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Abstract 

This paper develops a simple model that can be used to analyze the long-term sustainability of 
the contributive pension system and the steady-state response of pension expenditure to 
changes in some key demographic and economic variables, in the characteristics of the average 
pensioner and in the parameters that describe how pensions are calculated in Spain as a 
function of workers' Social Security contribution histories. 
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 1. Introduction 

This paper develops a simple model that can be used to analyze the long-term sustainability of 
the contributive pension system and the steady-state response of pension expenditure to 
changes in some key demographic and economic variables, in the characteristics of the average 
pensioner and in the parameters that describe how pensions are calculated in Spain as a 
function of workers' Social Security contribution histories. 

The model achieves tractability at the price of some very strong assumptions, including 
deterministic life spans and constant rates of growth of total employment and wages, ignores 
the heterogeneity of agents and the endogeneity of decisions to enter and exit the labor market, 
and does not take into account some important characteristics of the Spanish pension system, 
including the existence of caps and floors on contribution bases and pension levels and the 
possibility of early retirement. Under these assumptions, the model can be used to calculate the 
average pension and the ratio of this variable to the average salary, the ratio of pensioners to 
employed workers, the pension system's total current revenues and expenditures and its 
internal rate of return. It also provides two simple characterizations of the system's long-term 
financial sustainability: the contributive pension system will be sustainable in the long run if 
and only if its internal rate of return does not exceed the growth rate of aggregate wage income 
or, equivalently, if its initial replacement rate (the ratio between the initial pension and the 
wage at the time of retirement) does not exceed a critical value.  

In spite of its simplistic assumptions, the model highlights the main determinants of spending 
in contributory pensions and the necessary conditions for the system's sustainability. It can also 
be a useful complement of the standard short-cut procedure for projecting pension expenditure, 
which is based on a decomposition of this variable, measured as a fraction of GDP, into three 
factors that capture, respectively, the effects on pension outlays of demographics, labor market 

performance and the generosity of the pension system.1 In particular, the model introduces a 
certain amount of discipline when projecting into the future the system's generosity factor 
(generally defined as the ratio between the average pension and average output per employed 
worker), which is the component of pension expenditure that is hardest to forecast directly.  

The remainder of the paper is divided into six sections and an appendix. Section 2 sets out the 
model's assumptions regarding demographics and the evolution of wages. Section 3 contains a 
simplified description of how retirement and widowers' pensions are set in Spain. In sections 4 
and 5, wages and pensions are aggregated across individuals to calculate the key magnitudes of 
the pension system and two alternative characterizations of its long-term sustainability are 
derived. Section 6 contains a numerical analysis of the comparative statics of the model. Finally, 
section 7 concludes and the Appendix contains the details of the calculations. 
 
                                                
1 See for instance Jimeno, Rojas and Puente (2008) and Doménech and Melguizo (2008). For an application 
that combines the decomposition sketched in the text with the model developed in this paper in order to 
quantify the effects of Spain's most recent pension reform, see de la Fuente and Doménech (2011). 
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 2. Demographic assumptions and the evolution of wages 

The model economy is populated by overlapping generations of a continuum of finitely-lived 
homogeneous agents. The number of births grows over time at a constant exponential rate, n, so 
that the number of agents born at time s is equal to 

  (1) L(s) = ens   

An individual born at time s enters the labor market at s+E and starts to work immediately, 

retires at  s+J and dies at s+Z. With probability π , he leaves behind a spouse who survives until 

s+Z2.  
Figure 1: Breakdown of the population at time t by its economic status 

 
 
I will treat wages as exogenous. It will be assumed that average real wages increase over time at 
a constant rate due to technical progress and capital accumulation and that individual wages 
rise with experience as well. The real wage at time t ![s + E, s + J ] of a worker born at time s will 

be given by 

  (2) W (s, t) = Ate
! (t"(s+E )) = Aoe

gte! (t"s"E ) = Aoe
(g+! )t e"! (s+E )   

where At = Aoe
gt captures the effects of technical progress and capital accumulation on average 

wages and the term e! (t"s"E )  is the experience premium. To simplify the calculations, I have 

assumed that the experience premium grows at a constant rate, ν, and does not therefore 

display the hump-shaped pattern that is usually found in the data. 
 
 3. Pension determination 

I will assume that pensions are set using the rules that are currently applied in Spain. The 
starting pension of an individual born at time s who retires at s+J is given by 

  (3) P(s, s + J,C,N ) = !(C)B(s, s + J,N )  
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where φ() is a percentage that depends on the number of years the agent has paid Social 

Security contributions,2 

  (4) C = J- E, 

and B(), the so-called regulatory base of the pension, is an average of the agent’s past wages 
calculated over the last N years prior to retirement. I will refer to N as the pension’s calculation 
period. Assuming that wages are valued in real terms in the calculation (which is approximately 
true in Spain), the regulatory base is given by 

  (5) B(s, s + J,N ) = 1
N

W (s, t)dt
s+J!N

s+J

" =
1! e!(g+# )N( )
(g +# )N

W (s, s + J ) $ b(N )W (s, s + J )  

Hence, the regulatory base can be written as a fraction b() of retirement wages, W(s, s+J). It is 

easy to check (see the Appendix) that this fraction is a decreasing function of (g+ν)N, where N is 

the length of the calculation period and g+ν the growth rate of individual real wages. Notice 

that we can write the initial pension in the form 

  (3') P(s, s + J,C,N ) = !(C)b(N )W (s, s + J ) " #(C,N )W (s, s + J )  

Hence, ρ() = φ()b() is the ratio between the wage at retirement and the starting pension. I will 

refer to this quantity as the initial replacement rate. 

Once its initial value is set, it will be assumed that an individual’s pension (P) grows over time 

at a constant rate ω in real terms. If pensions are indexed to consumer prices, as is the case in 

Spain, we will have ω  = 0 and the real value of individual pensions will remain constant over 

time. In the general case, the real pension at time t of a worker who has retired at s+J will be 
given by 

 (6) P(s, t,C,N ) = P(s, s + J,C,N )e! (t"(s+J )) = #(C,N )W (s, s + J )e!t e"! (s+J ) = #(C,N )Aoe
$Ce!t e(g"! )(s+J )  

for t ! s + J, s + Z[ ] . If the pensioner leaves a widower when he or she dies (which happens with 

probability π), the surviving spouse will enjoy a widower’s pension (PV) for the rest of his or 

her life. Assuming widowers’ pensions are set at a constant fraction φv (= 0.52 in Spain) of the 

deceased spouse’s pension at the time of death and grow at the same rate as retirement 
pensions, the real value of the widower’s pension at time t will be given by 

  (7) PV (s, t,C,N ) = !vP(s, t,C,N ) = !v"(C,N )W (s, s + J )e
#t e$# (s+J )  for t ! s + Z, s + Z2[ ]  

Figure 2 shows how wages and pensions change across cohorts, indexed by their time of birth 

(s), at a given point in time (t). If there is a positive experience premium (ν  > 0) wages rise with 

age and are therefore a decreasing function of the time of birth. If productivity growth is faster 

                                                
2 Under the current system, φ() is a piecewise linear function of the number of years of contribution, C. A 
minimum of 15 years is required for access to a contributory pension and entitles the worker to a pension 
equal to 50% of the regulatory base. This percentage rises by 3 points per year of contribution up to 25 
years and by 2 points for each additional year thereafter, reaching 100% after 35 years. 
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than the real rate of appreciation of pensions (g > ω) then pensions rise as we move to the right 

to younger cohorts (or decrease with age, as we move to the left). 
 

