well.

Theorem 2. Let A > �W,F�. Let ϕ be a stable mechanism. Suppose for some a > A, qa � 1.

Then, the truncation correspondence τ is ϕ–exhaustive for agent a.

22Truncation strategies have been extensively studied in the matching literature (Roth and Vande Vate, 1991,

Ehlers, 2008, Romm, 2011, Ashlagi and Klijn, 2012, Coles and Shorrer, 2012, among others). Moreover, they

have been used in practice, for instance, in the sorority rush (Mongell and Roth, 1991).
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Proof. Let ϕ be a stable mechanism. Let �i, q� be a market. Let P be the restriction of i to

individual partners and being unmatched. Without loss of generality, let A �W . Let w >W be

such that qw � 1.

Let P �

w be a strategy for w. We identify a truncation strategy Qw > τ�iw� with

ϕw�Qw, P�w, q� Rw ϕw�P �

w, P�w, q�. By Theorem 1, there is a dropping strategy P �

w �

ϕw�P �

w, P�w, q� with ϕw�P �

w, P�w, q�Rw ϕw�P
�

w, P�w, q�. Then, it is enough to identify a trunca-

tion strategy Qw with ϕw�Qw, P�w, q� Rw ϕw�P �

w, P�w, q�. We distinguish between two cases.

Case I. gRw ϕw�P �

w, P�w, q�.

Let Qw � g be the empty truncation strategy. Then, by the stability of ϕ, ϕw�Qw, P�w, q� � g.

Hence, ϕw�Qw, P�w, q�Rw ϕw�P �

w, P�w, q�.

Case II. ϕw�P �

w, P�w, q�Pw g.

Note that ϕw�P �

w, P�w, q� > F . Let f� � ϕw�P �

w, P�w, q�. Let Qw be the truncation of Pw such

that f� is the last acceptable firm. Let Q � �Qw, P�w�. We first show that for all µ > S�Q, q�,

µ�w�Rw f�.

Suppose, to the contrary, that there is some µ̃ > S�Q, q� with f� Pw µ̃�w�. Then, since each

firm f with f�Pwf is not listed (i.e., acceptable) in Qw and since µ̃ is individually rational with

respect to Q, µ̃�w� � g. By Alkan (2002, Proposition 6), for all µ > S�Q, q�, µ�w� � g. In

particular, ϕWw �Q, q� � g.

We need to show that ϕW �Q, q� is stable under �P �

w, P�w, q�. Suppose, to the contrary, that

there is a blocking pair for ϕW �Q, q� under �P �

w, P�w, q�. Then, the same pair blocks ϕW �Q, q�

under �Q, q�. Hence, ϕW �Q, q� is not stable under �Q, q�, contradicting the stability of ϕW .

Since ϕWw �Q, q� � g, by Alkan (2002, Proposition 6) and the stability of ϕ, ϕw�P �

w, P�w, q� � g,

contradicting ϕw�P �

w, P�w, q� � f�. Hence, for all µ > S�Q, q�, µ�w�Rw f�. Since ϕ�Q, q� >

S�Q, q�, ϕw�Q, q�Rw f� � ϕw�P �

w, P�w, q�.

We complement Theorem 2 with two examples to show that it cannot be extended in the

following two ways. The truncation correspondence is

� neither necessarily ϕ–exhaustive for an agent a if qa A 1 and for all i > I��a�, qi � 1

(Example 1);

� nor necessarily ϕ–exhaustive for a group of agents on the same side of the market if for all

i > I, qi � 1 (Example 2).

Example 1. (The truncation correspondence τ is not necessarily ϕ–exhaustive for

an agent a >A if qa A1.)23

Consider a many–to–one matching market �W,F,i, q� with 3 workers, 4 firms, and prefer-

ences over individual partners P given by the columns in Table 1. All potential partners are

23The preferences P are adapted from Roth (1985a, p. 283, Table I) and Roth and Sotomayor (1990, p. 146).
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acceptable. For instance, Pf1 � w3w1w2g. Worker w1 has quota qw1 � 2. Any other agent i has

quota qi � 1.

