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Abstract: A social choice function may or may not satisfy a desirable property depending on its
domain of de�nition. For the same reason, di¤erent conditions may be equivalent for functions
de�ned on some domains, while di¤erent in other cases. Understanding the role of domains is
therefore a crucial issue in mechanism design. We illustrate this point by analyzing the role of
di¤erent conditions that are always related, but not always equivalent to strategy-proofness. We
de�ne two very natural conditions that are necessary for strategy-proofness: monotonicity and
reshu ing invariance. We remark that they are not always su¢ cient. Then, we identify a domain
condition, called intertwinedness, that ensures the equivalence between our two conditions and
that of strategy-proofness. We prove that some important domains are intertwined: those of
single-peaked preferences, both with public and private goods, and also those arising in simple
models of house allocation. We prove that other necessary conditions for strategy-proofness also
become equivalent to ours when applied to functions de�ned on intertwined domains, even if they
are not equivalent in general. We also study the relationship between our domain restrictions and
others that appear in the literature, proving that we are indeed introducing a novel proposal.
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1 Introduction

Strategy-proofness is a highly desirable but hard to meet property of social choice functions.
E¤orts to understand the implications of this requirement have naturally led to study prop-
erties that are necessary and/or su¢ cient for its ful�llment (Muller and Satterthwaite, 1977,
Moulin, 1988). E¤orts to identify conditions under which it can be satis�ed by nontrivial
rules have directed attention to the importance of the domains on which they are de�ned
(Moulin, 1980, Barberà, Gul, and Stachetti, 1991, Barberà, Sonnenschein, and Zhou, 1993,
Sprumont, 1991, Moulin and Shenker, 1992, Pápai, 2000, etc.).
We concentrate here in the study of two conditions that are clearly related with that of

strategy-proofness and that we �nd especially attractive. We call them reshu ing invariance
and monotonicity. We �rst show that they are jointly equivalent to strategy-proofness for
social choice functions de�ned on the universal domain. Then we remark that the equiva-
lence between our conditions and strategy-proofness does not hold in general. Reshu ing
invariance and monotonicity are always necessary for strategy-proofness, whatever the do-
main of de�nition of the functions, but need not be su¢ cient. Because of that, we ask
ourselves the following question: can we identify domains of preferences having the property
that, when functions are de�ned on these domains, then our conditions are equivalent to
strategy-proofness?
We answer this question in the positive. For those domains that we call intertwined, and

for any possible rule de�ned on them, the equivalence holds.
Other authors have proposed alternative conditions, also closely related to strategy-

proofness. We single out two of them, for reference and comparison: Moulin�s (1988) notion
of strong monotonicity and Muller and Satterthwaite�s (1977) strong positive association.
These conditions are also equivalent to strategy-proofness, and therefore to the ones we
propose, for functions de�ned on the universal domain of strict preferences.1 We show that,
indeed, the equivalence still holds for any functions de�ned on any intertwined domain, but
not necessarily otherwise.
This research is part of an e¤ort to understand the role of domain restrictions in mech-

anism design, and more speci�cally in connection with the possibility of achieving strategy-
proofness. Since the bite of this and other related conditions, like those we introduce in the
present paper, depends on the type of preferences that are admissible for individuals, it is
natural that they precipitate impossibility results for some domains, and not for others.
In fact, the equivalence of di¤erent sets of formal conditions is not particularly illumi-

nating when these apply to social choice functions de�ned on the universal domain, since
the only rules that can satisfy them in that case and have more than two alternatives in the
range must be dictatorial. The comparison between di¤erent requirements becomes much
more signi�cant when these are imposed on domains on which it is indeed possible to �nd
non-trivial rules that may be able to meet some of the properties.

1These are not the only conditions related to strategy-proofness that are mentioned in the literature.
For example, Maskin monotonicity (see Maskin 1985, 1999), an essential condition in the implementation
literature, is equivalent to strong positive association when individual preferences are strict. But we do
not insist on it, as it is not necessary for strategy-proofness in the presence of indi¤erences, in our discrete
setting.
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It is interesting to notice that some of the restricted domains admitting non-trivial
strategy-proof social choice functions are indeed intertwined. This is the case, for exam-
ple, if our domain is the set of all strict preference pro�les that are single-peaked (for a given
order of the alternatives). It is also the case when alternatives are allocations of a single
indivisible object to agents who only care about the object they receive, like in simple models
of house allocation. Yet, other domains also admitting non trivial strategy-proof rules, like
those where each agent exhibits separable or additive preferences, are not intertwined.
The notion of group strategy-proofness is stronger, and in a sense more natural and

attractive than that of (individual) strategy-proofness. Yet, in view of the di¢ culty to
identify functions satisfying the weaker of the two properties, the analysis of the stronger
one has been less intensive. One of our results in this paper reinforces our understanding
of the connections between the two versions of strategy-proofness, and also between those
and the remaining properties under discussion: reshu ing invariance, monotonicity, strong
monotonicity or strong positive association. When the set of admissible preferences is iden-
tical for all agents, then intertwined domains also satisfy the property of indirect sequential
inclusion. And, as shown in Barberà, Berga, and Moreno (2010), this means that any func-
tion de�ned on these domains will be group strategy-proof if and only if it is strategy-proof.
As a corollary, we learn that the conditions that were till now associated with the weak
notion of strategy-proofness are also necessary and su¢ cient for the stronger notion, on a
wide variety of cases.
The structure of the paper is as follows. In Section 2 we de�ne the framework, we

introduce di¤erent properties of social choice functions and start discussing the relationships
among them. In Section 3 we present our new de�nition of intertwined domains and prove
our main equivalence result. Section 4 shows that a number of interesting domains are
indeed intertwined. Sections 5 and 6 (and the Appendix) relate our work with other parts
of the literature. In Section 5 we relate our main conditions on social choice functions
with others that have been discussed and used by other authors. In Section 6 and in the
Appendix we compare intertwined domains with others that have been proposed over the
years, to essentially conclude that our new condition is di¤erent from existing ones. Section
7 concludes.

2 The setup: de�nitions and preliminary results

Let A be a �nite set of alternatives2 and N = f1; :::; ng be a �nite set of agents. Let R
be the set of all preorders (complete, re�exive, and transitive binary relations) on A and
Ri � R be the set of admissible preferences for agent i 2 N . Denote by P � R the set of
all antisymmetric preorders. We denote by Ri 2 Ri an admissible preference relation and
let as usual, Pi and Ii be the strict and the indi¤erence part of Ri, respectively. When all
the admissible preferences for individual i are strict, we will use the notation Pi, instead of
the general expression Ri. A preference pro�le, denoted by RN = (R1; :::; Rn); is an element

2As soon as we go to a continuum of alternatives we are typically led to further complicate our simple
models, to establish some topology on the set of alternatives, to introduce notions of continuity in the
preferences, etc... We avoid any complications of this kind by sticking to the �nite framework.
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of �i2NRi. Let C; S � N be two coalitions such that C � S. We will write the subpro�le
RS = (RC ; RSnC) 2 �i2SRi when we want to stress the role of coalition C in S. Then the
subpro�les RC 2 �i2CRi and RSnC 2 �i2SnCRi denote the preferences of agents in C and
in SnC, respectively. In the case, where we denote full preference pro�le (that is, when
S = N), we simplify notation by using (RC ; RNnC) as (RC ; R�C).
For any Ri 2 Ri and x 2 A, E(Ri; x) = fy 2 A : xIiyg stands for the indi¤erence

class to which x belongs to. For any Ri 2 Ri and B � A such that for all z; t 2 B,
zIit, de�ne the lower contour set of Ri at B and the upper contour set of Ri at B as
L(Ri; B) = fy 2 A : xRiy for some x 2 Bg and U(Ri; B) = fy 2 A : yRix for some x 2 Bg,
respectively. Similarly, de�ne the strict lower contour set at B and the strict upper contour
set at B as L(Ri; B) = fy 2 A : xPiy for some x 2 Bg and U(Ri; B) = fy 2 A : yPix for some x 2 Bg,
respectively.
A social choice function (or also a rule) is a function f : �i2NRi ! A.
We now introduce some interesting properties that social choice functions may or may

not be able to satisfy. Notice that the domains of the functions are an important part of our
de�nitions. Indeed, a property may be satis�ed by a rule on a domain, but may not when
its domain is expanded or reduced.
We will focus on rules that are nonmanipulable by a single agent. We �rst de�ne what we

mean by a manipulation and then we introduce the well known concept of strategy-proofness.

De�nition 1 A social choice function f is manipulable on �i2NRi at RN 2 �i2NRi if
there exists an agent i 2 N and R0i 2 Ri (R0i 6= Ri) such that f(R0i; R�i)Pif(RN). We say
that agent i manipulates f at RN via R0i.

De�nition 2 A social choice function f is strategy-proof on �i2NRi if f is not manipu-
lable at any RN 2 �i2NRi.