Figure 2: Pensions and wages at time t as a function of the date of birth of each cohort 

 
 

It will be useful to compute the following three magnitudes as of time t. By (2), the starting 
salary at time t, i.e. the wage earned by a worker with no experience who has just entered the 
labor market, will be given by  

  (8)W s (t) = Aoe
gt  

To calculate the retirement wage at t, notice that a worker who retires at that time must have 
been born at s = t – J. Using (2) again, this implies that 

  (9) W r (t) !W (t " J, t) = Ate
# (t"(t"J+E )) = Aoe

gte# (J"E ) = Aoe
gte#C =W s (t)e#C  

Finally, the starting pension of this worker will be equal to 

  (10) Ps (t) ! P(t " J, t) = #(C)b(N )W (t " J, t) = $(C,N )Aoe
gte%C = $(C,N )W r (t)  

 
 The internal rate of return of the pension system 

From the point of view of a worker, the public system of contributory pensions can be seen as 
an investment vehicle that allows him to obtain a retirement annuity in return for a flow of 
contributions during his working life. The internal rate of return (IRR) of this investment can be 
calculated in the standard way. The expected net present value of the investment, calculated as 
of time E, is given by  

  (11) V(r) = ! "W (t)e!r(t!E )dt
s+E

s+J

# + P(t)e!r(t!E )dt
s+J

s+Z

# + $ PV (t)e!r(t!E )dt
s+Z

s+Z2

#  

where τ  is the Social Security contribution rate (defined as the sum of the rates paid by the 

worker and by his employer), π  the probability that the worker is survived by his spouse and r 
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the discount rate. For convenience, I have suppressed all arguments of the functions W(), P() 
and PV() except for t. Substituting (2), (6) and (7) into (11), we have  

V (r) = !"Aoe
!# (s+E )erE e!(r!g!# )t dt

s+E

s+J

$ + %(C,N )W (s, s + J )e!& (s+J )erE e!(r!& )t dt
s+J

s+Z

$ + '(v e!(r!& )t dt
s+Z

s+Z2

$
)

*
+

,

-
.  

The IRR of the pension system from the point of view of the representative worker/pensioner is 
the value of r that makes V(r) equal to zero. Setting the previous expression equal to zero and 
using (2) to write  

  (12) W (s, s + J ) = Aoe
(g+! )(s+J )e"! (s+E )  

we have 

  ! e"(r"g"# )t dt
s+E

s+J

$ = %(C,N )e(g+#"& )(s+J ) e"(r"& )t dt
s+J

s+Z

$ + '(v e"(r"& )t dt
s+Z

s+Z2

$
)

*
+

,

-
.  

Solving the integrals that appear in this expression and simplifying the result, we arrive at the 
following equation, which can be solved numerically for r: 

  (13) !
e(r"g"# )C "1( )
r " g "#

= $(C,N )1" (1" %&v )e
"(r"' )X " %&ve

"(r"' )(X+X2)

r "'
 

where 

  (14) X = Z – J,       X2 = Z2 – Z     and      C = J – E 

are, respectively, the number of years that a retirement and a widower’s pension will be 
collected and the length of the agent’s working career (or the number of years he will have 
contributed to the Social Security system at the time of retirement). 
 
 4. Aggregate magnitudes 

To calculate total pension expenditure and other economy-wide aggregates, we need to add 
things up across all agents who are either employed workers or pensioners at a given point in 
time. To make the exercise tractable, I will assume that nothing changes over time or across 

individuals. In addition to constant values of g, n and ν, this means that the parameters of the 

system (including the contribution rate, τ, the retirement age, J, the pension calculation period, 

N, and the rules for computing the percentage φ of the regulatory base that is paid out as 

pension) remain constant over time and that all pensioners have the same characteristics both 
within and across generations (and, in particular, the same number of contribution years, C, and 
the same life expectancy, Z and Z2). Hence, I am essentially solving directly for a steady state of 
the model with constant life expectancy. As a result, the solution I will obtain will describe the 
equilibrium point to which the system will converge if we let it run undisturbed during a 
sufficiently long period under stationary circumstances, but it will tell us nothing about the 
transition path it will follow to reach this target from given initial conditions. 
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 The average wage 

Under these assumptions, it is easy to calculate aggregate magnitudes by integrating over the 
time of birth, s. Let us start with the working population. At time t, the labor force is composed 
of all the agents who entered the labor market between t-C and t, and were therefore born 
between t-C-E and t-E. Hence, the labor force at time t is given by 

  (15) LF(t) = L(s)ds
t!C!E

t!E

" = ensds
t!C!E

t!E

" =
enC !1( )
n

ente!n(C+E )  

The aggregate wage bill (WB) is the sum of the earnings of all employed workers, that is, 

  (16)WB(t) = L(s)W (s, t)ds
t!C!E

t!E

" = ensAoe
!# (s+E )e(g+# )t ds

t!C!E

t!E

" = Aoe
(g+n)t e!nE

1! e!(n!# )C( )
n !#

 

Hence, the average salary is 

  (17) W (t) = WB(t)
LF(t)

= Aoe
gt( ) n

n !"
1! e!(n!" )C

1! e!nC
#
$%

&
'(
)W s (t)Dw (n,",C)  

where W s (t) is the starting wage at time t and Dw (n,!,C) a correction factor that captures the 

effect of the age distribution of the population on average wages. In the absence of an 

experience premium (ν = 0), all workers who are active at time t earn the same wage regardless 

of their date of birth and the correction factor collapses to 1 independently of the age 

distribution of the working population. When ν > 0, however, wages rise with age, making the 

average wage higher than the current starting wage (Dw >1) , and the demographic structure of 

the population matters. 

As the experience premium (ν) rises, the upward sloping wage-age profile becomes steeper and 

the average wage rises relative to the starting wage. Similarly, when ν  > 0, an increase in the 

length of the working career, C, raises the average wage (relative to the starting wage). Finally, 
as the rate of population growth (n) increases, the relative weight of younger workers in the 

labor force increases. If these workers have lower wages than older ones (i.e. if ν  > 0), then the 

average wage falls. Hence, we have3 

  (18) !D
w

!"
> 0 ,  !D

w

!n
< 0  if ν  > 0  and  !D

w

!C
> 0  if ν  > 0 

 
 The average pension 

Next, we consider the population of pensioners (LP). Referring to Figure 1, we see that at time t 
the population is comprised of those agents born between t-Z and t. Of these, those born 

between t-Z and t-J are retired. In addition to them, a fraction π of those born between t-Z2 = t-

Z-X2 and t-Z have spouses that are still alive and are drawing a widower’s pension. Hence, the 

                                                
3 See the Appendix for a proof. 
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pensioner population at time t, including widows (or rather, the number of pensions, since 
widowers may be counted twice) is given by 

  (19) LP(t) = L(s)ds + ! L(s)ds
t"Z2

t"Z

#
t"Z

t"J

# = ensds + ! ensds
t"Z2

t"Z

#
t"Z

t"J

# = en(t"J ) 1" (1" ! )e
"nX " !e"n(X+X2)

n
 

Adding up over living pensioners, including widowers, total pension expenditure (PE) at time t 
is given by 

  (20) PE(t) = L(s)P(s)ds + ! L(s)PV (s)ds
t"Z2

t"Z

#
t"Z

t"J

#  

where I have suppressed all arguments of P() and PV() except for s, the time of birth of the 
(original) beneficiary. Using (6), (7) and (12), this expression becomes 

  

PE(t) = L(s)P(s)ds + ! L(s)PV (s)ds
t"Z2

t"Z

#
t"Z

t"J

#

         = Ao$(C,N )e%t e(g"% )J e&C e(n+g"% )sds + !'v e(n+g"% )sds
t"Z2

t"Z

#
t"Z

t"J

#
(

)
*

+

,
-

 

and, solving the integrals inside the parentheses and simplifying (see the Appendix for details),  

   (21) PE(t) = Ao!(C,N )e
"Ce(g+n)t e#nJ

1# (1# $%v )e
#(n+g#& )X # $%ve

#(n+g#& )(X+X2)

n + g #&
 

Hence, the average pension is given by 

  (22) 
P(t) = PE(t)

LP(t)
= Ao!(C,N )e"Cegt 1# (1# $%v )e#(n+g#& )X # $%ve

#(n+g#& )(X+X2)

1# (1# $ )e#nX # $e#n(X+X2)
n

n + g #&
'
()

*
+,

       - Ps (t)Dp (n,g #& )

 

where Ps (t)  is the starting pension at time t and Dp a correction factor that depends on the age 

distribution of pensioners and on how pensions vary with age at a given point in time.  