Table 1: Preferences P in Example 1

Workers Firms

w1 w2 w3 f1 f2 f3 f4

f1 f1 f3 w3 w2 w1 w1

f2 f2 f1 w1 w1 w3 w2

f3 f3 f2 w2 w3 w2 w3

f4 f4 f4

One easily verifies that the unique stable matching µ for �P, q� is given by

w1 w2 w3

µ � S S S

�f3, f4� f2 f1

which is the boxed matching in Table 1.

Consider the (dropping) strategy P �

w1
� f1 f4 for worker w1. Let P � � �P �

w1
, P�w1�. The

unique stable matching for �P �, q� is given by

w1 w2 w3

µ� � S S S

�f1, f4� f2 f3

which is the boldfaced matching in Table 1. Note that µ��w1� � �f1, f4� iw1 �f3, f4� � µ�w1�

for each responsive extension iw1 of Pw1 . Since µ and µ� are the unique stable matchings for

�P, q� and �P �, q�, respectively, it follows that under each stable mechanism, in market �i, q�

firm w1 can strictly improve its match by misreporting its preferences.

Table 2: Truncations and matches of w1 in Example 1

Qw1 ϕw1�Qw1 , P�w1�

f1 f2 f3 f4 �f3, f4�

f1 f2 f3 f3

f1 f2 f1

f1 f1

In Table 2, we indicate the match of worker w1 under each stable mechanism ϕ and for each

profile �Qw1 , P�w1� where Qw1 is a truncation strategy. One immediately verifies that no individ-

ual truncation strategy for w1 replicates or improves upon the match �f1, f4� � ϕw1�P
�

w1
, P�w1�.
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Following the proof of Theorem 1, for each truncation strategy Qw1 of w1, we provide a

dropping strategy that consists of the acceptable firms that are matched to w1 at ϕ�Qw1 , P��w1��

in the true relative order. Instead of truncation strategy Qw1 � f1 f2 f3 f4, w1 can use dropping

strategy Q�

w1
� f3 f4 to be matched to �f3, f4�. Instead of Qw1 � f1 f2 f3, w1 can use dropping

strategy Q�

w1
� f3 to be matched to �f3�. Instead of truncation strategies Qw1 � f1 f2 and

Qw1 � f1, w1 can use dropping strategy Q�

w1
� f1 to be matched to �f1�.

Also, note that by introducing additional workers and firms, the negative result here can be

extended in a straightforward way to situations in which for all i > I��a�, qi C 1. l

Example 2. (The truncation correspondence τ is not necessarily ϕ–exhaustive for

a group of agents on the same side of the market if for all i > I, qi � 1.)

Consider the one–to–one matching market �W,F,i, q� with 4 workers, 4 firms, and prefer-

ences P given by the columns in Table 3. Only acceptable partners are depicted in Table 3. For

instance, Pw1 � f4 f2 f3g f1. For each agent i > I, qi � 1.

Table 3: Preferences P in Example 2

Workers Firms

w1 w2 w3 w4 f1 f2 f3 f4

f4 f1 f3 f4 w3 w4 w1 w2

f2 f4 f1 f3 w4 w1 w4 w1

f3 f1 w2 w3 w4

f2

One easily verifies that the firm–optimal stable matching µ � ϕF �P, q� is given by

w1 w2 w3 w4

µ � S S S S

f3 f4 f1 f2

which is the boxed matching in Table 3.

Consider the profile of (dropping) strategies �P �

w1
, P �

w2
� where P �

w1
� f2 and P �

w2
� f1. Let

P � � �P �

w1
, P �

w2
, P

��w1,w2��. The firm–optimal stable matching µ� � ϕF �P �, q� now equals

w1 w2 w3 w4

µ� � S S S S

f2 f1 f3 f4

which is the boldfaced matching in Table 3. Note that µ��w1� � f2 Pw1 f3 � µ�w1� and µ��w2� �

f1 Pw2 f4 � µ�w2�. It follows that under the firm–optimal stable mechanism, in market �i, q�

workers �w1,w2� can strictly improve their matches by jointly misreporting their preferences.
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Table 4: Truncations of w1,w2 and matches of w2 in Example 2