Notice that the domains of our social choice functions will always have the form of a
cartesian product. This is necessary to give meaning to our de�nition of strategy-proofness.
Also notice that, although the notion of a domain is attached to that of a given function, we
shall also refer to any cartesian family of preference pro�les as a domain, and to its cartesian
subsets as its subdomains. This is consistent with tradition, although it would be more
precise to call them potential domains, as we shall in fact consider sets of functions that
could be de�ned on them.
We now de�ne the main conditions in our characterization result, monotonicity and

reshu ing invariance. Before that, an important comment is in order: All of our de�nitions
(also the one of intertwined domains in Section 3) become nicely simpli�ed in the case
of strict preferences. For the sake of compactness we only present them in their general
form. However, the interested reader is invited to consider how they would specialize when
indi¤erences would not be allowed in our domains. Then, conditions become even more
transparent. As always, introducing indi¤erences provides generality at the cost of added
complexities.

De�nition 3 Let Ri 2 Ri; x 2 A. We say that R0i 2 Ri is a x-monotonic transformation
of Ri if there exist BRix � E(Ri; x), x 2 BRix such that the following conditions hold:
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(i) for any z 2 BRix , E(R0i; z) = BRix ,
(ii) for any z 2 BRix , for any y 2 AnBRix , [zRiy ) zP 0iy], and
(iii) for any y; w 2 AnBRix , [yRiw , yR0iw].

In words: R0i is a x-monotonic transformation of Ri if there exists a set B
Ri
x containing

x which is now an indi¤erence class of R0i on its own, which was a subset of x�s indi¤erence
class in Ri, and such that the relative position of its elements has improved when going from
Ri to R0i, while all the rest of alternatives keep in the same relative positions with each other.
We can now de�ne monotonicity. Figure 1 provides an illustration of how it works.

De�nition 4 A social choice function f satis�es monotonicity on �i2NRi if and only if
for any RN 2 �i2NRi such that f(RN) = x, and for any (R0i; R�i) 2 �i2NRi such that R0i
is a x-monotonic transformation of Ri; f(R0i; R�i) 2 E(Ri; x).

R 1 R i R n

x

xyzw

f

R 1 R ’i R n

5 xyz w

xy
f

……

… …

… …

… …

monotonicity

zw

Figure 1. Monotonicity of f

In words: If an alternative x is chosen by a social choice function f at pro�le (Ri; R�i),
and R0i is a new preference where x has improved its position (maybe in the company of
some other alternatives in his Ri indi¤erence class), then f must still choose x or some of
the alternatives that were initially indi¤erent to it. Figure 1 illustrates the meaning of the
condition.
We now turn to our second condition. First, de�ne reshu ings.

De�nition 5 Let Ri 2 Ri and x 2 A. We say that R0i 2 Ri is a x-reshu ing of Ri if (i)
L(Ri; x) = L(R

0
i; x), and (ii) U(R

0
i; x) � U(Ri; x).3

3Note that given the de�nition, x-reshu ings of Ri are also y-reshu ings of Ri, for any y 2 E(Ri; x).
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In words: R0i is a x-reshu ing of Ri if it results from keeping all alternatives that were
worse than x, as still being worse, though maybe in a di¤erent order; and all alternatives
that are better than x in R0i were already better in Ri, again maybe in a di¤erent order.
Notice that we allow some elements ranked above x in Ri to become indi¤erent to x in R0i.
When preferences are strict, condition (i) implies condition (ii), and furthermore, U(R0i; x) =
U(Ri; x).
Figure 2 illustrates the reshu ing invariance property, which we now formally de�ne.

De�nition 6 A social choice function f satis�es reshu ing invariance on �i2NRi if
and only if for any RN 2 �i2NRi such that f(RN) = x, and for any (R0i; R�i) 2 �i2NRi

such that R0i is a x-reshu ing of Ri, then f(R
0
i; R�i) 2 E(Ri; x).
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Figure 2: Reshu ing invariance of f

In words: If an alternative x is chosen at a pro�le, some alternative in x�s indi¤erence
class at this pro�le must be chosen at any other pro�le obtained from an x-reshu ing of
agent i�s preferences. Notice that in the case of strict preferences x must be obtained at the
new pro�le.
The following Proposition marks the start of our research. We remark that monotonicity

and reshu ing invariance, our two independent conditions, are necessary for any social
choice function de�ned on any domain to be strategy-proof, and that they are, moreover,
also su¢ cient for the universal domain. However, we also show that our conditions are not
always su¢ cient to guarantee strategy-proofness: we present a rule satisfying both of them
which is nevertheless manipulable.4

This is why, even if we are admitting indi¤erence classes, the notion of a reshu ing around an alternative
does not need any further quali�cations.

4Our two conditions factorize and separate two types of transformations that are sometimes mixed to-
gether in the same requirement. Even then, further factorizations are conceivable. For example, in Barberà
and Dutta (1982) it becomes useful to distinguish between reshu ings that occur in the upper contour set
of an alternative and those that involve its lower contour set only. But we stay with our simple conditions,
which we �nd very intuitive and clear to relate to strategy-proofness.
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Proposition 1 (1) Reshu ing invariance and monotonicity are necessary conditions for a
social choice function to be strategy-proof, regardless of the cartesian domain on which f is
de�ned.
(2) For social choice functions de�ned on the universal domain of preferences over alterna-
tives, reshu ing invariance and monotonicity are necessary and su¢ cient conditions for the
strategy-proofness of f .
(3) There exist cartesian domains of preferences and social choice functions de�ned on them
for which satisfying reshu ing invariance and monotonicity is not su¢ cient for f to be
strategy-proof.

Proof. To prove part (1) of Proposition 1, let f be a strategy-proof social choice function
de�ned on a cartesian domain �i2NRi. Suppose �rst that f violates reshu ing invari-
ance, that is, there exist RN such that f(RN) = x and R0i a x-reshu ing of Ri such that
f(R0i; R�i) =2 E(Ri; x). If either f(R0i; R�i)P

0
ix or else f(R

0
i; R�i)I

0
ix (the latter holds if

f(R0i; R�i) 2 E(R0i; x)nE(Ri; x)) then f(R0i; R�i)Pix = f(RN) which is a contradiction to
strategy-proofness. Otherwise, if xP 0if(R

0
i; R�i) then we have obviously a contradiction to

strategy-proofness.
Suppose now that f violates monotonicity, that is, there exist RN such that f(RN) = x and
R0i a x-monotonic transformation of Ri such that f(R

0
i; R�i) =2 E(Ri; x). Thus, f(R0i; R�i) =2

BRix . Observe that either f(R
0
i; R�i)Pix or else xPif(R

0
i; R�i) holds. For the latter, observe

that since R0i is a x-monotonic transformation of Ri, xP
0
if(R

0
i; R�i). Then, in both cases we

obtain the corresponding contradictions to strategy-proofness.

The proof of part (2) is postponed, as it is a corollary of our general result in Theorem 1.

To prove part (3), an example with strict preferences will su¢ ce. Consider a problem with
three voters N = f1; 2; 3g and two candidates a and b, to be elected to join a club. The
alternatives are to choose both, or only one of them, or none of the two. Hence, alternatives
are sets of candidates A = f?;a; b; fa; bgg.
Given a preference on sets, candidates are called good if they are better than the empty set,
when chosen alone, and bad otherwise. Preferences are separable if adding a good candidate
to any set makes the union better, and adding a bad one makes the union worse. Our exam-
ple refers to a voting rule de�ned on the domain of separable preferences for this case of two
candidates, four alternatives and three voters. The set of individual separable preferences is:

R1 R2 R3 R4 R5 R6 R7 R8

? ? a a b b fa; bg fa; bg
a b ? fa; bg ? fa; bg a b
b a fa; bg ? fa; bg ? b a

fa; bg fa; bg b b a a ? ?

De�ne the rule as the Borda count on A with tie breaking. Voters rank the four alternatives,
and each alternative gets three points whenever a voter ranks it �rst, two when ranked
second, one when third and none if last. The choice is the alternative with the highest sum
of points, if unique. As for possible ties, notice that, in our example, when there is a tie for
�rst position. there may be at most one voter for whom none of the tied alternatives is the
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best for him. If there is such an individual, the tie is broken in favor of that alternative that
he prefers. Otherwise, the tie is broken according to a pre-determined order of alternatives,
say O : fa; bg; b; a;?.
Notice that the only cases where the antecedents of reshu ing invariance and monotonicity
would apply are those where we change a preference to another having the same top. Given
that, it is easy to see that both conditions are respected in our example.
Yet, observe that the function is still manipulable. To see that, let R = (R1; R6; R7);
R0 = (R6; R6; R7). Then, f(R) = b (b and fa; bg have the same score and agent 1 breaks the
tie) and f(R0) = fa; bg (b and fa; bg have the same score but all agents have b or fa; bg as
best alternative, so we use O. Thus, agent 1 manipulates f at R0 via R1.

This ends the proof of Proposition 1.