If productivity does not grow over time, pensions are indexed to consumer prices and 

widowers inherit their spouse’s full pension (i.e. if g = ω = 0 and !v =1) then all pensions paid 

out at a given point in time (including widowers’ pensions) are equal and the correction factor 
collapses to 1 for any value of n. Otherwise, real pensions vary with the date of birth of the 
original beneficiary and the age distribution of the pensioner population matters.  

Under normal circumstances, older pensioners will have lower pensions than younger ones due 
to productivity growth and to the fact that survivors’ pensions are only a fraction of the original 
retirement pension. As a result, the average pension will be below the current starting pension 

(i.e. Dp <1 if g – ω  >  0  and/or !v < 1). Under these conditions, moreover, an increase in the rate 

of population growth (n) will increase the average pension by raising the relative weight of 
younger individuals, who have higher than average pensions, in the stock of live pensioners. As 

productivity growth (g) rises (or ω declines), the downward sloping pension-age profile 
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becomes steeper and the average pension falls relative to the starting pension. Finally, the 

average pension rises with the generosity of widowers' pensions, measured by !v . Hence, we 

have4 

  (23) !Dp

!(g "# )
< 0   and    !D

p

!"v
> 0   

 and, 

  (24) !D
p

!n
> 0  if  g – ω   >  0     and/or  !v < 1 

 
 The components of pension expenditure as a fraction of the wage bill 

Finally, pension expenditure as a fraction of the wage bill can be written 

  (25) EXPW =
PE(t)
WB(t)

=
LP
LF
* P
W

! DEMLAB*GENW  

The first term on the right-hand side of this expression, DEMLAB, gives the number of pensions 
per employed worker, a useful summary of the joint impact of demographics and labor market 
conditions on the pension system. (Notice that the labor market component of this factor is 
trivial in the current model since it assumes that all agents are continuously employed during 
their entire active life). Using (15) and (19), this ratio can be written 

  (26) DEMLAB !
LP
LF

=
en(t"J ) 1" (1" # )e

"nX " #e"n(X+X2)

n
enC "1( )
n

ente"n(C+E )
=
1" (1" # )e"nX " #e"n(X+X2)

enC "1
 

Recalling that C = J – E and X = Z - J, it is easy to see that DEMLAB increases with life 
expectancy (Z) and decreases with the retirement age (J) and with the growth rate of population 
(n). 

The second factor in (25), GENW, is the ratio between the average pension and the average 
wage. I will refer to this term as the generosity factor of the pension system (defined in terms of 
the average wage). Using (17) and (22), GENW will be given by 

  (27) GENW (t) = P(t)
W (t)

= !(C,N )e"C D
p (n,g #$ )
Dw (n,",C)

 

Our earlier results about the comparative statics of the numerator and denominator of this ratio 
imply that GENW will be a decreasing function of the rate of productivity growth and an 
increasing function of the rate of population growth. 

 
 

                                                
4 See the Appendix for a proof. 
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 5. The financial sustainability of the pension system 

At time t, the total revenue of the pension system from social contributions is given by 

  (28) REV (t) = L(s)!W (s, t)ds
t"C"E

t"E

# = !WB(t) = !Aoe
(g+n)t e"nE

1" e"(n"$ )C( )
n "$

 

whereas total pension expenditure will be 

  (21) PE(t) = Ao!(C,N )e
"Ce(g+n)t e#nJ

1# (1# $%v )e
#(n+g#& )X # $%ve

#(n+g#& )(X+X2)

n + g #&
 

Hence, the system will be running a current surplus whenever the following condition holds: 

  !e"nE
1" e"(n"# )C( )

n "#
$ %(C,N )e#Ce"nJ 1" (1" &'v )e

"(n+g"( )X " &'ve
"(n+g"( )(X+X2)

n + g "(
 

which can be simplified to 

  (29) !
e(n"# )C "1( )
n "#

$ %(C,N )1" (1" &'v )e
"(n+g"( )X " &'ve

"(n+g"( )(X+X2)

n + g "(
 

Working with (29) written as an equality, we can solve for the sustainable initial replacement rate 

given the Social Security contribution rate, τ, 

  (30) 
 
!! = " n + g #$

n #%
e(n#% )C #1

1# (1# &'v )e
#(n+g#$ )X # &'ve

#(n+g#$ )(X+X2)  

or for the social contribution rate that is required to keep the system in balance given its other 
parameters, 

  (31) 
 
!! = "(N ,C) n #$

n + g #%
1# (1# &'v )e

#(n+g#% )X # &'ve
#(n+g#% )(X+X2)

e(n#$ )C #1
 

A useful summary statistic of the long-term sustainability of the system that can be compared 
across “regimes” defined by different sets of parameter values will be the ratio between its 
steady-state expenditure and revenues, which turns out to be equal to the ratio between the 

system's initial replacement rate and the sustainable value of the same variable,5  

  (32)
 
SUST! "

PE
REV

=
PE
#WB

=
EXPW

#
= DEMLAB*GENW * 1

#
=
!(C,N )
!!

 

I will refer to this variable as the inverse sustainablity ratio in terms of ρ because an increase in the 

ratio signals a deterioration of the system's financial position.  

 
 

                                                
5 By equation (21), total pension expenditure is directly proportional to the system's observed initial 
replacement rate. By definition, the system's revenues will be equal to its sustainable expenditure, which 
can be obtained by replacing !(C,N ) by  !! in equation (21). Hence,  PE / REV = ! / !!  



 10 

 A second sustainability criterion 

In a classical paper, Samuelson (1958) shows in the context of an overlapping generation model 
that a pay-as-you-go pension system is sustainable in the long run if and only if its internal rate 
of return (IRR) does not exceed the growth rate of aggregate income. In this section I will show 
that this result also holds in the present model. This provides a second intuitive way to evaluate 
the long-term sustainability of the pension system and the effects on it of possible changes in 

parameter values.6 

Let us return to the equation that implicitly defines the IRR of the pension system, r, (which 
under our assumptions is the same for all pensioners) 

  (13) !
e(r"g"# )C "1( )
r " g "#

= $(C,N )1" (1" %&v )e
"(r"' )X " %&ve

"(r"' )(X+X2)

r "'
    

Using this expression, we can write the initial replacement rate, ρ, as a function of r: 

  (33) !(C,N ) = " r #$
r # g #%

e(r#g#% )C #1
1# (1# &'v )e

#(r#$ )X # &'ve
#(r#$ )(X+X2)  

Substituting (33) into (29), the no-deficit condition becomes 

   e
(n!" )C !1
n !"

#
r !$

g + n !$
e(r!g!" )C !1
r ! g !"

%
&'

(
)*
1! (1! +,v )e

!(g+n!$ )X ! +,ve
!(g+n!$ )(X+X2)

1! (1! +,v )e
!(r!$ )X ! +,ve

!(r!$ )(X+X2)

%
&'

(
)*

 

which can be easily shown to be equivalent to  

  (34) e(n!" )C !1
e(r!g!" )C !1

#
$%

&
'(
r ! g !"
n !"

)
r !*

g + n !*
1! (1! +,v )e

!(g+n!* )X ! +,ve
!(g+n!* )(X+X2)

1! (1! +,v )e
!(r!* )X ! +,ve

!(r!* )(X+X2)

#
$%

&
'(

 

Next, we define 

  (35) d = n + g - r    

from where 

    g+n = r+d  and  r  - g = n  - d 

and rewrite (34) in terms of d: 

  (36) e(n!" )C !1
e(n!"!d )C !1

n !" ! d
n !"

#
r !$

r !$ + d
1! (1! %&v )e

!(r!$+d )X ! %&ve
!(r!$+d )(X+X2)

1! (1! %&v )e
!(r!$ )X ! %&ve

!(r!$ )(X+X2)  

Notice that if d = 0 then (36) holds as an equality. That is, if the IRR of the system is equal to the 
growth rate of its revenues, n+g, then its budget is in balance. Taking derivatives of this 
expression with respect to d it is straightforward to show that if r > n+g then the system will 
experience a deficit and will not therefore be sustainable in the long run (see the Appendix). 
Hence, we have the following result: the pension system will not be in deficit provided that its IRR 
does not exceed the growth rate of the wage bill, i.e. that  
                                                
6 Jimeno and Licandro (1999) use this approach to evaluate the sustainability of the Spanish pension 
system. 
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  (37) r ! g + n  

This result allows us to define a second inverse sustainability ratio as the quotient between the 
observed IRR of the system, r, and its sustainable IRR, given by g+n, 

  (38) SUSTr =
r

g + n
 

As in the case of SUST! , a value of SUSTr  equal to 1 means that the system will be running a 

balanced budget in the steady state and a reduction in this indicator signals an improvement in 
the system's long-term financial position. 
 