Qw1 Qw2 ϕFw2
�Qw1 ,Qw2P��w1,w2��

f4 f2 f3 f1 f4 f4

f4 f2 f1 f4 f4

f4 f1f4 f4

f4 f2 f3 f1 g

f4 f2 f1 g

f4 f1 g

In Table 4, we indicate the match of worker w2 under the firm–optimal stable mechanism

ϕF for each profile �Qw1 ,Qw2P��w1,w2�� where Qw1 and Qw2 are truncation strategies.24 One

immediately verifies that no pair of truncation strategies for w1 and w2 leads to a match for w2

that is weakly preferred to f1 � ϕ
F
w2

�P �

w1
, P �

w2
, P

��w1,w2��. l

We conclude with Table 5, which summarizes all our (positive and negative) findings.

Table 5: Summary of results. Given the quotas of the workers and firms, � (�) means that the corre-

spondence is (not necessarily) exhaustive.

Quotas ϕ–exhaustive Quotas ϕ–exhaustive

Worker Other Firms for Workers Firms for

w workers worker w a group of workers

Dropping

correspondence C 1 C 1 � (Theorem 1) C 1 C 1 � (Theorem 1)

Truncation � 1 C 1 C 1 � (Theorem 2)

correspondence A 1 � 1 � 1 � (Example 1) � 1 � 1 � (Example 2)

4 Concluding Remarks

In this section, we discuss three important issues. First, we briefly comment on setwise stable

mechanisms. Second, we show that there is a subcorrespondence of the dropping correspondence

that is exhaustive. We also show this subcorrespondence cannot be “reduced” further. Finally,

we explore the number of truncation strategies an agent with quota 1 has to consider in any

stable mechanism.

Our results also hold for setwise stable mechanisms.25 Theorem 1 and Theorem 2 still hold
24For each pair of truncation strategies of w1 and w2, we can construct a pair of dropping strategies that consist

of the acceptable firms that they are matched to at ϕ�Qw1 ,Qw2P��w1,w2�� in the true relative order (as described

in the proof of Theorem 1). Then, these dropping strategies yield the same matches for w1 and w2.
25A setwise stable matching is an individually rational matching that cannot be blocked by a coalition that

forms new matches only among its members, but may preserve some of its matches outside of the coalition. See

Roth (1984a), Sotomayor (1999b), and Echenique and Oviedo (2006) for a discussion on setwise stability.
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under setwise stability since whenever the set of setwise stable matchings is non-empty, it is a

subset of the set of pairwise stable matchings. Moreover, the conclusions in Examples 1 and 2

are still valid since the matchings in the examples are setwise stable.

An exhaustive correspondence is minimal if there is no proper subcorrespondence that is

exhaustive as well. The dropping correspondence δ is not minimal. To see this, for an agent

i with quota qi, consider the subcorrespondence δB that associates each ii with the subset

of dropping strategies with at most qi acceptable partners. Formally, let A�Pi� be the set of

acceptable partners under Pi and δB�ii� � �P �

i is a dropping strategy of Pi and 0 B SA�P �

i �S B qi�.

The proof of Theorem 1 shows that for any stable mechanism ϕ, δB is ϕ–exhaustive for a group

of agents on the same side of the market. However, agents cannot exclusively focus on dropping

strategies in which the number of acceptable partners is equal to their quota. Formally, for each

agent i, let δ��ii� � �P �

i is a dropping strategy of Pi and SA�P �

i �S � qi�. In the next example, we

show that δ� is not necessarily ϕF –exhaustive for a worker.

Example 3. (δ
�
is not necessarily ϕF–exhaustive for a worker.)

Consider the many–to–one matching market �W,F,i, q� with 2 workers, 2 firms, and pref-

erences over individual partners P given by the columns in Table 6. All potential partners are

acceptable. Worker w1 has quota qw1 � 2. Any other agent i has quota qi � 1.

