

Barcelona GSE Working Paper Series

Working Paper nº 608

Equivalence of Piecewise-Linear
Approximation and Lagrangian

Relaxation for Network Revenue
Management
Sumit Kunnumkal

Kalyan Talluri

This version: November 2012
(June 2012)

Equivalence of piecewise-linear approximation and Lagrangian

relaxation for network revenue management

Sumit Kunnumkal∗ Kalyan Talluri†

November 5, 2012

Abstract

The network revenue management (RM) problem arises in airline, hotel, media, and other
industries where the sale products use multiple resources. It can be formulated as a stochastic
dynamic program, but the dynamic program is computationally intractable because of an ex-
ponentially large state space, and a number of heuristics have been proposed to approximate
its value function. Notable amongst these—both for their revenue performance, as well as their
theoretically sound basis—are approximate dynamic programming methods that approximate
the value function by basis functions (both affine functions as well as piecewise-linear functions
have been proposed for network RM) and decomposition methods that relax the constraints of
the dynamic program to solve simpler dynamic programs (such as the Lagrangian relaxation
methods). In this paper we show that these two seemingly distinct approaches coincide for
the network RM dynamic program, i.e., the piecewise-linear approximation method and the
Lagrangian relaxation method are one and the same.

Key words. network revenue management, linear programming, approximate dynamic program-
ming, Lagrangian relaxation methods.

Revenue management is the control of the sale of a limited quantity of a resource (hotel rooms for a
night, airline seats, advertising slots etc.) to a heterogenous population with different valuations for
a unit of the resource. The resource is perishable, and for simplicity sake, we assume that it perishes
at a fixed point of time in the future. Sale is online, so the firm has to decide what products to offer
at a given price for each product, so as not to sell too much at too low a price early and run out of
capacity, or, reject too many low-valuation customers and end up with excess unsold inventory.

In industries such as hotels, airlines and media, the products consume bundles of different re-
sources (multi-night stays, multi-leg itineraries) and the decision to accept or reject a particular
product at a certain price depends on the future demands and revenues for all the resources used
by the product and, indirectly, on all the resources in the network. Network revenue management
(network RM) is control based on the demands for the entire network. Chapter 3 of Talluri and van
Ryzin [13] contains all the necessary background on network RM.

The network RM problem can be formulated as a stochastic dynamic program, but computing
the value function becomes intractable due to the high dimensionality of the state space. As a result,

∗Indian School of Business, Hyderabad, 500032, India, email: sumit kunnumkal@isb.edu
†ICREA and Universitat Pompeu Fabra, Ramon Trias Fargas 25-27, 08005 Barcelona, Spain, email:

kalyan.talluri@upf.edu

1

researchers have focussed on developing approximation methods. Notable amongst these—both for
their revenue performance, as well as their theoretically sound basis—are approximate dynamic pro-
gramming methods that approximate the value function by basis functions (both affine functions as
well as piecewise-linear functions have been proposed for network RM), and decomposition methods
that relax the constraints of the dynamic program to solve simpler dynamic programs (such as the
Lagrangian methods). In this paper we show that these two seemingly distinct approaches coincide
for the network RM dynamic program. Specifically, we show that the piecewise-linear approximation
method and the Lagrangian relaxation method are one and the same, using a novel minimal number
of binding constraints argument.

As a by-product, we derive some auxiliary results of independent interest: (i) we give a polynomial-
time separation procedure for the piecewise-linear approximation linear program, (ii) we show that
the optimal solution of the piecewise-linear approximation satisfies monotonicity conditions similar
to that of a single-resource dynamic program, and (iii) sketch an extension to a model of network
RM with overbooking.

The rest of the paper is organized as follows. In §1 we give a brief survey of the relevant liter-
ature. In §2 we first formulate the network RM problem as a dynamic program. We then describe
the approximate dynamic programming approach with piecewise-linear basis functions and the La-
grangian relaxation approach. In §3 we give the main body of proofs showing the two approaches
are equivalent, along with a simple calculus-based intuition behind our result. In §4 we discuss a
choice-model based network RM problem where the equivalence between the two approaches does
not hold. This highlights the importance of formulation and customization of the number of La-
grange multipliers to the problem at hand. In §5 we give a small set of numerical results comparing
the solution values and running times of the two approaches. In the appendix we give the proofs
and also a sketch an extension to an overbooking model of network RM.

1 Relevant literature

Approximate dynamic programming is the name given for methods that replace the value function
of a (difficult) dynamic program (DP) with basis functions and solve the simplified problem as an
approximation. In this stream of literature, the linear programming approach consists of formulating
the dynamic program as a linear program with state-dependent variables representing the value
functions and then replacing them by particular functional forms to find the best approximation
within that class of functions. In the network RM context, this approach was first investigated by
Adelman [1] who uses affine functions; Zhang and Adelman [17] extend this to the choice model
of network RM. A natural extension is to use piecewise-linear functions instead of affine as they
are very flexible and indeed, for the single-resource dynamic program, optimal. In this vein, Farias
and van Roy [4] propose a piecewise-linear approximation with concavity constraints. The resulting
linear program has an exponential number of constraints and cannot be solved easily. So they give
a constraint sampling heuristic to solve it. Meissner and Strauss [11] extend the piecewise-linear
approximation approach to the choice model of network RM using aggregation over states to reduce
the number of variables.

Another stream of literature revolves around the Lagrangian relaxation approach to dynamic
programming. Here the idea is to relax certain constraints in the dynamic program by associating
Lagrange multipliers with them so that the problem decomposes into simpler problems. For network
RM, Topaloglu [15] and Kunnumkal and Topaloglu [10] take this approach. Computational results
from Topaloglu [15] indicate that Lagrangian relaxation with product-specific Lagrange multipliers

2

gives consistent and clearly superior revenues compared to the other methods, including the affine
approximation of Adelman [1]; the piecewise-linear approximation was not included, perhaps because
it was not known how to solve it exactly.

How do these seemingly different approaches compare with each other? In a recent paper,
Tong and Topaloglu [14] establish the equivalence between the affine approximation of Adelman [1]
and the Lagrangian relaxation of Kunnumkal and Topaloglu [10]. Vossen and Zhang [16] give an
alternate proof based on Dantzig-Wolfe decomposition. In this paper we show that the piecewise-
linear approximation, without the explicit concavity constraints of [4], and the product and time-
specific Lagrangian relaxation of Topaloglu [15] coincide; that is, they represent the same linear
program. Note that both Adelman [1] and Farias and van Roy [4] formulate the affine and piecewise-
linear approximations but leave the question of their tractability open. Indeed the solution methods
that they propose (integer-programming, constraint sampling) do not guarantee tractability in theory
or scale well in practice. So it is of considerable theoretical and practical interest to show that these
strong approximations are also tractable.

Adelman and Mersereau [2] give an equivalence result similar to ours for a class of infinite-horizon
discounted restless bandit problems. Infinite-horizon discounted DP problems have a very different
flavor than finite-horizon DPs and our techniques are quite different from theirs. We believe the result
in this paper is the first such for a non-trivial finite-horizon stochastic DP, and the main implication
is that strong tractable approximations for difficult stochastic finite-horizon DPs are indeed possible.
The techniques and the intuition developed in this paper can potentially be applied to derive such
results; however it appears that even when such a result is true, some amount of customization and
problem-specific arguments are required to prove it. For example, for a related problem, namely
choice-based network RM, the right formulation and number of Lagrange multipliers to use appear
critical. We discuss this further in §4 of this paper; see also [9].

2 Network revenue management

We consider a network RM problem with a set of I = {1, . . . ,m} resources (for example flight legs
on an airline network), J = {1, . . . , n} products (for example itinerary-fare combinations) that use
the resources in I at the end of τ time periods (booking horizon), with time being indexed from 1
to τ . We assume that each product uses at most one unit of each resource.

2.1 Notation

Throughout, we index resources by i, products by j, and time periods by t. We simplify the notation
significantly by making this consistent; for instance if j uses resource i, we represent it as i ∈ j,
and all j that use resource i by {j | j ∋ i}. We use this notation instead of the somewhat more
cumbersome, albeit a bit more precise, option of defining Ij ⊆ I as the set of resources used by
product j and Ji ⊆ J as the set of products that use resource i and then writing i ∈ Ij and j ∈ Ji.
We use 1[·] as the indicator function, 1 if true and 0 if false.

Booking requests for products come in over time and we let pjt denote the probability that we
get a request for product j at time period t. This is the so-called independent demands model in
the revenue management literature. We make the standard assumption that the time periods are
small enough so that we get a request for at most one product in each time period. Throughout
we assume that pjt > 0 for all j. Note that this is without loss of generality because if pjt = 0

3

for some product j, then we can simply discard that product and optimize over a smaller number
of products. We also assume that

∑
j pjt = 1 for all time periods t. This is also without loss of

generality because we can add a dummy product with negligible revenue on each resource. We let
fj denote the revenue associated with product j.

Given a request for product j, the airline has to decide online whether to accept or reject the
request. An accepted request generates revenue and consumes capacity on the resources used by the
product; a rejected request does not generate any revenue and simply leaves the system.

Throughout, we use boldface for vectors. We represent capacity vectors by r. We use superscripts
on vectors to index the vectors (for example, the resource capacity vector associated with time period
t would be rt) and subscripts to indicate components (for example, the capacity on resource i in
time period t would be rti).

We let r1 = [r1i] represent the initial capacity on the resources and rt = [rti] denote the remaining
capacity on resource i at time period t. The remaining capacity rti takes values in the set Ri =
{0, . . . , r1i } and R =

∏
iRi represents the state space.

We represent control vectors by u. The control vectors could be at the level of the network or
at the level of the individual resources. So, ut = [utj] represents a vector of controls at the network
level. We let utj ∈ {0, 1} indicate the acceptance decision—1 if we accept product j at time t and

0 otherwise. On the other hand, uit = [uitj] represents a control vector associated with resource i

at time t. In this case uitj ∈ {0, 1} represents the acceptance decision on resource i—1 if we accept
product j on resource i at time t and 0 otherwise.

2.2 Dynamic Program

The network RM problem can be formulated as a DP. Let

U(r) = {u ∈ {0, 1}n |uj ≤ ri ∀j, i ∈ j},

be the set of acceptable products when the state is r. The value functions Vt(·) can be obtained
through the optimality equations

Vt(r) = max
u∈U(r)

∑
j

pjtuj [fj + Vt+1(r −
∑
i∈j

ei)− Vt+1(r)] + Vt+1(r), (1)

where ei is a vector with a 1 in the ith position and 0 elsewhere, and the boundary condition is
Vτ+1(·) = 0. Noting that r1 represents the initial capacity on the resources, V1(r

1) gives the optimal
expected total revenue over the booking horizon.

The value functions can, alternatively, be obtained by solving the linear program with an expo-
nential number of decision variables {Vt(r) | ∀t, r ∈ R} and an exponential number of constraints:

min
V

V1(r
1)

s.t

(DPLP) Vt(r) ≥
∑
j

pjtuj [fj + Vt+1(r −
∑
i∈j

ei)− Vt+1(r)] + Vt+1(r)

∀t, r ∈ R,u ∈ U(r)
Vτ+1(·) = 0.

4

Both the recursive equations (1) as well as the linear program (DPLP) are intractable. In the
following sections, we describe two approximation methods.

2.3 Piecewise-linear approximation for Network RM

We approximate the value functions1 of (1) by

Vt(r) ≈
∑
i

vit(ri), ∀r ∈ R.