 6. Comparative statics 

This section numerically explores the comparative statics of the model. To fix the starting point 
for the required calculations, the values of the model’s coefficients will be set taking as a 
reference the average values of the variables of interest over the period 1981-2007 and the 
observed values of certain characteristics of the representative pensioner and of the parameters 
currently used in Spain for pension calculations.  

The first column of Table 1 contains the relevant data. The values of g and n are set equal to the 
average rates of growth of labor productivity and employment during the period 1981-2007, 
with labor input measured in both cases by full-time equivalent employment according to the 
Spanish National Accounts (INE, 2011a). Both rates have been calculated by regressing the log 

of the corresponding variable on a linear trend. The experience premium (ν) is set so that the 

model reproduces the average initial replacement rate (that is, the ratio between the initial 
pension and the salary at the time of retirement) observed among new retirees who entered the 
system in 2008, as estimated by Devesa (2009, p. 64) using the panel of work histories put 
together by the Spanish Ministry of Labor (the so called “muestra continua de vidas laborales”). 
The Social Security contribution rate linked to the pension system is assumed to be equal to 95% 
of the contribution rate for ordinary contingencies under the general regime of the Social 

Security,7 calculated as the sum of the rates applicable to the company (25,6%) and the worker 
(4,7%).  

The number of years of Social Security contributions paid by the average pensioner (C) is 
approximated as the product of the average employment rate of the population aged 18-64 
during the period of reference and the theoretical maximum duration of the individual's 
working life, 65 – 18 = 47 years. The average duration of the period during which a pension is 
drawn (X) is calculated as the difference between the average life expectancy at birth of the 
population as a whole, Z, (taking its average value during the relevant period) and the 
retirement age, J, which is set equal to the legal retirement age of 65 years. The period during 
which a surviving spouse's pension is drawn is approximated as the difference between the life 

                                                
7 In Spain, ordinary Social Security contributions cover a series of contingencies apart from retirement, 
making it impossible to isolate a specific contribution to the pension system. The 95% figure is based on an 
internal government report cited by Doménech and Melguizo (2008). 
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expectancy of women and that of the population as a whole, incremented by 2.75 years, which 
is the average age difference between men and women at the time of marriage according to the 

Spanish National Statistical Institute's marriage statistics (INE, 2011c). The probability (π) that a 

retiree is survived by a spouse entitled to a widower's pension is set to ½.  
 

Table 1: Baseline model parameterization based on data for 1980-2007  
and model's long-term predictions 

__________________________________________________________________________ 

 parameters  predicted ratios  
Growth of output per worker (g) 1.13%  DEMLAB 0.373 
Growth of total employment (n) 1.90%  GENW 0.705 
Experience premium per year (ν) 1.28%  EXPW 0.263 
Social Security contribution rate (τ) 27.89%  SUSTρ 0.976 
Avge. employment rate of pop. 18-64* 56.03%  SUSTr 0.960 
Avge. years of contribution (C) 26.34    
Life expectancy     
  Entire population 76.66       Note:  
  men 73.37  Observed ρ 0.694 
  women 79.93  Sustainable ρ 0.711 
X = avge. duration of retirement pension 11.66  Observed IRR 2.91% 
X2 = avge. duration widower's pension 6.02  Sustainable IRR 3.03% 
M = years of contribution required for a full 
pension 35    

__________________________________________________________________________ 
- Note: (*) The employment rate is calculated as the ratio between total employment (using full-time 
equivalent figures taken from the National Accounts) and the population 18-64, taken from INE (2011b). 
The table reports the average value of this ratio during the period 1980-2007. 
 

The second column of Table 1 shows the model's predictions for some variables and ratios of 
interest under the parameter values listed in the first column. Since steady-state expenditure as 

a fraction of the wage bill (EXPW) is slightly below the Social Security contribution rate (τ), the 

system would be expected to enjoy a modest budget surplus if operating under stationary 
conditions. As a result, both inverse sustainability ratios are below one. In the long run, the 

initial replacement rate, ρ, would be expected to converge to 0.694, which is slightly below its 

sustainable value of 0.711, and the system's IRR should approach 2.91%. 

Starting from the situation described in Table 1, I have calculated the effects on the variables of 
interest of a small change in each of the parameters of the model. Table 2 summarizes the 
results. The table shows the percentage change in the steady-state value of the ratios of interest 
that would be induced by each of the parameter changes described in the table. The ratios of 
interest are pension expenditure as a fraction of the wage bill (EXPW), the demographic-
employment and generosity components of this variable (DEMLAB and GENW) and the two 

inverse sustainability ratios, SUSTρ and SUSTr. Recall that the first of the sustainability 

indicators is the ratio between EXPW and the Social Security contribution rate, τ, which is not 

included among the columns of the table. 
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Table 2: Expected long-term % change in the ratios of interest  
induced by changes in the parameters of the model 

___________________________________________________________________ 
 GENW DEMLAB EXPW SUSTρ SUSTr 
g !  by 0.25 p.p. -3.28%  -3.28% -3.28% -5.06% 
n !  by 0.25 p.p. 0.41% -5.24% -4.86% -4.86% -7.62% 
! "  by 0.25 p.p. 1.62%  1.62% 1.62% 2.77% 
! "  by 1 p.p.   -3.59% -6.34% 
N !  by 1 year -1.12%  -1.12% -1.12% -1.96% 
C !  by 1 year 3.15% -4.65% -1.64% -1.64% -2.70% 
Z !  by 1 year* 0.21% 5.89% 6.11% 6.11% 10.13% 
J !  by 1 year* -0.31% -6.01% -6.30% -6.30% -11.65% 
X2 !  by 1 year -1.36% 2.78% 1.38% 1.38% 2.40% 
! "  by 0.25 p.p. 1.60%  1.60% 1.60% 2.75% 
M !  by 1 year -1.72%  -1.72% -1.72% -3.35% 
___________________________________________________________________ 

-  (*) Z !  means an increase in average life expectancy, holding constant the difference between men and 
women (and hence X2) and J ! an increase in the age of retirement holding constant the number of 
contribution years, C. 

 
The table shows the effect that different parameter changes would have on the long-term 
financial health of the system and the channels that would be involved in each case. For 
instance, an increase in the annual growth rate of (population and) employment of a quarter of 
a percentage point (p.p), from 1.90% to 2.15%, would slightly raise the average pension to wage 

ratio (GENW !)  by changing the age structure of the working and retired populations8 but 

would also induce a much larger reduction in the ratio of pensioners to employed workers 

(DEMLAB !) . The net effect would be a significant reduction in the expenditure and ρ-

sustainability ratios, which would fall by 4.86% for each quarter-point increase in n. A one-point 

increase in the Social Security contribution rate (τ) would have no effect on expenditure but 

would increase revenue, thereby improving (i.e. lowering) the sustainability ratios.   

The last row of the table shows the effect of a one-year increase in the period required to attain a 
"full pension," understood as 100% of the regulatory base of the pension. The impact of this 

reform has been calculated under the counterfactual assumption that φ increases linearly with C 

once the minimum period of 15 years has been completed (see footnote 2). That is, I am 

assuming that φ is given by  

  !(C,M ) = 0.5 + (C "15)* 0.5
M "15

 

and exploring the sensitivity of the model's predictions to a one-year increase in M, starting 
from its current value of 35. 

