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Abstract

Do the contests with the largest prizes attract the most able contestants? To

what extent do contestants avoid competition? In this paper, we show, theoretically

and empirically, that the distribution of abilities plays a crucial role in determining

contest choice. Sorting exists only when the proportion of high-ability contestants

is sufficiently small. As this proportion increases, contestants shy away from com-

petition and sorting decreases, such that, reverse sorting becomes a possibility. We

test our theoretical predictions using a large panel data set containing contest choice

over three decades. We use exogenous variation in the participation of highly-able

competitors to provide empirical evidence for the relationship among prizes, com-

petition, and sorting.

JEL classification: D82, M52, D02
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1 Introduction

Competition is a defining feature of most economic and social environments. Contestants

of differing ability compete for valuable but limited resources by exerting effort. In many

cases, contestants choose from a variety of potential contests. For example, architects
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choose design competitions; pharmaceutical companies select from a range of R&D con-

tests; athletes pick sports tournaments; and college graduates apply for positions that

offer alternative promotion schemes.

Rewarding contestants according to their relative performance is motivated primarily

by the desire to increase effort. Lazear and Rosen (1981) were the first to consider rank-

order tournaments as a way to provide incentives. In recent years, a large theoretical

literature has been developed, determining the optimal design of such tournaments.1 A

common theme in this literature is that contestants exert greater efforts when prizes are

larger and more concentrated towards the highest ranks.2 Empirical evidence for these

incentive effects has been provided by Ehrenberg and Bognanno (1990), using data on golf

contests, and by Eriksson (1999) and Bognanno (2001) for labor tournaments. However,

while the relationship between prizes and effort seems to be well understood, little is

known about their influence on contest selection.3

For other incentive schemes, which use absolute rather than relative performance eval-

uation, selection effects have been found to be as important as incentive effects. Lazaer

(2000) documents a 44-percent increase in productivity for a firm switching from salaries

to piece rates and attributes half of this increase to selection effects. High-ability workers

find firms offering piece rates more attractive than firms offering salaries. In the context

of tournaments, it remains an open question whether selection effects play a similar role.

In this paper, we show that the contests with the largest prize(s) do not necessarily

attract the most-able contestants. Instead, the distribution of talent across contests de-

pends, in a systematic way, on the overall distribution of abilities among contestants. In

our model, two types of contestants (high- and low-ability), choose between two types of

contests (strong and weak competition). High-ability contestants have lower (constant)

marginal costs of effort than low-ability contestants have. Strong competition offers fewer,

but greater prizes than weak competition does. Our main theoretical result shows that

the share of high-ability contestants who choose strong competition is decreasing in the

overall fraction of high-ability contestants. When high-ability contestants become suf-

ficiently numerous, sorting is reversed, i.e. weak competition attracts a larger share of

high-ability contestants than strong competition does.

At a first glance, the possibility of reverse sorting seems counterintuitive since in this

1For an extensive survey, see Konrad (2009).
2Exceptions to this rule exist when contestants are risk-averse (Krishna and Morgan, 1998) or effort

costs are sufficiently convex (Moldovanu and Sela, 2001).
3A notable exception is the work by Damiano, Li, and Suen (2010, 2013), who study the issue of

sorting with a focus on peer effects rather than on effort choices.
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case contestants are attracted by contests with smaller prizes and stronger opposition.

However, we show that in the presence of a higher number of prizes, competition is miti-

gated. As a consequence, the contestants’ effort costs are lower under weak competition

than under strong competition. This underlines the importance of incorporating effort

decisions into models of contest choice.

Our results have the following implications for contest design. They show that, when

contest choice is endogenous, selection effects cannot be neglected, and the optimal prize

allocation depends crucially on the distribution of abilities among potential contestants.

This holds true, regardless of whether the objective is to maximize aggregate output or the

winner’s performance. More importantly, selection effects can be diametrically opposed

to incentive effects, and the positive influence of large/concentrated prizes on efforts may

be more than compensated by their negative influence on the self-selection of talented

contestants.

In labor tournaments and other settings, testing for selection effects is difficult, if

not impossible. In this paper, we take advantage of an unusually clean opportunity to

investigate the extent of sorting across contests in a sports setting. With around 20,000

observations, we examine the contest choices of professional marathon runners over three

decades. The setup allows us to abstract from a number of identification problems present

in other types of data. In a labor-market setting, for example, it is often difficult to

disentangle firms and worker types or to observe individual performance in team settings,

while in marathons, individual performance is readily available, together with complete

information on contest and runner characteristics.

There are two key features that make marathons the ideal setting to test our model.

First, five major marathons (Berlin, Boston, Chicago, London, and New York) offer more

than 50 percent of the total available prize money and, on average, allocate a greater

percentage of the prize money to the winner. This allows us to identify a runner’s de-

cision between competing in a major or a minor marathon, as a choice between strong

and weak competition. Second, highly-talented East-African runners, mainly from Kenya

and Ethiopia, dominate the sport of marathon running. This dominance is striking and

unparalleled in other sports. For example, according to the International Association of

Athletics Federations’ (IAAF) Top List, the 50 fastest male marathon runners in 2012

were exclusively from Kenya or Ethiopia. This endows us with a proxy of the contes-

tants’ abilities (runners’ origin), which, unlike performance measures (finishing times), is

independent of effort and prize considerations.

Following Brückner and Ciccone (2010), we use exogenous variation in local economic
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conditions to predict the participation of East-African runners. We find that the likeli-

hood that a high-ability runner will participate in a marathon is increasing in the race’s

prize budget but decreasing in the expected number of high-ability opponents. The partic-

ipation of one additional East-African opponent in last year’s race must be compensated

by a $6250 increase in the race’s prize budget to keep the race equally attractive to high-

ability runners. Interestingly, the steepness of a race’s prize structure is found to have

a positive effect on participation when opposition is expected to be weak but a negative

effect when opposition is expected to be strong. Hence, whether selection effects are in

line with or opposed to incentive effects seems to depend on the overall competitiveness

of the environment.

Our paper documents that sorting exists only when the proportion of high-ability par-

ticipants is sufficiently small. The results constitute first evidence for tournament selection

effects in a real setting.4 In line with our main theoretical result, we find that, when the

number of high-ability participants increases, potential participants become more likely

to avoid competition. In particular, when the share of talented contestants increases by

ten percent, the fraction of these runners who choose to participate in major races falls

by 10.3 percent. These results suggest that, depending on the ability distribution and

prize structure, contestants avoid one another to the extent that reverse sorting becomes

a possibility.

2 Theoretical Framework

We present a simple theoretical framework to illustrate the effect of changes in the ability

distribution on the level of sorting across contests. The model demonstrates that the

provision of strong incentives increases participation of talented contestants, but that

talent crowds out talent. The model makes precise how these two factors interact, resulting

in a negative relation between the frequency of high abilities and the level of sorting and

in the possible existence of reverse sorting.

4In an experimental setting, some recent studies have focused on the choice between tournaments
and alternative incentive schemes and on selection effect between tournaments offering a single prize of
differing size (Dohmen and Falk, 2011; Eriksson et al. 2009; Leuven et al. 2011).
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2.1 Setup

We assume a continuum of contests and a continuum of risk-neutral players.5 All contests

allow for the same number of participants, denoted by N ≥ 3. In order to balance the

number of players with the number of available contest slots, we assume that there exists

a mass 1 of players and a mass 1
N

of contests.

There are two types of contests, strong contests and weak contests, j ∈ {S,W}. They

differ on two dimensions: first, the number of prizes they offer, and second, the size of the

prize. More specifically, a contest of type j offers Mj ∈ {1, 2, . . . , N − 1} prizes, identical

in size, bj > 0.6 Strong contests award larger (bS > bW ) but fewer (MS < MW ) prizes

than weak contests.7 Apart from the differences in their prize structures, strong and weak

contests are assumed to be identical. For simplicity, we assume that both types exist in

equal fractions.8

There are two types of players, low-ability players and high-ability players, i ∈ {L,H}.

A low-ability player’s constant marginal cost of effort is normalized to cL = 1, while a

high-ability player’s marginal cost of effort is lower and equal to cH = c ∈ (0, 1). The

crucial parameter of the model is the fraction of players who have high-ability, denoted

by h. We focus on the case in which high-ability players are in the minority, h ∈ (0, 1
2
).

This assumption guarantees that, if they desire, all high-ability players can enter a strong

contest.

The model has two stages. In the first stage, players enter contests, and in the second

stage, they compete by exerting effort. At the entry stage, players form expectations

about their opponents’ abilities based on their knowledge of the overall distribution of

types and the equilibrium strategies. At the competition stage, players observe their

opponents’ abilities and then simultaneously make their effort choices.

We model competition as a perfectly discriminating contest, where prizes are awarded

to the players who exert the highest levels of effort.9 This follows an extensive literature

5Our model captures settings with many contests and a large number of players. In such settings, a
single player’s action has no effect on the optimal contest choice of the remaining players. This rules out
coordination issues and guarantees the uniqueness of equilibrium. The implications of risk aversion are
discussed at the end of the section.

6The assumption that all the contest’s prizes are identical makes the model tractable. A general
description of competition for the case of heterogeneous players and non-identical prizes is still missing.
Cohen and Sela (2008) made a first step in this direction.

7In a labor tournament setting, Yun (1997) shows that first-best efforts and efficient self-selection can
be achieved when workers are offered the choice between a tournament with many large prizes and a
tournament with few small prizes.

8Our results remain qualitatively unchanged when this assumption is relaxed. For details, see the
discussion at the end of this section.

9Alternatively, winners could be determined stochastically–i.e., in dependence of efforts and random
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on contest design (see, for example, Clark and Riis (1998) and Moldovanu and Sela (2001,

2006)). In terms of payoffs, a player of type i who exerts effort e ≥ 0 in a contest of type j

will receive utility U j
i = bj − cie if he wins one of the Mj prizes, and U j

i = −cie otherwise.