Proposition 1 sets the ground for our main research question. Given that our two con-
ditions are necessary and su¢ cient for strategy-proofness in the universal domain, but not
su¢ cient for other cases where the domain is restricted, can we tell apart those domains
where su¢ ciency holds, from those where it does not? As we shall see, we can. Moreover,
our research leads us to de�ne a type of domains which are interesting of their own right,
for reasons we will discuss along the paper.

3 Intertwined domains

We now introduce our notion of intertwined domains. Whether a domain is intertwined or
not will turn out to be crucial to determine whether the di¤erent conditions we are interested
in may or may not be equivalent, when applied to social choice functions de�ned on such
domains.
Before we provide a formal de�nition, let us describe the condition informally for the case

of strict preferences (see Figure 3). Select any two (strict) preferences R and R0, and any
two alternatives x and y, where xPy (the relationship between the two in R0 can be any).
Suppose that there exists in our domain a third preference R such that one can transform
R into R, through a sequences of changes in the positions of alternatives, such that these
changes, at each step, simply consist in lifting the position of y, or of reshu ings around y.
Suppose that one can also transform R0 into R through another sequence of the same type
of transformations, this time with liftings of x and reshu ings around x. We will then say
that R and R0 are (x; y)-intertwined.5

A domain of preferences will be intertwined if and only if any two of the preferences it
contains are intertwined for any two alternatives.
Even more informally, we can say that an intertwined domain is one where one can travel

from any pair of preferences to some intermediary preference just by lifting and reshu ing
alternatives.

5Notice that being (x; y)-intertwinned is not the same as (y; x)-intertwinned as emphasized in De�nition
10 below.
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Figure 3: Intertwinned with strict preferences

We now proceed to our formal de�nitions.

De�nition 7 Let Ri 2 Ri and x 2 A. We say that R0i 2 Ri is a x-pure reshu ing of Ri if
(i) L(Ri; x) = L(R0i; x), and (ii) U(R

0
i; x) = U(Ri; x).

6

De�nition 8 Let Ri; Ri 2 Ri and x 2 A. We say that Ri is a x-direct transform of Ri
if either Ri is a x-pure reshu ing of Ri or Ri is a x-monotonic transformation of Ri.

In what follows, we use again the notation BRtx that was introduced when de�ning x-
monotonic transformations (De�nition 3). When specializing De�nitions 9-12, to the case of
strict preferences, the reader should keep in mind that then Bx = x.

De�nition 9 Let Ri; Ri 2 R and x 2 A. We say that Ri is a x-transform of Ri if there
exist a sequence of preferences R1; R2; :::; RT such that R1 = Ri, RT = Ri, and for any
t 2 (1; T ], each Rt is a x-direct transform of Rt�1 where BRt�1x = Bx for each t when the
x-direct transform of Rt�1 is a x-monotonic transformation.

The set Bx will consist of those alternatives (including x itself) that are indi¤erent to x
in Ri and that will be "lifted" along with x in the sequence of intertwineds leading from Ri
to Ri. Our quali�cation is that, although x may be accompanied by some of these indi¤erent
alternatives along the sequence, those that are lifted once continue to be lifted all along.

De�nition 10 Let Ri; R0i 2 Ri, x; y 2 A where xPiy. We say that Ri is (x; y)-intertwined
with R0i if there exists Ri 2 Ri such that Ri is both a y-transform of Ri and a x-transform
of R0i where By � E(Ri; y)n[E(R0i; x)nfyg] and Bx � E(R0i; x)nE(Ri; y).

6Note that a pure reshu ing as de�ned here is a particular case of reshu ings, as they appear in De�nition
5. Both refer to tranformations of preferences. But our de�nition here will be used for the purpose of
restricting domains of preferences, while in the preceding section De�nition 5 was later used to establish a
condition on social choice functions. Their uses here and there are, in principle, logically independent.
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As already remarked after De�nition 9, the sets Bx and By are those that accompany
x and y, respectively, in the monotone transformations leading from R0i and from Ri to Ri.
In the de�nition above we impose the additional requirement that these two sets do not
intersect: if E(Ri; y) and E(R0i; x) contain some common elements, these can join either y
or x in the monotone transformations from Ri or from R0i, but not both of them.

De�nition 11 A set of individual preferences Ri is intertwined if for any Ri 2 Ri, for
any x; y 2 A such that xPiy, and any R0i 2 Ri, Ri is (x; y)-intertwined with R0i:

De�nition 12 A domain �i2NRi is intertwined if for any agent i, Ri is intertwined.

We are now ready to state our equivalence result.

Theorem 1 Any social choice function de�ned on an intertwined domain is strategy-proof
if and only if it satis�es monotonicity and reshu ing invariance.

Proof. That these conditions are necessary for strategy-proofness is already proven, as Part
(1) of Proposition 1 above. To prove that they are su¢ cient, let us proceed by contradiction.
Let �i2NRi be an intertwined domain and assume that f satis�es reshu ing invariance and
monotonicity, but is manipulable. That is, there exist RN 2 �i2NRi and R0i 2 Ri such that
x = f(R0i; R�i)Pif(RN) = y.
Take Ri; R0i 2 Ri, x; y 2 A such that xPiy: Then, by intertwinedness, Ri is (x; y)-intertwined
with R0i. That is, there exists Ri 2 Ri such that Ri is both a y-transform of Ri and a x-
transform of R0i where By � E(Ri; y)n[E(R0i; x)nfyg], Bx � E(R0i; x)nE(Ri; y): By de�nition,
x 2 Bx and y 2 By. We distinguish two cases.
Case 1: E(Ri; y) \ E(R0i; x) = ?:
By reshu ing invariance and monotonicity the following two conditions hold: On the one
hand, f(Ri; R�i) 2 E(Ri; y) and on the other hand f(Ri; R�i) 2 E(R0i; x) which is the
desired contradiction since E(Ri; y) \ E(R0i; x) = ?.
Case 2: E(Ri; y) \ E(R0i; x) 6= ?:7
Observe �rst that if Ri = R0i then f(R

0
i; R�i) 2 E(Ri; y) and since x =2 E(Ri; y) then

f(R0i; R�i) 6= x which is a contradiction. Thus, Ri 6= R0i.
Note that in Case 2, neither only by y-pure reshu ings of Ri and/or by x-pure reshu ings
of R0i, nor by x-pure reshu ing of R

0
i and y-monotonic transforms of Ri can be enough to

connect Ri and R0i in an intertwined way. In the latter case note that By cannot join x
(it is not a feasible monotonic transformation). Thus, there must exist Rt, Rt+1 such that
Rt+1 is a x-monotonic transformation of Rt. That is, x must go up at some step. Without
loss of generality, suppose that the �rst time x goes up is for t = 1. That is, R1 = R0i and
R2 is a x-monotonic transformation of R0i, x 2 Bx by de�nition. By monotonicity of f ,
f(R2; R�i) 2 E(R0i; x).
Subcase 2.1: Suppose that f(R2; R�i) 2 Bx.
By de�nition of intertwinedness, Bx \ E(Ri; y) = ?. Then, on the one hand, going from R0i

7See Figure 4 for a particular illustration that may help the reader to follow the arguments in the proof
of Case 2.
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to Ri by consecutively applying monotonicity or reshu ing invariance, f selects alternatives
in Bx. On the other hand, going from Ri to Ri by consecutively applying monotonicity or
reshu ing invariance, f selects alternatives in E(Ri; y) which is a contradiction of f being
a function.
Subcase 2.2: Suppose f(R2; R�i) =2 Bx, thus f(R2; R�i) 6= x. Then we get a contradiction
to the fact that f satis�es reshu ing invariance (going from R2 to R0i, Bx goes down and
joins E(R0i; x)nBx; that is, R0i is a x-reshu ing of R2. By reshu ing invariance, f(R0i; R�i) 2
E(R0i; x)nBx which is false since f(R0i; R�i) = x 2 Bx).
This completes the proof.

Subcase 2.2 Subcase 2.1

2R2RiR '
iR

'{ , , } ( , )ix z t E R x='( , ) \i xz E R x B= '( , ) \i xz E R x B=

{ }2( , ) ,i xf R R B x t− ∉ =

x

{ }( , ) , ,iE R y y z w=

{ }2( , ) ,i xf R R B x t− ∈ =

Subcase 2.2 Subcase 2.1

2R2RiR '
iR

'{ , , } ( , )ix z t E R x='( , ) \i xz E R x B= '( , ) \i xz E R x B=

{ }2( , ) ,i xf R R B x t− ∉ =

x

{ }( , ) , ,iE R y y z w=

{ }2( , ) ,i xf R R B x t− ∈ =

Figure 4. An illustration of the argument in Case 2 for speci�c preferences Ri, R0i and R2. The
chosen alternative is the boxed one

Note that if all agents have strict preferences, that is �i2NPi, the equivalence between
strategy-proofness and our two conditions still holds. The same proof would work and only
Case 1 would be relevant.
Therefore, being de�ned on an intertwined domain is su¢ cient to guarantee equivalence

between our two properties and strategy-proofness. However, intertwinedness is not a nec-
essary domain condition for this equivalence to hold. Example 1 presents a non-intertwined
domain where every monotonic and reshu ing invariant social choice function is strategy-
proof.