                                                
8 Faster population (and employment) growth will increase the weight of the relatively young both among 
employed workers and among pensioners. Other things equal, this will reduce the average wage (because 
young workers have less experience and hence lower wages) and increase the average pension (because 
recent retirees will have higher pensions than older ones as long as productivity growth is positive). 
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The results of the exercise indicate that pension expenditure and the system's sustainability 
ratios are rather sensitive to many of the model's parameters. A one-year increase in life 
expectancy would increase the expenditure ratio by more than six percent (from 0.263 to 0.279 
of the wage bill) and would push the sustainability ratio above the threshold value of 1. To 
offset the effects of such a change, the retirement age would also have to rise by one year or 

social contribution rates would have to be raised by 1.7 percentage points.9 Raising the growth 
rates of employment and productivity by a quarter of a point would reduce steady-state 
expenditure by 4.86% and 3.28% respectively. Faster employment growth works mostly 
through the demographic-labor market component of expenditure by increasing the ratio of 
employed workers to pensioners. Productivity growth, on the other hand, works through the 
generosity ratio: faster productivity growth implies steeper wage profiles which in turn 
translate into lower initial replacement rates through the averaging formula used to calculate 
the regulatory base of the pension and through the distribution factor discussed in the previous 
section. Hence, wage gains arising from higher productivity growth do not translate entirely to 
pensions and, as a result, do help improve sustainability ratios. By contrast, an increase in the 

experience premium (ν) would have a greater positive effect on the average pension than on 

average wages, thereby increasing the generosity ratio. 
 
 7. Conclusion 

Pensions currently constitute one of the biggest public spending items in most advanced 
nations and one of the potentially most serious threats to the long-term sustainability of their 
public finances in the face of rapid population aging. The problem is particularly acute in those 
countries, like Spain, that have a pay-as-you-go system with defined benefits in which pensions 
are financed by current contributions from active workers and benefit levels are set in advance 
without reference to actuarial sustainability criteria. 

In these circumstances, policy makers and analysts need tools that allow them to project the 
evolution of pension expenditure under different economic and demographic scenarios and to 
analyze the effects of possible policy reforms. This paper has developed a simple model that 
highlights the main forces at work and that may be a useful instrument for performing "quick 
and dirty" calculations of this sort. An exercise of this type using recent Spanish data suggests 
that, in the absence of reforms, our public pension system will soon fall below the sustainability 
threshold. The biggest threats in this regard are the inevitable decrease in the growth rate of 
employment that will ensue as the working-age population stabilizes and may even decline 
over the coming decades and the rapid increase in life expectancy that is expected to continue in 
the foreseeable future. Lagging productivity growth is also a concern, as fast gains in output per 
worker would partially offset the adverse effects of aging on the financial health of the public 
pension system. 

                                                
9 Raising the age of retirement would have an effect of roughly the same size in the opposite direction. In 
fact, the effect of raising the retirement age by one year is slightly larger than that of increasing life 
expectancy in the same amount because the former affects "young pensioners" that have a greater weight 
in the retired population and on total pension expenditure than the oldest pensioners affected by the 
latter. 
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 APPENDIX 

 
1. Some useful results 

This section collects the results of some simple calculations that will be useful later on. 

• In this paper we often have to calculate integrals of a certain type. Introducing a change of 
variable, it is easy to show that 

  (A.1) e! t
a

b

" dt =
e! (b#a) #1( )e! a

!
=

1# e#! (b#a)( )e! b
!

 for ! $ 0

b # a for ! = 0

%

&
'

(
'

 

Proceeding in the same manner with  ! = "r # 0 , we have 

  (A.2)  e!rt
a

b

" dt =
1! e!r(b!a)( )e!ra

r
   

 

• For any x, it is easy to show that 

 (A.3)!(x) " e#x (1+ x) $1  

 (A.4) µ(x) ! ex (x "1) # "1  

and that both expressions hold as strict inequalities for x ! 0 . 
 

• Next, consider the function 

  (A.5) h ! ,D( ) =
1" e"! D

!
 for ! # 0

D for ! = 0

$

%
&

'
&

       with D > 0  

It is easy to show that h() is always positive, tends to !  as ! " #$  and to 0 as ! " # , is 

continuous at 0 and increases with D. Differentiating with respect to each argument and using 
(A.3) we have 

  (A.6) 
hD ! ,D( ) = "e"! D ("! )

!
= e"! D > 0

h! ! ,D( ) = #h ! ,D( )
#!

=
e"! D (1+ ! D)"1

! 2
=
$(! D)"1

! 2
< 0

 

for ! " 0 . Notice that this expression can also be written 

  (A.7) h! ! ,D( ) = ! De"! D " (1" e"! D )
! 2

=
De"! D

!
"
(1" e"! D )

! 2
=
De"! D

!
"
h ! ,D( )

!
< 0  

This implies that 

  (A.8) h ! ,D( ) > De"! D  for  γ  > 0  and  h ! ,D( ) < De"! D  for γ  < 0 
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When  ! = 0 , moreover, we have 

  ! "0
limh! =

0 #1+1
0

=
! "0
lim

#! D2e#! D

2!
=
#D2

2
< 0

 

by L’Hopital’s rule.
 

• Similarly, the function 

  (A.9) m ! ,D( ) =
e! D "1

!
 for ! # 0

D for ! = 0

$

%
&

'
&

  with D > 0 

takes on only positive values regardless of the sign of γ, is continuous at zero, tends to 0 as 

! " #$  and to infinity as ! " # and increases with D. Differentiating with respect to γ  and D  

and using (A.4) we have 

  (A.10) 

!m " ,D( )
!"

=
e" D (" D #1)+1

" 2
=
µ(" D)+1

" 2
> 0

!m " ,D( )
!D

=
e" D"
"

= e" D > 0
 

for ! " 0 . For ! = 0we have 

  
! "0
limm! =

0 +1#1
0

=
! "0
lim

D2e#! D

2
=
D2

2
> 0  

 

• Next, consider the function 

  (A.11) f (! , p,X,Y ) = 1" (1" p)e
"! X " pe"!Y

!
    with   0 < X !Y   and  p! 0,1[ ]  

and observe that it can be written 

  (A.12) f (! , p,X,Y ) = (1" p)h(! ,X)+ ph(! ,Y )  

Differentiating this expression and using previous results we have 

  (A.13)  

f! (! , p,X,Y ) = (1" p)h! (! ,X)+ ph! (! ,Y ) < 0

fX (! , p,X,Y ) = (1" p)hX (! ,X) = (1" p)e
"! X > 0

fY (! , p,X,Y ) = phY (! ,Y ) = pe"!Y > 0
fp (! , p,X,Y ) = "h(! ,X)+ h(! ,Y ) = h(! ,Y )" h(! ,X) # 0

 

where the last inequality holds because h() is increasing in its second argument and Y ! X.  
 

• Some useful bounds on the exponential function 

Let f :R! R  be n+1 times differentiable on some open interval, I. It is well known that for any 

a, x !I , f can be written in the form of a Taylor polynomial with remainder,  
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  f (x) = f (a)+ f (k ) (a)
k!k=1

n

! x " a( )k + f (n+1) (b)
(n +1)!

x " a( )n+1  

where b is some point between a and x and f (k ) (a) is the k-th derivative of f() evaluated at a.  

Letting f (x) = ex !1 , we have f (k ) (x) = ex for all k and, setting a to zero and n to 2, we can write 

  ex !1= e0 !1( ) + e0x + e
0x2

2
+
ebx3

3!
= x +

x2

2
+
ebx3

6
 

for some b between 0 and x. If we constrain x to be positive, the remainder (the last term on the 
right-hand side of this expression) will also be positive and this implies that 

  (A.14) ex !1> x + x
2

2
   for all x > 0 

If x < 0, on the other hand, the remainder will be negative and we will have 

  (A.14') ex !1< x + x
2

2
   for all x < 0 

Proceeding in a similar way with f (x) = 1! e!x we have 

  f (0) = 0,  f '(x) = e!x ,  f "(x) = !e!x  and  f '''(x) = e!x  

and therefore 

  1! e!x = 1! e!0( ) + e!0x + !e!0x2

2
+
ebx3

3!
= x !

x2

2
+
ebx3

6
 

from where 

  (A.15) 1! e!x > x ! x
2

2
  for all x > 0  and  1! e!x < x ! x

2

2
  for x < 0 

 
Using these inequalities, it is easy to establish the following result, which will be useful below. 