Since, at the competition stage, players can guarantee themselves a payoff of zero

by exerting zero effort, at the entry stage, no player will choose not to participate in

any contest at all. This means that if a fraction qi ∈ [0, 1] of type i players enters strong

contests, then the remaining fraction 1−qi will enter weak contests. The players’ behavior

at the entry stage can, therefore, be completely described by the fractions of low-ability

(qL) and high-ability (qH) players that enter a strong contest.

The distribution of players across contests can be characterized as exhibiting: complete

sorting when all high-ability players enter a strong contest, qH = 1; partial sorting when

a larger number of high-ability players enter strong contests than weak contests, qH > 1
2
;

and reverse sorting when the opposite is the case, qH < 1
2
.

An equilibrium distribution of talent (qH , qL) has to satisfy two conditions: an opti-

mality condition and a feasibility condition. The optimality conditions requires that no

player must be able to increase his payoff by entering another (type of) contest. This

means that if players of the same type i enter both types of contests, qi ∈ (0, 1), then

these players must expect equal payoffs. In addition, if all players of type i enter the

same type of contest–i.e., qi ∈ {0, 1}–then their expected payoff must not be higher in the

other type of contest. The feasibility condition requires that the number of players who

participate in a given type of contest must equal the number of available slots in contests

of this type:

hqH + (1− h)qL = h(1− qH) + (1− h)(1− qL) =
1

2
. (1)

Our analysis proceeds by backward induction and consists of two steps. Section 2.2

characterizes the players’ effort choices and expected payoffs in a contest with a given

set of opponents. The main result necessary for the subsequent analysis, which is the

focus of our study, is that a player’s expected payoff is positive (and equal to bj(1 − c))

if and only if the player has high-ability and the number of high-ability opponents is

strictly smaller than the number of prizes Mj. In Section 2.3, we use this insight to derive

our main theoretical results on the players’ individual contest choice and the equilibrium

distribution of talent across contests. All proofs are given in the Appendix.

factors. For a discussion of this case, see footnote 10.
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2.2 Competition

In making their effort choices, players trade off a higher chance of winning against an

increase in their costs of effort. In this section, we derive testable predictions on the

influence of prizes and opposition on efforts. We briefly discuss the nature of the equilib-

rium, with a focus on the players’ expected payoffs, which are crucial for the entry-stage

analysis contained in the next section. A more-detailled characterization of the players’

equilibrium strategies based on the results of Clark and Riis (1998) can be found in the

Appendix.

In equilibrium, M + 1 of the most-able players are active by randomizing over an

interval of potential effort choices, while the remaining players choose zero effort with

certainty. The equilibrium depends on the relationship between the number of high-

ability participants NH and the number of available prizes M . When NH ≤ M , then

some of the active players will have low-ability and all players will randomize over the

interval [0, b]. Since players must be indifferent between their potential effort choices and

are guaranteed to win a prize when choosing e = b, expected payoffs must be b − b = 0

for all low-ability players and b − cb for all high-ability players. For low-ability players,

(expected) prize winnings are exactly offset by the (expected) costs of effort.10 High-

ability players enjoy a comparative advantage due to their lower marginal cost of effort

and, therefore, obtain a positive payoff. This comparative advantage disappears when

NH > M . In this case, all active players have the same high-ability, randomize over [0, b
c
],

and expect a payoff of zero. In the Appendix, we prove the following:

Proposition 1 High-ability players’ (expected) efforts are increasing in the size of prizes,

as well as in the steepness of the contest’s prize structure. Efforts are minimal when the

number of high-ability players equals the number of prizes.

Increasing the size of prizes b leads to larger marginal returns to effort. Moreover, by

simultaneously increasing b and decreasing M in such a way that the contest’s prize

budget Mb remains unchanged, we can increase the prize structure’s steepness. In the

proof of Proposition 1, we show that both changes lead to a first-order (stochastic) upward

shift of the distribution of effort. These results are intuitive and in line with other models

in which players are assumed to be risk-neutral and to have linear costs of effort (e.g.,

10 This is a consequence of contests being perfectly discriminating. If contests involved a random
element, then the expected payoffs of low-ability players would depend on prizes, but this dependence
would still be weaker than it is for high-ability players. Since sorting can be expected to be strongest
when ability matters most, the absence of randomness is the most conservative assumption with respect
to our finding that sorting may be reversed. For a detailed study of the relationship between a contest’s
prize structure and its randomness, see Azmat and Möller (2009).
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Moldovanu and Sela (2001)). The influence of the allocation of prizes on the incentives

to exert effort has been a major theme of the literature on contest design.

The intuition for the last part of Proposition 1 is as follows. For NH > M , all

M + 1 active players have the same (high) ability, leading to strong competition. For

NH = M , exactly one of the active players has low-ability. This player is discouraged

by the comparative advantage of his M high-ability opponents and therefore exerts low

levels of effort. High-ability players anticipate this and, therefore, also exert low effort.

Finally, when NH < M , more than one low-ability players are active. Low-ability players

are encouraged to exert effort by the presence of other (active) low-ability players, which,

in turn, leads to higher efforts by the high-ability players.

Having characterized the players’ effort choice at the competition stage, we are now

ready to move to the paper’s main focus and consider the players’ contest choice at the

entry stage.

2.3 Contest choice

In this section, we first derive the players’ preferences over contests in dependence of the

contest’s prize structure and the expected opposition. In a second step we then determine

the equilibrium allocation of talent across contests.

Individual preferences

The analysis in the preceding section showed that low-ability players expect the same

(zero) payoff, independent of the type of contest they enter. Hence, low-ability players

are indifferent between the two types of contests, and we can concentrate our analysis

on the preferences of high-ability players. The expected payoff of a high-ability player

does depend on the specific features of the contest he enters. In the preceding section, we

demonstrated that in a contest offering M prizes of size b, a high-ability player expects a

positive payoff equal to b(1 − c) if the number of high-ability opponents is smaller than

M and a zero payoff otherwise.

At the time of entry, the number of high-ability opponents in a given contest is uncer-

tain. Hence, from the viewpoint of the entry stage, the player’s preferences will depend

on the likelihood p with which an opponent has high-ability. The probability with which

a high-ability player obtains a positive payoff is then identical to the probability with

which he meets, at most, M − 1 high-ability opponents. This is given by the binomial
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sum

G(M, p) =

M−1
∑

NH=0

(N−1
NH

)(p)NH(1− p)N−1−NH . (2)

A high-ability player’s expected payoff from entering the contest is

E[UH ] = b(1 − c)G(M, p). (3)

It depends on the contest’s prize structure, represented by M and b, and the expected

opposition, given by the likelihood p of meeting high- rather than low-ability opponents.

The following proposition contains comparative statics, which will be the first subject of

our empirical analysis.

Proposition 2 A high-ability player’s expected payoff from entering a contest is increas-

ing in the number M and size b of its prizes, but decreasing in the probability p with

which opponents have high-ability. Payoffs are increasing in the steepness of the contest’s

prize structure when opposition is weak (p < p̄) but decreasing when opposition is strong

(p > p̄).

The first part of Proposition 2 is intuitive and follows easily from (2) and (3). The

last part of Proposition 2 considers the effect of a decrease in the number of prizes,

accompanied by an increase in the size of the prize. As can be seen from the proof, the

particular value taken by the threshold p̄ depends on the specific changes in M and b.

Intuitively, when the probability of meeting high-ability opponents is small, high-ability

players prefer a steeper prize structure due to their comparative advantage over low-

ability players. In contrast, when the probability of meeting high-ability opponents is

large, high-ability players prefer a flatter prize structure due to their mitigating effect on

competition and the resulting decrease in effort costs.

To summarize, while prizes, both in size and number, are predicted to affect a player’s

decision to enter a particular contest positively, the effect of (expected) opposition is

negative. Moreover, opposition not only has a level effect, but also an interactive effect

with the steepness of the contest’s prize structure.

Equilibrium allocation

Having described the players’ individual preferences, we now determine their equilibrium

allocation across the two types of contests. Our analysis proceeds as follows. For a given

allocation (qH , qL), we determine the likelihoods pj of meeting high-ability opponents in
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a contest of type j ∈ {S,W}, which allows us to calculate the players’ expected payoffs

in both types of contest. We then verify whether the optimality and feasibility conditions

outlined above are satisfied. The indifference of low-ability players implies that optimality

needs to be checked only for high-ability players and that feasibility is guaranteed by the

low-ability players’ willingness to fill any slot that has remained idle.

For a given allocation (qH , qL), the number of high-ability players who choose a strong

contest is given by hqH . There are
1
2N

strong contests, each offering N slots. The likelihood

with which a slot in a strong contest is filled with a high-ability opponent can be calculated

by dividing the number of high-ability players who choose a strong contest, hqH , by the

overall number of slots available in the strong contests, 1
2
. It is given by pS = 2hqH .

Similarly, the likelihood with which a slot in a weak contest is filled by a high-ability

opponent is given by pW = 2h(1− qH).

To check optimality for high-ability players, we need to consider the difference be-

tween their expected payoffs from entering a strong versus a weak contest. From (3) this

difference is

∆ ≡ (1− c)[bSG(MS, pS)− bWG(MW , pW )]. (4)

High-ability players strictly prefer a contest of type S (W ) when ∆ > 0 (∆ < 0) and are

indifferent when ∆ = 0. In the Appendix, we prove the following result:

Proposition 3 There exists a unique equilibrium allocation (q∗H , q
∗

L) of abilities that de-

pends on the overall fraction h of high abilities in the population of players. In particular,

there exist critical values h̄ ∈ (0, 1
2
) and ¯̄h ∈ (h̄, 1

2
] such that the following holds:

1. For h ≤ h̄, sorting is complete, q∗H = 1. All high-ability players enter strong contests.

2. For h̄ < h < ¯̄h, sorting is only partial, q∗H ∈ (1
2
, 1). Strong contests attract a

greater number of high-ability players than weak contests. Moreover, talent crowds

out talent–i.e., q∗H is strictly decreasing in h.

3. For ¯̄h ≤ h, sorting is reversed, q∗H ≤ 1
2
. Strong contests attract a smaller number of

high-ability players than weak contests.

An increase in MS or bS and a decrease in MW or bW all lead to a higher level of sorting

by increasing q∗H and h̄.