Substituting this approximation into (DPLP), we obtain the linear program

V PL = min
v

∑
i vi1(r

1
i)

s.t

(PL)
∑
i vit(ri) ≥

∑
j

pjtuj [fj +
∑
i∈j

{vi,t+1(ri − 1)− vi,t+1(ri)}] (2)

+
∑
i

vi,t+1(ri) ∀t, r ∈ R,u ∈ U(r)

vi,τ+1(·) = 0, vit(−1) = ∞, ∀t, i,

where the decision variables are {vit(ri) | ∀t, i, ri ∈ Ri}. The number of decision variables in (PL) is∑
i r

1
i τ which is manageable. However, since (PL) has an exponential number of constraints of type

(2), we need to use a separation algorithm to generate constraints on the fly to solve (PL) (Grötschel,
Lovász, and Schrijver [5]). In §3, we show that the separation can be carried out efficiently for (PL).

A natural question is to understand the structural properties of an optimal solution to (PL). This
is useful since imposing structure can often significantly speed up the solution time. Lemma 1 below
shows that an optimal solution to (PL) satisfies certain monotonicity properties. In particular, if we
interpret vit(ri) as the value of having ri units of resource i at time period t, then vit(ri)−vit(ri−1)
is the marginal value of capacity on resource i at time period t. Part (i) of Lemma 1 shows that
the marginal value of capacity is decreasing in t keeping ri constant, while part (ii) shows that the
marginal value of capacity is decreasing in ri for a given t.

These properties are quite natural and turn out to be useful for a couple of reasons. First, Lemma
1 implies that the optimal objective function value of (PL) is not affected by adding constraints of
the form vit(ri) − vit(ri − 1) ≥ vit(ri + 1) − vit(ri) to the linear program. So the linear program
proposed by Farias and van Roy [4], which explicitly imposes the monotonicity constraints, is in
fact equivalent to (PL). More importantly, the decreasing marginal value property turns out to be
crucial in showing the equivalence between the piecewise-linear approximation and the Lagrangian
relaxation approaches.

Lemma 1. There exists an optimal solution {v̂it(ri) | ∀t, i, ri ∈ Ri} to (PL) such that
(i) v̂it(ri)− v̂it(ri − 1) ≥ v̂i,t+1(ri)− v̂i,t+1(ri − 1) for all t, i and ri ∈ Ri,
(ii) v̂it(ri)− v̂it(ri − 1) ≥ v̂it(ri + 1)− v̂it(ri) for all t, i, and ri ∈ Ri, where we define v̂it(r

1
i + 1) =

v̂it(r
1
i) for all t and i.

Proof. Appendix.

1Adelman [1] uses the affine relaxation Vt(r) ≈ θt +
∑

i rivit but we do not need the offset term θt for piecewise-
linear approximations as we can use the transformation v̄it(ri) = θt/m + vit(ri); see also Adelman and Mersereau
[2].

5

2.4 Lagrangian Relaxation

Topaloglu [15] proposes a Lagrangian relaxation approach that decomposes the network RM problem
into a number of single-resource problems by decoupling the acceptance decisions for a product over
the resources that it uses via product and time-specific Lagrange multipliers.

Let {λijt | ∀t, j, i ∈ j} denote a set of Lagrange multipliers and

Ui(ri) = {ui ∈ {0, 1}n |uij ≤ ri, ∀j ∋ i}

denote the set of feasible controls on resource i when its capacity is ri. We solve the optimality
equation

ϑλit(ri) = max
ui∈Ui(ri)

∑
j∋i

pjtu
i
j [λijt + ϑλi,t+1(ri − 1)− ϑλi,t+1(ri)] + ϑλi,t+1(ri)

for resource i, with the boundary condition ϑλi,τ+1(·) = 0.

If we define

V λt (r) =

τ∑
t′=t

∑
j

pjt′ [fj −
∑
i∈j

λijt′]
+ +

∑
i

ϑλit(ri) (3)

it is possible to show that V λt (r) is an upper bound on Vt(r), where we use [x]+ = max{0, x}. The
Lagrangian relaxation approach finds the tightest upper bound on the optimal expected revenue by
solving

V LR = min
λ
V λ1 (r1).

Talluri [12] shows that the optimal Lagrange multipliers satisfy
∑
i∈j λijt = fj for all j and t.

Proposition 1. There exists {λ̂ijt | ∀t, j, i ∈ j} ∈ argminλ V
λ
1 (r1) that satisfy λ̂ijt ≥ 0 and∑

i∈j λ̂ijt = fj for all j and t.

Proof. Appendix.

Proposition 1 implies that we can find the optimal Lagrange multipliers by solving

V LR = min
{λ |

∑
i∈j λijt=fj ,λijt≥0, ∀ t,j,i∈j}

∑
i

ϑλi1(r
1
i).

Using Proposition 1, we can interpret the Lagrange multiplier λijt as the portion of the revenue
associated with product j that we allocate to resource i at time period t. With this understanding
ϑλi1(r

1
i) is the value function of a single-resource RM problem with revenues {λijt | ∀j ∋ i, t} on

resource i. Therefore, we can also obtain the optimal Lagrange multipliers through the linear pro-
gramming formulation of the single-resource RM dynamic program, with a set of linking constraints

6

(5) as below:

V LR = min
λ,ν

∑
i

νi1(r
1
i)

s.t.

(LR) νit(ri) ≥
∑
j∋i

pjtu
i
j [λijt + νi,t+1(ri − 1)− νi,t+1(ri)]

+νi,t+1(ri) ∀t, i, ri ∈ Ri,u
i ∈ Ui(ri) (4)∑

i∈j
λijt = fj ∀t, j (5)

λijt ≥ 0 ∀t, j, i ∈ j; νi,τ+1(·) = 0 ∀ i.

The linear programming formulation (LR) turns out to be useful when comparing the Lagrangian
relaxation approach with the piecewise-linear approximation.

3 Equivalence of the piecewise-linear approximation and the
Lagrangian relaxation approaches

In this section we show that the piecewise-linear approximation and the Lagrangian relaxation
approaches are equivalent, in that they yield the same upper bound on the value function. This also
shows that the Lagrangian relaxation approach yields the tightest separable, piecewise-linear upper
bound to the value function of the network RM dynamic program.

Proposition 2. V PL = V LR.

It is easy to see that V PL ≤ V LR since (LR) gives a separable approximation that is an upper
bound, while (PL) gives the tightest separable approximation that is an upper bound; we give a
formal proof in §3.2. So the difficult part is the other direction: In the Lagrangian problem, we
solve each of the resources independently and a product might be accepted on one resource and
rejected on another, and there is no reason to believe that the Lagrange multipliers co-ordinate
perfectly—indeed there are few known dynamic programs where they do. For the network RM
problem, Proposition 4 below shows that there exists a set of Lagrange multipliers that perfectly
coordinate the acceptance decisions across the resources.

In §3.1 we first set up the separation problem for (PL), a simpler alternative to solving (PL)
directly. We then show that constraints (2) in (PL) can be separated by solving a linear program. We
use this result to prove Proposition 2 in §3.2. We describe a polynomial-time separation algorithm
for (PL) in §3.3.

3.1 Separation for (PL)

Since (PL) has an exponential number of constraints of type (2), we use a separation algorithm
to solve (PL). Equivalence of efficient separation and solvability of a linear program is due to the
well-known work of Grötschel et al. [5].

The idea is to start with a linear program that has a small subset of constraints (2) and solve
it to obtain V̄ = {v̄it(ri) | ∀t, i, ri ∈ Ri}. We then check for violated constraints by solving the

7

following separation problem: Prove that V̄ satisfies all the constraints (2), and if not, find a violated
constraint. Throughout we assume that V̄ satisfies v̄it(ri)− v̄it(ri − 1) ≥ v̄it(ri + 1)− v̄it(ri) for all
t, i and ri ∈ Ri. This is without loss of generality, since by Lemma 1, we can add these constraints
to (PL) without affecting its optimal objective function value.

Let ∆it(ri) = v̄i,t+1(ri) − v̄it(ri) and ψit(ri) = v̄it(ri) − v̄it(ri − 1) for ri ∈ Ri, so that the
separation problem for (PL) for period t can be written as

Φt(V̄) = max
r∈R,u∈U(r)

∑
j

pjtuj [fj −
∑
i∈j

ψi,t+1(ri)] +
∑
i

∆it(ri). (6)

Note that ψit(·) is just the marginal value of capacity on resource i at time period t. The separation
problem for a set of values V̄ is resolved by obtaining the value of Φt(V̄) and checking if for any t,
Φt(V̄) > 0.

By Lemma 1, ψit(ri) is nonincreasing in ri. By definition, v̄it(r
1
i + 1) = v̄it(r

1
i). Since ψit(r

1
i) =

v̄it(r
1
i) − v̄it(r

1
i − 1) ≥ v̄it(r

1
i + 1) − v̄it(r

1
i) = 0, we also have ψit(ri) ≥ 0 for all ri ∈ Ri. We show

that problem (6) can be solved efficiently as a linear program. This result is useful for two reasons.
First, it helps us in establishing the equivalence between the piecewise linear approximation and the
Lagrangian relaxation approaches. Second, it shows that separation can be efficiently carried out
for (PL).

We begin by describing a relaxation of problem (6) that decomposes it into a number of single
resource problems. For time period t, we split the revenue of product j, fj , among the resources
that it consumes using variables λijt. We interpret λijt as a Lagrange multiplier and it represents
the revenue allocated to resource i ∈ j at time t. As a result, the Lagrange multipliers satisfy∑
i∈j λijt = fj and λijt ≥ 0 for all i ∈ j, for all j. Given such a set of Lagrange multipliers, we solve

the problem

Πλit(V̄) = max
ri∈Ri,ui∈Ui(ri)

∑
j∋i

pjtu
i
j [λijt − ψi,t+1(ri)] + ∆it(ri) (7)

for each resource i. The following lemma states that
∑
iΠ

λ
it(V̄) is an upper bound on Φt(V̄).

Lemma 2. If {λijt | ∀t, j, i ∈ j} satisfy
∑
i∈j λijt = fj and λijt ≥ 0 for all t, j and i ∈ j, then

Φt(V̄) ≤
∑
iΠ

λ
it(V̄).

Proof. If
(
r = [ri],u ∈ U(r)

)
is optimal for problem (6), then u ∈ Ui(ri) and consequently (ri,u) is

feasible for problem (7).

We next show that the upper bound is tight. That is, letting

Πt(V̄) = min
{λ |

∑
i∈j λijt=fj ∀j;λijt≥0 ∀j,i∈j}

∑
i

Πλit(V̄) (8)

we have the following proposition.

Proposition 3. Φt(V̄) = Πt(V̄).

Before we give a formal proof, we provide some intuition as to why the result holds. The
equivalence of Φt(V̄) and Πt(V̄) turns out to be the key result in showing the equivalence between
the piecewise-linear and the Lagrangian relaxation approaches. It is quite possible that this type
of result applies to other problems (say, to some classes of loosely-coupled dynamic programs, in
the framework of Hawkins [6], with a threshold-type or index policy), and we hope the heuristic
argument and the intuition we give below will help in such cases.