• Claim 1: ex !1( )2 " x2ex  with strict inequality whenever x ! 0  

Proof: 

We want to show that  

  (A.16) v(x) ! ex "1( )2 # x2ex ! u(x)  

with strict inequality whenever x ! 0 . Notice that (A.16) holds as an equality for x = 0 since 

  v(0) = e0 !1( )2 = 0 = 0e0 = u(0)  
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Next, we need to compare the functions v(x) and u(x) for x > 0. Since both functions vanish 
when x = 0, their relative size will depend on that of their derivatives. Formally, since we can 
write 

  v(x) = v(0)+ v '(s)
0

x

! ds = v '(s)
0

x

! ds    and   u(x) = u '(s)
0

x

! ds  

a sufficient condition for (A.16) to hold for all x > 0 is that 

  (A.17) v '(x) > u '(x)   for all x > 0 

Calculating the relevant derivatives, 

  (A.18) 
v '(x) = 2 ex !1( )ex
u '(n) = x2ex + 2xex = x2 + 2x( )ex

 

this condition can be written 

  ex !1( ) > x + x
2

2
 

which is true for all x > 0 by (A.14). 

Finally, assume that x < 0. As before, we need to compare the functions v(x) and u(x) using their 
derivatives. Notice, however, that the direction of the inequality between the relevant 
derivatives will be reversed as we cross the origin. Since v(x) = u(x) = 0, v(x) will lie above u(x) 
as we move from 0 to the right if v() is steeper than u(). As we move from 0 to the left, however, 
we need v() to be flatter than u() in order to obtain the same result. Hence, in the first case we 
need v'(x) > u'(x) for x > 0 and in the second v'(x) < u'(x) for x < 0.  

Formally, when x < 0 we can write 

  v(x) = v '(s)
0

x

! ds = "v '(s)
x

0

! ds   and   u(x) = u '(s)
0

x

! ds = "u '(s)
x

0

! ds     

so a sufficient condition for (A.16) to hold for all x < 0 is 

  (A.17') !v '(x) > !u '(x)" v '(x) < u '(x)   for all x < 0 

or, using (A.18), 

  ex !1( ) < x + x
2

2
 

which we know to hold for all x < 0 by (A.14').       !  
 
Letting z = -x, claim 1 can be rewritten 

  (A.19) e!z !1( )2 " (!z)2 e!z # 1! e!z( )2 " z2e!z   

with strict inequality whenever z ! 0 . If we define the function A(z) by 
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  (A.20) A(z) = 1! e!z( )2 ! e!zz2  

we have by (A.19) that  

  (A.21) A(0) = 0   and   A(z) > 0 for z ! 0  

Differentiating A(), we have 

 A '(z) = 2e!z 1! e!z( )! z ! z
2

2
"
#$

%
&'

(

)
*
*

+

,
-
-

 

Using (A.15), this expression implies that 

  (A.22) A '(z) =
> 0  for z > 0
< 0  for z < 0

!
"
#

      or       A’(z)z > 0   for all z ! 0  

Finally, notice that  

  

A '(z)+ 2A(z) = 2e!z ez !1( )! z + z
2

2
"
#$

%
&'

(

)
*
*

+

,
-
-

 

Using (A.14) and (A.14’) we see that  

 (A.23) A '(z)+ 2A(z) =
> 0  for z > 0
< 0  for z < 0

!
"
#

  $   A '(z)+ 2A(z)[ ]z > 0  for all z % 0  

 
2. Calculation and comparative statics of the regulatory base of the pension 

The regulatory base of the pension is defined as the average wage of the worker calculated over 
the N years prior to retirement: 

B(s, s + J,N ) = 1
N

W (s,t)dt
s+ J!N

s+ J

" =
1
N

Aoe
(g+# )te!# (s+E )dt

s+ J!N

s+ J

" =
1
N
Aoe

!# (s+E ) e(g+# )tdt
s+ J!N

s+ J

" =

                    = 1
N
Aoe

!# (s+E ) 1! e!(g+# )N( )e(g+# )(s+ J )

g +#
=

1! e!(g+# )N( )
(g +# )N

Aoe
!# (s+E )e(g+# )(s+ J )

                    =
1! e!(g+# )N( )

(g +# )N
W (s, s + J ) $ b (g +# )N( )W (s, s + J )

 

or 

  B(s, s + J,N ) = b (g +! )N( )W (s, s + J )     with    b (g +! )N( ) = 1" e"(g+! )N

(g +! )N
 

To abbreviate, define 

  x = (g +! )N  

and write b() in the form 

  b x( ) = 1! e
!x

x
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Differentiating this function and using (A.3), we have 

  b ' x( ) = xe!x ! (1! e!x )
x2

=
e!x (1+ x)!1

x2
=
"(x)!1
x2

< 0  

for x ! 0 . Hence, the ratio b() is a decreasing function of N and g+ν. 

  
 3. Calculation of the IRR of the pension system 

The IRR of the pension system is the value of r that solves the following equation 

 ! e"(r"g"# )t dt
s+E

s+J

$ = %(C)b(N )e(g+#"& )(s+J ) e"(r"& )t dt
s+J

s+Z

$ + '%v e"(r"& )t dt
s+Z

s+Z2

$
(

)
*

+

,
-  

Solving the integrals that appear in this expression and operating, we have 

e!(r!" )t dt
s+J

s+Z

# + $%v e!(r!" )t dt
s+Z

s+Z2

# =
1! e!(r!" )(J!Z )( )e!(r!" )(s+J )

r !"
+ $%v

1! e!(r!" )(Z2!Z )( )e!(r!" )(s+Z )

r !"

                    = e!(r!" )(s+J )
1! e!(r!" )X( ) + $%v 1! e!(r!" )X2( )e!(r!" )[(s+Z )!(s+J )]

r !"

                    = e!(r!" )(s+J ) 1! (1! $%v )e!(r!" )X ! $%ve
!(r!" )(X+X2)

r !"

 

and 

  e!(r!g!" )t dt
s+E

s+J

# = e!(r!g!" )(s+E )
1! e!(r!g!" )C( )
r ! g !"

 

where 

  X = Z – J       X2 = Z2 – Z      and        C = J – E. 

Collecting results, the IRR of the system is the value of r that solves the following equation: 

!e"(r"g"# )(s+E )
1" e"(r"g"# )C( )
r " g "#

= $(C)b(N )e(g+#"% )(s+J )e"(r"% )(s+J ) 1" (1" &$v )e
"(r"% )X " &$ve

"(r"% )(X+X2)

r "%
 

which can be somewhat simplified to 

 !
e(r"g"# )C "1( )
r " g "#

= $(C,N )1" (1" %&v )e
"(r"' )X " %&ve

"(r"' )(X+X2)

r "'
 

 
 4. Aggregate magnitudes 
 
 The average wage 

The labor force at time t is given by 

  LF(t) = L(s)ds
t!C!E

t!E

" = ensds
t!C!E

t!E

" =
enC !1( )en(t!C!E )

n
=

enC !1( )
n

ente!n(C+E )  
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The aggregate wage bill (WB) is the sum of the earnings of all employed workers, that is, 

  
WB(t) = L(s)W (s, t)ds

t!C!E

t!E

" = ensAoe
!# (s+E )e(g+# )t ds

t!C!E

t!E

" = Aoe
(g+# )t e!#E e(n!# )sds

t!C!E

t!E

" =

                             = Aoe
(g+# )t e!#E

1! e!(n!# )C( )e(n!# )(t!E )

n !#
= Aoe

(g+n)t e!nE
1! e!(n!# )C( )

n !#

 

Hence, the average salary is 

 W (t) = WB(t)
LF(t)

=
Aoe

(g+n)t e!nE
1! e!(n!" )C( )

n !"
enC !1( )
n

ente!n(C+E )
= Aoe

gt( ) n
n !"