The intuition for this result is as follows. Strong contests offer high prizes, while weak con-

tests mitigate competition by offering many prizes of smaller value. From the viewpoint
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of a high-ability player, effort considerations become more important as the likelihood

of meeting high-ability rivals increases, and his comparative advantage over low-ability

players plays a smaller role. When high abilities become sufficiently frequent, the mitiga-

tion of competition outweighs all else, such that high-ability players prefer weak contests

over strong contests, even though prizes are smaller and rivals are more-able in the former

than in the latter. This contrasts with the common intuition that, in equilibrium, contest

choices should be driven by a trade-off between high prizes and strong opposition versus

low prizes and weak opposition. The possibility of reverse sorting, therefore, underlines

the importance of including effort considerations in models of contest choice.

For the general case, we cannot rule out that ¯̄h = 1
2
. To see that reverse sorting is

indeed a possibility given our assumption that h < 1
2
, we provide an example where ¯̄h < 1

2
.

Example: Reverse sorting between one-prize and two-prize contests. Consider the

special case in which both types of contests have the same total prize budget B. Let strong

contests award their entire budget to the player with the highest effort–i.e., MS = 1 and

b = B. Let weak contests offer two identical prizes instead–i.e., MW = 2 and b = B
2
. In

the proof of Proposition 3, we show for the general case that ∆ is strictly decreasing in qH .

This is intuitive since an increase in qH raises the expected opposition in a strong contest

while lowering the expected opposition in a weak contest. Hence, ¯̄h < 1
2
if and only if

∆(qH = 1
2
) < 0 for some h < 1

2
. For the special case under consideration, substitution of

M and b into (4) leads to

∆(q =
1

2
) = (1− c)

B

2
(1− h)N−2(1−Nh). (5)

This shows that reverse sorting between one-prize and two-prize contests of identical

budgets exists when h > 1
N
. For example, when contests allow for 20 participants, then

sorting would be reversed already when more than 5% of the players in the population of

potential participants have high-ability.

Let us discuss possible implications of risk aversion on the players’ contest choice.

From the viewpoint of a high-ability player, each contest can be understood as a lottery

with two possible outcomes. A high payoff is obtained when the number of high-ability

participants fails to exceed the number of prizes, and a low payoff is obtained otherwise.

For qH > 1
2
, the high payoff, though smaller, is more likely to be obtained in weak contests

than in strong contests. Hence, weak contests constitute the less-risky lottery. Risk

aversion gives high-ability players an additional incentive to choose a weak rather than

a strong contest.11 This makes our assumption of risk-neutrality the most conservative

11This is in line with Dohmen and Falk’s (2011) experimental finding that subjects who choose a
tournament rather than a fixed payment have a lower degree of risk aversion.
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with respect to the possibility of reverse sorting.12

Finally, let us consider the effect of relaxing our assumption that both types of contests

exist in equal fractions. Suppose, for example, that there exists a larger number of strong

contests than weak contests. In this case, the likelihood of meeting a high-ability opponent

in a strong contest is lower than 2hqH , and the likelihood of meeting a high-ability player

in a weak contest is higher than 2h(1− qH), for any given value of qH . This makes strong

contests more attractive relative to weak contests, leading to a (weak) upward shift in

the equilibrium value of q∗H . The thresholds h̄ and ¯̄h shift to the right. The results in

Proposition 3 change quantitatively but remain qualitatively unchanged.

3 Empirical Framework

The theoretical framework makes precise that sorting in contests exists only if the proba-

bility of meeting other talented contestants is sufficiently small. Testing the predictions of

the model requires the observability of individual abilities and an exogenous change in the

overall distribution of abilities. Our test relies on two sources of variation: the variation

in the distribution of ability of contestants and the variation in prizes and prize structure

across contests. In this section, we test the predictions of our model using a large panel

dataset of international city marathons and professional marathon runners, which spans

over three decades.

The marathon setting is an ideal one for testing our model. Marathons share many

features with other contests, such as those seen in a labor-market setting. However,

unlike in labor tournaments, prizes and performance are easily observed. It is often

difficult, if not impossible, to know the pay structure within firms. Moreover, workers’

individual performance is seldom observed; nor are there well-defined measures that are

recognized across firms, even for those in the same industry or sector. While marathons

are fairly homogeneous in their setup, firms often differ in dimensions other than their

pay structure.13 Finally, professional runners typically enter two marathons per year,

while employment relations are established less frequently, making equilibrium behavior

less likely to emerge.

Beyond these advantages of marathons over labor tournaments, two important factors

12Note that this discussion ignores that risk aversion may also influence the way in which players
compete. It has been shown, for example, that risk aversion decreases the effort of low-ability contestants
but increases the effort of high-ability contestants in single-prize contests (Fibich et al., 2006).

13Some marathons have faster (flatter) race courses than others, but there exist conversion factors
constructed by the Association of Road Running Statisticians to make marathons comparable. We
adjust all the finishing times in our dataset using these conversion factors.
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make them the ideal setting to test our theory: first, the possibility to differentiate between

strong and weak contests; and, second, the opportunity to identify some of the most-able

contestants by exogenous measures rather than by their performance.

Regarding contest types, there are five races, known as the World Marathon Majors,

which have a special status in running, comparable to the Grand Slam tournaments in

tennis. For historical reasons, these marathons in Berlin, Boston, Chicago, London, and

New York, offer the highest prize budgets and have the largest number of participants.14

The major marathons award more than 50 percent of all total prize money, and compared

with other races, they are about twice as likely to choose a prize allocation that is steeper

than the average. Major marathons are characterized not only by large and concentrated

prize budgets, but also by a high number of runners competing for each prize, identifying

the World Marathon Majors as the strong contests of our theoretical model. A marathon

runner, therefore, faces the trade-off that is at the heart of our setup: Participate in

a major marathon, which offers large prizes but strong competition, or choose a minor

marathon with smaller prizes but weak competition.

Identifying the ability distribution of contest participants is often complicated, and

basing it on outcome variables, such as finishing times, is likely to be endogenous to

the prize distribution. Here, we take advantage of a unique opportunity to recognize

ability based on ethnic origin, which allows us to abstract from the usual identification

problems. In the 1980s, a number of East-African runners began participating in long-

distance running contests, and from the onset, it became apparent that these runners were

very talented. Today, a surprisingly high fraction of the best marathon runners are of

East-African origin. In 2009, for example, 88 of the 100 fastest (male) marathon runners

were from either Kenya or Ethiopia.15 This dominance, unparalleled in other sports, has

been explained by genetic, social, nutritional, and geographical factors (Noakes, 1985).

For the purpose of our analysis, this fact allows us to identify some of the most-able

contestants by origin, which, unlike past performance, is independent of prize and effort

considerations.

Since the 1980s, the number of East-African runners who compete internationally has

increased, and marathon running, in general, has become more competitive. The change

in competition can be seen in Figure 1, which depicts the ratio of the fastest race time

14Collectively, the group annually attracts more than five million on-course spectators, 250 million
television viewers, and 150,000 participants. Its economic impact has been claimed to lie above $400
million. For more details, see http://worldmarathonmajors.com/US/about/.

15See Top List of the International Association of Athletic Federations (IAAF) available online at
http://www.iaaf.org/statisitics/toplist/index.html.
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of the year over the average time of runners finishing a race in the top 20. While in the

early 1980s, the fastest runners had a comparative advantage of around six percent, this

advantage decreased to less than two percent in the late 2000s. For a race won in two

hours and ten minutes, this is equivalent to a reduction in the lead from eight minutes

(2.6km) to two minutes (600m).

As a brief preview of our results, Figure 2 depicts the distribution of East-African

runners across the two race categories, major and minor. In line with the predictions

of our theoretical model, the higher the overall proportion of East-African (high-ability)

participants, the lower their share in a major versus a minor marathon.

3.1 Data Description

We use data from the Association of Road Running Statisticians containing detailed race

and runner information for the largest international marathons from 1986 to 2009. We

restrict attention to the 35 most relevant marathons.16 These are the races that have

existed for the longest time, such that they are present in our sample for the whole

period. They feature the highest participation, highest prize budgets and the fastest

winning times. For each race, we observe the date, location, and the prize distribution.

At the runner level, we identify the top (professional) finishers for each race. Since we are

interested in the race choice of the most-able runners, we restrict attention to the first

twenty finishers of each race. Since marathons award fewer than twenty prizes for each

race, our data contain runners who win and runners who do not win a prize. We have

information on the runners’ gender, nationality, date of birth, finishing time, finishing

position, and the prize awarded (if any). Tables 1 and 2, provide the main descriptive

statistics for races and runners, respectively.

In Table 1, we show the descriptive statistics separately for major and minor races.

From this table, we can see that there are stark differences between these race categories.

Major races award around eight times as much prize money as minor races ($221,689

compared with $26,371). The prize structure of a major race is also steeper than that

of a minor race (57 percent of the major races have a prize allocation that is steeper

than the average, compared to only 35 percent for minor races).17 In addition, major

marathons have (overall) around three times more participants than minor marathons

16These are: Beijing, Berlin, Boston, California International, Chicago, Dallas, Detroit, Dublin, Frank-
furt, Gold Coast, Grandma’s, Hamburg, Honolulu, Houston, Italia, Kosice, London, Los Angeles, Madrid,
New York, Ottawa, Paris, Reims, Richmond, San Antonio, Rome, Seoul, Stockholm, Tokyo, Turin, Twin
Cities, Valencia, Venice, Vienna, Warsaw.

17Steepness is measured by the Herfindahl concentration index, calculated for the top three prizes.
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(22,332 compared with 6,838). A majority of these runners are amateurs, but their

number acts as a good signal for the level of competition in these races.

The two types of races also differ in the quality of the runners they attract. From Table

1, we can see that, on average, over all years, the fraction of high-ability runners has been

considerably larger in the major races. This holds whetheror not we identify high-ability

runners by origin or by (course-adjusted) finishing times. For example, 18 percent of the

finishers in the major races were East-African, compared to only 14 percent in the other

races. Similarly, 29 percent of runners in the major races had a finishing time within five

percent of the year’s best, compared with only eight percent in the minor races. As a

consequence, winning times in major races are, on average, eight minutes faster which is

equivalent to a 2.6km lead. Part of the difference in finishing times can be explained, in

accordance with the model, by the higher effort (incentive effect) induced by the larger

prizes offered in a major race. The remaining part is due to selection effects, which will

be the focus of our analysis.