8

3.1.1 Intuition behind Proposition 3

Lemma 2 shows that Φt(V̄) ≤ Πt(V̄). So we only give a heuristic argument for why Φt(V̄) ≥ Πt(V̄).
Consider problem (6). Noting that ψi,t+1(0) = ∞, an optimal solution will have uj = 1 only if
the difference fj −

∑
i∈j ψi,t+1(ri) > 0. Therefore, we can write uj [fj −

∑
i∈j ψi,t+1(ri)] in the

objective function as [fj −
∑
i∈j ψi,t+1(ri)]

+. Next, recall that ψi,t+1(·) is a decreasing function of
ri. Assuming it to be invertible (say it is strictly decreasing), we can write problem (6) with ψi,t+1’s
as the decision variables instead of the ri’s. Therefore, we can write problem (6) as

Φt(V̄) = max
ψ

∑
j

pjt[fj −
∑
i∈j

ψi,t+1]
+ +

∑
i

∆it(ψi,t+1). (9)

The above problem is not differentiable. However, by smoothing the [·]+ operator and assuming that
∆it(·) is differentiable, we can solve a differentiable problem which is arbitrarily close to problem

(9). So we can assume that an optimizer of the above maximization problem {ψ̂i,t+1 | ∀ i} satisfies
the first order condition

−
∑
j∋i

pjt1[fj−
∑

k∈j ψ̂k,t+1>0] + ∆
′

it(ψ̂i,t+1) = 0 (10)

for all i, where ∆
′

it(·) denotes the derivative of ∆it(ψi,t+1) with respect to ψi,t+1. We emphasize
that the above arguments are heuristic; our goal here is to only give intuition.

We use the optimal solution {ψ̂i,t+1 | ∀i} described above to construct a set of Lagrange multipliers
in the following manner. Let

λ̂ijt = fj
ψ̂i,t+1∑
k∈j ψ̂k,t+1

∀ j, i ∈ j,

and note that they are feasible to problem (8). We have

λ̂ijt − ψ̂i,t+1 = [fj −
∑
k∈j

ψ̂k,t+1]
ψ̂i,t+1∑
k∈j ψ̂k,t+1

. (11)

Since the ratio on the right hand side is positive, this implies 1[λ̂ijt−ψ̂i,t+1>0] = 1[fj−
∑

k∈j ψ̂k,t+1>0].

Since, {ψ̂i,t+1 | ∀ i} satisfies (10), it also satisfies −
∑
j∋i pjt1[λ̂ijt−ψ̂i,t+1>0]+∆

′

it(ψ̂i,t+1) = 0, which is

the first order condition associated with an optimizer of maxψ
∑
j∋i pjt[λ̂ijt−ψi,t+1]

++∆it(ψi,t+1).

That is, {ψ̂i,t+1 | ∀i} is an optimizer of maxψ
∑
j∋i pjt[λ̂ijt − ψi,t+1]

+ +∆it(ψi,t+1).

So problem (7) can be written as

Πλ̂it(V̄) = max
ψ

∑
j∋i

pjt[λ̂ijt − ψi,t+1]
+ +∆it(ψi,t+1) =

∑
j∋i

pjt[λ̂ijt − ψ̂i,t+1]
+ +∆it(ψ̂i,t+1), (12)

where the last equality follows from above observations.

Putting everything together, we have

Πt(V̄) ≤
∑
i

Πλ̂it(V̄) =
∑
i

{∑
j∋i

pjt[λ̂ijt − ψ̂i,t+1]
+ +∆it(ψ̂i,t+1)

}
=

∑
j

pjt
∑
i∈j

[λ̂ijt − ψ̂i,t+1]
+ +

∑
i

∆it(ψ̂i,t+1) = Φt(V̄),

9

where the first inequality holds since {λ̂ijt | ∀i ∈ j, j} is feasible for problem (8) and the last equality

uses (11) and the fact that {ψ̂i,t+1 | ∀i} is optimal for (9). Note also that the Lagrange multipliers

{λ̂ijt | ∀i ∈ j, j} coordinate the decisions for each product across the different resources: product j is

accepted on resource i ∈ j only if λ̂ijt − ψ̂i,t+1 > 0. By (11), either λ̂ijt − ψ̂i,t+1 > 0 for all i ∈ j or

λ̂ijt− ψ̂i,t+1 ≤ 0 for all i ∈ j. That is, we either accept the product on all the resources it consumes
or reject the product on all the resources it consumes.

We once again emphasize that the above arguments are heuristic; we give a formal proof in the
following section that is quite distinct from the above reasoning. Nevertheless, it is interesting to
note the main conditions for the heuristic argument to work.

1. A threshold type optimal control once we decompose the problem, so the solution can be
reconstructed from the Lagrange problem. In this particular case, note that we have uj = 1
only if the revenue fj exceeds

∑
i∈j ψi,t+1(ri).

2. A monotone decreasing function (ψ) that allowed us to change the separation problem from
optimization over the r’s to optimization over the ψ’s and use the first-order condition.

3. An adequate number of Lagrange multipliers that allowed us to split the revenue function. In
this particular case, we require a Lagrange multiplier λijt for each resource i and product j at
time t. We discuss this point further in §4.3.

3.1.2 Proof of Proposition 3

We begin with some preliminary results. First, we show that problem (7) can be written as the
following linear program

Πλit(V̄) = min
w,z

wit

s.t.

(SepLRi) wit ≥
∑
j∋i

zijtr +∆it(r) ∀r ∈ Ri

zijtr ≥ pjt[λijt − ψi,t+1(r)] ∀j ∋ i, r ∈ Ri

zijtr ≥ 0 ∀j ∋ i, r ∈ Ri.

Lemma 3. The linear program (SepLRi) is equivalent to (7).

Proof. Appendix.

10

We can, therefore, formulate problem (8) as the linear program

Πt(V̄) = min
λ,w,z

∑
i

wit

s.t.

(SepLR) wit ≥
∑
j∋i

zijtr +∆it(r) ∀i, r ∈ Ri (13)

zijtr ≥ pjt[λijt − ψi,t+1(r)] ∀i, j ∋ i, r ∈ Ri (14)∑
i∈j

λijt = fj ∀j (15)

λijt ≥ 0 ∀i, j ∋ i (16)

zijtr ≥ 0 ∀i, j ∋ i, r ∈ Ri. (17)

With a slight abuse of notation, we let (λ,w, z) =
(
{λijtv| ∀j, i ∈ j}, {wit | ∀i}, {zijtr | ∀i, j ∋ i, r ∈

Ri}
)
denote a feasible solution to (SepLR). Let ξit(r) = wit− [

∑
j∋i zijtr +∆it(r)] denote the slack

in constraint (13), and Bi(λ,w, z) = {r ∈ Ri | ξit(r) = 0} denote the set of binding constraints of
type (13) and Bci (λ,w, z) denote its complement.

Note that if (λ̂, ŵ, ẑ) is an optimal solution, then Bi(λ̂, ŵ, ẑ) is nonempty, since for each resource
i, there exists some ri ∈ Ri such that constraint (13) is satisfied as an equality.

The following proposition is a key result. It says that there exists a set of optimal Lagrange mul-
tipliers that perfectly coordinate the acceptance decisions for each product across all the resources.
That is, even though we solve the single resource problems in a decentralized fashion, the Lagrange
multipliers are such that we either accept the product on all the resources or reject it on all the
resources.

We say that (λ̂, ŵ, ẑ) is an optimal solution to (SepLR) with a minimal set of binding constraints∪
i∈I Bi(λ̂, ŵ, ẑ), if there is no other optimal solution (λ̂′, ŵ′, ẑ′) which has a set of binding constraints

that is a strict subset of the binding constraints of (λ̂, ŵ, ẑ); that is,∪
i∈I

Bi(λ̂
′, ŵ′, ẑ′) (

∪
i∈I

Bi(λ̂, ŵ, ẑ).

Proposition 4. There exists an optimal solution (λ̂, ŵ, ẑ) to (SepLR) with a minimal set of binding

constraints and {r̂i | r̂i ∈ Bi(λ̂, ŵ, ẑ),∀i} such that for each j, we either have λ̂ijt ≤ ψi,t+1(r̂i) for all

i ∈ j or λ̂ijt ≥ ψi,t+1(r̂i) for all i ∈ j.

Proof. Appendix.

By Lemma 2, Φt(V̄) ≤ Πt(V̄). We show below that Φt(V̄) ≥ Πt(V̄), which completes the proof.

Let (λ̂, ŵ, ẑ) and {r̂i | ∀i} be as in Proposition 4; so we have

Πt(V̄) =
∑
i

ŵit =
∑
i

∑
j∋i

ẑi,j,t,r̂i +∆it(r̂i) =
∑
j

∑
i∈j

pjt[λ̂ijt − ψi,t+1(r̂i)]
+ +

∑
i

∆it(r̂i),

where the second equality holds since r̂i ∈ Bi(λ̂, ŵ, ẑ) for all i. The last equality holds since if

ẑi,j,t,r̂i > pjt[λ̂ijt−ψi,t+1(r̂i)]
+, then we can decrease ẑi,j,t,r̂i by a small positive number contradicting

either the optimality of (λ̂, ŵ, ẑ) or the fact that (λ̂, ŵ, ẑ) is an optimal solution with a minimal set

of binding constraints amongst all optimal solutions. Let J1 = {j | λ̂ijt ≥ ψi,t+1(r̂i) ∀i ∈ j} and

11

J2 = J \J1 where J = {1, . . . , n}. By Proposition 4, every product j ∈ J2 satisfies λ̂ijt ≤ ψi,t+1(r̂i)
for all i ∈ j. Therefore,

Πt(V̄) =
∑
j∈J1

∑
i∈j

pjt[λ̂ijt − ψi,t+1(r̂i)] +
∑
i

∆it(r̂i)

=
∑
j

∑
i∈j

pjtûj [λ̂ijt − ψi,t+1(r̂i)] +
∑
i

∆it(r̂i)

=
∑
j

pjtûj [fj −
∑
i∈j

ψi,t+1(r̂i)] +
∑
i

∆it(r̂i)

≤ Φt(V̄)

where we define ûj = 1 for j ∈ J1 and ûj = 0 for j ∈ J2. Note that the last equality follows from
constraint (15). The last inequality holds since r = [r̂i],u = [ûj] is feasible to problem (6) by the

following argument: we trivially have ûj ≤ r̂i for all j ∈ J2 and i ∈ j. On the other hand, since λ̂ijt
is finite and ψi,t+1(0) = ∞, we have r̂i ≥ 1 for all j ∈ J1 and i ∈ j. It follows that ûj ≤ r̂i for all
j ∈ J1 and i ∈ j; so the 0-1 controls û = {ûj} satisfy the constraint that ûj = 0 if r̂i = 0 for any
i ∈ j.

3.2 Proof of Proposition 2

We first show that V PL ≤ V LR. Consider a feasible solution
(
{λ̂ijt | ∀t, j, i ∈ j}, {ν̂it(ri) | ∀t, i, ri ∈

Ri}
)
to (LR). For a given t, r = [ri] and u ∈ U(r), note that u ∈ Ui(ri) for all i. Summing up

constraints (4) for ri and u ∈ Ui(ri) for all i,∑
i

ν̂it(ri) ≥
∑
i

∑
j∋i

pjtuj [λ̂ijt + ν̂i,t+1(ri − 1)− ν̂i,t+1(ri)] +
∑
i

ν̂i,t+1(ri)

=
∑
j

pjtuj [fj +
∑
i∈j

ν̂i,t+1(ri − 1)− ν̂i,t+1(ri)] +
∑
i

ν̂i,t+1(ri)

where the equality holds since
∑
i∈j λ̂ijt = fj . So {ν̂it(ri) | ∀t, i, ri ∈ Ri} is a feasible solution to

(PL) with the same objective function value and we have V PL ≤ V LR.