1! e!(n!" )C

1! e!nC
#
$%

&
'(
)W s (t)Dw (n,",C)  

 Notice that 

  Dw (n,!,C) = 1" e
"(n"! )C

n "!
n

1" e"nC
=
h(n "!,C)
h(n,C)

 

where h() has been defined above in (A.5). Since h() is decreasing in its first argument, it follows 

that  Dw > 1 for ν > 0 and  

  !Dw

!"
=

1
h(n,C)

!h(n #",C)
!(n #" )

(#1) > 0  

so the average wage increases with the experience premium. As we increase n the weight of the 
younger workers in the labor force increases. If these workers have lower wages than older 

ones, i.e. if ν > 0, then the average wage falls with n. Hence, we have 

• Claim 2: Given ν > 0, we have !D
w (n,",C)
!n

< 0  for all n ! 0  

Proof:  

Fix ν > 0 and define the functions F() and g() by 

 F(n) ! lnDw (n,",C) = lnh(n #",C)# lnh(n,C) ! g(n #" )# g(n)  

Since ln() is an increasing function, the derivative of f() will have the same sign as that of Dw () . 

Hence, the desired result will follow if we can show that 

  F '(n) = g '(n !" )! g '(n) < 0# g '(n !" ) < g '(n)   for ν > 0 

i.e. that g’() is an increasing function. Hence, it will be sufficient to show that  

  g"(n) > 0  

To continue, we need to distinguish two cases depending on the sign of n.  

•  Case i) Assume n > 0. Then we can write   
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  (A.24) g(n) = lnh(n,C) = ln1! e
!nC

n
= ln 1! e!nC( )! lnn  

and differentiating this expression 

  
g '(n) = e!nCC

1! e!nC
!
1
n
=

C
enC !1

!
1
n

g"(n) = !C2enC

enC !1( )2
+
1
n2

 

To establish the desired result we need to show that  

  (A.25) 
g"(n) = !C2enC

enC !1( )2 +
1
n2 > 0 "

1
n2 >

C2enC

enC !1( )2

       " v(n) # enC !1( )2
> n2C2enC # u(n)

 

for all n > 0, which holds by claim 1 with x = nC. 
  

•  Case ii) We now consider the case when n < 0. Then, we need to write (A.24) in a slightly 
different way 

  (A.24') g(n) = lnh(n,C) = ln e
!nC !1
!n

= ln e!nC !1( )! ln(!n)  

to ensure that we are taking logs of positive numbers. This does not change the derivative of g(), 
however, so we still need to show that (A.25) holds for all n < 0, which is true by claim 1.        !  

 

• Claim 3: Given ν > 0, we have !D
w (n,",C)
!C

> 0 .  

 Proof: 

Fix ν > 0 and define the functions F() and g() by 

  F(n,C) ! lnDw (n,",C) = lnh(n #",C)# lnh(n,C) ! g(n #",C)# g(n,C)  

We want to show that 

  FC (n,C) ! gC (n "#,C)" gC (n,C) > 0$ gC (n "#,C) > gC (n,C)   for ν > 0 

i.e. that gC() is a decreasing function of its first argument. Hence, it will be sufficient to show 
that  

  gCn (n,C) < 0  

Differentiating 

  g(n,C) = lnh(n,C) = ln1! e
!nC

n
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we have 

  gC (n,C) =
hC (n,C)
h(n,C)

=
e!nC

1! e!nC

n

=
n

enC !1
 

and 

  gCn (n,C) =
enC !1( )! nenCC

enC !1( )2
=
!enC (nC !1)!1

enC !1( )2
=
!µ(nC)!1

enC !1( )2
< 0  

where the inequality follows by multiplying both sides of (A.4) by -1.     !  
  
 The average pension 

The pensioner population at time t, including widows, is given by 

LP(t) = L(s)ds + ! L(s)ds
t"Z2

t"Z

#
t"Z

t"J

# = ensds + ! ensds
t"Z2

t"Z

#
t"Z

t"J

# =
1" e"n(Z"J )( )en(t"J )

n
+ !

1" e"n(Z2"Z )( )en(t"Z )

n
=

         = en(t"J )
1" e"nX( ) + ! 1" e"nX2( )e"nX

n
= en(t"J ) 1" (1" ! )e"nX " !e"n(X+X2)

n

 

Adding up over live pensioners, total pension expenditure (PE) at time t is given by 

 PE(t) = L(s)P(s)ds + ! L(s)PV (s)ds
t"Z2

t"Z

#
t"Z

t"J

#  

Using equations (6), (7) and (12) in the text, this expression can be written 

 

PE(t) = !(C,N )e"t ensW (s, s + J )e#" (s+J )ds + $%v!(C,N )e"t ensW (s, s + J )e#" (s+J )ds
t#Z2

t#Z

&
t#Z

t#J

&

         = Ao!(C,N )e"t e(g#" )J e'C e(n+g#" )sds + $%v e(g+n#" )sds
t#Z2

t#Z

&
t#Z

t#J

&
(

)
*

+

,
-

 

Now, the term in parentheses becomes 

e(n+g!" )sds + #$v e(g+n!" )sds
t!Z2

t!Z

%
t!Z

t!J

% =
1! e!(g+n!" )(Z!J )( )e(g+n!" )(t!J )

g + n !"
+ #$v

1! e!(g+n!" )(Z2!Z )( )e(g+n!" )(t!Z )

g + n !"

                      = e(g+n!" )t e!(g+n!" )J
1! e!(g+n!" )X( ) + #$v 1! e!(g+n!" )X2( )e!(g+n!" )X

g + n !"

                      = e(g+n!" )t e!(g+n!" )J 1! (1! #$v )e!(g+n!" )X ! #$ve
!(g+n!" )(X+X2)

g + n !"

 

Substituting this into the previous expression, 

  
PE(t) = Ao!(C,N )e"t e(g#" )J e$C e(n+g#" )sds + %&v e(g+n#" )sds

t#Z2

t#Z

'
t#Z

t#J

'
(

)
*

+

,
-

         = Ao!(C,N )e$Ce(g+n)t e#nJ
1# (1# %&v )e#(g+n#" )X # %&ve

#(g+n#" )(X+X2)

g + n #"
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Hence, the average pension is given by 

  
P(t) = PE(t)

LP(t)
=
Ao!(C,N )e

"Ce(g+n)t e#nJ 1# (1# $%v )e
#(g+n#& )X # $%ve

#(g+n#& )(X+X2)

g + n #&

en(t#J ) 1# (1# $ )e
#nX # $e#n(X+X2)

n

= Ao!(C,N )e
"Cegt

1# (1# $%v )e
#(g+n#& )X # $%ve

#(g+n#& )(X+X2)

1# (1# $ )e#nX # $e#n(X+X2)
n

g + n #&
'
()

*
+,
- Ps (t)Dp (n,g #& )

 

where Ps (t)  is the starting pension at time t and Dp a correction factor that depends on the age 

distribution of pensioners and on how pensions vary with age at a given point in time.  

Notice that Dp can be written 

  Dp (n,g !" ,# ,$v ,X,X + X2) = f (g + n !" ,#$v ,X,X + X2)
f (n,# ,X,X + X2)

 

where 

  f (! , p,X,Y ) = 1" (1" p)e
"! X " pe"!Y

!
= (1" p)h(! ,X)+ ph(! ,Y )  

has been defined above in (A.11). Since f() is decreasing in its first argument and increasing in 
the second (see A.13), it follows that   

  

!Dp

!(g "#)
=

1
f (n,$ )

!f (n + g "# ,$%v )
!(n + g "# )

*1< 0

!Dp

!%v
=

1
f (n,$ )

!f (n + g "# ,$%v )
!($%v )

$ > 0
 

i.e. the average pension, written as a fraction of the starting pension, decreases with g, increases 

with ω and increases with the generosity of widower pensions, φv. 

Notice that Dp = 1 when g – ω  =  0   and φv = 1. Combining this with the signs of the two partial 

derivatives we have just calculated, we see that Dp < 1 for g – ω  >  0   and/or φv < 1. Finally, it can 

be shown that Dp is an increasing function of n.  
 