Example 1 Let N = f1; 2g, A = fx; y; z; vg; and P1 = P2 = fR1; R2; R3g where:

R1 R2 R3

v v x
x x v
y z z
z y y

10



Note �rst that this domain is not intertwined: R1 is not xy-intertwined with R3.
By construction, one can also check that any social choice function satisfying monotonicity
and reshu ing invariance is strategy-proof.
To check which monotonic and reshu ing invariant rules we can construct, consider the
following four cases
Case 1: f(R1; R1) = x, Case 2: f(R1; R1) = z, Case 3: f(R1; R1) = y, Case 4: f(R1; R1) =
v:
If Case 1 or Case 2 holds, we obtain the constant rule x or z, respectively. If Case 3 holds,
we obtain either the constant rule y or else 4 rules with binary range y; z. If Case 4 holds,
we obtain either the constant rule v or else 4 rules with binary range v; x. Thus, in total we
may have 12 monotonic and reshu ing invariant rules. It is easy to check that all of them
are strategy-proof.

We �nish this section with two remarks for the very careful reader. First, note that the
requirement "xPiy" in De�nition 11 of an intertwined set of preferences bites. By ruling out
that assumption, we would get a stronger domain condition, that would be violated by the
set of strict single-peaked preferences in the problem of the provision of a public good and
also by the set of all strict preferences (as shown in Example 2).

Example 2 Let N = f1; 2g, A = fx; y; zg; and P1 = P2 = fR1; R2; R3; R4g where:

R1 R2 R3 R4

x y y z
y x z y
z z x x

P1 is the set of all single-peaked preferences (given the order x<y<z) which we later show
that are intertwined. Observe that xP 1y (i.e. y is not strictly preferred to x for R1) and R1

is not (y; x)-"intertwined" with R3 in the stronger sense.
Consider ePi = fR1; R2; R3; R4; R5; R6g where xP 5zP 5y and zP 6xP 6y. Note that ePi is the
set of all strict preferences on A. Adding R5 and R6 does not help to (y; x)-"intertwin" R1

with R3.

Second, observe that we could have considered a weaker version of reshu ing invariance,
sayWRI, imposing some condition only for pure reshu ings. That is, graphicallyWRI would
be represented by the above part in Figure 2. In such case though, our intertwined domain
condition is not su¢ cient to guarantee that WRI and monotonicity imply strategy-proofness
(see Example 3).

Example 3 Let N = f1; 2g, A = fx; y; zg; and R1 = R2 = fR1; R2; R3g where:

R1 R2 R3

y y y
z zx x
x z

11



The reader can carefully check that Ri is intertwined. Let f be such that f(R1; R2) =
f(R3; R2) = x, f(R2; R2) = z for any R2 2 R2. Observe that f satis�es monotonicity (it
only needs to be checked when agent 1 changes preferences from R3 to R1) and f satis�es weak
reshu ing invariance too (trivially, since there is no pure reshu ing at some alternative in
the range). Clearly, f is manipulable by agent 1: f(R2; R2) = zP 1x = f(R1; R2). Observe
also that f violates reshu ing invariance (R2 is a reshu ing of R1 at x; thus f(R2; R2)
should belong to E(R1; x) = x which is not the case).

The interested reader may also wonder whether a weaker notion of intertwinedness (one
where we would not insist in pure reshu ings only) might still allow for an analogous equiv-
alence to the one we get in Theorem 1. We do not know. But we cannot �nd of relevant
cases that would then be covered and that are not already accounted for under our present
de�nition.

4 Examples

In this section, we show that several interesting preference domains are indeed intertwined.
Some of the examples come from the classical social choice tradition, but we also present
domains that involve the allocation of private goods. It is precisely because of these appli-
cations that we have insisted in preferences allowing for indi¤erences (since sel�sh agents
are indi¤erent among the many allocations where they receive the same amount of goods),
and also in domains where the families of admissible preferences for di¤erent agents are not
the same (since agents value the same allocation by looking at their di¤erent components,
which, in addition, may come from personalized sets of consequences).
In the case of pure public goods, domain restrictions can be expressed directly in terms

of the alternatives involved. This is the case for the main domains that we start with. Note
that the same proof of Proposition 2 and 3 below would work to state that the strict versions
of the domains analyzed in each one of the propositions are also intertwined.

Universal domain
For individual preferences, the universal domain is the set of all complete, re�exive, and

transitive binary relations on A; that is, the universal domain is Ri = R (see Section 2).
Before showing intertwinedness when the set of individual preferences is the universal

domain, consider the following fact, that applies to any set of individual preferences.

Fact 1 Any preferences Ri; R0i 2 R that share the same set of best alternatives T are
x-pure reshu ings of each other for any x 2 T .

Proposition 2 The universal domain is intertwined.

Proof. Let Ri; R0i 2 Ri = R, x; y 2 A where xPiy.
Let Ri 2 R be a y-pure reshu ing of Ri such that p(Ri) = x (if x is the best alternative
according toRi this step would not be necessary). Let eRi 2 R be a monotonic transformation
of R0i at x such that p( eRi) = x (if x is the best alternative according to R0i this step would

12



not be necessary). Note that Ri is a x-pure reshu ing of eRi by Fact 1. This completes the
proof.

The single-peaked domain
Single-peakedness arises as a natural restriction on the preferences of agents facing many

relevant problems: determining the level of a pure public good without transfers, locating a
facility on a line, deciding on a tax level, choosing among candidates, among others.

De�nition 13 An individual preference Ri 2 R is single-peaked on A relative to a linear
order > of the set of alternatives if and only if
(1) Ri has a unique maximal element pi(Ri), called the peak of i, and
(2) for all y; z 2 A

[z < y 6 pi(Ri) or z > y > pi(Ri)]! yPiz.

Denote by S>$ R the set of individual preferences consisting of all single-peaked prefer-
ences relative to >.
We show that the set of all single-peaked preferences de�ned on A is intertwined. Before

that, we present two other facts that apply for single-peaked preferences.

Fact 2 For any single-peaked preference Ri 2 S>, any x and y 2 U(Ri; x), there exists R0i
which is also single-peaked and a x-pure reshu ing of Ri.

Fact 3 For any single-peaked preference Ri 2 S> with peak p(Ri) and any x which is
contiguous to p(Ri) in the order>, the x-monotonic transformation ofRi for which x becomes
top is also single-peaked.

Proposition 3 For any order >, the set of individual preferences S> is intertwined.

Proof. Let Ri 2 S> and x; y 2 A such that xPiy: Take any R0i 2 S>. Without loss
of generality, let x < y according to the order on A. We have to show that Ri is (x; y)-
intertwined with R0i: Consider the following cases:
Case 1 : xR0iy and p(R

0
i) 2 (x; y).

Consider �rst Ri a y-pure reshu ing of Ri such that p(Ri) = x. It exists since we have
all single-peaked preferences. Now, let eRi 2 S> be a x-pure reshu ing of R0i such that
p( eRi) = x + 1 (observe that if x + 1 = y, we could not be in Case 1). By Fact 2, eRi exists.
Now, consider Ri be a x-monotonic transformation of eRi such that p(Ri) = x. By Fact 3,
Ri is single-peaked. Note that Ri and Ri have the same peak thus by Fact 1, Ri is a x-pure
reshu ing of Ri. Thus, Ri 2 S> is both a y-(direct) transform of Ri and a x-transform of
R0i and therefore Ri is (x; y)-intertwined with R

0
i.

Case 2 : xP 0iy and p(R
0
i) � x.

Consider �rst Ri a y-pure reshu ing of Ri such that p(Ri) = x. It exists since we have
all single-peaked preferences. If p(R0i) = x, clearly Ri is both a y-transform of Ri and a x-
transform (a x-pure reshu ing) of R0i and thus Ri is (x; y)-intertwined with R

0
i: Otherwise,if

p(R0i) 6= x, let eRi 2 S> be a x-pure reshu ing of R0i such that p( eRi) = x� 1. By Fact 2, eRi
13



exists. Now, consider Ri be a x-monotonic transformation of eRi such that p(Ri) = x. By
Fact 3, Ri is single-peaked. Note that Ri and Ri have the same peak thus by Fact 1, Ri is a
x-reshu ing of Ri. Therefore, Ri is both a y-(direct) transform of Ri and a x-transform of
R0i and thus Ri is (x; y)-intertwined with R

0
i.

Case 3 : yP 0ix.
The same proof as in Case 1 works.
This completes the proof.