To show the reverse inequality, let V PL = minv
∑
i vi1(r

1
i)+

∑
tΠt(V), where V = {vit(ri) | ∀t, i, ri ∈

Ri}. We have

V PL = min
{v |Φt(V)≤0}

∑
i

vi1(r
1
i) = min

{v |Πt(V)≤0}

∑
i

vi1(r
1
i) ≥ min

{v|Πt(V)≤0}

∑
i

vi1(r
1
i) +

∑
t

Πt(V) ≥ V PL,

where the first equality follows from (6) while the second one follows from Proposition 3. The first
inequality follows since Πt(V) is constrained to be nonpositive, while the last equality uses the fact
that V PL does not have the constraints Πt(V) ≤ 0.

Using (7) and the fact that Πλit(V) appears in the objective function of a minimization problem,

12

we have

V PL = min
λ,π,v

∑
t

∑
i

πit +
∑
i

vi1(r
1
i)

s.t.

πit ≥
∑
j∋i

pjtu
i
j [λijt + vi,t+1(ri − 1)− vi,t+1(ri)] + vi,t+1(ri)− vit(ri)

∀t, i, ri ∈ Ri,u
i ∈ Ui(ri)∑

i∈j
λijt = fj ∀t, j

λijt ≥ 0∀t, j, i ∈ j; vi,τ+1(·) = 0∀i.

Letting πit = θit − θi,t+1 with θi,τ+1 = 0, the above objective function becomes
∑
i θi1 + vi1(r

1
i)

while the first set of constraints become θit+ vit(ri) ≥
∑
j∋i pjtuij [λijt+ vi,t+1(ri−1)− vi,t+1(ri)]+

θi,t+1 + vi,t+1(ri). Finally, letting νit(ri) = θit + vit(ri), we have

V PL = min
λ,ν

∑
i

νi1(r
1
i)

s.t.

νit(ri) ≥
∑
j∋i

pjtu
i
j [λijt + νi,t+1(ri − 1)− νi,t+1(ri)] + νi,t+1(ri)

∀t, i, ri ∈ Ri,u
i ∈ Ui(ri)∑

i∈j
λijt = fj ∀t, j

λijt ≥ 0∀t, j, i ∈ j; νi,τ+1(·) = 0 ∀i.

The above linear program is exactly (LR), the linear programming formulation of the Lagrangian
relaxation. So V LR = V PL ≤ V PL.

Therefore V LR = V PL as we argued the other, easier, direction earlier.

3.3 Polynomial-time separation for (PL)

The separation for (PL) can be done by solving the compact linear program (SepLR) for a given set
of V̄ variables. If its optimal objective function value Πt(V̄) ≤ 0 for all t then V̄ is feasible in (PL).
If Πt(V̄) > 0 for some t, then we find a state-action pair (r ∈ R,u ∈ U(r)) that violates constraint
(2) in the following manner.

13

Separation Algorithm

Step 1: Let (λ̂(0), ŵ(0), ẑ(0)) be an optimal solution to (SepLR). Set k = 0.

Step 2: Let {r̂(k)i | ∀i} be as defined in Proposition 4.

If, for all j, λ̂
(k)
ijt ≤ ψi,t+1(r̂

(k)
i) for all i ∈ j or λ̂

(k)
ijt ≥ ψi,t+1(r̂

(k)
i) for all i ∈ j, set uj = 1 for

all j ∈ J1 and uj = 0 for all j ∈ J2, where J1 and J2 are as defined in Proposition 3. Set

r = {r̂(k)i | ∀i} and u = {uj | ∀j} and stop.

Else, pick a product j such that for i ∈ j, we have λ̂
(k)
ijt < ψi,t+1(r̂

(k)
i), while for l ∈ j, we

have λ̂
(k)
ljt > ψl,t+1(r̂

(k)
l). Let (λ̄(k), w̄(k), z̄(k)) be as described in Proposition 4.

Step 3: Set λ̂(k+1) = λ̄(k), ŵ(k+1) = w̄(k) and ẑ(k+1) = z̄(k). Set k = k + 1 and go
to Step 2.

By Proposition 4, (λ̂(k), ŵ(k), ẑ(k)) is an optimal solution to (SepLR) for all k. Proposition 4 also

implies that (λ̂(k+1), ŵ(k+1), ẑ(k+1)) has strictly fewer number of binding constraints of type (13)

than (λ̂(k), ŵ(k), ẑ(k)). Since the number of binding constraints of type (13) in any optimal solution
is at least m and at most

∑
i r

1
i , Separation Algorithm terminates in polynomial time. Finally, by

Proposition 3, u ∈ U(r).

4 Network RM with customer choice—failure of the equiva-
lence

We consider the network RM problem with customer choice behavior. In contrast to the independent
demands setting described earlier, customers do not come in with the intention of purchasing a fixed
product; rather their purchasing decision is influenced by the set of products that are made available
for sale. This problem appears to be an order of magnitude more difficult to approximate than the
independent-class network RM problem. Indeed, in Kunnumkal and Talluri [8] we show that even
the affine approximation of the dynamic program under the simplest possible choice model, a single-
segment multinomial-logit model, is NP-complete.

In choice-based RM, a customer chooses product j with probability pj(S), when S is the set
of products offered. Note that pj(S) = 0 if j /∈ S and 1 −

∑
j pj(S) is the probability that the

customer does not choose any of the offered products. Letting Q(r) = {j |1[j∋i] ≤ ri ∀i} denote the
set of products that can be offered given the resource capacities r, the value functions Vt(·) can be
obtained through the optimality equations

Vt(r) = max
S⊂Q(r)

∑
j

pj(S)[fj + Vt+1(r −
∑
i∈j

ei)− Vt+1(r)] + Vt+1(r),

and the boundary condition is Vτ+1(·) = 0.

14

The value functions can alternatively be obtained by solving the linear program

min
Vt(·)

V1(r
1)

s.t

(CDPLP) Vt(r) ≥
∑
j

pj(S)[fj + Vt+1(r −
∑
i∈j

ei)− Vt+1(r)] + Vt+1(r)

∀t, r ∈ R, S ⊂ Q(r)

Vτ+1(·) = 0.

Computing the value functions either through the optimality equations or the linear program is
intractable. In the following sections, we describe extensions of the piecewise-linear and Lagrangian
relaxation approaches to choice-based RM.

4.1 Piecewise-linear approximation

The linear program from using a separable piecewise-linear approximation to the value function
Vt(r) ≈

∑
i vit(ri) for all r ∈ R is

V CPL = min
v

∑
i vi1(r

1
i)

s.t

(CPL)
∑
i vit(ri) ≥

∑
j

pj(S)
[
fj +

∑
i∈j

{vi,t+1(ri − 1)− vi,t+1(ri)}
]

(18)

+
∑
i

vi,t+1(ri) ∀t, r ∈ R, S ⊂ Q(r)

vi,τ+1(·) = 0 ∀i.

Meissner and Strauss [11] propose the piecewise-linear approximation for choice-based network RM.
In order to make the formulation more tractable, they use an aggregation over the state variables
to reduce to number of variables.

4.2 Lagrangian Relaxation

A natural extension of the Lagrangian relaxation approach to choice-based RM is to use product
and time-specific Lagrange multipliers to decompose the network problem into a number of single
resource problems. We show that the Lagrangian relaxation approach using product and time-
specific multipliers turns out to be weaker than the piecewise-linear approximation. The number of
Lagrange multipliers that we use appears to be crucial to get the equivalence between the Lagrangian
relaxation and the piecewise-linear approximation.

4.2.1 Lagrangian relaxation using product-specific multipliers

A natural extension of the Lagrangian relaxation approach to the choice-based network RM problem
is to use product and time-specific Lagrange multipliers {λijt | ∀t, j, i ∈ j} to decompose the network
problem into a number of single resource problems. Letting Qi(ri) = {j |1[j∋i] ≤ ri}, we solve the

15

optimality equation

ϑλit(ri) = max
S⊂Qi(ri)

∑
j∋i

pj(S)[λijt + ϑλi,t+1(ri − 1)− ϑλi,t+1(ri)] + ϑλi,t+1(ri)

for resource i. It is possible to show that V λt (r) =
∑
i ϑ

λ
it(ri) is an upper bound on Vt(r). We find

the tightest upper bound on the optimal expected revenue by solving

V CLRp = min
{λ |λijt≥0,

∑
i∈j λijt=fj ∀j,t}

V λ1 (r1).

In contrast to the independent demands setting, the example below illustrates that we can have
V CPL < V CLRp.

4.2.2 Example where V CPL < V CLRp

Consider a network RM problem with two products, two resources and a single time period in the
booking horizon. The first product uses only the first resource, while the second product uses only
the second resource, and we have a single unit of capacity on each resource. Note that in the airline
context, this example corresponds to a parallel flights network. The revenues associated with the
products are f1 = 10 and f2 = 1. The choice probabilities are given in Table 1. In the Lagrangian
relaxation, since we have Lagrange multipliers only for j ∋ i, we have only two multipliers λ1,1,1 and
λ2,2,1. Moreover, the constraint

∑
i∈j λijt = fj implies that all feasible Lagrange multipliers satisfy

λ1,1,1 = f1 and λ2,2,1 = f2. Noting that there is only a single time period in the booking horizon
and that Qi(1) = J for i = 1, 2,

ϑλ11(1) = max
S⊂J

p1(S)f1 = 5

and
ϑλ21(1) = max

S⊂J
p2(S)f2 = 10/11

so that V CLRp = 65/11.

Letting S1 = {1}, S2 = {2} and S3 = {1, 2}, the linear program associated with the piecewise-
linear approximation is

V CPL = min
v

v11(1) + v21(1)

s.t

(CPL) v11(1) + v21(1) ≥ max{p1(S1)f1, p2(S2)f2, p1(S3)f1 + p2(S3)f2, 0}
v11(1) + v21(0) ≥ max{p1(S1)f1, 0}
v11(0) + v21(1) ≥ max{p2(S2)f2, 0}
v11(0) + v21(0) ≥ 0.

Note that the first, second, third and fourth constraints correspond to the states vectors [1, 1],
[1, 0], [0, 1] and [0, 0], respectively. It is easy to verify that an optimal solution to (CPL) is
v11(1) = 5, v11(0) = 10/11, v21(1) = 0, v21(0) = 0 and we have V CPL = 5 < V CLRp. There-
fore, the Lagrangian relaxation approach with product and time-specific Lagrange multipliers is
weaker than the piecewise-linear approximation for choice-based network RM.

16

S p1(S) p2(S)
{1} 1/2 0
{2} 0 10/11
{1, 2} 1/12 10/12

Table 1: Choice probabilities for the example where V CPL < V CLRp.