Table 6: Preferences P in Example 3

Workers Firms

w1 w2 f1 f2

f1 f2 w2 w1

f2 f1 w1 w2

One easily verifies that the firm–optimal stable matching µ � ϕF �P, q� is given by

w1 w2

µ � S S

f2 f1

which is the boxed matching in Table 6.

Note that δ��iw1� � �Pw1�. Now, consider the strategy P �

w1
� f1 for worker w1. Let P � �

�P �

w1
, P�w1�. The firm–optimal stable matching µ� � ϕF �P �, q� is given by

w1 w2

µ� � S S

f1 f2

which is the boldfaced matching in Table 6.

16



Then, ϕFw1
�P �

w1
, P�w1 , q� iw1 ϕ

F
w1

�Pw1 , P�w1 , q�. Hence, the correspondence δ� is not ϕF –

exhaustive for w1. l

The minimum number of strategies that an agent should consider depends on the mechanism

at hand. For instance, in the many–to–one matching model (where workers’ quotas equal one),

the worker–optimal stable mechanism is strategy–proof for the workers. Hence, in that case each

worker w only needs 1 truncation strategy, namely Pw. Formally, let the identity correspondence

Ψ be defined by Ψ�iw� � �Pw� for all preference relations iw. Then, under the worker–optimal

stable mechanism ϕW , the identity correspondence is exhaustive and trivially minimal for each

worker.

However, the next example shows that under the firm–optimal stable mechanism ϕF , the

truncation correspondence is (exhaustive and) minimal for each worker. The two observations

about ϕW and ϕF imply that for any stable mechanism the number of truncation strategies

that a worker w has to consider is between 1 and max�1, SA�Pw�S�. (The worker–optimal stable

mechanism and the firm–optimal stable mechanism show that the bounds are tight.)

Example 4. Consider the one–to–one matching market �W,F,P, q� with k workers, k firms,

and preferences over individual partners P given by the columns in Table 7. Only acceptable

partners are depicted in Table 7. For each i > I, qi � 1.

Table 7: Preferences P in Example 4

Workers Firms

w1 ... wp�1 wp ... wk�2 wk�1 wk f1 ... fp�1 fp ... fk�2 fk�1 fk

f1 � fp�1 fp�1 � fk�1 fk f1 w1 � wp�1 wp � wk�2 wk�1 wk

fp � fk�2 fk�1 f2 wk � wk wk wk�1

� wp�1 � wk�3 wk�2

fp

�

fk

One easily verifies that the firm–optimal stable matching µ � ϕF �P, q� is given by

w1 ... wp�1 wp ... wk�2 wk�1 wk

µ � S ... S S ... S S S

f1 ... fp�1 fp ... fk�2 fk�1 fk.

Now, consider the truncation strategy P �

wk
� f1f2...fp for worker wk. Let P � � �P �

wk
, P�wk

�.

The firm–optimal stable matching µ� � ϕF �P �, q� is given by
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w1 ... wp�1 wp ... wk�2 wk�1 wk

µ� � S ... S S ... S S S

f1 ... fp�1 fp�1 ... fk�1 fk fp.

One immediately verifies that no other truncation strategy leads to a match for wk that is

preferred to fp � ϕ
F
wk

�P �, q�. (Under any truncation strategy in which the number of acceptable

firms l is such that p @ l B k, wk is matched to fl and fpPwk
fl. Under any truncation strategy in

which the number of acceptable firms is such that l @ p, wk remains unmatched and fpPwk
g.)

Note that in this example, by varying p between 1 and k, we obtain a problem in which P �

wk

is the unique optimal truncation strategy of wk (which matches him to fp). Hence, for each

truncation strategy with at least one acceptable firm, there is a problem in which the worker has

to use this truncation strategy. For the truncation strategy with no acceptable firms, consider a

problem in which a worker has a preference relation with no acceptable firms. Then, the worker

uses his unique truncation strategy, namely the empty truncation strategy. Hence, under ϕF ,

worker w has to consider max�1, SA�Pw�S� truncation strategies.26 l
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