Intertwined domains with private goods
When we work with private goods, more structure is added to the description of the

alternatives, and this additional structure suggests a re-de�nition of domain restrictions.
We look here at this structure and at its implications on the de�nition of domain restrictions
for the case of one private good. With n agents, an alternative a is an n-tuple of values
(a1; :::; an), one for each agent.
Let Ai be the set of values that are admissible for the i-th component, and let A �Q

i2N Ai. The idea of sel�shness is associated with the assumptions that (1) each agent i has
a well-de�ned preference ordering on Ai, and (2) agent i�s ordering of any pair of alternatives
a, a0 2 A is only based on her ordering of their i-th components ai and a0i.
Hence, given a set of alternatives A �

Q
i2N Ai and a set of preferences eRi on Ai for each

agent i 2 N , we can de�ne the associated set of sel�sh preferences Ri on A, as the family
such that, for all a, a0 2 A , aRia0 , ai eRia0i.8
It is clear that, under sel�sh preferences, indi¤erences among alternatives are mandatory

since for all i and any a, a0 2 A such that ai = a0i, any admissible preference Ri 2 Ri must
rank these two alternatives as indi¤erent. For the same reason, the sets Ri of admissible
preferences must necessarily be di¤erent for di¤erent i�s, since the admissible values for each
component may be di¤erent, and moreover, their indi¤erence classes for di¤erent agents
cannot coincide (not even when all sets Ai are equal).
Nevertheless, the following lemma allows us to extend the scope of our results to private

good economies, with sel�sh agents.

Lemma 1 If Ri is the set of sel�sh preferences for agent i on A �
Q
i2N Ai associated toeRi, and eRi is intertwined, then Ri is also intertwined.

Proof. Let x; y 2 A, Ri; R0i 2 Ri such that xPiy. By de�nition of Ri; R0i 2 Ri on A, leteRi; eR0i 2 eRi the corresponding associate preferences over Ai. By intertwined of eRi, there

exists eRi such that eRi is a y-transform of eRi and a x-transform of eR0i. Let Ri 2 Ri be

the associate preference to eRi over A. Observe that Ri is both a y-transform of Ri and a
x-transform of R0i.

Let us now see how Lemma 1 allows us to extend our previous results to other interesting
cases. We will consider, in turn, the housing problem, one-to-one matching or the problem

8Alternatively, we could take the Ri relations as primitive and interpret sel�shness as the condition
guaranteeing that one can properly de�ne eRi, for all i, satisfying the above relationship.

14



of task rationing.9 In all three cases, A can be represented by an n-tuple of objects.

Housing markets

In the case of housing, each component indicates which house (if any) is assigned to
the corresponding tenant. Therefore, all sets Ai are the same (they contain the names
of all houses and a symbol to denote that no house is received). As for the admissible
preferences eRi, it is usually assumed that they are all possible orders on Ai. Hence, since eRi

is intertwined because it is the set of universal preferences on Ai, so, Ri is also intertwined.
Notice, however, that Ri is no longer the universal set of preferences on A. For example,
strict preferences are ruled out by sel�shness.

Task rationing

In the case of task rationing, each component indicates what fraction of the task is
assigned to each member of the team.10 Again the possible values of Ai are the same for
each agent. Preferences eRi on these fractions are assumed to be single-peaked. Hence, sinceeRi is intertwined, so is Ri.

One-to-one matching

In the case of one-to-one matching, each component will indicate what mate is attributed
to each participant in the market. Notice that in previous two cases, the same set of objects
are possible at each component. This is not the case with two-sided markets, where the
Ai�s are di¤erent for each agent (as they include all potential mates on the other side of the
market, plus herself or himself). In matching (as in housing), the domain eRi is unrestricted
and thus intertwined. Again by Lemma 1, Ri on A in one-to-one matching is intertwined.11

Non-intertwined domains
We �nish this section by presenting some examples of preferences violating intertwined-

ness. We start with the domain of separable preferences.12 In Example 4 we show this for two
candidates, however that argument can be generalized whatever the number of candidates
is.

9Our framework considers preferences used, for example, in Sprumont (1991) and Barberà, Jackson, and
Neme (1997) for rationing; in Pápai (2000), Bogomolnaia, Deb, and Ehlers (2005), Alcalde-Unzu and Molis
(2011), Jaramillo and Manjunath (2011) for house allocation. For an introduction to matching, see Roth
and Sotomayor (1990).
10For expositional reasons, and in order to avoid the case of in�nite alternatives, assume that only a �nite

set of job proportions are admisible. For example, that people can only be attributed a fraction k=T of the
task, where k ranges from 0 to K.
11Observe also that a similar argument would work to show that the domain of strict preferences with an

outside option used in Ehlers (2002a) is intertwined.
12This establishes that intertwinedness has bite. It is also consistent with our �nding in this section that

reshu ing invariance and monotonicity are not su¢ cient for strategy-proofness in domains that are not
intertwined, and our example in the proof of part (3) of Proposition 1, where a function satisfying both
conditions in a domain of separable preferences is manipulable.
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Example 4 (see example in the proof of Proposition 1) Let N = f1; 2; 3g, two candidates
a; b can be elected: A = f?;a; b; fa; bgg. The set of individual separable preferences is:

R1 R2 R3 R4 R5 R6 R7 R8

? ? a a b b fa; bg fa; bg
a b ? fa; bg ? fa; bg a b
b a fa; bg ? fa; bg ? b a

fa; bg fa; bg b b a a ? ?

Observe that R1 is not (?; a)-intertwined with R3, that is, there does not exist a separable
preference Ri such that Ri is both an a-transform of R1 and a ?-transform of R3. For Ri to
exist, the following should hold: we should be able to go from R1 to Ri by means of a-direct
transforms. In particular, R2 in the chain fRtg, t = 1; :::; k where R1 = R1 and Rk = R3,
should be either a reshu ing of R1 at a or else a monotonic transformation of R1 at a.
However, neither one nor the other exist.

Although the domain of single-peaked preferences in the problem of the provision of a
single public good satis�es intertwinedness, we can easily check that the symmetric single-
peaked domain violates it. Similarly, the domain of single-dipped preferences is not inter-
twined.

Example 5 Consider only three alternatives ordered as x < y < z, and consider SM the
domain of symmetric single-peaked preferences on A = fx; y; zg: There are three preferences
in SM : R1 with peak at x, y second and z the worst, R2 with peak at y where x and z are
indi¤erent, and R3 with peak z, y second and x the worst. Note that R1 and R2 are not
(y; z)-intertwined. The same argument would allow us to say that a subset R of the strict
single-peaked domain such that R = fR1; R3; R2g where yP 2xP 2z violates intertwinedness.

Example 6 Consider four alternatives ordered as x < y < z < v, and consider D the
domain of single-dipped preferences on A = fx; y; z; vg: There are eight preferences in D:

R1 R2 R3 R4 R5 R6 R7 R8

v x v v v x x x
z v z x x v y y
y z x z y y v z
x y y y z z z v

Note that R1 is not (z; y)-intertwined with R8.

Notice also that in the same framework of the provision of a single public good, the
domains of single-plateaued, of weakly single-plateaued, and of weakly single-peaked pref-
erences violates intertwinedness ("weakly" denoting that we allow indi¤erence sets outside
the top to be two closed intervals, one in each side of the plateau or the peak, respectively).
However, each one of these domains of preferences satis�es a weaker domain condition for
which our equivalence in Theorem 1 can still be established, with the same proof. Informally,
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the weaker version would consist in allowing that, in each step of the preferences path, sub-
sequent subsets of the original By, each one containing y (or Bx containing x, respectively)
were used to reshu e or to push them up, instead of having By �xed (a formal de�nition is
available upon request).
We leave to the careful reader to check that other domains of preferences also fail to be

intertwined. For example, the preferences used in Cantala (2004) when choosing a level of
public good where agents�preferences are single-peaked but having an outside option, or in
Miyagawa (2001), Barberà and Beviá (2002), and Ehlers (2002b) where the location of two
(or more) public facilities is analyzed, are not intertwined domains.