4.3 Lagrangian relaxation using offer set-specific multipliers

Next we consider a Lagrangian relaxation approach with an expanded set of multipliers. We intro-
duce some notation first. For a resource i and offer set S, we write i ∈ S if there exists a product
j ∈ S with j ∋ i. We interpret S ∋ i in a similar fashion. Letting

R(S) =
∑
j

pj(S)fj (19)

be the revenue associated with offer set S, we let λiSt be the portion allocated to resource i ∈ S and
λϕSt = R(S)−

∑
i∈S λiSt denote the difference between the revenue associated with the offer set S

and the allocations across the resources. Given a set of Lagrange multipliers {λϕSt, λiSt | ∀t, S, i ∈ S},
we solve the optimality equation

ϑλit(ri) = max
S⊂Qi(ri)

1[S∋i]λiSt +
∑
j∋i

pj(S)[ϑ
λ
i,t+1(ri − 1)− ϑλi,t+1(ri)] + ϑλi,t+1(ri)

for resource i, with the boundary condition that ϑλi,τ+1(·) = 0. Letting

ϑλϕt = max
S⊂2J

λϕSt + ϑλϕ,t+1,

where 2J denotes the collection of all subsets of J and ϑλϕ,τ+1 = 0, it is possible to show that

V λt (r) =
∑
i ϑ

λ
it(ri) + ϑλϕt is an upper bound on Vt(r). We find the tightest upper bound on the

optimal expected revenue by solving (say as a linear program)

V CLRo = min
{λ|λϕSt+

∑
i∈S λiSt=R(S) ∀S,t}

V λ1 (r1).

In Kunnumkal and Talluri [9] we show the following using a more elaborate version of the minimal-
binding-constraints argument employed here:

Proposition 5. ([9]) V CPL = V CLRo.

4.4 Number of Lagrange multipliers

Compared to the independent demands case considered previously, the difference in the choice setting
is that the revenue associated with an offer set S, R(S), is much more complicated than before and
is not naturally given as a sum of expected revenues from each product. This is what precludes
equivalence with product-specific multipliers.

In fact, requiring
∑
i∈S λiSt = R(S) can be overly restrictive also and we do not necessarily have

V CPL = V CLRo, if we impose this constraint on the Lagrange multipliers. We illustrate with an

17

example. Consider a network revenue management problem with two products, two resources and
a single time period in the booking horizon. The first product uses only the first resource, while
the second product uses only the second resource, and we have a single unit of capacity on each
resource. Note that in the airline context, this example corresponds to a parallel flights network.

S p1(S) p2(S)
{1} 50/99 0
{2} 0 51/101
{1, 2} 1/2 1/2

Table 2: Choice probabilities for the example V CPL < minλ|
∑

i∈S λiSt=R(S), ∀S,t V
λ
1 (r1).

The revenues associated with the products are f1 = 99 and f2 = 101. The choice probabilities
are given in Table 2. Letting S1 = {1}, S2 = {2} and S3 = {1, 2}, we have R(S1) = 50, R(S2) = 51
and R(S3) = 100. If we impose the constraint

∑
i∈S λiSt = R(S) on the Lagrange multipliers, then

we have λ1,S1,1 = 50, λ2,S2,1 = 51 and λ1,S3,1 + λ2,S3,1 = 100 for all feasible Lagrange multipliers.
We have ϑλ11(1) = max{50, λ1,S3,1} and ϑλ21(1) = max{51, λ2,S3,1}. It can be verified that

min
{λ|λ1,S1,1=50,λ2,S2,1=51,λ1,S3,1+λ2,S3,1=100}

ϑλ11(1) + ϑλ21(1) = 101 > V CPL = 100.

The optimal solution can be reached by the Lagrangian if we introduce a multiplier λϕSt for each
S: Set λϕ,S1,t = λϕ,S2,t = λϕ,S3,t = 1 in the above problem, and the Lagrangian relaxation V CLRo

achieves the value 100. Therefore, the choice as well as the number of Lagrangian multipliers seems
critical and specific to each problem.

5 Numerical results

As the separation problem for (PL) is solvable in polynomial time, a plausible solution procedure
is by linear programming, generating the constraints on the fly. In this section, we investigate how
(PL) compares (LR). By our theoretical result both should give the same objective function value
(as the numerical results indeed show), so our main interest is in comparing solution times.

We consider a hub and spoke network with a single hub that serves N spokes. There is one flight
from the hub to each spoke and one flight from each spoke to the hub. The total number of flights is
2N . Note that the flight legs correspond to the resources in our network RM formulation. We have
high fare-product and low fare-product connecting each origin-destination pair. Consequently, there
are 2N(N + 1) fare-products in total. In all of our test problems, the high fare-product connecting
an origin-destination pair is twice as expensive as the corresponding low fare-product. We measure
the tightness of the flight leg capacities by

α =

∑
i

∑
t

∑
j∋i pjt∑

i r
1
i

,

where the numerator measures the total expected demand over the flight legs and the denominator
gives the sum of the capacities of the flight legs. We index the test problems using (τ,N, α), where
τ is the number of periods in the booking horizon and N and α are as defined above. We use
τ ∈ {25, 50, 100}, N ∈ {2, 3, 4} and α ∈ {1.0, 1.2, 1.6} so that we get a total of 27 test problems. We
note that our test problems are adapted from those in Topaloglu [15].

18

We use constraint generation to solve (PL). By Lemma 1 we can add constraints of the form
vit(ri)−vit(ri−1) ≥ vit(ri+1)−vit(ri) for all t, i and ri ∈ Ri to (PL) without affecting its optimal
objective function value. So, while solving (PL), we start with a linear program that only has the
above mentioned constraints and the nonnegativity constraints. We add constraints of type (2) on
the fly by solving the separation problem described in §3.1. By Proposition 3 and Lemma 3, we can
solve the separation problem as a linear program. We add violated constraints to (PL) and stop
when we are within 1% of optimality.

We use constraint generation to solve (LR) as well. It can be verified that there exists an optimal
solution {ν̂it(ri) | ∀t, i, ri ∈ Ri} to (LR) that satisfies ν̂it(ri) − ν̂it(ri − 1) ≥ ν̂it(ri + 1) − ν̂it(ri) for
all t, i and ri ∈ Ri. While solving (LR), we start with a linear program that only has the above
mentioned constraints in addition to constraints (5) and the nonnegativity constraints. We add
constraints of type (4) on the fly by solving the following separation problem. Given a solution(
{λ̂ijt | ∀t, j, i ∈ j}, {ν̂it(ri) | ∀t, i, ri ∈ Ri}

)
to the restricted linear program, we check for each i and

t if
max

ri∈Ri,ui∈Ui(ri)

∑
j∋i

pjtu
i
j [λ̂ijt + ν̂i,t+1(ri − 1)− ν̂i,t+1(ri)] + ν̂i,t+1(ri)− ν̂it(ri)

is greater than zero. Note that the separation problem for (LR) is easy to solve since for ri ∈ Ri\{0},
the maximum is attained by setting uij = 1[λ̂ijt+ν̂i,t+1(ri−1)−ν̂i,t+1(ri)>0] for j ∋ i. On the other hand,

if ri = 0, the only feasible solution is uij = 0 for all j ∋ i. We add violated constraints to (LR) and
stop when we are within 1% of optimality.

Table 3 gives the objective function values of (PL) and (LR) and the CPU seconds when they
are solved to within 1% of optimality. We solve the test problems using CPLEX 11.2 on a Pentium
Core 2 Duo PC with 3 GHz CPU and 4 GB RAM. The first column gives the characteristics of the
test problem in terms of (τ,N, α). The second column gives the objective function value of (PL),
while the third column gives the CPU seconds required by (PL). The fourth and fifth columns do
the same thing, but for (LR). Comparing the second and fourth columns, we see that the objective
function values of (PL) and (LR) are very close; the differences are within 1%. On the other hand,
the solution times for (PL) on the test problems with a relatively large number of spokes and time
periods can be orders of magnitude greater than (LR). We note that it is possible to solve both
(PL) and (LR) more efficiently; see [4] and [15]. Our goal here is to simply compare the objective
function values and solution times of comparable implementations of both methods. However, our
results are in broadly in line with the computational studies reported [4] and [15].

6 Conclusions

We make the following research contributions in this paper: (1) We show that the approximate
dynamic programming approach with piecewise-linear basis functions (Farias and van Roy [4]) and
the Lagrangian relaxation approach (Topaloglu [15]) are in fact equivalent. This result shows that
there might be surprising connections between the approximate dynamic programming approach
and the Lagrangian relaxation approach for complicated dynamic programs, and one can benefit
from unifying forces as it were. (2) We show that the separation problem for the piecewise-linear
approximation is solvable in polynomial-time. (3) We show that there exists a separable concave
approximation that yields the tightest upper bound among all separable piecewise-linear approxi-
mations to the value function. This implies that the Lagrangian relaxation approach obtains the
tightest upper bound among all separable piecewise-linear approximations that are upper bounds
on the value function.

19

Problem (PL) (LR)
(τ,N, α) V PL CPU V LR CPU

(25, 2, 1.0) 622 3 622 0.1
(25, 2, 1.2) 557 3 557 0.1
(25, 2, 1.6) 448 2 448 0.1
(25, 3, 1.0) 972 14 972 0.4
(25, 3, 1.2) 868 8 868 0.3
(25, 3, 1.6) 700 5 700 0.2
(25, 4, 1.0) 1,187 39 1,188 1
(25, 4, 1.2) 1,048 21 1,048 1
(25, 4, 1.6) 843 10 844 0.5
(50, 2, 1.0) 1,305 71 1,306 1
(50, 2, 1.2) 1,117 42 1,117 1
(50, 2, 1.6) 908 24 908 0.5
(50, 3, 1.0) 2,038 496 2,038 2
(50, 3, 1.2) 1,844 211 1,845 2
(50, 3, 1.6) 1,500 74 1,500 1
(50, 4, 1.0) 2,496 1,556 2,497 6
(50, 4, 1.2) 2,260 746 2,263 4
(50, 4, 1.6) 1,855 227 1,856 3
(100, 2, 1.0) 3,652 2,149 3,652 27
(100, 2, 1.2) 3,242 1,409 3,245 18
(100, 2, 1.6) 2,599 831 2,603 8
(100, 3, 1.0) 5,529 17,821 5,531 44
(100, 3, 1.2) 4,967 9,314 4,972 32
(100, 3, 1.6) 4,131 4,000 4,137 18
(100, 4, 1.0) 6,835 108,297 6,837 80
(100, 4, 1.2) 6,141 51,708 6,148 75
(100, 4, 1.6) 4,910 12,250 4,917 36

Table 3: Comparison of the upper bounds and solution times of (PL) and (LR) both solved to 1%
of optimality by linear programming.

20

Our proof technique uses a novel minimal-binding-constraints argument. We give heuristic con-
ditions for the minimal-binding-constraints technique to work. The checklist is based on a simple
calculus-based argument which provides intuition and may be useful when applying a similar line
of reasoning to other classes of loosely-coupled dynamic programs, in the framework of Hawkins
[6]. Indeed, we sketch in the appendix how the equivalence result extends to network RM with
overbooking under some assumptions on the denied-boarding cost function. We show that the re-
sult does not directly extend to choice-based network RM and discuss why—our insight is that the
number of Lagrange multipliers plays a critical role in the equivalence, requiring problem-specific
customization.

As to computational impact, we solved the piecewise-linear approximation using the linear-
programming based separation we describe in this paper, but our results suggest that solving the
Lagrangian relaxation is still faster. This is in line with the computational studies reported in Farias
and van Roy [4], and not too surprising as solvability by separation is based on the ellipsoid algorithm
that is well known to be slow in practice. Tong and Topaloglu [14] make a similar observation for the
affine relaxation of Adelman [1]; they also find that the Lagrangian relaxation approach described
in Kunnumkal and Topaloglu [10] is more efficient. Improving the efficiency of the separation, say
by a faster, combinatorial, algorithm, would be an interesting area for future research.

21

References

[1] Adelman, D. 2007. Dynamic bid-prices in revenue management. Operations Research 55(4)
647–661.