Table 2 shows the descriptive statistics of runners. In this table, we compare East-

African runners, high-ability Non-East-African runners, and other Non-East-African run-

ners, respectively.18 For male runners, we see that East-African runners are comparable to

high-ability Non-East-African runners on a number of dimensions, including prize money

($7,676 versus $8,284), finishing times (two hours, 14 minutes versus two hours, 12 min-

utes), and the number of marathons entered in a given year (1.42 versus 1.44). Compared

with other runners, however, these two groups look very different. For female runners,

the same patterns hold. East-African runners are comparable with the best Non-East-

Africans, lending support to our identification of East-African runners as high-ability

contestants; but both groups are noticeably different from other runners. The focus of

the analysis will be on these high-ability runners.

3.2 Do Runners Choose Races Based on Prizes?

Based on runner-race characteristics (finishing times, prizes), how important are (ex-

pected) prize winnings in a runner’s race choice? It could be the case that a runner’s race

choice is driven by other (unobservable) factors such as sponsors’ preferences. This issue

is crucial for the rest of the analysis and for determining whether our empirical setting is

appropriate to test our model.

As an illustration, we use the last year of the data, 2009, to investigate a runner’s

18High-ability Non-East-African runners are defined as the 100 fastest Non-East-African runners within
their gender category, based on their fastest finishing time for a given year.
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potential prize winnings, while holding the behavior of all other runners fixed. We then

construct the counterfactual outcome by counting the number of races in which the runner

could have obtained a higher prize than in the one he actually ran, assuming identical,

course-adjusted, performance.

We find that a surprisingly high fraction of runners choose a race that maximizes

their prize winnings ex post. In particular, around 40 percent of the prize winners could

not have earned a higher prize in any other marathon. A further 20 percent had only

one alternative race in which their prize would have been higher. This suggests that

(expected) prize winnings are an important determinant of runners’ behavior.

3.3 Individual contest choice

Since our focus lies on selection effects rather than incentive effects, we first test the

model’s predictions with respect to the runners’ contest choice. The effort analysis is

postponed until the end of the section.

OLS Analysis

To test Proposition 2, we investigate how a runner’s expected payoff from a marathon

and, hence, his probability of entering, depends on the race’s characteristics. Letting Pijt

denote the probability with which runner i enters race j in time period t, we estimate the

following equation using OLS:

pijt = α0 + αAAjt−1 + αBBjt + αCCjt + αAC(Ajt−1 ∗ Cjt) +Xiβ + εijt. (6)

The variable Ajt−1 denotes the level of expected opposition. It is measured as the pro-

portion of high-ability participants among the race’s top 20 finishers in the previous year.

The variable Bjt denotes the marathon’s total prize budget. Cjt is a measure of the prize

structure’s steepness, calculated as the Herfindahl concentration index, based on the first

three prizes. We also include a vector of control variables, Xi, containing the runner’s

age, nationality, gender, and ranking in the previous year, as well as dummy variables

indicating whether the race took place on the runner’s home turf and whether the year

was an Olympic year. We also control for time dummies and race fixed-effects.

According to Proposition 2, the probability with which a runner enters a race will be

increasing in prize money, Bjt, such that αB > 0, and decreasing in expected opposition,

Ajt−1, such that αA < 0. Moreover, we expect the effect of steepness, Cjt, on entry to

depend on the level of expected opposition. The model predicts that steep prizes are

attractive only when there are sufficiently few opponents, and unattractive otherwise.
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Therefore, we expect the cofficient on the interaction term (Ajt−1 ∗ Cjt) to be negative

(αAC < 0).

Since Proposition 2 is concerned with the preferences of high-ability contestants, we

want to restrict our attention to the race choice of the top runners. However, since Ajt−1

itself is based on the behavior of high-ability runners, we cannot estimate 6. In order to

deal with this problem, we split the high-ability runners into two groups. In particular,

we restrict the participation analysis to the high-ability Non-East-African runners and

choose the proportion of East-African runners in a race’s previous edition as proxy for the

expected opposition.19 We showed in Table 2 that both groups of runners are comparable

in their characteristics. While this should give a causal estimation of the effect of expected

opposition on race participation, there may be some residual issues that create other types

of endogeneities. We will deal with these explictly in the next section.

In Table 3, we present the results without the interaction between opposition and

prize steepness. Column 1 and 2 presents the baseline regression without and with con-

trols, respectively. Column 3 includes time dummies and time dummies interacted by

gender to control for the changing trends in the participation of (East-African) runners

in marathons. Column 4 includes race fixed-effects, which allows for race-specific features

that are attractive or unattractive to runners. Races tend to take place in the same month

each year, but we also control for this, as a means to account for seasonal effects. Overall,

we find that an increase in expected opposition is associated with a decrease in the entry

of a high ability contestant in a race, and total prize money has a positive effect on entry.

The results allow us to determine the “prize” that contestants are willing to pay for a

reduction in opposition. They imply that a high-ability Non-East-African runner’s likeli-

hood of participation remains unchanged when a reduction in the number of East-African

opponents by one is accompanied by a $6, 250 decrease in the race’s prize budget.20

With respect to the prize allocation, Table 3 shows that, overall, steepness has a

positive effect on participation once we control for time dummies. In Table 4, we present

the results with the interaction between opposition and prize steepness. Columns 1 to 4 are

presented in the same way as in Table 3. Interestingly, we find that there is a differential

effect of prize steepness on entry, depending on the expected level of opposition. In

line with the predictions of Proposition 2, we find that an increase in the prize structure’s

19Our results are robust with respect to changes in the cut-off point for our definition of “high-ability.”
20A reduction in the number of East-Africans by one is equivalent to a five percentage point decrease in

expected opposition since the determination of Ajt−1 is based on the race’s top 20 finishers. Keeping the
likelihood of participation constant, therefore, requires a prize budget reduction by 100, 000 ·0.05 · 0.0099

0.0080
=

6, 250 dollars.
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steepness is associated with an increase in entry only if the level of opposition is sufficiently

small. As expected opposition increases, the effect of steepness is negative and significant.

IV Analysis

We have shown that expected opposition is negatively related to participation. An impor-

tant concern, however, is that the main variable of interest, Ajt−1, might be correlated with

some unobservable characteristics, leading to a biased estimate of αA. If a race becomes

attractive to all high-ability runners for reasons unexplained by our set of observables, it

will create a positive correlation between the entry of these runners and the error term.

For example, a race may announce a special award for the achievement of a new course

record, thereby raising its attractiveness for both sets of runners: East-African and high-

ability Non-East-African. This would translate into an upward-biased estimate of αA. To

deal with this issue, we instrument for the participation of East-African runners, Ajt−1,

using exogenous variation in their entry. In other words, we use exogenous variation in the

participation of East-African runners that is uncorrelated with the (unobservable) race

characteristics. We do this by instrumenting Ajt−1 with rainfall, as well as commodity

prices, in Kenya and Ethiopia in the previous year, t − 1. Both variables are correlated

with the number of East-African runners who compete in a given year but uncorrelated

with race characteristics. Moreover, the race choice of Non-East-African runners will be

unaffected by these instruments, except through the effect that they have on Ajt−1.

The reasoning behind the two instruments follows a growing literature, mainly in

political economy, which relates rainfall and commodity prices to economic conditions in

Sub-Saharan countries. It has been shown that rainfall levels positively affect income per

capita (Miguel et al., 2004) and the functioning of democratic institutions (Brückner and

Ciccone, 2010) in Sub-Saharan African countries. In addition, Deaton (1999) documented

that commodity price downturns cause rapidly worsening economic conditions in Sub-

Saharan African economies. Therefore, we expect rainfall and commodity prices to have

a positive effect on the international marathon participation of East-African runners. This

is intuitive, since most East-African runners rely on the support of sponsors, part of which

are local businesses or regional government agencies.

We construct international commodity price indices for Kenya and Ethiopia following

Deaton (1999) and Brückner and Ciccone (2010). For this purpose, we use the Interna-

tional Monetary Fund monthly price data for exported commodities for the period 1986

to 2009 and the countries’ export shares of these commodities taken from Deaton for

1990. The rainfall data, covering the period 1986 to 2009, is taken from the NASA Global
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Precipitation Climatology Project. The first-stage estimates show that rainfall and com-

modity prices are, indeed, strongly related to the participation of East-African runners

in international marathons. In particular, with the exception of commodity prices in

Ethiopia, positive rainfall shocks and commodity price upturns, increase the number of

East-African runners competing internationally. The instruments are strong, with a high

F-statistic.

In Table 4, Column 5, we present the results for the IV estimates. Since the in-

struments are annual and do not vary across races, we focus on the interaction of the

instrumented expected opposition with prize steepness. As in the OLS regression, we find

that steepness has a positive effect on entry, but there is a heterogeneous effect, depending

on the level of (expected) opposition. As opposition increases, prize steepness becomes

less attractive. The effect is stronger than in the OLS regressions, suggesting that αA is,

indeed, upward-biased when using OLS.

Robustness

In the remainder of this section, we address four important concerns: 1) the endogeneity of

the total prize budget; 2) the identification of Major races as strong contests; 3) potential

changes in the quality of East-African runners in years when there are few (many); and 4)

the possibility that high-ability Non-East-African runners finish outside the first twenty

places in their races.

First, we may be concerned that race organizers adjust the total prize budget, Bjt, to

keep their race attractive to high-ability contestants. If entry falls, race organizers may

increase prize money. As a consequence, the coefficient on Bjt would be biased downwards.

We deal with this problem by instrumenting the value of a race’s prize budget with the

exchange rate of the country where the race takes place, relative to a currency basket.