5 Further properties of social choice functions and their
connections

Until now we have explored the connection between strategy-proofness and the two properties
of monotonicity and reshu ing invariance. This is because we �nd both of them very intuitive
and because we think that factoring out the di¤erent requirements that can lead to strategy-
proofness helps our understanding of what is crucial in order to achieve such a desirable
property. Notice that rules satisfying monotonicity are abundant, and include the whole
family of point voting rules. Hence, our decomposition helps to point at reshu ing invariance
as the main culprit of the di¢ culties in designing strategy-proof rules.
At any rate, other authors have displayed alternative conditions which are also tightly

connected with the notion of strategy-proofness. In this section, we discuss two of them,
both de�ned for strict preferences. One is called strong monotonicity, and was proposed by
Moulin (1988). The other is called strong positive association (see Muller and Satterthwaite,
1977). These are more synthetic properties, that combine in one single condition the type of
responses to preference change that we have factored out in our two conditions. Throughout
this section, we consider strict preferences to be able to compare our conditions with these
two properties used in the literature.
Again, it is clear that strong positive association and strong monotonicity are necessary

for strategy-proofness. Moreover, they are also su¢ cient, and thus equivalent to our con-
ditions and to strategy-proofness itself, for functions de�ned on the universal domain. We
show that these equivalences break down as we depart form this strong domain require-
ment and consider rules de�ned on smaller domains. We provide examples and results that
clarify the eventual interdependence or independence of these di¤erent conditions. Yet, we
also provide a result that re-enforces our previous �ndings about intertwined domains: for
functions de�ned on any such domains (of which the universal one is a special case), the
conjunction of monotonicity and reshu ing invariance is equivalent to strong monotonicity
and also to strong positive association, with any of them being necessary and su¢ cient for
strategy-proofness. This proves that, while di¤erent in a general setting, all of the intuitions
expressed through these di¤erent properties are properly captured and become the same
when rules are de�ned in intertwined domains, while not necessarily otherwise.
Before de�ning the conditions under discussion, for sake of comparison we write down

the monotonicity condition for the case when agents�preferences are strict.
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De�nition 14 (De�nition 3 for strict preferences) A social choice function f satis-
�es monotonicity on �i2NPi if and only if for any RN 2 �i2NPi such that f(RN) = x,
and for any R0N 2 �i2NPi satisfying the following conditions

(i) for any i 2 N , for any y 2 Anfxg; [xPiy ) xP 0iy] ; and
(ii) for any i 2 N , for any y; z 2 Anfxg; [yPiz , yP 0iz].

then, f(R0N) = x.

De�nition 15 A social choice function f satis�es strong positive association on �i2NPi
if and only if for any RN ; R0N 2 �i2NPi such that for any agent i 2 N and any alternative
y 2 Anff(RN)g, [f(RN)Piy ) f(RN)P

0
iy]; then, f(R

0
N) = f(RN):

The di¤erence between monotonicity and strong positive association is that in the latter
we require invariance of the rule only for pro�les satisfying part (i) of monotonicity as in
De�nition 14.
The other concept is strong monotonicity.

De�nition 16 (see De�nition 10.1 in Moulin, 1988) A social choice function f satis-
�es strong monotonicity on �i2NPi if and only if for any RN ; R0N 2 �i2NPi, RN 6= R0N
and x 2 A, such that the following conditions hold:

(i) for any i 2 N , for any y 2 Anfxg; [xPiy ) xP 0iy] ; and
(ii) for any i 2 N , for any y; z 2 Anfxg; [yPiz , yP 0iz].

then, either f(R0N) = f(RN) or else f(R
0
N) = x.

Strong monotonicity implies our monotonicity condition, however that the converse is
false (see Example 8 below).
Our �rst result summarizes the connections between properties in the general case.

Proposition 4 Let f be a social choice social function de�ned on �i2NPi. Then, the fol-
lowing statements hold:
(1) If f is strategy-proof then f satis�es strong positive association.
(2) If f satis�es strong positive association then f satis�es reshu ing invariance and monotonic-
ity.
(3) If f satis�es strong positive association then f satis�es strong monotonicity.
(4) If f is strategy-proof then f satis�es reshu ing invariance and monotonicity.
(5) If f is strategy-proof then f satis�es strong monotonicity.

Next we give four examples to show why some implications do not hold.

Example 7 Let N = f1; 2g, A = fx; y; z; tg; and P1 = P2 = fR1; R2; R3g where:

R1 R2 R3

x y y
y x z
t z x
z t t
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Let f be such that f(R11; R
k) = t and f(R21; R

k) = f(R31; R
k) = y, for any Rk 2 P2. Note

that f satis�es strong positive association but f is manipulable (by agent 1 at (R11; R
k) via

R21).

Example 8 Let N = f1; 2g, A = fx; y; zg; and P1 = P2 = fR1; R2; R3g where:

R1 R2 R3

x y z
y x y
z z x

Observe that P1 is a subset of single-peaked preferences (given the order x<y<z). De�ne
f such that 1 is decisive as follows: f(R31; R2) = y for any R2 2 P2, and f(R1; R2) = x,
otherwise. We can show that f satis�es reshu ing invariance and monotonicity but f vi-
olates strong positive association (f(R31; R2) = y 6= f(R21; R2), while L(R

3
1; y) $ L(R2; y)),

strategy-proofness (agent 1 can manipulate f at (R21; R2) via R
3
1), and also strong monotonic-

ity (observe that R3 is a monotonic transformation of R2 at z according to conditions (i) and
(ii) in strong monotonicity, however f(R31; R2) = y 6= f(R21; R2) = x and f(R31; R2) 6= z).

Example 9 Let A = fx; y; z; t; lg, and for any i 2 N , Pi = fR1; R2; R3; R4g :

R1 R2 R3 R4

l z x l
x l l x
z y y y
y x t z
t t z t

Let f be such that f(R11; �) = f(R41; �) = t and f(R21; �) = f(R31; �) = y, for any R�1 2 P�1.
Note that f satis�es strong monotonicity but it violates both strong positive association
and reshu ing invariance. Observe that f(R41; �) = t 6= f(R31; �) = y where R3 is a
reshu ing of R4 at f(R31; �) = y; thus f violates reshu ing invariance. To show that
f violates strong positive association, observe that L(R3; f(R31; �)) % L(R4; f(R31; �)) but
f(R41; �) = t 6= f(R31; �) = y.

Example 10 Let A = fx; y; z; wg and the set of preferences of each agent is the following
subset of single-peaked preferences on A with respect to x < y < w < z :

R1 R2 R3 R4

x y w z
y w y w
w x z y
z z x x

.

Let p(Ri) be the best alternative in A according to preference Ri. De�ne f such that agent 1
is decisive as follows: f(R1; R�1) = p(R1), for any R1 6= R3 and for any R�1 2 �j2Nnf1gPj,
and f(R31; R�1) = z for any R�1 2 �j2Nnf1gPj. One can check that f satis�es strong
monotonicity but f is manipulable (agent 1 would manipulate f at (R31; R�1) via R

2
1).
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The proof of Proposition 4 consists, in fact, of the proof of part (3). The reason is that
the proof of part (1) was already observed in Muller and Satterthwaite (1977) (when showing
the same implication for the unrestricted strict domain, Pn); the statement in part (2) is
straightforward by de�nition; and parts (4) and (5) are obtained combining part (1) with
(2) and (3), respectively.

Proof of part (3) of Proposition 4. Let f be a social choice social function de�ned on
�i2NPi satisfying strong positive association. To show that f satis�es strong monotonicity,
take RN ; R0N 2 �i2NPi, R0i 6= Ri for some i 2 N; and x 2 A such that conditions (i) and (ii)
in the de�nition of strong monotonicity hold, that is,

(i) for any i 2 N , for any y 2 Anfxg; [xPiy ) xP 0iy] ; and
(ii) for any i 2 N , for any y; z 2 Anfxg; [yPiz , yP 0iz].

Suppose �rst that f(RN) = x. Then, f(R0N) = f(RN) by strong positive association which
ends the proof.
Suppose now that f(RN) 6= x.
Without loss of generality, consider the order of agents 1; 2; :::; n and change one by one

individual preferences from Ri to R0i, starting with agent 1. That is,
Step 1: First change R1 to R01:
Case (1) Suppose that x 2 U(R1; f(RN)): Then, L(R1; f(RN)) = L(R01; f(RN)) and thus
f(R01; R�1) = f(RN) by strong positive association.
Then, start again the argument of Step 1 changing R2 by R02 and replacing RN by (R

0
1; R�1)

and (R01; R�1) by (R
0
1; R

0
2; R�1).

Case (2) Suppose that x 2 L(R1; f(RN)): Then, either x 2 L(R1; f(RN)) = L(R01; f(RN))
or else L(R01; f(RN)) = L(R1; f(RN))nfxg. (2.a) If the former holds, f(R01; R�1) = f(RN)
by strong positive association. Then, start again the argument of Step 1 changing R2 by R02
and replacing RN by (R01; R�1) and (R

0
1; R�1) by (R

0
1; R

0
2; R�1).

(2.b) If L(R01; f(RN)) = L(R1; f(RN))nfxg holds, consider two cases:
(2.b.1) If f(R01; R�1) 2 L(R01; f(RN)) = L(R1; f(RN))nfxg then f(R01; R�1) = f(RN) by
strong positive association. Then, start again the argument of Step 1 changing R2 by R02
and replacing RN by (R01; R�1) and (R

0
1; R�1) by (R

0
1; R

0
2; R�1).

(2.b.2) If f(R01; R�1) 2 U(R01; f(RN)) � U(R1; f(RN)) [ fxg, we distinguish three subcases:
(2.b.2.1) If f(R01; R�1) 2 U(R01; x): since L(R1; f(R01; R�1)) = L(R01; f(R01; R�1)) we obtain
that f(RN) = f(R01; R�1) by strong positive association. Then, replace R2 by R

0
2 and start

again the argument of Step 1 replacing RN by (R01; R�1) and (R
0
1; R�1) by (R

0
1; R

0
2; R�1).