[2] Adelman, D, A. J. Mersereau. 2008. Relaxations of weakly coupled stochastic dynamic pro-
grams. Operations Research 55(3) 712–727.

[3] Erdelyi, A., H. Topaloglu. 2009. A dynamic programming decomposition method for making
overbooking decisions over an airline network. INFORMS Journal on Computing .

[4] Farias, V. F., B. van Roy. 2007. An approximate dynamic programming approach to network
revenue management. Tech. rep., Sloan School of Management, MIT, Massachussetts, MA.

[5] Grötschel, M., L. Lovász, A. Schrijver. 1988. Geometric Algorithms and Combinatorial Opti-
mization, vol. 2. Springer.

[6] Hawkins, J. 2003. A Lagrangian decomposition approach to weakly coupled dynamic optimiza-
tion problems and its applications. Phd dissertation, Massachusetts Institute of Technology,
Cambridge, MA.

[7] Karaesmen, I., G. J. van Ryzin. 2001. Coordinating overbooking and capacity control decisions
on a network. Tech. rep., Graduate School of Business, Columbia University, New York, NY.
Working paper.

[8] Kunnumkal, S., K. T. Talluri. 2012. A new compact linear program formulation for choice
network revenue management. Tech. rep., Universitat Pompeu Fabra.

[9] Kunnumkal, S., K. T. Talluri. 2012. Piecewise-linear approximations for choice network revenue
management (in preparation). Tech. rep., Universitat Pompeu Fabra.

[10] Kunnumkal, S., H. Topaloglu. 2010. Computing time-dependent bid prices in network revenue
management problems. Transportation Science 44 38–62.

[11] Meissner, J., A. K. Strauss. 2012. Network revenue management with inventory-sensitive bid
prices and customer choice. European Journal of Operational Research 216(2) 459–468.

[12] Talluri, K. T. 2008. On bounds for network revenue management. Tech. Rep. WP-1066, UPF.

[13] Talluri, K. T., G. J. van Ryzin. 2004. The Theory and Practice of Revenue Management .
Kluwer, New York, NY.

[14] Tong, C., H. Topaloglu. 2011. On approximate linear programming approach for network
revenue management problems. Tech. rep., ORIE, Cornell University.

[15] Topaloglu, H. 2009. Using Lagrangian relaxation to compute capacity-dependent bid prices in
network revenue management. Operations Research 57 637–649.

[16] Vossen, T. W. M., D Zhang. 2012. A dynamic disaggregation approach to approximate linear
programs for network revenue management. Tech. rep., Leeds School of Business, University of
Colorado at Boulder, Boulder, CO.

[17] Zhang, D., D. Adelman. 2009. An approximate dynamic programming approach to network
revenue management with customer choice. Transportation Science 43(3) 381–394.

22

Appendix

Proof of Lemma 1:

Our analysis is essentially an adaptation of analogous structural results for the revenue management
problem on a single resource (Talluri and van Ryzin [13]). We introduce some notation to simplify
the expressions. Fixing a resource l, we let Rl(rl) = {x ∈ R |xl = rl} be the set of capacity vectors
where the capacity on resource l is fixed at rl. Given a separable piecewise-linear approximation
V = {vit(ri) | ∀t, i, ri ∈ Ri}, we let

ϵlt(rl,V) = min
r∈Rl(rl),u∈U(r)

{∑
i

vit(ri)−
∑
j

pjtuj
[
fj +

∑
i∈j

[vi,t+1(ri − 1)− vi,t+1(ri)]
]

−
∑
i

vi,t+1(ri)

}
where the argument V emphasizes the dependence on the given approximation. Note that if V is
feasible to (PL), then ϵit(ri,V) ≥ 0 for all t, i and ri ∈ Ri. We begin with a preliminary result.

Lemma 4. There exists an optimal solution V̂ = {v̂it(ri) | ∀t, i, ri ∈ Ri} to (PL) such that for all
t, i and ri ∈ Ri, we have ϵit(ri, V̂) = 0.

Proof. Let V = {vit(ri) | ∀t, i, ri ∈ Ri} be an optimal solution to problem (PL). Let s be the largest
time index such that there exists a resource l and rl ∈ Rl with ϵls(rl,V) > 0. Since V is feasible,
this means that ϵit(ri,V) = 0 for all t > s, i and ri ∈ Ri. We consider decreasing vls(rl) alone by
ϵls(rl,V) leaving all the other elements of V unchanged. That is, let V̂ = {v̂it(ri) | ∀t, i, ri ∈ Ri}
where

v̂it(x) =

{
vit(x)− ϵit(x, v) if i = l, t = s, x = rl
vit(x) otherwise.

(20)

Note that since v̂it(ri) ≤ vit(ri) for all t, i and ri ∈ Ri, we have
∑
i v̂i1(r

1
i) ≤

∑
i vi1(r

1
i). Next, we

show that V̂ is feasible. Since V̂ differs from V only in one element, we only have to check those
constraints where v̂ls(rl) appears. Observe that v̂ls(rl) appears only in the constraints for time
periods s− 1 and s. For time period s− 1, we have∑

j

pj,s−1uj
[
fj +

∑
i∈j

v̂is(ri − 1)
]
+
∑
i

[1−
∑
j∋i

pj,s−1uj]v̂is(ri)

≤
∑
j

pj,s−1uj
[
fj +

∑
i∈j

vis(ri − 1)
]
+
∑
i

[1−
∑
j∋i

pj,s−1uj]vis(ri)

≤
∑
i

vi,s−1(ri)

=
∑
i

v̂i,s−1(ri)

for all r ∈ R and u ∈ U(r), where the first inequality follows since v̂is(ri) ≤ vis(ri) and
∑
j∋i pj,s−1uj ≤

1, the second inequality follows from the feasibility of V and the equality follows from (20). For time

23

period s, v̂ls(rl) appears only in constraints corresponding to r ∈ Rl(rl). For r ∈ Rl(rl), we have∑
i

v̂is(ri)

=
∑
i

vis(ri)− ϵls(rl,V)

≥
∑
j

pjsuj
[
fj +

∑
i∈j

{vi,s+1(ri − 1)− vi,s+1(ri)}
]
+

∑
i

vi,s+1(ri)

=
∑
j

pjsuj
[
fj +

∑
i∈j

{v̂i,s+1(ri − 1)− v̂i,s+1(ri)}
]
+

∑
i

v̂i,s+1(ri)

for all u ∈ U(r), where the inequality follows from the definition of ϵls(rl,V) and the last equality
follows from (20). Therefore V̂ is feasible, which implies that ϵit(ri, V̂) ≥ 0 for all t, i and ri ∈ Ri.
Next, we note from (20) that ϵit(ri, V̂) = 0 for all t > s, i and ri ∈ Ri. For time period s, since
v̂is(ri) ≤ vis(ri) and v̂i,s+1(ri) = vi,s+1(ri), it follows that ϵis(ri, V̂) ≤ ϵis(ri,V). Therefore, if

ϵis(ri,V) was zero, then ϵis(ri, V̂) is also zero. Moreover, ϵls(rl, V̂) = 0 < ϵls(rl,V).

To summarize, V̂ is an optimal solution with ϵit(ri, V̂) = 0 for all t > s, i and ri ∈ Ri and
| {ϵis(ri, V̂) | ϵis(ri, V̂) > 0} | < | {ϵis(ri,V) | ϵis(ri,V) > 0} | . We repeat the above procedure finitely
many times to obtain an optimal solution V̂ with ϵit(ri, V̂) = 0 for all t ≥ s, i and ri ∈ Ri. Repeating
the entire procedure for time periods s− 1, . . . , 1 completes the proof.

We are ready to prove Lemma 1. By Lemma 4, we can pick an optimal solution V̂ = {v̂it(ri) | ∀t, i, ri ∈
Ri} such that ϵit(ri, V̂) = 0 for all t, i and ri ∈ Ri. The proof proceeds by induction on the time
periods. It is easy to see that the result holds for time period τ . Fix a resource l and assume that
statements (i) and (ii) of the lemma hold for all time periods s > t. We show below that statements
(i) and (ii) hold for time period t as well.

Since v̂it(−1) = −∞, statement (i) holds trivially for rl = 0. For rl = 1, Lemma 4 implies that
there exists x ∈ Rl(0) and u ∈ U(x) such that

v̂lt(0) +
∑
i̸=l

v̂it(xi) =
∑
j ̸∋l

pjtuj [fj +
∑
i̸=l

1[i∈j][v̂i,t+1(xi − 1)− v̂i,t+1(xi)]
]

+v̂l,t+1(0) +
∑
i̸=l

v̂i,t+1(xi). (21)

where 1[·] denotes the indicator function and we use the fact that since xl = 0, uj = 0 for all
j ∋ l. Next, consider the capacity vector y with yi = xi for i ̸= l and yl = rl = 1. Since x ≤ y,
U(x) ⊂ U(y) and it follows that u ∈ U(y). Since V̂ is feasible, we have

v̂lt(1) +
∑
i̸=l

v̂it(xi) ≥
∑
j ̸∋l

pjtuj [fj +
∑
i̸=l

1[i∈j][v̂i,t+1(xi − 1)− v̂i,t+1(xi)]
]

+v̂l,t+1(1) +
∑
i̸=l

v̂i,t+1(xi). (22)

Subtracting (21) from (22), we have v̂lt(1)− v̂lt(0) ≥ v̂l,t+1(1)− v̂l,t+1(0).

We next show that statement (i) holds for rl ∈ Rl\{0, 1}. By Lemma 4, there exists x ∈ Rl(rl−1)

24

and u ∈ U(x) such that

v̂lt(rl − 1) +
∑
i̸=l

v̂it(xi)

=
∑
j

pjtuj [fj +
∑
i̸=l

1[i∈j][v̂i,t+1(xi − 1)− v̂i,t+1(xi)] + 1[l∈j][v̂l,t+1(rl − 2)− v̂l,t+1(rl − 1)]
]

+v̂l,t+1(rl − 1) +
∑
i̸=l

v̂i,t+1(xi). (23)

Now, consider the capacity vector y with yi = xi for i ̸= l and yl = rl. Since x ≤ y, U(x) ⊂ U(y)
and it follows that u ∈ U(y). Since V̂ is feasible, we have

v̂lt(rl) +
∑
i̸=l

v̂it(xi)

≥
∑
j

pjtuj [fj +
∑
i̸=l

1[i∈j][v̂i,t+1(xi − 1)− v̂i,t+1(xi)] + 1[l∈j][v̂l,t+1(rl − 1)− v̂l,t+1(rl)]
]

+v̂l,t+1(rl) +
∑
i̸=l

v̂i,t+1(xi). (24)

Subtracting (23) from (24), we get

v̂lt(rl)− v̂lt(rl − 1)

≥
∑
j

pjtuj1[l∈j][2v̂l,t+1(rl − 1)− v̂l,t+1(rl)− v̂l,t+1(rl − 2)] + v̂l,t+1(rl)− v̂l,t+1(rl − 1)

≥ v̂l,t+1(rl)− v̂l,t+1(rl − 1). (25)

Note that the last inequality follows, since by induction assumption (ii), we have

2v̂l,t+1(rl − 1)− v̂l,t+1(rl)− v̂l,t+1(rl − 2) ≥ 0.