We expect that a move in the exchange rate is associated with an exogenous change in

the value of the race’s prize budget. This change should not be associated directly with

race entry. In order to construct a currency basket, we use the annual Special Drawing

Rights basket provided by the International Monetary Fund.21 Table 5 shows that when

we instrument for the prize budget, the coefficient is positive and significant, as previously

seen. However, the coefficient is larger (0.05 compared with 0.01 in the OLS), suggesting

that the OLS is, indeed, downward-biased.

Second, in our subsequent analysis of sorting, we identify the major races as the

21This basket contains U.S. Dollars, Euros, Japanese Yen, and Pounds Sterling. Weights assigned to
each currency are adjusted annually to take account of changes in the share of each currency in world
exports and international reserves.
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strong contests–i.e., as those with a steep prize structure. We verify our identification

by repeating the analysis in the previous sections through making a distinction between

entry into major and minor races. We define the variable Major, which takes the value

1 if the race is a major race and 0 otherwise, and we use it as an alternative to the

Herfindahl concentration index to measure the prize structure’s steepness. We find that

our main results from the previous section hold. Being a major race increases entry,

but as opposition increases, major races become less attractive to enter. The results are

presented in Table 6.

Third, since our instrument is constructed using the changes in the entry of East-

African runners in different years, we might be concerned that in the years when there

are more (fewer) East-African runners, the quality of the marginal runner is lower (higher).

We check this by looking at the finishing times of East-African runners in the years when

there are many (few) and find that these times are not statistically different from one

another.

Finally, our analysis was restricted to the top 100 (high-ability) Non-East-African

runners in a given year and focused on the top 20 finishers in each race. We might worry

that, at times when there are many East-African runners competing, high-ability Non-

East-Africans fail to finish within the top 20 of their race. We check that this is not an

issue using information on runners outside the top 20 finishers. We find that each year,

all top 100 runners are within our top 20 race finishers.

3.4 Distribution of talent

While Proposition 2 was concerned with the individual preferences of contestants, Propo-

sition 3’s focus is on the equilibrium distribution of players across contests. We now

move from the determinants of individual race choice to the analysis of the aggregate

distribution of runners across races using the time-series variation of our dataset.

To test Proposition 3, we analyze whether an increase in the overall number of high-

ability contestants leads to a more balanced distribution of talent across contests. More

specifically, we test the following equation:

SM
t = α0 + α1HAt + α2B

M
t + t+ εt. (7)

The dependent variable, SM
t , measures the level of sorting. It denotes the proportion of

East-African runners who choose to participate in a major rather than a Minor marathon

in period t. For SM
t = 1 sorting is complete–i.e., East-African runners participate exclu-

sively in major marathons. The main variable of interest, HAt, is the overall proportion
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of East-African runners, in period t. According to Proposition 3, sorting should be de-

creasing in HAt. The variable B
M
t denotes the proportion of the total prize money that is

awarded in the Major marathons. According to Proposition 3, sorting should be increas-

ing in BM
t . We control for both time trends and for whether the year was an Olympic

year. Since marathons can be divided into spring and autumn races and runners typically

choose one from each group, we consider contest choice for a given gender category, per

season rather than per year to allow for a richer analysis.

Table 7 shows the estimates for equation (7). Since in our theoretical model, the

number of strong contests is identical to the number of weak contests, we first restrict

our analysis (columns 1 to 4) to the top ten races. These races include the five major

marathons, as well as the next five most important races (Hamburg, Honolulu, Frankfurt,

Paris, and Rome). In columns 5 to 8, we consider the runners’ allocation across all 35

races. The results are similar for both samples.

We find that an increase in the fraction of high-ability contestants leads to a significant

decrease in sorting. More specifically, as the fraction of East-African runners in the top ten

races increases by one percent, the share of East-Africans who choose a major marathon

decreases by 1.28 percent. The effect is even stronger, 1.32 percent, when all 35 races are

considered. These results constitute evidence for the decrease in sorting, as predicted by

Proposition 3. As expected, we also find evidence for a positive relation between sorting

and prize budget differences. In particular, a one-percent increase in the proportion of

prize money awarded by the major races, leads to an increase in the share of East-African

runners entering a major race by 1.22 percent for the top ten races and by 0.52 percent

for all 35 races.

It is reassuring that these effects persist when we control for time trends, gender and

differential trends across gender. We see that in an Olympic year, the proportion of East-

African runners entering a Major marathon increases by ten percent. This is intuitive

since participation in the Olympics is restricted by country quotas. Due to the large

number of talented Kenyan and Ethiopian runners, many of them are unable to run the

Olympic marathon, whereas runners of comparable ability but different nationality are

able to participate with a higher probability. As a result, the proportion of East-African

runners in the Major races, the next-best alternative to the Olympics, is higher in Olympic

years.

We check the robustness of these results by using an alternative proxy for talent.

Rather than using origin, we identify a group of high-ability runners in a given season

using performances. Note that, since effort and ability are hard to separate, finishing
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times may be related to prize money. An advantage of using origin is, therefore, that

this definition of high-ability is independent of prize money considerations. We identify

high-ability runners as those who have (adjusted) finishing times within one-percent of

the fastest finishing time during the season.22 We also look at those finishing within

five and ten percent of the fastest time, respectively. We conjecture that changes in

the overall number of high-ability runners over the years are a result of the increase in

African participation. However, this measure of high-ability is less restrictive, especially

if the quality and composition of the group of East-African runners are changing over

time.

Table 8 shows that our main results still hold when we repeat the analysis for the

alternative measure of ability based on rankings. The sorting of high-ability runners into

major races is increasing in the proportion of prize money on offer, but decreasing in

the overall proportion of high ability runners. Interestingly, the decrease is stronger the

more able the runners under consideration. In particular, a ten-percent increase in the

proportion of high-ability runners reduces sorting by 46, seven, or three percent when high-

ability refers to runners within one, five, or ten percent of the fastest time, respectively.

Finally, note that in contrast to our estimation based on runners’ origin, the Olympic

year dummy is no longer significant, which is in line with the reasoning provided above.

3.5 Effort choice

In this section, we test the theoretical predictions on effort. In accordance with our

previous analysis, we restrict attention to high-ability runners. The model has three main

predictions: first, effort is increasing in the prize budget; second, effort is increasing in the

steepness of the races’ prize structure; and third, effort depends on the level of opposition.

We test the predictions using the following specification, where we estimate the effort,

Eijt, of (high-ability) runner i in race j at time t, using the runner’s finishing time:

Eijt = α0 + αBBjt + αCCjt + αHAHAjt +Xiβ + εijt. (8)

As before, Bjt, measures the total prize budget of race j at time t, and Cjt measures

race j’s prize steepness at time t. The vector Xi of controls is the same as before, and we

again include time and race fixed-effects. HAjt measures the total number of high-ability

opponents in race j at time t, which is calculated using the Top 100 runners (by gender

category), irrespective of ethnicity.

22The identification of high-ability runners is done separately for men and women.
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The findings for (8) are shown in Table 9. We see that, in line with the model’s

predictions, as the races’ prize budget increases, so too does effort. Similarly, as the prize

structure becomes steeper, effort also increases. Interestingly, we find that as the total

number of high-ability opponents increases, effort also increases. Our theoretical model

predicts effort to be minimized when the number of high-ability players is equal to the

number of prizes. Starting from this situation, effort increases regardless of whether we

increase or decrease the number of high-ability opponents. Since the number of prizes is

inversely related to the prize structure’s steepness, we expect opposition to lead to lower

efforts (longer finishing times) when the prize structure is relatively flat (more prizes

than opposition) and to higher efforts (shorter finishing times) when the prize structure

is relatively steep (fewer prizes than opposition). Although not significant, the negative

sign of the interaction term in Table 9 is in line with this reasoning.

4 Conclusion

How do contestants choose in which contest to compete? And how much do they value

potential prize offerings relative to expected opposition? Do contestants prefer contests

with few high prizes over contests with many low prizes? And how do these preferences

depend on their abilities? In this paper, we have provided both theoretical and empirical

insight into these questions.

We have proposed a tractable model of contest choice that incorporates the contes-

tants’ effort decisions. The model’s main result shows that the allocation of talent across

contests depends on its overall distribution within the population of potential contestants.

The standard intuition that contestants sort according to abilities fails to hold in general.

Sorting is decreasing as high abilities become more frequent, and reverse sorting has been

shown to be a possibility.

Using the contest choices of professional marathon runners, we have tested our model

and found that a high-ability contestant’s likelihood of participating in a contest is in-

creasing in the total prize money offered but decreasing in the probability with which he

expects to meet other high-ability contestants. The results highlight the trade-off between

prizes and opposition and allow us to determine the “prize” that contestants are willing

to pay for a decrease in opposition and that organizers must offer to guarantee their con-

test’s attractiveness. Moreover, using exogenous variation in the level of competition, our

results provide evidence for a strong negative relation between the level of sorting and the

overall frequency of highly-talented contestants.
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The design of a marathon tournament is a particular setting, yet it offers an ideal

testing ground for our model. The basic trade-off between prizes and opposition, which

determines contest selection in our framework, is present in a broad variety of settings, in-

cluding labor tournaments, procurement contests, and R&D competition. Unlike in these

other settings, in marathons, ability and incentives, as well as counterfactual payments,

are observable, which allows us to disentangle these factors. Contrary to common belief,

a steeper prize structure does not always attract more talented participants. We have

shown that sorting is highly dependent on the ability distribution and whether selection

effects are in line or opposed to incentive effects ultimately depends on the environment.
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Figure 1: Competitiveness of Marathon Running. Competitiveness is defined as the
ratio of the fastest (male) winning time of a year over the average finishing times of top
20 (male) finishers in all races. Finishing times are adjusted for racecourse differences.
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Figure 2: Contest Choice. “Overall proportion of HA runners” is the proportion of
East-African runners among the top 20 finishers of the races in Berlin, Boston, Chicago,
London, New York, Hamburg, Honolulu, Frankfurt, Paris, and Rome in a given year.
“Proportion of HA Runners Entering Major Races” refers to the fraction of those East-
African runners who entered a major race (Berlin, Boston, Chicago, London, New York)
rather than a minor race (Hamburg, Honolulu, Frankfurt, Paris, and Rome).
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Major Races All other Races
Variable Obs Mean Std. Dev. Obs Mean Std. Dev.