(2.b.2.2) If f(R01; R�1) 2 U(R01; f(RN))\L(R01; x): doing the same argument as in case 2 we
obtain that f(R01; R�1) = f(RN) by strong positive association.
Then, start again the argument of Step 1 changing R2 by R02 and replacing RN by (R

0
1; R�1)

and (R01; R�1) by (R
0
1; R

0
2; R�1).

(2.b.2.3) Let f(R01; R�1) = x. Then, start again the argument in Step 1 changing R2 by R
0
2

and replacing RN by (R01; R�1) and (R
0
1; R�1) by (R

0
1; R

0
2; R�1).

Repeating the same argument changing the preference of any agent we will obtain that either
f(RN) = f(R

0
N) or else f(RN) = x which completes the proof.
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In spite of this potential lack of equivalence, the fact is that all conditions become equiv-
alent when applied to social choice functions de�ned in the strict universal domain (see
Figure 5 below). The equivalence between each of these conditions and strategy-proofness
was indeed the starting point for di¤erent proofs of the Gibbard-Sattherthwaite theorem.
Rather than an isolated case, this equivalence extends to functions de�ned on any intertwined
domain, as expressed in the following result.

Proposition 5 Let f be a social choice function de�ned on an intertwined domain �i2NPi.
Then, the following statements are equivalent:
(i) f satis�es reshu ing invariance and monotonicity.
(ii) f is strategy-proof.
(iii) f satis�es strong positive association.

The proof is a corollary of Theorem 1 and parts (1) and (2) of Proposition 4.
We can also obtain the following relationship.

Corollary 1 Let �i2NPi be an intertwined domain. Then, any reshu ing invariant and
monotonic rule satis�es also strong monotonicity.

The proof is straightforward by Theorem 1 and part (5) of Proposition 4. The following
example shows that the converse of Corollary 1 does not hold.

Example 11 Let N be a �nite set of agents and A = fx; y; v; w; zg be the set of alternatives.
The set of admissible preferences is P = fR1; R2; R3; R4; R5; R6g where:

R1 R2 R3 R4 R5 R6

x y y y y x

y x x x x y

v v v z z z
w w z v w w
z z w w v v

We can check that P is an intertwined domain.13 Let f be such that f(R11; R�1) = x for
any R�1 and f(Rl1; R�1) = y for l = 2; 3; 4; 5; 6 and for any R�1. Observe that f satis�es
strong monotonicity, thus monotonicity, however f violates reshu ing invariance (since R6

is a reshu ing of R1 at x; f(R61; R�1) should coincide with f(R
1
1; R�1) = x but it is not the

case) and of course f is manipulable (agent 1 would manipulate f at (R61; R�1) via R
1
1). To

show that f satis�es strong monotonicity, observe �rst that the only relevant comparisons
are between R11 and R

t
1 for t = f2; 3; 4; 5; 6g since the outcome of f di¤ers. Comparing R11

with Rt1, for t = f3; 4; 5; 6g there is no direct monotonic transform (two pairs of alternatives
are ordered di¤erently in R11 compared to R

t
1). For R

1
1 and R

2
1, x overtakes y or viceversa

and strong monotonicity is satis�ed.

13The proof is case by case and it is available upon request.
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In Figure 5 we summarize all the general relationships stated in Proposition 4, the fact
that the converse relationships do not hold in general, and also that reshu ing invariance
and monotonicity, jointly, are neither necessary nor su¢ cient for strong monotonicity. Addi-
tionally, and for strict intertwined domains (that is, for intertwined domains with only strict
preferences), we summarize the relationships stated in Proposition 5 and Corollary 1 and
the fact that strong monotonicity does not imply the other properties.

Strict Universal domain

SP

M+RI

SPA=MM

SM

SP

M+RI

SPA=MM

SM

Any domains
(Proposition 4)

SP

M+RI

SPA=MM

SM

Strict Intetwined domains
(Proposition 5)

Figure 5. Relationship between all properties. Note: M=monotonicity, MM=Maskin
monotonicity, RI=reshu ing invariance, SM=strong monotonicty, SP=strategy-proofness,

SPA=strong positive association

6 Intertwinedness and indirect sequential inclusion

In this section and for the case of strict preferences we study the relationship between inter-
twinedness and another domain condition called indirect sequential inclusion. The latter was
shown to be a su¢ cient condition to guarantee the equivalence between strategy-proofness
and group strategy-proofness (see Barberà, Berga, and Moreno, 2010).
Obviously there are other domain conditions that could be analyzed since they turned

out to be crucial to state interesting results in the social choice literature. However, the
aim of the paper is not to provide an exhaustive comparison with all domains restrictions
that have been proposed in the literature. For the domain we analyze in this section we are
able to state additional implications with intertwinedness. We introduce two other domains
restrictions in the Appendix that are independent with intertwinedness.14

14Other interesting cases include circular domains (Sato, 2010a), domains satisfying Property T (Chatterji
and Sen, 2011), and connected domains satisfying the non-restoration property (Sato, 2010b). Each one of
these restrictions is also independent from that of intertwinedness (Examples 1 and 11 in this paper show
non-equivalence for the later condition. Other examples are available upon request).
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Though (indirect) sequential inclusion is also de�ned with indi¤erences, we analyze only
the case with strict preferences. To de�ne (indirect) sequential inclusion, let RN 2 �i2NRi;
and y; z be a pair of alternatives and denote by S(RN ; y; z) � fi 2 N : yPizg the set of
agents who strictly prefer y to z according to their individual preferences in RN .

De�nition 17 Given a preference pro�le RN 2 �i2NRi and a pair of alternatives y; z 2 A;
we de�ne a binary relation % (RN ; y; z) on S(RN ; y; z) as follows:15

i % (RN ; y; z)j if L(Ri; z) � L(Rj; y).

Note that the binary relation % must be re�exive but not necessarily complete. As usual,
we can de�ne the strict and the indi¤erence binary relations associated to %. Formally, i � j
if L(Ri; z) � L(Rj; y) and L(Rj; z) � L(Ri; y): We say that i � j if L(Ri; z) � L(Rj; y) and
:[L(Rj; z) � L(Ri; y)].

De�nition 18 A preference pro�le RN 2 �i2NRi satis�es sequential inclusion for y; z 2 A
if the binary relation % (RN ; y; z) on S(RN ; y; z) is complete and acyclic.

De�nition 19 A preference pro�le RN 2 �i2NRi satis�es sequential inclusion if for any
pair y; z 2 A the binary relation % (RN ; y; z) on S(RN ; y; z) is complete and acyclic. A
domain �i2NRi satis�es sequential inclusion if any preference pro�le in this domain satis�es
it.

De�nition 20 For preferences Ri,R0i 2 Ri and alternative z 2 A, R0i is a strict monotonic
transformation of Ri at z if R0i is such that for all x 2 Anfzg such that zRix, zP 0ix.

De�nition 21 Let R0N ; RN 2 �i2NRi be two preference pro�les and let z 2 A. We say that
R0N is a strict monotonic transformation of RN at alternative z if for any i 2 N , either
R0i = Ri or else R

0
i is a strict monotonic transformation of Ri at z:

De�nition 22 A domain �i2NRi satis�es indirect sequential inclusion if, for all pro�les
RN 2 �i2NRi; either (a) the pro�le RN satis�es sequential inclusion; or else (b) for each
pair y; z 2 A there exists R0N 2 �i2NRi where R0NnS(RN ;y;z) = RNnS(RN ;y;z); such that
(1) R0N is a strict monotonic transformation of RN at z,
(2) for any i 2 S(RN ; y; z), yP 0iz and
(3) % (R0N ; y; z) is complete and acyclic.

Let us mention that the examples in the following remark could be modi�ed to encompass
situations where agents may have di¤erent sets of individual preferences, any �nite set of
alternatives, and any number of agents when required.

Remark 1 Consider strict preferences. Intertwined and (indirect) sequential inclusion are
independent.

15In what follows, and when this does not induce to error, we may omit the arguments RN , y and z and
just write %.
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Proof of Remark 1. De�ne a domain R1 � R2 � R3, R1 = fR1; R2g, R2 = fR3; R4g,
and R3 = fR5; R6g where each Rl is de�ned as in the example in the proof of part (3) of
Proposition 1. Note that R is intertwined, but it violates sequential inclusion.
Let RN = (R1; R4; R6) and (y; z) = (fa; bg;?). Then, % (RN ; y; z) on S(RN ; y; z) = f2; 3g is
not complete (L(R4;?) * L(R6; fa; bg) and L(R6;?) * L(R4; fa; bg)). Note also that there
is no strict monotonic transformation of RN at z satisfying conditions (1,2,3) in De�nition
22, thus indirect sequential inclusion is violated.
Consider now the following subdomain of single-peaked preferences over A = fx; y; zg:
P = fR1; R2; R3g such that

R1 R2 R3

x y z
y x y

z z x

This domain satis�es (indirect) sequential inclusion by Barberà, Berga, and Moreno (2010).
However, P is not intertwined since R3 is not (y; x)-intertwined with R1:

As we have just shown, in general, intertwinedness and indirect sequential inclusion
are independent. However, in Proposition 6 below we show that any domain satisfying
intertwinedness such that all agents have the same set of preferences do also satisfy indirect
sequential inclusion. The converse does not hold as we have just shown in Remark 1.