• Claim 4: Given g - ω > 0, we have !D
p (n,g "# )
!n

> 0  for all n ! 0  

Proof: 

To simplify a bit the notation, we can assume ω  = 0 without loss of generality and work with g 

rather than g - ω. We are interested in the function 

  Dp (n,g,! ,"v ,X,Y ) =
1# (1# !"v )e

#(g+n)X # !"ve
#(g+n)Y

1# (1# ! )e#nX # !e#nY
n

g + n
=
f (g + n,!"v ,X,Y )
f (n,! ,X,Y )

 

with  
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  g > 0,  ! " 0,1[ ],  0 # X #Y   and  $v " 0,1[ ] . 

Define the functions F() and q() by 

  F(n,! ,"v ) # lnD
p (n,g,! ,"v ) = ln f (n + g,!"v )$ ln f (n,! ) # q(n + g,!"v )$ q(n,! )  

Since ln() is an increasing function, the derivatives of F() will have the same sign as those of Dp . 
Hence, what we want to show is that  

  Fn (n,! ,"v ) = qn (n + g,!"v )# qn (n,! ) > 0$ qn (n + g,!"v ) > qn (n,! )  

For this, it will be sufficient to show that qn () is increasing in n and decreasing in ! . In terms of 

the second partials of q, we need to show that 

  qnn > 0    and  qn! < 0  

Differentiating 

  q(n,! ) = ln f (n,! ) = ln 1" (1" ! )e"nX " !e"nY( )" lnn   

the function qn ()  is given by 

  (A.26) qn (n,! ) =
(1" ! )e"nX X + !e"nYY
1" (1" ! )e"nX " !e"nY

"
1
n

 

• Part i: qnn > 0 : 

Differentiating again with respect to n and operating, qnn (n,! )  can be written in the form 

  (A.27) 

qnn (n,! ) = Nnn

n2 (1" ! ) 1" e"nX( ) + ! 1" e"nY( )#
$

%
&

2

with

Nnn = (1" ! ) 1" e"nX( ) + ! 1" e"nY( )#
$

%
&

2
" (1" ! )e"nXn2X 2 " !e"nY n2Y 2

       + (1" ! )!e"n(X+Y )n2 (Y " X)2

 

Since the denominator of qnn (n,! ) is always positive, we only need to show that Nnn > 0.  

To proceed, notice that the first term of Nnn  can be written 

(1! " ) 1! e!nX( ) + " 1! e!nY( )#
$

%
&
2
= (1! " ) 1! e!nX( )2 + " 1! e!nY( )2 ! (1! " )" e!nY ! e!nX( )2

 

Substituting this expression into (A.27) we have 

  

Nnn = (1! " ) 1! e!nX( )2
! e!nXn2X 2#

$%
&
'(
+ " 1! e!nY( )2

! e!nY n2Y 2#
$%

&
'(

       + (1! " )" e!n(X+Y )n2 (Y ! X)2 ! e!nY ! e!nX( )2#
$%

&
'(

      = (1! " ) 1! e!nX( )2
! e!nXn2X 2#

$%
&
'(
+ " 1! e!nY( )2

! e!nY n2Y 2#
$%

&
'(

        + (1! " )"e!2nX e!n(Y !X )n2 (Y ! X)2 ! e!n(Y !X ) !1( )2{ }

 



 26 

Using the function  

  A(z) = 1! e!z( )2 ! e!zz2  

defined in (A.20) we can write Nnn  in the form 

  (A.28) Nnn (X,Y ) = (1! " )A(nX)+ "A(nY )! (1! " )"e
!2nXA n(Y ! X)( )  

Next, we observe that 

  Nnn (0,Y ) = (1! " )* 0 + "A(nY )! (1! " )"e
0A nY( ) = " 2A(nY ) > 0  

and, using (A.22) and (A.23), 

  !Nnn

!X
= (1" # )nA '(nX)+ (1" # )#e"2nXn A ' n(Y " X)( ) + 2A n(Y " X)( )$% &' > 0  

Hence, Nnn is strictly positive for all X ! 0 , as was to be shown. 

 

• Part ii: qn! < 0 : 

Differentiating  

  (A.26) qn (n,! ) =
(1" ! )e"nX X + !e"nYY
1" (1" ! )e"nX " !e"nY

"
1
n

 

with respect to π, we have: 

qn! (n,! ) =
1" (1" ! )e"nX " !e"nY#$ %&* e"nYY " e"nX X( )" (1" ! )e"nX X + !e"nYY#$ %&* e"nX " e"nY( )

1" (1" ! )e"nX " !e"nY#$ %&
2  

which can be simplified to 

  qn! (n,! ) =
Nn!

1" (1" ! )e"nX " !e"nY#$ %&
2  

with 

  (A.29) Nn! = Ye"nY 1" e"nX( )" Xe"nX 1" e"nY( )  

To show that Nn! < 0, notice that we can write 

   
Nn! < 0" Ye#nY 1# e#nX( ) < Xe#nX 1# e#nY( )
" B(Y ) $ Ye#nY

1# e#nY
<

Xe#nX

1# e#nX
$ B(X)

 

both when n > 0 and when n < 0 since in both cases 1! e!nX( )  and 1! e!nY( )  have the same sign. 

Now, since X !Y by assumption, to establish the desired result we only need to show that B() is 
a decreasing function. Differentiating 
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  B(Z ) = Ze!nZ

1! e!nZ
 

we have 

  

B '(Z ) =
1! e!nZ( )* Ze!nZ (!n)+ e!nZ( )! Ze!nZ (!e!nZ )(!n)

1! e!nZ( )2

          = e!nZ 1! nZ ! e!nZ

1! e!nZ( )2 < 0

 

for all n ! 0  by 

  (A.4) µ(x) ! ex (x "1) # "1$1" x % e"x  

with x = nZ.           !  
 
 Components of the ratio of expenditure to GDP 

Given 

 DEMLAB !
LP
LF

=
en(t"J ) 1" (1" # )e

"nX " #e"n(X+X2)

n
enC "1( )
n

ente"n(C+E )
=
f (n,# ,X)
m(n,C)

=
f (n,# ,Z " J )
m(n, J " E)

 

and using (A.10) and (A.13) we have 

!DEMLAB
!Z

=
fX (n," ,X)
m(n,C)

> 0

!DEMLAB
!J

=
m(n,C) fX (n," ,X)(#1)# f (n," ,X)mC (n,C)

m(n,C)2
=
#m(n,C) fX (n," ,X)# f (n," ,X)mC (n,C)

m(n,C)2
< 0

!DEMLAB
!n

=
m(n,C) f$ (n," ,X)# f (n," ,X)m$ (n,C)

m(n,C)2
=
(#)# (+)

+
< 0

 

 
 5. Proof of the second sustainability condition 

We want to see for what values of d the following condition holds:  

 (A.30) G(d) ! e(n"# )C "1
e(n"#"d )C "1

n "# " d
n "#

"
r "$

r "$ + d
1" (1" %&v )e

"(r"$+d )X " %&ve
"(r"$+d )(X+X2)

1" (1" %&v )e
"(r"$ )X " %&ve

"(r"$ )(X+X2) ' 0  

where d = n + g - r is the difference between the growth rate of the system’s revenues and its 
IRR. Roughly speaking, the first term of G() describes the system’s revenues, the second term its 
expenditures and G() itself its financial surplus. 

Notice that 

 G(0) = 1 - 1 = 0 

Hence, the inequality holds weakly for d = 0. Next, we compute the derivative of G(). It is 
helpful to note that G() can be written in the form 
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 G(d) ! m(n "#,C)
m(n "# " d,C)

"
h(r "$ + d,%&v )
h(r "$ ,%&v )

 

Differentiating this expression and using (A.6) and (A.10) we have  

G '(d) ! m(n "#,C)
"m$ (n "# " d,C)("1)
m(n "# " d,C)2

"
h$ (r "% + d,&'v )
h(r "% ,&'v )

= m(n "#,C)
m$ (n "# " d,C)
m(n "# " d,C)2

"
h$ (r "% + d,&'v )
h(r "% ,&'v )

> 0

so the surplus of the system, given by G(), is an increasing function of  

 d = n + g - r    

with G(0) = 0 and therefore a decreasing function of its internal rate of return, r. If r increases 
above g+n we have G(r) < 0 and the system is in deficit, which is what we wanted to prove.      !  
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