Prize Budget ($) 238 221,689 126,466 1381 26,371 40,460
No. of Participants 236 22,332 10,143 859 6,838 6,462

Steep Prize 238 0.57 0.50 1381 0.35 0.48
Winning Time (hh:min) 238 02:17 00:09 1381 02:25 00:13

Fraction HA (Origin) 238 0.18 0.18 1381 0.14 0.22
Fraction HA (1%) 238 0.03 0.06 1381 0.00 0.02
Fraction HA (5%) 238 0.29 0.26 1381 0.08 0.17
Fraction HA(10%) 238 0.66 0.29 1381 0.36 0.36

Table 1: Descriptive Statistics (Races)Means and standard deviations for major and
minor marathons, respectively. Major races are the Berlin, Boston, Chicago, London, and
New York marathons. The sample period is 1986 to 2009. “Total Prize” is the sum of
prizes awarded in a race in US dollars at 2000 prices. “Steep Prize” takes value 1 if the
Herfindahl index, calculated for the top three prizes, is above its mean value. “No. of
Participants” is the total number of participants, including amateurs, in a race. These
data were collected separately from various sources, including ARRS and race websites.
“Winning Time” is adjusted using ARRS conversion factors to ensure that times are
comparable across races. “Fraction HA (Origin)” refers to the fraction of runners from
East Africa. “Fraction HA (1%) (5%), (10%)” refers to the fraction of runners finishing
within 1%, 5%, and 10% of the best time of the year, respectively.
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Male Runners
East-African Top 100 Non-East-African All others

Variable Obs Mean Std. Dev. Obs Mean Std. Dev. Obs Mean Std. Dev.
Age 2892 28.78 4.54 2684 30.05 4.14 4619 30.96 5.16

Prize ($) 2892 7,676 17,780 2684 8,284 16,048 4619 833 2,075
No. Races 2892 1.42 0.6 2684 1.44 0.61 4619 1.17 0.45

Fraction entering Major Race 2892 0.23 0.42 2684 0.38 0.49 4619 0.14 0.34
Finish Time 2892 2:14 0:05 2684 2:12 0:02 4619 2:20 0:05

Female Runners
East-African Top 100 Non-East-African All others

Variable Obs Mean Std. Dev. Obs Mean Std. Dev. Obs Mean Std. Dev.
Age 646 27.69 4.44 2621 30.82 5.35 4840 32.26 6.31

Prize ($) 646 12,420 25,536 2621 10,339 18,319 4840 815 1,885
No. Races 646 1.45 0.59 2621 1.54 0.72 4840 1.19 0.46

Fraction entering Major Race 646 0.32 0.47 2621 0.43 0.49 4840 0.19 0.39
Finish Time 646 2:33 0:08 2621 2:32 0:04 4840 2:46 0:07

Table 2: Descriptive Statistics (Runners) Means and standard deviations (by gender category) for East-African
runners, Top 100 Non-East-African runners, and all other runners, respectively. The sample period is 1986 to 2009. “No.
of Races” is the number of races run in a given year. “Prize” is the prize money in US dollars at 2000 prices that a runner
wins (on average) per race. “Finishing Times” have been adjusted using ARRS conversion factors to ensure that race
courses are comparable.
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OLS OLS OLS OLS
[1] [2] [3] [4]

Variable enter enter enter enter
Exp. Opposition (t-1) -0.0293*** -0.0288*** -0.0141*** -0.0099**

[0.002] [0.002] [0.004] [0.004]
Total Prize (’00000) 0.0300*** 0.0304*** 0.0291*** 0.0080***

[0.001] [0.001] [0.001] [0.002]
Steep Prize -0.0044** -0.0049** 0.0096*** 0.0137***

[0.002] [0.002] [0.002] [0.002]
Female 0.0006 0.0036 0.0011

[0.001] [0.003] [0.002]
Age -0.0000** -0.0000** -0.0000**

[0.000] [0.000] [0.000]
At Home -0.0295*** -0.0364*** -0.0360***

[0.006] [0.006] [0.007]
Nationality: US 0.0036*** 0.0041*** 0.0041***

[0.001] [0.001] [0.001]
Rank (t-1) -0.0001*** -0.0001*** -0.0001***

[0.000] [0.000] [0.000]
Constant 0.0274*** 0.0294*** 0.0342*** 0.0333***

[0.001] [0.001] [0.004] [0.004]
Time Fixed Effects No No Yes Yes
Race Fixed Effects No No No Yes

Observations 144,880 144,120 144,120 144,120
R-Squared 0.019 0.02 0.024 0.037

Table 3: Probability of Entering a Race (OLS). *,**,*** denotes significance at the
10%, 5%, and 1% level, respectively. The sample is restricted to the runners who were
among the Top 100 Non-East-African runners in the previous year. The sample period
is 1986 to 2009. “Exp. Opposition (t-1)” is the fraction of East-African runners among
the top 20 finishers of the race in the previous year. “Total Prize (’00000)” is the total
prize money of a race in US dollars at 2000 prices. “Steep Prize” is the Herfindahl index,
calculated for the top three prizes. “At home‘” takes the value 1 if the runner is racing
in his or her home country. “Nationality” takes the value 1 if the runner is from the US
and 0 otherwise. “Rank (t-1)” is the ranking of the runner in the previous year (between
1 and 100). The time fixed effects include a complete set of month and year dummies, as
well as year and gender interactions.
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OLS OLS OLS OLS IV-Opposition
[1] [2] [3] [4] [5]

Variable enter enter enter enter enter
Exp. Opposition (t-1) -0.0021 -0.0021 0.0138*** 0.0046

[0.003] [0.003] [0.005] [0.005]
Total Prize (’00000) 0.0305*** 0.0309*** 0.0297*** 0.0088*** 0.0104***

[0.001] [0.001] [0.001] [0.002] [0.001]
Steep Prize 0.0054** 0.0050** 0.0207*** 0.0197*** 0.0288***

[0.002] [0.002] [0.002] [0.002] [0.004]
Exp.Opp(t-1)*Steep Prize -0.0908*** -0.0912*** -0.0964*** -0.0499*** -0.0977***

[0.008] [0.008] [0.009] [0.009] [0.016]
Female -0.0002 0.0037 0.0009 0.0059

[0.001] [0.003] [0.002] [0.006]
Age -0.0000** -0.0000** -0.0000** 0.0000

[0.000] [0.000] [0.000] [0.000]
At Home -0.0294*** -0.0368*** -0.0362*** -0.0345***

[0.006] [0.006] [0.007] [0.006]
Nationality: US 0.0036*** 0.0041*** 0.0041***

[0.001] [0.001] [0.001]
Rank (t-1) -0.0001*** -0.0001*** -0.0001*** -0.0000***

[0.000] [0.000] [0.000] [0.000]
Constant 0.0249*** 0.0273*** 0.0327*** 0.0325*** 0.0335***

[0.001] [0.001] [0.004] [0.004] [0.005]
Time Fixed Effects No No Yes Yes Yes
Race Fixed Effects No No No Yes Yes

Observations 144,880 144,120 144,120 144,120 144,120
R-squared 0.02 0.02 0.024 0.037 0.037

P-Value of F-test of exc. ins. 0.0000

Table 4: Probability of Entering a Race (Instrument for Expected Opposition). *,**,*** denotes significance at
the 10%, 5%, and 1% level, respectively. Expected opposition is instrumented with the commodity price index in Kenya
and Ethiopia in the previous year, as well as the (log) rainfall in Kenya and Ethiopia in the previous year. For definition
of variables, see Table 3.
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IV-Prize IV-Prize
[1] [2]

Variable enter enter
Exp. Opposition (t-1) -0.0116*** 0.0251**

[0.004] [0.012]
Total Prize (’00000) 0.0589** 0.0515**

[0.025] [0.023]
Steep Prize -0.0066 0.0118***

[0.010] [0.004]
Exp.Opp(t-1)*Steep Prize -0.1241***

[0.042]
Female 0.0255* 0.0206*

[0.013] [0.012]
Age 0.0000 0.0000

[0.000] [0.000]
At Home -0.0413*** -0.0407***

[0.007] [0.007]
Nationality 0.0041*** 0.0041***

[0.001] [0.001]
Rank (t-1) -0.0001*** -0.0001***

[0.000] [0.000]
Constant -0.047 -0.027

[0.081] [0.075]
Time Fixed Effects Yes Yes
Race Fixed Effects Yes Yes

Observations 144,120 144,120
R-squared 0.021 0.026

P-Value of F-test of exc. ins. 0.0000 0.0000

Table 5: Probability of Entering a Race (Instrument for Prizes). *,**,*** denotes
significance at the 10%, 5%, and 1% level, respectively. Total prize money is instrumented
with the exchange rate of the country of the race relative to the Special Drawing Rights
currency basket provided by the IMF. For definition of variables, see Table 3.
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OLS OLS OLS OLS OLS OLS IV-Opposition
[1] [2] [3] [4] [5] [6] [7]

Variable enter enter enter enter enter enter enter
Expected Opposition (t-1) -0.0189*** -0.0183*** -0.0175*** -0.0070*** -0.0080*** -0.0075*

[0.002] [0.003] [0.004] [0.002] [0.003] [0.004]
Total Prize (’00000) 0.0147*** 0.0148*** 0.0141*** 0.0206*** 0.0208*** 0.0206*** 0.0249***

[0.002] [0.002] [0.002] [0.002] [0.002] [0.002] [0.001]
Major Race 0.0504*** 0.0511*** 0.0535*** 0.0682*** 0.0691*** 0.0671*** 0.0719***

[0.004] [0.004] [0.004] [0.004] [0.004] [0.005] [0.003]
Major Race*Exp. Opposition (t-1) -0.1636*** -0.1651*** -0.1512*** -0.2237***

[0.015] [0.015] [0.015] [0.010]
Female 0.0006 0.0017 -0.0013* 0.0011 -0.0032

[0.001] [0.002] [0.001] [0.002] [0.006]
Age -0.0000** -0.0000** -0.0000** -0.0000** 0.0000