Next, we show that statement (ii) holds for time period t. Since v̂it(−1) = −∞, statement (ii)
holds trivially for rl = 0. For rl ∈ Rl\{0, r1l }, Lemma 4 implies that there exists x ∈ Rl(rl +1) and
u ∈ U(x) such that

v̂lt(rl + 1) +
∑
i̸=l

v̂it(xi)

=
∑
j

pjtuj [fj +
∑
i̸=l

1[i∈j][v̂i,t+1(xi − 1)− v̂i,t+1(xi)] + 1[l∈j][v̂l,t+1(rl)− v̂l,t+1(rl + 1)]
]

+v̂l,t+1(rl + 1) +
∑
i̸=l

v̂i,t+1(xi). (26)

Now consider the capacity vector y with yi = xi for i ̸= l and yl = rl. Since rl ≥ 1, uj ≤ rl for all
j ∋ l. Since yi = xi for i ̸= l and u ∈ U(x), we have that uj ≤ yi for all j ∋ i. That is, we have

u ∈ U(y). Since V̂ is feasible, we have

v̂lt(rl) +
∑
i̸=l

v̂it(xi)

≥
∑
j

pjtuj [fj +
∑
i̸=l

1[i∈j][v̂i,t+1(xi − 1)− v̂i,t+1(xi)] + 1[l∈j][v̂l,t+1(rl − 1)− v̂l,t+1(rl)]
]

+v̂l,t+1(rl) +
∑
i̸=l

v̂i,t+1(xi). (27)

25

Subtracting (27) from (26), we get

v̂lt(rl + 1)− v̂lt(rl)

≤
∑
j

pjtuj1[l∈j][2v̂l,t+1(rl)− v̂l,t+1(rl + 1)− v̂l,t+1(rl − 1)] + v̂l,t+1(rl + 1)− v̂l,t+1(rl)

≤ 2v̂l,t+1(rl)− v̂l,t+1(rl + 1)− v̂l,t+1(rl − 1) + v̂l,t+1(rl + 1)− v̂l,t+1(rl)

= v̂l,t+1(rl)− v̂l,t+1(rl − 1)

≤ v̂lt(rl)− v̂lt(rl − 1).

Note that the second inequality above follows, since by induction assumption (ii), 2v̂l,t+1(rl) −
v̂l,t+1(rl + 1) − v̂l,t+1(rl − 1) ≥ 0 and

∑
j pjtuj1[l∈j] ≤ 1 and the last inequality follows from (25).

Finally, for rl = r1l , following a similar analysis, we get

v̂lt(r
1
l)− v̂lt(r

1
l − 1) ≥

∑
j

pjtuj1[l∈j][2v̂l,t+1(r
1
l − 1)− v̂l,t+1(r

1
l)− v̂l,t+1(r

1
l − 2)]

+v̂l,t+1(r
1
l)− v̂l,t+1(r

1
l − 1).

By induction assumption (ii), 2v̂l,t+1(r
1
l −1)−v̂l,t+1(r

1
l)−v̂l,t+1(r

1
l −2) ≥ 0 and v̂l,t+1(r

1
l)−v̂l,t+1(r

1
l −

1) ≥ v̂l,t+1(r
1
l + 1)− v̂l,t+1(r

1
l). We have

v̂lt(r
1
l)− v̂lt(r

1
l − 1) ≥ v̂l,t+1(r

1
l + 1)− v̂l,t+1(r

1
l) = 0 = v̂lt(r

1
l + 1)− v̂lt(r

1
l).

Therefore, statements (i) and (ii) hold at time period t for resource l. This completes the proof
since resource l was an arbitrary choice.

Proof of Proposition 1:

Suppose for product j and time t, we have
∑
i′∈j λi′,j,t > fj . This implies that for some i ∈ j,

λijt > 0. Let δ = min{λijt,
∑
i′∈j λi′,j,t − fj} > 0 and let {λ̂i′,j′,t′ | ∀t′, j′, i′ ∈ j′} be the same as

{λi′,j′,t′ | ∀t′, j′, i′ ∈ j′} except that λ̂ijt = λijt − δ < λijt.

Note that ϑλ̂i1(r
1
i) ≤ ϑλi1(r

1
i) as we have reduced the revenue associated with product j at time

period t, keeping all other product revenues the same. As the first part of the right hand side of (3)
is unaffected by this change, we get

V λ̂1 (r1) ≤ V λ1 (r1).

If after performing this step, we still have
∑
i′∈j λ̂i′,j,t > fj for some product j and time t, we

can repeat this step for another resource i ∈ j until we have
∑
i′∈j λi′,j,t ≤ fj for all j and t.

Now suppose for some product j and time t,
∑
i′∈j λi′,j,t < fj . Fix i ∈ j and let {λ̂i′,j′,t′ | ∀t′, j′, i′ ∈

j′} be the same as {λi′,j′,t′ | ∀t′, j′, i′ ∈ j′} except that λ̂ijt = λijt+ δ, where δ = fj −
∑
i∈j λijt > 0.

We have
ϑλ̂i1(r

1
i) ≤ ϑλi1(r

1
i) + δ.

This is because, by increasing the revenue associated with product j at time t by δ, while keeping
all other product revenues the same, we cannot increase the optimal expected revenue from resource

26

i by more than δ. However,

[fj −
∑
i′∈j

λ̂i′,j,t]
+ = [fj −

∑
i′∈j

λi′,j,t]
+ − δ

and so
V λ̂1 (r1) ≤ V λ1 (r1).

By repeating this step, if necessary, we obtain an optimal solution that satisfies
∑
i′∈j λi′,j,t = fj

for all j and t.

Finally, we show that there exists optimal Lagrange multipliers λi′,j′,t′ ≥ 0 for all t′, j′ and i′ ∈ j′.
Suppose λijt < 0 for some product j, resource i ∈ j and time t. Since the Lagrange multipliers
sum up to fj , there exists a resource l ∈ j such that λljt > 0. Let δ = min{[λijt]+, λljt} > 0 and

let {λ̂i′,j′,t′ | ∀t′, j′, i′ ∈ j′} be the same as {λi′,j′,t′ | ∀t′, j′, i′ ∈ j′} except that λ̂ijt = λijt + δ and

λ̂ljt = λljt − δ. Observe that ϑλ̂i1(r
1
i) ≤ ϑλi1(r

1
i) and ϑλ̂l1(r

1
l) ≤ ϑλl1(r

1
l) so that V λ̂1 (r1) ≤ V λ1 (r1). If

there is still some Lagrange multiplier that is negative, we repeat the step until we have λi′,j′,t′ ≥ 0
for all t′, j′ and i′ ∈ j′.

Proof of Lemma 3:

Note that an optimal solution to problem (7) satisfies uij = 1[λijt≥ψi,t+1(ri)] for all j ∋ i, where we
use the fact that ψi,t+1(0) = ∞. Therefore, using the convention that 0×−∞ = 0, problem (7) can
be written as maxr∈Ri

∑
j∋i pjt1[λijt≥ψi,t+1(r)][λijt − ψi,t+1(r)] + ∆it(r). On the other hand, there

exists an optimal solution
(
ŵit, {ẑijtr | ∀j ∋ i, r ∈ Ri}

)
to (SepLRi) such that ẑijtr = pjt[λijt −

ψi,t+1(r)]
+ = pjt1[λijt≥ψi,t+1(r)][λijt − ψi,t+1(r)] for all j ∋ i and r ∈ Ri. Moreover, there exists an

r̂ ∈ Ri such that ŵit =
∑
j∋i ẑijtr̂ +∆it(r̂). Therefore, ŵit = maxr∈Ri

∑
j∋i ẑijtr +∆it(r).

Proof of Proposition 4:

Choose (λ̂, ŵ, ẑ) to be an optimal solution to (SepLR) with a minimal set
∪
i′∈I Bi′(λ̂, ŵ, ẑ). So,

there is no other optimal solution (λ̂′, ŵ′, ẑ′) which has a set of binding constraints that is a strict

subset of the binding constraints of (λ̂, ŵ, ẑ); that is,∪
i′∈I

Bi′(λ̂
′, ŵ′, ẑ′) (

∪
i′∈I

Bi′(λ̂, ŵ, ẑ).

For resource i′, we let r̂i′ = max{r | r ∈ Bi′(λ̂, ŵ, ẑ)}, so that for all r > r̂i′ , ξi′,t(r) > 0. Now

suppose there exists a product j such that for i ∈ j we have λ̂ijt < ψi,t+1(r̂i), while for l ∈ j, we have

λ̂ljt > ψl,t+1(r̂l). In this case, we construct an optimal solution (λ̄, w̄, z̄) with
∪
i′∈I Bi′(λ̄, w̄, z̄) (∪

i′∈I Bi′(λ̂, ŵ, ẑ), which contradicts (λ̂, ŵ, ẑ) being an optimal solution with a minimal set of binding
constraints of type (13) amongst all optimal solutions.

Recall (from Lemma 1) that v̄i′,t(ri′)− v̄i′,t(ri′ − 1) ≥ v̄i′,t(ri′ +1)− v̄i′,t(ri′) for all i
′, ri′ ∈ Ri′ .

Thus, we have

ψi′,t+1(ri′) ≥ ψi′,t+1(ri′ + 1) ≥ 0, ∀ri′ ∈ Ri′ (28)

(≥ 0 as we set v̄i′,t(r
1
i′ + 1) = v̄i′,t(r

1
i′); cf. Lemma 1). Also recall that we had assumed that pjt > 0

without loss of generality.

27

Let

ϵ = min
{
ψi,t+1(r̂i)− λ̂ijt, λ̂ljt − ψl,t+1(r̂l),min{ξit(r) | r ∈ Bci (λ̂, ŵ, ẑ)}

}
> 0, (29)

with the understanding that if Bci (λ̂, ŵ, ẑ) is empty, then min{ξit(r) | r ∈ Bci (λ̂, ŵ, ẑ)} = ∞.

We construct a solution (λ̄, w̄, z̄) in the following manner. Pick δ ∈ (0, ϵ) and let

λ̄i′,k,t =

λ̂ijt + δ if i′ = i, k = j

λ̂ljt − δ if i′ = l, k = j

λ̂i′,k,t otherwise,

w̄i′,t = ŵi′,t for all i
′ and

z̄i′,k,t,r =

 pjt[λ̄ijt − ψi,t+1(r)]
+ if i′ = i, k = j, r ∈ Bci

pjt[λ̄ljt − ψl,t+1(r)]
+ if i′ = l, k = j, r ∈ Rl

ẑi′,k,t,r otherwise.

Note that by construction, (λ̄, w̄, z̄) has the same elements as (λ̂, ŵ, ẑ) except that λ̄ijt = λ̂ijt + δ,

λ̄ljt = λ̂ljt − δ, z̄ijtr = pjt[λ̄ijt − ψi,t+1(r)]
+ for r ∈ Bci (λ̂, ŵ, ẑ) and z̄ljtr = pjt[λ̄ljt − ψl,t+1(r)]

+ for
all r ∈ Rl. We begin with some preliminary results.

Lemma 5. (i) The solution (λ̄, w̄, z̄) satisfies constraints (13), (14) and (17) for all i′ /∈ {i, l}.
(ii) Bi′(λ̄, w̄, z̄) = Bi′(λ̂, ŵ, ẑ) for all i′ /∈ {i, l}.

Proof. The proof follows by noting that (λ̂, ŵ, ẑ) is feasible and w̄i′,t = ŵi′,t, λ̄i′,k,t = λ̂i′,k,t and
z̄i′,k,t,r = ẑi′,k,t,r for all i′ /∈ {i, l}, r ∈ Ri′ and k ∋ i′.

Lemma 6. (i) The solution (λ̄, w̄, z̄) satisfies constraints (13), (14) and (17) for resource i.