Proposition 6 Let �i2NPi be an intertwined domain such that Pi = Pj for any i; j 2 N .
Then, �i2NPi satis�es indirect sequential inclusion.

Proof. Let RN 2 �i2NPi and x; y 2 A. Let S(RN ;x; y) = fi 2 N : xPiyg. Suppose
that RN violates sequential inclusion (otherwise, the proof ends). We show that RN satis�es
indirect sequential inclusion. Take any order of the agents in S(RN ;x; y), without loss
of generality let the order be 1, 2, 3, ..., #S(RN ;x; y) = k. Take agents 1 and 2. By
intertwinedness, there exist R2 that is y-transform of R2 and also an x-transform of R1.
Observe that R2 is such that L(R2; y) � L(R2; y) and xP 2y (that is, R2 is a strict monotonic
transformation of R2 at y according to De�nition 6 in Barberà, Berga, and Moreno, 2010.
Replace R2 by R2 in RN . By construction (by transitivity xP1y and R2 is an x-transform
of R1), L(R1; y) � L(R2; x). Thus, from now on take the new pro�le (R2; R�2). Observe
that S((R2; R�2);x; y) = S(RN ;x; y) and 1 � 2. Take agents 2 and 3. By intertwinedness
applied to R2 and R3; there exists R3 that is y-transform of R3 and also an x-transform of
R2. Observe again that R3 is such that L(R3; y) � L(R3; y) and xP 3y (that is, R3 is a strict
monotonic transformation of R3 at y). Replace R3 by R3 in (R2; R�2). By construction (by
transitivity xP2y and R3 is an x-transform of R2), L(R2; y) � L(R3; x), thus 2 � 3: Note that
1 � 3 since L(R1; y) � L(R2; x) and R3 is an x-transform of R2 (i.e. L(R2; x) � L(R3; x))
thus L(R1; y) � L(R3; x). Repeating the same argument for the remaining agents: 3 and 4,
4 and 5, and so on), we can construct a pro�le R0N � (R1; R2, ..., Rn) that satis�es condition
(1), (2), and (3) in part (b) of De�nition 8 of indirect sequential inclusion in the paper
Barberà, Berga, and Moreno (2010). Thus, �i2NPi satis�es indirect sequential inclusion.
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As a corollary of Proposition 6 we obtain that the set of all lexicographically separable
preferences violates intertwinedness since as shown in Barberà, Berga, and Moreno (2010)
this domain violates indirect sequential inclusion.

7 Concluding remarks

We have stressed the fact that the characteristics of the domains for which social choice
functions are de�ned are crucial in determining what properties characterize these functions.
In particular, we have shown that two very natural properties of social choice functions are
equivalent to strategy-proofness for functions de�ned on intertwined domains.
Indeed, the two properties we propose (monotonicity and reshu ing invariance) are sim-

ple and attractive, and it is therefore very natural to ask under what conditions one can
understand strategy-proofness as a simple consequence of such elementary requirements.
Although our requirement of intertwined domains is complex, we show it to be satis�ed

in several relevant instances, including some leading models for the allocation of public goods
and also of private goods. For the environments where it holds, one can strictly identify those
functions that satisfy monotonicity and reshu ing invariance with those that are strategy-
proof.
We could have slightly altered our de�nition of intertwinedness in order to accommo-

date some further domains, like those of single-plateaued preferences. We could also have
pushed further the implications of intertwined domains regarding the implementability of
social choice functions. On that matter, let us just mention some straightforward results
about implementation theory when combining our results with others in the literature. For
any set of individuals preferences, strict or weak, by part (1) of Lemma 1 above and the
revelation principle for dominant strategy implementation due to Gibbard (1973) stating
that strategy-proofness is a necessary condition for dominant strategy implementation, our
monotonicity and reshu ing invariance conditions are also necessary for dominant strategy
implementation. More interestingly, when agents�preferences are intertwined and when the
social choice function satis�es Saijo, Sjöstrom, and Yamato�s (2007) weak non-bossiness,
then monotonicity and reshu ing invariance are also su¢ cient for dominant strategy im-
plementation (straightforward by our Theorem 1 and Theorem 3 in Saijo, Sjöstrom, and
Yamato. Note that their weak non-bossiness trivially holds without indi¤erences).
But the main point is made: one should watch for the characteristics of domains. Only

if these are rich enough it is possible to extend our intuitions, which are often based on the
implicit assumption of universal domain, to other, more restricted contexts. We hope that
these methodological points, as well as our examples and detailed results, can be helpful to
researchers in the �eld.

8 Appendix

In this Appendix we show that intertwinedness and two domain conditions that turned out
to be crucial to state interesting results in the social choice literature are independent. For
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lack of space we do not introduce such results and refer the interesting reader to each one
of the papers.
Let us mention that all examples in the following remarks could be modi�ed to encompass

situations where agents may have di¤erent sets of individual preferences, any �nite set of
alternatives, and any number of agents when required.

8.1 Intertwined versus connected in Kalai and Muller (1977):

Some needed de�nitions are in order.

De�nition 23 We call a pair of distinct alternatives x and y trivial if there are no R,
R0 2 Pi such that xPy and yP 0x. Thus, the pair (x; y) is trivial if there is always unanimity
on it.

De�nition 24 We say that R and R0 2 Pi are connected if there exists a nontrivial pair
x; y 2 A such that xPy and xP 0y, i.e., if they agree on a nontrivial pair.

De�nition 25 We say that R and R0 2 Pi are indirectly connected if they are connected by
a �nite chain of connected preferences, i.e. there exist Q1, Q2,...,Qn 2 Pi such that R = Q1,
..., Qn = R0 and Qi is connected to Qi+1 for i = 1, 2 ,..., n - 1.

A domain of preferences Pi is indirectly connected if any pair of individual preferences
R; R0 2 Pi are indirectly connected.

Remark 2 Intertwined and indirectly connected domains are independent.

Proof of Remark 2. Let the domain �i2NPi be such that for any i 2 N , Pi = fR1; R2g
where each Rl is de�ned as in the example in the proof of part (3) of Proposition 1. We can
check that this domain of preferences is intertwined. Note however that it is not (indirectly)
connected since R1 and R2 are not connected (the only nontrivial pair is (a; b)).
Consider now the following subdomain of single-peaked preferences over A = fx; y; zg:
P = fR1; R2; R3g such that

R1 R2 R3

x y z
y x y

z z x

Observe that P is indirectly connected: let the chain Q1 = R1, Q2 = R2 and Q3 = R3 and
observe that (x; z) is a nontrivial pair for Q1, Q2 : R1; R2 and (y; x) is a nontrivial pair for
Q2, Q3 : R2; R3; thus, (R1; R2) and (R2; R3) are connected. However, P is not intertwined
since R3 is not (y; x)-intertwined with R1:
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8.2 Intertwined versus linked in Aswal, Chatterji, and Sen (2003):

Some previous notation follows: For any Ri 2 Pi, let r1(Ri) and r2(Ri) indicate the �rst and
the second positioned alternative according to the preference Ri, respectively.

De�nition 26 Alternatives aj, ak are connected, say aj � ak, if 9Ri; R0i 2 Pi such that
r1(Ri) = aj, r2(Ri) = ak, r1(R0i) = ak, and r2(R

0
i) = aj.

De�nition 27 B $ A and aj =2 B. aj is linked to B if 9ak,ar 2 B where aj � ak & aj � ar:

De�nition 28 Pi is linked if 9� : A ! A one to one, such that (i) a�(1) � a�(2), and (ii)
a�(j) is linked to {a�(1); :::; a�(j�1)}, j = 3; ::;M:

Remark 3 Intertwined and linked domains are independent.

Proof of Remark 3. The set of all single-peaked preferences S is intertwined (see Propo-
sition 3). Aswal, Chatterji, and Sen (2003) show in their Example 3.4 that the domain S is
not linked.
On the other hand, Aswal, Chatterji, and Sen (2003) de�ne in their Example 3.1 the follow-
ing linked domain: "Let B denote an individual set of preferences which has the following
property: for all aj; ak 2 A, there exists Ri 2 B such that r1(Ri) = aj and r2(Ri) = ak.".
Let us consider a particular example of B when A = fx; y; z; tg:

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12

x z x y z y x t y t z t
z x y x y z t x t y t z
y t z t x t y z z x y x
t y t z t x z y x z x y

Observe that R1 is not (x; z)-intertwined with R2. Thus B is linked but it is not intertwined.
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