[0.000] [0.000] [0.000] [0.000] [0.000]
At Home -0.0306*** -0.0316*** -0.0321*** -0.0349*** -0.0284***

[0.006] [0.006] [0.006] [0.006] [0.006]
Nationality: US 0.0039*** 0.0040*** 0.0038*** 0.0041***

[0.001] [0.001] [0.001] [0.001]
Rank (t-1) -0.0001*** -0.0001*** -0.0001*** -0.0001*** -0.0000***

[0.000] [0.000] [0.000] [0.000] [0.000]
Constant 0.0254*** 0.0272*** 0.0351*** 0.0220*** 0.0249*** 0.0307*** 0.0349***

[0.001] [0.001] [0.004] [0.001] [0.001] [0.004] [0.005]
Time Fixed Effects No No Yes No No Yes Yes

Observations 144,880 144,120 144,120 144,880 144,120 144,120 144,120
R-squared 0.023 0.024 0.027 0.026 0.027 0.029 0.03

P-Value of F-test of exc. ins. 0.0000

Table 6: Probability to Enter a Race (Strong versus Weak Contests). *,**,*** denotes significance at the 10%,
5%, and 1% level, respectively. “Major Race” takes value 1 if the race is a Berlin, Boston, Chicago, London, or New York
marathon. Expected opposition is instrumented with the commodity price index in Kenya and Ethiopia in the previous
year, as well as the (log) rainfall in Kenya and Ethiopia in the previous year. For definition of variables, see Table 3.
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Top 10 Races All Races
Variable Sorting Sorting Sorting Sorting Sorting Sorting Sorting Sorting

[1] [2] [3] [4] [5] [6] [7] [8]
Proportion of HA (Origin) -0.7742*** -0.3551** -1.0272** -1.2758** -0.6214*** -0.5321*** -1.2260** -1.3164***

[0.187] [0.171] [0.501] [0.494] [0.131] [0.125] [0.471] [0.465]
Proportion of Prize 1.1128*** 1.1749*** 1.2193*** 0.4822*** 0.4887*** 0.5204***

[0.190] [0.195] [0.189] [0.139] [0.138] [0.137]
Female -0.0894* -0.0734* -0.2516 -0.2575* -0.0090 -0.0297 0.0303 0.0139

[0.050] [0.042] [0.153] [0.148] [0.035] [0.033] [0.113] [0.111]
Trend 0.0125 0.02 0.0250* 0.0271*

[0.017] [0.016] [0.015] [0.015]
Trend*Female 0.0014 -0.0008 -0.0099 -0.0102

[0.008] [0.008] [0.006] [0.006]
Olympic Year 0.0967** 0.0598*

[0.039] [0.031]
Constant 0.8727*** -0.2134 -0.1688 -0.2579 0.4619*** 0.1331 -0.0424 -0.0743

[0.097] [0.202] [0.280] [0.273] [0.065] [0.113] [0.175] [0.173]
Observations 79 79 79 79 79 79 79 79

R-squared 0.19 0.448 0.471 0.513 0.275 0.375 0.399 0.429

Table 7: Sorting of High-Ability Runners (Origin). *,**,*** denotes significance at the 10%, 5%, and 1% level,
respectively. High-ability runners are defined as those who originate from Kenya or Ethiopia. Top 10 Races include the
Major races (Berlin, Boston, Chicago, London, and New York) as well as Hamburg, Honolulu, Frankfurt, Paris, Rome.
The dependent variable, “Sorting”, is the proportion of high-ability runners who enter a major rather than a minor race.
“Proportion of HA” is the overall fraction of high-ability runners in the population of runners. Both variables are calculated
separately for each race season (spring, autumn). “Proportion of Prize” is the proportion of the overall prize money awarded
in the major races. “Trend” is a linear trend for the sample period 1986 to 2009. “Olympic Year” takes value 1 in years
1988, 1992, 1996, 2000, 2004, and 2008 and 0 in all other years.
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Top 10 Races All Races
VARIABLES Sorting Sorting Sorting Sorting Sorting Sorting

[1] [2] [3] [4] [5] [6]
Proportion of HA (1%) -1.9589*** -4.6357**

[0.707] [2.148]

Proportion of HA (5%) -0.2751* -0.7163***
[0.159] [0.214]

Proportion of HA (10%) -0.1194 -0.3075***
[0.146] [0.110]

Proportion of Prize 0.3263* 1.0318*** 1.1413*** 1.2664*** 0.7091*** 0.4475***
[0.176] [0.126] [0.119] [0.286] [0.140] [0.082]

Female -0.1602 -0.0097 -0.0432 0.1364 -0.0995 -0.1608*
[0.128] [0.105] [0.122] [0.221] [0.112] [0.083]

Trend -0.0193** -0.0139** -0.0036 0.0171 -0.0170** -0.0166***
[0.008] [0.007] [0.008] [0.014] [0.007] [0.005]

Trend*Female 0.0102* 0.0027 -0.0007 -0.0086 0.0060 0.0063**
[0.006] [0.005] [0.005] [0.010] [0.005] [0.003]

Olympic Year 0.0233 -0.0231 0.0071 -0.0634 -0.0008 0.0137
[0.035] [0.025] [0.023] [0.061] [0.028] [0.016]

Constant 1.0270*** 0.1000 -0.1355 -0.3148 0.4351* 0.5788**
[0.259] [0.242] [0.336] [0.380] [0.240] [0.220]

Observations 79 79 79 79 79 79
R-squared 0.314 0.719 0.692 0.364 0.603 0.622

Table 8: Sorting of High-Ability Runners (Performance). *,**,*** denotes significance at the 10%, 5%, and 1% level,
respectively. High-ability runners are defined as those with an (adjusted) finishing time within 1% (5%, 10%) of the race
seasons’s fastest time in their gender category. The dependent variable, “Sorting”, is the proportion of high-ability runners
who enter a major rather than a minor race. “Proportion of HA 1% (5%, 10%)”, is the overall fraction of high-ability
runners in the population of runners. Both variables are calculated separately for each race season (spring, autumn). For
definition of other variables, see Table 7.
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[1] [2] [3] [4]
Variable Finish Time Finish Time Finish Time Finish Time

Steep Prize -74.89** -64.25 -44.83* -32.50
[33.913] [60.663] [26.386] [48.065]

Total Prize (’00000) -44.69*** -44.69*** -25.55*** -25.56***
[6.843] [6.845] [5.290] [5.292]

Opposition -6.98*** -6.38** -5.11*** -4.41*
[1.136] [2.822] [0.892] [2.346]

Opposition*Steep Prize -1.50 -1.74
[6.014] [5.090]

Female 1,133.95*** 1,134.01*** 1,138.92*** 1,139.00***
[13.837] [13.801] [10.788] [10.759]

Age -0.08 -0.08 -0.06** -0.06**
[0.053] [0.053] [0.026] [0.026]

At Home 17.58 17.56 -2.45 -2.47
[14.251] [14.254] [10.909] [10.913]

Nationality 48.63** 48.62** 34.08** 34.08**
[24.642] [24.646] [16.173] [16.162]

Rank (t-1) 4.38*** 4.38***
[0.124] [0.124]

Constant 8,218.35*** 8,211.02*** 7,879.72*** 7,871.22***
[78.076] [88.285] [45.089] [55.986]

Time Fixed Effects Yes Yes Yes Yes
Race Fixed Effects Yes Yes Yes Yes

Observations 4,452 4,452 4,452 4,452
R-squared 0.90 0.90 0.932 0.932

Table 9: Individual Effort (Finishing Time). *,**,*** denotes significance at the 10%, 5%, and 1% level, respectively.
The dependent variable, “Finish Time”, is the total number of seconds to finish a race. For definition of other variables,
see Table 3.
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Appendix

Equilibrium effort distributions

In our setting, players value a prize identically but differ in their marginal cost of effort.

Since players are risk-neutral and effort costs are linear, the model is equivalent to a

multi-unit all-pay auction, where the value of a unit to a player of type i is given by

vi = b/ci.
23 The following analysis is, therefore, a direct adaptation of Clark and Riis

(1998).

Suppose that NH high-ability players and NL = N − NH low-ability players have

entered a contest offering M prizes of size b. Due to the deterministic nature of the

contest, the equilibrium is necessarily in mixed strategies.24 Moreover, in equilibrium,

more than M players must be active–i.e., provide effort with positive probability. If the

number of active players fails to exceed the number of prizes, each player can secure a

prize by providing an arbitrarily small amount of effort. Finally, if a player is inactive,

then there cannot exist an active player with a lower ability. This is because by imitating

the strategy of the less-able player, the inactive player could secure a strictly positive

payoff. If all players were different, these arguments would imply that in equilibrium

the set of active players would consist of the M + 1 most-able players. Since, in our

setting with two types, some players have identical abilities, there also exist equilibria

with more than M +1 active players. All equilibria are payoff-equivalent if all players are

identical (Siegel, 2009) or competition is for a single prize (Baye et al., 1996). We select

the equilibrium that is the only one to survive if we introduce arbitrarily small ability

differences among players of the same type. In particular, we focus on the equilibrium in

which exactly M + 1 of the most-able players are active.

In the following, denote by Fi(e) the cumulative effort distribution of an active player

with type i. The description of equilibrium depends on the number of high-ability par-

ticipants, NH , and we will consider the cases where NH > M , NH = M , and NH < M

separately.

When NH > M , only high-ability players will be active. Since payoffs would become

negative, no player will ever choose an effort higher than b
c
. Instead, each player will choose

23In an M -unit all-pay auction, a bidder who bids x and values the object at vi obtains the utility
vi − x if his bid is among the M highest bids. Otherwise, his utility is −x. To match the auction with a
perfectly discriminating contest, identify bids with efforts and multiply utilities by ci.