(ii) Bi(λ̄, w̄, z̄) = Bi(λ̂, ŵ, ẑ).

Proof. We first consider constraints (13). For r ∈ Bci (λ̂, ŵ, ẑ), we have

z̄ijtr = pjt[λ̂ijt + δ − ψi,t+1(r)]
+ ≤ pjt[λ̂ijt − ψi,t+1(r)]

+ + pjtδ < ẑijtr + ϵ ≤ ẑijtr + ξit(r), (30)

where the second inequality uses δ < ϵ, and the fact that since (λ̂, ŵ, ẑ) is feasible, ẑijtr ≥ pjt[λ̂ijt −
ψi,t+1(r)] and ẑijtr ≥ 0. Therefore, for all r ∈ Bci (λ̂, ŵ, ẑ), w̄it = ŵit =

∑
k∋i,k ̸=j ẑiktr + ẑijtr +

∆it(r) + ξit(r) >
∑
k∋i z̄iktr + ∆it(r), where the second equality follows by definition of ξit(r) and

the inequality uses (30) and the fact that z̄iktr = ẑiktr for all k ̸= j. Note also that the constraint

is nonbinding for (λ̄, w̄, z̄). Since r ∈ Bci (λ̂, ŵ, ẑ), the constraint was nonbinding for (λ̂, ŵ, ẑ) as

well. On the other hand, for r ∈ Bi(λ̂, ŵ, ẑ) since we have z̄ijtr = ẑijtr and w̄it = ŵit, (λ̄, w̄, z̄)
satisfies constraint (13) as an equality. Therefore, constraints (13) are binding for (λ̄, w̄, z̄). Since r ∈
Bi(λ̂, ŵ, ẑ), these constraints were binding for (λ̂, ŵ, ẑ) as well. Therefore, Bi(λ̄, w̄, z̄) = Bi(λ̂, ŵ, ẑ),
which proves part (ii) of the lemma.

To complete the proof of part(i), we verify that constraints (14) and (17) are satisfied by (λ̄, w̄, z̄).

For r ∈ Bci (λ̂, ŵ, ẑ), z̄ijtr = pjt[λ̄ijt − ψi,t+1(r)]
+ satisfies constraints (14) and (17). For r ∈

Bi(λ̂, ŵ, ẑ), since r̂i = max{r | r ∈ Bi(λ̂, ŵ, ẑ)}, we have ψi,t+1(r) ≥ ψi,t+1(r̂i) (from 28). Constraint
(14) is satisfied since

pjt[λ̄ijt − ψi,t+1(r)] = pjt[λ̂ijt + δ − ψi,t+1(r)] ≤ pjt[λ̂ijt + δ − ψi,t+1(r̂i)] < pjt[λ̂ijt + ϵ− ψi,t+1(r̂i)]

≤ 0 ≤ ẑijtr = z̄ijtr,

28

where the penultimate inequality follows from (29). Constraint (17) is satisfied since for r ∈
Bi(λ̂, ŵ, ẑ), z̄ijtr = ẑijtr ≥ 0.

Lemma 7. (i) The solution (λ̄, w̄, z̄) satisfies constraints (13), (14) and (17) for resource l.

(ii) Bl(λ̄, w̄, z̄) (Bl(λ̂, ŵ, ẑ).

Proof. We first consider constraints (13). By definition, z̄ljtr = pjt[λ̄ljt − ψl,t+1(r)]
+ for all r ∈ Rl.

On the other hand, since (λ̂, ŵ, ẑ) is a feasible solution, ẑljtr ≥ pjt[λ̂ljt − ψi,t+1(r)]
+ for all r ∈ Rl.

Since λ̂ljt > λ̄ljt, we have ẑljtr ≥ z̄ljtr for all r ∈ Rl. Using the fact that z̄lktr = ẑlktr for all k ̸= j
and r ∈ Rl, we have

w̄lt = ŵlt ≥
∑
k∈l

ẑlktr +∆lt(r) =
∑
k∈l

z̄lktr +∆lt(r)

for all r ∈ Rl. Therefore (λ̄, w̄, z̄) satisfies constraints (13).

Next, we look at the number of binding constraints of type (13). Since w̄lt = ŵlt and z̄lktr ≤ ẑlktr
for all k and r ∈ Rl, Bl(λ̄, w̄, z̄) ⊆ Bl(λ̂, ŵ, ẑ). By definition r̂l ∈ Bl(λ̂, ŵ, ẑ). We show that
r̂l /∈ Bl(λ̄, w̄, z̄), which proves part (ii) of the lemma. First, note that

λ̄ljt − ψl,t+1(r̂l) = λ̂ljt − δ − ψl,t+1(r̂l) > λ̂ljt − ϵ− ψl,t+1(r̂l) ≥ 0, (31)

where the last inequality uses (29). Therefore,

z̄l,j,t,r̂l = pjt[λ̄ljt − ψl,t+1(r̂l)]
+ = pjt[λ̄ljt − ψl,t+1(r̂l)] < pjt[λ̂ljt − ψl,t+1(r̂l)]

≤ pjt[λ̂ljt − ψl,t+1(r̂l)]
+ ≤ ẑl,j,t,r̂l ,

where the second equality follows from (31), the first inequality holds since λ̄ljt < λ̂ljt and the last

inequality holds since (λ̂, ŵ, ẑ) is a feasible solution. The above chain of inequalities imply that
z̄l,j,t,r̂l < ẑl,j,t,r̂l . Therefore, we have

w̄lt = ŵlt =
∑

k∋l,k ̸=j

ẑl,k,t,r̂l + ẑl,j,t,r̂l +∆lt(r̂l) >
∑

k∋l,k ̸=j

z̄l,k,t,r̂l + z̄l,j,t,r̂l +∆lt(r̂l).

Consequently, r̂l /∈ Bl(λ̄, w̄, z̄) and Bl(λ̄, w̄, z̄) (Bl(λ̂, ŵ, ẑ).

To complete the proof of part(i), we verify that constraints (14) and (17) are satisfied by (λ̄, w̄, z̄).
This is trivial, since by definition we have z̄ljtr = pjt[λ̄ljt − ψl,t+1(r)]

+.

We are ready to prove Proposition 4. By construction (λ̄, w̄, z̄) satisfies constraints (15). Since

λ̄ljt > λ̂ljt− ϵ ≥ ψl,t+1(r̂l) ≥ 0 (from 28), (λ̄, w̄, z̄) also satisfies constraints (16). This together with
parts (i) of Lemmas 5, 6 and 7 imply that (λ̄, w̄, z̄) is a feasible solution. Since w̄i′,t = ŵi′,t for all
i′, (λ̄, w̄, z̄) is also optimal. Parts (ii) of Lemmas 5, 6 and 7 together imply that∪

i′∈I

Bi′(λ̄, w̄, z̄) (
∪
i′∈I

Bi′(λ̂, ŵ, ẑ).

That is, (λ̄, w̄, z̄) is an optimal solution whose set of binding constraints is a strict subset of those

of (λ̂, ŵ, ẑ), and we get a contradiction to our minimality assumption.

29

Extension to an overbooking model:

In this section we sketch how the results can be extended to a network RM model with overbooking
studied in Karaesmen and van Ryzin [7] and Erdelyi and Topaloglu [3].

Let xj denote the number of sales of product j and x = [xj] be the vector of the number of sales.

Let Ṽτ+1(x) denote the total revenue including the denied boarding penalty cost when we have x
reservations at the end of the booking period. The optimality equation is

Ṽt(x) = max
u∈{0,1}n

∑
j

pjtuj
[
fj + Ṽt+1(x+ ej)− Ṽt+1(x)

]
+ Ṽt+1(x).

where ej is an n-dimensional 0-1 vector with a 1 at the jth position and 0 elsewhere.

We make the following assumption on the terminal revenue (the denied-boarding cost): Ṽτ+1(x) =
V̂τ+1(Ax), where A is the resource-product incidence matrix, the (i, j)th element of which indicates
if product j consumes resource i. That is, the denied boarding cost is not a function of the number
of reservations; it only depends on the total capacity used up on each resource. This assumption is
primarily driven by tractability considerations and used also, for example, in Karaesmen and van
Ryzin [7] and Erdelyi and Topaloglu [3].

Let y = Ax and note that yi gives the total capacity consumed on resource i, when the sales
vector is x. With the above assumption on the terminal revenue, the optimality equation can be
equivalently written as

V̂t(y) = max
u∈{0,1}n

∑
j

pjtuj
[
fj + V̂t+1(y +

∑
i∈j

ei)− V̂t+1(y)
]
+ V̂t+1(y),

where ei is an m-dimensional 0-1 vector with a 1 at the ith position and 0 elsewhere.

We consider the following piecewise-linear approximation: V̂t(y) ≈
∑
i v̂it(yi), where we impose

a restriction that v̂it(·) are discrete-concave functions (but not necessarily increasing). Also, let ci be
a large enough number that the denied-boarding costs are prohibitively high (equivalently, revenue
losses are huge) if the capacity consumption on resource i exceeds ci. That is, v̂iτ (ci) is finite but
v̂iτ (ci + 1) is (assumed to be) −∞. Letting Yi = {0, . . . , ci} and Y =

∏
i Yi, the linear program

associated with the piecewise-linear approximation is

V̂ OPL = min
v̂

∑
i v̂i1(0)

s.t

(OPL)
∑
i v̂it(yi) ≥

∑
j

pjtuj
[
fj +

∑
i∈j

{v̂i,t+1(yi + 1)− v̂i,t+1(yi)}
]

+
∑
i

v̂i,t+1(yi) ∀t,y ∈ Y,u ∈ {0, 1}n

v̂it(yi)− v̂it(yi − 1) ≤ v̂it(yi − 1)− v̂it(yi − 2) ∀t, i, yi ∈ Yi.

where the objective function reflects the fact that we have no reservations and hence no capacity
consumption at the start of the booking period.

Let ri = ci − yi denote the remaining capacity on resource i. Note that since yi ∈ Yi, we have
ri ∈ Yi as well. Let vit(ri) = v̂it(ci − ri) = v̂it(yi). Since v̂it(·) is concave, vit(·) is also concave.
Therefore, vit(ri)−vit(ri−1), the marginal value of capacity on resource i, is nonincreasing. Making

30

the change of variables, linear program (OPL) can be equivalently written as

V OPL = min
v

∑
i vi1(ci)

s.t

(OPLeq)
∑
i vit(ri) ≥

∑
j

pjtuj
[
fj +

∑
i∈j

{vi,t+1(ri − 1)− vi,t+1(ri)}
]

+
∑
i

vi,t+1(ri) ∀t, r ∈ Y,u ∈ {0, 1}n

vit(ri)− vit(ri − 1) ≤ vit(ri − 1)− vit(ri − 2) ∀t, i, ri ∈ Yi.

Linear program (OPLeq) is almost similar to (PL), the linear program associated the piecewise-
linear approximation for the network revenue management problem where all reservations show up,
except that the concavity conditions need not be redundant and the acceptance decisions are not
constrained by the remaining capacities on the resources. However, notice that we still have 1)
a threshold type optimal control, since uj = 1 only if fj exceeds

∑
i∈j vi,t+1(ri) − vi,t+1(ri − 1)

and 2) the marginal value of capacity, vi,t+1(ri) − vi,t+1(ri − 1), is nonincreasing by the concavity
of vi,t+1(·). The minimal-binding-constraints argument can be used to show that the separation
problem decomposes by resource.

31