24Suppose, some player i follows a pure strategy by choosing an effort level e > 0. In equilibrium, no
other player would choose an effort in some small interval below e because by choosing an effort slightly
higher, players can ensure that they win over i. But this implies that choosing e cannot be optimal for
player i since he could reduce his effort without decreasing his chance of winning a prize.
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an effort in [0, b
c
]. Since, in equilibrium, each player has to be indifferent with respect to

his potential effort choices, and payoffs are zero at both extremes of the support, it has

to hold that [1− (1−FH(e))
M ]b− ce = 0 for all e ∈ [0, b

c
]. Here [1− (1−FH(e))

M ] is the

probability that the player wins a prize, which happens unless all the other active players

exceed his effort choice. Rearranging leads to the equilibrium distribution

FH(e) = 1− (1−
c

b
e)

1

M . (9)

In equilibrium, each of the M + 1 active high-ability players expects a payoff of zero,

making it optimal for all other players to remain inactive.

When NH = M , all high-ability players and one of the low-ability players will be

active. For the same reason as above, the support of FL is given by [0, b], and for all

e ∈ [0, b], it has to hold that [1− (1− FH(e))
M ]b− e = 0. It follows that

FH(e) = 1− (1−
1

b
e)

1

M . (10)

High-ability players are able to secure a prize by bidding b leading the payoff b−cb. Their

indifference implies that [1− (1−FH(e))
M−1(1−FL(e))]b− ce = b(1− c) for all e ∈ [0, b].

Substitution of FH and rearranging gives

FL(e) = 1− c(1−
e

b
)

1

M . (11)

High-ability players enjoy a comparative advantage over the low-ability contender due to

their lower marginal cost of effort. Therefore, in equilibrium, high-ability players obtain a

positive payoff. This explains why it cannot be the case that a low-ability player is active

while a high-ability player is inactive.

Finally, consider the case NH < M . As in the case where NH = M , the maximal effort

a player chooses with positive probability is the same for both types of players and equal

to b. However, it can no longer be the case that a low-ability player chooses zero effort

with positive probability. If this were the case, then another low-ability player would

obtain a positive profit from choosing zero effort and would not be indifferent between

the efforts in [0, b]. But if FL(0) = 0 for all low-ability players, then zero effort can no

longer be in the support of FH . This is because high-ability players obtain the payoff

b(1 − c) > 0 from choosing e = b, but their payoff would be zero for e = 0. In fact,

high-ability players will randomize over an interval [e, b] where the lower support e > 0 is

to be determined. The indifference of high-ability players on [e, b] implies that

[1− (1− FH(e))
NH−1(1− FL(e))

M+1−NH ]b− ce = b(1− c). (12)
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Similarly, the indifference of low-ability players on [e, b] implies that

[1− (1− FH(e))
NH (1− FL(e))

M−NH ]b− e = 0. (13)

Solving these two equalities simultaneously shows that for all e ∈ [e, b]:

FL(e) = 1− c
NH

M (1−
e

b
)

1

M and FH(e) = 1− c
NH

M
−1(1−

e

b
)

1

M . (14)

The lower support of FH can be determined from FH(e) = 0 to be e = b(1 − cM−NH).

Finally, on [0, e), FL can be determined from [1− (1− FL(e))
M−NH ]b− e = 0, leading to

FL(e) = 1− (1−
e

b
)

1

M−NH . (15)

This completes the characterization of the equilibrium effort distributions.

Proof of Proposition 1

The comparative statics with respect to the number and size of prizes follows from the

fact that the cumulative effort distributions FH derived in the previous section depend

negatively on M and b. Hence, the effort distribution with more and/or higher prizes

first-order stochastically dominates the effort distribution with fewer and/or lower prizes.

To consider the effect of steepness, note that for a fixed prize budget, we can substitute

M by 1
b
in FH . The resulting functions depend negatively on b, i.e. distributions that

correspond to larger steepness (higher b) first-order stochastically dominate distributions

that correspond to lower steepness.

It remains to show that (expected) efforts are minimized when NH = M . Comparing

the cumulative distribution functions for the cases NH > M and NH = M , it holds that

FNH>M
H (e) < FNH=M

H (e) for all e ∈ [0, b]. Hence, the distribution of effort with NH > M

first-order stochastically dominates the distribution of effort with NH = M . In particular,

expected effort is higher for NH > M than for NH = M . To see that expected efforts are

also higher for NH < M , note that a high-ability player’s likelihood of winning a prize

is decreasing in NH for all NH ≤ M . This follows from the fact that high-ability players

have a greater chance of winning than low-ability players do. Since expected payoffs are

constant in this range, it must be the case that expected effort is decreasing in NH .

Proof of Proposition 2

It is immediate that E[UH ] is increasing in b and M , but decreasing in p. To prove the last

claim of Proposition 2, increase the steepness of the contest’s prize structure by letting
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M̃ < M and b̃ > b, and consider

E[UH ]− ˜E[UH ]

1− c
= bG(M, p)− b̃G(M̃, p) (16)

= b
M−1
∑

NH=0

(N−1
NH

)pNH (1− p)N−1−NH − b̃
M̃−1
∑

NH=0

(N−1
NH

)pNH (1− p)N−1−NH

= bProb(M̃ ≤ NH ≤ M − 1)− (b̃− b)Prob(NH ≤ M̃ − 1).

The first term represents the advantage of the flatter prize structure. When the number

of high-ability opponents NH turns out to be between M̃ and M − 1, the flatter prize

structure guarantees a positive payoff, b, whereas payoffs are zero for the steeper prize

structure. The second term represents the advantage of the steeper prize structure. When

the number of high-ability opponents is smaller or equal to M̃ − 1, payoffs are positive

for both prize structures, but the steeper prize structure offers an extra payoff b̃− b > 0.

Note that the likelihood ratio Prob(NH ≤ M̃ − 1)/Prob(M̃ ≤ NH ≤ M − 1) is strictly

decreasing in p. It converges to 0 for p → 1 and to ∞ for p → 0. Hence, there exists a

p̄ ∈ (0, 1) such that E[UH ]− ˜E[UH ] ≥ 0 if and only if p > p̄. The steeper prize structure

(M̃, b̃) guarantees a higher payoff if and only if the likelihood p with which opponents have

high-ability is smaller than p̄. The threshold p̄ is decreasing in M − M̃ and increasing in

b̃− b.

Proof of Proposition 3

In a contest in which an opponent has high-ability with probability p, let

Ep[NH |NH ≤ M − 1] =

M−1
∑

m=0

(N−1
NH

)pNH (1− p)N−1−NHNH (17)

denote the expected number of high-ability opponents conditional on their number being,

at most, M − 1. Let

Ep[NH ] = p(N − 1) (18)
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denote the (unconditional) expected number of high-ability opponents. The equilibrium

is determined by equation (4) with pS = 2hqH and pW = 2h(1− qH). It follows from

dG(M, p)

dp
=

M−1
∑

NH=0

(N−1
NH

)[NHp
NH−1(1− p)N−1−NH − (N − 1−NH)p

NH (1− p)N−2−NH ]

=
M−1
∑

NH=0

(N−1
NH

)pNH−1(1− p)N−2−NH [NH − (N − 1)p] (19)

=
G(M, p)

p(1− p)
{Ep[NH |NH ≤ M − 1]−Ep[NH ]} < 0 (20)

that

d∆

dqH
= 2h

[

bS
dG(MS, pS)

dp
+ bW

dG(MW , pW )

dp

]

< 0. (21)

The higher the fraction of high-ability players who choose contests of type S, the less

willing are high-ability players to enter such contests. The fact that bS > bW implies that

∆(qH = 0) = bS − bWG(MW , 2h) > 0. (22)

Hence, there cannot exist an equilibrium in which q∗H = 0. Moreover,

∆(qH = 1) = bSG(MS, 2h)− bW . (23)

Note that ∆(qH = 1) is strictly decreasing in h with ∆(qH = 1) → −bW < 0 for h → 1
2

and ∆(qH = 1) → bS − bW > 0 for h → 0. Hence, there exists a unique h̄ ∈ (0, 1
2
) such

that ∆(qH = 1) ≥ 0 if and only if h ≤ h̄. Therefore, an equilibrium in which q∗H = 1

exists if and only if h ≤ h̄. Moreover, the equation ∆(q∗H) = 0 has a solution q∗H ∈ (0, 1)

if and only if h > h̄. This solution and, hence, the equilibrium is unique. To determine

how q∗H depends on h for h > h̄, consider

h
d∆

dh
=

[

bSpS
dG(MS, pS)

dp
− bWpW

dG(MW , pW )

dp

]

(24)

=
bSG(MS , pS)

1− pS
{EpS [NH |NH ≤ MS − 1]− EpS [NH ]} (25)

−
bWG(MW , pW )

1− pW
{EpW [NH |NH ≤ MW − 1]− EpW [NH ]}.

For pS and pW such that ∆ = 0, we can substitute bS = bW
G(MW ,pW )
G(MS ,pS)

to get

h

bWG(MW , pW )

d∆

dh
=

1

1− pS
{EpS [NH |NH ≤ MS − 1]−EpS [NH ]} (26)

−
1

1− pW
{EpW [NH |NH ≤ MW − 1]− EpW [NH ]}.
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It is one of the properties of the binomial distribution that the difference between the

unconditional and the tail conditional means increases more strongly than linearly in the

underlying probability p (Johnson et al., 1992). Thus, the first term is strictly decreasing

in pS. Since, for q
∗

H ≥ 1
2
, it holds that pS ≥ pW , we can find an upper bound for the first

term by setting pS = pW to get

h(1− pW )

bWG(MW , pW )

d∆

dh
≤ EpW [NH |NH ≤ MS − 1]−EpW [NH |NH ≤ MW − 1] < 0. (27)

The last inequality follows from MS < MW . Thus, we have shown that at any equilibrium

such that q∗H ≥ 1
2
and, hence, p∗S ≥ p∗W , it holds that d∆

dh
|qH=q∗

H
< 0. Together with d∆

dqH
< 0,

this implies that q∗H is strictly decreasing in h as long as q∗H ≥ 1
2
. This also means that

once q∗H has crossed 1
2
from above, it will stay below 1

2
for all higher values of h. In other

words, there exists a ¯̄h ∈ (h̄, 1
2
] such that q∗H ≤ 1

2
for all h ≥ ¯̄h.
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